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INTRODUCTION 

 

Mood disorders and antidepressant treatments 

 

Depression and amine neurotransmitters 

 

 Mood disorders are among the most prevalent forms of mental illness. These are 

afflictions whereby the prevailing emotional mood is distorted or inappropriate to the 

circumstances, with a lifetime incidence of 10–25% in women and 5–12% in men 

(Blazer, 2000). Such pathologies are recurrent, life threatening due to the risk of suicide, 

and a major cause of morbidity worldwide. The most severe of these afflictions are major 

depression and manic depression; the latter also called “bipolar disorder” because such 

patients experience alternating episodes of depression and euphoria (Miklowitz & 

Johnson, 2006). 

Depression has been described for several millennia, nevertheless, a distinction 

between a disturbance of cognitive faculties (a thought disorder) and a disturbance of 

emotions (a mood disorder), was recently introduced during early development of 

modern classification of mental illnesses in the 20th century. The term melancholia, 

which means “black bile” in greek, was first used by Hippocrates around 400 B.C. to 

refer to an alteration of mood, which was thought to depend on the balance of four 

humors, blood, phlegm, yellow and black bile. An excess of black bile was believed to 

cause depression (see Kandel et al., 2000). Most symptoms of this pathology were 

recognized in ancient times, as were the contributions of innate predispositions and 

external factors in causing the illness. Clinically, depression is defined by a set of 

standard criteria which include: depressed mood, low self esteem, feelings of 

hopelessness, worthlessness and guilt, decreased ability to concentrate and think, altered 

appetite, insomnia or hypersomnia, low energy, increased agitation, decreased interest in 

pleasurable stimuli, e.g., sex, food, social interactions, and recurrent thoughts of death 

and suicide. A diagnosis of depression is made when a certain number of the above 

symptoms are reported for longer than a 2 week period of time, and when symptoms 

disrupt normal social and occupational functioning (reviewed in Nestler et al., 2002).  
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 There are four effective treatments for depression and bipolar disorders: 

electroconvulsive therapy (ECT), antidepressant drugs, lithium, and anticonvulsants. Of 

all the treatments, ECT has been used for the longest period of time, over 50 years. 

Although the therapeutic mechanism of ECT is not fully understood, it is thought to be 

related to alterations in the sensitivity of aminergic receptors (Nestler, 1998). Amine 

transmitters regulate many brain functions and are also active in the peripheral nervous 

system. Because biogenic amines are implicated in a wide range of behaviors, ranging 

from central homeostatic functions to cognitive phenomena such as attention, it is not 

surprising that defects in biogenic amines function are implicated in most psychiatric 

disorders. There are five well-established amine neurotransmitters, the three 

catecholamines: dopamine, norepinephrine (noradrenaline), and epinephrine (adrenaline), 

as well as histamine and serotonin (Figure 1). 

 

 
 

Figure 1. Amine neurotransmitters. The catecholamines, so named because they all share the catechol 

moiety (i.e., a hydroxylated benzene ring), make up a distinctive subgroup within the biogenic amines. 

Serotonin and histamine contain an indole ring and an imidazole ring, respectively. Insert, space-filling 

model for norepinephrine. Taken from Purves et al., 2004.  
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 All catecholamines are derived from a common precursor, the amino acid 

tyrosine. Dopamine is synthesized in the brain stem and hypothalamus. Dopaminergic 

neurons in the substantia nigra and ventral tegmental area provide a major ascending 

pathway that terminates in the striatum, the prefrontal and temporal cortex as well as the 

limbic system. Hypothalamic dopaminergic neurons instead, provide descending 

pathways to autonomic areas of the brain stem and the spinal cord (see Kandel et al., 

2000). Dopamine is believed to be involved in motivation, reward and reinforcement, and 

plays also a poorly understood role in some sympathetic ganglia (Feldman et al., 1997).  

Norepinephrine is used as a neurotransmitter in the locus coeruleus, a brainstem 

nucleus that projects diffusely to a variety of forebrain targets and influences sleep and 

wakefulness, attention and feeding behavior (reviewed in Berridge & Waterhouse, 2003). 

The most prominent noradrenergic neurons are sympathetic ganglion cells, which employ 

norepinephrine as the major peripheral transmitter. Epinephrine-containing neurons in the 

central nervous system, instead, are primarily in the lateral tegmental system and in the 

medulla and project to the hypothalamus and thalamus (Feldman et al., 1997). Serotonin 

(5-HT), in contrast, is synthesized from the amino acid tryptophan and is found in groups 

of neurons in the raphe regions of the pons and upper brain stem, which have widespread 

projections to the forebrain with an important role in sleep, wakefulness and behavioral 

arousal (Abrams et al., 2004).  

 

Antidepressant drugs (ADs). Historical perspective. 

 

The functionality of amine synapses is critically important in 

psychopharmacology, with drugs affecting the synthesis, receptor binding, or catabolism 

of these neurotransmitters being among the most important agents of the modern 

pharmacology. Following their synthesis in the cytoplasm of presynaptic terminals, all 

the amine transmitters are packaged in synaptic vesicles and released into the synaptic 

cleft by means of exocytosis when the neurons fires an action potential. The 

neurotransmitter then interacts with pre- and post-synaptic receptors, and such activity is 

limited by active reuptake of the released molecule into presynaptic terminals as well as 

into glial cells (Feldman et al., 1997) (Figure 2). Inside the presynaptic terminals the 
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transmitters are packaged again into vesicles or catabolized primarily by the 

mitochondrial enzymes monoamine oxidase (MAO). 

 

 

 
 

 

 

Figure 2. Serotonin synapse. Schematic diagram illustrating the synthesis, metabolism, neurotransmitter 

release and pre-synaptic reuptake. Pre and postsynaptic receptors and sites of action of some antidepressant 

drugs are shown. Note that fluoxetine selectively inhibits the presynaptic reuptake of 5-HT, which 

enhances the postsynaptic serotonergic transmission. Taken from Feldman et al., 1997. 

 

 4



Drugs effective in treating depression act primarily on the serotonergic and 

noradrenergic systems of the brain (reviewed in Wong et al., 1995). The first drug used to 

ameliorate mood disorders, in particular schizophrenia, was reserpine. It was developed 

in the 1950s and initially used as treatment for hypertension because it blocks the 

noradrenergic transmission causing a reduction in the ability of the sympathetic division 

of the visceral motor system to cause constriction of blood vessels (Purves et al., 2004). 

Soon after, it was clear that a major side effect in hypertensive patients treated with 

reserpine was depression. It was then found that reserpine decreases serotonin and 

noradrenaline levels by inhibiting the uptake of neurotransmitters into synaptic vesicles, 

in the presynaptic terminal (see Figure 2), thereby keeping the transmitter into the 

cytoplasm where it undergoes degradation by the mitochondrial enzymes monoamine 

oxidase (Pletscher et al., 1956). This finding was of importance because it suggested the 

possibility that alterations in monoaminergic transmission might be involved in disorders 

of mood.     

 The monoamine hypothesis of depression, as first described in the 1960s, stated 

that depression was caused by a deficiency in the serotonergic and noradrenergic systems 

at functionally important receptor sites in the brain (Bunney et al., 1965; Schildkraut, 

1965; Coppen, 1967). Indeed, the first drugs identified as antidepressants were 

discovered by chance when medications developed for other illnesses were found to 

elevate mood of psychiatric patients. Particularly, isoniazid, a drug initially used as 

treatment of tuberculosis, was found to ameliorate mood of patients receiving it. Later 

studies performed in depressed patients, who did not have tuberculosis, demonstrated an 

antidepressant effect of the drug. Isoniazid increases the concentration of serotonin and 

noradrenaline by interfering with the degradation of these neurotransmitters by the 

enzyme MAO, thus increasing its total content in the axonic terminals of neurons (see 

Figure 2). Further support to this notion came with the discovery that imipramine, an 

experimental antihistamine with a tricyclic structure, induced antidepressant effects. 

Imipramine blocks the reuptake of both serotonin and noradrenaline to the presynaptic 

nerve endings, thereby prolonging the action of these transmitters in the synapse 

(reviewed in Castren, 2005). These findings revolutionized the recognition and treatment 

of mood disorders shedding light into some of the molecular mechanisms involved in 
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depression. Because it became clear that both isoniazid and imipramine increase the 

extracellular levels of two important neurotransmitters in the brain: serotonin and 

noradrenaline; an increase in the total concentration of these neurotransmitters after 

treatment with these two drugs was the starting point for the proposal of the monoamine 

hypothesis of depression.   

 

Neuronal circuitries affected in depression 

 

 Abnormalities in many brain areas are thought to mediate the diverse symptoms 

of depression. This notion is supported by human brain imaging studies which have 

demonstrated changes in blood flow in several brain regions, including areas of prefrontal 

and cingulate cortex, hippocampus, striatum, amygdala and thalamus. Similarly, 

anatomic studies of brains of depressed patients obtained at autopsy report abnormalities 

in many of these same brain regions (for review see Nestler et al., 2002). Knowledge of 

the function of such brain areas under normal conditions suggest the aspects of 

depression to which they may contribute. Neocortex and hippocampus may mediate 

cognitive aspects of depression, such as memory impairments and feeling of 

worthlessness, hopelessness, guilt and recurrent thoughts of suicide. The ventral striatum 

or nucleus accumbens, and the amygdale, are important in emotional memory and could 

as a result mediate the decreased drive and reward for pleasurable activities, anxiety, and 

reduced motivation that predominate in many patients (reviewed in Nestler et al., 2006).  

 A prominent mechanism by which the brain reacts to acute and chronic stress is 

the activation of the hypothalamic-pituitary-adrenal (HPA) axis. Under such conditions, 

neurons in the paraventricular nucleus (PVN) of the hypothalamus secrete corticotrophin 

releasing factor (CRF), which stimulates the synthesis and release of adrenocorticotropin 

(ACTH) from the pituitary gland. ACTH then stimulates the synthesis and release of 

glucocorticoids (cortisol in humans, corticosterone in rodents) from the adrenal cortex. 

Glucocorticoids exert profound effects on general metabolism and dramatically affects 

behavior via direct actions on numerous brain regions (reviewed by Nestler et al., 2002). 

The activity of the HPA axis is controlled by different brain pathways, including an 

inhibitory action exerted by the hippocampus and an excitatory action mediated by the 
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amygdala. Levels of glucocorticoids that are seen under normal physiological conditions 

seem to enhance hippocampal inhibition of HPA activity. They may also enhance general 

hippocampal functions and promote certain cognitive abilities. However, sustained 

elevations of glucocorticoids seen under conditions of stress or depression may damage 

hippocampal neurons particularly CA3 pyramidal cells (Sapolsky, 2000). Stress and the 

resulting increase in cortisol also reduce neurogenesis in the adult hippocampal dentate 

gyrus (Fuchs & Gould, 2000), which in turn reduces the inhibitory hippocampal action on 

the HPA axis; further increasing circulating glucocorticoid levels and subsequent 

hippocampal damage. Such positive feedback process with pathological consequences 

has been implicated in the onset of depression. Abnormal, excessive activation of the 

HPA axis is observed in approximately 50% of depressed patients and these 

abnormalities are corrected by antidepressant treatment (Arborelius et al., 1999; 

Holsboer, 2001).  

 

Hypothesis for the etiology of depression 

 

 The pathologic effects of stress on hippocampus have contributed to a hypothesis 

for depression that proposes a role for neurotrophic factors in the etiology of this 

pathology and its treatment (Duman et al., 1997). Neurotrophic factors were first 

characterized by regulating neuronal growth and differentiation during development, but 

it has become clear that they are also potent regulators of plasticity and survival of adult 

neurons. The neurotrophic hypothesis of depression states that a deficiency in 

neurotrophic support may contribute to hippocampal pathology during the development 

of the illness, and that reversal of this deficiency induced by antidepressant treatments 

ameliorate the symptoms. Work in this hypothesis has focused on the brain derived 

neurotrophic factor (BDNF) (Reviewed in D’Sa & Duman, 2002), one of the most 

prevalent neurotrophins in the adult brain. Acute and chronic stress decrease levels of 

BDNF expression in the dentate gyrus and pyramidal cell layer of hippocampus in 

rodents. This reduction appears to be mediated partly via stress-induced glucocorticoids 

and partly by stress-induced decrease in serotonergic transmission (Smith et al., 1995). 

Conversely, chronic administration of virtually all classes of antidepressant treatments 
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increases BDNF expression in these regions (Nibuya et al., 1995), and prevent the stress-

induced decrease in the neurotrophin levels. These findings raise the possibility that 

antidepressant induced upregulation of BDNF could repair some stress-induced damage 

to the hippocampus and protect vulnerable neurons from further damage. Furthermore, an 

enhancement of long-term potentiation and other forms of synaptic plasticity induced by 

BDNF in the hippocampus has been reported (Korte et al., 1996; Kang et al., 1997), 

which suggests that BDNF induced by antidepressants may promote hippocampal 

function. Importantly, these findings could also explain why the clinical antidepressant 

response show a time delay of several weeks: it would require sufficient time for levels of 

BDNF to gradually raise and exert its neurotrophic effects.   

 The neurotrophic hypothesis predicts that agents that promote BDNF expression 

and signaling might be clinically effective antidepressants, so different approaches 

focusing on understanding BDNF gene expression following antidepressant treatment 

have been developed. There is evidence for the transcription factor cAMP-response-

element binding protein (CREB) regulating BDNF expression. For instance, BDNF 

expression is induced in vitro and in vivo by CREB (Tao et al., 1998; Conti et al., 2002) 

and all major classes of antidepressants increase levels of CREB expression and function 

in several brain regions including the hippocampus (Nibuya et al., 1996; Thome et al., 

2000). An increase in CREB activity by microinjections of a viral vector encoding CREB 

into the hippocampal dentate gyrus exerts antidepressant-like effects, as evidenced in the 

forced swim test and learned helplessness test (Chen et al., 2001). In contrast, levels of 

CREB are reduced in the temporal cortex of depressed patients (Dowlatshahi et al., 

1998). While these effects could be mediated by numerous target genes under control of 

CREB, it does illustrate novel strategies by which influencing hippocampal function in 

the context of depression, and makes likely a role for BDNF on it. Indeed, it has been 

demonstrated that single bilateral infusions of BDNF into the dentate gyrus of 

hippocampus or the overexpression of its primary receptor TrkB produce an 

antidepressant effect in behavioral models of depression (Shirayama et al., 2002; 

Koponen et al., 2005).  

 Importantly, experimental evidence arguing against the possibility that an 

impairment of BDNF-TrkB signaling may underlie the pathophysiology of depression 
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has been recently found. Mice lacking the tyrosine kinase receptor TrkB in the forebrain 

and transgenic mice overexpressing the dominant-negative T1 form of TrkB, for instance, 

show no depressive behavior (Zorner et al., 2003; Saarelainen et al., 2003). In contrast, in 

both BDNF knockouts and TrkB.T1 transgenic mice antidepressant treatment no longer 

induces a reduction of immobility in behavioral models of depression (Saarelainen et al., 

2003), indicating that BDNF-TrkB signaling is necessary to mediate the behavioral 

response induced by antidepressants but may not be involved in the etiology of 

depression (reviewed in Martinowich et al., 2007).  

Most of the clinical studies have focused on the hippocampus as the site involved 

in the generation and treatment of depression (Reviewed by Campbell & Macqueen, 

2004). However, while the hippocampus is undoubtedly involved in the illness, it is 

unlikely that it accounts completely for these phenomena. The pathology in the 

hippocampus explains symptoms like alterations in learning and memory seen in 

depression but it does not represent the wide spectrum of symptoms. Brain imaging and 

autopsy studies have provided evidence for abnormalities in several brain areas of 

depressed individuals well beyond the hippocampus. The role of subcortical structures 

like the hypothalamus and amygdala in the regulation of motivation, sleep, appetite, 

energy levels, circadian rhythms, and responses to pleasurable stimuli, prominently 

affected in depressed patients, has also been recognized (reviewed in Nestler et al., 2002). 

Given the pervasive symptoms of depression, it is likely that the pathophysiology of this 

disorder and the mechanisms by which currently available treatments reverse symptoms, 

involve diverse neural circuits in numerous brain regions. 

Recent experimental findings support an alternative hypothesis for depression 

which proposes a role for neurogenesis in its etiology. Magnetic resonance imaging 

studies have shown a reduction of hippocampal volume in depressed patients, event that 

has been correlated to a reduction of the number of hippocampal neurons (Videbech & 

Ravnkilde, 2004; Campbell et al., 2004). In addition, all clinically effective 

antidepressant drugs increase neurogenesis in the adult hippocampus (Malberg et al., 

2000). Even though these findings indicate adult hippocampal neurogenesis as a 

candidate mechanism for the etiology of depression and as a substrate of antidepressant 

action, there is evidence arguing against it. For instance, at structural level it is highly 
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unlikely that changes in adult hippocampal neurogenesis account for the reduction of 

hippocampal volume observed in depressed patients. Stereological analysis of 

hippocampal volume in irradiated mice indeed, a strategy that impairs adult hippocampal 

neurogenesis, revealed no a significant reduction of volume in the hippocampus 

(Santarelli et al., 2003). In addition the fact that ablation of neurogenesis does not elicit a 

depression-like behavioral phenotype undermines a role for neurogenesis in the etiology 

of depression (Airan et al., 2007; Santarelli et al., 2003).     

In contrast to the neurotrophic or neurogenic view of depression recent 

observations support an alternative hypothesis for such neurological disorder, which 

suggests that an impaired activity-dependent neuronal signaling may underlie this 

pathology and that antidepressant drugs might exert a therapeutic effect by enhancing 

information processing in the affected neuronal networks through activity-dependent 

mechanisms of synaptic plasticity (reviewed by Castren, 2005). This alternative idea, 

known as the network hypothesis, predicts that depression arise from an impaired 

synaptic plasticity in the CNS rather than from an alteration in the balance of signaling 

molecules. Evidence supporting this notion comes from the finding that disruption of 

adult hippocampal neurogenesis impairs the antidepressant-like behavioral response 

induced by antidepressants drugs (Santarelli et al., 2003). According to this idea, 

antidepressants may promote mechanisms of neuronal plasticity through an initial effect 

on monoamine metabolism, leading to an improved processing of information in neuronal 

networks involved in mood regulation (reviewed by Castren, 2005). Interestingly, 

differentiation of newly generated neurons takes several weeks (van Praag et al., 2002) 

which is a time course that correlates with the delayed onset of the therapeutic effects 

induced by antidepressant drugs. These findings suggest a role for neuronal plasticity in 

the action of ADs. 

 

ADs and neuronal plasticity 

 

Despite years of study, the biological basis of depression and the precise 

mechanisms of antidepressant efficacy remains unclear. Early research on depression 

focused on changes in neurotransmitter concentrations and its receptors. The results of 
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these studies, however, were in disagreement with clinical observations of the therapeutic 

action of ADs. Although the effects of antidepressants on monoamine metabolism occur 

soon after administration, it typically takes several weeks of continued treatment for the 

clinical antidepressant response to appear (Nestler et al, 1998). Further research made 

clear that long-term antidepressant treatment produces adaptive changes in monoamine 

receptors and intracellular signal transduction pathways associated (Sulser et al., 1978), 

which centered the attention on the effects of long-term antidepressant treatments on 

neurotrophic factors and coupled receptors as well as on intracellular signaling molecules 

(Duman et al., 1997; Manji et al., 2001; Coyle & Duman, 2003).  

 

Increased BDNF expression induced by ADs 

 

Research on the therapeutic effects induced by chronic administration of 

antidepressants has been developed focusing on the regulation of key signaling pathways 

involved in cellular survival, neurogenesis and neuronal plasticity in the adult brain. The 

fact that chronic antidepressant treatment increases the expression of BDNF and its 

primary receptor TrkB, in the frontal cortex and hippocampus of adult rats, was early 

demonstrated by Nibuya et al. in 1995 using in situ hybridization and northern blot 

analysis. Because neurotrophins were known to promote growth and development of 

immature neurons as well as to enhance the survival and function in neural cells in the 

adult (for review see Lindvall et al, 1994), a possible role for BDNF in mediating the 

therapeutic effects induced by antidepressants was suggested. That neurogenesis in the 

adult rat hippocampus is increased by chronic antidepressant treatment was elegantly 

shown by Malberg et al. (2000). In this study, different types of ADs were systemically 

given to adult animals and the acute and chronic effects on hippocampal neurogenesis 

were assessed by immunohistochemistry using the thymidine analogue 

bromodeoxyuridine (BrdU) as a marker for dividing cells. The authors found an 

increased number of BrdU labelled cells in the dentate gyrus of the adult rat hippocampus 

after chronic antidepressant administration but not after acute treatment. Moreover, an 

enhanced proliferation of hippocampal cells and differentiation into mature neurons was 

shown by combining BrdU labelling with specific markers for neuronal and glial cells. 
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These findings not only suggested a common molecular event induced by different ADs 

but highlighted a mechanism that is consistent with the time course for the therapeutic 

actions of antidepressants. 

It has also been observed that adult neurogenesis and BDNF-induced TrkB 

signaling are critical molecular events in mediating the therapeutic effects of ADs. In a 

very elegant set of experiments Santarelli et al. (2003) showed that the antidepressant-

like behavioral response to ADs is blocked if hippocampal neurogenesis is disrupted 

through a restricted x-irradiation in the mouse brain. These data provided a correlation 

between behavioral responses induced by antidepressants and the induction of 

hippocampal neurogenesis and suggest that generation of neural cells in the adult 

hippocampus may be necessary for the therapeutic action induced by ADs. On the other 

hand, single bilateral infusion of BDNF into the dentate gyrus of hippocampus was 

shown to induce an antidepressant effect in two behavioral models of depression: the 

learn helplessness and forced swim test (Shirayama et al., 2002). Furthermore, the 

authors evaluated whether a decreased phosphorylation of the primary BDNF receptor 

TrkB, induced by co-administration of BDNF with a broad spectrum tyrosine kinase 

inhibitor (K252a) into the hippocampus, impaired the antidepressant-like behavioral 

response induced by the neurotrophin in the learn helplessness test. K252a cortical 

administration completely blocked the behavioral effects induced by cortical BDNF 

administration. Taken together, these data suggest a correlation between BDNF-TrkB 

signaling and adult hippocampal neurogenesis, which may account for the behavioral 

effects induced by antidepressants. Experimental evidence in support to this notion comes 

from the finding that cortical administration of exogenous BDNF in adult animals not 

only increases CREB phosphorylation, but enhances long-term potentiation (LTP) of 

neural transmission in the adult hippocampus (Ying et al., 2002). 

One important mechanism at the basis of the therapeutic action of ADs is the 

phosphorylation of the transcription factor cAMP-response element binding protein 

(CREB), which is known to promote BDNF expression. Direct evidence for the 

regulation of gene transcription via the cAMP-mediated second messenger pathway 

implicated in the actions induced by antidepressants was obtained in vivo using 

transgenic mice with a CRE-LacZ reporter gene construct (Thome et al., 2000). In these 
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mice, stimulation of the CRE site leads to an increase expression of the LacZ gene 

product, β-galactosidase, making it possible to evaluate the influence of antidepressant 

administration on CRE-mediated gene transcription. Levels of β-galactosidase assessed 

by fluorescence immunohistochemistry revealed an increased CRE-mediated gene 

transcription in limbic structures and cerebral cortex, induced by chronic treatment with 

three distinct classes of antidepressants. Furthermore, immunohistochemical analysis for 

p-CREB revealed that chronic antidepressant treatment increased phosphorylation of 

CREB, result that was consistent with the enhanced CRE-mediated gene expression. 

These findings, together with those of Nakagawa et al. (2002) in which the 

phosphorylation of CREB was shown to be required for hippocampal neurogenesis 

induced by the antidepressant rolipram, indicate a critical role for CREB phosphorylation 

in mediating the therapeutic effects of antidepressant drugs. 

 

ADs and synaptic plasticity 

 

Recent studies in animal models suggest that antidepressant treatments enhance 

synaptic connectivity in the brain. Particularly, an increased dendritic spine synapse 

formation in the adult rat hippocampus and frontal cortex was shown to be induced by 

chronic administration of the selective serotonin reuptake inhibitor (SSRI) fluoxetine 

(Hajszan et al., 2005). In depressed patients, brain imaging and neuropathological studies 

point toward a reduced neuronal activity and synaptic connectivity in the brain as 

evidenced by a decreased hippocampal and prefrontal cortex volume (reviewed by 

Castren, 2004) and antidepressant treatment seems to prevent or restore the structural and 

functional deficits observed in depression (Czeh et al., 2001).   

The role of ADs in the remodeling and strengthening of specific neural synapses 

in the adult brain has also been addressed in rodents. Sairanen et al. (2007) evaluated the 

effect of chronic antidepressant treatment on the expression of three plasticity associated 

marker proteins: the polysialylated form of the nerve cell adhesion molecule (PSA-

NCAM), the phosphorylated form of CREB (p-CREB) and the growth-associated protein 

43 (GAP-43). PSA-NCAM is a cell surface protein involved in the regulation of axon 

growth (Cremer et al., 1997) and has been associated with the differentiation of newly 
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generated neurons in the rodent hippocampus (Seki & Arai, 1993), cell migration 

(Yoshida et al., 1999), synaptogenesis (Dityatev et al., 2004) and long-term potentiation 

of neural transmission (Muller et al., 1996; Cremer et al., 1998), while the 

phosphorylated form of CREB is known to be a permissive factor for neuronal plasticity. 

The GAP-43 protein is critically involved in synaptogenesis, axonal sprouting and the 

regulation of the cytoskeletal organization in the nerve ending (Benowitz & Routtenberg, 

1997). Thus, Sairanen et al. (2007) assessed the expression of these proteins using 

immunohistochemistry to study mechanisms of synaptic plasticity induced by chronic 

treatment with the antidepressant imipramine on different areas in the forebrain of adult 

rats. Increased levels of PSA-NCAM, p-CREB and GAP-43 were found to be induced by 

chronic but not acute imipramine treatment in the hippocampus, medial prefrontal cortex 

and piriform cortex of adult animals, indicating an effect of antidepressants on the 

remodeling of neuronal networks. 

Recent experimental evidence also suggests that a disturbance of brain plasticity 

is involved in animal models of depression and that chronic antidepressant treatment may 

counteract these alterations. In a set of elegant experiments adult rats were exposed to 

chronic mild stress conditions for three weeks to examine later long-term synaptic 

plasticity in the hippocampal CA1 region by whole-cell patch clamp (Holderbach et al., 

2007). The authors found that chronic mild stress facilitated long-term depression (LTD) 

and had no effect on long-term potentiation (LTP), while chronic treatment of the SSRI 

fluvoxamine during the stress paradigm prevented the induction of LTD and increased 

the extent of LTP induction. Moreover, LTP was shown to be enhanced in non-stressed 

animals treated with fluvoxamine compared to stressed and non-stressed rats, which 

suggested an effect of antidepressants on synaptic plasticity of normal subjects. 

More recently, Normann et al. (2007) assessed this notion by using visual evoked 

potentials (VEPs) as a model to study cortical responses and its plasticity in the human 

visual system. Since repeated presentation of visual stimuli is known to produce a form 

of learning which subsequently improves the perception of these stimuli, the authors were 

able to assessed synaptic transmission in depressed patients and healthy individuals after 

chronic treatment with the SSRI sertraline. The neuronal correlates of perceptual learning 

in the visual system have been studied in awake mice (Frenkel et al., 2006), in which the 
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enhancement of evoked responses after repetitive presentation of visual stimuli is thought 

to reflect an increased long-term synaptic plasticity, as similarly suggested for the human 

visual system (Teyler et al., 2005). Normann et al. (2007) showed that chronic 

antidepressant administration in healthy human subjects increases the amplitude of early 

components (P1 and N1) of visual evoked potentials (VEPs) in response to repeated 

presentation of visual stimuli, whereas the polarity of such modulation was inverted in 

depressed patients. Taken together, these data suggest a role for neuronal plasticity in the 

action of ADs. How changes in plasticity are translated into the therapeutic effects 

induced by ADs is, however, currently unknown. 

 

Critical periods for experience-dependent plasticity 

 

The rich diversity of human personalities, abilities, and behavior is undoubtedly 

generated by the uniqueness of individual human brains. These fascinating 

neurobiological differences among human beings derive from both genetic and 

environmental influences. The first steps in the construction of neural circuitries, i.e., the 

establishment of distinct brain regions, the generation of neurons, the formation of major 

axon tracts, the guidance of growing axons to appropriate targets, and the initiation of 

synaptogenesis, rely largely on the tight interaction between genes and environment. 

Once the basic patterns of neural connections in the brain are established, however, 

patterns of neuronal activity (including those that are elicited by experience) modify the 

synaptic circuitry of the developing brain. Neuronal activity generated by interactions 

with the external world in postnatal life thus provides a mechanism by which the 

environment can influence brain structure and function.  

The neural mechanisms that result from genetic and environmental interactions 

and their developmental consequences are sufficient to create some remarkably 

sophisticated innate behaviors. For most animals, the behavioral repertoire, including 

foraging, fighting and mating strategies, largely relies on patterns of connectivity 

established by intrinsic developmental mechanisms. However, the nervous system clearly 

adapts to and is influenced by the particular circumstances of an individual’s 

environment. These environmental factors are especially influential in early life, during 
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temporal windows called “critical periods”. Psychologists and ethologists have long 

recognized this notion, that early postnatal life is a period of special sensitivity to 

environmental influences on animal’s behavior. It is thought to be a critical period during 

which a given behavior is especially susceptible to, an indeed requires, specific 

environmental influences to develop normally (Purves et al., 2004). Once this period 

ends, such behavior is largely unaffected by subsequent experience and the failure to be 

exposed to appropriate stimuli during the critical period causes alterations that are 

irreversible on late developmental stages.  

 

Avian song learning 

 

The existence of critical periods has been demonstrated in several species 

(reviewed by Berardi et al., 2000) which include, for instance, song in birds and language 

in humans. Particularly well characterized is the sensitive period for learning courtship 

songs by oscine songbirds such as canaries and finches (reviewed by Doupe & Kuhl, 

1999). In these species, the quality of early sensory exposure is the major determinant of 

subsequent perceptual and behavioral capabilities. The developmental periods for 

learning these and other behaviors are restricted during postnatal life, suggesting that the 

nervous system changes in some manner to become refractory to further experience. 

Thus, avian song learning illustrates the interactions between intrinsic and 

environmental factors in this developmental process. Many birds sing to attract mates, but 

oscine songbirds are special in that their courtship songs are dependent on auditory and 

vocal experience. The sensitive period for song learning comprises an initial stage of 

sensory acquisition, when the juvenile bird listens to and memorizes the song of a nearby 

adult male tutor (usually of its own species), and a subsequent stage of vocal learning, 

when the young bird matches its own song to the now memorized tutor model via 

auditory feedback. This sensory motor learning stage ends with the onset of sexual 

maturity, when songs become acoustically stable. Even constant exposure to other songs 

after sensory acquisition at the end of the sensitive period does not affect this memory: 

the songs heard during sensory acquisition, but not later, are those that the bird vocally 

mimics (Purves et al., 2004). 
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On the other hand, additional features of song learning indicate an intrinsic 

predisposition for this specialized form of vocal learning. First, juveniles often need to 

hear the tutor song only 10 or 20 times to then vocally mimic it many months later. 

Second, when presented with a variety of songs played from tape recordings that include 

their own and other species’ songs, juvenile birds preferentially copy the song of their 

own species, even with no external reinforcement (reviewed in Doupe & Kuhl, 1999). 

These observations show that juveniles are not really “naive,” but are innately biased to 

learn the songs of their own species over those of others. Therefore, intrinsic factors 

make the nervous system of oscine birds especially sensitive to songs that are species 

typical. It is likely that similar biases influence human language learning. 

 

Language in human beings 

 

In contrast to canaries and finches, human beings require large postnatal 

experience to produce and decode speech sounds that are the basis of language. The 

various forms of early language exposure, including the “baby talk” that parents and 

other adults often use to communicate with children as they begin to acquire language 

may actually serve to emphasize important perceptual distinctions that facilitate proper 

language production and comprehension (Purves et al., 2004).  Importantly, for this 

linguistic experience to be effective it must occur in early life. The requirement for 

perceiving and practicing language during a critical period is apparent in studies of 

language acquisition in congenitally deaf children. Whereas most babies begin producing 

speech like sounds at about 7 months (babbling), congenitally deaf infants show obvious 

deficits in their early vocalizations, and such individuals fail to develop language if not 

provided with an alternative form of symbolic expression. If, however, these deaf 

children are exposed to sign language at an early age, they begin to “babble” with their 

hands just as a hearing infant babbles audibly (Petitto & Marenhette, 1991). This suggests 

that, regardless of the modality, early experience shapes language behavior. 

Examples of pathological situations in which normal children were never exposed 

to a significant amount of language point toward the same notion. One well-documented 

case is that of a girl who was raised by deranged parents until the age of 13 under 
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conditions of almost total language deprivation. Despite intense subsequent training, she 

never learned more than a rudimentary level of communication (see Kandel et al., 2002). 

This and other examples of so-called “feral children” starkly define the importance of 

early experience for language development as well as other aspects of social 

communication and personality. In contrast to the devastating effects of deprivation on 

children, adults retain their ability to speak and comprehend language even after long 

periods without exposure to human communication. The normal acquisition of human 

speech is subject to a critical period: the process is sensitive to experience or deprivation 

during a restricted period early in life and is relatively refractory to similar experience or 

deprivations in adulthood. 

 

Critical period for visual system development 

 

Although critical periods for language and other distinctively human behaviors are 

in some ways the most compelling examples of this phenomenon, it is difficult to study 

the underlying changes in the human brain. A much clearer understanding of how 

changes in connectivity might contribute to critical periods has come from studies of the 

developing visual system in experimental animals with highly developed visual abilities, 

particularly cats and monkeys. In an extraordinarily influential series of experiments in 

the 1960s, David Hubel and Torsten Wiesel found that depriving animals of normal 

visual experience during a restricted period of early postnatal life irreversibly alters 

neuronal connections and functions in the visual cortex. These observations provided the 

first evidence that the brain translates the effects of early experience, i.e., patterns of 

neural activity, into more or less permanently altered wiring of neural circuitries. 

Electrophysiological recordings from the primary visual cortex of adult cats 

evidenced that the two eyes differentially activated cortical neurons and cells with similar 

preference for one eye were grouped together into ocular dominance columns (Hubel & 

Wiesel, 1963). It became clear that sensory inputs from the two eyes are first integrated 

in the primary visual cortex, where most afferents from the lateral geniculate nucleus of 

the thalamus terminate. In most mammals the afferent terminals form an alternating 

series of eye-specific domains in cortical layer IV called ocular dominance columns, 
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which are represented as stripes of cortical neurons that are driven only by stimulation of 

one eye or the other. All these units, together with orientation columns, are functionally 

organized into hypercolumns which process visual stimuli from discrete regions of the 

visual field. Thus, using electrophysiological recordings Hubel & Wiesel (1963) found 

that ocular dominance distribution across cortical layers of the visual cortex is roughly 

Gaussian in adult normal cats (Figure 3). 

 

 

 

 
 

 
 

Figure 3.  Ocular dominance distribution of single cell recordings in the visual cortex of adult cats. Cells in 

group 1 and 7 are activated only by the contralateral or by the ipsilateral eye, respectively. Group 4 cells are 

driven by both eyes equally while 2/3 and 5/6 driven mainly by contra and ipsi eye, respectively. Taken 

from Purves et al., 2004.    
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The researchers then asked whether this normal distribution of ocular dominance 

could be altered by visual experience. Using single cell recordings, they observed that 

occluding one eye early in development (a treatment referred to as monocular 

deprivation) led to the reduction in the number of cortical cells responding to that eye, in 

parallel with a robust increment in the number of neurons activated by the open eye 

(Wiesel & Hubel, 1963; Hubel & Wiesel, 1970) (Figure 4A). In contrast, monocular 

deprivation has no effect on ocular dominance distribution of adult animals (Figure 4B). 

  

 
 
Figure 4.  Effect of early closure of one eye on the ocular dominance distribution in the visual cortex. (A) 

Following closure of one eye from 1 week after birth until 2.5 months, no cells could be activated by the 

deprived contralateral eye. Some cells could not be activated by either eye (NR). (B) A much longer period 

of monocular deprivation in an adult cat had little effect on ocular dominance distribution, though the 

overall cortical activity was diminished. Taken from Purves et al., 2004.      
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Recordings from the retina and lateral geniculate layers related to the deprived eye 

indicated that these more peripheral stations in the visual pathway worked quite 

normally. Thus, the absence of cortical cells that responded to stimulation of the closed 

eye was not a result of retinal degeneration or a loss of retinal connections to the 

thalamus. Rather, the deprived eye had been functionally disconnected from the visual 

cortex. Consequently, such animals are behaviorally blind in the deprived eye.  

Because the same treatment is completely ineffective in the adult animal (Figure 

4B), this early temporal window characterized by enhanced plasticity in response to 

experience is a typical example of a critical period. The shift in the ocular dominance 

distribution in response to monocular deprivation has been reported to occur in all 

mammals tested (reviewed by Berardi et al., 2000), accompanied by other dramatic 

effects such as poor development of visual acuity for the deprived eye, a condition known 

as amblyopia (reviewed in Odom, 1983) which is a permanent pathology in the adult. 

Even if the formerly deprived eye is subsequently left open indefinitely, little or no 

recovery of visual acuity occurs. Similar experiments in the monkey have shown that the 

same phenomenon occurs in primates, although the critical period is longer than in cats, 

up to six months (Horton & Hocking, 1999). 

 

Determinant factors of the critical period for visual cortical plasticity 

 

A further question for understanding how experience modulates neural circuits 

during critical periods is how patterns of activity are transduced to modify neural 

connections and to make these changes permanent. The ability of the central nervous 

system to process external stimuli into long term changes rely on activity dependent 

neural mechanisms that induce structural and functional modifications which underlie, 

for instance, processes of learning and memory. Extensive research during the last years 

shed light on determinant aspects of critical periods for experience-dependent plasticity. 

The mechanisms that modulate neural circuits functioning and connectivity rely on 

signals generated by the synaptic activity associated with sensory experience or motor 

performance, the basic neural processes by which experience is represented. A number of 

different signaling molecules, including NMDA receptors, neurotrophic factors, the 
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activity of the CRE-CREB system, extracellular matrix molecules and the GABAergic 

inhibitory transmission have been recognized as important regulators of visual cortical 

plasticity through changes that occur with correlated neural activity (reviewed by Berardi 

et al., 2003).  

  

Glutamatergic NMDA receptors 

 

Experimental evidence for the role of NMDA receptors in the regulation of visual 

cortical plasticity first came from the finding that blockade of such receptors inhibits the 

effects of monocular deprivation (Bear et al., 1990). The use of NMDA receptors 

antagonists and antisense oligonucleotides to reduce the expression of the NR1 subunit, 

without affecting visually driven activity, confirmed this notion (Roberts et al., 1998; 

Daw et al., 1999), demonstrating the NMDA receptor involvement in visual cortical 

plasticity. Additionally, the expression of NMDA receptors is developmentally regulated 

and modified by electrical activity. Their subunit composition varies in the visual cortex, 

from an increased expression of NMDA receptors containing the 2B subunit to a high 

presence of receptors containing the subunit 2A, with a time course that nearly parallels 

that of the functional development of the visual cortex. The expression of the NR2A 

subunit also correlates with the progressive diminishment of NMDA mediated currents 

(Flint et al., 1997). Dark rearing, which delays the critical period closure and impairs 

functional properties of the visual cortex, delays both the developmental shortening of 

NMDA receptor currents and expression of the NR2A subunit, suggesting a possible role 

for the 2B-to-2A switch in the closure of the critical period (Philpot et al., 2001). 

Nevertheless, experimental evidence against a causal role of NMDA receptors in 

determining the closure of the critical period comes from the finding that transgenic mice 

engineered to maintain prolonged NMDA responses by deletion of the NR2A subunit, 

show an unaltered sensitivity to MD which was restricted to the typical critical period and 

normally delayed by dark rearing from birth  (Fagiolini et al., 2003). Moreover, western 

blot analysis confirmed a late postnatal onset of NR2A protein expression in wild type 

animals (P18) well in advance of the critical period (P28). Taken together, these 

observations indicate that the late onset and experience-dependent profile of NR2A 
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subunits, known to determine LTP occurrence in the hippocampus, is not relevant for 

critical period expression in the visual cortex (reviewed by Hensch, 2005).    

  

Neurotrophic factors 

 

Experimental evidence that link neurotrophins and neuronal plasticity, particularly 

in the neocortex and hippocampus, came out in the 1990s. One of the first evidences 

regarding neurotrophic factors and visual cortical plasticity came from the work of 

Maffei et al., in 1992, who demonstrated that the physiological shift in ocular dominance 

distribution could be prevented by infusion of the nerve growth factor (NGF) into the 

cortex during the critical period. Later, Cabelli et al., in 1995, evidenced that infusion of 

BDNF and the neurotrophin 4/5 (NT4/5) during the critical period, but not NGF, 

prevented the formation of ocular dominance columns in the cat visual cortex; finding of 

importance not only because it showed that neurotrophins modulate the patterning of 

projections within the visual cortex, but also because it suggested that thalamic axons 

compete for limiting amounts of neurotrophic factors.  

Although plausible, such experiments, did not address the role of neurotrophins in 

activity dependent plasticity, since the effects observed still could be explain by a growth 

promoting action of BDNF and NT4/5 on thalamic axons within layer IV of the cortex, 

independent of neuronal activity. The requirement of neuronal activity for the occurrence 

of BDNF effects was evidenced by McAllister et al., in 1996, who demonstrated that 

inhibition of spontaneous electrical activity, glutamatergic synaptic transmission or 

inhibition of activation of L-type Ca2+ channels, prevented the BDNF induced dendritic 

growth in the visual cortex.  

In addition, the requirement of electrical activity for the occurrence of the effects 

induced by NGF on ocular dominance plasticity has also been demonstrated. It was tested 

in animals subjected to complete monocular blockade of retinal discharges through 

intravitreal tetrodoxin (TTX) injections, at the peak of the critical period, while NGF was 

concurrently delivered into the visual cortex by osmotic minipumps. Analysis of single 

cell recordings revealed that while infusion of NGF is effective in preventing the ocular 
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dominance shift in young monocularly deprived rats, no rescue can be observed in TTX 

injected animals intracortically infused with NGF (Caleo et al., 1999).  

 Striking evidence for the role of BDNF in regulating the critical period for visual 

cortical plasticity came from studies performed in transgenic mice overexpressing BDNF 

in the visual cortex, with no alterations in the normal cellular pattern of expression or 

release and an effectively restricted expression of the neurotrophin in excitatory 

neocortical neurons (Huang et al., 1999). In these animals BDNF overexpression 

accelerates both the development of visual acuity and the time course of ocular 

dominance, thus supporting a crucial role for neurotrophins in visual cortical 

development and plasticity. The reciprocal regulation between neurotrophins and 

electrical activity seems to provide a mechanism by which active neuronal connections 

are selectively strengthened. As mentioned before, neurotrophins seem to require the 

presence of electrical activity to exert their actions (Sala et al., 1998; Caleo et al., 1999). 

Indeed, it has been demonstrated that both weak synaptic plasticity and localized BDNF 

application, which by themselves do not alter synaptic efficacy, induces long-term 

potentiation of synaptic transmission (Kovalchuk et al., 2002), finding that suggest a 

synergistic effect of neurotrophins and electrical activity in promoting synaptic plasticity. 

Accordingly, although BDNF promotes the phosphorylation of the transcription factor 

cAMP-response-element binding protein (CREB), it evokes only weak CREB mediated 

gene transcription unless it is coupled with electrical activity (Hu et al., 1999).  

 

Activity of the CRE-CREB system 

 

The initial molecular events of neural plasticity, which are changes in synaptic 

efficacy that do not require protein synthesis, are followed by long-lasting changes in 

neural circuitries that depend on gene expression and subsequent synthesis of proteins 

(reviewed in Berardi et al., 2003). The intracellular signaling pathways underlying the 

integration of electrical activity and neurotrophin transmission, for instance, involve the 

activation of three different protein kinases: cAMP-dependent protein kinase (PKA), 

extracellular-signal-regulated kinase (ERK1/2) and Ca2+/calmodulin-dependent protein 

kinase II (CaMKII), whose activity is necessary for the shift of ocular dominance after 
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monocular deprivation in young animals (Taha et al., 2002; Di Cristo et al., 2001; Beaver 

et al., 2001). Each kinase is activated by specific patterns of extracellular signals and is 

tightly woven within a network of mutual interactions. Activation of such intracellular 

pathways leads to changes in gene expression mediated by an up-regulation of 

transcription factors like egr1/zif68 and CREB, and subsequent protein synthesis, as 

demonstrated for ocular dominance plasticity in the visual cortex (Mower et al., 2002). 

Activated kinases must translocate to the nucleus where they phophorylate CREB, which 

then initiates the expression of genes under control of the cAMP-response element (CRE) 

promoter. Then, the consequent production of transcripts essential for establishment and 

maintenance of plasticity, does take place (reviewed by Silva et al., 1998).  

 A critical role for the CRE-CREB system in regulating the expression of genes 

involve in the physiological plasticity events during postnatal neocortical development, 

using transgenic mice carrying a CRE-lacZ reporter, has been demonstrated as well 

(Pham et al., 1999). It was found that calcium- and cAMP-regulated signaling pathways 

in visual cortical neurons are activated by monocular deprivation in young animals, 

events that precede the plastic modification typically observed after manipulations of 

visual stimuli early in development. Indeed, immunofluorescence analysis of visual 

cortical sections of CRE-lacZ transgenic mice monocularly deprived during the critical 

period, demonstrated an increased number of lacZ-positive cells in the visual cortex 

contralateral to the deprived eye. Moreover, the induction of these molecular events was 

dramatically down-regulated following the end of the critical period for visual cortical 

plasticity (Pham et al., 1999). These results show that CREB mediated gene expression is 

involved in the occurrence of visual cortical plasticity during development and suggest 

that a reduction in the activity of the CRE-CREB system may be implicated in the decline 

of plasticity observed during late postnatal development.           

 

Extracellular matrix molecules 

 

A correlation between the extracellular environment and adult visual cortical 

plasticity has also been demonstrated. There is evidence indicating that removal of 

important components present in the extracellular environment of the central nervous 
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system is necessary for experience-dependent plasticity to take place. The extracellular 

protease tissue plasminogen activator (tPA), for instance, is induced by electrical activity 

as an immediate early gene (Qian et al., 1993) and its proteolytic activity in the visual 

cortex is increased during monocular deprivation (Mataga et al., 2002). Initial evidence 

for the role of tPA in visual cortical plasticity came from the work of Mataga et al., in 

1996, with the finding that its pharmacological inhibition attenuates the ocular dominance 

shift induced by monocular deprivation in young animals. This finding was then 

confirmed through pharmacological studies of the effects of monocular deprivation on 

tPA-knockout mice. Ocular dominance plasticity in these mice is impaired and can be 

rescued by exogenous tPA administration (Mataga et al., 2002). tPA has a wide spectrum 

of possible molecular targets, including extracellular matrix proteins (Wu et al., 2000), 

growth factors (Yuan et al., 2002), membrane receptors and cell adhesion molecules 

(Endo et al., 1999) which suggest an important role for this protease in visual cortical 

plasticity. 

Additional data confirming the inhibitory action of the extracellular environment 

on visual cortical plasticity came from the work of Pizzorusso et al., in 2002, which 

focused on a class of glycoproteins that are major components of the extracellular matrix, 

the chondroitin-sulphate proteoglycans (CSPGs). Such molecules are composed of a core 

protein and CSPG glycosaminoglycan chains, which show a wide expression in the 

central nervous system, where they give a structural support to the extracellular 

environment acting mainly as physical barriers (Faissner & Steindler, 1995). CSPGs 

typically condense in lattice-like structures designated as perineuronal nets (PNNs) 

during postnatal development (Hockfield et al., 1990; Bruckner et al., 2000), and 

completely ensheath inhibitory interneurons assuming a perisynaptic localization at sites 

of synaptic contacts (Zaremba et al., 1989; reviewed by Celio et al., 1998). In a set of 

very elegant experiments, Pizzorusso et al. (2002) showed that the developmental 

maturation of the extracellular matrix was inhibitory for experience-dependent plasticity 

in the visual cortex. The authors used immunohistochemical analysis for Wisteria 

Floribunda Agglutinin (WFA), which binds to CSPG glycosaminoglycan chains, to 

demonstrate that the formation of adult-like PNNs around inhibitory interneurons 

coincided with the end of the critical period. Then, they showed that rearing animals in 

 26



complete darkness from birth, a strategy that is known to prolong the critical period for 

ocular dominance plasticity (see Berardi et al., 2000), inhibits the developmental 

maturation of PNNs. Soon after, the authors analyzed the effects of CSPGs degradation 

in vivo with the enzyme chondroitin ABC (chABC) on visual cortical plasticity. This 

treatment caused a degradation of PNNs in the adult visual cortex and reactivated 

plasticity for ocular dominance in monocularly deprived adult rats, demonstrating that 

developmental maturation of PNNs contribute to the progressive reduction of plasticity 

that occurs in the visual cortex at the end of the critical period.  

That degradation of extracellular matrix components is a useful strategy to 

promote structural and functional recovery from visual deficits in the adult visual cortex, 

was recently demonstrated by Pizzorusso et al. (2006). In this case, long-term 

monocularly deprived animals were subjected to reverse suture in parallel to intracortical 

injections of the enzyme chABC which digest glycosaminoglycan chains of CSPGs, and 

single-unit recordings were then performed. The electrophysiological analysis showed a 

complete recovery of ocular dominance distribution in the visual cortex contralateral to 

the long-term deprived eye in chABC treated animals. Moreover, full recovery of both 

visual acuity and receptive field size of the long-term deprived eye was shown to be 

induced by chABC treatment. Thus, the authors demonstrated that intracortical infusion 

of chABC, coupled to reverse lid-suturing, favored the recovery of vision in adult rats 

with normal visual functions permanently impaired after long-term monocular 

deprivation.  

A critical role for myelin-associated proteins in adult visual cortical plasticity,  

which include ligands for the Nogo receptor (NgR) has also been recognized. In 

particular, some proteins that are components of the myelin sheath including Nogo and 

the myelin basic protein (MBP) have been found to be chemo-repulsive for growing 

axons. Indeed, such molecules display an important function during development of the 

central nervous system in mediating axon growth and guidance (Purves et al., 2004). In 

addition, axon growth inhibition after injury of the adult nervous system appears to 

reflect the activity of inhibitory signals produced by glia and other cells at the lesion site 

through NgR signaling.  
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As the vast majority of visual cortical neurons express the NgR, McGee et al. 

(2005) evaluated whether the NgR-mediated myelin inhibition of neurite outgrowth 

contributes to the closure of the critical period for ocular dominance plasticity in rodents. 

Initially, the authors demonstrated that maturation of intracortical myelination correlates 

with the end of the critical period. Afterwards, they used transgenic mice lacking the NgR 

to investigate the involvement of NgR-signaling in restricting OD plasticity in the 

adulthood. Analysis of adult NgR transgenic mice, well after the end of the critical period 

(P120), showed that OD plasticity persisted into adulthood since an OD shift of visual 

cortical neurons was elicited by MD. Moreover, it was demonstrated that transgenic mice 

lacking main ligand of the NgR: Nogo, showed a similar susceptibility to MD in the 

adulthood thus confirming that NgR-dependent mechanisms participate directly in 

restricting visual cortex experience-dependent plasticity (McGee et al., 2005).              

 

Intracortical GABAergic inhibition 

      

 It has become clear that inhibition has an important role in sculpting patterns of 

electrical activity. This action contributes to the detection of imbalance of activity 

between the afferents to single cortical neurons. A failure in the timing of arrival of 

synaptic inputs on a post-synaptic neuron has been correlated with a failure in plasticity. 

The fact that manifestation of visual cortical plasticity requires inhibitory transmission 

was first shown by Hensch et al. (1998), using transgenic mice lacking the 65-Kda 

isoform of the GABA-synthesizing enzyme GAD (GAD65). Experience dependent 

plasticity in young animals in response to monocular deprivation, is impaired in these 

transgenic mice. Normal plasticity in these animals is rescued by enhancement of 

GABAergic transmission, in the visual cortex, by means of benzodiazepines 

administration. Thus, if the intracortical inhibition is reduced in young animals, the 

critical period onset is delayed, suggesting that there is an inhibitory threshold to be 

surpassed before the critical period can start. In contrast, if the intracortical inhibition is 

precociously enhanced by diazepam administration (Fagiolini & Hensch, 2000) the 

critical period starts earlier. 
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It has also been demonstrated that the time course and closure of the critical 

period for visual cortical plasticity is mediated by the maturation of intracortical 

inhibition, which involves BDNF expression. The development of intracortical inhibition, 

indeed, is accelerated in BDNF overexpressing mice (Huang et al., 1999) which suggest 

that BDNF controls the time course of the critical period by accelerating the maturation 

of the GABA-mediated inhibition. It is known that intracortical inhibition provides strong 

control over activity-dependent synaptic plasticity (Artola & Singer, 1987; Kirkwood & 

Bear, 1994) and matures slowly in comparison to excitation. It has been suggested that 

such a developmental mismatch between inhibition and excitation provides a temporal 

window for the critical period, when the organization of neuronal circuitries can be 

strongly influenced by sensory experience. Thus, the maturation of intracortical 

inhibitory circuitries sets the threshold for both the start and the end of the critical period. 

Consistent with this notion, dark rearing which prolongs the closure of the critical period 

also delay the development of intracortical inhibition (Fagiolini et al., 1994; Benevento et 

al., 1992).   

 The use of in vitro models of neuronal plasticity, long-term potentiation and long-

term depression (LTP/LTD) of neural transmission, has also shed light on the molecular 

mechanisms underlying activity-dependent modifications of synaptic plasticity that 

depend on intracortical inhibition. In particular, reliable LTP of synaptic responses in 

layer II/III can be elicited by theta burst stimulation of layer IV in visual cortical slices of 

both young and adult animals. In contrast, LTP in layer II/III after electrical stimulation 

from the white matter (WM-LTP) can be obtained only in slices from the visual cortex of 

young rats but not in those of adult animals. Kirkwood & Bear (1994) first suggested that 

the maturation of inhibitory circuitries in layer IV is one of the mechanisms responsible 

for the closure of the critical period for the occurrence of WM-LTP. Indeed, theta burst 

stimulation from the white matter, in the adult rat, failed to induce LTP unless a GABAA 

receptor antagonist was applied to visual cortical slices. Notably, susceptibility to WM-

LTP roughly coincides with the critical period for ocular dominance plasticity and, as the 

critical period, can be prolonged by dark rearing (Kirkwood et al., 1995). In support to 

this hypothesis, BDNF overexpressing mice, which show an accelerated maturation of 

intracortical inhibition, displayed an accelerated developmental decline of WM-LTP in 
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the visual cortex. The magnitude of LTP in wild-type mice undergoes a sharp decline 

between the fourth and fifth postnatal weeks, whereas in transgenic mice such decline in 

LTP occurred one week earlier (Huang et al., 1999). Moreover, it has also been 

demonstrated that WM-LTP can be rescued by blocking intracortical inhibition in slices 

derived from BDNF transgenic mice. 

 As to the diversity of intracortical inhibitory networks involved in the occurrence 

of plasticity in the visual cortex, the use of transgenic knockin animals with mutations in 

particular α-subunits of GABAA receptors, has given the opportunity to analyze whether 

specific GABA circuitries underlie plasticity in the visual system (Fagiolini et al., 2004). 

Because specific GABAA receptor-mediated currents can be enhanced by certain 

benzodizepines, whose sensitivity is determined by particular α-subunit composition, the 

triggering of ocular dominance plasticity through cortical administration of the 

benzodiazepine diazepam in parallel to monocular deprivation in young animals with 

point mutations in the α-1 α-2 and α-3 subunits that contribute to the benzodiazepine 

binding site, showed that only α1-containing inhibitory GABAergic circuitries regulate 

the expression of the critical period for visual cortical plasticity. In particular, point 

mutations of a histidine (H) to an arginin (R) in different subunits: α-1(H101R), α-

2(H101R) and α-3(H101R), which renders individual GABAA receptors insensitive to 

diazepam, were used. The authors initially showed that wild-type mice (in which 

normally no plasticity occurs after brief monocular deprivation soon after eye opening) 

that were cortically treated with the benzodiazepine agonist zoldipem, showed a marked 

ocular dominance shift in favor of the non deprived eye. Afterwards, they went on to 

examined ocular dominance plasticity in α-1(H101R) animals and found that no shift of 

ocular dominance occurred after cortical infusion of diazepam in parallel to brief 

monocular deprivation. In contrast, α-2(H101R) animals displayed an ocular dominance 

shift of visual cortical neurons similar to that of control animals after benzodiazepine 

administration (Fagiolini et al., 2004).  
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Visual Evoked Potentials (VEPs) and visual acuity 

 

 The visual evoked potentials (VEPs) in response to sinusoidal gratings alternated 

in phase several times per sec have proved to be very useful for the study of visual 

functions in man and animals. The extensive application of this technique is based on the 

fact that it does allow to predict either the psychophysical contrast sensitivity or limit of 

spatial resolution. Indeed, extrapolation to zero amplitude of the regression line obtained 

by plotting VEP amplitude against log contrast or log spatial frequency of the stimulus 

grating, gives contrast sensitivity or visual acuity values which are very similar to the 

psychophysical estimations (Campbell & Maffei, 1970). This has been evidenced not 

only in man but also in other animal species in which the subjective contrast thresholds or 

acuity estimations were behaviorally evaluated (Campbell et al., 1973; Nakayama & 

Mackeben, 1982). Because of the coincidence between contrast threshold estimated from 

psychophysical and from electrophysiological data, VEPs are assumed to be a reliable 

technique used to predict the subjective contrast sensitivity in all those cases in which 

other techniques are difficult to apply (Maffei & Fiorentini, 1990). 

  The pattern-reversal VEPs have also been useful to study the postnatal 

development of visual contrast sensitivity in infants (Pirchio et al., 1978) and to 

investigate the physiological mechanisms underlying the processing of spatial 

information in man as well. In particular, evidence has been found supporting the 

existence in the human visual cortex of orientation channels (Maffei & Campbell, 1970) 

and of spatial frequency channels (Fiorentini et al., 1983). In addition, methods based on 

the recording of pattern VEPs have been successfully applied in infants to study the 

postnatal development of orientation and spatial frequency selectivity (Fiorentini et al., 

1983). Moreover, VEP techniques have become an important tool in clinical practice both 

in adults and young children with neurological diseases.  

 Initial studies aimed at identifying the site of origin of the pattern reversal VEP 

suggested that pre- and post-synaptic mechanisms very likely contributed to VEPs 

(Maffei & Fiorentini, 1990). The contribution of post-synaptic components in the 

generation of VEPs is highlighted by the fact that VEPs share some of the properties of 

visual cortical cells such as, for instance, orientation selectivity (Hubel & Wiesel, 1962) 
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and susceptibility to contrast adaptation (Maffei et al., 1973). These are properties that 

are not found in the lateral geniculate nucleus or the retina.  

As to the dependence upon stimulus orientation, the amplitudes of VEPs recorded 

in man has been found to be larger for horizontal and vertical gratings than for oblique 

ones (Maffei & Campbell, 1970). In the cat, orientational interactions between grating 

stimuli have been observed in VEP responses. Other properties of visual cortical neurons 

that have been shown to be shared by VEPs, are the adaptation after impairments of 

contrast sensitivity following the observation of high-contrast gratings, which has been 

shown to occur both in man and animals as well as cross orientation inhibition, i.e., 

inhibition of the response to a phase-reversed grating by a superimposed orthogonal 

grating (Morrone & Burr, 1986). As to the nature of the post-synaptic neuronal events 

that contribute to the pattern VEP, these are likely to consist mainly of source-sink pairs 

related to excitatory post-synaptic potentials. The spike activity of individual neurons 

seems not to contribute to the occurrence of VEPs (Petsche et al., 1984). 

 Another characteristic property of steady-state pattern reversal VEPs is that their 

waveform has a temporal frequency that corresponds to the second harmonic of contrast 

orientation, at least for temporal frequencies of 10-20 reversal per sec. In the visual 

cortex this is a property of complex cells, which are neurons that present orientation 

selectivity. Simple cells, in contrast, respond to phase-reversal gratings with a modulation 

of their discharge mainly at the fundamental temporal frequency of the stimulus. This, 

however, does not rule out the possibility that simple cells contribute to the generation of 

steady-state VEPs. Indeed, the response of a simple cell is not a pure fundamental; it also 

contains the second and higher harmonics although with a much smaller amplitude. Thus, 

when the response of a large population of cells adds up, the first and the higher odds 

harmonics cancel out but the second harmonics responses do not. Therefore, the steady 

state VEPs in response to alternating gratings could reflect the activity of both complex 

and simple cells (Maffei & Fiorentini, 1990). 

 VEPs have also been used to characterize the physiology of the visual system in 

rodents (Porciatti et al., 1999). Through electrophysiological recordings from the primary 

visual cortex of the wild-type C57BL/6J mouse, the authors evaluated spatial and 

temporal aspects of VEPs. In particular, the mouse VEP limit of spatial frequency (visual 
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acuity) was found to be 0.6 c deg─1 an estimated value that was comparable to the 

behavioral visual acuity. VEPs recordings at different depths of the binocular portion of 

the visual cortex contralateral to the stimulated eye also revealed that the VEP major 

component is positive in the superficial layers, whereas in deeper layers it is negative. 

Local VEPs had their maximal amplitude about 400 μm of depth in the cortex, which 

correspond to the termination of geniculate afferents at the level of cortical layer IV 

(Porciatti et al, 2002). Importantly, this pattern of VEPs depth profile is very consistent 

among animals. That the intracortical VEP profile shows a clear polarity inversion at a 

point between 150 and 200 μm electrode advancement, suggest a major dipole source of 

VEPs located at this cortical level. Indeed, anatomical reconstruction of electrode tracks 

indicates that the major dipole source is generated at the level of pyramidal cells in 

supragranular layers II-III of the visual cortex (Porciatti et al., 1999). 

Electrophysiological recordings of VEPs also provide the advantage that different aspects 

of vision can be screened readily and simultaneously in the same animals, including those 

with poor visual behavior due to motor or learning deficits.       

     

Functional development of the rat primary visual cortex 

 

Early electrophysiological studies in the adult visual system of the rat found that 

cortical neurons have well defined functional properties (Parnavelas et al., 1981; Maffei 

et al., 1992) and are distributed in distinct classes of ocular dominance, with high 

proportion of binocular cells, comparable to that in cats and monkeys (Maffei et al., 

1992; Berardi et al., 1993). The functional postnatal development of the rat primary 

visual cortex was initially investigated by Fagiolini et al., in 1994. The authors 

demonstrated that physiological properties of visual cortical neurons are immature soon 

after eye opening, and gradually develop during the first month of postnatal life. Visual 

cortical responses are slow and variable at P17, particularly, they present habituation 

which is the tendency of cell response to diminish after continues stimulation. Neuron 

responsiveness, evaluated as amplitude of modulation of cell discharge in response to an 

optimal visual stimulus, increases progressively with age over the third postnatal week, 

while the sluggishness and tendency to habituation disappears by P23. Ocular dominance 
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distribution does not change significantly through development; indeed the vast majority 

of visual cortical neurons are binocular and preferentially driven by the contralateral eye. 

The major component of age dependent changes in ocular dominance distribution is the 

increase of monocular, contralateraly driven cells. Receptive fields in adult rats are small 

and well defined, but this is not the case in younger animals, in which receptive fields at 

P17 are very large, extending through almost the whole binocular hemifield. At P19-21 

receptive field size is around 34 degrees (deg), and it reaches the value of 10 deg or less 

in the adult. Similarly, visual acuity, which is the highest spatial frequency that can be 

perceived, increases from 0,5 c deg─1 to 0,9 c deg─1 within the first month of life in the rat 

and then reaches the value of about 1 c deg─1 in the adult at P45 (Fagiolini at al., 1994).  

Importantly, a precocious development of visual acuity has been shown to occur 

in mice overexpressing the neurotrophin BDNF (Huang et al., 1999). In these transgenic 

mice adult levels of visual acuity were reached precociously, at about P25, one week 

earlier than that of wild-type littermates. On the other hand, there is evidence that the 

progressive decrease in receptive field size is correlated with the time course of visual 

acuity development (Fagiolini at al., 1994). Therefore, one plausible mechanism by 

which increased levels of BDNF would accelerate such property of visual cortical 

neurons is the acceleration of inhibitory circuitries maturation, which by affecting 

receptive field development, could promote the faster maturation of visual acuity. 

 In support to this notion, an accelerated development of visual acuity has also 

been evidenced in animals under environmental enrichment conditions. This is a 

condition characterized by an increased exploratory behavior, somatosensory and social 

stimulation which is known to increase the expression of BDNF and promote a 

precocious maturation of intracortical inhibition in young animals (Cancedda et al., 2004; 

Sale et al., 2004). As in the case of BDNF overexpressing mice, environmental enriched 

pups also show a precocious developmental decline of WM-LTP, which is an in vitro 

model of visual function development, as well as an accelerated development of visual 

acuity.  
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Visual deprivation and amblyopia in humans

 

During development, the cortical representation of both eyes starts out equal and 

in a normal animal this balance is retained if both eyes experience roughly comparable 

levels of visual stimulation. When, however, an imbalance in visual experience is 

induced by monocular deprivation, the active eye gains a competitive advantage and 

replaces many of the synaptic inputs from the closed eye, such that few if any neurons 

can be driven by the deprived eye. Thus, an acquired defect in vision due to an abnormal 

visual experience during a sensitive period of visual development that is characterized by 

reductions in visual acuity and contrast sensitivity, does take place (Grigg et al., 1996). 

These observations in experimental animals have important implications for children with 

birth defects or ocular injuries that cause an imbalance of inputs from the two eyes. 

Unless the imbalance is corrected during the critical period, the child may ultimately have 

visual functions permanently impaired, as evidenced by poor binocularity, diminished 

depth perception, and reduced visual acuity (see Levi et al., 1997).  

The developmental phenomena in the visual system of experimental animals are 

in agreement with clinical problems in children who have experienced similar 

deprivation. The loss of visual acuity and diminished stereoscopic vision that arise from 

early deficiencies of visual experience is called “amblyopia”. In humans, amblyopia is 

most often the result of strabismus, a misalignment of the two eyes due to improper 

control of the direction of gaze by the eye muscles (reviewed in Grigg et al., 1996).  

Since such misalignments produce double vision, the response of the visual system in 

some of these individuals is to suppress input from one eye by mechanisms that are not 

completely understood, but are thought to reflect competitive interactions during the 

critical period. Functionally, however, the suppressed eye eventually comes to have very 

low visual acuity and may render the affected individual effectively blind in that eye. 

Thus, early surgical correction of ocular misalignment, by adjusting lengths of extra-

ocular muscles, has become an essential treatment for children with strabismus (Purves et 

al., 2004). Another cause of visual deprivation in humans is cataracts which can be 

caused by several congenital conditions that render the lenses opaque. A cataract in one 

eye is functionally equivalent to monocular deprivation in experimental animals; left 
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untreated in children, this defect also results in an irreversible effect on the visual acuity 

of the deprived eye. If either the cataract or corneal opacity is removed at about 4 months 

of age, however, the consequences of monocular deprivation are largely avoided 

(reviewed by Holmes & Clark, 2006).  

In animal models, the role of correlated activity in driving the competitive 

postnatal rearrangement of cortical connections can be assessed inducing a situation in 

which activity levels in each eye remain the same but the correlations between the two 

eyes are altered. This circumstance can be obtained by cutting one of the extra-ocular 

muscles in one eye, condition known as strabismus in which the two eyes can no longer 

be aligned (Purves et al., 2004). The major consequence of strabismus is that 

corresponding points on the two retinas are no longer stimulated by objects in the same 

location in visual space at the same time. As a result, differences in the visually evoked 

patterns of activity between the two eyes are far greater than normal. Unlike monocular 

deprivation, however, the overall amount of activity in each eye remains roughly the 

same; only the correlation of activity arising from corresponding retinal points is 

changed. Misalignment of the two eyes can lead to suppression of the input from one eye 

and eventual loss of the related cortical connections. The anatomical pattern of ocular 

dominance columns in layer IV of cats in which input from both eyes remains (but is 

asynchronous) is sharper than normal, implying that the uncoordinated patterns of 

activity have accentuated the normal separation of cortical inputs from the two eyes. In 

addition, the ocular asynchrony prevents the binocular convergence that normally occurs 

in cortical neurons: ocular dominance histograms from such animals show that most cells 

in all layers are driven exclusively by one eye or the other (Hubel & Wiesel, 1965).  

Even before visual experience exerts these effects, innate mechanisms have 

ensured that the basic outlines of a functional system are present. These intrinsic 

mechanisms establish the general circuitry required for vision, but allow modifications to 

accommodate the individual requirements that occur with age (Crawley & Katz, 2002). 

Normal visual experience validates the initial wiring, preserving and adjusting the normal 

arrangement. In the case of abnormal experience, the mechanisms that allow these 

adjustments result in more dramatic anatomical and ultimately behavioral changes, such 

as those that occur in amblyopia. The eventual decline of this capacity to remodel cortical 
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and subcortical neuronal connections is presumably the cellular basis of critical periods in 

a variety of neural systems, including the development of language and other higher brain 

functions. 

 

Aim of the thesis and experimental design 

 

 Recent experimental evidence suggests a critical role for neuronal plasticity in 

mediating the therapeutic effects induced by ADs. It has been observed that chronic 

antidepressant administration promotes neurogenesis and synaptogenesis in the adult 

hippocampus (Malberg et al., 2000; Hajszan et al., 2005) as well as an increased 

expression of the neurotrophin BDNF and its primary receptor TrkB (Nibuya et al., 1995; 

Castren et al., 2004). These cellular and molecular events seem to be necessary in 

mediating the therapeutic effects of ADs. The antidepressant-like behavioral response to 

ADs, indeed, is blocked if the induced neurogenesis is disrupted (Santarelli et al., 2003) 

whereas direct infusion of BDNF into the hippocampus, or the overexpression of its 

receptor in transgenic mice, induce an antidepressant effect (Shirayama et al., 2002; 

Koponen et al., 2005). While neurogenesis, synaptogenesis and BDNF signaling are 

events that correlate with neuronal plasticity, whether ADs promote a functional 

modification of neuronal circuitries, is currently unknown.  

In the present study we investigated whether chronic treatment with fluoxetine, a 

selective serotonin reuptake inhibitor (SSRI), restores plasticity in the adult visual system 

of the rat. We used two well characterized models of plasticity, the ocular dominance 

(OD) shift of visual cortical neurons following monocular deprivation (MD) and the 

recovery of visual functions in the adult after long-term MD (amblyopia). These two 

plastic phenomena are restricted to a critical period during postnatal development and are 

absent in the adult because of a decline of plasticity that has been largely attributed to the 

maturation of intracortical inhibition (Huang et al., 1999; Fagiolini & Hensch, 2000). A 

shift in the composition of NMDA receptor subunits (Erisir & Harris, 2003), the activity 

of the CRE-CREB system (Pham et al., 1999), and the condensation of extracellular 

matrix molecules in perineuronal nets mainly around inhibitory interneurons (Pizzorusso 
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et al., 2002), are cellular events which have been correlated to the closure of the critical 

period for visual cortical plasticity as well.   

 In particular, we investigated the effects of monocular deprivation (MD) on the 

ocular dominance (OD) plasticity of adult animals chronically treated with fluoxetine, by 

recording VEPs in the binocular region of the primary visual cortex contralateral to the 

deprived eye. We next used VEPs to evaluate the recovery of visual acuity and 

binocularity in adult rats that were rendered amblyopic by long-term MD and then 

reverse-sutured (RS) during the last two weeks of antidepressant treatment. Recovery of 

visual acuity was also evaluated behaviorally in the same animals.   

 Afterwards, we used in vivo brain microdialysis to investigate whether chronic 

fluoxetine administration affected the ratio of intracortical inhibition relative to excitation 

in the adult visual cortex. In addition, long-term potentiation of layer II-III field 

potentials after theta-burst stimulation from the white matter (WM-LTP), an in vitro 

model of synaptic plasticity, was also examined. BDNF protein expression in the visual 

cortex and hippocampus of adult rats chronically treated with fluoxetine was assessed 

using the ELISA method. Western blot analysis of GAD65/67 expression following 

antidepressant treatment was performed as well. 

We finally evaluated the effects of fluoxetine on visual cortical plasticity in adult 

animals monocularly deprived in parallel to intracortical infusion of the benzodiazepine 

agonist diazepam. The antidepressant-like behavioral response produced by fluoxetine 

treatment was also evaluated using the forced swim test (FST). 
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EXPERIMENTAL PROCEDURES 

 

Animal treatment and fluoxetine administration  

 

A total of 76 adult Long-Evans hooded rats were used in this study, which was 

approved by the Italian Ministry of Public Health. Animals were group-housed under 

standard conditions with food and water ad libitum in plexiglas cages (40x30x20 cm) and 

kept in a 12:12 light/dark cycle. Adult rats at the postnatal day 70 (P70) were 

systemically treated with fluoxetine (0.2 mg ml–1 drinking water) (Fluoxetine-

hydrochloride, Galeno, Prato-Italy) during 04 weeks (28 Days). Control animals were 

housed under the same standard conditions except for fluoxetine administration. This 

method of administration yields fluoxetine plasma levels of 356 ± 99 ng ml–1 in rats, 

which is within the recommended plasma concentration for the treatment of depression in 

humans (50-450 ng ml–1) (Castren, personal communication). 

 

Surgical procedures 

 

To assess ocular dominance (OD) plasticity, one week of monocular deprivation 

(MD) was performed through eyelid suturing at the beginning of the last week of chronic 

fluoxetine or vehicle administration (Day 21 of treatment). Adult animals (P90), under 

treatment, were anesthetized with avertin (1 ml hg–1) and mounted on a stereotaxic 

apparatus to be monocularly deprived. Eyelid closure was inspected daily until complete 

cicatrization; subjects with even minimal spontaneous re-opening were excluded. Great 

care was taken during the first days after MD to prevent inflammation or infection of the 

deprived eye through topical application of antibiotic and cortisone. 

To perform analysis of long-term MD, rats were anesthetized with avertin (1 ml 

hg–1) and monocularly deprived through eyelid suturing at P21. Eyelid closure was 

inspected daily until complete cicatrization; subjects with even minimal spontaneous re-

opening were excluded. Adult amblyopic rats were then subjected to reverse suture (RS), 

under anesthesia, at the beginning of the third week (P85) of chronic fluoxetine or vehicle 

administration (Day 14 of treatment). Reverse suture (RS), i.e., reopening of the deprived 
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eye while suturing shut the previously open eye, was performed using thin scissors. Great 

care was taken during the first days after RS to prevent inflammation or infection in the 

previously deprived eye through topical application of antibiotic and cortisone. 

 

 In vivo electrophysiology  

 

At the end of chronic fluoxetine or vehicle administration, adult animals 

monocularly deprived for one week and long-term MD animals subjected to RS, were 

anesthetized with urethane (0.7 ml hg─1; 20% solution in saline; Sigma) by i.p. injection 

and placed in a stereotaxic frame. Additional doses of urethane were used to keep the 

anesthesia level stable throughout the experiment. Body temperature was continuously 

monitored and maintained at ~37°C by a thermostated electric blanket during the 

experiment. An electrocardiogram was continuously monitored. A hole was drilled in the 

skull, corresponding to the binocular area of the primary visual cortex (Oc1B) 

contralateral to the deprived eye. After exposure of the brain surface, the dura was 

removed, and a micropipette (2 MΩ) filled with NaCl (3 M) was inserted into the cortex 

5 mm from λ (intersection between sagittal- and lambdoid-sutures). Both eyes were fixed 

and kept open by means of adjustable metal rings surrounding the external portion of the 

eye bulb. We measured visual acuity through both eyes recording visual evoked 

potentials (VEPs) (Figure 5). During recording through one eye, the other was covered by 

a black adhesive tape. To record VEPs, the electrode was advanced at a depth of 100 or 

400 μm within the cortex. At these depths, VEPs had their maximal amplitude. Signals 

were band-pass-filtered (0.1–100 Hz), amplified, and fed to a computer for analysis, as 

described previously (Huang et al., 1999). Briefly, at least 128 events were averaged in 

synchrony with the stimulus contrast reversal. Transient VEPs in response to abrupt 

contrast reversal (0.5 Hz) were evaluated in the time domain by measuring the peak-to-

baseline amplitude and peak latency of the major negative component. Visual stimuli 

were horizontal sinusoidal gratings of different spatial frequencies and contrast, 

generated by a VSG2/2 card running custom software and presented on a monitor (20 x 

22 cm; luminance 15 cd m–2) positioned 20 cm from the rat’s eyes and centred on the 

previously determined receptive fields. Visual acuity was obtained by extrapolation to 

 40



zero amplitude of the linear regression through the last four to five data points in a curve 

where VEP amplitude is plotted against log spatial frequency. Binocularity (ocular 

dominance) was assessed calculating the contralateral to ipsilateral (C/I) VEP ratio, i.e. 

the ratio of VEP amplitudes recorded by stimulating the eye respectively contralateral 

and ipsilateral to the visual cortex where recording is performed. 

 
Figure 5. Schematic diagram of the Visual Evoked Potentials (VEPs). A, Visual stimuli are horizontal 

sinusoidal gratings of different spatial frequencies and contrast. B, Typical VEP waveform recorded from 

an electrode positioned 400 μm below the cortical surface. The response consists of a negative wave of 90-

100 ms latency followed by a late positive wave. C, The recording site for VEPs is the binocular region 

(Oc1B) of the primary visual cortex contralateral to the deprived eye.    
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 Behavioral assessment of visual acuity 

 

We measured visual acuity of the fellow eye (not deprived) in long-term 

monocularly deprived rats before performing RS, thus behavioral assessment of visual 

acuity for the normal eye started at the beginning of chronic treatment (P70). Next, we 

started measuring visual acuity of the formerly deprived eye (long-term deprived), after 

RS, at the beginning of the third week (P90) of chronic fluoxetine or vehicle 

administration (Day 14 of treatment). Therefore, visual acuity measurement of the 

formerly deprived eye was completed when animals were about P100, at the end of 

chronic fluoxetine or vehicle treatment. To measure visual acuity, we used the visual 

water task (Prusky et al., 2000) which trains animals to first distinguish a low (0.1 cycles 

per degree (c deg–1) spatial frequency vertical grating from grey, and then tests the limit 

of this ability at higher spatial frequencies. The apparatus consists of a trapezoidal-shaped 

pool with two panels placed side by side at one end (Figure 6). A midline divider is 

extended from the wide end of the pool into the middle, creating a maze with a stem and 

two arms. The length of the divider sets the choice point and effective spatial frequency. 

An escape platform is placed below the grating. Animals are released from the centre at 

the end of the pool opposite the panels. The position of the grating and the platform is 

alternated in a pseudorandom sequence over training trials while the rats are shaped to 

swim towards the grating in one of the maze arms. A trial is recorded as incorrect if an 

animal enters the arm without the platform. Animals are removed from the pool when 

they find the platform. Once 80% accuracy is achieved, the limit of the discrimination is 

estimated by increasing the spatial frequency of the grating. Visual acuity has been taken 

as the spatial frequency corresponding to 70% of correct choices on the sigmoidal 

function fitting the psychometric function. During each session, the experimenter was 

blind to the experimental group. 
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Figure 6. Schematic diagram of the visual water box task. A, Front view of the apparatus which is a 

trapezoidal-shaped pool with two panels placed side by side at one end. A midline divider is extended from 

the wide end of the pool into the middle, creating a maze with a stem and two arms. An escape platform is 

placed below the grating. B, view from above showing the major components of the devise. 
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In vivo brain microdialysis 

 

One week before the initiation of the chronic fluoxetine or vehicle administration, 

adult rats (P60) were anesthetized and stereotaxically implanted with a guide shaft above 

the binocular visual cortex (binocular area Oc1B), at coordinates: 7.3 mm posterior to 

bregma, 4.4 mm lateral to the midsagittal suture and 1 mm ventral to the skull. After the 

end of chronic treatment with fluoxetine, the in vivo sampling of dialysates was 

performed inserting a microdialysis probe into the guide shaft previously implanted. A 

detailed description of the procedure is reported in (Hernandez et al., 1986) (Figure 7).  

 
Figure 7. Schematic diagram of in vivo brain microdialysis. Sampling of basal extracellular levels of 

neurotransmitters from the binocular area of the visual cortex in fluoxetine treated adult rats. The 

microdialysis probe is connected to a dialysis system pumping artificial CSF. After insertion of the probe 

into the guide shaft in vivo sampling of dialysates is performed in each freely moving animal. 
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The microdialysis probe (Custom BR 1mm probe, BASi Instruments LTD, UK) 

with a 1 mm long tip of exposed cellulose membrane (6000 MW cut-off) was connected 

to a dialysis system pumping an artificial CSF (142 mM NaCl, 3.9 mM KCl, 1.2 mM 

CaCl2, 1 mM MgCl2, 1.35 mM Na2HPO4 , pH 7.4) at a flow rate of 1 µl min–1. The probe 

protruded 1 mm from the tip of the guide shaft (Figure 8). Six hours after insertion of the 

probe (stabilization period), sampling was carried out. Six samples (20 µl/each) were 

collected every 20 min along 2 hours for each freely moving fluoxetine treated and 

control animal.   

 

 

 
 

 

Figure 8. Scheme of the microdialysis probe and diffusion of neurotransmitters (blue arrows) through the 

dialysis membrane. The probe permits the delivery of CSF directly into the visual cortex to sample levels 

of neurotransmitters, which diffuse from the neural tissue to the perfusion fluid into the probe, through the 

cellulose membrane with a 6000 Da cut-off.  
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Histology 

 

After brain microdialysis, rats were sacrificed with an overdose of chloral hydrate 

and perfused intracardially. Brains were post-fixed for two hours before being immersed 

in 30% sucrose in PBS. Forty (40) μm coronal sections from the occipital cortex were cut 

on a sledge microtome and collected in PBS. Brain sections were then stained for cresyl 

violet to verify probes’ location in Oc1B. Only those animals with a correct location of 

the probe were taken into account for further analysis. 

 

High Performance Liquid Chromatography (HPLC) 

 

Analysis of γ-aminobutyric acid (GABA) and glutamate (GLU) basal levels from 

microdialysates obtained from fluoxetine treated and control animals, was performed 

using High Performance Liquid Chromatography (HPLC) coupled to a fluorimetric 

detection system. A sample automatic derivatization (Waters 2690 Alliance) with o-

phtalaldehyde was followed (Calabresi et al., 1995). Resolution was obtained through a 

C18 reverse phase chromatographic column coupled to the fluorimetric detection (Waters 

474; excitation wavelength 350nm, emission wavelength recorder 450nm). Buffer and 

gradient program was as follows: by definition, solvent A: 0.1M Sodium Acetate pH 

5.8/methanol 20/80; solvent B: 0.1M Sodium Acetate pH 5.8/methanol 80/20; solvent C: 

0.1M Sodium Acetate pH 6.0/methanol 80/20. Concerning the gradient program, initial 

isocratic step 5%A, 95%C from 0 to 5 min; 15%A, 85%B from 4 to 5 min and then 

isocratic until 9 min; 22%A, 66%B until 14.5 min and then 34%A, 66% B until 17 min; 

5%A, 95%C until 19 min and then isocratic until 23 min. Flow rate was 0.9 ml min–1. 

Homoserine was used as internal standard and aminoacid concentrations were calculated 

from a linear standard curve built upon known concentrations of injected aminoacids. 

Area of the peaks was used to make comparisons (Waters Millenium 32). 
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LTP recordings 

 

Brains from fluoxetine treated and control adult rats (P100) were removed and 

immersed in ice-cold cutting solution containing (in mM): 220 sucrose, 3.1 KCl, 1.0 

K2HPO4, 4.0 NaHCO3, 2.0 MgCl2, 1.0 CaCl2, 10 HEPES, 1.0 ascorbic acid, 0.5 myo-

Inositol, 2.0 pyruvic acid, and 1.0 kynurenate, pH 7.3. Slices (0.35mm thick) of visual 

cortex were obtained using a Leica (Nussloch, Germany) vibratome. Slices (n = 12 slices 

for fluoxetine treated animals and n = 14 slices for controls) were then perfused at a rate 

of 2 ml min–1 with 35°C oxygenated recording solution. The recording solution was 

composed of as the cutting solution with the following differences (in mM): 130 NaCl, 

5.0 dextrose, 1.0 MgCl2, 2.0 CaCl2, 0.01 glycine, no kynurenate, no sucrose. Electrical 

stimulation (100 µsec duration) was delivered with a bipolar concentric stimulating 

electrode (FHC, St. Bowdoinham, ME) placed at the border of the white matter and layer 

VI. Field potentials in layers II-III were recorded by a micropipette (1–3MΩ) filled with 

NaCl (3 M). Baseline responses were obtained every 30 sec with a stimulation intensity 

that yielded a half-maximal response. After achievement of a 15 min stable baseline 

(field potential amplitude within 15% of change and with no evident increasing or 

decreasing trends), θ burst stimulation (TBS) was delivered. Postsynaptic field potentials 

after TBS were recorded every 30 sec during 30 min. 

 

Western Blot 

 

At the end of the chronic fluoxetine or vehicle administration the expression of 

the GABA synthesizing enzymes (GAD65/67) was assessed using Western Blot. Proteins 

from fresh visual cortex were extracted using lysis buffer (1% Triton X-100, 10% 

Glycerol, 20 mM TrisHCl pH 7.5, 150 mM NaCl, 10 mM EDTA, 0.1 mM Na VO , 1 ¼ 

g/ml Leupeptin, 1 ¼ g/ml Aprotinin, 1 mM PMSF) and the total concentration of samples 

was quantified with the protein assay kit (Bio-Rad, Hercules, CA) using a BSA based 

standard curve. Then, 10 µg of proteins were run 

3 4

on 12% SDS-PAGE gels to ultimately 

be electroblotted on nitrocellulose membranes. Blots were blocked with 4% dry milk 

powder (Bio-Rad Laboratories Inc., Hercules, CA), 0.2% Tween-20 in TBS for 2h and 
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incubated overnight at 4 °C with the polyclonal anti-GAD65/67 antibody (Chemicon, 

Temecula, CA) diluted at 1 µg ml–1 in TBS, 2% milk, 0.1% Tween-20. After washing, 

blots were incubated 1h at 37 °C with HRP-conjugated secondary antibody (Goat Anti 

Rabbit HRP; Bio-Rad, Hercules, CA), developed by ECL chemiluminescence’s system 

(Amersham, UK) and captured on autoradiographic films.  

To account for loading errors blots were then stripped with Re-Blot (Chemicon, 

Temecula, CA), blocked with 4% dry milk powder, 0.2% tween-20 in TBS for 2h and re-

probed overnight at 4 °C with the monoclonal anti-tubulin antibody (Tubulin, Sigma, 

St Louis, MO; diluted 1 µg/ml in TBS, 2% milk, 0.1% Tween-20). Soon after, blots were 

incubated with HRP-conjugated secondary antibody (Goat Anti Rabbit HRP; Bio-Rad, 

Hercules, CA) as above described. Films were digitalized and band optical densities (OD) 

relative to the proteins of interest, as well as, to the corresponding tubulin internal 

standards, were measured with the Image-J software. The ratio of protein/tubulin OD 

mean (± S.E.M.) values, corresponding to the visual cortex of a single animal, was 

calculated for each sample. 

 

Enzyme Linked ImmunoSorbent Assay (ELISA) 

  

The expression of the protein BDNF was assessed at the end of chronic fluoxetine 

or vehicle administration using the ELISA method. Proteins from fresh visual cortex and 

hippocampus were initially extracted, respectively, using lysis buffer (1% Triton X-100, 

10% Glycerol, 20 mM TrisHCl pH 7.5, 150 mM NaCl, 10 mM EDTA, 0.1 mM Na VO , 

1 ¼ g/ml Leupeptin, 1 ¼ g/ml Aprotinin, 1 mM PMSF). The total concentration of 

samples was quantified with the protein assay kit (Bio-Rad, Hercules, CA) using a BSA 

based standard curve. 

3 4

Afterwards, BDNF expression was assessed loading 100 µg of total 

proteins in triplicate in a standard ELISA plate together with a standard curve and 

processed as indicated in the manufacturer protocol (BDNF, Promega). Results are 

reported in ng BDNF/µg proteins. 
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Cortical infusion of the benzodiazepine diazepam (Dz) 

 

At the beginning of the last week of chronic treatment with fluoxetine (Day 21 of 

treatment), a different group of adult rats was subjected to MD. In parallel, under 

anesthesia, an osmotic minipump (model 2002; Alzet, Palo Alto, CA) connected via PE 

tubing to a stainless steel cannula (30 gauge), was implanted in the visual cortex 

contralateral to the deprived eye. Osmotic minipumps (flow rate, 0.5 µl hr–1) were filled 

up with the benzodiazepine agonist diazepam (Dz; 2mg ml–1; n = 4) or vehicle solution 

(50% propylene glycol; n = 4). Soon after surgery, rats were transferred to standard 

condition cages and kept under fluoxetine treatment for one more week. 

Electrophysiological recordings of the C/I ratio by VEPs was performed at the end of 

antidepressant treatment as previously described.  

 

Cortical infusion of mercaptopropionic acid (MPA) 

 

A different group of adult (not-deprived) rats was cortically infused with MPA via 

an osmotic minipump (model 2002; Alzet, Palo Alto, CA) connected via PE tubing to a 

stainless steel cannula (30 gauge), which was implanted in the binocular region of the 

primary visual cortex. Osmotic minipumps (flow rate, 0.5 µl hr–1) were filled up with a 

non-epileptic dose of MPA (100 μM; n = 4) or vehicle solution (Saline; n = 4). Soon after 

surgery, rats were transferred to the cages and kept under standard conditions for one 

more week. Brains were then removed and proteins from fresh visual cortex were 

extracted to perform GAD65/67 analysis by western blot as previously described.  
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Rat Forced Swim Test 

 

Behavioural response to fluoxetine treatment was studied in adult rats (P100) 

chronically treated with fluoxetine and control animals, using the forced swim test which 

is sensitive to the antidepressant activity of SSRIs (Cryan and Lucki, 2000). Briefly, rats 

were individually placed in a glass container (30 x 40 cm) that was filled with water at 22 

°C to a depth of 30 cm, in the first day session (Figure 9). Each animal was removed after 

10 min, dried and placed back in the standard condition cage. Twenty-four hours after the 

first exposure, animals were replaced in the water filled apparatus for 10 min and the 

session was recorded using a video camera placed above the bucket for subsequent 

analysis of behavioural response of fluoxetine treated and control rats. Swimming 

behaviour was defined as horizontal movements throughout the swim chamber. 

Immobility was considered as passive floating with only slight movements of tail or one 

hind limb. Climbing behaviour consisted of upward directed movements of the forepaws 

along the sides of the swim chamber.   

 
Figure 9. Scheme of the forced swim test. Animals are placed in the apparatus depicted, which is filled up 

with water (30 cm). During the FST rats exhibit three well recognized forms of behavior: immobility, 

swimming and climbing. Each session lasts 10 min. and is recorded using a video camera. Taken from 

Cryan et al., 2002. 
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Locomotor activity

 

To control for the spontaneous locomotor activity in both fluoxetine treated and 

control animals, we performed a mobility test at the end of antidepressant treatment using 

“Opto M3-2 cage system” with horizontal and vertical laser beam sensors. Spontaneous 

movement measurements for each animal were monitored at the end of chronic 

antidepressant treatment, from 00:00 to 06:00 am, by quantification of laser beam breaks 

during each session.  

 

 

RESULTS 

 

Chronic fluoxetine administration restores OD plasticity in the adult visual cortex 

 

We initially investigated the effects of one week of monocular deprivation (MD) 

on the ocular dominance (OD) plasticity of adult animals chronically treated with 

fluoxetine, by recording visual evoked potentials (VEPs) in the binocular region of the 

primary visual cortex contralateral to the deprived eye. VEPs represent the integrated 

response of a population of neurons to patterned visual stimuli and are routinely used to 

evaluate visual acuity (VA) and binocularity alterations (Huang et al., 1999; Porciatti et 

al., 1999; He et al., 2006). We assessed OD (binocularity) calculating the contralateral to 

ipsilateral (C/I) VEP ratio, i.e. the ratio of VEP amplitudes recorded by stimulating the 

eye contralateral and ipsilateral, respectively, to the visual cortex where recording is 

performed. The C/I VEP ratio is around 2.5 in adult animals, reflecting the predominance 

of crossed fibres in the rat retinal projections. MD in control adult animals did not change 

binocularity in the visual cortex contralateral to the deprived eye (C/I VEP ratio 2.73 ± 

0.2,  n = 5) (Figure 10). In contrast, fluoxetine treated adult rats showed a marked OD 

shift in favor of the non deprived eye after MD (C/I VEP ratio 1.0 ± 0.08  t-test P < 

0.001, n = 5), thus displaying a plastic modification normally restricted to early stages of 

brain development.    
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Figure 10. Reactivation of visual cortical plasticity in adulthood after chronic treatment with fluoxetine.  

MD in fluoxetine treated adult rats induced an OD shift of visual cortical neurons in favour of the non 

deprived eye (C/I VEP ratio 1.0 ± 0.08  t-test P < 0.001, n = 5) but not in control rats (C/I VEP ratio 2.73 ± 

0.2  n = 5). Error bars represent S.E.M.  indicates statistical significance. 

 

 

Chronic fluoxetine administration promotes the recovery of normal visual functions 

in adult amblyopic rats 

 

To further assess the effects induced by chronic treatment with fluoxetine on 

visual cortical plasticity we next evaluated the recovery of visual functions in adult rats 

that were rendered amblyopic by long-term MD and then reverse-sutured (RS) during the 

last two weeks of antidepressant treatment. We measured VA by recording VEPs from 

the VC contralateral to the long-term deprived eye. In control animals, VA of the 

formerly deprived eye did not show any sign of recovery (0.62 ± 0.06 c deg–1) compared 

to the fellow eye (1.06 ± 0.01 c deg–1) (Figure 11A). In contrast, fluoxetine treated adult 

rats showed complete rescue of VA (0.97 ± 0.04 c deg–1) in the formerly deprived eye.  

Behavioral measure of VA (using the visual water task), performed in the same animals 

before recording of VEPs, confirmed the electrophysiological data: complete recovery of 

VA (0.88 ± 0.02 c deg–1) was evident in fluoxetine treated long-term deprived rats but not 

in control animals (Fig. 11B).  
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Figure 11. Visual acuity recovery in adult amblyopic rats chronically treated with fluoxetine. VA of the 

formerly deprived eye assessed both electrophysiologically (A) and behaviourally (B) was lower than that 

of the fellow eye in control animals (paired t-test P < 0.001 for A and P < 0.001 for B, n = 5) but not in 

fluoxetine treated adult rats (paired t-test P = 0.703 for A and P = 0.354 for B, n = 5). Error bars represent 

S.E.M.  indicates statistical significance. 
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In the same animals in which VA was assessed, we also evaluated OD measuring 

the C/I VEP ratio. In control animals, there was no rescue of binocularity in the visual 

cortex contralateral to the formerly deprived eye (C/I VEP ratio 1.11 ± 0.20, n = 5) 

(Figure 12), whereas fluoxetine treated adult rats showed full recovery of binocularity 

with a C/I ratio of 2.25 ± 0.17. 

 

 
Figure 12. OD (binocularity) recovery in adult amblyopic rats after chronic treatment with fluoxetine. The 

C/I VEP ratio was significantly higher (t-test P < 0.002, n = 5) in the visual cortex of fluoxetine treated 

adult rats (C/I VEP ratio 2.25 ± 0.17) than in controls (C/I VEP ratio 1.11 ± 0.20, n = 5), and in the range of 

adult animals with normal vision. Error bars represent S.E.M.  indicates statistical significance. 

 

 

Chronic treatment with fluoxetine causes a reduction of intracortical inhibition 

 

Because there is evidence that the maturation of intracortical inhibitory circuitries 

causes the end of plasticity in the visual system (Fagiolini & Hensch, 2000; reviewed by 

Hensch 2005), we used in vivo brain microdialysis to investigate whether the fluoxetine 

induced visual cortical plasticity was accompanied by a decreased GABAergic 

transmission. Quantification of extracellular basal levels of γ-aminobutyric acid (GABA) 

revealed a significant reduction of intracortical inhibition in the visual cortex of 

fluoxetine treated adult rats (Figure 13A) compared to controls (two-way ANOVA 
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repeated measures P = 0.02 post hoc Holm-Sidak test P < 0.02, n = 5). No difference in 

extracellular glutamate (GLU) levels was detected between fluoxetine treated and control 

animals (two-way ANOVA repeated measures P = 0.494, n = 5) (Figure 13B). 

 
 

Figure 13. Reduced intracortical inhibition in the adult rat visual cortex after chronic antidepressant 

treatment. (A) In vivo brain microdialysis revealed that basal extracellular levels of GABA were 

significantly lower in fluoxetine treated animals than in control rats (two-way ANOVA repeated measures 

P = 0.02 post hoc Holm-Sidak test P < 0.02 where indicated, n = 5). (B) Extracellular basal GLU levels 

were not different between fluoxetine treated and control animals (two-way ANOVA repeated measures   P 

= 0.494, n = 5). Error bars represent S.E.M.  indicates statistical significance. 
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Chronic treatment with fluoxetine reactivates long-term potentiation of neural 

transmission in the adult visual cortex 

 

To further assess the reduction of intracortical inhibition, we then examined long-

term potentiation of layer II-III field potentials after theta-burst stimulation from the 

white matter (WM-LTP), a form of synaptic plasticity that is absent in the adult because 

of the maturation of intracortical inhibitory circuitries (Kirkwood et al, 1994). WM-LTP 

was fully restored in fluoxetine treated adult rats (Figure 14). No WM-LTP was present 

in control animals. 

 

 
 
Figure 14. Long-term potentiation (LTP) of neural transmission in the adult visual cortex. LTP after theta-

burst stimulation (TBS) from the white matter (WM-LTP), measured 20-30 min after TBS, was 

significantly higher in the visual cortex of fluoxetine treated animals than in controls (two-ways ANOVA 

repeated measures P < 0.005 post hoc Student-Newman-Keuls test P < 0.01). Scale bars are 50% of 

baseline amplitude and 5 ms. 
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Modulation of GAD65/67 expression induced by chronic fluoxetine administration 

 

To investigate the involvement of the GABA synthesizing enzymes GAD65/67 in 

the reduction of GABAergic inhibition, induced by chronic fluoxetine administration, we 

evaluated GAD65/67 protein expression in the visual cortex of adult animals using 

western blot following antidepressant treatment. Interestingly, the expression of 

GAD65/67 was increased in the adult rat visual cortex after chronic antidepressant 

treatment (t-test  P < 0.03, n = 5) (Figure 15). 

 

 
Figure 15. GAD 65/67 protein expression in the visual cortex after chronic fluoxetine administration. 

Western blot analysis evidence that GAD65/67 protein levels were increased (t-test P < 0.03, n = 6) in the 

visual cortex of adult animals after antidepressant treatment compared to control animals. Error bars 

represent S.E.M.  indicates statistical significance. 

 

 

We then thought of evaluate the expression of GAD65/67 in animals with a 

pharmacologically induced reduction of intracortical inhibition, a condition that mimics 

the effects induced by antidepressant treatment on the GABAergic inhibition. A different 

group of adult rats (P90) was cortically treated for one week with a non-epileptic dose of 

mercaptopropionic acid (MPA, 100 µM), by means of osmotic minipumps, to ultimately 
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assess GAD65/67 protein expression. Western blot analysis revealed an increased 

expression of the GABA synthesizing enzymes (t-test P < 0.03, n = 6) after MPA 

treatment (Figure 16). No symptoms of epilepsy occurred in MPA treated animals.  

 

 
 

Figure 16. GAD 65/67 protein expression in the visual cortex after MPA administration. Western blot 

analysis show that GAD65/67 protein levels were higher (t-test P < 0.03, n = 6) in the visual cortex of adult 

animals cortically treated with MPA than in control animals. Error bars represent S.E.M.  indicates 

statistical significance. 

  

 

Chronic fluoxetine treatment increases BDNF expression in the adult visual cortex 

 

Because chronic antidepressant administration increases the expression of the 

neurotrophin BDNF in limbic structures, most notably in the hippocampus, (Nibuya et al, 

1995; D’Sa & Duman, 2002) we measured BDNF protein levels, using the ELISA 

method, in the adult rat visual cortex after chronic fluoxetine administration. We found 

an increased expression of BDNF in the visual cortex of fluoxetine treated adult rats (t-

test P < 0.04, n = 6) (Figure 17A). BDNF protein expression was similarly enhanced in 

the hippocampus (t-test P < 0.01, n = 6) (Figure 17B).  
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Figure 17. BDNF protein levels after antidepressant treatment. BDNF protein expression, quantified by 

means of ELISA, was significantly higher in the visual cortex (t-test P < 0.04, n = 6) (C) and hippocampus 

(t-test P < 0.01, n = 6) (D) of adult rats chronically treated with fluoxetine than in controls. Error bars 

represent S.E.M.  indicates statistical significance. 
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Cortical diazepam administration prevents the effects induced by chronic treatment 

with fluoxetine in visual cortical plasticity 

 

To test whether the reduction of intracortical inhibition underlies the reopening of 

visual cortical plasticity in adulthood, we evaluated OD in fluoxetine treated adult rats 

that were cortically infused with the benzodiazepine agonist diazepam (2 mg ml–1) or 

vehicle solution during the period of MD (Figure 18).  

 

 
 

 
Figure 18.  Schematic diagrams of the experimental procedure followed (top) and of the osmotic 

minipump implant and recording site of visual evoked potentials (VEPs) in the binocular visual cortex 

contralateral to the deprive eye (bottom). Cortical administration of the benzodiazepine agonist diazepam 

(Dz) was performed in parallel with monocular deprivation (MD) during the last week of antidepressant 

treatment. 
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Cortical diazepam administration in adult rats chronically treated with fluoxetine 

totally prevented the OD shift induced by MD (Figure 19). Control animals 

intracortically infused with vehicle solution showed an OD shift in favor of the non 

deprived eye following MD (C/I VEP ratio 1.07 ± 0.04  t-test P = 0.01, n = 3). 

 

 
Figure 19.  Blockade of OD plasticity in fluoxetine treated rats intracortically infused with diazepam (Dz). 

The C/I VEP ratio in the visual cortex contralateral to the deprived eye after MD in fluoxetine treated adult 

animals that were cortically infused with the benzodiazepine agonist diazepam (Fluox + Dz) was not 

different from that of control (not deprived) animals (C/I VEP ratio 2.48 ± 0.29 t-test P = 0.483, n = 4) but 

it differed significantly from either that of adult rats chronically treated with fluoxetine (Fluox) (t-test P = 

0.001, n = 5) and that of animals cortically infused with vehicle solution (Fluox + Veh) (t-test P = 0.01, n = 

3). Error bars represent S.E.M.  indicates statistical significance.   

 

 

Antidepressant effects induced by chronic treatment with fluoxetine 

 

Given that fluoxetine is a prescribed medication for treatment of depression, we 

also evaluated the antidepressant effects induced by chronic administration of fluoxetine. 

We used a modified rat forced swim test, a widely recognized model for depressive 
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behavior in rodents (Cryan and Lucki, 2000). Fluoxetine treated adult rats showed 

increased swimming (t-test P = 0.013, n = 5) (Figure 20A) and decreased immobility (t-

test P = 0.025, n = 5) (Figure 20B) relative to behavioral responses of control animals, 

reflecting an antidepressant-like behavioral effect. Climbing behavior did not differ 

between fluoxetine treated and control rats (t-test P = 0.392,   n = 5) (Figure 20C). 
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Figure 20.  Antidepressant effects induced by chronic fluoxetine administration. A modified version of the 

rat forced swim test (FST) revealed an antidepressant-like behavioural effect in fluoxetine treated adult rats, 

as evidenced by increased swimming (A) (t-test P = 0.013, n = 5) and decreased immobility (B) (t-test P = 

0.025, n = 5) compared to control animals. (C) Climbing behaviour did was not different between 

fluoxetine treated and control rats . 
 

 

To exclude that behavioural antidepressant effects produced by fluoxetine were 

due to an increased locomotor activity we performed a mobility test at the end of chronic 

antidepressant treatment, in both fluoxetine treated and control animals, using the “Opto 

M3-2 cage system”. Spontaneous locomotor activity of fluoxetine treated adult rats did 

not differ from that of control animals (t-test P = 0.865, n = 5) after chronic treatment 

(Figure 21).      
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Figure 21.  Spontaneus locomotor activity after chronic fluoxetine administration. Movement 

measurements in both experimental and control animals, assessed by quantification of laser beam breaks 

using the “Opto M3-2 cage system”, showed that spontaneous locomotor activity did not differ between the 

experimental groups after chronic antidepressant treatment (t-test P = 0.865, n = 5). 
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DISCUSSION 

 

Chronic fluoxetine administration restores OD plasticity in the adult visual cortex 

through a reduction of intracortical inhibition 

 

Visual cortical plasticity is known to be restricted to a critical period during early 

stages of brain development (for review see Berardi et al., 2000). The decline of plasticity 

in the adult has been attributed to different factors, for instance, to a shift in the 

composition of NMDA receptor subunits (Erisir & Harris, 2003), the activity of the CRE-

CREB system (Pham et al., 1999), and the condensation of extracellular matrix molecules 

in perineuronal nets mainly around inhibitory interneurons (Pizzorusso et al., 2002). In 

addition, it has been observed that the maturation of intracortical inhibitory circuitries is a 

critical molecular event which sets the threshold for both the start and the end of the 

critical period for visual cortical plasticity (Fagiolini & Hensch, 2000; reviewed in 

Hensch, 2005). The intracortical GABAergic inhibition is known to maturate slowly 

compared to excitation and it has been suggested that such a developmental mismatch 

between inhibition and excitation provides a temporal window for the critical period, 

when the organization of neuronal circuitries can be strongly influenced by sensory 

experience. Consistent with this notion, electrophysiological recordings of VEPs in the 

visual cortex of BDNF overexpressing mice that show an accelerated maturation of 

intracortical inhibition, evidence an accelerated closure of the critical period for OD 

plasticity and a precocious functional development of the visual cortex (Huang et al., 

1999).  

Here we demonstrate that chronic fluoxetine administration reopens visual 

cortical plasticity in the adulthood, as evidenced by the OD shift in response to MD in 

adult animals following antidepressant treatment (Figure 10). This effect was 

accompanied by a marked reduction of intracortical inhibition as evidenced in vivo by the 

diminishment of extracellular levels of GABA assessed through brain microdialysis. The 

reduction of the GABA mediated transmission after chronic antidepressant treatment was 

also evaluated electrophysiologically by assessing long-term potentiation of neural 

transmission in layers II-III after theta burst stimulation from the white matter (WM-
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LTP). This is a form of synaptic plasticity that is absent in the adult because of the 

maturation of intracortical inhibitory circuitries (Kirkwood et al, 1994) but it can be 

restored if the GABA mediated inhibition is reduced (Artola & Singer, 1987). Consistent 

with this notion and the in vivo analysis, we observed an increased WM-LTP in adult rats 

chronically treated with fluoxetine. We provide evidence that the reduction of 

intracortical inhibition induced by chronic treatment with fluoxetine is a critical event to 

restore plasticity in the adult visual cortex, since an enhancement of the inhibitory tone 

through cortical infusion of the benzodiazepine agonist diazepam in fluoxetine treated 

rats, prevented the OD shift of cortical neurons following MD (Figure 19). The effect 

induced by the benzodiazepine diazepam on OD plasticity was drug-specific since 

cortical administration of vehicle solution did not prevent the shift of OD after MD.  

Our results are in agreement with different studies which point toward the 

reduction of the GABAergic transmission as a key molecular event for restoring plasticity 

in the adult visual cortex. For instance, a pharmacologically induced reduction of 

intracortical inhibition through cortical administration of a non-epileptic dose of 

mercaptopropionic acid (MPA; 100 μM) in adult rats, effectively reactivates OD 

plasticity as evidenced by single cell recordings in the binocular area of the primary 

visual cortex after one week of MD (Harauzov, 2001). In addition, a reduction in the 

expression of GABAA receptors which is expected to mediate a diminishment of the 

inhibitory GABAergic transmission, has been shown to occur in the visual cortex of adult 

animals transiently deprived of visual input by dark exposure, a treatment that restores 

OD plasticity in the adulthood (He et al., 2006). 

 The reduction of intracortical inhibition as a mechanism that reinstates plasticity 

in the adult visual cortex may seem to be in contrast with the fact that lowering the 

inhibitory tone during development, as in the case of GAD65 knockout mice, decreases 

visual cortical plasticity (see Katz, 1999). GAD65 transgenic mice, indeed, do not show 

susceptibility to MD at any age unless eye-lid suture is coupled to cortical administration 

of the benzodiazepine agonist diazepam (Hensch et al., 1998). Such discrepancy, 

however, may be explained by the fact that the maturation of intracortical inhibitory 

circuitries sets the threshold for both the start and the end of the critical period for visual 

cortical plasticity (see Berardi et al., 2003). Indeed, there is an initial inhibitory threshold 
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to be surpassed before the critical period can start, which accounts for the delayed onset 

of the critical period in GAD65 knockout mice with reduced levels of inhibition. It also 

would explain the early onset of the critical period induced by early diazepam 

administration. Additionally, there is a second inhibitory threshold during late 

development that causes the critical period closure, which accounts for the precocious 

visual cortical development in BDNF overexpressing mice that show an accelerated 

maturation of intracortical inhibition.  

 

Chronic treatment with fluoxetine promotes the recovery of vision in adult 

amblyopic rats 

 

The recovery of vision in one eye due to a transient improper use of that eye is 

another classical model of plasticity in the visual system. It is known to be restricted to 

the critical period during postnatal development and is absent in the adult because of a 

decline of plasticity that has been largely attributed to the maturation of intracortical 

inhibition (Fagiolini & Hensch, 2000). Here, we evaluated the recovery of normal visual 

functions in the adulthood after long-term MD (amblyopia). We demonstrate that chronic 

antidepressant treatment in parallel to reverse suture, i.e., eye-lid suture of the fellow eye 

while opening of the formerly deprived eye, during the last 2 weeks of fluoxetine 

administration, promotes the recovery of vision in adult amblyopic rats, as tested 

electrophysiologically through VEPs recordings in the visual cortex and behaviourally 

using the visual water box task. In particular, we observe a complete recovery of visual 

acuity (Figure 11A, B) and binocularity (Figure 12) in the visual cortex contralateral to 

the formerly deprived eye after chronic antidepressant treatment.  

Our findings are consistent with previous studies in which we have shown that a 

reduction of intracortical inhibition underlies the recovery of visual functions in long-

term deprived animals exposed to environmental enrichment, a condition characterized 

by an increased exploratory behaviour and sensory-motor stimulation (Sale et al., 2007). 

Particularly, we demonstrated that adult amblyopic rats housed under environmental 

enrichment for 2 weeks showed full recovery of visual acuity and binocularity, assessed 

by recording VEPs in the primary visual cortex contralateral to the long term deprived 
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eye. Behavioural visual acuity was demonstrated as well. Importantly, an enhancement of 

the inhibitory tone through cortical administration of the benzodiazepine diazepam during 

the environmental enrichment period prevented the recovery of vision in adult amblyopic 

animals. More recently, the recovery of normal visual functions in adult amblyopic rats 

has been shown to occur if a brief period of complete visual deprivation precedes the 

reverse suture procedure in long-term deprived animals (He et al., 2007). Specifically, 

recordings of VEPs in the visual cortex showed that a 10 days period of dark exposure, 

which preceded the reverse suture, promotes the recovery of both spatial visual acuity 

and binocularity. As previously mentioned, the reinstatement of OD plasticity in the 

adulthood induced by dark exposure involves a reduction of intracortical inhibition (He et 

al., 2006).  

 

Shift of the intracortical inhibitory-excitatory balance mediated by an increased 

serotonergic transmission following chronic antidepressant treatment 

 

Neuromodulatory transmitter systems such as acetylcholine, adrenaline, 

noradrenaline and serotonin diffusely project to the neocortex and the inhibitory or 

excitatory action of each transmitter on cortical neurons depend on the composition of the 

postsynaptic receptor subtypes. The overall functions of these transmitters are believed to 

serve as the chemical basis or arousal, attention and motivation. In particular, cortical 

innervation of serotonin originates in the raphe nucleus in the brainstem (Azmitia & 

Segal, 1978). 5-HT containing terminals are present in all cortical areas and all cortical 

layers and make synaptic contacts with pyramidal neurons (Takeuchi & Sano, 1984; 

Papadopoulus et al., 1987) and with GABAergic interneurons as well (DeFelipe et al., 

1991). An important role for serotonergic transmission in modulating visual cortical 

plasticity has also been highlighted (reviewed in Gu, 2002).  

Fluoxetine, a widely prescribed medication for treatment of depression, 

selectively inhibits the presynaptic reuptake of 5-HT which enhances the postsynaptic 

serotonergic transmission (see Figure 2). Our findings that chronic antidepressant 

treatment restores plasticity in the adulthood, suggest that the enhanced serotonergic 

transmission induced by fluoxetine administration promotes functional and/or structural 
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mechanisms that shift the intracortical inhibitory-excitatory balance in the visual cortex. 

A reduction of extracellular levels of GABA (Figure 13A) relative to those of GLU 

(Figure 13B) may decrease the threshold for visual cortical neurons to be driven by 

electrical activity, thus allowing the visual cortex to respond rapidly to manipulations of 

the visual input, like MD and reverse suture in the adulthood.    

These observations in the adulthood are in agreement with the role of 5-HT in OD 

plasticity of the cat visual cortex observed during development. For instance, cortical 

administration of two different serotonergic receptor antagonists: ketanserin and 

methysergide, caused a reduction of OD plasticity in the kitten visual cortex in response 

to MD (Bradley et al., 1986). Likewise, it has been shown that chronic infusion of the 

serotonin neurotoxin (5,7-DHT) into the kitten visual cortex, in parallel to eye-lid suture 

of one eye, prevented the OD shift of visual cortical neurons following MD. The majority 

of neurons in the 5,7-DHT treated hemisphere, indeed, remained binocular while most 

neurons in control animals displayed a normal shift of OD toward the non deprived eye 

(Gu & Singer, 1995). Moreover, intracortical infusion of mesulergine, a specific 5-HT2C 

receptor antagonist, reduced the OD shift of cortical neurons in the visual cortex of 

kittens monocularly deprived (Wang et al., 1997). Taken together, these observations 

suggest that serotonin contributes to OD plasticity in young animals, and that 

serotonergic signaling through the 5-HT2C receptor subtype plays a critical role in 

activity-dependent synaptic modifications of the cat visual cortex during development.  

A mechanism associated with NMDA receptor synaptic modifications has long 

been considered to explain the permissive action of 5-HT in OD plasticity. It has been 

demonstrated in vitro that 5-HT enhances the depolarizing responses to excitatory amino 

acids in the neocortex of cats (Nedergaard et al., 1987) and rats (Reynolds et al., 1988) 

and promotes synaptic plasticity in the kitten visual cortex as well (Kojic et al., 1997). 

These effects could be achieved by a reduction of membrane K+ conductances in 

pyramidal neurons (Andrade & Chaput, 1991; Fagni et al., 1992) which may lead to a 

slow membrane depolarization which in turn would enhance the influx of Ca2+ ions into 

the cell through NMDA receptors. Another possibility is that synergistic interactions at 

intracellular second messengers level may enhance the intracellular signals induced by 

the excitatory inputs. Because activation of the 5-HT2C receptor stimulates phospholipids 
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turnover (Hoyer & Martin, 1997), serotonin could contribute to the enhancement of 

intracellular responses to sensorial inputs via an increase of inositol triphosphate (IP3) 

and diacylglycerol (DAG), both arising from the cleavage of the membrane lipid 

phosphatidylinositol biphosphate (PIP2). An increase of IP3 may enhance Ca2+ release 

from intracellular compartments and induce the activation of Ca2+-dependent protein 

kinases, whose activity is required for visual cortical plasticity during development as 

previously demonstrated by Di Cristo et al. (2001). Here, we show that a reduction of 

intracortical inhibition is an additional mechanism through which an enhanced 

serotonergic transmission, induced by chronic fluoxetine administration, may facilitate 

visual cortical plasticity. Our findings suggest the possibility that the composition of 

serotonergic receptors on GABAergic interneurons may mediate the reduction of GABA 

release we observed in the adult visual cortex after antidepressant treatment. The 

reduction of intracortical inhibition relative to excitation induced by chronic 

antidepressant treatment would increase the probability that visual inputs drive cortical 

neurons above the threshold that must be reached to promote functional modifications of 

neuronal networks in the adult visual cortex. 

 

GAD65/67 protein expression following chronic treatment with fluoxetine 

 

One presynaptic mechanism by which an increased serotonergic activity may 

cause a reduction of the GABA mediated inhibition is a diminishment of the expression 

of the GAD isoforms GAD65/67. To test this possibility, we assessed GAD65/67 protein 

expression in the visual cortex of fluoxetine treated adult rats. Interestingly, the 

expression of GAD65/67 was increased in the adult rat visual cortex after chronic 

antidepressant administration compared to control animals (Figure 15). We next reasoned 

that if the reduction of the extracellular levels of GABA induced by chronic 

antidepressant treatment causes an increase of GAD65/67 expression as a homeostatic 

mechanism for reestablishing the physiological inhibitory tone, then a pharmacologically 

induced reduction of intracortical inhibition in the visual cortex should increase 

GAD65/67 expression as well. We thus analyzed the expression of GAD65/67 in the 

visual cortex of animals cortically infused with a non-epileptic dose of 
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mercaptopropionic acid (MPA; 100 μM), treatment that blocks the enzymatic activity of 

GAD and restores plasticity in the adult visual cortex of the rat (Harauzov et al., 2001). 

Western blot analysis revealed an increased GAD65/67 protein expression in the visual 

cortex of MPA treated animals (Figure 16), to an extent similar to that observed in 

fluoxetine treated rats. Taken together, our findings suggest that chronic antidepressant 

treatment decrease extracellular basal levels of GABA in the adult visual cortex through a 

mechanism independent of GAD protein expression. To which extent it does involve a 

reduction of the enzymatic activity of the protein GAD or a decrease of the 

neurotransmitter release from synaptic vesicles in presynaptic terminals of GABAergic 

interneurons will require additional investigation.    

The modulation of GAD65/67 expression observed in adult animals chronically 

treated with fluoxetine is consistent with previous studies in which we have observed an 

increased expression of GAD65/67 in adult animals housed under enriched 

environmental conditions. As previously mentioned, environmental enrichment causes a 

reduction of intracortical inhibition, which reinstates plasticity in the adult visual cortex 

(Sale et al., 2007). In particular, GAD65/67 expression in the visual cortex of long-term 

MD animals housed under enriched environmental conditions for two weeks was shown 

to be increased as tested by western blot (unpublished data). Moreover, analysis of 

GAD65-immunoreactivity in presynaptic boutons of GABAergic interneurons 

surrounding the soma and proximal dendrites of target pyramidal neurons (puncta-ring 

structures) in the visual cortex of long-term MD animals following environmental 

enrichment, confirmed the biochemical data: an increased density of puncta-rings 

structures was observed in the visual cortex of adult rats with reduced levels of 

intracortical inhibition after environmental enrichment conditions (unpublished data).     

 

BDNF protein expression in adult visual cortex following antidepressant treatment

 

Chronic antidepressant administration is known to increase the expression of 

BDNF in limbic structures, most notably in the hippocampus (Nibuya et al, 1995), a 

molecular event that has been correlated with the therapeutic effects induced by ADs (for 

review see D’Sa & Duman, 2002; Castren et al., 2004). Consistent with these findings, 
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we observed an increased expression of BDNF in the visual cortex of fluoxetine treated 

adult rats compared to control animals (Figure 17A). BDNF protein expression was 

enhanced in the hippocampus as well (Figure 17B). It has been suggested that 

antidepressants may up-regulate the expression of genes essential for maintaining 

synaptic function and cell survival through an increase of CREB phosphorylation, a 

transcription factor that enhances BDNF expression (Poo, 2001).  

Functional brain imaging studies have shown a reduction in glucose metabolism 

and blood flow in the limbic and prefrontal cortex of depressed patients (Drevets, 2000), 

findings that suggest that neuronal activity may be decreased in the pathology of 

depression. Indeed, a reduced gray matter volume in the prefrontal cortex (Bremner et al., 

2002; Botteron et al., 2002) and hippocampus (MacQueen et al., 2003; Sheline, 2003) of 

depressed patients has been observed, and such morphological alterations seem to be 

reversed by ADs (Drevets, 2000). These observations together with the fact that BDNF 

mediates the behavioral response to ADs, raises the possibility that BDNF expression 

may be required to promote neuronal plasticity in the adult nervous system. Early studies 

of the effects of neurotrophins in visual cortical plasticity, however, revealed no effects 

induced by cortical administration of BDNF on OD plasticity after MD in the adulthood 

(Galuske et al., 2000; Hata et al, 2000). In particular, BDNF infusion into the visual 

cortex of adult cats in parallel to MD showed no variations on OD distribution of visual 

cortical neurons, as tested using single cell recordings. These findings make it unlikely 

the possibility that BDNF expression may account completely for the restoration of 

plasticity observed in the adult visual cortex after chronic antidepressant treatment. 

Consistent with this notion, BDNF overexpressing mice do not show any susceptibility to 

MD in the adulthood (Huang et al., 1999).  

On the other hand, BDNF heterozygous knock-out mice (BDNF+/-) show no 

impairments in the closure of the critical period for MD (Bartoletti et al., 2002). Because 

the overexpression of BDNF causes an accelerated closure of the critical period for OD 

plasticity, it was tested whether the critical period for visual cortical plasticity was 

prolonged in transgenic mice with reduced BDNF levels (BDNF+/-). Single cell 

recording analysis in the visual cortex of adult transgenic mice showed a normal closure 

of the critical period for OD plasticity (Bartoletti et al., 2002). In addition, long-term 
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potentiation of layer II-III field potentials after TBS from the white matter (WM-LTP), in 

the visual cortex of BDNF+/- or wild-type littermates, was normally absent in the 

adulthood. Only an impairment in long-term potentiation of neural transmission of layer 

II-III field potentials after TBS from layer IV was observed in BDNF+/- mice. These 

findings suggest a role for BDNF in mechanisms of synaptic plasticity as reported for 

hippocampal LTP (Kang & Shuman, 1995; Ying et al., 2002) but not in restoring 

neuronal plasticity in the adult visual cortex. Interestingly, the increase in protein BDNF 

levels we observed after chronic antidepressant treatment seems to be slighter than the 

extent to which the GABA mediated inhibition is reduced. Whether or not such 

experimental observations hold true will require additional investigation. 

 

BDNF and GAD65/67 interaction in the adult rat visual cortex 

 

The increased expression of BDNF in the adult rat visual cortex observed after 

chronic antidepressant treatment is a molecular mechanism that correlates with an 

increased GAD65/67 expression. During development, an increased BDNF expression 

induces an accelerated closure of the critical period for OD plasticity, an effect that has 

been attributed to a precocious maturation of intracortical inhibition in the visual cortex 

(Huang et al., 1999). Indeed, an increased GAD65-immunoreactivity in presynaptic 

boutons of GABAergic interneurons surrounding the soma and proximal dendrites of 

target pyramidal neurons (puncta-ring structures), has been evidenced in the visual cortex 

of BDNF overexpressing mice. In agreement with these observations, adult rats 

chronically treated with fluoxetine not only show increased levels of BDNF (Figure 17A) 

but also an increased expression of GAD65/67 (Figure 15) in the visual cortex. Taken 

together, our results suggest a neurotrophic effect of BDNF on GABAergic interneurons 

which accounts for the increased expression of the GABA synthesizing enzymes, as 

observed for BDNF overexpressing mice during development. In agreement with this 

notion, analysis of GAD65-immunoreactivity in presynaptic boutons of GABAergic 

interneurons surrounding target pyramidal neurons (puncta-ring structures) in the visual 

cortex of TrkB dominant negative mice demonstrate that the up-regulation of GAD65/67 

expression induced by chronic fluoxetine administration (0,08 mg ml–1) requires BDNF 
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signaling. The density of puncta rings in the visual cortex of wildtype mice, indeed, is 

increased after chronic antidepressant treatment and such an effect does not occur in the 

visual cortex of TrkB dominant negative mice with a reduced BDNF-TrkB signaling 

(O’Leary O.F. & Castren E., personal communication). We propose that the reduction of 

extracellular GABA levels induced by chronic antidepressant treatment (Figure 13A) 

occurs through a mechanism that is independent of the GAD65/67 expression, and allows 

a functional modification of neuronal circuitries which underlies the sensitivity to MD in 

the adult and amblyopia recovery. In addition, we suggest that a reduction of intracortical 

inhibition in the adulthood, which shift the intracortical inhibitory-excitatory balance, 

may cause an increase in the expression of BDNF which is activity-dependent. 

Furthermore, the expression of BDNF might eventually enhance the inhibitory 

transmission in parallel to the increasing BDNF levels thus representing a negative 

feedback loop which may regulate the neurotrophin expression.   

 

Long-term potentiation of neural transmission in the adult rat visual cortex 

following antidepressant treatment 

 

As previously mentioned, we observed the occurrence of WM-LTP in the visual 

cortex of fluoxetine treated rats (Figure 14), a phenomenon that is usually absent in the 

adult but can be restored if the GABA mediated inhibition is reduced (Artola & Singer, 

1987; Kirkwood & Bear, 1994), finding that is in agreement with the reduction of 

intracortical inhibition observed in vivo using brain microdialysis after chronic fluoxetine 

administration (Figure 13A). The increase of synaptic plasticity (WM-LTP) in the adult 

rat visual cortex following antidepressant treatment is consistent with recent observations 

which show that chronic administration of ADs in healthy human subjects increases the 

amplitude of the P1 and N1 components of VEPs in response to repeated presentation of 

visual stimuli, event that has been suggested to be a form of long-term synaptic plasticity 

(Normann et al., 2007). This form of plasticity has been previously described in the 

visual cortex of the awake mice. In particular, it has been observed that repeated 

presentation of grating stimuli of a single orientation promotes a persistent enhancement 

of cortical responses evoked by subsequent visual stimuli (Frenkel et al., 2006). This 
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response potentiation is specific to the orientation of the stimulus, develops gradually 

over the course of time and occurs in both juvenile and adult mice. Consistent with these 

findings, Normann et al. (2007) demonstrated that 10 min presentation of a checkerboard 

reversal stimuli (2 rps), causes an increase in the amplitude of early components (P1, N1) 

of VEPs in response to subsequent presentation of the stimulus in healthy human 

subjects. Furthermore, the authors demonstrated that prolonged visual stimulation causes 

a plastic modification of cortical responses in healthy individuals chronically treated with 

the SSRI sertraline compared to that observed in non-treated healthy human subjects 

(Normann et al., 2007).      

 Taken together these findings suggest that the increase of synaptic plasticity 

(WM-LTP) which is described here in the rodent visual cortex, may also take place in the 

human brain after chronic treatment with fluoxetine. Moreover, our results open the 

possibility that chronic administration of SSRIs may promote similar effects also in other 

brain areas, such as those involved in mood regulation in depressed patients, which 

highlights new mechanisms for the therapeutic effects induced by ADs and the 

pathophysiology of mood disorders. 

 

Antidepresssant-like behavioural response induced by chronic fluoxetine 

administration 

 

Given that fluoxetine is prescribed for treatment of depression, we also evaluated 

the antidepressant effects induced by chronic administration of the drug. We observed an 

antidepressant-like behavioral response in fluoxetine treated adult rats compared to 

control animals, as evidenced by increased swimming (Figure 20A) and decreased 

immobility (Figure 20B) in the forced swim test (FST). Climbing behavior did not differ 

between fluoxetine treated and control animals (Figure 20C). The immobile behavior is 

thought to reflect either a failure to persist in escape-directed behavior after persistent 

stress or the development of passive behavior that disengages the animal from active 

forms of coping with stressful stimuli. Our results are in agreement with previous studies 

addressing the behavioral response induced by SSRIs in rodents. It has been observed 

that different behavioral components in the FST distinguish neurochemically distinct 
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antidepressant drugs (Lucki, 1997). For instance, swimming behavior is sensitive to 

SSRIs and 5-HT agonists whereas climbing behavior shows sensitivity to tricyclic 

antidepressants or drugs with selective effects on catecholamine transmission (Detke et 

al., 1995). The increased swimming behavior produced by fluoxetine, indeed, is 

prevented by treatment with inhibitors of the protein tryptophan hydroxylase: one of the 

two enzymes required for the synthesis of serotonin, but not the increased climbing 

behavior produced by the norepinephrine reuptake inhibitor desimipramine (Page et al., 

1999). To control that the behavioural responses produced by fluoxetine were not due to 

an increased locomotor activity induced by a diminishment of inhibition, we performed a 

mobility test at the end of chronic antidepressant treatment. Spontaneous locomotor 

activity of fluoxetine treated adult rats did not differ from that of control animals after 

chronic treatment (Figure 21). These findings indicate that the effects induced by chronic 

fluoxetine administration in adult visual cortical plasticity occur in parallel to the 

antidepressant-like behavioural responses normally described for ADs.    

 

Potential clinical application for chronic antidepressant treatment in amblyopia and 

other neurological disorders

 

Our finding that fluoxetine, a widely prescribed AD in humans, restores plasticity 

in the adult visual system and the recovery of normal visual functions in adult amblyopic 

rats, suggests a possible clinical application for SSRIs in amblyopia and neurological 

disorders where synaptic plasticity is compromised due to an excessive intracortical 

inhibition. Accumulating evidence indicates that plasticity in the rat visual cortex can be 

modulated in the adulthood. For instance, the enzymatic degradation of extracellular 

matrix (Pizzorusso et al., 2002; 2006), environmental enrichment (Sale et al., 2007), and 

complete visual deprivation by dark exposure (He et al., 2006), actually promote 

plasticity in the adulthood and allow the recovery of normal visual functions in adult 

amblyopic animals. The fact that fluoxetine administration, a widely used medication in 

humans, is a non-invasive treatment that reinstates visual cortical plasticity in the 

adulthood, highlight that chronic SSRIs administration may be used as a complementary 

treatment to current therapies for human amblyopia.  
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The reduction of intracortical inhibition induced by chronic fluoxetine 

administration suggests a clinical value for SSRIs that is relevant for treatment of other 

neurological disorders as well. For instance, a pharmacotherapy based on a reduction of 

hippocampal inhibition for cognitive impairments in a mouse model of down syndrome 

(DS) has been recently suggested (Fernandez et al., 2007). In particular, transgenic 

Ts65Dn mice which have an extra copy of the mouse chromosome 16: a segment 

homologous to human chromosome 21 that contains much of the genetic material 

responsible for the DS phenotype, were used in this study. Ts65Dn transgenic mice show 

an excessive inhibition in the dentate gyrus of the hippocampus, a condition that has been 

proposed to compromise synaptic plasticity and mnemonic processing (Kleschevnikov et 

al., 2004). Chronic systemic treatment with non epileptic doses of two GABAA receptor 

antagonists: picrotoxin (PTX) and pentylenetetrazole (PTZ), in Ts65Dn mice, was shown 

to rescue cognition deficits as tested behaviorally in the object recognition test. 

Moreover, LTP deficits in the dentate gyrus of the hippocampus normally observed in 

Ts65Dn mice were rescued after chronic treatment with PTX and PTZ (Fernandez et al., 

2007). These findings suggest the possibility that over-inhibition contributes to cognition 

deficits associated with down syndrome and that chronic fluoxetine administration may 

be of clinical value for treatment of this neurological disorder.     

 Rett syndrome (RTT) is also a neurological disorder in which mutations of the 

MECP2 gene causes an excessive intracortical inhibition that compromises synaptic 

plasticity (Dani et al., 2005). Whole-cell-patch-clamp recordings in cortical slices of 

Mecp2-null mutant mice have evidenced that spontaneous activity of pyramidal neurons 

is reduced in this transgenic model of RTT. In particular, analysis of miniature excitatory 

postsynaptic currents (mEPSCs) and miniature inhibitory postsynaptic currents 

(mIPSCs), have shown that the balance between inhibition and excitation is shifted in 

favour of inhibition in the primary somatosensory cortex of Mecp2-null mice. All these 

findings, together with the fact that chronic fluoxetine administration restores plasticity 

by reducing intracortical inhibition, makes the antidepressant treatment a potential 

therapy for RTT as well.          
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