
ColDoc Project Documentation
Release 0.1

Andrea C. G. Mennucci

Apr 06, 2021

Contents:

1 ColDoc Project 1
1.1 Code . 1
1.2 Features . 1
1.3 Documentation . 2
1.4 Quick start . 3
1.5 EDB portal . 3
1.6 Getting help . 3
1.7 Authors . 3
1.8 License . 3

2 Installing 5
2.1 venv . 5
2.2 Prerequisites . 5
2.3 Installing plasTex . 6
2.4 Fix PdfLaTeX . 6

3 Testing 7
3.1 Blobify . 7

4 Deploying 9
4.1 Serving with Apache . 9
4.2 Serving without Apache . 10
4.3 Deploying the skeleton . 10
4.4 Local variables . 10
4.5 Social auth . 11
4.6 Late adding of social auth . 11
4.7 Initalize . 11
4.8 Add test material . 12
4.9 Activate the Apache portal . 12
4.10 Serve without Apache . 12
4.11 Final remarks . 13

5 Blob and UUID 15
5.1 Tree of UUIDs . 15
5.2 Relationship between blobs and UUID . 15
5.3 Blobs and views . 16

i

6 Metadata 17
6.1 Environment . 17
6.2 Metadata key list . 18
6.3 Metadata in source code . 19

7 UUID Permissions 21
7.1 Permissions for a specific coldoc . 21
7.2 Special users . 21
7.3 Meaning of permissions, and rules . 22
7.4 Local permissions . 22
7.5 Buying local permissions . 22
7.6 Access to protected content in the whole document . 22
7.7 LaTeX macros . 23
7.8 Accessing the whole document . 23

8 ColDoc Permissions 25
8.1 Meaning of permissions, and rules . 25

9 Groups 27

10 Blobify 29
10.1 Plastex tweaks . 29
10.2 Standalone tweaks . 30
10.3 Multiple LaTeX format . 30
10.4 Downloading, and compiling single UUIDs . 31
10.5 Check it all . 31

11 Editing 33

12 Indices and tables 35

ii

CHAPTER 1

ColDoc Project

There are two main frameworks currently used to present information (in particular, related to scientific fields).

• A document redacted with the standard LaTeX / PDF toolbox.

– Pros: these documents are state-of-the-art quality.

– Cons: the final user has no way of interacting with a PDF document (other than sending an e-mail to the
original authors)

• The Web 2.0 way (think of: Wikipedia or Stack Exchange).

– Pros: in those frameworks, content is continuously developed and augmented by users.

– Cons: the end result, though, is fragmented, and cannot (in general) be presented as an unified document.

A ColDoc tries to get the best of two publishing frameworks.

1.1 Code

The code is open source, it is available at https://github.com/mennucc/ColDoc_project

The code uses Django, that is implemented using the Python language; it also uses some JavaScript snippets for
interactive features.

1.1.1 Authors

This software is Copyright 2019-21

Andrea C. G. Mennucci

1.1.2 License

See file LICENSE.txt in the code distribution

1

https://www.wikipedia.org/
https://en.wikipedia.org/wiki/Stack_Exchange
https://github.com/mennucc/ColDoc_project
https://www.sns.it/it/mennucci-andrea-carlo-giuseppe"

ColDoc Project Documentation, Release 0.1

1.2 Features

1.2.1 Code, portal, document

This project is structured to keep separation between the code, the portal, and the data.

Foremost, we install the code following the instructions in the install section.

Then, we deploy the structure for a portal following the instructions in the deploy section.

Eventually, we add one or more documents in the portal. See section on how to prepare a document for its splitting
and uploading into a portal.

(You may also deploy multiple portals using the same code).

1.2.2 Access management

Access to the whole document, or parts whereof, can be tuned.

See the section on permissions for details.

1.2.3 UUID and blobs

When a LaTeX document is inserted into a portal, it is blobified: it is divided in many small files, called blobs, each
identified by an UUID (an unique identifier).

The purpose is twofold:

• each blob can be viewed conveniently by itself: the portal will compile an HTML representation of it, that is
easily accessible (it also well adapts to mobile viewers), as well as a compact PDF representation (using the
standalone class).

• The UUID is a permanent identifier for that content: even if other material is added before that part of LaTeX,
the UUID associated to it will not change (contrary to ordinary references in LaTeX); UUIDs can also be used
to reference from outside of the document, using appropriate web URLs.

Note that an UUID can reference to different versions of the same object:

• for images, there may be different formats available;

• for text, different languages may be available.

Moreover, the portal will compile the whole document, as PDF and as HTML. The whole document contains UUID
markers, of the form [XXX], that can be used to jump to the web page of that UUID; vice-versa in the web page of the
UUID there are links to view that UUID in the context of the whole document.

1.3 Documentation

All documentation is in the "docs" directory.

The documentation is in RST format, so it is mostly standard text: you can read it in the files inside docs/source.

2 Chapter 1. ColDoc Project

ColDoc Project Documentation, Release 0.1

1.3.1 Compile

To compile the documentation, you will need the sphinx toolset. To install it:

pip3 install sphinx

or, if you prefer, in Debian-based systems (like Ubuntu):

sudo apt install python3-sphinx

Then

cd docs
make html

or any other format that you wish. Then start browsing by

firefox docs/build/html/index.html

1.4 Quick start

If just want to see the code in action: install the code and the prerequisite libraries as explained in the install section;
then follow commands in the test section to create a test portal.

1.5 EDB portal

This software is used to run the portal https://coldoc.sns.it that serves a document containing math exercises (nick-
named EDB)

1.6 Getting help

To get more help:

coldoc.staff@sns.it

1.4. Quick start 3

https://coldoc.sns.it
mailto:coldoc.staff@sns.it

ColDoc Project Documentation, Release 0.1

4 Chapter 1. ColDoc Project

CHAPTER 2

Installing

The following instructions are for people running Debian/Ubuntu, and the bash shell. Other operating system may
need some adjustments.

Download the latest code from GitHub

cd /home/.../.../somewhere
git clone https://github.com/mennucc/ColDoc_project
cd ColDoc_project
export COLDOC_SRC_ROOT=`pwd`

the last command sets the environmental variable COLDOC_SRC_ROOT to the directory where the code was down-
loaded. This is fundamental in the following. In this section, we will assume that the CWD (current working directory)
is COLDOC_SRC_ROOT.

2.1 venv

Note that ColDoc needs Python3 ; you may want to set up a virtualenv, so that Python3 is the default Python.

python3 -m venv venv
source venv/bin/activate

2.2 Prerequisites

ColDoc has some prerequisites: Django (version 2 or 3), plasTex (a patched version, see below), and others, as
explained later.

To install them (but for plastex) you may use

pip3 install django BeautifulSoup4 pycountry django-guardian django-allauth django-
→˓background-tasks django-select2

5

ColDoc Project Documentation, Release 0.1

(only the first three are strictly needed, the others can be used to activate advanced features, as explained below)

2.3 Installing plasTex

Installing plastex is somewhat complex, since ColDoc needs a patched version.

The script plastex/prepare.sh can download and patch plastex for you: the patched version is then available in plas-
tex/plastex. So you can install it, using python3 setup.py install inside the directory plastex/plastex.

2.4 Fix PdfLaTeX

Some TeX/LaTeX versions, by default, mangle the tags in the output PDF; then the cross-referencing machinery in
ColDoc will not work.

To solve this problem, you should edit the file /usr/share/texlive/texmf-dist/dvipdfmx/dvipdfmx.cfg and change %C
0x0000 to %C 0x0010.

You may use the patch patch/texmf.patch for this.

Note that this file is not marked as a configuration file in Debian/Ubuntu, so it would be overwritten if the package
texlive-base is upgraded; to avoid this problem, you may want to run (as root user)

dpkg-divert --add --rename /usr/share/texlive/texmf-dist/dvipdfmx/dvipdfmx.cfg
cp -a /usr/share/texlive/texmf-dist/dvipdfmx/dvipdfmx.cfg.distrib /usr/share/texlive/
→˓texmf-dist/dvipdfmx/dvipdfmx.cfg
patch /usr/share/texlive/texmf-dist/dvipdfmx/dvipdfmx.cfg ${COLDOC_SRC_ROOT}/patch/
→˓texmf.patch

Alternatively, you may add

\ifplastex\else
\special{dvipdfmx:config C 0x0010}
\special{xdvipdfmx:config C 0x0010}
\fi

to the preamble of all LaTeX documents.

6 Chapter 2. Installing

CHAPTER 3

Testing

To test the code, you may use the tests in the test directory (go there and type make to see a list).

cd test
make

For example the commands

cd test
make clean
make django_deploy
make django_paper
make django_tasks &
make django_run &

will blobify the test document from ${COLDOC_SRC_ROOT}/test/paper/paper.tex and create a coldoc called paper;
then it will start all needed processes.

The data for the coldoc paper will be stored in ${COLDOC_SRC_ROOT}/test/tmp/test_site/coldocs/paper/blobs so
you can open the main file ${COLDOC_SRC_ROOT}/test/tmp/test_site/coldocs/paper/blobs/main.tex with an editor,
or compile it with pdflatex ; otherwise you can access the web portal at http://localhost:8000. and edit it thru the
web interface. (Usernames and passwords for interacting with the test web server are printed when issuing make
django_deploy) Note that if you edit the latex files on disk, then you will need to issue some commands to keep web
interface in sync: see the section on editing

3.1 Blobify

Or you may want to blobify a document without using the Django web interface, just to see what it looks like. Create
a temporary directory

tmpdir=$(mktemp -d)

Then blobify the example document from the source into the temporary directory

7

ColDoc Project Documentation, Release 0.1

python3 ${COLDOC_SRC_ROOT}/ColDoc/blob_inator.py --coldoc-nick=test --blobs-dir=$
→˓{tmpdir} --ZS --SAT ${COLDOC_SRC_ROOT}/test/latex/latex_test.tex

Then open the main blob with an editor

editor ${tmpdir}/main.tex

8 Chapter 3. Testing

CHAPTER 4

Deploying

Here we explain how to bootstrap a new ColDoc web portal, or site.

We assume that the ColDoc source code was downloaded in the directory whose name is saved in the environment
variable COLDOC_SRC_ROOT. For details see the install section

ColDoc keeps a strict separation between code and data.

The same code directory can be used to run many sites.

In turn, each site can host many documents.

In the install section we installed the code. Here we will prepare the structure for the data and settings for a portal.

To start a new ColDoc site, you need to setup a directory containing some files. This process is called deploying. The
directory name must be saved in the COLDOC_SITE_ROOT environmental variable.

You need to use a terminal where you can insert shell commands.

4.1 Serving with Apache

To serve the portal using Apache2 in Debian or Ubuntu, you may install the packages

sudo apt install apache2 libapache2-mod-wsgi-py3

It is advisable to put the portal under /var/www (or otherwise, you should edit /etc/apache2/apache2.conf otherwise
apache will not serve your content). Here is an example shell code:

export COLDOC_SITE_ROOT=/var/www/test_site
sudo mkdir ${COLDOC_SITE_ROOT}
sudo chown owner.group ${COLDOC_SITE_ROOT}

where owner.group is who is performing the install.

9

ColDoc Project Documentation, Release 0.1

4.2 Serving without Apache

If you want to run the portal by some other means (there are many ways to deploy Django, see here) then you may
setup the test site anywhere, let’s say /home/.../test_site . Make sure that this directory is empty, and set its name in an
environ variable as follows.

export COLDOC_SITE_ROOT=/home/.../test_site
mkdir ${COLDOC_SITE_ROOT}

4.3 Deploying the skeleton

In the following you may omit the part ${COLDOC_SRC_ROOT}/ if you are sure that the current working directory
of the shell is the directory where the ColDoc source code is located.

This command will create the structure for the new ColDoc portal

python3 ${COLDOC_SRC_ROOT}/ColDocDjango/helper.py deploy

In particular it will deploy the config file for the new document as ${COLDOC_SITE_ROOT}/config.ini. This contains
some fundamental settings for the site, and it can also be used to activate/deactivate special features for the portal, such
as: social authentication, background tasks, comments, etc. Edit it at taste.

4.4 Local variables

There are many settings for a Django portal (the config.ini file will setup only the most important ones).

At startup, Django reads a settings.py file. In this case, settings for a deployed site are read from three files:

• the general file ${COLDOC_SRC_ROOT}/ColDocDjango/settings.py in the ColDoc code

• ${COLDOC_SRC_ROOT}/ColDocDjango/settings_local.py if it exists

• ${COLDOC_SITE_ROOT}/settings.py from the COLDOC_SITE_ROOT directory where the web site is
deployed.

Each one overrides the previous.

To better test the code, you may want to create a file ${COLDOC_SRC_ROOT}/ColDocDjango/settings_local.py
to setup some variables to enable email sending, as in this example. Or you may want to enable them in
${COLDOC_SITE_ROOT}/settings.py for your specific site.

MAIL_HOST = "smtp.server"
EMAIL_PORT = "587"
EMAIL_HOST_USER = "username"
EMAIL_HOST_PASSWORD = "password"
EMAIL_USE_TLS = True
DEFAULT_FROM_EMAIL = "Helpdesk <helpdesk@that_email>"

or to enhance the code, e.g. adding some mimetypes used in your coldoc s

import mimetypes
https://bugs.freedesktop.org/show_bug.cgi?id=5455
for j in ('.gplt','.gnuplot'):

mimetypes.add_type('application/x-gnuplot',j)

10 Chapter 4. Deploying

https://docs.djangoproject.com/en/dev/howto/deployment/

ColDoc Project Documentation, Release 0.1

See in ${COLDOC_SRC_ROOT}/ColDocDjango/settings_suggested.py for more examples.

4.5 Social auth

If you wish to use social authentication, you may set use_allauth to True in ${COLDOC_SITE_ROOT}/config.ini and
install django-allauth

Note that once you set ‘use_allauth‘ to True, you cannot change it back to ‘False‘.

In particular, you may add stanzas for django-allauth in ${COLDOC_SITE_ROOT}/settings.py such as providers and
configs, something like

INSTALLED_APPS += [
'allauth.socialaccount.providers.google']

SOCIALACCOUNT_PROVIDERS = {
'google': {

'SCOPE': [
'profile',
'email',

],
'AUTH_PARAMS': {

'access_type': 'online',
}

}
}

and don’t forget to connect to the admin interface and to create a social application in the database, that contains all
credentials (in the above case, for Google OAuth2).

See django-allauth docs for more details

Moreover you may need to setup the Django smtp machinery, to send emails (emails are sent automatically to verify
emails addresses or reset passwords).

4.6 Late adding of social auth

If you did not turn social authentication on at first, you may turn it on later, by following the above instructions; and
then you have to run

python3 ${COLDOC_SRC_ROOT}/ColDocDjango/manage.py migrate
python3 ${COLDOC_SRC_ROOT}/ColDocDjango/manage.py collectstatic

to update the databases.

4.7 Initalize

Then initialize django for your deployed site

python3 ${COLDOC_SRC_ROOT}/ColDocDjango/manage.py migrate
python3 ${COLDOC_SRC_ROOT}/ColDocDjango/manage.py collectstatic

4.5. Social auth 11

https://django-allauth.readthedocs.io/en/latest/index.html

ColDoc Project Documentation, Release 0.1

4.8 Add test material

To test the portal we may populate it with the test LaTeX document.

Before we create some fake users, to be able to interact with the portal.

python3 ${COLDOC_SRC_ROOT}/ColDocDjango/helper.py create_fake_users

(The list of users and passwords will be printed on terminal)

We insert the test LaTeX document in the portal. Note that jsmith is the author of all blobs, and will have special
access rights; similarly ed_itor is the editor, and will have access to some administrative information in the coldoc
main page.

python3 ${COLDOC_SRC_ROOT}/ColDocDjango/blob_inator.py --coldoc-nick=test --ZS --
→˓editor=ed_itor --author=jsmith --SP --SAT ${COLDOC_SRC_ROOT}/test/paper/paper.
→˓tex

Then you should generate all PDF and HTML associated to the test paper

COLDOC_URL="http://localhost:8000/UUID/test/"
python3 ${COLDOC_SRC_ROOT}/ColDocDjango/latex.py --coldoc-nick=test --url-UUID=$
→˓{COLDOC_URL} all

(The command line option –url-UUID is needed so that the hyperlinks inside the PDF version will point to the correct
URL)

4.9 Activate the Apache portal

If you are preparing the web site to be served by Apache2, you should

sudo chown -R www-data:www-data ${COLDOC_SITE_ROOT}

otherwise Apache will not be able to access it. Then set up Apache as follows:

sudo cp ${COLDOC_SITE_ROOT}/apache2.conf /etc/apache2/sites-available/test_site.conf
sudo a2ensite test_site
sudo systemctl reload apache2

4.10 Serve without Apache

Start the simplest Django server and access the portal

python3 ${COLDOC_SRC_ROOT}/ColDocDjango/manage.py runserver 8000
firefox http://localhost:8000/

Note that in this case django will not serve the static files, unless you set debug to True in
${COLDOC_SITE_ROOT}/config.ini.

12 Chapter 4. Deploying

ColDoc Project Documentation, Release 0.1

4.11 Final remarks

ColDoc keeps a strict separation between code and data. You may even install the code using an account, let’s say
coldoc_sw, then deploy a portal, and assign all the files in the portal to a different user, let’s say coldoc_data: in
this case you need to tell Apache about this change, by adding the user and group directives in the line starting as
WSGIDaemonProcess, as follows

WSGIDaemonProcess coldoc.group python-home=/...virtualenv.... python-path=${coldoc_
→˓src_root} locale=en_US.UTF-8 lang=en_US.UTF-8 user=coldoc_data group=coldoc_data

This may improve security.

4.11. Final remarks 13

ColDoc Project Documentation, Release 0.1

14 Chapter 4. Deploying

CHAPTER 5

Blob and UUID

5.1 Tree of UUIDs

Any content in ColDoc is identified by an UUID, an unique identifier.

Each UUID has associated to it a list of metadata (see next section).

The ColDoc is a tree of UUIDs, connected by a parent-children relationship.

There is a special UUID called root_uuid usually 001. It is the root of the tree. (The root_uuid may be changed, it is
stored as field root_uuid in the DColDoc model, but this is untested and may break the portal.)

5.2 Relationship between blobs and UUID

Any blob is identified by an UUID.

Vice versa, an UUID may refer to many blobs that have the same semantic content but are available in

• different langages (English, Italian..) and/or

• different content type (LaTeX, HTML, PDF, JPEG ...).

All these are blobs that are referred by the same UUID.

The list of languages is stored in the metadata lang , the list of content types is stored in extension (as filename
extensions). (See next section).

The author can enter in the ColDoc system translations of a LaTeX blob in different languages; and can upload the
same picture/graphic in different formats. (But this is still mostly TODO).

Currently the code is designed in this way:

• if the blob contains LaTeX then the only extension is .tex and there may be multiple languages;

• if the blob contains a LaTeX package then the only extension is .sty and the list of languages is empty;

• if the blob contains a LaTeX bibliography then the only extension is .bib and the list of languages is empty;

15

ColDoc Project Documentation, Release 0.1

• all other cases are graphical blobs: the list of extensions explains all available content type; the list of languages
is empty. (TODO it may be useful to have a graphical file available in different languages)

5.3 Blobs and views

The ColDoc portal also will convert the blobs into views: for each UUID (but not the root_uuid) that contains LaTeX,
it will convert LaTeX to PDF and HTML; (TODO it may also convert images to different formats). This view contains
only the material of that blob.

The ColDoc portal also will convert the entire document tree in a main view, available in PDF and HTML. The main
view is internally associated to the root_uuid.

There are two versions of the main view.

• a version containing all the material, visible to editors; this main view is stored in the directory blobs/UUID/0/0/1
of the root uuid;

• a reduced version, containing only the public and open parts; this is visible to anybody. (See the section on
permissions). This reduced version view is stored in the directory anon/UUID/0/0/1.

For graphical content, there is no much difference between blobs and views, so an user that has view_view access will
be able to view the blobs. (The precise definition of graphical content is encoded in ColDoc.utils.is_image_blob)

16 Chapter 5. Blob and UUID

CHAPTER 6

Metadata

Here we explain all metadata that may be associated to blobs, and their meaning.

As explained in the previous section, the metadata is associated to the UUID (and not to the specific blob, as specified
by language and file type)

6.1 Environment

Before proceeding, though, we clarify what we mean by environment.

LaTeX uses environments to delimit text elements, as in this example

\begin{Theorem}
The hypothesis implies the thesis.

\end{Theorem}

Internally ColDoc identifies such environment as E_Theorem . The prefix E_ helps identifying environments, and
avoiding name collisions.

By passing the option –split-environment environment to blob_inator, you may specify which environments to split.

For example, E_document is the part between \begin{document} and \end{document}; note that this blob is always
splitted since the option –split-environment document is already present as default into blob_inator.

ColDoc uses other environments :

• main_file is the main blob, the root of the tree

• preamble is the preamble, that is the part between \documentclass and \begin{document} ; this blob is always
splitted, unless he argument –dont-split-preamble is passed to blob_inator (but this may break some parts of the
portal).

• input or include are used for blobs that contain text from a LaTeX file that was include using \input or \include

• input_preamble is used for blobs that contain code from a LaTeX file that was include using \input while inside
the preamble

17

ColDoc Project Documentation, Release 0.1

• usepackage is used for blobs that contain packages; these are copied if found in the same directory of the main
file

• bibliography is used for blobs that contain bibliography, as specified by the \bibliography command

• section is used for sections

• paragraph is used for long paragraphs of text (as specified by the –split-paragraph option)

• graphic_file is used for blobs containing images (usually inserted using \includegraphics or other com-
mands specified with the option –split-graphic of blob_inator)

6.2 Metadata key list

This is the list of all keys in the metadata storage, and the meaning of their values. Note that a key may be repeated
multiple times.

These keys are static : they are instantiated when the blob is first added to the tree (e.g. by using blob_inator), but are
not changed when the blob content is subsequently edited.

• coldoc , the nickname of the ColDoc that this blob is part of

• environ , the value is the environ that contained this blob . See the previous section for details.

• optarg , the optional argument of the environment, as in this example.

\begin{Theorem}[Foobar's theorem]
The hypothesis implies the thesis.

\end{Theorem}

where the optarg would be equal to Foobar’s theorem.

• lang , the languages available for this blob; more than one language may be available.

• extension , the extentions available for this blob; more than one extension may be available, for example a
graphical file may be available a .jpeg and .svg. For blobs containined LaTeX, only .tex is allowed.

• author the list of people that contributed to this blob (this does not distinguish if somebody contributed only to
a certain language version).

• original_filename , the filename whose content was copied in this blob (and children of this blob) by
blob_inator; the extension of the filename (if any) is stripped; the path is not absolute, but is relative
to the directory where the main LaTeX file was located.

• uuid , the UUID of this blob

• parent_uuid , the UUID of the parent of this blob; all blob have one, but for the blob with environ=main_file

• child_uuid , the UUID of the children of this blob; there may be none, one, or more than one

• access can be open , public or private . See the section on permissions.

• creation_date

• modification_date ; this is updated when the blob content is edited (this does not distinguish which language
version was edited).

• latex_date ; this is updated when the view (html and pdf) of this blob was last compiled (this does not dis-
tinguish which language version was edited - the system automatically recompiles the language last edited).

These keys are derived from the content of the blob. Any direct change to this database would be lost as soon as the
blob is changed. (In Django, they are stored in a SQL database for convenience; this database is called ExtraMetadata.)

18 Chapter 6. Metadata

ColDoc Project Documentation, Release 0.1

• M_ followed by a name that was provided as –metadata-command name . E.g. if blob_inator was invoked with
the command

blob_inator --metadata-command label --split-environment Theorem

to parse this input

\begin{Theorem}\label{tautol}
The hypothesis implies the thesis.

\end{Theorem}

then the metadata for that blob would contain environ=E_Theorem and M_label={tautol}

• S_ followed by an environment and then followed by _M_name ; this is used by metadata extracted from
environments that are deeper in the tree than the current blob, but that are not splitted in a child blob. As in this
example:

blob_inator --metadata-command label --split-environment Theorem

to parse this input

\begin{Theorem}\label{tautol}
The hypothesis implies the thesis.
\begin{equation}\label{eq:forall}

\forall x
\end{equation}

\end{Theorem}

then a blob will contain this Theorem, and its metadata would contain M_label={tautol} and
S_E_equation_M_label={eq:forall}

6.3 Metadata in source code

Metadata is represented and operated on by a Python Class.

The class interface is described as the base class MetadataBase in ColDoc.classes

This interface is implemented in the FMetadata class, that stores metadata in a file (this is independent of Django);
and DMetadata, that stores metadata in the Django databases.

To write code that works with both implementations, it is important to use the get method, that always returns a list of
values (even for properties that are known to be single valued).

The keys coldoc, uuid, environ are known to be single valued, and for convenience there is a Python property that
returns the single value (or None).

Note that in DMetadata some objects are not strings:

• author is a models.ManyToManyField on the internal User class

• coldoc is a models.ForeignKey on the DColDoc model.

6.3. Metadata in source code 19

ColDoc Project Documentation, Release 0.1

20 Chapter 6. Metadata

CHAPTER 7

UUID Permissions

(See in ColDocDjango/users.py for more details).

There is a list of permissions for each UUID. Currently it is: ’view_view’, ’view_log’, ’view_blob’, ’change_blob’,
’download’, ’commit’, ’view_dmetadata’, ’change_dmetadata’

Permissions are associated to the UUID of the blob, so they are the same for all languages and/or content types.
(Internally, they are associated to the DMetadata class).

Inside Django, the complete name of such permissions is of the form UUID.name.

7.1 Permissions for a specific coldoc

For each permission above of the form aaaa_bbbb and any coldoc with nickname cccc there is also a permission
aaaa_bbbb_on_blob_inside_cccc, that is specific for that coldoc.

• An user that has permission aaaa_bbbb automatically has permission aaaa_bbbb_on_blob_inside_cccc for any
UUID in any coldoc.

• An user that has permission aaaa_bbbb_on_blob_inside_cccc automatically has permission aaaa_bbbb for any
UUID in the coldoc with nickname cccc.

7.2 Special users

An author of a blob has all the above permissions for that blob.

An anonymous user (an user that accesses the portal and is not authenticated) has very limited permissions: s/he has
the view_view permission only if the coldoc has the anonymous_can_view flag set to True, and the blob the UUID
access state is open or public.

21

ColDoc Project Documentation, Release 0.1

7.3 Meaning of permissions, and rules

This is the Permissions meaning and rule for each UUID.

(Recall that each UUID has an access metadata that can be open , public or private.)

• view_view : permission to view a a view (a representation of the blob, as a html or PDF). If the UUID access
state is

– open or public, this is always granted to authenticated users; and granted to anonymous users if the
property Anonymous can view is set in the coldoc settings (an editor can change it from the main web
page for the coldoc)

– private , it is granted to the author or any user with view_view permission

• view_blob : permission to view real content of the blob. If the UUID access state is

– open this is always granted to authenticated users.

– private or public , it is granted to the author or any user with view_blob permission

• download : permission to download the content of this blob in nice formatted ways. If the UUID access state is

– open this is always granted to authenticated users.

– private or public , it is granted to the author or any user with download.

Note that the download url also requires view_view permission.

• view_log : permission to view logs created by LaTeX and plastex

7.4 Local permissions

The ColDoc portal uses the django-guardian library, so that a specific permission can be given to an user for only one
object.

Note that if the user has a certain permission for the whole coldoc, than it has that permission for any object in that
coldoc. This only holds for permissions listed above (those associated to the DMetadata class, that start with UUID.).

7.5 Buying local permissions

There is a provision so that an user can buy certain permissions using eulercoins. For this, the library django-wallet
must be installed (a special version, available on demand); then a function PRICE_FOR_PERMISSION must be
defined in the settings file (an example is in the settings_suggested.py file): given a user, a blob (an instance of
DMetadata) and a permission, the function will decide if the user can buy that permission for that object, and the
price.

Note that an user must have operate permissions on wallet objects to buy something.

7.6 Access to protected content in the whole document

As aforementioned, the LaTeX data is stored on disk inside a blobs directory tree.

Two versions of the whole document are generated, one from the blobs tree, and in this case the generate document
(both HTML and PDF) will contain all the material: this is the private version of the document.

22 Chapter 7. UUID Permissions

ColDoc Project Documentation, Release 0.1

Another version is from the anon tree. The anon tree is automatically generated as a copy of the blobs tree where all
material with access set to private will be masked out. This is the public version of the whole document.

7.7 LaTeX macros

In the coldoc metadata there are three keys: latex_macros_private, latex_macros_public and latex_macros_uuid.
These contain LaTeX macros.

When compiling the private whole document the latex_macros_private is automatically insert just after the document-
class ; the latex_macros_public when compiling public whole document; the latex_macros_uuid when compiling one
single blob in one UUID

The defaults are:

• latex_macros_private defaults to

\newif\ifColDocPublic\ColDocPublicfalse
\newif\ifColDocOneUUID\ColDocOneUUIDfalse

• latex_macros_public defaults to

\newif\ifColDocPublic\ColDocPublictrue
\newif\ifColDocOneUUID\ColDocOneUUIDfalse

• latex_macros_uuid defaults to

\newif\ifColDocPublic\ColDocPublicfalse
\newif\ifColDocOneUUID\ColDocOneUUIDtrue

Note that ifColDocPublicfalse is used when compiling each single blob by itself: this makes sense since in this case
the web interface will make sure that only authorized users can access the content.

The value of these macros can be used to trigger different behaviours in the preamble and in the document.

7.8 Accessing the whole document

The whole document can be accessed using buttons View whole document and View whole document, as PDF in the
main page of the coldoc.

These buttons will serve either the private or the public version.

If the user is an editor, or s/he has the view_view permission, then the content served from the buttons is the private
version (compile from the material inside the blobs directory); note that in this case the HTML pages use a green
theme, to distinguish; otherwise it is the the public version (compile from the material inside the anon directory); so
that the generic user will not see the protected content; in this case the HTML pages use a blue theme, to distinguish.

Note that an user that is an author but not an editor will not see the protected content in the whole document: indeed
it is not sensible to generate different whole document representations for each and any user.

7.7. LaTeX macros 23

ColDoc Project Documentation, Release 0.1

24 Chapter 7. UUID Permissions

CHAPTER 8

ColDoc Permissions

(See in ColDocDjango/users.py for more details).

There is a list of permissions for each ColDoc. Currently it is: ’add_blob’, ’delete_blob’, ’commit’, ’view_dcoldoc’,
’change_dcoldoc’

Inside Django, the complete name of such permissions is of the form ColDocApp.name.

8.1 Meaning of permissions, and rules

This is the Permissions meaning and rule for some of the above.

• add_blob [if an user has permission add_blob for the whole ColDoc,] and has permission view_blob for a
specific UUID, then s/he can add a children UUID to that UUID. Moreover the author of a blob can
always add children to that blob (unless author_can_add_blob flag is turned off in the ColDoc settings).

25

ColDoc Project Documentation, Release 0.1

26 Chapter 8. ColDoc Permissions

CHAPTER 9

Groups

For each coldoc cccc two groups are created, one named coldoc_cccc_group_authors and one
coldoc_cccc_group_editors; coldoc_cccc_group_authors has all UUID permissions for that coldoc;
coldoc_cccc_group_editors has all ColDocApp permissions for that coldoc, and also UUID.view_view,
UUID.view_log.

27

ColDoc Project Documentation, Release 0.1

28 Chapter 9. Groups

CHAPTER 10

Blobify

This section explains how to import a LaTeX document into a ColDoc portal.

Since the portal will use plastex to convert LaTeX to HTML, and pdflatex with the standalone package for compact
PDF representation of UUIDs, some changes have to be made.

Following are instructions, and you may also want to see in the directory test/paper for a complete working example.

In your LaTeX document, you should set the language as

\usepackage[english]{babel}

and not as

\documentclass[english]{article}

Then, right after the documentclass statement, add

\newif\ifplastex\plastexfalse
\ifplastex
\newif\ifstandalone\relax\standalonefalse\relax
\else
\usepackage{standalone}
\fi

This will load the package standalone only when compiling with standard LaTeX; it will also define the conditional
ifstandalone to be true only when compiling a PDF in standalone mode.

10.1 Plastex tweaks

Then wrap all code that is not compatible with plastex (code that sets fonts etc etc) as follows

\ifplastex\else
% set fonts ...

\fi

29

ColDoc Project Documentation, Release 0.1

Also, you will have to replace some packages that do not work well with plastex, as in this example

\ifplastex
% plastex does not know of these
\def\eqref{\ref}
\fi
%
\ifplastex
% https://github.com/mathjax/MathJax/issues/1081
\def\sfrac{\frac}
\else
\usepackage{xfrac}
\fi
%
\ifplastex
% plastex does not know varioref
\def\vref{\ref}
\def\vpageref{\pageref}
\else
\usepackage{varioref}
\fi

See plastex docs for details

10.2 Standalone tweaks

You should also wrap all the code that modifies page geometry so that it is ignored in standalone mode, as in this
example:

\ifplastex\else\ifstandalone\else
\usepackage[margin=18ex,headheight=16pt]{geometry}
\usepackage{fancyhdr}
\pagestyle{fancy}
\fi\fi

See standalone docs for details

10.3 Multiple LaTeX format

It is possible to prepare a LaTeX document that can be compiled using different engines: pdflatex, xelatex or lualatex

To this end, you should install the latest version of the iftex package from https://www.ctan.org/pkg/iftex

Then add a snippet in the document preamble as follows:

\usepackage{iftex}
%%%%%%%%% use conditionals to load some engine-specific packages
\ifplastex
% code for plastex
\newcommand\mathbbm[1]{{\mathbb{#1}}}

\else\iftutex
% code for xetex or luatex

\input{preamble_xelatex}

30 Chapter 10. Blobify

http://plastex.sourceforge.net/plastex/sect0008.html
https://ctan.org/pkg/standalone
https://www.ctan.org/pkg/iftex

ColDoc Project Documentation, Release 0.1

\else
% code for standard (pdf)latex
\input{preamble_pdflatex}

\fi\fi

Then put in the file preamble_xelatex.tex all commands to setup fonts for xelatex or lualatex; and similarly in pream-
ble_pdflatex.tex for pdflatex.

10.4 Downloading, and compiling single UUIDs

You should also move all your favorite customizations in a file preamble_definitions.tex

• loading of packages such as amsthm, amsmath

• definitions for theorems and such

• personal macros

• ...etc...

There is a provision in the portal so that users may download the LaTeX of a single UUID: the portal will add enough
LaTeX code so that it will be possible to compile that UUID; so it will add to the bundle

• preamble_pdflatex.tex or preamble_xelatex.tex, for document-related definition;

• that file preamble_definitions.tex so that the user will have a copy of all the needed macros and definitions,

to be able to compile that blob.

10.5 Check it all

Check that the document compiles fine to HTML by invoking PlasTeX on your document using

plastex -d output_html document.tex

(it is recommended that you use the plastex version that was installed in the installation phase)

And check that it still compiles fine with standard pdflatex

Then try to import in a test portal. Setup the test portal as follows

export COLDOC_SITE_ROOT=${COLDOC_SRC_ROOT}/test/tmp/test_site
cd ${COLDOC_SRC_ROOT}
make -C test clean
make -C test django_deploy

Then try to import your document in the portal

ColDocDjango/blob_inator.py --coldoc-site-root ${COLDOC_SITE_ROOT} --coldoc-
→˓nick=testdoc --ZS --SAT --split-sections --editor=ed_itor --author=jsmith yourdir/
→˓yourdocument.tex

note that:

• if your document best compiles with a specific engine, use the –latex-engine option of blob_inator.py to specify
which;

10.4. Downloading, and compiling single UUIDs 31

ColDoc Project Documentation, Release 0.1

• if you use non-standard commands to display images, add them to the command line options for blob_inator.py
as –split-graphic mypicturecommand. (Warning: it is assumed that mypicturecommand uses the same syntax of
includegraphics).

Then check if the document can be compiled

ColDocDjango/latex.py --coldoc-site-root ${COLDOC_SITE_ROOT} --coldoc-nick=testdoc --
→˓url-UUID="http://localhost:8000/UUID/testdoc/" all

and eventually run the test portal

make -C test django_run &

and access the web portal at http://localhost:8000.

Try authenticating using the different users (see the output of django_deploy for usernames and passwords).

Check that everything looks fine.

Check in particular that images were imported correctly.

If you are not satisfied, or if something fails:

• tweak your document,

• try different command line options for blob_inator.py

If the result is satisfactory enough, that is, if only small changes are needed, you can also change the document inside
the portal by editing the files inside ${COLDOC_SITE_ROOT}/coldocs/testdoc/blobs/. Note that the data structure
can be compiled from the command line, using

cd ${COLDOC_SITE_ROOT}/coldocs/testdoc/blobs/
pdflatex main.tex
plastex -d main_html main.tex

32 Chapter 10. Blobify

CHAPTER 11

Editing

There are many tools to operate on the coldoc; most have a command line and a web interface as well.

Command line tools have many options (not documented here), see respective –help.

One useful operation is to add new nodes to the tree of blobs. From command line,

python3 ${COLDOC_SRC_ROOT}/ColDocDjango/helper.py add_blob

If you edit the blobs directly in the filesystem, and not using the web interface, then the django database will be
desyncronized regarding metadata: run

python3 ${COLDOC_SRC_ROOT}/ColDocDjango/helper.py --coldoc-nick NICK reparse_all

Moreover from time to time you will need to recreate the PDF and HTML representations.

Use

python3 ${COLDOC_SRC_ROOT}/ColDocDjango/latex.py --coldoc-nick NICK main_private

to recreate the complete HTML PDF (visible only to editors); use

python3 ${COLDOC_SRC_ROOT}/ColDocDjango/latex.py --coldoc-nick NICK main_public

to recreate the public HTML PDF (visible only to everybody); use

python3 ${COLDOC_SRC_ROOT}/ColDocDjango/latex.py --coldoc-nick NICK tree

to recreate the HTML PDF for each blob (this is useful if you edited many blobs in the filesystem); use

python3 ${COLDOC_SRC_ROOT}/ColDocDjango/latex.py --coldoc-nick NICK all

to run all of the above.

Note that when you edit a blob using the web interface, it is automatically reparsed and HTML and PDF are recom-
puted; but the private and public complete documents are not recompiled automatically, you have to either use the
command above or the button in the web interface (visible only to editors).

33

ColDoc Project Documentation, Release 0.1

34 Chapter 11. Editing

CHAPTER 12

Indices and tables

• genindex

• modindex

• search

35

	ColDoc Project
	Code
	Features
	Documentation
	Quick start
	EDB portal
	Getting help
	Authors
	License

	Installing
	venv
	Prerequisites
	Installing plasTex
	Fix PdfLaTeX

	Testing
	Blobify

	Deploying
	Serving with Apache
	Serving without Apache
	Deploying the skeleton
	Local variables
	Social auth
	Late adding of social auth
	Initalize
	Add test material
	Activate the Apache portal
	Serve without Apache
	Final remarks

	Blob and UUID
	Tree of UUIDs
	Relationship between blobs and UUID
	Blobs and views

	Metadata
	Environment
	Metadata key list
	Metadata in source code

	UUID Permissions
	Permissions for a specific coldoc
	Special users
	Meaning of permissions, and rules
	Local permissions
	Buying local permissions
	Access to protected content in the whole document
	LaTeX macros
	Accessing the whole document

	ColDoc Permissions
	Meaning of permissions, and rules

	Groups
	Blobify
	Plastex tweaks
	Standalone tweaks
	Multiple LaTeX format
	Downloading, and compiling single UUIDs
	Check it all

	Editing
	Indices and tables

