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ABSTRACT. In electrostatic Born-Infeld theory, the electric potential u� gener-
ated by a charge distribution � in ℝm (typically, a Radon measure) minimizes the
action

∫ℝm

(

1 −
√

1 − |D |2
)

dx − ⟨�,  ⟩

among functions which decay at infinity and satisfy |D | ≤ 1. Formally, its
Euler-Lagrange equation () prescribes � as being the Lorentzian mean curva-
ture of the graph of u� in Minkowski spacetime Lm+1. However, because of the
lack of regularity of the functional when |D | = 1, whether or not u� solves ()
and how regular is u� are subtle issues that were investigated only for few classes
of �. In this paper, we study both problems for general sources �, in a bounded do-
main with a Dirichlet boundary condition and in the entire ℝm. In particular, we
give sufficient conditions to guarantee that u� solves () and enjoys improved
W 2,2
loc estimates, and we construct examples helping to identify sharp thresholds

for the regularity of � to ensure the validity of (). One of the main difficul-
ties is the possible presence of light segments in the graph of u�, which will be
discussed in detail.
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1. INTRODUCTION

The purpose of this paper is to investigate the existence and regularity properties
of spacelike hypersurfaces M with prescribed Lorentzian mean curvature in the
Minkowski space

Lm+1 ≐ ℝ ×ℝm with Lorentzian metric − dx0 ⊗ dx0 +
m
∑

i=1
dxi ⊗ dxi.

The spacelike condition ensures thatM is the graph, over some open subsetΩ of the
totally geodesic slice ℝm ≐ {x0 = 0}, of a function u with |Du| < 1. We consider
both the problem in a bounded domain Ω, and the problem in the entire ℝm. In
the first case, given � ∈ C()Ω), a spacelike hypersurface with Lorentzian mean
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curvature � and boundary (the graph of) � is the graph of a solution u ∶ Ω→ ℝ to

()

⎧

⎪

⎪

⎨

⎪

⎪

⎩

−div

(

Du
√

1 − |Du|2

)

= � on Ω ⊂ ℝm,

u = � on )Ω,

where D and | ⋅ | are the connection and norm in ℝm. The source term � will be
taken to be a Radon measure, or more generally a bounded linear functional on a
natural space to which solutions belong. Following the convention in the literature,
we say that the graphM of u ∈ W 1,∞(Ω) is

- weakly spacelike if |Du| ≤ 1 on Ω;
- spacelike if |u(x) − u(y)| < |x − y| whenever x, y ∈ Ω, x ≠ y and the line
segment xy is contained in Ω;

- strictly spacelike if u ∈ C1(Ω) and |Du| < 1 in Ω.
The equation in () is of interest already in the case of constant �, due to the
prominent role of spacelike constant mean curvature hypersurfaces in General Rel-
ativity (see [36] and the references therein). It was observed in [36, 4, 5, 8] that a
variational approach to () by minimizing the functional

(1.1) I�(v) ≐ ∫Ω

(

1 −
√

1 − |Dv|2
)

dx − ⟨�, v⟩

(⟨⋅, ⋅⟩ stands for the duality pairing) may not lead to a solution to (), and the
core problem is the lack of smoothness of the functional when |Du| = 1, in partic-
ular, the possible appearance of light segments in the graph of u. To the present,
the literature on the existence and regularity problem for solutions to () is still
fragmentary, and only a few classes of sources �, detailed below, were studied. In
this paper, we investigate the problem for more general � and develop new tools to
grasp the behavior of u both in the case of bounded domains and in the entire ℝm.
Although we restrict our investigation to Minkowski space, we believe that some of
our techniques might be extendable to more general ambient Lorentzian manifolds.

The Born-Infeld model. A further motivation for investigating the functional I�
comes from the Born-Infeld model of electromagnetism, proposed by M. Born and
L. Infeld in [12, 13]. Concise but informative introductions can be found in [8, 9],
see also [47, 30] for a thorough account of the physical literature. One of the main
concerns of the theory was to overcome the failure of the principle of finite energy
occurring inMaxwell’smodel, that we shall briefly recall. We remark that the Born-
Infeldmodel also proved to be relevant in the theory of superstrings andmembranes,
see [27, 47] and the references therein.

In a spacetime (N4, g) with metric g = gabdya ⊗ dyb of signature (−,+,+,+)
(g00 < 0), the electromagnetic field is described as a closed 2-form F = 1

2Fabdy
a ∧
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dyb which, according to Maxwell’s theory and in the absence of charges and cur-
rents, is required to be stationary for the action

ℒM ≐ ∫N4
LM

√

−|g|dy with LM ≐ −
F abFab
4

,

where |g| is the determinant of g and F ab ≐ gacgbdFcd . The presence of a vector
field J describing charges and currents is taken into account by adding the La-
grangian

ℒJ ≐ ∫N4
LJ

√

−|g|dy, LJ = J aΦa,

where we assumed that F is globally exact and we set F = dΦ. By its very defini-
tion, the energy-impulse tensor T associated toℒM +ℒJ has components

Tab =
−2

√

−|g|

)((LM + LJ )
√

−|g|)
)gab

= FacFbpgcp −
1
4
F cpFcpgab + J cΦcgab

and in particular T00 describes the energy density. In Minkowski space L4, by writ-
ing in Cartesian coordinates {xa} the electromagnetic tensor in terms of the electric
and magnetic fields E = Ejdxj and B = Bjdxj as

F =
3
∑

j=1
Ejdxj ∧ dx0 + B1dx2 ∧ dx3 + B2dx3 ∧ dx1 + B3dx1 ∧ dx2,

the vector potential as Φ = −'dx0 + A = −'dx0 + Ajdxj and J = �)x0 + J =
�)x0 + J j)xj , the Maxwell Lagrangian and energy densities become

LM + LJ =
1
2
(

|E|2 − |B|2
)

− �' +A(J), T00 =
1
2
(

|E|2 + |B|2
)

+ �' −A(J).

Restricting to the electrostatic case with no current density (B = 0, E independent
of x0, J = 0), from E = −d' the potential ' turns out to be stationary for the
reduced action

J�(v) ≐
1
2 ∫ℝ3

|Dv|2dx − ⟨�, v⟩,

where ⟨�, v⟩ is the duality pairing given, for smooth �, by integration. However,
for � = �x0 the Dirac delta centered at a point x0, the Newtonian potential ū� =
const ⋅|x−x0|2−m solving the Euler-Lagrange equation−Δū� = � for J� has infinite
energy on punctured balls centered at x0:

∫BR∖B"
T00dx =

1
2 ∫BR∖B"

|Dū�|
2dx→∞ as "→ 0,

a fact of serious physical concern (cf. [13]). The problem also persists for certain
sources � ∈ L1(ℝm), see [22, 8]. To avoid it, Born and Infeld in [12] proposed to
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replace LM with the Lagrangian density1

LBI = 1 −
√

1 + 1
2
F abFab,

an expression first suggested by the parallelism with the relativistic corrections to
classical mechanics, and later derived from a general invariance principle [13]. In
fact, other choices were also studied in [13]. In Minkowski space with Cartesian
coordinates {xa},

LBI = 1 −
√

1 − |E|2 + |B|2,
so the energy-impulse tensor associated to ℒBI + ℒJ , and its component T00 in
Cartesian coordinates, become

Tab = LBIgab +
FacFbpgcp

√

1 + FcdF cd∕2
+ J cΦcgab,

T00 =
1 + |B|2

√

1 − |E|2 + |B|2
− 1 + �' − A(J).

In the electrostatic case, the potential u� generated by a charge � is therefore
required to minimize the action I� in (1.1) on Ω = ℝ3 among weakly spacelike
functions with a suitable decay at infinity. It is easy to see that u� exists and is
unique (cf. [8] and Subsection 3.1). Formally, () is the Euler-Lagrange equation
of I� coupled with the physically meaningful condition limx→∞  (x) = 0. The
energy density of u� is given by

T00 =
1

√

1 − |Du�|2
− 1 + �u�.

As shown in [13], the explicit solution generated by the distribution � = �x0 is
bounded on ℝ3 (thus, ⟨�, u�⟩ is bounded) and satisfies

(1.2) T00 − �u� ∈ L1(ℝ3).
Remarkably, by [8, Proposition 2.7] property (1.2) holds for � lying in a large class
of distributions including any finite measure on ℝ3. Among the results proved in
the present paper, we show that the same desirable property holds for solutions in
bounded domains, that is, T00 − �u� ∈ L1loc(Ω) whenever the boundary data � is
not too degenerate. Since the local integrability of T00− �u� is equivalent to that of

w� ≐
1

√

1 − |Du�|2
,

hereafter, with an abuse of notation, we will say thatw� is the energy density of u�.

Notation and agreements.
Hereafter, we write !m−1 for the volume of the unit sphere Sm−1, and indicate with

1We followed the convention in [47], which changes signs in LBI with respect to [13]. Also, we
set the maximal field strength b to be 1 for convenience.
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1A the characteristic function of a set A. The subscript � will denote quantities
referred to the Euclideanmetric onℝm: d� will be the Euclidean distance, diam�(E)
the diameter of a set E ⊂ ℝm and | ⋅ |�,ℋm−1

� the volume and (m− 1)-dimensional
Hausdorff measure in d�. Given x, y ∈ ℝm, we let xy be the closed segment joining
x and y. If Ω ⊂ ℝm is an open set, we denote by(Ω) the set of all finite (signed)
Borel measures on Ω equipped with the total variation norm ‖ ⋅ ‖(Ω). The set
Lipc(Ω) will denote the set of Lipschitz functions with compact support in Ω, and
we write Ω′ ⋐ Ω when Ω′ has compact closure in Ω.

1.1. Known results for bounded domains. After work of F. Flaherty [21] for
maximal hypersurfaces (� = 0), solutions to () in bounded domains Ω and for
sources � ∈ L∞(Ω) were studied in depth in the influential work by R. Bartnik and
L. Simon [4]. To describe the main result therein, for � ∈ C()Ω), we define

(1.3) �(Ω) ≐
{

u ∈ W 1,∞(Ω) : u weakly spacelike, u = � on )Ω
}

.

Remark 1.1. We assumed no regularity of )Ω, so the boundary condition has to
be intended as in [4]: u = � on )Ω iff, for each x ∈ )Ω and any straight line

 ∶ (0, 1) → Ω with 
(0+) = x, it holds u(
(t)) → �(x) as t → 0+. In Proposition
3.5 below, we will prove that this definition suffices to guarantee that functions
u ∈ �(Ω) can be extended continuously on )Ω with value �.

The class of boundary data for which�(Ω) ≠ ∅was characterized in [4, p. 149]
in terms of the function

(1.4) dΩ(x, y) ≐ inf
{

length(
) ∶ 
 ∈ Γx,y
}

≤ +∞ ∀ x, y ∈ Ω,

where

Γx,y =
{


 ∈ C([0, 1],Ω) ∶ 
((0, 1)) ⊂ Ω, 
 piecewise affine and 
(0) = x, 
(1) = y
}

,

the infimum is defined to be +∞ if Γx,y = ∅, and 
 is called piecewise affine if it
consists of finitely many intervals where it is affine. In fact, it is showed in [4, p.
149] that

�(Ω) ≠ ∅ ⟺ |�(x) − �(y)| ≤ dΩ(x, y) ∀ x, y ∈ )Ω.

Note that the restriction dΩ of dΩ to Ω × Ω gives the intrinsic metric on Ω. Re-
marks on the relation between dΩ(x, y) for x, y ∈ )Ω and the distance in the metric
completion of (Ω, dΩ) will be given in Subsection 3.2.

Next, we introduce a class of weak solutions to () in bounded domains.

Definition 1.2. Let Ω be a bounded domain in ℝm. For � ∈ W 1,∞(Ω)∗, a weak
solution to () is a function u ∈ �(Ω) such that

(i) w ≐ 1
√

1 − |Du|2
∈ L1loc(Ω) and

(ii) ∫Ω
Du ⋅D�

√

1 − |Du|2
dx = ⟨�, �⟩ ∀ � ∈ Lipc(Ω).
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Given a subdomainΩ′ ⊂ Ω, we say that uweakly solves () onΩ′ ifw ∈ L1loc(Ω
′)

and (ii) holds for � ∈ Lipc(Ω′).

Equation () is formally the Euler-Lagrange equation for the functional

(1.5) I� ∶ �(Ω)→ ℝ, I�(v) ≐ ∫Ω

(

1 −
√

1 − |Dv|2
)

dx − ⟨�, v⟩.

Although, for � lying in a large subset of W 1,∞(Ω)∗, the variational problem for
I� admits a unique minimizer u� (cf. Subsection 3.1), the example of a hyperplane
with slope 1 and � = 0 indicates that the requirement �(Ω) ≠ ∅ does not suffice
to guarantee that u� solves () (see K. Ecker [17]). In this respect, note that any
solution to () is easily seen to coincide with the minimizer u� (cf. Proposition
3.14 below). In [4, Theorem 4.1 and Corollaries 4.2, 4.3], the authors obtained the
following striking result:

Theorem 1.3. [4] Let Ω ⊂ ℝm be a bounded domain, and let � ∈ C()Ω). The
following properties are equivalent:

(i) � admits a spacelike extension on Ω, that is, there exists �̄ ∈ �(Ω) which
is spacelike on Ω;

(ii) |�(x) − �(y)| < dΩ(x, y) for every x, y ∈ )Ω, x ≠ y;
(iii) for each � ∈ L∞(Ω), there exists u ∈ C1(Ω) ∩W 2,2(Ω), which is strictly

spacelike and weakly solves ().

We therefore define the set

()Ω) ≐
{

� ∈ C()Ω) ∶ any among (i), (ii), (iii) in Theorem 1.3 holds
}

.

Remark 1.4. No regularity ofΩ is assumed in Theorem 1.3. This is quite a contrast
with the linear problem −Δu = � in Ω, u = � on )Ω, for which we need certain
regularity properties of )Ω, and comes from the strong restriction u ∈ W 1,∞(Ω)
for ().

Remark 1.5. In a broader setting, the equivalence (i) ⇔ (ii) was studied in [33,
Theorem 1].

Theorem 1.3 does not contain the full generality of the statements in [4]. Indeed,
under the only assumption �(Ω) ≠ ∅ the authors showed that the minimizer u� is
strictly spacelike on the complement of the set

K�
� ≐

⋃

{

xy ∶ x, y ∈ Ω, x ≠ y, xy ⊂ Ω, |u�(x) − u�(y)| = |x − y|
}

,

hence it solves () on Ω ⧵K�
�. Note that the condition |Du�| ≤ 1 forces u� to be

affine with slope 1 on any xy ⊂ K�
� ∩Ω, so the graph of u� has a light segment over

xy. With a slight abuse of notation, in such case we call xy a light segment, and
K�
� the set of light segments of u�. A key fact proved in [4, Theorem 3.2] is that

when � ∈ L∞(Ω), every light segment has to extend up to )Ω, a property called
there the anti-peeling Theorem. The proof depends on a comparison argument that
is not applicable to more general sources �, in which case, to our knowledge, the
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relationship between singularities of � and properties of light segments, including
their existence, is currently unknown. As we shall see below, its understanding is
one of the core issues to obtain sharp regularity results.

For the study of hypersurfaceswith � ∈ L∞(Ω) onmore general ambient Lorentzian
manifolds, we suggest to consult the works of K. Gerhardt [26] and Bartnik [5].
Moving to more singular � ∈ (Ω), juxtaposition of point charges were treated
in depth in a series of works by V. Miklyukov and V.A. Klyachin [33, 34, 31]. We
quote in particular [34, Theorem 2], that we rephrase as follows:

Theorem 1.6 ([34]). Let Ω ⊂ ℝm be a domain such that (Ω, dΩ) has compact
completion, and let� ∈ ()Ω). Fix a k-tuple of pointsP = (x1,… , xk) ∈ Ω×…×
Ω. Then, there exists a constantMm(�,P ) such that, for each a ≐ (a1,… , ak) ∈
ℝk satisfying |a| < Mm(�,P ), the minimizer u� with source

� =
k
∑

j=1
aj�xj

solves () and it is strictly spacelike (hence, smooth) on Ω∖P . Furthermore,
M2(�,P ) = +∞.

The above result also contains a lower bound forMm(�,P ) when m ≥ 3, which
depends on the solution to () with � = 0, on {x1,… , xk} and on the geometry
of Ω.

The casem = 2 is rather special and, indeed, maximal surfaces with singularities
in L3 were also studied from a different point of view by using complex-analytic
tools (cf. [18, 20]). Exploiting Weierstrass data, [35, 43, 23] described in detail
classes of maximal surfaces whose singular set is suitably controlled. It should be
pointed out that, in the works cited below, the authors consider the equation

(1 − |Du|2)3∕2div

(

Du
√

1 − |Du|2

)

= (1 − |Du|2)3∕2H, H ∈ ℝ,

for which the role of light segmentsmay be different. Examples ofmaximal surfaces
in L3 whose singular set contains an entire light line were constructed in [24, 45, 2],
while an investigation of points at which Du� is light-like can be found in [32, 44,
45]. The behavior near isolated singularities of surfaces with nonconstant, smooth �
was characterized in [25]. To the best of our knowledge, whether or not the singular
sets described in the above mentioned references induce a singular measure in the
mean curvature �, and which kind of measure, is a problem that is not considered
yet.

1.2. Our contributions for bounded domains. From a variational point of view,
even though the minimizer u� for I� in (1.5) may not solve () weakly, if � ∈
()Ω) then u� enjoys nice properties for each reasonably well-behaved source �,
including signed Radon measures. Inspired by [8], we prove in Proposition 3.9 that
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the energy density of u� is locally integrable, namely

w� =
1

√

1 − |Du�|2
∈ L1loc(Ω),

and in particular |Du�| < 1 a.e. on Ω; moreover,

(1.6) ∫Ω

Du� ⋅ (Du� −D )
√

1 − |Du�|2
dx ≤

⟨

�, u� −  
⟩

∀ ∈ �(Ω),

where the integrand in the LHS is shown to belong to L1(Ω). As we shall see in
Proposition 3.14, u� weakly solves () if and only if equality holds in (1.6), a fact
that is not obvious in view of the lack of regularity of )Ω and of �.

Next, we investigate the relation between the integrability of � and the possible
existence of a light segment in the graph of u�. Putting together Propositions 4.3
and A.1, respectively for l = 1 and for l ∈ {2,… , m− 2}, we prove the following

Proposition 1.7. For each m ≥ 3 and l ∈ {1,… , m − 2}, there exists a function
u ∈ C2c (ℝ

m) with the following properties:

(i) the setK of light segments of u is a closed cylinder B
l−1

×[a, b] in a totally
geodesic l-plane ofℝm (in particular, if l = 1 it is a single light segment),
and |Du| < 1 on ℝm∖K;

(ii) u satisfies

∫ℝm

Du ⋅D�
√

1 − |Du|2
dx = ∫ℝm

�u� dx ∀ � ∈ Lipc(ℝm),

where �u ∈ Lq(ℝm) for each q < m − l. In particular, if Ω ⊂ ℝm is a
smooth open subset containing the support of u, then u weakly solves ()
with � ≡ 0 and � = �u;

(iii) for each q < m − l, it holds

w, w|D2u|, w2|D2u (Du, ⋅) |, w3D2u (Du,Du) ∈ Lq(ℝm),

where w = (1 − |Du|2)−1∕2 is the energy density of u.

The above construction also allows us to provide examples of minimizers u� that
do not solve (), even though the source � is rather mild. In Theorem 5.5, we
shall prove the following result:

Theorem 1.8. Let Ω ⊂ ℝm be either a bounded domain or Ω = ℝm. In the first
case, let � ∈ ()Ω). Let u� be a minimizer for I� and assume that u� has a light
segment xy ⊂ Ω with u�(y) − u�(x) = |y − x|. Then, for each � > 0, u� also
minimizes the functional I�� with

�� = � + �(�y − �x)

but it does not solve () weakly for ��.

Applying Theorem 1.8 to the example in Proposition 1.7, we have
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Corollary 1.9. There exists a smooth open set Ω ⋐ ℝm, a function u ∈ C2c (Ω) ∩
0(Ω), points x, y ∈ Ω with x ≠ y and a function �AC ∈ Lq(Ω) for any q < m − 1,
such that the following properties hold:

(i) xy is a light segment for u, and |Du| < 1 on Ω∖xy;
(ii) u minimizes I� with source

� = �(�y − �x) + �AC, for each fixed � ∈ ℝ+,

but it does not solve () weakly.

Observe that Corollary 1.9 makes it impossible to extend Theorem 1.6 (i.e. [34,
Theorem 2]) for dimension m ≥ 3 to more general sources of the type

� =
k
∑

j=1
aj�xj + �AC with �AC ∈ Lq(Ω), q < m − 1.

We next move to results that guarantee the solvability of (). To get elliptic
estimates, our boundary data shall be restricted to compact subsets ℱ ⊂ ()Ω)
with respect to uniform convergence. Examples of ℱ include a singleton {�} and
the sets of uniformly bounded c-Lipschitz functions on )Ω with respect to d� with
c < 1. A more general example, b,� ()Ω), will be defined for given b ∈ ℝ+ and
� ∶ ℝ+ → [0, 1) under the assumption that the metric space (Ω, dΩ) has compact
completion, and will be studied in Subsection 3.2.

We first consider the 2-dimensional case.

Theorem 1.10. Assume that Ω ⊂ ℝ2 is a bounded domain, and let Σ ⋐ Ω be a
compact subset satisfyingℋ 1

� (Σ) = 0. Suppose that � ∈(Ω) decomposes as

� = �S + �AC, with

{

supp �S ⊂ Σ

�AC ∈ L1(Ω) ∩ L2loc(Ω∖Σ).

Then,
(i) for each � ∈ ()Ω), the minimizer u� ∈ �(Ω) weakly solves () in Ω

and does not have light segments;
(ii) for any given compact setℱ ⊂ ()Ω), 1,2, " > 0, q0 ≥ 0, and any given

open set Ω′ ⋐ Ω∖Σ satisfying

‖�‖(Ω) ≤ 1, ‖�‖L2(Ω′) ≤ 2,

there exists a constant = 
(

Ω,ℱ , q0, diam�(Ω),1,2, ", d�(Ω′, )Ω),Ω′
)

such that, for each � ∈ ℱ , it holds

∫Ω′"
(1 + logw�)q0

{

w�|D
2u�|

2 +w3�
|

|

|

D2u�
(

Du�, ⋅
)

|

|

|

2

+w5�
[

D2u�(Du�, Du�)
]2
}

dx + ∫Ω′"
w�(1 + logw�)q0+1dx ≤ ,

where Ω′" ≐ {x ∈ Ω
′ ∶ d�(x, )Ω′) > "};
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(iii) if Ω′ ⋐ Ω ⧵ Σ and � ∈ L∞(Ω′), then u� ∈ C1,�loc (Ω
′) for some � > 0. In

particular, if � ∈ C∞(Ω′) so is u�.

Remark 1.11. If �S is a sum of Dirac deltas and �AC = 0, we recover the result
by Klyachin-Miklyukov (see Theorem 1.6). However, we stress that our proof is
completely different. Indeed, the clever proof in [34] is quite specific to Dirac delta
singularities, and it seems difficult to extend to sources whose absolutely continuous
part is not in L∞.

Remark 1.12. Regarding the second order regularity of u, for general � one cannot
expect u� ∈ W

2,q
loc for q ≥ 1, see the discussion after Example 5.6.

We briefly overview the strategy of the proof, that relies on several steps. We
refer to Ω,ℱ , diam�(Ω),1,2, d�(Ω′, )Ω) in (ii) as being the data of our problem,
and fix " > 0. Hereafter, a constant  will be assumed to depend on the data. We
proceed by approximating � via convolution to get �j ⇀ � weakly in (Ω), let
uj ∈ �(Ω) minimize I�j and denote by wj ≐ (1 − |Duj|2)−1∕2 its energy density.
First, we show the following two properties:
(P 01) Proposition 5.10 and Corollary 5.11 (local second fundamental form es-

timate): the squared norm of the second fundamental form IIj for the graph
of uj over Ω satisfies

∫Ω′"∕2
‖ IIj ‖2w−1j dx ≤ ;

(P 02) Lemma 5.4 (energy estimate): on Euclidean balls Br contained in Ω′"∕2,

∫Br
wjdx ≤ r.

Properties (P 01) and (P 02) hold in any dimension m ≥ 2. We stress that, writing
IIj in terms of uj as in (2.4), (P 01) implies bounds on the derivative of the energy
density wj . For the surface case m = 2, (P 01) and (P 02) imply
(P 1) Theorem 5.12 (higher integrability for m = 2):

∫Ω′"
wj logwj ≤ .

The uniform integrability of {wj} granted by (P 1) enables us to show
(P 2) Step 2 in Proof of Theorem 1.10 (no-light-segment): u� has no light seg-

ments in Ω′ (the statement is quantitative in terms of the data).
With the aid of (P 2), we can then refine the integral estimates leading to (P 01) as
follows.
(P 3) Theorem 5.13 (higher integrability and second fundamental form esti-

mates): for each q0 ≥ 0,

(1.7) ∫Ω′"

{

wj logwj + ‖ IIj ‖2w−1j
}

logq0 wjdx ≤ ,
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where  also depends on q0 (and on Ω′ in a subtler way). Item (ii) in The-
orem 1.10 follows from (1.7), which is technically one of the core parts of
the paper. It is important to notice that (P 3) holds in a given dimension m
provided that so does (P 2), and in particular, the higher integrability ofwj
does not depend on (P 1). To the present, we are able to prove (P 2) only
in dimension m = 2, and the example in Proposition 1.7 shows the possible
failure of (P 2) in dimension m ≥ 4 when � ∈ L2(Ω′).

Also, Item (iii) in Theorem 1.10 follows from (P 2) by applying arguments in [4].
To prove Item (i) we need one last piece of information. Clearly, (P 2) and the fact
that ℋ 1

� (Σ) = 0 guarantee that u� does not have light segments on the entire Ω.
However, the local uniform integrability of {wj} on each Ω′ ⋐ Ω∖Σ implies

∫Ω
w�Du� ⋅D� = ⟨�, �⟩ ∀ � ∈ Lipc(Ω∖Σ).

To extend the above identity to test functions � ∈ Lipc(Ω), we shall prove the
following removable singularity property.
(P 4) Theorem 5.2 (removable singularity): if {wj} is locally uniformly inte-

grable on Ω∖Σ andℋ 1
� (Σ) = 0, then u� solves weakly ().

In higher dimensions, the possible failure of (P 2) makes it necessary to inves-
tigate the set of light segments K�

� of u�. With the aid of Theorem 5.13, however,
outside of K�

� we can still deduce a few properties of u�:

Theorem 1.13. Let m ≥ 3 and Ω ⊂ ℝm be a domain, Σ ⋐ Ω be compact and
� ∈(Ω) satisfyℋ 1

� (Σ) = 0 and

� = �S + �AC, with

{

supp �S ⊂ Σ,

�AC ∈ L1(Ω) ∩ L2loc(Ω∖Σ).

Given � ∈ ()Ω), consider the set of light segments of the minimizer u� ∈ �(Ω):

K�
� =

⋃

{

xy ∶ x, y ∈ Ω, x ≠ y, xy ⊂ Ω, |u�(x) − u�(y)| = |x − y|
}

.

Then,
(i) u� weakly solves () on Ω∖K

�
�.

Moreover, if K�
� ∩ ()Ω ∪ Σ) = ∅, then u� weakly solves () on the entire

Ω.
(ii) For each Ω′ ⋐ Ω∖(Σ ∪K�

�) and q0 ≥ 0,

∫Ω′
(1 + logw�)q0

{

w�|D
2u�|

2 +w3�
|

|

|

D2u�
(

Du�, ⋅
)

|

|

|

2
+w5�

[

D2u�(Du�, Du�)
]2
}

dx

+∫Ω′
w�(1 + logw�)q0+1dx <∞.

(iii) If Ω′ ⋐ Ω ⧵ (Σ ∪K�
�) and � ∈ L

∞(Ω′), then u� ∈ C
1,�
loc (Ω

′) for some � > 0.
In particular, if � ∈ C∞(Ω′) so is u�.
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Remark 1.14. Corollary 1.9 shows that, in dimension m ≥ 4, there exists �AC ∈
L2(Ω) and �S = �y − �x such that u� ∈ 0(Ω) does not solve () weakly on the
entire Ω. Notice that the support Σ = {x, y} of �S satisfies Σ ⊂ K�

�, and therefore
condition K�

� ∩ Σ = ∅ in (i) of Theorem 1.13 cannot be removed.

1.3. Known results forΩ = ℝm. The picture for constant � on the entireℝm is by
now well understood. Thanks to E. Calabi [15], S.Y. Cheng and S.T. Yau [16] and
Bartnik (Ecker [17, Theorem F]), we know that if u ∶ ℝm → ℝ minimizes I0 (i.e.
� = 0) on each open subsetΩ ⋐ ℝm with respect to compactly supported variations
in Ω, then u is a hyperplane, possibly with slope 1. Note that no growth conditions
on u are imposed a-priori. On the contrary, many examples of smooth spacelike
graphs with constant � ≠ 0 were constructed in [41, 42].

In view of applications to Born-Infeld theory, we study I� inℝm with m ≥ 3 and
for functions decaying at infinity to zero, taking advantage of the different functional
settings described byM.K.H. Kiessling in [30] and D. Bonheure, P. d’Avenia and A.
Pomponio in [8]. For our purposes, we mildly modify their frameworks and define
in Subsection 3.1 a Banach space (ℝm) in such a way that I� is well defined on

0(ℝm) ≐
{

v ∈ (ℝm) ∶ ‖Dv‖∞ ≤ 1
}

,

and so that the latter is closed (and convex) in (ℝm). Our choice does not affect
the functional properties of I� showed in [8]: in particular, following [8, Lemma
2.2], I� has a unique minimizer u� ∈ 0(ℝm) which, by [8, Proposition 2.7] (cf.
also Proposition 3.9 herein), satisfies

(1.8) T00 − �u� =
|Du�|2

√

1 − |Du�|2
∈ L1(ℝm)

and the variational inequality

(1.9) ∫ℝm

Du� ⋅ (Du� −D )
√

1 − |Du�|2
dx ≤

⟨

�, u� −  
⟩

∀ ∈ 0(ℝm).

Note that from (1.8) we deduce w� ∈ L1loc(ℝ
m). We then say that u� weakly solves

() if

∫ℝm

Du� ⋅D�
√

1 − |Du�|2
dx = ⟨�, �⟩ ∀ � ∈ Lipc(ℝm).

Even though the literature on the regularity theory for u� in the entire ℝm is more
extensive than the one in bounded domains, only a few classes of �were investigated
in detail. Among them, u� was shown to solve () weakly whenever � ∈ (ℝm)∗
satisfies any of the following assumptions:

(i) � is radial ([8, Theorem 1.4]);
(ii) � ∈ L∞loc(ℝ

m) ([8, Theorem 1.5]). In this case, u� is locally strictly space-
like and thus u� ∈ C1,�loc (ℝ

m) for some � > 0, by the regularity theory for
quasilinear equations.
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(iii) � ∈ Lq(ℝm) ∩ Lp(ℝm) for q > m and p ∈ [1, 2∗] ([29, Theorem 1.3] and
[11, Theorem 1.4 and Corollary 1.5]), see below.

Here and in what follows,
2∗ ≐

2m
m + 2

is the conjugate exponent of the Sobolev one 2∗.

The case of point charges.
The problem for

(1.10) � =
k
∑

i=1
ai�xi

was treated in [7, 8]: in particular, see [7, Theorem 1.2], u� was shown to be locally
strictly spacelike (hence, smooth) away from the charges {xi} provided that the
points xi are sufficiently far away depending on the sizes ai, in the quantitative way
recalled in Remark 1.17 below. In this case, u� weakly (indeed, classically) solves
() onℝm⧵{x1, x2,… , xk}. However, in [7, 8] the authors did not prove equality
in (1.9) for test functions which do not vanish at xi, see [8, Remark 4.4] for more
detailed comments.

In [30] Kiessling claimed that for � as in (1.10) u� satisfies () without any
restriction on the charges ai. However, in [8] Bonheure, d’Avenia and Pomponio
pointed out a flaw in his subtle argument, and Kiessling later published the erratum
[30]. Kiessling’s method uses a dual approach, and it would be desirable to have a
proof with a direct use of the functional I�.

The case � ∈ Lq for large q.
It is natural to seek a sharp condition on � that guarantees the strict spacelikeness
of u� and u� ∈ C1,�loc (ℝ

m) for some � ∈ (0, 1). The investigation of the radial case
in [8, Section 3] suggests that � ∈ Lqloc(ℝ

m) with q > m would be sufficient. This
evidence, further motivated by the detailed discussion in the Introduction of [10],
led Bonheure and A. Iacopetti to formulate the following

Conjecture (Conjecture 1.4 in [10]). If m ≥ 3 and � ∈ ∗ ∩Lqloc(ℝ
m) with q > m,

then u� is strictly spacelike on ℝm and u� ∈ C
1,�
loc (ℝ

m) for some � ∈ (0, 1).

Here, ∗ is the dual of a functional space  where 0(ℝm) embeds as a closed,
convex set, and can be taken to be (ℝm)∗. In fact, in the stated assumptions on
�, C1,�loc regularity easily follows from strict spacelikeness by standard theory of
quasilinear equations.

To the present, a complete answer to the conjecture is still unknown. After a first
partial result in [10], which is in itself remarkable, an almost exhaustive positive an-
swer was given by the combined efforts of A. Haarala [29] and Bonheure–Iacopetti
[11]:

Theorem 1.15 (Theorem 1.3 in [29], Theorems 1.4 and 1.5 in [11]). Assumem ≥ 3
and � ∈ Lq(ℝm)∩Lp(ℝm) with p ∈ [1, 2∗] and q > m. Then, u� is strictly spacelike
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and
u� ∈ C

1,1−m
q

loc (ℝm) ∩W 2,q
loc (ℝ

m).
Furthermore, u� weakly solves ().

Note that the restriction p ∈ [1, 2∗] is to guarantee that � defines a continuous
functional. The proof of the theorem is deep, and combines different ingredients
that are of independent interest. We emphasize that the global Lq integrability of
� is fundamental at various stages of the proofs in [29, 11], and hence, the case
� ∈ Lqloc(ℝ

m) remains an open problem.

1.4. Our contributions for Ω = ℝm. We first address the problem with a super-
position of point charges. With the aid of Theorem 5.2 (removable singularity) and
Theorem 5.13 (higher integrability), we can complement the works in [7, 8] and
prove that u� weakly solves () on the entire ℝm:

Theorem 1.16. Let � be as in (1.10). If the minimizer u� does not have any light
segment, then u� weakly solves (). Furthermore, around xi, u� is asymptotic to a
light cone in the sense of [17], where the cone is future (respectively, past) pointing
provided that ai < 0 (respectively, ai > 0).

Remark 1.17. According to [7, Proof of Theorem 1.2], u� has no light segments
whenever

(1.11)
(

m
!m−1

)
1

m−1 m − 1
m − 2

⎡

⎢

⎢

⎣

(

∑

i∈I−

|ai|

)
1

m−1

+

(

∑

i∈I+

|ai|

)
1

m−1 ⎤

⎥

⎥

⎦

< min
i≠j

|xi − xj|,

where I+ (I−) is the set of indices for which ai > 0 (ai < 0).

The last part of Theorem 1.16 needs some comment. In [17], Ecker defined an
isolated singularity for

div

(

Du
√

1 − |Du|2

)

= 0 on an open set B

as being a point x0 ∈ B such that u minimimizes I0 on any Ω′ ⋐ B∖{x0} (that is,
among functions in u�(Ω

′)), but not on the entire B. He then proves in [17, Theo-
rem 1.5] that an isolated singularity is asymptotic to a future or past pointing light
cone centered at x0. As a direct application of Ecker’s result, in [7, Theorem 3.5]
(see also [8, Theorem 1.5]) the authors claim that, for � as in (1.10) and {xi}, {ai}
matching (1.11), near xi, u� is asymptotic to a light cone which is upward or down-
ward pointing according to whether ai < 0 or ai > 0. However, without knowing
the validity of the Euler-Lagrange equation around xi, it is not clear to us how to
exclude the possibility that u� also minimizes I0 in a neighborhood of xi. The solv-
ability of () suffices to guarantee that this does not happen, and therefore to fully
justify the conclusions in [8, 7].

Next, we consider the behavior of u� for sources � ∈ L2loc(ℝ
m), and obtain the

next
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Theorem 1.18. Let m ≥ 3 and

� ∈
(

L1(ℝm) + Lp(ℝm)
)

∩ L2loc(ℝ
m), for some p ∈ (1, 2∗].

Then, the minimizer u� weakly solves (). Moreover, for a given  ∈ ℝ+, there
exists a positive constant 0 = 0(m, p,) with the following property: if

‖�‖L1(ℝm)+Lp(ℝm) ≤ ,

then for any pair of open sets Ω′′ ⋐ Ω′ ⋐ ℝm with d�(Ω′′, )Ω′) ≥ 0, any 2 > 0
with

‖�‖L2(Ω′) ≤ 2,

and any q0 ≥ 0, there exists a constant  = (q0, m, p,,0,2, |Ω′|�) such that
(1.12)

∫Ω′′
(1 + logw)q0

{

w�|D
2u�|

2 +w3�
|

|

|

D2u�
(

Du�, ⋅
)

|

|

|

2
+w5�

[

D2u�(Du�, Du�)
]2
}

dx

+∫Ω′′
w�(1 + logw�)q0+1dx ≤ .

Some comments are in order. First, we stress that u� may have light segments, at
least ifm ≥ 4, as the example in Proposition 1.7 shows. The existence/nonexistence
of light segments in dimension m = 3 is unknown even in the global setting. Sec-
ond, the enhanced second fundamental form estimate (1.12) holds provided that the
inequality

(1.13) ∫Ω′
�2
(1 + logw�)q0+2

w�
dx ≤ 1

is satisfied, which is trivially implied by � ∈ L2(Ω′). Whether (1.13) may be satis-
fied by less regular sources � is an open problem.

If � contains a singular measure, a few properties still hold.

Theorem 1.19. Let m ≥ 3 and let Σ ⋐ ℝm be a compact set satisfyingℋ 1
� (Σ) = 0.

Assume that � decomposes as

� = �S+�2, with

{

�S ∈(ℝm), supp �S ⊂ Σ,

�2 ∈
(

L1(ℝm) + Lp(ℝm)
)

∩ L2loc(ℝ
m∖Σ), p ∈ (1, 2∗],

and let K� be the set of light segments of the minimizer u�:

K� ≐
⋃

{

xy ∶ x, y ∈ ℝm, x ≠ y, |u�(x) − u�(y)| = |x − y|
}

,

Then, the following hold.
(i) u� weakly solves () on ℝm∖K�.

Moreover, if K� ∩ Σ = ∅, then u� weakly solves () on ℝm.



SOLVABILITY AND REGULARITY FOR THE BORN–INFELD EQUATION 17

(ii) For each Ω′ ⋐ ℝm∖(Σ ∪K�) and q0 ≥ 0,

∫Ω′
(1 + logw�)q0

{

w�|D
2u�|

2 +w3�
|

|

|

D2u�
(

Du�, ⋅
)

|

|

|

2
+w5�

[

D2u�(Du�, Du�)
]2
}

dx

+∫Ω′
w�(1 + logw�)q0+1dx <∞.

(iii) If Ω′ ⋐ Ω ⧵ (Σ ∪K�) and � ∈ L∞(Ω′), then u� ∈ C
1,�
loc (Ω

′) for some � > 0.
In particular, if � ∈ C∞(Ω′) so is u�.

Adapting Remark 1.14, we see that in (i) of the above theorem u� may not solve
() weakly on the entire ℝm, at least if m ≥ 4.

1.5. Open problems and outline of the paper. We first address the existence
problem for light segments. We think that the regularity of �u in Proposition 1.7
might be sharp, and we are tempted to propose the following

Conjecture 1. If � ∈ ()Ω) and � ∈ Lqloc(Ω) with q > m − 1, then the minimizer
u� does not have light segments.

The case q = m − 1, which includes � ∈ L2loc(Ω) when m = 3, is particularly
subtle.

Question 2. If � ∈ ()Ω) and � ∈ Lm−1loc (Ω), could the minimizer have light
segments?

In view of the techniques developed herein, a negative answer to the above ques-
tion would be sufficient to extend Theorem 1.10 to dimension m ≥ 3 and to �AC ∈
Lm−1loc (Ω∖Σ).

Related to the above problems, and in view of Corollary 1.9, we also formulate
the following

Question 3. If � ∈ ()Ω) and

� =
k
∑

i=1
ai�xi + �AC with �AC ∈ Lq(Ω), q > m − 1,

does the minimizer u� solve () weakly?

An ambitious goal would be to relate the integrability of � to the Hausdorff di-
mension of the setK�

� of light segments. In view of Proposition 1.7 and of its proof,
we may expect that the following holds:

Conjecture 4. If m ≥ 3, � ∈ ()Ω) and � ∈ Lq(Ω) for some 2 ≤ q ≤ m, then the
Hausdorff dimension of K�

� satisfies dimℋ�
(K�

�) ≤ m − q.

It might be possible that dimℋ�
(K�

�) ≤ m−q could be strengthened toℋm−q
� (K�

�) =
0. If this were true, notice that it would also imply a negative answer to Question
2. If � is more singular, we propose the next

Conjecture 5. For � ∈(Ω),ℋm−1
� (K�

�) = 0.
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Still about the set of light segments, it would be important to understand the weak
limit

wjdx⇀ # in (Ω′), Ω′ ⋐ Ω ∶
can one characterize the singular part of #, and relate its support to the setK�

�? Can
one characterize the non-negative functional

⟨T , �⟩ ≐ ⟨�, �⟩ − ∫Ω

Du� ⋅D�
√

1 − |Du�|2
� ∈ C∞c (Ω),

describing the loss in (1.9)?
Regarding the energy density, we first observe that the integrability of w� in

Proposition 1.7 is much higher than the one that we can prove in Theorem 5.13.
However, the latter is uniform on a sequence of approximated solutions {u�j}. We
can ask the following

Question 6. Can one prove a local higher integrability w� ∈ L
p
loc(Ω), for suitable

p > 1, under a local higher integrability of �, for instance for � ∈ Lqloc(Ω) and
q > m − 1?

Even the case � ∈ Lqloc(ℝ
m) and q > m is currently unknown, cf. [29, 11].

Question 7. What about the regularity of u� and w� when � ∈ Lq and q ∈ (1, 2)?

About the higher order regularity for u�,W 2,q estimates are unknown apart from
the case q = 2, considered in the present paper, and q > m treated in [29, 11] for
Ω = ℝm. We think that there might be an interpolation result, and therefore propose
the following

Question 8. Can one prove that, for p ∈ [2, m] and � ∈ Lploc, the minimizer u�
satisfies u� ∈ W

2,p
loc ?

The paper is organized as follows. Section 2 contains some background material
from Lorentzian Geometry. Section 3 introduces the functional setting, then moves
to discuss the basic properties of u� (convergence under approximation of �, inte-
grability), together with various equivalent conditions for the solvability of ().
In particular, we mention Propositions 3.9 and 3.14, which may have an indepen-
dent interest. Though preparatory, most of thematerial in this section did not appear
elsewhere in the literature. In Section 4, we construct examples of solutions to ()
with a single light segment, and defer the example with a higher dimensional set
of light segments to Appendix A. In Section 5, we develop our main new tools:
a removable singularity result, Theorem 1.8, a second fundamental form estimate
and a higher integrability result. These are the bulk of the paper, the techniques
therein differ from those in the literature and we believe they are applicable beyond
the purposes of the present work. The concluding Section 6 contains the proof of
our main existence results.

To a certain extent, each of Sections 2 to 5 can be read independently. In par-
ticular, the reader acquainted with Lorentzian Geometry and not focusing on the
functional analytic setting may directly skip to Section 4.
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A note on constants in elliptic estimates
When constants in our theorems are stated to depend on diam�(Ω), |Ω′|�, d�(Ω′, )Ω),
in fact they can be bounded uniformly in terms of, respectively, uniform upper
bounds for diam�(Ω) and |Ω′|�, and lower bounds for d�(Ω′, )Ω). Regarding the
dependence of  in Theorem 1.10 from the domain Ω′ and from d�(Ω′, )Ω), if
d�(Ω′, )(Ω∖Σ)) ≥ � and

‖�‖L2(U� ) ≤ 2 where U� =
{

x ∈ Ω∖Σ ∶ d�
(

x, )(Ω∖Σ)
)

≥ �
}

,

then  merely depends on �. On the other hand, anywhere we write  = (Ω,…)
we mean that we did not investigate the stability of the bounds for sequences of
open sets {Ωj} for which the other data are kept uniformly controlled.

2. PRELIMINARIES FROM LORENTZIAN GEOMETRY

In this section, we briefly recall some differential-geometric background that will
be used henceforth. Let Lm+1 be the Lorentz space with coordinates (x0, x1,… , xm)
and metric

−dx0 ⊗ dx0 +
m
∑

i=1
dxi ⊗ dxi, x ⋅ y ≐ −x0y0 +

m
∑

i=1
xiyi, |x|L ≐

√

|x ⋅ x|.

Given a smooth function u ∶ Ω ⊂ ℝm → ℝ, consider the graph map

F ∶ Ω→ Lm+1, F (x) ≐ (u(x), x),

and defineM to be the manifold F (Ω) endowed with the metric induced from Lm+1,
equivalently,M is Ω endowed with the pull-back metric g ≐ F ∗(⋅). When conve-
nient, g will also be denoted by ⟨ , ⟩. Let ‖ ⋅ ‖,∇,ΔM be, respectively, the norm,
Levi-Civita connection and Laplace-Beltrami operator associated to g. The Hessian
of a function u in the metric g will be denoted by ∇2u.

We identity ℝm with the slice {x0 = 0}, so {xi} are Cartesian coordinates on
ℝm with associated vector fields {)i}. Given an open set Ω ⊂ ℝm and u ∈ C∞(Ω),
we let ui ≐ )iu and uij ≐ (D2u)ij = )2iju. By defining

Xi ≐ F∗)i = )i + ui)0,

the components of g are written as

gij ≐ Xi ⋅Xj = �ij − uiuj .

Hereafter we assume that g is Riemannian (equivalently, |Du| < 1). The inverse
metric has components

gij = �ij +w2uiuj , with w ≐ 1
√

1 − |Du|2
,

where ui = �ijuj are the components of the gradientDu. Then, the volume measure
dxg of g relates to the measure dx on ℝm as follows:

(2.1) dxg = w−1dx.
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The future-pointing, unit normal vector to the graphM is given by n ≐ w()0+ui)i).
Note that n ⋅n = −1 andw = −n ⋅)0. Let superscripts ∥ and⟂ denote, respectively,
the projection onto TM and TM⟂ with respect to the inner product ⋅ in Lm+1. From
the chain of identities

⟨)∥0 , )j⟩ = )0 ⋅ F∗)j = −uj = −⟨∇u, )j⟩,
we deduce that
(2.2) )∥0 = −∇u.

Denoting by D̄ the Levi-Civita connection of Lm+1, we define the second funda-
mental form ofM by

II()i, )j) ≐
(

D̄Xi
Xj

)⟂
= ℎijn, thus ℎij = −D̄Xi

Xj ⋅ n = D̄Xi
n ⋅Xj .

From the definition of Xi we obtain ℎij = wuij . The (unnormalized) scalar mean
curvatureH ≐ gijℎij in direction n is therefore

H = wΔu +w3D2u(Du,Du) = div

(

Du
√

1 − |Du|2

)

,

where Δ is the Laplacian on ℝm. Next, since the Christoffel symbols of g are given
by Γkij = −w

2 ukuij , we compute the Hessian and Laplacian of a smooth function
� ∶ Ω→ ℝ in the graph metric g:

(2.3)
∇2ij� = �ij +w

2 �ku
kuij ;

ΔM� = gij∇2ij� = Δ� +w
2D2�(Du,Du) +HwD� ⋅Du.

In addition, the norm of the second fundamental form II of the graph u is given by

(2.4)
‖ II ‖2 = gijgklℎikℎjl = w2

(

�ij +w2uiuj
)

uik
(

�kl +w2ukul
)

ujl

= w2|D2u|2 + 2w4 ||
|

D2u (Du, ⋅)||
|

2
+w6

[

D2u(Du,Du)
]2.

In particular,

(2.5) ∇2iju = w
2 uij = wℎij , ‖∇2u‖2 = w2‖ II ‖2, ΔMu = Hw onM.

Given o ∈ ℝm, we denote by ro ∶ Ω → ℝ and lo ∶ Ω → ℝ, respectively, the
Euclidean distance from o and the Lorentzian distance from (u(o), o) restricted to
the graph of u, that is, we set

(2.6)

ro(x) ≐ |x − o|,

lo(s, x) ≐ |(s, x) − (u(o), o)|L =
√

− (s − u(o))2 + |x − o|2,
lo(x) ≐ lo (u(x), x) .

We also denote the extrinsic Lorentzian ball centered at o, and more generally the
one centered at a subset A ⊂ ℝm, by

(2.7) LR(o) ≐
{

x ∈ Ω ∶ lo(x) < R
}

, LR(A) ≐
⋃

o∈A
LR(o).
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When it is necessary, we will write l�o , L
�
R to emphasize their dependence on the

minimizer u = u� of I�. By (2.3), we get

(2.8)

D̄l2o(u(x), x) = 2
(

xj − oj
)

)j + 2 (u(x) − u(o)) )0;
‖

‖

∇lo(x)‖‖
2 = |

|

D̄lo(u(x), x)||
2
L +

(

D̄lo(u(x), x) ⋅ n
)2

= 1 + w2

l2o
|Du ⋅ (x − o) − (u(x) − u(o))|2 ;

ΔMl2o (x) = 2m + 2wH [(x − o) ⋅Du − (u(x) − u(o))]

= 2m +H
(

D̄l2o(u(x), x) ⋅ n
)

.

As we shall see in the proof of Theorem 5.13, the construction of cut-off func-
tions based on the Lorentzian distance, instead of those based on the Euclidean one,
will be the key to obtain the higher integrability of u� in dimension m ≥ 3.

3. BASIC PROPERTIES OF u�
In this section, we obtain basic properties of the minimizer u� of I�, both for

Ω ⊂ ℝm a bounded domain (m ≥ 2) and for Ω = ℝm (m ≥ 3).

3.1. Functional setting. We first choose our functional spaces. If Ω = ℝm, our
treatment mildly departs from those in [30, 8], and is basically designed to get an
explicit description of the sources � covered by the method. On the other hand, for
bounded Ω, subtleties related to a possibly rough boundary )Ω require extra care
in the choice of the functional space, which significantly differs from that in [4].

Definition 3.1. Given m ≥ 2, we fix p1 ∈ (m,∞) and assume also p1 ≥ 2∗ for
m = 3.

(i) When m ≥ 2 and Ω ⊂ ℝm is a bounded domain, we set

(Ω) ≐ W 1,p1(Ω) ∩ C(Ω), ‖v‖ ≐ max
{

‖v‖W 1,p1 (Ω), ‖v‖C(Ω)
}

;

(ii) When Ω = ℝm and m ≥ 3, we set

(ℝm) ≐ C∞c (ℝm)
‖⋅‖ , ‖v‖ ≐ max

{

‖Dv‖2, ‖Dv‖p1
}

.

Note that, ifΩ is bounded and sufficiently regular (Lipschitz is enough), by Mor-
rey’s Embedding Theorem(Ω) = W 1,p1(Ω)with the equivalent norm ‖⋅‖W 1,p1 (Ω).

Remark 3.2. The case Ω = ℝ2 will not be considered in the present paper. We
observe that the radially symmetric solution in [13] with a Dirac delta source (cf.
Example 5.6 herein withH = 0) has a logarithmic behavior at infinity whenm = 2,
which calls for a different functional setting. For � a superposition of point charges,
complete classification theorems for entire solutions in ℝ2 were obtained by A.A.
Klyachin [31], and I. Fernández, F.J. López and R. Souam [20].

The following result can be proved in a similar way as [8, Lemma 2.1], but we
give full details for the sake of completeness.
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Proposition 3.3. Assume m ≥ 3 and Ω = ℝm. Then ((ℝm), ‖ ⋅ ‖ ) is a reflexive
Banach space. Moreover,

(3.1) (ℝm)↪ W 1,q(ℝm) ∀ q ∈ [2∗, p1].

In particular, ‖ ⋅ ‖ is equivalent to ‖D ⋅ ‖2 + ‖ ⋅ ‖W 1,p1 , and (ℝm)↪ C0(ℝm) ≐
{u ∈ C(ℝm) ∶ lim

|x|→∞ u(x) = 0} holds.

Proof. First, ‖ ⋅ ‖ is equivalent to the norm |u| ≐
√

‖Du‖22 + ‖Du‖2p1 . Hence,
to prove the reflexivity of ((ℝm), ‖ ⋅ ‖ ) it suffices to show that ((ℝm), | ⋅ | ) is
uniformly convex. This easily follows by using the criterion in [14, Exercise 3.29]
and the uniform convexity of the norms ‖Du‖2 and ‖Du‖p1 .

To obtain (3.1), let u ∈ (ℝm). From the choice of p1 and Hölder’s inequality,
the next interpolation inequality holds:
(3.2) ‖Du‖q ≤ ‖u‖ for all q ∈ [2, p1].
Since m ∈ [2, p1) and q∗ → ∞ as q → m−, there exists q̂ ∈ [2, m) so that q̂∗ = p1.
Thus, Sobolev’s inequality and (3.2) yield ‖u‖p1 ≤ C‖Du‖q̂∗ ≤ C‖u‖ . Hence,
(ℝm) ↪ W 1,p1(ℝm) holds. In addition, from ‖u‖2∗ ≤ C‖Du‖2 ≤ ‖u‖ , 2 <
2∗ ≤ p1 and (3.2), we see (ℝm) ↪ W 1,2∗(ℝm). Therefore, by the interpolation,
(3.1) holds.

The equivalence between ‖ ⋅ ‖ and ‖D ⋅ ‖2 + ‖ ⋅ ‖W 1,p1 is an immediate conse-
quence of (3.1), while (ℝm) ↪ C0(ℝm) follows from Morrey’s embedding The-
orem once we observe that u ∈ L2∗(ℝm) ∩ C0,�(ℝm) implies that u vanishes at
infinity. �

Remark 3.4 (Dual spaces). If q ∈ (1,∞) and Ω ⊂ ℝm is any domain, then it is
well-known that elements in the dual space W 1,q(Ω)∗ = W −1,q′(Ω) can be repre-
sented as pairs (v, V ) ∈ Lq′(Ω) × [Lq′(Ω)]m where q′ ≐ q∕(q − 1), with the action

⟨�,  ⟩ ≐ ∫Ω
 vdx + ∫Ω

D ⋅ V dx ∀ ∈ W 1,q(Ω),

see for instance [1, Theorem 3.9]. Furthermore, recall that if X1, X2 are Banach
spaces with X1 ∩ X2 dense in X1 and X2, then (X1 ∩ X2)∗ = X∗

1 + Y
∗
2 with the

natural norm

‖�‖X∗
1+X

∗
2
= inf

{

‖�1‖X∗
1
+ ‖�2‖X∗

2
∶ �j ∈ X∗

j , � = �1 + �2
}

,

see [6, Theorem 2.7.1]. Indeed, inspecting the proof in [6], one deduces that every
functional � ∈ (X1 ∩X2)∗ can be represented as

� = �1 + �2 ∈ X∗
1 +X

∗
2 , with ‖�1‖X∗

1
+ ‖�2‖X2∗ ≤ ‖�‖(X1∩X2)∗ ,

the representation being unique (with equality between norms) when X1 ∩ X2 is
dense in both X1 and X2. Taking the above observations into account,

(i) if Ω is a bounded domain, every � ∈ (Ω)∗ can be represented as � =
�1 + �2 ∈ W

−1,p′1(Ω) +(Ω), for some �1, �2 satisfying
‖�1‖W −1,p′1

+ ‖�2‖ ≤ ‖�‖∗ .
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The representation is unique when C(Ω) ∩W 1,p1(Ω) is dense inW 1,p1(Ω),
a fact which entails some mild requirement on )Ω such as the segment
condition (cf. [1, Theorem 3.22]). However, uniqueness of the representa-
tion will not be used in the present work. Notice the continuous inclusion
(Ω)↪ (Ω)∗.

(ii) if Ω = ℝm and m ≥ 3, then (ℝm)∗ = 1,2(ℝm)∗ + W −1,p′1(ℝm), with
1,2(ℝm) being the closure of C∞c (ℝ

m) with respect to the norm ‖v‖1,2 ≐
‖Dv‖2. In particular, because of Proposition 3.3 and Morrey’s embedding,
(ℝm) ↪ (ℝm)∗ and W −1,q′(ℝm) ↪ (ℝm)∗ for each q ∈ [2∗, p1].
Hence,

(ℝm) + Lq′(ℝm)↪ (ℝm)∗ ∀ q ∈ [2∗, p1],

where Lq′(ℝm) consists of the pairs (v, 0).

Clearly,0(ℝm) is a closed convex subset of(ℝm). The situation is more subtle
for �(Ω) defined in (1.3), because of the lack of regularity of )Ω. However, as the
next result shows, the mild sense in which the boundary condition is considered,
see Remark 1.1, suffices to guarantee that �(Ω) ⊂ (Ω).

Proposition 3.5. LetΩ ⊂ ℝm be a bounded domain, letℱ ⊂ C()Ω) be a relatively
compact (resp. compact) subset with respect to uniform convergence, and consider

ℱ (Ω) ≐
{

v ∶ v ∈ �(Ω) for some � ∈ ℱ
}

.

Then ℱ (Ω) ⊂ C(Ω) as a relatively compact (resp. compact) subset, where we
extend each v ∈ ℱ (Ω) onto Ω by setting v(x) ≐ �(x) for x ∈ )Ω.

Proof. First, observe that if x ∈ Ω and x̃ ∈ )Ω is a nearest point to x in the metric
d�, the boundary condition in Remark 1.1 tested on the segment tx + (1 − t)x̃ ∈ Ω
for any t ∈ (0, 1] gives, for each v ∈ ℱ (Ω),

(3.3) |

|

v(x) − �(x̃)|
|

=
|

|

|

|

v(x) − lim
t→0+

v(tx + (1 − t)x̃)
|

|

|

|

≤ |

|

x − x̃|
|

.

The inequality trivially holds also if x ∈ )Ω, by the way v is extended. Whence,

(3.4) ‖v‖L∞(Ω) ≤ ‖�‖C()Ω) + diam�(Ω) ≤ sup
�∈ℱ

‖�‖C()Ω) + diam�(Ω) <∞,

where the last inequality follows since ℱ is relatively compact in C()Ω). This
proves the uniform boundedness of ℱ (Ω).

Next, we shall show v ∈ C(Ω) for each v ∈ ℱ (Ω), and thatℱ (Ω) is uniformly
equicontinuous. Let " > 0 be arbitrary. Since ℱ is relatively compact in C()Ω),
ℱ is uniformly equicontinuous on )Ω, hence, there exists �̃" > 0 such that

� ∈ ℱ , x1, x2 ∈ )Ω, |x1 − x2| < �̃" ⇒ |

|

�(x1) − �(x2)|| <
"
4
.

Set
�" ≐

1
4
min

{

", �̃"
}

> 0,
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and pick x1, x2 ∈ Ω with |x1 − x2| < �". If one among B�"(x1) and B�"(x2) is
contained in Ω, property v ∈ �(Ω) implies that v is 1-Lipschitz there, whence

|x1 − x2| < �" ⇒ |

|

v(x1) − v(x2)|| ≤ |

|

x1 − x2|| < �" < ".

We therefore assume that B�"(xj) ∩ )Ω ≠ ∅ for j = 1, 2, and choose x̃j ∈ B�"(xj) ∩
)Ω satisfying |xj − x̃j| = d�(xj , )Ω). From |x1 − x2| < �" and |xj − x̃j| < �" for
each j, the triangle inequality implies |x̃1 − x̃2| < 3�" < �̃" and therefore, by using
(3.3),

|

|

v(x1) − v(x2)|| ≤ |

|

v(x1) − �(x̃1)|| + |

|

�(x̃1) − �(x̃2)|| + |

|

�(x̃2) − v(x2)||
≤ |

|

x1 − x̃1|| +
"
4
+ |

|

x̃2 − x2|| < 2�" +
"
4
≤ ".

Hence, v ∈ C(Ω) and ℱ (Ω) is uniformly equicontinuous on Ω. The relative
compactness of ℱ (Ω) in C(Ω) follows by the Arzelá–Ascoli theorem. If ℱ is
compact, then any limit point of a sequence {vj} ⊂ ℱ (Ω) lies in ℱ (Ω), thus
ℱ (Ω) is compact in C(Ω). �

Corollary 3.6. For each bounded domainΩ ⊂ ℝm and each � ∈ C()Ω), �(Ω) ⊂
(Ω) and it is bounded, closed, convex and sequentially weakly compact in (Ω).

Proof. By Proposition 3.5, �(Ω) ⊂ C(Ω) is a compact subset. Since clearly
�(Ω) is contained inW 1,p1(Ω) as a closed, bounded subset, we deduce that�(Ω) ⊂
(Ω) is closed and bounded. the fact that �(Ω) is convex is obvious. To prove
the sequential weak compactness, let {vj} be sequence in�(Ω). Then, up to pass-
ing to a subsequence, vj → v weakly inW 1,p1(Ω) and strongly in C(Ω), for some
v ∈ (Ω). By Remark 3.4, we can represent a given � ∈ (Ω)∗ as � = �1 + �2
with �1 ∈ W −1,p′1(Ω) and �2 ∈(Ω), whence

⟨

�, vj
⟩

=
⟨

�1, vj
⟩

+
⟨

�2, vj
⟩

→ ⟨�1, v⟩ + ⟨�2, v⟩ = ⟨�, v⟩ as j →∞,

thus {vj} is weakly convergent. �

Regarding the minimization problem, for the readers’ convenience we reproduce
the argument in [8] to show the existence and uniqueness of the minimizer u� in our
functional setting. For � ∈ (Ω)∗, we recall that I� ∶ �(Ω)→ ℝ is defined by

I�(v) ≐ ∫Ω

(

1 −
√

1 − |Dv|2
)

dx − ⟨�, v⟩ for v ∈ �(Ω).

The above discussion guarantees that �(Ω) is a closed convex subset of (Ω)
(when Ω is bounded, we suppose that � ∈ C()Ω) is chosen such that �(Ω) ≠ ∅),
and I� is strictly convex since B1(0) ∋ p ↦ 1 −

√

1 − |p|2 ∈ [0, 1] is strictly con-
vex. Furthermore, from the inequality 1 −

√

1 − |p|2 ≤ |p|2 for |p| ≤ 1 and using
Lebesgue’s dominated convergence theorem, I� is continuous on �(Ω). Combin-
ing convexity and continuity, we deduce that I� is weakly lower-semicontinuous.
If Ω is a bounded domain, by Corollary 3.6 the set �(Ω) is bounded and sequen-
tially weakly compact in (Ω), so the existence of a minimizer is then obvious by
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the direct method. On the other hand, if Ω = ℝm, then ‖Dv‖qq ≤ ‖Dv‖22 holds for
every v ∈ 0(ℝm) and q ∈ [2,∞) thanks to ‖Dv‖∞ ≤ 1. Thus, in view of the
identity

(3.5) 1 −
√

1 − t =
∞
∑

j=1
bjt

j with bj ≐
(2j − 2)!

j!(j − 1)!22j−1
, t ∈ [0, 1],

it follows from 3 ≤ m < p1 that for v ∈ 0(ℝm),

(3.6)
‖v‖2 ≤

(

‖Dv‖22 + ‖Dv‖2p1

)

≤
(

‖Dv‖22 + ‖Dv‖4∕p12

)

≤ 2
(

‖Dv‖22 + 1
)

≤ 2
[

1 + b−11
(

I�(v) + ‖�‖∗‖v‖
)]

.

Hence, I� is coercive. Since (ℝm) is reflexive, the existence and uniqueness of u�
is then a consequence, for instance, of [14, Corollary 3.23].

3.2. Compact subsets of ()Ω): the class b,� ()Ω). To define the compact set
b,� ()Ω) ⊂ ()Ω)mentioned in the Introduction, we assume that (Ω, dΩ) has com-
pact metric completion, that following [34] we denote byΩd. We set )Ωd = Ωd∖Ω.
To stress the difference with dΩ in (1.4), we write d instead of dΩ for the metric
on Ωd. The identity i ∶ (Ω, dΩ) → (Ω, d�) extends by density to a distance non-
increasingmap ĩ ∶ (Ωd, d)→ (Ω, d�). SinceΩd is compact and (Ω, d�) is Hausdorff,
ĩ is a closed map. From ĩ(Ωd) ⊃ Ω, we deduce that ĩ is also surjective, hence, ĩ is
a quotient map. Given � ∈ C()Ω), let �̃ = �◦ĩ ∈ C()Ωd) be its lift. For given
b ∈ ℝ+ and � ∶ ℝ+ → [0, 1), we set
(3.7)

b,� ()Ω) ≐
{

� ∈ ()Ω) ∶ ‖�‖∞ ≤ b, sup
x, y ∈ )Ωd,
d(x, y) = t

|�̃(x) − �̃(y)|
d(x, y)

≤ � (t) ∀ t ∈ ℝ+
}

,

where the supremum is defined to be zero if t > diamdΩ(Ω). We prove that b,� ()Ω)
is compact in C()Ω), so let {�j} ⊂ b,� ()Ω). By the Arzelá–Ascoli Theorem,
{�̃j} is relatively compact in C()Ωd) and thus, up to subsequences, �̃j → �̃ for
some �̃ ∈ C()Ωd) which is constant on the fibers of ĩ, and therefore factorizes as
�̃ = �◦ĩ. Since ĩ is a quotient map, � ∈ C()Ω) (see, for instance, [39, Theorem
22.2]). From �̃j → �̃ on )Ωd , we deduce that �j → � on )Ω and � satisfies
the last two conditions in (3.7). To show that b,� ()Ω) is compact in C()Ω), it
suffices to prove that � ∈ ()Ω). Suppose by contradiction that � ∉ ()Ω), and
take x, y ∈ )Ω, x ≠ y such that |�(x) − �(y)| ≥ dΩ(x, y). Then, being the left-
hand side finite, Γxy ≠ ∅ and we can lift the interior of any path 
 ∈ Γxy to a path

̃ ∶ (0, 1)→ Ωd of the same length of 
 , with 
̃((0, 1)) ⊂ Ω. Choose paths 
" ∈ Γx,y
with ℋ 1

� (
") ↓ dΩ(x, y) as " ↓ 0. It is easy to check that 
̃"(0+) ≐ x̃" ∈ ĩ−1(x)
and 
̃"(1−) ≐ ỹ" ∈ ĩ−1(y). Since the fibers ĩ−1(x) and ĩ−1(y) are compact, up to
subsequences x̃"k → x̃ ∈ ĩ−1(x) and ỹ"k → ỹ ∈ ĩ−1(y). By x ≠ y, we have
0 < d(x̃, ỹ) = limk→∞ d(x̃"k , ỹ"k) ≤ dΩ(x, y). However, from the last property in
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(3.7) for �̃j , we get the following contradiction:

d(x̃, ỹ) ≤ dΩ(x, y) ≤ |�(x) − �(y)| = |

|

|

�̃(x̃) − �̃(ỹ)||
|

= lim
j→∞

|

|

|

�̃j(x̃) − �̃j(ỹ)
|

|

|

≤ �
(

d(x̃, ỹ)
)

d(x̃, ỹ) < d(x̃, ỹ).

3.3. Convergence of minimizers. Our proof of the solvability of () depends
on an approximation procedure, smoothing � by convolution. Thus, it entails a
convergence result for minimizers.

Proposition 3.7. Let �k ∈ (Ω)∗, and consider the following assumptions:
(i) Ω ⊂ ℝm is a bounded domain withm ≥ 2, {�k} ⊂ C()Ω) satisfy�k(Ω) ≠

∅ and �k → � strongly in C()Ω). Assume that �k = �k + fk, where
�k ∈(Ω), fk ∈ (Ω)∗, and that

(3.8) �k ⇀ � weakly in (Ω), fk → f strongly in (Ω)∗.

(ii) Ω = ℝm with m ≥ 3, �k = �k + fk where �k and fk satisfy (3.8). Assume
also that, for each " > 0, there exists R" > 0 such that

(3.9) |

|

�k||
(

ℝm∖BR"
)

< " for each k ≥ 1.

Under either (i) or (ii), �(Ω) ≠ ∅ and, by setting � ≐ � + f , up to a subsequence,
u�k → u� strongly in W 1,q(Ω) ∩ C(Ω), respectively, for every q ∈ [1,∞) if Ω is
a bounded domain, and for every q ∈ [2∗,∞) if Ω = ℝm. Furthermore, ‖Du�k −
Du�‖q → 0 for every q ∈ [2,∞) when Ω = ℝm. In particular,

⟨

�k, u�k
⟩

→
⟨

�, u�
⟩

as k→∞.

Proof. We first suppose that Ω is bounded. Due to Proposition 3.5 and u�k ∈
�k(Ω), {u�k} is relatively compact in C(Ω) and hence it is bounded in W 1,q(Ω)
for any q ∈ [1,∞]. Up to a subsequence, u�k ⇀ u weakly in W 1,q(Ω) for each
fixed q ∈ (1,∞), and strongly in C(Ω). In particular, u = � on )Ω, and u�k ⇀ u
weakly in (Ω) due to Remark 3.4 (i). From |u�k(x) − u�k(y)| ≤ dΩ(x, y) for every
x, y ∈ Ω, we deduce |u(x)−u(y)| ≤ dΩ(x, y) and u ∈ �(Ω). Hence, the minimizer
u� does exist.

From (3.5) we get
(3.10)

∫Ω

(

1 −
√

1 − |Du|2
)

dx =
∞
∑

j=1
bj‖Du‖

2j
2j ≤

∞
∑

j=1
bj lim infk→∞

‖Du�k‖
2j
2j

≤ lim
n→∞

lim inf
k→∞

n
∑

j=1
bj‖Du�k‖

2j
2j

≤ lim inf
k→∞ ∫Ω

(

1 −
√

1 − |Du�k|
2
)

dx.
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From
⟨

�k, u�k
⟩

=
⟨

�k, u�k
⟩

+
⟨

fk, u�k
⟩

and the facts that u�k ⇀ u weakly in (Ω) and strongly in C(Ω), our assumptions
on {�k} and {fk} give

(3.11) lim
k→∞

⟨

�k, u�k
⟩

= ⟨�, u⟩ + ⟨f, u⟩ = ⟨�, u⟩ .

Hence, by (3.10), we obtain
I�(u�) ≤ I�(u) ≤ lim infk→∞

I�k(u�k) ≤ lim infk→∞
I�k(u�) = I�(u�).

Thus, I�(u) = I�(u�), which yields u = u� by the uniqueness of the minimizer, and

∫Ω

(

1 −
√

1 − |Du�k|
2
)

dx → ∫Ω

(

1 −
√

1 − |Du�|2
)

dx.

If there exists j0 > 0 such that

"0 ≐ lim infk→∞
‖Du�k‖

2j0
2j0
− ‖Du�‖

2j0
2j0
> 0,

then by (3.5) we can choose ℎ0 > j0 so large that

∫Ω

(

1 −
√

1 − |Du�|2
)

dx −
ℎ0
∑

j=1
bj‖Du�‖

2j
2j <

bj0"0
2

,

and therefore deduce the following contradiction:

∫Ω

(

1 −
√

1 − |Du�|2
)

dx <
bj0"0
2

+
ℎ0
∑

j=1
bj‖Du�‖

2j
2j

≤ lim inf
k→∞

ℎ0
∑

j=1
bj‖Du�k‖

2j
2j −

bj0"0
2

≤ lim inf
k→∞ ∫Ω

(

1 −
√

1 − |Du�k|
2
)

dx −
bj0"0
2

= ∫Ω

(

1 −
√

1 − |Du�|2
)

dx −
bj0"0
2

.

Thus, ‖Du�k‖2j → ‖Du�‖2j for each j ≥ 1. The uniform convexity of L2j(Ω) and
‖u�k − u�‖∞ → 0 imply that Du�k → Du� in L2j(Ω), hence u�k → u� inW 1,2j(Ω)
for any j ≥ 1. By Hölder’s inequality, u�k → u� strongly in W 1,q(Ω) for each
q ∈ [1,∞) and we complete the proof for the case Ω is a bounded domain.

When Ω = ℝm with m ≥ 3, first observe that by our assumptions {�k} is uni-
formly bounded in (Ω)∗. Hence, from I�k(u�k) ≤ I�k(0) = 0 and the coercivity
estimate (3.6) for v = u�k , we deduce that {u�k} is uniformly bounded in (ℝm).
By Proposition 3.3 and ‖Du�k‖∞ ≤ 1, {u�k} is bounded in W 1,q(ℝm) for each
q ∈ [2∗,∞), hence in L∞(ℝm). Up to a subsequence, u�k ⇀ u weakly inW 1,q(ℝm)
for each q ∈ [2∗,∞), u�k → u in Cloc(ℝm), and u�k → u weakly in (ℝm) by



28 JAEYOUNG BYEON, NORIHISA IKOMA, ANDREA MALCHIODI, AND LUCIANO MARI

the reflexivity of (ℝm). Since each u�k is 1-Lipschitz, so is u and u ∈ 0(ℝm).
Coupling condition (3.9) for {�k} with the convergence u�k → u in Cloc(ℝm) and
the uniform boundedness of {u�k}, we deduce that ⟨�k, u�k⟩ → ⟨�, u⟩, hence (3.11)
holds. Then, arguing as above, we may verify u = u� and Du�k → Du� strongly
in Lq(ℝm) for each q ∈ [2,∞). Hence, u�k → u� strongly in W 1,q(ℝm) for every
q ∈ [2∗,∞), concluding the proof. �

3.4. Local integrability of w and the Euler-Lagrange inequality. Assuming
� ∈ ()Ω) if Ω is bounded, in this subsection we show that the minimizer u�
is not too degenerate and solves an Euler-Lagrange inequality. We begin with a
simple but useful Lemma, which will be repeatedly used.

Lemma 3.8. Let Ω ⊂ ℝm be a domain, let G ⊂ W 1,∞(Ω) be compact in C(K) for
each compact set K ⊂ Ω, and assume that ‖Du‖∞ ≤ 1 on Ω for each u ∈ G . Fix
an open subset Ω′ ⋐ Ω and "̃ > 0. Then, the following are equivalent:

(a) For each Ω′′ ⋐ Ω′ with d�(Ω′′, )Ω′) ≥ "̃, every u ∈ G does not have a
light segment xy ⊂ Ω′∖Ω′′ with x ∈ )Ω′′, y ∈ )Ω′.

(b) There exists R = R(G , "̃,Ω′) > 0 such that LuR(Ω
′′) ⋐ Ω′ for each u ∈ G

and each Ω′′ ⋐ Ω′ satisfying d�(Ω′′, )Ω′) ≥ "̃, where LuR is the Lorentzian
ball of radius R associated to the graph of u.

Furthermore, the following are equivalent:
(a’) Every u ∈ G does not have light segments in Ω′.
(b’) For each " > 0, there exists R = R(G , ",Ω′) > 0 such that for each pair of

open subsets Ω1 ⋐ Ω2 ⊂ Ω′ with d�(Ω1, )Ω2) ≥ ", it holds LuR(Ω1) ⋐ Ω2
for each u ∈ G .

Proof. (b) ⇒ (a) and (b’) ⇒ (a’) are obvious. The proofs of (a) ⇒ (b) and (a’)
⇒ (b’) are analogous, so we only prove (a’) ⇒ (b’). Assume by contradiction the
existence of " > 0, Ω(j)1 ⋐ Ω(j)2 with d�(Ω

(j)
1 , )Ω

(j)
2 ) ≥ ", uj ∈ G , points zj ∈ )Ω

(j)
1

and pj ∈ )Ω
(j)
2 such that

(3.12) zjpj ⊂ Ω
(j)
2 ⊂ Ω′, ℋ 1

�
(

zjpj
)

≥ ", |

|

|

zj − pj
|

|

|

− |

|

|

uj(zj) − uj(pj)
|

|

|

≤ 1
j
.

Since G is compact in C(Ω′), up to subsequences, uj → u ∈ G in C(Ω′), zj →

z ∈ Ω′ and pj → p ∈ Ω′. Passing to the limit in (3.12), u has a light segment zp of
length ≥ ". Noticing that B"(zj) ⊂ Ω for each j, we get B"(z) ⊂ Ω′ and thus part
of zp lies in Ω′, a contradiction. �

We are ready to state our first regularity result. The argument in the proof is
inspired by [8, Proposition 2.6], in particular, case (ii) in the following is essentially
contained therein.

Proposition 3.9. Let Ω ⊂ ℝm be a domain.
(i) Assume that m ≥ 2 and that Ω is bounded. For any given compact subset

ℱ ⊂ ()Ω), and any ",1 > 0, there exists a constant = (Ω,ℱ , m, p1,1, diam�(Ω), ")
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such that if
� ∈ ℱ , � ∈ (Ω)∗ with ‖�‖∗ ≤ 1,

then for each open subset Ω′ ⋐ Ω with d�(Ω′, )Ω) ≥ " the minimizer u�
satisfies

(3.13) ∫Ω′
dx

√

1 − |Du�|2
≤ .

In particular, |Du�| < 1 a.e. on Ω. Moreover, for each  ∈ �(Ω),
Du� ⋅ (Du� −D )
√

1 − |Du�|2
∈ L1(Ω),(3.14)

√

1 − |D |2 −
√

1 − |Du�|2 ≤
Du� ⋅ (Du� −D )
√

1 − |Du�|2
a.e. on Ω(3.15)

and
(3.16)

∫Ω

(
√

1 − |D |2 −
√

1 − |Du�|2
)

dx ≤ ∫Ω

Du� ⋅ (Du� −D )
√

1 − |Du�|2
dx ≤

⟨

�, u� −  
⟩

.

(ii) Assume that m ≥ 3 and that Ω = ℝm. For any given 1 > 0 and Ω′ ⋐ ℝm,
there exists a constant ′ = ′(m, p1,1, |Ω′|�) > 0 such that if ‖�‖∗ ≤
1, then (3.13) holds with ′. Furthermore, (3.14)–(3.16) hold for each
 ∈ 0(ℝm).

Remark 3.10. Notice that choosing Ω = ℝm and  = 0 in (3.14) we infer the
integrability condition in (1.8) mentioned in the Introduction.

Proof. (i) We first prove (3.13). Fix Ω′ ⋐ Ω with d�(Ω′, )Ω) ≥ ". Given  ∈
�(Ω), observe that ut ≐ (1 − t)u� + t ∈ �(Ω) for every t ∈ (0, 1]. Thus,
I�(u�) ≤ I�(ut), and rearranging we get

(3.17) 1
t ∫Ω

(
√

1 − |Dut|2 −
√

1 − |Du�|2
)

dx ≤
⟨

�, u� −  
⟩

∀ t ∈ (0, 1].

Next, the concavity of the map p↦
√

1 − |p|2 on B1(0) implies that
√

1 − |Dut|2 ≥ (1 − t)
√

1 − |

|

|

Du�
|

|

|

2
+ t

√

1 − |D |2 a.e. on Ω, ∀ t ∈ (0, 1],

which yields
(3.18)
√

1 − |D |2 −
√

1 − |Du�|2 ≤
1
t

{
√

1 − |Dut|2 −
√

1 − |Du�|2
}

a.e. on Ω.

LetG ⊂ (Ω) be the set ofminimizers of I0 (i.e. with � = 0) whose boundary value
lies in ℱ . For given � ∈ ℱ we denote by �̄ ∈ G the corresponding minimizer.
The compactness of ℱ and Propositions 3.5 and 3.7 guarantee that G is compact
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in C(Ω). By Theorem 1.3, every u ∈ G does not have light segments in Ω, thus
applying the first part of Lemma 3.8 for Ω" ⋐ Ω"∕2 we obtain R = R(Ω,ℱ , ") > 0
such that LuR(Ω") ⋐ Ω"∕2 for each u ∈ G . From the monotonicity formula [4,
Lemma 2.1], we infer the existence of � = �(Ω,ℱ , ") such that

(3.19) sup
Ω′

|D�̄| ≤ 1 − 4�.

We take  = �̄, and note that on the set of full measure V ⊂ Ω′ of points where u�
is differentiable it holds |Dut| < 1 for every t ∈ (0, 1]. We set

K ≐
{

x ∈ Ω ∶ 1 − � < |Du�(x)|
}

,

and split the domain of integration Ω in (3.17) into the sets Ω ⧵ Ω′, V ∩ K and
V ∩Kc . We use (3.18) on Ω ⧵Ω′ and the identity
(3.20)
1
t

{
√

1 − |Dut|2 −
√

1 − |Du�|2
}

=
2Du� ⋅ (Du� −D ) − t|Du� −D |2

√

1 − |Dut|2 +
√

1 − |Du�|2
a.e. on Ω ∩

{

|D | + |Du�| < 2
}

to deduce that

(3.21)

⟨

�, u� − �̄
⟩

≥ ∫Ω⧵Ω′

(

√

1 − |D�̄|2 −
√

1 − |Du�|2
)

dx

+ ∫V ∩K

2Du� ⋅ (Du� −D�̄) − t|Du� −D�̄|2
√

1 − |Dut|2 +
√

1 − |Du�|2
dx

+ ∫V ∩Kc

2Du� ⋅ (Du� −D�̄) − t|Du� −D�̄|2
√

1 − |Dut|2 +
√

1 − |Du�|2
dx.

Recalling (3.19), we restrict to t small enough so that 4t < �2. By the definition
of K , the next inequality holds on Ω′ ∩K:

(3.22) 2Du� ⋅(Du�−D�̄)−t|Du−D�̄|2 ≥ 2
[

(1 − �)2 − (1 − 4�)
]

−4t > 4� > 0.

Remark also that the last term in the right-hand side of (3.21) is bounded uniformly
with respect to t ∈ (0, 1). Thus, letting t → 0 in (3.21) and using (3.22), Fatou’s
lemma and the dominated convergence theorem, we infer
(3.23)

⟨

�, u� − �̄
⟩

≥ ∫Ω⧵Ω′

(

√

1 − |D�̄|2 −
√

1 − |Du�|2
)

dx

+ ∫V ∩K
2�

√

1 − |Du�|2
dx + ∫V ∩Kc

Du� ⋅ (Du� −D�̄)
√

1 − |Du�|2
dx.
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From

(3.24)
|

|

|

|

|

∫Ω⧵Ω′

√

1 − |D�̄|2 −
√

1 − |Du�|2 dx
|

|

|

|

|

≤ |Ω ⧵Ω′|�

and the following straightforward estimate on Ω′ ∩Kc:

∫Ω′∩Kc

|

|

|

|

|

|

|

|

Du� ⋅ (Du� −D�̄)
√

1 − |Du�|2

|

|

|

|

|

|

|

|

dx ≤ ∫Ω′∩Kc

2dx
√

2� − �2
≤

2|Ω′|�
√

2� − �2
,

it follows from (3.23) and |Ω′ ⧵ V | = 0 that

∫Ω′∩K
2�

√

1 − |Du�|2
dx ≤ |Ω ⧵Ω′|� +

⟨

�, u� − �̄
⟩

+
2|Ω′|�

√

2� − �2
.

Therefore,
(3.25)

∫Ω′
dx

√

1 − |Du�|2
= ∫Ω′∩K

dx
√

1 − |Du�|2
+ ∫Ω′∩Kc

dx
√

1 − |Du�|2

≤ 1
2�

(

|Ω ⧵Ω′|� + ‖�‖∗‖u� − �̄‖ +
2|Ω′|�

√

2� − �2

)

+
|Ω′|�

√

2� − �2
.

For  ∈ �(Ω), (3.4) and simple estimates for theW 1,p1 norm give

‖u� − �̄‖ ≤ 4

(

sup
�∈ℱ

‖�‖C()Ω) + diam�(Ω) + |Ω|
1
p1
�

)

.

Hence, (3.13) holds by (3.25). Notice that, by (3.13) and the arbitrariness of Ω′,
|Du�| < 1 a.e. on Ω.

Next, we shall prove (3.14)–(3.16). Let  ∈ �(Ω) and consider as above ut ≐
(1 − t)u� + t ∈ �(Ω) for t ∈ (0, 1). By combining |Du�| < 1 a.e. Ω, (3.20) and
(3.18), for each t ∈ (0, 1),
(3.26)
√

1 − |D |2−
√

1 − |Du�|2 ≤
2Du� ⋅ (Du� −D ) − t|Du� −D |2

√

1 − |Dut|2 +
√

1 − |Du�|2
a.e. on Ω.

Thus letting t→ 0 on the set {|Du�| < 1}, we deduce (3.15).
On the other hand, from (3.17) and (3.20), it follows that

∫Ω

2Du� ⋅ (Du� −D ) − t|Du� −D |2
√

1 − |Dut|2 +
√

1 − |Du�|2
dx ≤

⟨

�, u� −  
⟩

.
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Using a variant of Fatou’s lemma as t→ 0 and (3.26), we therefore deduce

∫Ω

(
√

1 − |D |2−
√

1 − |Du�|2
)

dx ≤ ∫Ω

Du� ⋅ (Du� −D )
√

1 − |Du�|2
dx ≤

⟨

�, u� −  
⟩

,

which proves (3.16). Taking (3.15) into account, both the negative and the positive
part of

Du� ⋅ (Du� −D )
√

1 − |Du�|2

are integrable, and (3.14) holds.
(ii) We first observe that (3.6), I�(u�) ≤ I�(0) = 0 and ‖�‖∗ ≤ 1 imply that

‖u�‖ ≤ C1(m,1). One can therefore perform the same computations in (3.17)–
(3.23) with Ω = ℝm, �̄ = 0, � = 1∕8 and replacing (3.24) with

0 ≤ ∫ℝm∖Ω′

(

1 −
√

1 − |Du�|2
)

dx ≤ I�(u�) +
⟨

�, u�
⟩

≤ 1C1.

Inequality (3.25) becomes

∫Ω′
dx

√

1 − |Du�|2
≤ 4

(

21C1 + C2|Ω′|�
)

+ C2|Ω′|�,

for some absolute constant C2. The rest of the proof follows verbatim, taking into
account that 1−

√

1 − |p|2 ≤ |p|2 onB1(0) and thus
√

1 − |D |2−
√

1 − |Du�|2 =

(1−
√

1 − |Du�|2) − (1 −
√

1 − |D |2) ∈ L1(ℝm). This completes the proof. �

Remark 3.11. Inequality (3.15) has a nice geometric interpretation, holding more
generally for pairs of Lipschitz functions u,  with |Du| < 1, |D | ≤ 1 a.e. on Ω.
Indeed, if we consider the normal vectors n′u ≐ Du+)0, n′ = D +)0 (respectively,
timelike and causal a.e. onΩ), the reversed Cauchy-Schwarz inequality −n′u ⋅n

′
 ≥

|n′u|L|n
′
 |L is equivalent to

n′u
|n′u|L

⋅ (n′u − n′ ) ≥ |n′ |L − |n′u|L,

that can be rewritten as (3.15) with u replacing u�.

3.5. Global minimizers VS solutions to (). In this section, we describe in de-
tail the interplay between solutions of () and global minimizers of I�, stating
some useful equivalent characterizations of the solvability of () that, perhaps
surprisingly, hold without assuming any regularity of )Ω.
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Proposition 3.12 (Approximation). Let Ω ⊂ ℝm be an open set, let u,  ∶ Ω → ℝ
and for " > 0 define

 u" ≐ max{u,  − "} + min{u,  + "} − u =
⎧

⎪

⎨

⎪

⎩

u if | − u| < ",

 + " if u ≥  + ",

 − " if u ≤  − ".

Consider a sequence {"j} ⊂ ℝ+, "j → 0 and functions uj ∶ Ω → ℝ, and define
 j ≐  uj"j .

(i) If m ≥ 2, Ω is a bounded domain, � ∈ ()Ω) and u, uj ,  ∈ �(Ω) satisfy
uj → u in (Ω), then { j} ⊂ �(Ω) and
(a)  j ≡ uj onΩ⧵Ωj for some setΩj ⋐ Ω. Moreover, if for someΩ′ ⋐ Ω

it holds  ≡ u and |uj − u| < "j on Ω ⧵Ω′, then  j ≡ uj on Ω ⧵Ω′;
(b) as j →∞,  j →  inW 1,q(Ω) ∩ C(Ω) for each q ∈ [1,∞);

(ii) If m ≥ 3, Ω = ℝm and u, uj ,  ∈ 0(ℝm) satisfy uj → u in (ℝm), then
{ j} ⊂ 0(ℝm) and (a) holds. Furthermore, (b) holds with q ∈ [2∗,∞),
and ‖D j −D ‖q → 0 for all q ∈ [2,∞).

Proof. (i) By u, uj ,  ∈ �(Ω) and Proposition 3.5, u, uj ,  ∈ C(Ω) with u = uj =
 = � on )Ω. Remark that by construction,

(3.27)  j ∈ C(Ω), ‖ j −  ‖∞ ≤ "j → 0, Ωj ≐ {|uj −  | ≥ "j} ⋐ Ω.

Note also that  j ≡ uj onΩ∖Ωj . Furthermore, if  ≡ u and |uj −u| < "j onΩ⧵Ω′
for some Ω′ ⋐ Ω, then the identity |uj −  | = |uj − u| < "j holds on Ω ⧵ Ω′ and
the definition of  j guarantees that  j ≡ uj on Ω∖Ω′. Therefore, (a) holds.

Next, the identity

(3.28) D j =

{

D a.e. on | − uj| ≥ "j ,

Duj a.e. on | − uj| < "j
implies that |D j| ≤ 1 a.e. on Ω. Since  j = uj on Ω ⧵ Ωj and uj ∈ �(Ω), we
infer  j ∈ �(Ω). In addition, from uj → u in (Ω), we infer uj → u in C(Ω).
Thus, fix {�j} such that �j → 0 and ‖uj − u‖∞ < �j . Taking a subsequence {jk},
we have Dujk(x)→ Du a.e. in Ω. Then as k→∞, a.e. Ω,
(3.29)
|D jk −D | = |Dujk −D | ⋅ 1{| −ujk |<"jk} ≤ |Dujk −D | ⋅ 1{| −u|<"jk+�jk}

→ |Du −D | ⋅ 1{| −u|=0} = 0,

where we used Stampacchia’s theorem (see [19, Theorem 4.4]). Since the limit is
unique, D j → D a.e. on Ω. Thus, the dominated convergence theorem with
‖D j‖∞ ≤ 1 yields ‖D j −D ‖q → 0 for each q ∈ [1,∞). From (3.27), (b) also
holds.

(ii) When Ω = ℝm, from (3.28) it is easily seen that  j ∈ 0(ℝm). In addition,
by Proposition 3.3, ‖uj − u‖∞ → 0 and 0(ℝm) ↪ C0(ℝm). Hence, we may
apply the same argument as above to prove (a) in this case. As for (b), setting
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fk ≐ |Dujk − D |, gk ≐ 1{| −u|<"jk+�jk} and f = |Du − D |, we deduce from
(3.29) that
‖D jk−D ‖2 ≤ ‖fkgk‖2 ≤ ‖(fk−f )gk‖2+‖fgk‖2 ≤ ‖(fk−f )‖2+‖fgk‖2 → 0

as k→∞, where we used ujk → u in (ℝm), fgk → 0 a.e. ℝm and the dominated
convergence theorem. The bound ‖D jk − D ‖∞ ≤ 2 then implies ‖D jk −
D ‖q → 0 for all q ∈ [2,∞). Since the limit is unique, ‖D j − D ‖q → 0 for
all q ∈ [2,∞). From ‖ j −  ‖∞ → 0 and Sobolev’s inequality, it follows that
‖ j −  ‖W 1,q → 0 for all q ∈ [2∗,∞) and (b) also holds. �

Definition 3.13. We say that u ∈ �(Ω) is a local minimizer for I� if I�(u) ≤ I�( )
for every  ∈ �(Ω) with {u ≠  } ⋐ Ω. Similarly, for Ω = ℝm, we say that
u ∈ 0(ℝm) is a local minimizer for I� if I�(u) ≤ I�( ) for every  ∈ 0(ℝm)
with {u ≠  } ⋐ ℝm.

We are ready to state the following

Proposition 3.14 (Minimizers VS solutions to ()). Let m ≥ 2, Ω be a bounded
domain, � ∈ ()Ω) and u a local minimizer. Then, u = u�. Furthermore, the
following are equivalent:

(i) u is a weak solution to (), that is,
(3.30)

1
√

1 − |Du|2
∈ L1loc(Ω), ∫Ω

Du ⋅D�
√

1 − |Du|2
dx = ⟨�, �⟩ ∀ � ∈ Lipc(Ω);

(ii) u = u� and

∫Ω
Du ⋅ (Du −D )
√

1 − |Du|2
dx = ⟨�, u −  ⟩ ∀ ∈ �(Ω) strictly spacelike;

(iii) u = u� and
(3.31)

∫Ω
Du ⋅ (Du −D )
√

1 − |Du|2
dx = ⟨�, u −  ⟩ ∀ ∈ �(Ω) with { ≠ u} ⋐ Ω;

(iv) u = u� and

∫Ω
Du ⋅ (Du −D )
√

1 − |Du|2
dx = ⟨�, u −  ⟩ ∀ ∈ �(Ω).

In particular, if u is a classical solution to (), then u satisfies any of (i)–(iv).
The same assertions hold true for m ≥ 3 and Ω = ℝm.

Proof. Since the caseΩ = ℝm may be proved similarly, we only deal with bounded
domains. LetΩ be a bounded domain and u a local minimizer. For  ∈ �(Ω) and
" > 0, consider the approximation  u" constructed in Proposition 3.12, that satisfies
{ u" ≠ u} ⋐ Ω. We first notice I�(u) ≤ I�( u" ). Since I� ∈ C(�(Ω),ℝ) as
observed in Subsection 3.1, Proposition 3.12 implies I�( u" ) → I�( ) and I�(u) ≤
I�( ) for every  ∈ �(Ω). Thus, u = u�. Also, if u is a classical solution to (),
then an integration by parts shows that (3.30) holds.
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We next prove that (iv)⇒ (ii)⇒ (i)⇒ (iii) ⇒ (iv).

(iv)⇒ (ii) is obvious.

(ii) ⇒ (i).
Since u = u�, the integrability (1− |Du|2)−1∕2 ∈ L1loc(Ω) follows by Proposition

3.9. By density and the dominated convergence theorem, it is enough to prove (i) for
� ∈ C1c (Ω). Fix an open set Ω′ satisfying {� ≠ 0} ⋐ Ω′ ⋐ Ω, and choose a strictly
spacelike extension �̄ of�, for instance the solution to () for � = 0 as in Theorem
1.3. Since supΩ′ |D�̄| < 1, for |t| small enough, the function  ≐ �̄+ t� ∈ �(Ω)
is strictly spacelike and thus

∫Ω
Du ⋅ (Du −D�̄ − tD�)

√

1 − |Du|2
dx = ⟨�, u − �̄ − t�⟩.

Differentiating at t = 0 gives (3.30).

(i) ⇒ (iii).
Identity (3.31) follows immediately from (3.30) since u− ∈ Lipc(Ω). To show

that (3.31) implies u = u�, first observe that |Du| < 1 a.e on Ω, in view of the first
property in (3.30). Let  ∈ �(Ω) with { ≠ u} ⋐ Ω. Apply Remark 3.11 and
(3.31) to deduce

∫Ω

(
√

1 − |D |2 −
√

1 − |Du|2
)

dx ≤ ∫Ω
Du ⋅ (Du −D )
√

1 − |Du|2
dx = ⟨�, u −  ⟩,

which can be rewritten as I�(u) ≤ I�( ). Hence, u is a local minimizer and thus it
coincides with u�.

(iii) ⇒ (iv).
We recall (3.16), argue by contradiction and suppose that there exist  ∈ �(Ω)

and � > 0 such that

(3.32) ∫Ω
Du ⋅ (Du −D )
√

1 − |Du|2
dx ≤ ⟨�, u −  ⟩ − �.

Select Ω′ ⋐ Ω satisfying

(3.33) ∫Ω∖Ω′

|

|

|

|

|

|

Du ⋅ (Du −D )
√

1 − |Du|2

|

|

|

|

|

|

dx < �
4
,

which is possible by (3.14). Fix a sequence "j ↓ 0 and consider the approximation
 j for  constructed in Proposition 3.12 by choosing uj = u for each j. By con-
struction,  j ≡ u on Ω ⧵ Ωj for some Ωj ⋐ Ω, and, without loss of generality, we
can assume that Ω′ ⊂ Ωj as well as D j → D a.e. Ω. From  j →  strongly in
(Ω), we get

(3.34) ⟨�, u −  j⟩ → ⟨�, u −  ⟩ as j →∞.
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Also, by (3.13) in Proposition 3.9 and the dominated convergence theorem,

(3.35) ∫Ω′
Du ⋅ (Du −D j)
√

1 − |Du|2
dx → ∫Ω′

Du ⋅ (Du −D )
√

1 − |Du|2
dx as j →∞.

By the definition of  j ,

(3.36) Du −D j = (Du −D ) ⋅ 1Vj , where Vj ≐
{

|u −  | ≥ "j
}

,

hence from (3.32) and (3.34), we infer

⟨�, u −  j⟩ − � ≥ ∫Ω
Du ⋅ (Du −D )
√

1 − |Du|2
dx − oj(1)

= ∫Ω∖Ω′
Du ⋅ (Du −D )
√

1 − |Du|2
dx + ∫Ω′

Du ⋅ (Du −D j)
√

1 − |Du|2
dx − oj(1) by (3.35)

≥ −�
4
+ ∫Ω′

Du ⋅ (Du −D j)
√

1 − |Du|2
dx − oj(1) by (3.33)

= −�
4
+ ∫Ωj

Du ⋅ (Du −D j)
√

1 − |Du|2
dx − ∫Ωj∖Ω′

Du ⋅ (Du −D j)
√

1 − |Du|2
dx − oj(1)

= −�
4
+ ⟨�, u −  j⟩ − ∫(Ωj∖Ω′)∩Vj

Du ⋅ (Du −D )
√

1 − |Du|2
dx − oj(1)

by (3.31) and (3.36)

≥ −�
2
+ ⟨�, u −  j⟩ − oj(1) by (3.33),

a contradiction if j is large enough. �

Remark 3.15. For Ω = ℝm, a different proof of (iii)⇒ (iv) was given in [8, Theo-
rem 6.4].

4. WEAK SOLUTIONS WITH LIGHT SEGMENTS

In this section, for m ≥ 3 we give examples of weak solutions u of () with
a light segment, and whose mean curvature is of class Lq for suitable q’s. The
first example is instructive, but the boundary data do not satisfy the strict spacelike
condition. The second is slightly complicated, but the solution satisfies the zero
Dirichlet boundary condition. The third example, deferred to Appendix A for com-
putational reasons, is similar to the second one but has a higher dimensional set of
light segments. Here is our first example:

Proposition 4.1. Assume m ≥ 3, � ∈ [1, m− 1) and Ω ⊂ ℝm is a bounded domain
with 0 ∈ Ω. Then, by setting x′ = (x1,… , xm−1), for sufficiently small " > 0 the
function u(x′, xm) ≐ (1 − "2�|x′|2�)xm satisfies

∫Ω
Du ⋅D�

√

1 − |Du|2
dx = ∫Ω

�u� dx ∀ � ∈ Lipc(Ω),
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where �u ≐ −div(wDu) and w ≐ (1 − |Du|2)−
1
2 . Moreover,

(4.1)
�u ∈ Lq(Ω) ∀ q < m − 1

2 − �
if 1 ≤ � < 2, �u ∈ L∞(Ω) if 2 ≤ � < m − 1.

Furthermore, w ∈ Lq(Ω) for q < (m − 1)∕� and the second fundamental form IIu
corresponding to the graph of u satisfies
(4.2) ‖

‖

IIu‖‖ ∈ L
q(Ω) for all q < m − 1.

In particular, u is a weak solution to () and has a light segment on {x′ = 0}∩Ω.

Remark 4.2. In Proposition 4.1, the function u ∈ C2 is weak solution to () on
Ω and �u ∈ L∞(Ω) for � ≥ 2. Thus, for � ∈ L∞ the fact that u does not have light
segments is not a necessary condition for the C1,�–regularity of u.

Below, we shall use the following formula for functions u(y, z, xm) = u(|y|, |z|, xm),
where 1 ≤ l ≤ m − 2, y ∈ ℝm−l, z ∈ ℝl−1 and x = (y, z, xm) ∈ ℝm. By writing
u(r, s, xm) for r = |y| and s = |z|, it is readily checked that

(4.3) Du = ur
y
|y|

+ us
z
|z|

+ umem

and
(4.4)

D2u =

⎛

⎜

⎜

⎜

⎜

⎝

urr
y
|y|
⊗ y

|y|
+ ur

r

(

Im−l −
y
|y|
⊗ y

|y|

)

urs
y
|y|
⊗ z

|z|
urm

y
|y|

urs
z
|z|
⊗ y

|y|
uss

z
|z|
⊗ z

|z|
+ us

s

(

Il−1 −
z
|z|
⊗ z

|z|

)

usm
z
|z|

urm
yT

|y|
usm

zT

|z|
umm

⎞

⎟

⎟

⎟

⎟

⎠

,

where Ik is the identity matrix of size k. Since the matrix

urr
y
|y|

⊗
y
|y|

+
ur
r

(

Im−l −
y
|y|

⊗
y
|y|

)

has eigenvalues urr and ur∕r with multiplicities 1 and m − l − 1 respectively, we
see that
(4.5)
|

|

|

D2u||
|

2
= u2rr + (m − l − 1)

u2r
r2
+ u2ss + (l − 1)

u2s
s2
+ u2mm + 2u

2
rs + 2u

2
rm + 2u

2
sm,

and

(4.6) Δu = urr +
m − l − 1

r
ur + uss +

l − 2
s

us + umm.

From (4.3) and (4.4) it follows that

(4.7)
D2u (Du, ⋅) =

[

urrur + ursus + urmum
] y
|y|

+
[

ursur + ussus + usmum
] z
|z|

+
[

urmur + usmus + ummum
]

em,
and
(4.8)
D2u (Du,Du) = urru2r + 2ursurus + 2urmurum + ussu

2
s + 2usmusum + ummu

2
m.
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We remark that for u(|y|, xm), where x = (y, xm) ∈ ℝm−1 ×ℝ, (4.3)–(4.8) also hold
with l = 1 and us, urs, uss, ums = 0. Hereafter C will stand for a constant whose
value may change from line to line.

Proof of Proposition 4.1. We first prove (4.1). Writing u(x′, xm) = u(|x′|, xm) =
u(r, xm), we have

ur = −2�"2�r2�−1xm, um = 1 − "2�r2� ,

urr = −2�(2� − 1)"2�r2�−2xm, urm = −2�"2�r2�−1, umm = 0.

Hence,

w−2 = 1 − |Du|2 = "2�r2�
[

2 − "2�r2� − 4�2"2�r2�−2x2m
]

.

SinceΩ ⊂ ℝm is bounded and � ≥ 1, if " > 0 is sufficiently small, then 2−"2�r2�−
4�2"2�r2�−2x2m ≥ 1 for each (x′, xm) ∈ Ω. This yields

(4.9) w(x) =
(

1 − |Du(x)|2
)− 1

2 ≤ "−�r−� = Cr−� ∀ x ∈ Ω with r = |x′| > 0.

Since r = |x′| and x′ ∈ ℝm−1 with m ≥ 3, w ∈ Lq(Ω) holds for all q < (m− 1)∕�.
By (4.6) and (4.8), using (4.9), the assumption � ≥ 1 and the fact thatΩ is bounded,
we have

(4.10) |

|

�u|| ≤ |wΔu| + |

|

|

w3D2u (Du,Du)||
|

≤ C
[

r�−2 + r3�−4
]

≤ Cr�−2,

which implies (4.1).
Next, since � ≥ 1 and Ω is bounded, it follows from (4.5) and (4.7) that

|

|

|

D2u||
|

≤ C
{

|

|

urr|| +
|

|

|

|

ur
r
|

|

|

|

+ |

|

urm|| + |

|

umm||

}

≤ C
{

r2�−2 + r2�−1
}

≤ Cr2�−2,

|

|

|

D2u(Du, ⋅)||
|

≤ |

|

urrur + urmum|| + |

|

urmur + ummum|| ≤ C
{

r4�−3 + r2�−1 + r4�−2
}

≤ Cr2�−1.

With (4.9), we infer from (2.4) that
(4.11)
‖

‖

IIu‖‖ ≤ w |

|

|

D2u||
|

+ 2w2 ||
|

D2u (Du, ⋅)||
|

+w3 ||
|

D2u (Du,Du)||
|

≤ C
[

r�−2 + r−1
]

≤ Cr−1.

Therefore, (4.2) holds.
Finally, we prove that u is a weak solution. Let � ∈ Lipc(Ω). From (4.1) and the

dominated convergence theorem, it follows that

(4.12) ∫Ω
�u� dx = lim�→0∫Ω∩{|x′|>�}

�u� dx = − lim�→0∫Ω∩{|x′|>�}
div (wDu) � dx.

Since � has compact support in Ω, by the divergence theorem,
(4.13)
−∫Ω∩{|x′|>�}

div (wDu) � dx = ∫Ω∩{|x′|=�}
w�Du ⋅ x

′

|x′|
dℋm−1

� + ∫Ω∩{|x′|>�}
wDu ⋅D� dx.

By
|

|

|

|

Du(x) ⋅ x
′

|x′|
|

|

|

|

= 2�"2��2�−1|xm| if |x′| = �,
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it follows from (4.9) and the assumption m ≥ 3 that

lim sup
�→0 ∫Ω∩{|x′|=�}

|

|

|

|

w�Du ⋅ x
′

|x′|
|

|

|

|

dℋm−1
� ≤ lim

�→0
C�−��2�−1�m−2 = 0.

Finally, since w ∈ L1 because of (4.9) and � < m − 1, it follows from (4.12) and
(4.13) that

∫Ω
�u� dx = ∫Ω

wDu ⋅D� dx,

and we complete the proof. �

Next, we modify the function in Proposition 4.1 to make the boundary data sat-
isfy a strictly spacelike condition. To this end, for " > 0, we first fix �" ∈ C∞c (ℝ)
satisfying

(4.14) �" ≡ 1 on
[

− 1
2"
, 1
2"

]

, �" ≡ 0 on ℝ ⧵
(

−1
"
, 1
"

)

, ‖� ′"‖L∞(ℝ) ≤ 4".

Next, let a" ∈ C∞c (ℝ) be a function with

(4.15)
a"(−t) = a"(t), a"(t) =

{1 if t ∈ [0, "],
0 if t ∈ [2",∞),

a′"(t) < 0 if t ∈ (", 2"), a"(t) = 1 − d" exp
(

− 1
t − "

)

if t ∈
(

", 3"
2

]

,

where d" > 0 is chosen so that a"(3"∕2) = 1∕2. Then we set

(4.16) A"(t) ≐ ∫

t

0
a"(s) ds ∈ C∞(ℝ)

and for � ≥ 1,
u"(x′, xm) ≐ �"(|x′|)

(

1 − "2�|x′|2�
)

�"(xm)A"(xm) ∈ C2c (ℝ
m).

We remark that u" has compact support in ℝm and a light segment:
u"(0, xm) = xm if |xm| ≤ ".

Proposition 4.3. Let m ≥ 3, � ∈ [1, m − 1) and assume that " > 0 is sufficiently
small. Write w" ≐ (1 − |Du"|2)−1∕2, �u" ≐ −div(w"Du") and denote by IIu" the
second fundamental form corresponding to the graph of u". Then

(4.17) w" ∈ L
q
loc(ℝ

m) and �u" ,
‖

‖

‖

IIu"
‖

‖

‖

∈ Lq(ℝm) for all q < m − 1
�

.

Moreover, u" satisfies

∫ℝm

Du" ⋅D�
√

1 − |Du"|2
dx = ∫ℝm

�u"� dx ∀ � ∈ Lipc(ℝm).

In particular, ifΩ ⊂ ℝm satisfiesQ" ≐ [−"−1, "−1]m ⊂ Ω, then u" is a weak solution
to () with zero Dirichlet boundary condition.

Remark 4.4. Between Propositions 4.1 and 4.3, the role of � ∈ [1, m − 1) is dif-
ferent. In fact, in Proposition 4.3, the integrability of �u" and IIu" becomes worse
when we increase �. However, the integrability of w and w" does not change.
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Proof of Proposition 4.3. Writing u"(r, xm) = �"(r)(1 − "2�r2�)�"(xm)A"(xm), we
first prove (4.17). From (4.15), we see that

(4.18) |

|

A"(xm)|| ≤ 2" for all xm ∈ ℝ.

Moreover, notice that

(4.19)
(u")r =

[

� ′"(r)
(

1 − "2�r2�
)

− �"(r)2�"2�r2�−1
]

�"(xm)A"(xm),

(u")m = �"(r)(1 − "2�r2�)
[

� ′"(xm)A"(xm) + �"(xm)a"(xm)
]

.

When |xm| ≥
3"
2 , since a"(xm) ≤

1
2 and 0 ≤ �"(r)(1 − "2�r2�) ≤ 1 due to (4.14),

if " > 0 is small, then (4.18) and (4.14) give

1 − |Du"(x)|2 ≥ 1 − C"2 −
(

a"(xm)
)2 ≥ 1

2
.

Since u" ∈ C2(ℝm),
(4.20)
w"(x) ≤

√

2, |

|

|

�u"(x)
|

|

|

+ ‖

‖

‖

IIu"(x)
‖

‖

‖

≤ C for each x ∈ ℝm with |xm| ≥
3"
2
.

When 1
2"

≤ r and |xm| ≤
3"
2
, remark that for �� ≐ 2−2� > 0,

0 ≤ �"(r)
(

1 − "2�|x′|2�
)

≤ 1 − �� .

Thus, by (4.14), (4.18), (4.19) and 0 ≤ a(xm) ≤ 1, if " is small enough, then for
some constant 
� > 0,

1 − |Du(x)|2 ≥ 1 − C"2 −
(

1 − ��
)2 [C"2 + 1

]

≥ 
2� > 0.

Hence,
(4.21)
w"(x) ≤ 
−1� , |

|

|

�u"(x)
|

|

|

+ ‖

‖

‖

IIu"(x)
‖

‖

‖

≤ C ∀ x ∈ ℝm with 1
2"

≤ r and |xm| ≤
3"
2
.

When r ≤ 1
2"

and |xm| ≤ ", since u"(x′, xm) = (1 − "2�r2�)xm = u(r, xm) where
u appears in Proposition 4.1, (4.9) holds for w". Moreover, (4.10) and (4.11) yield
(4.22)
w"(x) ≤ Cr−� , |

|

�"(x)|| ≤ Cr�−2, ‖

‖

‖

IIu"(x)
‖

‖

‖

≤ Cr−1 for each r ≤ 1
2"

and |xm| ≤ ".

When r ≤ 1
2" and " < |xm| ≤

3"
2 , from u"(r, xm) = (1−"2�r2�)A"(xm), it follows

that

(4.23)

(u")r = −2�"2�r2�−1A"(xm), (u")m =
(

1 − "2�r2�
)

a"(xm),

(u")rr = −2�(2� − 1)"2�r2�−2A"(xm), (u")rm = −2�"2�r2�−1a"(xm),

(u")mm =
(

1 − "2�r2�
)

a′"(xm).
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By 1
2
≤ a"(xm) ≤ 1 due to (4.15), we see from (4.18) that

1 − |Du"(x)|2 = 1 − 4�2"4�r4�−2A2"(xm) −
(

1 − "2�r2�
)2 a2"(xm)

=
(

1 − a"(xm)
) (

1 + a"(xm)
)

+ "2�r2�
[(

2 − "2�r2�
)

a2"(xm) − 4�
2"2�r2�−2A2"(xm)

]

≥ 1 − a"(xm) + "2�r2�
[1
4
− 16�2"4

]

.

Thus, for sufficiently small " > 0,
(4.24)
w"(x) ≤ C

(

1 − a"(xm) + r2�
)− 1

2 for all x ∈ ℝm with r ≤ 1
2"

and " < |xm| ≤
3"
2
.

Now, w" ∈ L
q
loc(ℝ

m) for all q < (m−1)∕� easily follow from (4.20), (4.21), (4.22)
and (4.24), because of a"(−xm) = a"(xm) ∈ [0, 1] and (1−a"(xm)+r2k)−1∕2 ≤ r−� .

Regarding �u" , recall that

�u" = −w"Δu" −w3"D
2u"(Du", Du").

By (4.24), we get

(4.25) |

|

w"Δu"|| ≤ Cr−� for all x ∈ ℝm with r ≤ 1
2"

and " < |xm| ≤
3"
2
.

On the other hand, by (4.23) and (4.8),
(4.26)
w3"

|

|

|

D2u"(Du", Du")
|

|

|

≤ Cw3"
[

r6�−4 + r4�−2 + |

|

a′"(xm)||
]

≤ Cr�−2 + Cw3" ||a
′
"(xm)|| .

From (4.20), (4.21), (4.22), (4.25), (4.26) and a"(xm) = a"(−xm), to show (4.17)
for �u" it suffices to verify

(4.27) w3" ||a
′
"(xm)|| ∈ L

q
(

B′1∕(2")(0) ×
(

", 3"
2

))

for each q < m − 1
�

.

It is enough to check it for m−13� < q < m−1
�

. Due to (4.24) and m ≥ 3,

(4.28)

∫

3
2 "

"
dxm ∫B′1∕(2")(0)

w3q" |

|

a′"(xm)||
q dx′

≤ C ∫

3"
2

"
dxm ∫

1
2"

0
|

|

a′"(xm)||
q (1 − a"(xm) + r2�

)− 3q
2 rm−2 dr

≤ C ∫

3"
2

"
dxm ∫

(1−a"(xm))1∕(2�)

0
|

|

a′"(xm)||
q (1 − a"(xm)

)− 3q
2 rm−2 dr

+ C ∫

3"
2

"
dxm ∫

1
2"

(1−a"(xm))1∕(2�)
|

|

a′"(xm)||
q r−3q�+m−2 dr

≤ C ∫

3"
2

"
|

|

a′"(xm)||
q (1 − a"(xm)

)− 3q
2 +

m−1
2� dxm.
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Recalling a"(xm) = 1 − d" exp
(

− 1
xm−"

)

in (4.15), we have

|

|

a′"(xm)||
q (1 − a"(xm)

)
m−1−3q�

2� ≤ C"
(

xm − "
)−2q exp

(

�q − (m − 1)
2�(xm − ")

)

.

Hence, if m−13� < q < m−1
�

, then

∫

3"
2

"
|

|

a′"(xm)||
q (1 − a"(xm)

)− 3q
2 +

m−1
2� dxm <∞.

Thus, �u" ∈ L
q(ℝm) holds for each q < (m − 1)∕�.

For the assertion that u" is a weak solution to (), thanks to (4.22) and (4.24),
we may obtain it as in the proof of Proposition 4.1 and omit the details.

Finally, we show that ‖ IIu" ‖ satisfies (4.17). Due to u" ∈ C
2(ℝm), (4.20), (4.21),

(4.22), it is enough to check that

‖

‖

‖

IIu"
‖

‖

‖

∈ Lq
(

B′1∕(2")(0) ×
(

", 3"
2

))

for each q < m − 1
�

.

Recalling
‖

‖

‖

IIu"
‖

‖

‖

≤ w"
|

|

|

D2u"
|

|

|

+ 2w2"
|

|

|

D2u"
(

Du", ⋅
)

|

|

|

+w3"
|

|

|

D2u"
(

Du", Du"
)

|

|

|

,

using (4.26) and (4.27) we only have to check the integrability of w"|D2u"| and of
w2"|D

2u"(Du", ⋅)|. By (4.5), (4.7) and (4.23),

|

|

|

D2u"
|

|

|

≤ C
(

r2�−2 + r2�−1 + |

|

a′"(xm)||
)

,
|

|

|

D2u"
(

Du", ⋅
)

|

|

|

≤ C
(

r4�−3 + r2�−1 + r4�−2 + |

|

a′"(xm)||
)

.

Thus, (4.24) and � ≥ 1 yield

w"
|

|

|

D2u"
|

|

|

+w2"
|

|

|

D2u"
(

Du", ⋅
)

|

|

|

≤ Cr−1 + Cw2" ||a
′
"(xm)|| .

Since w" ≥ 1 and w2"|a
′
"(xm)| ≤ w3"|a

′
"(xm)|, (4.27) implies

w"
|

|

|

D2u"
|

|

|

+w2"
|

|

|

D2u"
(

Du", ⋅
)

|

|

|

∈ Lq
(

B′1∕(2")(0) ×
(

", 3"
2

))

.

Hence, IIu" satisfies (4.17) and we complete the proof. �

5. MAIN TOOLS

The main results of this section are Theorem 5.2 (Removable singularity), Theo-
rem 5.5 (nonsolvability of ()), the L2-estimate of the second fundamental form
II (Proposition 5.10 and Corollary 5.11) and the higher integrability of w� (Theo-
rem 5.13). To prove them, we need to regularize � and u�, a device which will also
be necessary in Section 6.
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5.1. Setup for our strategy. According to Remark 3.4, defining p = q′ it holds

(Ω) +W −1,p(Ω) ⊂ (Ω)∗ for each

{

p ∈ [p′1,∞) if Ω is bounded,

p ∈ [p′1, 2∗] if Ω = ℝm.

We shall hereafter restrict to

� ∈(Ω) + Lp(Ω) for p ∈ (1, 2∗],

where Lp(Ω) ⊂ W −1,p(Ω) is the set of pairs (v, 0) as in Remark 3.4.
Since 2∗ = 1 when m = 2, hereafter the space Lp(Ω) is tacitly
assumed to be empty when p ∈ (1, 2∗] and m = 2.

Notice that (Ω) + Lp(Ω) ↪ (Ω)∗ provided that p1 is sufficiently large. For
instance, we may (and henceforth do) choose

(5.1) p1 = 3 if m = 2, p1 = max{2∗, m} + p′ if m ≥ 3.

By a standard mollifying argument (see [40, Chapter 2]) and Young’s inequality,
for given

� = � + f ∈(Ω) + Lp(Ω)

we can find sequences of functions gj , fj ∈ C∞(Ω) such that, setting �j ≐ gjdx
and recalling p = q′,

‖�j‖(Ω) ≤ ‖�‖(Ω), ‖fj‖Lp(Ω) ≤ ‖f‖Lp(Ω)
�j ⇀ � weakly in(Ω), fj → f strongly in Lp(Ω) (hence, in (Ω)∗).

Define �j ≐ �j + fj . When Ω = ℝm, the construction via convolution also guar-
antees, for each " > 0, the existence of R" > 0 such that (3.9) holds for {�j}.
Moreover, up to replacing �, f by �1Bj and f1Bj and using a diagonal argument,
we can assume that gj , fj ∈ C∞c (ℝ

m).
Fix � ∈ ()Ω) if Ω is bounded, and denote the minimizer of I�j by uj . Because

of Theorem 1.3 or [8, Theorem 1.5 and Remark 3.4], respectively ifΩ is bounded or
if Ω = ℝm, uj is a smooth solution to () with Lorentzian mean curvature Hj ≐
−(gj+fj) (thus, uj minimizes I�j with �j = −Hjdx). Writewj ≐ (1−|Duj|2)−1∕2.
Proposition 3.7 yields uj → u� strongly inW 1,q(Ω)∩C(Ω), where q ∈ [1,∞)when
Ω is bounded, and q ∈ [2∗,∞) when Ω = ℝm, and moreover ⟨�j , uj⟩ → ⟨�, u�⟩.
Therefore, using Proposition 3.14, to show that u� weakly solves () it is enough
to prove that

(5.2) lim
j→∞∫Ω

wjDuj ⋅D� dx = ∫Ω
w�Du� ⋅D� dx ∀ � ∈ Lipc(Ω).

Since ‖Duj‖∞ ≤ 1 and we may assume Duj → Du� a.e. on Ω, identity (5.2)
follows from Vitali’s convergence theorem (see [46, Theorem 3.1.9]) provided that
{wj} is locally uniformly integrable in the following sense.
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Definition 5.1. Let Ω ⊂ ℝm be an open subset. We say that a subset ⊂ L1loc(Ω)
is locally uniformly integrable on Ω if, for each Ω′ ⋐ Ω and " > 0, there exists
� = �(",Ω′) such that

A ⊂ Ω′ measurable, |A| < � ⟹ ∫A
|w|dx < " ∀w ∈ .

By de la Vallée-Poussin’s Theorem (see, for instance, [46, Theorem 3.1.10]),
 is locally uniformly integrable if and only if there exists a compact exhaustion
{Ωk}∞k=1 of Ω, that is, Ωk ⋐ Ω, Ωk ↑ Ω, and increasing convex functions fk ∶
ℝ+0 → ℝ+0 such that

lim
t→∞

fk(t)
t

= +∞, sup
w∈ ∫Ωk

fk(|w|)dx <∞ ∀ k.

The purpose of the next subsections is to obtain a local uniform integrability for
{wj}. We begin by studying the behavior of u� in regions where � is singular.

5.2. Removable and unremovable singularities. To our knowledge, the only re-
movable singularity theorem for the prescribed Lorentzianmean curvature equation
is the one in [38]. The theorem considers maximal graphs u that are smooth and
strictly spacelike in a domainΩ′∖E, where E ⋐ Ω′ is compact. Under the assump-
tion that the p-capacity of E is zero for some p ∈ (1, m], and that

(5.3) ∫Ω′∖E
w

p
p−1 dx <∞,

then u can be smoothly extended to a spacelike maximal solution on Ω′. In par-
ticular, by the known relation between Hausdorff measure and capacity (cf. [19]),
compact subsets E with ℋm−p

� (E) = 0 are removable for maximal graphs satisfy-
ing (5.3). However, the proof seems not easy to extend to more general measures
� ≠ 0, and currently we are unable to prove an a-priori estimate yielding (5.3).
Therefore, we take a different approach. Our contribution is the following result,
which applies to any measure and only needs a local uniform integrability for the
sequence of energy densities {wj}.

Theorem 5.2 (Removable singularity). Assume Ω ⊂ ℝm is either a bounded do-
main with m ≥ 2 or ℝm with m ≥ 3. Let

� ∈(Ω) + Lp(Ω), p ∈ (1, 2∗],
and, if Ω is bounded, let � ∈ ()Ω). Choose {p1, �j , uj , wj} as in Subsection 5.1.
Suppose that E ⋐ Ω is a compact set withℋ 1

� (E) = 0. Then, for every open subset
Ω′ ⊂ Ω,

{wj} is locally uniformly
integrable on Ω′∖E ⟹

{wj} is locally uniformly integrable on Ω′, and

∫Ω′
Du� ⋅D�

√

1 − |Du�|2
= ⟨�, �⟩ ∀ � ∈ Lipc(Ω′).

In particular, if {wj} is locally uniformly integrable onΩ∖E, then u� weakly solves
().
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Remark 5.3. The above requirements on E cannot be weakened to ℋ 1
� (E) < ∞.

Indeed, consider the example in Corollary 1.9, and setE = xy. Since u = u� has no
light segments in Ω∖xy, the energies {wj} are locally uniformly integrable there.
This can be shown by combining Lemma 3.8 with [4, Lemma 2.1], proceeding as in
[4, Proof of Theorem 4.1]. However, u� does not solve (), soE is not removable.
As a related example, one can see the nice [32, Example 2].

The result is a consequence of the next lemma, which estimates the growth of w
on balls centered at a given point.

Lemma 5.4. Let Ω ⊂ ℝm be an open set,H ∈ C∞(Ω) and let u solve

−div

(

Du
√

1 − |Du|2

)

= � ≐ −Hdx on Ω.

For any given y ∈ Ω, define

Jy(s) ≐ ∫Bs(y)
dx

√

1 − |Du|2
, 0 < s < d�(y, )Ω).

Then, for each 0 < s < t < d�(y, )Ω), it holds

(5.4) Jy(s) ≤ s
[Jy(t)

t
+ |�|(Bt(y))

]

.

Proof. Let ' ∈ Lipc(Ω). Up to a translation, we may assume u(y) = 0. LetM be
the graph of u. Recalling (2.5), we first test ΔMu = Hw against u' and integrate
by parts to deduce

∫ '‖∇u‖2 dxg = −∫ u'Hw dxg − ∫ ⟨u∇u,∇'⟩ dxg.

We set o = y in (2.6) and write l(x) = ly(x). Multiplying the equation ΔMl2 =
2m +HD̄l2 ⋅ n in (2.8) by ' and integrating by parts we get

2m∫ ' dxg = −2∫ l ⟨∇l,∇'⟩ dxg − ∫ 'HD̄l2 ⋅ n dxg.

Noting that l2(x) = r2(x) − u2(x) and u(y) = 0, and using the identities
l∇l = r∇r − u∇u, w2 = 1 + ‖∇u‖2, D̄l2 ⋅ n = 2w [r (Du,Dr) − u] ,

we infer
(5.5)
m∫ 'w2dxg = m∫ ' dxg + m∫ '‖∇u‖2dxg

= −∫ l ⟨∇l,∇'⟩ dxg − ∫ 'Hw [r(Du,Dr) − u] dxg

−m∫ u'Hw dxg − m∫ ⟨u∇u,∇'⟩ dxg

= −∫ ⟨r∇r + (m − 1)u∇u,∇'⟩ dxg − ∫ 'Hw [r(Du,Dr) + (m − 1)u] dxg.
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First, since ‖∇'‖ ≤ w|D'|, |(Du,Dr)| ≤ 1 and |u| ≤ r due to ‖Du‖∞ ≤ 1, we
get

⟨r∇r + (m − 1)u∇u,∇'⟩ ≤ ‖r∇r + (m − 1)u∇u‖‖∇'‖

≤ mrmax{‖∇r‖, ‖∇u‖}‖∇'‖ ≤ mr|D'|w2.

Setting

T�(') ≐ −
1
m ∫ 'Hw

[

r(Du,Dr) + (m − 1)u
]

dxg,

we deduce from (5.5) the following inequality:

(5.6) ∫ 'w2 dxg ≤ ∫ |D'|rw2 dxg + T�(').

Let 0 < s < t < d�(y, )Ω) and consider, for " > 0 small enough,

'(x) ≐
(

min
{

1,
s + " − r(x)

"

})

+
∈ Lipc(Bt(y)) ⊂ Lipc(Ω).

From |u| ≤ r, |(Du,Dr)| ≤ 1 on the support of ', |'| ≤ 1 and (2.1), and using the
coarea formula, we get

|T�(')| ≤ ∫Bs+"(y)
r|H|wdxg = ∫

s+"

0
�
[

∫)B� (y)
|H|dℋm−1

�

]

d�.

Letting "→ 0 and observing that

∫ |D'|rw2dxg = ∫ |D'|rw dx → s∫)Bs(y)
w dℋm−1

�

for a.e. s, from (5.6), we obtain

∫Bs(y)
w dx ≤ s∫)Bs(y)

w dℋm−1
� +∫

s

0

[

� ∫)B� (y)
|H|dℋm−1

�

]

d� for a.e. s ∈ [0, t].

By the coarea formula, the above inequality can also be rewritten as

− d
ds
Jy(s)
s

≤ 1
s2 ∫

s

0
�fy(�)d� for a.e. s ∈ (0, t],

where

fy(�) = ∫)B� (y)
|H|dℋm−1

� .
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Integrating on [s, t] and using Tonelli’s Theorem, we deduce

−
Jy(t)
t

+
Jy(s)
s

≤ ∫

t

s

1
�2

{

∫

�

0
�fy(�)d�

}

d�

= ∫

t

0
�fy(�)

{

∫

t

max{s,�}

d�
�2

}

d�

≤ ∫

t

0
�fy(�)

[

−1
�

]t

�
d� ≤ ∫

t

0
�fy(�)

1
�
d�

= ∫

t

0
fy(�)d� = ∫Bt(y)

|H|dx = |�|
(

Bt(y)
)

,

which proves (5.4). �

Using Lemma 5.4 and a covering argument, we shall prove Theorem 5.2:

Proof of Theorem 5.2. Write � = �+f with � ∈(Ω) and f ∈ Lp(Ω). Referring
to Subsection 5.1, for m = 2 the term f does not appear, and our choice of p1 imply
that � ∈ (Ω)∗. Let �j , fj be as therein, thus �j → � weakly in(Ω) and fj → f
strongly in Lp(Ω). Choose 0 < R0 ≤ d�(E, )Ω)∕20. The relative compactness of
B10R0(E) implies that �j = �j+fjdx⇀ �weakly in(B10R0(E)), so in particular
there exists a constant C such that

(5.7) ‖

‖

‖

�j
‖

‖

‖(B10R0 (E))
≤ C for each j ≥ 1.

Write �j = −Hjdx. By Proposition 3.9, there exists a constant (R0), depending
on �, R0, ‖�‖∗ such that

(5.8) ∫B4R0 (E)
wj dx ≤ (R0).

For x ∈ BR0(E) and s ∈ (0, R0], set

Jx,j(s) ≐ ∫Bs(x)
wjdx.

Note that (5.8) implies Jx,j(R0) ≤ (R0) for all j ≥ 1 and x ∈ BR0(E), hence
Lemma 5.4 and (5.7), (5.8) ensure that for all x ∈ BR0(E), j ≥ 1 and s ∈ (0, R0),

Jx,j(s) ≤ s
[

(R0)
R0

+ |�j|(BR0(x))
]

≤ 1s,

for some 1(R0,(R0),). By our assumptionℋ 1
� (E) = 0 and since E is com-

pact, for given � > 0 we can cover E with finitely many balls {Bk}Nk=1, Bk =
Brk(xk) satisfying rk < R0 and

∑

k rk ≤ �. We can also assume that xk ∈ BR0(E)
for each k. Therefore, for each fixed " > 0 we can take � > 0 small enough to
satisfy

∫⋃N
k=1 Bk

wjdx ≤
N
∑

k=1
Jxk,j(rk) ≤ 1

N
∑

k=1
rk ≤ 1� <

"
2
.
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Let Ω′′ ⋐ Ω′ be a relatively compact subset. By defining U ≐
⋃N
k=1 Bk, our

assumption yields that {wj} is uniformly integrable on Ω′′∖U . Thus, there exists
� > 0 such that A ⊂ Ω′′∖U and |A| < � imply ∫Awjdx < "∕2. Then, for each
subset A ⊂ Ω′′ with |A| < �,

∫A
wjdx ≤ ∫A∩U

wjdx + ∫A∖U
wjdx <

"
2
+ "
2
= ",

which means that {wj} is uniformly integrable onΩ′′. In particular, (5.2) holds for
every fixed � ∈ Lipc(Ω′) by Vitali’s Theorem. �

We next consider singularities which cannot be removed. While the examples
in Section 4 show that solutions to () may possess light segments when � ∈
Lq(Ω) and q < m − 1, we shall now prove that such solutions exhibit, in a sense, a
“borderline” behavior.

Theorem 5.5. LetΩ ⊂ ℝm be either a bounded domain withm ≥ 2 and� ∈ ()Ω),
or Ω = ℝm with m ≥ 3. Let � ∈ (Ω)∗, and assume that the minimizer u� has a
light segment xy ⊂ Ω with u�(y) − u�(x) = |y − x|. Then, for each � > 0, u� also
minimizes the functional I�� with

�� = � + �(�y − �x),
but it does not solve () weakly for ��.

Proof. For simplicity, we suppress the index � and denote by I ≐ I� and u ≐ u�.
We also write I� ≐ I�� and denote its minimizer by u�. We argue by contradiction
and assume that u� ≠ u for some � > 0. By uniqueness of the minimizer, we infer

I(u) = I�(u) + �
[

u(y) − u(x)
]

> I�(u�) + �
[

u(y) − u(x)
]

,

which implies

u(y) − u(x) <
I(u) − I�(u�)

�
.

Similarly,
I�(u�) = I(u�) − �

[

u�(y) − u�(x)
]

> I(u) − �
[

u�(y) − u�(x)
]

,

thus,

u�(y) − u�(x) >
I(u) − I�(u�)

�
.

Therefore, u�(y) − u�(x) > u(y) − u(x) = |y − x|, contradicting the fact that u� ∈
�(Ω).

We have therefore proved that u = u� for each � > 0. By Theorem 1.3, pick a
strictly spacelike extension �̄ of �, so that, in particular, |y− x|− �̄(y) + �̄(x) > 0.
Since u minimizes I , we see from Proposition 3.9 that

∫Ω
Du ⋅ (Du −D�̄)
√

1 − |Du|2
dx ≤

⟨

�, u − �̄
⟩

=
⟨

��, u − �̄
⟩

− �
⟨

(�y − �x), u − �̄
⟩

=
⟨

��, u − �̄
⟩

− �
[

|y − x| − �̄(y) + �̄(x)
]

<
⟨

��, u − �̄
⟩

.
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Therefore, due to Proposition 3.14, u does not solve () for ��. �

5.3. Local second fundamental form estimate. The study ofW 2,q
loc regularity for

u� leads to investigate the second fundamental form II. We first observe thatW 2,q
loc

estimates, for q ≥ 1, are not to be expected for general �. An easy counterexample
can be produced building on the expression of u� when � = −H + b!m−1�0, that
we now recall.

Example 5.6. GivenH ∈ ℝ, T > 0 and b ∈ ℝ+, the function

ub(x) = �b(|x|) = ∫

T

|x|

b − m−1Htm
√

t2m−2 + (b − m−1Htm)2
dt on BT (0) ⊂ ℝm

solves
⎧

⎪

⎨

⎪

⎩

−div

(

Dub
√

1 − |Dub|2

)

= −H + b!m−1�0 on BT (0),

ub = 0 on )BT (0).

Note that ub in Example 5.6 is strictly spacelike outside of the origin. Take u
with the choices b = T = 1 and H = 0. Fix R ∈ (0, 1) and let s ∈ (0, ‖u‖∞), be
the constant value of u on )BR(0). Then, the function us = min{u, s} solves

⎧

⎪

⎨

⎪

⎩

div

(

Dus
√

1 − |Dus|2

)

= −R1−mℋm−1
�

¬ )BR(0) on B1(0),

us = 0 on )B1(0).

Clearly, us ∉ W 2,q
loc for any q ≥ 1. Note however that, by explicit computation,

u ∈ W 2,q(B1(0)) for each q ∈ [1, m).
It is reasonable to guess that u� ∈ W

2,2
loc (Ω) provided that � ∈ L2(Ω). Indeed, a

stronger estimate holds. First, observe that integrating (2.4) on a domain Ω′ we get
(5.9)

∫M ′
‖ II ‖2dxg = ∫Ω′

w
{

|D2u|2 + 2w2 ||
|

D2u (Du, ⋅)||
|

2
+w4

[

D2u(Du,Du)
]2
}

dx,

whereM ′ denotes the graph of u = u� over Ω′. In this subsection, we prove local
second fundamental form estimates for the graph of u� in regionsΩ′ where � ∈ L2.
Let � = −Hdx with H ∈ C∞(Ω) and u be a smooth solution to (). Denote by
M ′ the graph of u over an open subset Ω′ ⋐ Ω. First, observe that

Dw = w3D2u(Du, ⋅), |Dw|2 = w6|D2u(Du, ⋅)|2

‖∇w‖2 = gijwiwj = |Dw|2 +w2(Dw,Du)2

= w6|D2u(Du, ⋅)|2 +w8
[

D2u(Du,Du)
]2 ≤ w2‖ II ‖2,

hence,
‖∇ logw‖2 ≤ ‖ II ‖2.

Next, we rewrite ‖∇2u‖2 as follows:
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Lemma 5.7. Assume du(x) ≠ 0 at x ∈M and set � ≐ ∇u∕‖∇u‖ in a neighborhood
of x. Denote byA the traceless second fundamental form of the level set {u = u(x)}
in the direction −� and write u�� ≐ ∇2u(�, �). Then

(5.10)
‖∇2u‖2 =‖∇u‖2‖A‖2 + 1

m − 1
(

H2w2 − 2Hwu��
)

+ m
m − 1

‖

‖

‖

∇‖∇u‖‖‖
‖

2
+ m − 2
m − 1

‖

‖

‖

∇⊤‖∇u‖‖‖
‖

2
,

where ∇⊤ stands for the component of ∇ tangent to the level set {u = u(x)}.

Proof. Recall that, by (2.5), ‖ II ‖2 = w−2‖∇2u‖2. Consider an orthonormal frame
{�, e�}, 2 ≤ � ≤ m onM . We denote by uij the components of ∇2u in the above
frame. Then,

⟨∇‖∇u‖, e�⟩ = u�� , ⟨∇‖∇u‖, �⟩ = u�� ,

thus

(5.11) ‖∇2u‖2 =
m
∑

�,�=2
u2�� + 2‖∇

⊤
‖∇u‖‖2 + u2�� .

Next, it follows from the definition of A that

‖∇u‖A�� = u�� −

∑m

=2 u


m − 1

��� .

Splitting the norm of the matrix [u��] into its trace and traceless parts, and recalling
(2.5), we get

m
∑

�,�=2
u2�� = ‖∇u‖2‖A‖2 + 1

m − 1

( m
∑

�=2
u��

)2

= ‖∇u‖2‖A‖2 +
(ΔMu − u��)2

m − 1

= ‖∇u‖2‖A‖2 + 1
m − 1

(

H2w2 − 2Hwu�� + u2��
)

.

Inserting this into (5.11) and noting that ‖∇‖∇u‖‖2 = ‖∇⊤‖∇u‖‖2+u2�� , we obtain
(5.10). �

Remark 5.8. When H = 0, we obtain the classical refined Kato inequality for
harmonic functions

‖∇2u‖2 ≥ m
m − 1

‖

‖

‖

∇‖∇u‖‖‖
‖

2
.

It is convenient to rewrite the equations in terms of the hyperbolic angle

� ≐ arcchw = log
(

w +
√

w2 − 1
)

.

Note that w↦ � is a diffeomorphism on {du ≠ 0}. The identities

w = ch �, ‖∇u‖ =
√

w2 − 1 = sh �, u�� = ⟨∇‖∇u‖, �⟩ = ch �⟨∇�, �⟩,
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(5.10) and the fact that II = w−1∇2u = 0 a.e. on the set {du = 0} due to Stampac-
chia’s theorem allow us to rewrite ‖ II ‖2 = w−2‖∇2u‖2 as
(5.12)

‖ II ‖2 =
[

sh2 �
ch2 �

‖A‖2 + H2

m − 1
−
2H⟨∇�, �⟩
m − 1

+
m‖∇�‖2

m − 1
+ m − 2
m − 1

‖∇⊤�‖2
]

⋅ 1{du≠0}

a.e. on Ω. We therefore deduce that, for some constant C = C(m) > 0,

(5.13) ‖ II ‖2 ≤ C(m)
[

sh2 �
ch2 �

‖A‖2 + ‖∇�‖2 +H2
]

⋅ 1{du≠0}

and that, for everyM ′ ⋐M ,

∫M ′
‖ II ‖2dxg ≤  ⟺ ∫M ′∩{du≠0}

[

sh2 �
ch2 �

‖A‖2 + ‖∇�‖2 +H2
]

dxg ≤ ′,

where  and ′ might be different, but with the same qualitative dependence on the
data of our problem ().

We next rewrite the Jacobi equation in a way that is more suited to our purposes.
We begin with the following

Lemma 5.9. Define

(5.14) Y ≐ ∇w −H∇u
w

on M.

Then,

(5.15) divMY = ‖ II ‖2 −H2 −
⟨

Y , ∇w
w

⟩

.

Proof. We shall first prove that

(5.16) ΔMw =
(

‖ II ‖2 −H2
)

w + divM
(

H∇u
)

onM.

The identity follows from the Jacobi equation (cf. [3], p. 519) and (2.2):

ΔMw = −
⟨

∇H, )∥0
⟩

+ ‖ II ‖2w = ⟨∇H,∇u⟩ + ‖ II ‖2w,

once we observe that ⟨∇H,∇u⟩ = divM (H∇u) −HΔMu = divM (H∇u) −H2w.
From (5.16) we therefore obtain

ΔM logw = ‖ II ‖2 −H2 −
‖∇w‖2

w2
+ divM

(H∇u
w

)

+H
⟨∇u
w
, ∇w
w

⟩

,

which is (5.15) up to rearranging terms. �

By (5.12), ∇u = sh �� and ∇w∕w = sh �∇�∕ ch �, we rewrite the vector field
Y as

(5.17) Y =
sh �
ch �

(

∇� −H�
)
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and divMY as

divMY =
[

sh2 �
ch2 �

‖A‖2 − m − 2
m − 1

H2 − 2
m − 1

H⟨∇�, �⟩

+ m
m − 1

‖∇�‖2 + m − 2
m − 1

‖∇⊤�‖2 −
sh �
ch �

⟨Y ,∇�⟩
]

⋅ 1{du≠0}

a.e. on Ω. By (5.17) with 0 ≤ sh �∕ ch � ≤ 1 and Cauchy-Schwarz’s and Young’s
inequalities, we have
|

|

|

|

sh �
ch �

⟨Y ,∇�⟩
|

|

|

|

≤ ‖∇� −H�‖ ‖∇�‖ ≤ ‖∇�‖2 + |H|‖∇�‖ ≤ (1 + ")‖∇�‖2 + 4
"
H2,

|H ⟨∇�, �⟩| ≤ |H|‖∇�‖ ≤ 1
2"

|H|

2 + "
2
‖∇�‖2.

Thus there exist constants Cm, Cm," such that, a.e. Ω,

(5.18) divMY ≥
[

sh2 �
ch2 �

‖A‖2 − Cm,"H2 +
{

1
m − 1

−
Cm"
2

}

‖∇�‖2
]

⋅ 1{du≠0}

a.e. on Ω. We notice from the smoothness of Y , H and from estimate (5.18) that
the function ‖∇�‖21{du≠0} is integrable on the graph of u.

Proposition 5.10. There exists a constant C = Cm > 0 such that, for every ' ∈
Lipc(Ω),

(5.19) ∫M
'2‖ II ‖2dxg ≤ Cm

(

∫M
‖∇'‖2dxg + ∫M

'2H2dxg

)

.

Proof. We test (5.18) with the function '2 to obtain

(5.20)

∫{du≠0}

[

sh2 �
ch2 �

‖A‖2 +
{

1
m − 1

−
Cm"
2

}

‖∇�‖2
]

'2dxg

≤ ∫ '2divMY dxg + Cm," ∫ H2'2 dxg

= − 2∫ ' ⟨∇', Y ⟩ dxg + Cm," ∫ H2'2 dxg.

Since, from its very definition, Y = 0 on {du = 0}, and since 0 ≤ sh �∕ ch � ≤ 1,
using Cauchy-Schwarz’s and Young’s inequalities we see from (5.17) that

|' ⟨∇', Y ⟩| ≤ {|' ⟨∇',∇�⟩| + |'H ⟨∇', �⟩|} 1{du≠0}

≤ 1
2"

‖∇'‖2 + "
2
'2‖∇�‖21{du≠0} +

1
2
'2H2 + 1

2
‖∇'‖2.

Recalling that ‖∇�‖21{du≠0} is integrable, it follows from (5.20) that

∫{du≠0}

[

sh2 �
ch2 �

‖A‖2 +
{

1
m − 1

−
Cm"
2

− "
}

‖∇�‖2
]

'2dxg

≤ Cm," ∫ H2'2 dxg + C" ∫ ‖∇'‖2 dxg.
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Choosing a small " > 0 and taking (5.13) into account, we readily deduce (5.19)
and complete the proof. �

Using (5.9), (5.19) and the approximation in Subsection 5.1, we prove the fol-
lowing result. We recall that, for m = 2, the space Lp(Ω) below is meant to be
empty.

Corollary 5.11. Let Ω ⊂ ℝm be a domain. Assume that either
- m ≥ 2, Ω is bounded, ℱ ⊂ ()Ω) is a compact subset, and � ∈ ℱ ;
- m ≥ 3, Ω = ℝm.

Fix 1,2 ∈ ℝ+, Ω′ ⋐ Ω and, for " > 0, define Ω′" ≐
{

x ∈ Ω′ ∶ d�(x, )Ω′) > "
}

.
Let p ∈ (1, 2∗]. Then, there exists a constant
(5.21)

 =

{

(Ω,ℱ , m, diam�(Ω), p,1,2, ", d�(Ω′, )Ω)) if Ω is bounded,

(m, p,1,2, ", |Ω′|�) if Ω = ℝm

such that for each � ∈(Ω) + Lp(Ω) satisfying

‖�‖(Ω)+Lp(Ω) ≤ 1, ‖�‖L2(Ω′) ≤ 2,

it holds
(5.22)

∫Ω′"

{

w�
|

|

|

D2u�
|

|

|

2
+w3�

|

|

|

D2u�
(

Du�, ⋅
)

|

|

|

2
+w5�

[

D2u�
(

Du�, Du�
)]2

}

dx ≤ .

In particular,

(5.23)
∫Ω′"

1
w�

{

|

|

|

D logw�
|

|

|

2
+ |

|

|

Dw� ⋅Du�
|

|

|

2
}

dx ≤ ,

∫Ω′"

{

|

|

|

D logw�
|

|

|

+ |

|

|

Dw� ⋅Du�
|

|

|

}

dx ≤ .

Proof. We choose p1 as in (5.1) to guarantee that � ∈ (Ω)∗, and referring to
Subsection 5.1, we approximate � through convolution obtaining {�j} with �j =
−Hjdx and Hj ∈ C∞(Ω) (resp. Hj ∈∞c (ℝm)). Let uj be the smooth solution to
() with source �j , and writewj ≐ (1− |Duj|2)−1∕2. Proposition 3.7 yields uj →
u� strongly inW 1,q(Ω), for each q ∈ [1,∞) if Ω is bounded and each q ∈ [2∗,∞)
if Ω = ℝm. We fix ' ∈ C1c (Ω

′) so that ' ≡ 1 on Ω′" and |D'(x)| ≤ 2∕" for each
x ∈ Ω. From

‖∇'‖2 = |D'|2 +w2j
(

Duj ⋅D'
)2 ≤

(

1 +w2j |Duj|
2
)

|D'|2 = w2j |D'|
2 ,

(5.9) and Proposition 5.10 with uj , it follows that

∫Ω
'2wj

{

|

|

|

D2uj
|

|

|

2
+ 2w2j

|

|

|

D2u
(

Duj , ⋅
)

|

|

|

2
+w4j

[

D2uj
(

Duj , Duj
)]2

}

dx

≤ m ∫Ω

{

wj |D'|
2 + '2�2jw

−1
j

}

dx.



54 JAEYOUNG BYEON, NORIHISA IKOMA, ANDREA MALCHIODI, AND LUCIANO MARI

Combining this estimate with wj ≥ 1, the properties of ' and Proposition 3.9, we
find a constant  as in (5.21) such that
(5.24)

sup
j≥1 ∫Ω′"

wj

{

|

|

|

D2uj
|

|

|

2
+ 2w2j

|

|

|

D2u
(

Duj , ⋅
)

|

|

|

2
+w4j

[

D2uj
(

Duj , Duj
)]2

}

dx ≤ .

In particular, {uj} is bounded inW 2,2(Ω′") andwemay suppose that uj ⇀ u� weakly
inW 2,2(Ω′"). From theW 1,q convergence we may also suppose that uj(x)→ u�(x),
Duj(x)→ Du�(x) and wj(x)→ w�(x) for a.e. x ∈ Ω′".

FixN > 1 and set
wN,j(x) ≐ min{wj(x), N}, wN,�(x) ≐ min{w�(x), N}.

By (5.24), we have
(5.25)

sup
j≥1,N>1∫Ω′"

wN,j

{

|

|

|

D2uj
|

|

|

2
+ 2w2N,j

|

|

|

D2uj
(

Duj , ⋅
)

|

|

|

2
+w4N,j

[

D2uj
(

Duj , Duj
)]2

}

dx ≤ .

From wj → w�, Duj → Du� a.e. on Ω, wN,j ≤ N and |Duj| ≤ 1, it follows that
for every 1 ≤ i1, i2 ≤ m and q ∈ [1,∞),

‖

‖

‖

wN,j −wN,�
‖

‖

‖Lq(Ω′")
+ ‖

‖

‖

w3∕2N,j(uj)i1 −w
3∕2
N,�(u�)i1

‖

‖

‖Lq(Ω′")

+ ‖

‖

‖

w5∕2N,j(uj)i1(uj)i2 −w
5∕2
N,�(u�)i1(u�)i2

‖

‖

‖Lq(Ω′")
→ 0.

Since uj ⇀ u� weakly inW 2,2(Ω′"), for any  ∈ L
∞(Ω′"), we see

∫Ω′"
w1∕2N,j(uj)i1,i2 dx → ∫Ω′"

w1∕2N,�(u�)i1,i2 dx,

∫Ω′"
w3∕2N,j(uj)i1,i2(uj)i3 dx → ∫Ω′"

w3∕2N,�(u�)i1,i2(u�)i3 dx,

∫Ω′"
w5∕2N,j(uj)i1,i2(uj)i3(uj)i4 dx → ∫Ω′"

w5∕2N,�(u�)i1,i2(u�)i3(u�)i4 dx.

Thus, the density of L∞(Ω′") in L
2(Ω′") yields

w1∕2N,jD
2uj ⇀ w1∕2N,�D

2u�, w3∕2N,jD
2uj

(

Duj , ⋅
)

⇀ w3∕2N,�D
2u�

(

Du�, ⋅
)

,

w5∕2N,jD
2uj

(

Duj , Duj
)

⇀ w5∕2N,�D
2u�

(

Du�, Du�
)

weakly in L2(Ω′"). Hence, by (5.25) and the lower semicontinuity of the norm, we
obtain

sup
N>1∫Ω′"

wN,�

{

|

|

|

D2u�
|

|

|

2
+ 2w2N,�

|

|

|

D2u�
(

Du�, ⋅
)

|

|

|

2
+w4N,�

[

D2u�
(

Du�, Du�
)]2

}

dx ≤ .

By lettingN →∞ and using the monotone convergence theorem, (5.22) holds.
The first in (5.23) readily follows from

|D logw�|
2 = w4�

|

|

|

D2u�(Du�, ⋅)
|

|

|

2
, Dw� ⋅Du� = w3�D

2u�(Du�, Du�)
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a.e. onΩ. On the other hand, the second in (5.23) is derived from Hölder’s inequal-
ity and Proposition 3.9:

∫Ω′"

{

|

|

|

D logw�
|

|

|

+ |

|

|

Dw� ⋅Du�
|

|

|

}

dx

≤

(

∫Ω′"
w�dx

)1∕2(

∫Ω′"

1
w�

{

|

|

|

D logw�
|

|

|

2
+ |

|

|

Dw� ⋅Du�
|

|

|

2
}

dx

)1∕2

.

This concludes the proof. �

5.4. Higher regularity. We first examine the case m = 2:

Theorem 5.12. LetΩ ⊂ ℝ2 be a bounded domain, letℱ ⊂ ()Ω) be compact and
� ∈ ℱ . Fix Ω′ ⋐ Ω and for " > 0, define Ω′" ≐ {x ∈ Ω′ ∶ d�(x, )Ω′) > "}. Let
� ∈(Ω) satisfy

‖�‖(Ω) ≤ 1, ‖�‖L2(Ω′) ≤ 2
for some constants1,2. Then, there exists = (Ω,ℱ , diam�(Ω),1,2, ", d�(Ω′, )Ω))
such that the energy density w� = (1 − |Du�|2)−1∕2 satisfies

(5.26) ∫Ω′"
w� log

(

1 +w�
)

dx ≤ .

In particular, u� weakly solves () on Ω′.

Proof. We fix p1 as in (5.1) and, as in the proof of Corollary 5.11, we find �j ≐
−Hjdx satisfyingHj ∈ C∞(Ω) and

sup
j≥1

‖�j‖(Ω) ≤ 1, sup
j≥1

‖�j‖L2(Ω′) ≤ 2.

Denote by uj the minimizer of I�j and by wj = (1 − |Duj|2)−1∕2. We recall that,
for each Radon measure � on ℝm, the following trace inequality holds for some
constant C = C(m), see [37, Corollary 1.1.2]:

(5.27) ∫ ' d� ≤ C
[

sup
x∈ℝm,r>0

�(Br(x))
rm−1

]

∫ |D'| dx ∀' ∈ C∞c (ℝ
m).

By Proposition 3.9,

∫Ω′
wjdx ≤ 1

(

Ω,ℱ , diam�(Ω),1, d�(Ω′, )Ω)
)

,

while, by Corollary 5.11,

∫Ω′"∕2

|

|

|

D logwj
|

|

|

dx ≤ 2
(

Ω,ℱ , diam�(Ω),1,2, ", d�(Ω′, )Ω)
)

.

Hereafter, j will denote a constant depending on the same data as 2. We consider
the measure � ≐ wjdx

¬ Ω′" and set ' ≐  log(1 + wj) for a cut-off function  
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satisfying  ≡ 1 on Ω′3"∕4 and supp ⊂ Ω′"∕2. By (5.4), for each x ∈ Ω′"∕4 and
r < "∕8,

�(Br(x)) = ∫Br(x)∩Ω′"
wjdx ≤ r

[

8
" ∫B"∕8(x)

w dx + C(1)

]

≤ 3r.

On the other hand, if x ∈ Ω′"∕4 and r ≥ "∕8, then

�(Br(x)) ≤ ∫Ω′
wjdx ≤ 1 ≤ 4r.

When x ∉ Ω′"∕4 and r < "∕8, we clearly have �(Br(x)) = 0. Hence, �(Br(x)) ≤ 5r
for each x ∈ ℝ2, r > 0. Our dimensional restriction, (5.27) and (5.23) imply

∫Ω′"
wj log

(

1 +wj
)

dx ≤ 6 ∫ℝ2

|

|

|

D
(

 log
(

1 +wj
))

|

|

|

dx

≤ 6 ∫Ω′"∕2

[

log
(

1 +wj
)

|D | +  |

|

|

D logwj
|

|

|

]

dx ≤ 7.

Now (5.26) follows by letting j →∞ and using Fatou’s lemma. Finally, the fact that
u� weakly solves () on Ω′ follows from (5.26) and the discussion in Subsection
5.1. �

We remark that Theorem 5.12 cannot be extended to dimension m ≥ 4. Other-
wise, the entire proof of Theorem 1.10 in Subsection 6.2 would work for dimension
m ≥ 4, which contradicts the example in Remark 1.14 (cf. Theorem 5.5). In di-
mension m = 3, proving that {wj} is locally uniformly integrable on a subdomain
where � is of class L2 is an open problem, which seems challenging.

Nevertheless, under a relative compactness assumption on Lorentzian balls we
can prove a higher integrability of w� in any dimension. We briefly comment on
why cut-off functions based on the Lorentzian distance from o are better behaved
than those based on the Euclidean distance ro. If u ∈ �(Ω) and � ∈ ()Ω), then
from (2.8) we get
(5.28) ‖∇l2o‖

2 ≤ 4l2o + 16w
2
|x − o| , |ΔMl2o | ≤ 2m + 4wH |x − o| .

By Proposition 3.9, given Ω′ ⋐ Ω and 1 such that � = −Hdx and ‖�‖(Ω) ≤ 1,
(2.1) yields

∫M
|H|w dxg ≤ 1, ∫M ′

w2 dxg ≤ ,

where M ′ is the graph over Ω′ and  is a constant as in Proposition 3.9. On the
other hand, computing the gradient and Laplacian of ro and using (2.3), we get

|ΔMr2o| ≤ C(1 +w2 + |H|w).
As we will see in the next proof, the advantage of using lo instead of ro is exactly
the absence of the addendum w2 in the upper bound (5.28) for |ΔMl2o |.

To state the next result, recall the Lorentzian ball L�R(A) defined in (2.7).

Theorem 5.13. Let Ω ⊂ ℝm be either
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- a bounded domain, m ≥ 2, ℱ ⊂ ()Ω) is compact and � ∈ ℱ , or
- Ω = ℝm and m ≥ 3.

Let
H ∈ C∞(Ω) if Ω is bounded, H ∈ C∞c (ℝ

m) if Ω = ℝm,
define the measure � = −Hdx, and let u ∈ �(Ω) be the minimizer of I�. Assume
that

(5.29) ‖u‖L∞(Ω) ≤ 0, ‖�‖(Ω)+Lp(Ω) ≤ 1,

for some constants 0,1 > 0 and p ∈ (1, 2∗]. Suppose that there exist two open
subsets Ω′′ ⋐ Ω′ ⋐ Ω such that

(5.30) ∫Ω′
H2 (1 + logw)q0+2

w
dx ≤ 2,q0 ,

for some q0 ∈ ℕ ∪ {0} and 2,q0 ∈ ℝ+, and that for some R > 0 it holds

L�R(Ω
′′) ⋐ Ω′.

Then, there exists a constant
(5.31)

 =

{

(Ω,ℱ , m, diam�(Ω),0,1, q0,2,q0 , d�(Ω
′, )Ω), R) if Ω is bounded,

(m, p,0,1, q0,2,q0 , |Ω
′
|�, R) if Ω = ℝm

such that

(5.32) ∫Ω′′
(1 + logw)q0

w
{

‖ II ‖2 +w2 logw
}

dx ≤ .

Proof. By Theorem 1.3 or [8, Theorem 1.5 and Remark 3.4], we know that u is
smooth and strictly spacelike. In particular, L�s(Ω′′) ⋐ L

�
t (Ω

′′) if 0 ≤ s < t. Define
p1 as in (5.1). We proceed by induction on q ∈ {0,… , q0}. Set for convenience

R̄ ≐ R
q0 + 1

,

and define the sequence

Ω′′ ≐ Ωq0+1 ⋐ Ωq0 ⋐… ⋐ Ω1 ⋐ Ω0 ⋐ Ω′, Ωq ≐ L�
(q0+1−q)R̄

(Ω′′) for q ≥ 0.

LetMq be the graph of u overΩq. By rephrasing (5.30) in terms of the graph metric
and the hyperbolic angle �, there exists a constant ̄2,q0 only depending on 2,q0 such
that

∫M0

H2(1 + �)q0+2 ≤ ̄2,q0 ,

where, hereafter in the proof, integration on subsets of the graph of u will always
be performed with respect to the graph measure dxg, that will be omitted as far as
no confusion arises. Hence,

(5.33) ∫M0

H2(1 + �)q+2 ≤ ̄2,q0 for each q ∈ {0, 1,… , q0}.



58 JAEYOUNG BYEON, NORIHISA IKOMA, ANDREA MALCHIODI, AND LUCIANO MARI

As a starting point, observe that Proposition 3.9 and (5.29) imply the existence
of

̄1,0 =

{

̄1,0
(

Ω,ℱ , m, diam�(Ω), p,0,1, d�(Ω′, )Ω)
)

if Ω is bounded,
̄1,0

(

m, p,0,1, |Ω′|�
)

if Ω = ℝm,

such that

(A0) ∫M0

|H| ch � + ∫M0

ch2 � ≤ ̄1,0.

We shall prove the following inductive step:

if there exists

1,q =

{

1
(

Ω,ℱ , m, diam�(Ω), p,0,1, d�(Ω′, )Ω), q0, q, R
)

if Ω is bounded,
1
(

m, p,0,1, |Ω′|�, q0, q, R
)

if Ω = ℝm,
such that

∫Mq

|H|(1 + �)q ch � + ∫Mq

(1 + �)q ch2 � ≤ 1,q,

(Aq)

then there exists

2,q =

{

2
(

Ω,ℱ , m, diam�(Ω), p,0,1, d�(Ω′, )Ω), q0, q,1,q, R
)

if Ω is bounded,
2
(

m, p,0,1, |Ω′|�, q0, q,1,q, R
)

if Ω = ℝm,
such that

∫Mq+1

(1 + �)q‖ II ‖2 + ∫Mq+1

(1 + �)q+1 ch2 � ≤ 2,q.

(ℬq)

In view of (5.13) and (5.33), to obtain (ℬq) from (Aq) it is enough to show that

∫Mq+1∩{du≠0}
(1 + �)q

[

sh2 �
ch2 �

‖A‖2 + ‖∇�‖2 + � sh2 �
]

≤ 2,q,

with 2,q possibly different, but depending on the same data. We first show that
(ℬq) ⇒ (Aq+1) for each 0 ≤ q ≤ q0 − 1: by (5.33) and Young’s inequality,

∫Mq+1

|H|(1 + �)q+1 ch � ≤ ∫Mq+1

H2(1 + �)q+2 + ∫Mq+1

(1 + �)q ch2 �

≤ ̄2,q0 + 2,q,

hence (Aq+1) holds with 1,q+1 ≐ ̄2,q0 + 22,q.
Since we verified (A0), if the implication (Aq) ⇒ (ℬq) is proved, then the in-

duction hypothesis implies (ℬq0), which is equivalent to (5.32).
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With the above preparation, it suffices to prove that (Aq) ⇒ (ℬq). For small
t > 0, we consider a smooth approximation �t ∈ C∞(Ω) of � defined by

ch �t ≐
√

w2 + t ⇔ �t = log
(
√

w2 + t +
√

w2 + t − 1
)

.

Note that

(5.34)
� ≤ �t ≤ � + 1 for small enough t, ∇�t = 0 a.e. on {du = 0},
�t ↓ �, ‖∇�t‖ ↑ ‖∇�‖ ⋅ 1{du≠0} as t ↓ 0, ⟨∇�t,∇�⟩ 1{du≠0} ≥ 0.

Define also

(5.35) ū ≐ u − ‖u‖∞ ≤ 0.

We consider the smooth vector field Y + �t∇eū, where Y is defined in (5.14), and
compute its divergence. For " ∈ (0, 1) to be specified later, we use (5.18) to deduce
that for some positive constants Cm and Cm," depending, respectively, on m and on
(m, "),
(5.36)

divM
(

Y + �t∇eū
)

≥
[

sh2 �
ch2 �

‖A‖2 − Cm,"H2 +
{ 1
m − 1

− Cm"
}

‖∇�‖2
]

⋅ 1{du≠0}

+ eū ⟨∇�t,∇u⟩ + �teūH ch � + �teū sh
2 �.

Hereafter, Cm, Cm," as well as the constants Cq, Cq,", may vary from line to line.
We integrate (5.36) against the test function

(5.37)  = '2(1 + �t)q, ' ∈ Lipc(Ωq), '2 ∈ W 2,∞(Ωq).

By

∇ = (1 + �t)q∇'2 + q'2(1 + �t)q−1∇�t,

we see that

∫{du≠0}
'2(1 + �t)q

[

sh2 �
ch2 �

‖A‖2 − Cm,"H2 +
{ 1
m − 1

− Cm"
}

‖∇�‖2
]

+ ∫M
'2(1 + �t)qeū ⟨∇�t,∇u⟩ + ∫M

'2(1 + �t)q�teūH ch �

+ ∫M
'2(1 + �t)qeū�t sh

2 �

≤ − ∫M
(1 + �t)q

⟨

∇'2, Y + �t∇eū
⟩

− q ∫M
'2(1 + �t)q−1

⟨

∇�t, Y + �t∇eū
⟩

.
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Rearranging the terms and using Cauchy-Schwarz’s inequality together with (5.34),
we obtain

∫{du≠0}
'2(1 + �t)q

[

sh2 �
ch2 �

‖A‖2 +
{ 1
m − 1

− Cm"
}

‖∇�‖2
]

+ ∫M
'2(1 + �t)qeū�t sh

2 �

≤ − ∫M
(1 + �t)q

⟨

∇'2, Y + �t∇eū
⟩

− q ∫M
'2(1 + �t)q−1

⟨

∇�t, Y + �t∇eū
⟩

+ ∫{du≠0}
'2(1 + �t)qeū‖∇�‖ sh � + ∫M

'2(1 + �t)q+1eū|H| ch �

+ Cm," ∫M
'2(1 + �t)qH2.

From ū ≤ 0 (see (5.35)) and

'2(1 + �t)qeū‖∇�‖ sh � ≤ "'2(1 + �t)q‖∇�‖2 + "−1'2(1 + �t)q sh
2 �,

we infer
(5.38)

∫{du≠0}
'2(1 + �t)q

[

sh2 �
ch2 �

‖A‖2 +
{ 1
m − 1

− Cm"
}

‖∇�‖2
]

+ ∫M
'2(1 + �t)qeū�t sh

2 �

≤ − ∫M
(1 + �t)q

⟨

∇'2, Y + �t∇eū
⟩

− q ∫M
'2(1 + �t)q−1

⟨

∇�t, Y + �t∇eū
⟩

+ "−1 ∫M
'2(1 + �t)q sh

2 � + ∫M
'2(1 + �t)q+1|H| ch �

+ Cm," ∫M
'2(1 + �t)qH2.

Because of (Aq), (5.33) and the first in (5.34),
(5.39)

∫M
'2(1 + �t)q sh

2 � ≤ Cq‖'‖
2
∞1,q,

∫M
'2(1 + �t)q+1|H| ch � ≤

‖'‖2∞
2

{

∫Mq

(1 + �t)q+2H2 + ∫Mq

(1 + �t)q ch
2 �

}

≤ Cq‖'‖
2
∞

[

̄2,q0 + 1,q
]

.

Notice that due to (5.17),

‖∇'‖2 ≤ w2|D'|2 = ch2 �|D'|2, ‖Y ‖2 ⋅1{du≠0} ≤ 2
[

‖∇�‖2 +H2]⋅1{du≠0}.
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Using Y = 0 a.e. on {du = 0}, Young’s inequality and assumption (Aq), we infer

− ∫M
(1 + �t)q⟨∇'2, Y ⟩

≤ "∫{du≠0}
'2(1 + �t)q

[

‖∇�‖2 +H2] + 4
" ∫{du≠0}

(1 + �t)q‖∇'‖2

≤ "∫{du≠0}
'2(1 + �t)q

[

‖∇�‖2 +H2] + 4"−1‖D'‖2∞ ∫Mq

(1 + �t)q ch
2 �

≤ "∫{du≠0}
'2(1 + �t)q

[

‖∇�‖2 +H2] + Cq,"‖D'‖2∞1,q.

Moreover, from (5.17), ū ≤ 0, (5.34) and Y +�t∇eū = 0 a.e. on {du = 0} it follows
that

− q ∫M
'2(1 + �t)q−1

⟨

∇�t, Y + �t∇eū
⟩

≤ − q ∫{du≠0}
'2(1 + �t)q−1

⟨

∇�t,−
sh �
ch �

H� + �t∇eū
⟩

≤ q ∫{du≠0}
'2(1 + �t)q−1‖∇�‖|H| + q ∫{du≠0}

'2(1 + �t)q ch �‖∇�‖

≤ 2"∫{du≠0}
'2(1 + �t)q‖∇�‖2 +

q2

" ∫M
'2(1 + �t)q−2H2 +

q2

" ∫M
'2(1 + �t)q ch

2 �

≤ 2"∫{du≠0}
'2(1 + �t)q‖∇�‖2 + "−1Cq‖'‖2∞

[

̄2,q0 + 1,q
]

.

Plugging these inequalities into (5.38), we get

(5.40)

∫{du≠0}
'2(1 + �t)q

[

sh2 �
ch2 �

‖A‖2 +
{ 1
m − 1

− Cm"
}

‖∇�‖2
]

+ ∫M
'2(1 + �t)qeū�t sh

2 �

≤ − ∫M
(1 + �t)q

⟨

∇'2, �t∇eū
⟩

+ Cm,q,"‖'‖2W 1,∞

[

̄2,q0 + 1,q
]

.

We next examine the term

K ≐ −∫M
(1 + �t)q

⟨

∇'2, �t∇eū
⟩

.

For U ⋐ Ωq, we choose ' satisfying (5.37) and

(5.41) ' = 0 on )U.
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Hereafter, we will denote by j a constant depending on the same quantities as
(5.31). Since ∇�t = 0 a.e. on {du = 0}, we compute
(5.42)
K = −∫M

(1 + �t)q�t
⟨

∇'2,∇(eū − 1)
⟩

= −∫M

⟨

∇'2,∇
[

(1 + �t)q�t(eū − 1)
]⟩

+ ∫{du≠0}
(eū − 1)

⟨

∇'2,∇
[

(1 + �t)q�t
]⟩

.

The last integral can be easily estimated by using (5.29), (5.34) and the definition
of ū:
(5.43)

|

|

|

|

|

∫{du≠0}
(eū − 1)

⟨

∇'2,∇
[

(1 + �t)q�t
]⟩

|

|

|

|

|

≤ "∫{du≠0}
'2(1 + �t)q‖∇�‖2 + 4"−1(1 + q)2‖eū − 1‖2L∞(Ωq) ∫M

(1 + �t)q‖∇'‖2

≤ "∫{du≠0}
'2(1 + �t)q‖∇�‖2 + "−11‖D'‖2∞1,q.

On the other hand, since '2 ∈ W 2,∞(Ωq) with supp' ⋐ Ωq, we get
(5.44)
−∫M

⟨

∇'2,∇
[

(1 + �t)q�t(eū − 1)
]⟩

= ∫M
(1 + �t)q�t(eū − 1)ΔM'2

= ∫M
(1 + �t)q�t

(

1 − eū
) (

−ΔM'2
)

.

We set U = LR̄(o) where o ∈ Ωq+1. Then U ⋐ Ωq and since u is smooth with
‖Du‖∞ < 1, )LR̄(o) is smooth. We also set

'(x) ≐
(

R̄2 − l2o (x)
)

+ .

It is easily seen that (5.37) and (5.41) are satisfied. Moreover, by (2.8) and

(5.45) −ΔMl4o = −2‖∇l
2
o‖
2 − 2l2oΔMl

2
o ≤ −2l

2
oΔMl

2
o ,

it follows that on U ,

(5.46)
−ΔM'2 = −ΔM

(

R̄4 − 2R̄2l2o + l
4
o
)

≤ 2
(

R̄2 − l2o
)

ΔMl2o
≤ 4R̄2 (m + 2 |H| ch � |x − o|)
≤ 2 (1 + |H| ch �) .

Remark also that

‖'‖W 1,∞ ≤ 3.
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From (Aq), (5.44), (5.46), 0 ≤ 1 − eū ≤ 1, � ≤ ch2 �, (5.43) and (5.39), we deduce

(5.47)

K ≤ 2 ∫Mq

(

1 + �t
)q �t (1 + |H| ch �)

+ 1"−1‖D'‖2∞1,q + "∫{du≠0}
'2(1 + �t)q‖∇�‖2

≤ 3"−1
[

̄2,q0 + 1,q
]

+ "∫{du≠0}
'2(1 + �t)q‖∇�‖2.

Since ' ≥ R̄2∕2 on LR̄∕2(o), it follows from (5.40) and (5.47) that

∫LR̄∕2(o)
(1 + �t)q

[

sh2 �
ch2 �

‖A‖2 +
{ 1
m − 1

− Cm"
}

‖∇�‖2
]

⋅ 1{du≠0}

+ ∫LR̄∕2(o)
eū(1 + �t)q�t sh

2 � ≤ 4Cm,q,"
[

1,q + ̄2,q0
]

.

Choosing " =
[

2Cm(m−1)
]−1, noting that eū ≥ e−20 and letting t→ 0, we deduce

(5.48) ∫LR̄∕2(o)
(1 + �)q

[

sh2 �
ch2 �

‖A‖2 + ‖∇�‖2 + � sh2 �
]

⋅ 1{du≠0} ≤ 5.

Consider a maximal set of disjoint Euclidean balls {BR̄∕4(o1),… , BR̄∕4(os)} with
oi ∈ Ωq+1. Since BR̄∕4(oi) ⊂ LR̄∕4(oi) ⋐ Ωq ⋐ Ω′, we get

s ≤
⌈

|Ω′|�
!m(R̄∕4)m

⌉

≐ �(m,R, q0, |Ω′|�).

Using that {BR̄∕2(oj)} covers Ωq+1 and BR̄∕2(oj) ⊂ LR̄∕2(oj) ⋐ Ωq, summing up
(5.48) we conclude

∫Mq+1

(1 + �)q
[

sh2 �
ch2 �

‖A‖2 + ‖∇�‖2 + � sh2 �
]

⋅ 1{du≠0} ≤ 5�,

which proves (ℬq). �

Remark 5.14. We comment on the choice of ' in the above proof. For a general
cut-off function ', in view of (2.3), one could just obtain the bound

|

|

|

ΔM'2
|

|

|

≤ m‖D2'2‖∞(1 + ch
2 �) + ‖D'2‖∞|H| ch �,

which inserted into (5.44) would make necessary to estimate a term of the type

(5.49) ∫U
(1 + �t)q�t ch

2 �.

Such a term cannot be absorbed into the last addendum on the left-hand side of
(5.40). This is the main reason why we use the extrinsic Lorentzian distance. Fur-
thermore, the translation performed in the first line of (5.42) and the choice of ū
in (5.35) are crucial to make sure that the coefficient which multiplies −ΔM'2 in
(5.44) is non-negative. Hence, an upper estimate for −ΔM'2 is sufficient and we
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can get rid of the term ‖∇lo‖ in (5.45), that would have lead, again, to the appear-
ance of an integral of the type (5.49).

6. PROOFS OF THE MAIN THEOREMS

6.1. Proof of Theorem 1.16. Consider the approximation {�j ,Hj , uj , wj} in Sub-
section 5.1 and fix Ω′ ⋐ ℝm∖{x1,… , xk} with smooth boundary. Then

(6.1) sup
j≥1

‖Hj‖L∞(Ω′) <∞.

By Proposition 3.7, uj → u� in L∞(ℝm) and G ≐ {u�} ∪ {uj ∶ j ∈ ℕ} is compact
in C(ℝm). Thus, for given Ω′′ ⋐ Ω′, by Lemma 3.8 and the assumption that u� has
no light-segments, there existsR > 0 independent of j such that the Lorentzian ball
L�jR (Ω

′′) ⋐ Ω′ for all j ≥ 1. By (6.1), we can apply Theorem 5.13 to deduce

sup
j≥1

‖

‖

‖

wj log
(

1 +wj
)

‖

‖

‖L1(Ω′′)
<∞.

Thus, the sequence {wj} is locally uniformly integrable onΩ′. By the arbitrariness
ofΩ′, {wj} is locally uniformly integrable onΩ∖{x1,… , xk}; hence, Theorem 5.2
with E = {xi}ki=1 implies

(6.2) ∫ℝm
w�Du� ⋅D� dx = ⟨�, �⟩ =

k
∑

i=1
ai�(xi) ∀ � ∈ Lipc(ℝm).

Therefore, u� weakly solves ().
We next prove that u� has an isolated singularity at each xi, in the sense of Ecker

[17]. Fix B ≐ Br(xi) with xj ∉ B for j ≠ i, and choose � ∈ Lipc(B) with � = −ai
in a neighborhood of xi. Suppose by contradiction that u� minimizes I0 in B, that
is,

(6.3) I0(u�) = inf
{

I0(v) ∶ v ∈ u�(B)
}

, I0(v) ≐ ∫B

(

1−
√

1 − |Dv|2
)

dx.

Since u� does not have light segments, for each ball B̃ ⋐ B∖{xi} we have

|u�(x) − u�(y)| < |x − y| = dB̃(x, y) ∀ x, y ∈ )B̃ with x ≠ y.

By (6.3), wemay verify that u� is aminimizer of I0 on B̃, hence Theorem 1.3 and the
arbitrariness of B̃ guarantee that u� is strictly spacelike on B∖{xi}. Since D� = 0
around xi, we infer the existence of t > 0 small enough that u� + t� ∈ u�(B).
Using Proposition 3.9 and comparing to (6.2), we get

0 ≥ ∫B
w�Du� ⋅

(

Du� −D(u� + t�)
)

dx = −t∫B
w�Du� ⋅D� dx = t|ai|2 > 0,

which is a contradiction.
To conclude, [17, Theorem 1.5] ensures that u� is asymptotic to a light cone C

near xi, and we can therefore apply the argument in [7, Theorem 3.5] to deduce that
C is upward or downward pointing respectively when ai < 0 or ai > 0. �
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6.2. Proof of Theorem 1.10. Let Σ ⋐ Ω and � ∈ (Ω) satisfy the assumptions
in Theorem 1.10. Fix ℱ ,1,2,Ω′ and " as in (ii):

(6.4) � ∈ ℱ , ‖�‖(Ω) ≤ 1, ‖�‖L2(Ω′) ≤ 2.

We also choose p1 = 3 for(Ω) (any p1 > 2works). We split the proof into several
steps.

Step 1: for each �, � satisfying (6.4), and for each " > 0, there exists

1
(

Ω,ℱ , diam�(Ω),1,2, ", d�(Ω′, )Ω)
)

such that

∫Ω′"
w� log

(

1 +w�
)

dx ≤ 1, Ω′" ≐
{

x ∈ Ω′ ∶ d�(x, )Ω′) > "
}

.

Proof of Step 1. This directly follows from Theorem 5.12 and (6.4). �

The higher integrability allows to prove the next no-light-segment property.

Step 2: The minimizer u� does not have light segments in Ω′.

Proof of Step 2. Assume by contradiction that xy ⊂ Ω′ is a light segment for u�.
Up to renaming, u�(y) − u�(x) = |y − x|. Define

�̃ ≐ � + �y − �x.

By Theorem 5.5, u� also minimizes I�̃: u� = u�̃. To reach our desired contradiction,
we tweak the argument in Theorem 5.5 used to show that u� does not solve (). Let
{'j} be a mollifier and define �j = 'j ∗ � and �̃j = 'j ∗ �̃. Call uj , ũj ∈ �(Ω),
respectively, the minimizers of I�j and I�̃j , and denote by wj and w̃j , respectively,
their energy densities. In view of Proposition 3.7 and u� = u�̃, as j → ∞, we have
uj → u� and ũj → u� in C(Ω). Notice that, by the properties of convolutions (see
[40, Proof of Proposition 2.7]),

‖�j‖(Ω) ≤ ‖�‖(Ω) ≤ 1, ‖�̃j‖(Ω) ≤ ‖�̃‖(Ω) ≤ 1 + 2

and for each Ω′′ ⋐ Ω′∖{x, y}, j large enough and " small enough,

‖�j‖L2(Ω′′"∕4) + ‖�̃j‖L2(Ω′′"∕4) ≤ ‖�‖L2(Ω′′) + ‖�̃‖L2(Ω′′) ≤ 22 + 2.

Hence, we can apply Theorem 5.12 on Ω′′ ⋐ Ω′ ⧵ { x, y } to both uj and to ũj to
deduce that {wj} and {w̃j} are locally uniformly integrable on Ω′∖{x, y}. Then,
Theorem 5.2 with E = {x, y} guarantees that

∫ w�Du� ⋅D� dx = ⟨�, �⟩ , ∫ w�Du� ⋅D� dx = ⟨�̃, �⟩ ∀ � ∈ Lipc(Ω′).

However, choosing � such that �(y) ≠ �(x), we deduce

⟨�̃, �⟩ = ⟨�, �⟩ + �(y) − �(x) ≠ ⟨�, �⟩ ,

giving the desired contradiction. �
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Hereafter, we denote with {�j , uj , wj} the approximation described in Subsec-
tion 5.1. With the aid of Step 2 and � ∈ L2(Ω′), an application of Lemma 3.8,
Corollary 5.11 and Theorem 5.13 gives the next improved higher integrability and
second fundamental form estimates for u�, which conclude the proof of Theorem
1.10 (ii).

Step 3: Higher integrability, Theorem 1.10 (ii): for each " > 0, q0 > 0, there exists
a constant

 = (Ω,ℱ , diam�(Ω),1,2, ",Ω′, q0) > 0

such that for each � and � satisfying (6.4),

∫Ω′"
(1 + logw�)q0

{

w�|D
2u�|

2 +w3�
|

|

|

D2u�
(

Du�, ⋅
)

|

|

|

2
+w5�

[

D2u�(Du�, Du�)
]2
}

dx

+ ∫Ω′"
w�(1 + logw�)q0+1dx ≤ .

Proof of Step 3. Let G ⊂ (Ω) be the set of minimizers u� whose boundary value
� and source � satisfy (6.4). Because of the compactness of ℱ and of Propositions
3.5 and 3.7, taking into account the lower semicontinuity of ‖ ⋅‖L2(Ω′) and ‖ ⋅‖(Ω)

under weak convergence, we deduce that G is compact in C(Ω). Applying the
second part of Lemma 3.8, for " > 0 we infer the existence of

R = R
(

Ω,ℱ , diam�(Ω),1,2, ",Ω′
)

.

such that L�jR (Ω
′
") ⋐ L

�j
R (Ω

′) for each u ∈ G . Theorem 5.13 with Ω′′ = Ω′" ensures
that (5.32) holds for uj uniformly in j. The corresponding inequality for the point-
wise limit u�, which is a rewriting of our desired estimate, then follows by the same
method as that in Corollary 5.11. �

Step 4: Weak solvability and no light segments, Theorem 1.10 (i).

Proof of Step 4. Applying Step 1 to the mollified sources �j , we deduce that {wj}
are locally uniformly integrable in Ω ⧵ Σ. Usingℋ 1

� (Σ) = 0, Theorem 5.2 implies
that the limit u� is a weak solution to () on Ω. On the other hand, by Step
2, u� does not have light segments in any set Ω′′ ⋐ Ω∖Σ, hence in Ω∖Σ. Since
ℋ 1
� (Σ) = 0, there are no light segments on the entire Ω. �

Step 5: Regularity for � ∈ L∞, Theorem 1.10 (iii).

Proof of Step 5. Let � ∈ L∞(Ω′), and fix a domain Ω′′ ⋐ Ω′. Due to Step 2, every
point x ∈ Ω′′ has positive Lorentzian distance from )Ω′, with a uniform bound de-
pending on the data of our problem. We can therefore use the local gradient estimate
in [4, Lemma 2.1] as in [4, Proof of Theorem 4.1] to deduce an L∞-estimate forw�
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and aW 2,2-estimate for u� in Ω′′. From Theorem 1.10 (i) and (ii), u� ∈ W
2,2
loc (Ω

′)
is a strong solution to

−
m
∑

i=1
)i
(

ai(Du�)
)

= � in Ω′′, where ai(p) ≐
(

1 − |p|2
)−1∕2 pi ∶ B1(0)→ ℝ.

By differentiating formally the equation in xk, we see that (u�)k ∈ W 1,2(Ω′′) is a
weak solution to

−
m
∑

i=1
)i

m
∑

n=1

)ai
)pn

(Du�)(u�)nk =
m
∑

i=1
)i
(

��ki
)

in Ω′′.

Since ()ai∕)pn) is bounded and uniformly elliptic on Ω′′ due to the L∞-bound of
w�, applying [28, Theorem 8.22 or Corollary 8.24], we see that (u�)k ∈ C�loc(Ω

′′)
for some �, hence, u� ∈ C1,�loc (Ω

′′). By bootstrapping, u� ∈ C∞(Ω′) whenever
� ∈ C∞(Ω′). �

By Steps 1–5, we complete the proof of Theorem 1.10. �

Remark 6.1. Referring to the approximations {uj} of u� in Subsection 5.1, because
of Theorem 5.13, Lemma 3.8 and the argument in Step 2 above, we deduce that the
uniform integrability of {wj logwj} on a subdomainΩ′ where � ∈ L2 is equivalent
to the nonexistence of light segments for u� on Ω′.

6.3. Proof of Theorem 1.13. The proof is similar to the one of Theorem 1.10. We
consider the approximation {�j ,Hj , uj , wj} in Subsection 5.1. Fix Ω′ ⋐ Ω ⧵ (Σ ∪
K�
�) and a small " > 0. Then,

‖�j‖L2(Ω′") ≤ ‖�‖L2(Ω′) for j large enough.

Let Ω′′ ⋐ Ω′". From the definition of K�
� and Proposition 3.7, the first part of

Lemma 3.8 applied to G ≐ {uj}j ∪ {u} guarantees the existence of R such that
L�jR (Ω

′′) ⋐ Ω′ for each j, and therefore, by Theorem 5.13 we deduce that, for each
q0 ∈ ℝ+,

sup
j ∫Ω′′

{

wj
(

1 + logwj
)

+ ‖ IIj ‖2w−1j
}

(

1 + logwj
)q0 dx <∞.

Hence, Theorem 1.13 (ii) holds by the same argument as the one in Corollary 5.11.
In the case � ∈ L∞(Ω′), from L�jR (Ω

′′) ⋐ Ω′ and ‖�j‖L∞(Ω′′) ≤ ‖�‖L∞(Ω′) for
large enough j we can proceed as in the proof of Step 5 in Theorem 1.10 to get
w� ∈ L∞(Ω′′) and then u� ∈ C

1,�
loc (Ω

′), which proves Theorem 1.13 (iii).
Summarizing, in our assumptions {wj} is locally uniformly integrable on Ω ⧵

(Σ ∪ K�
�). Theorem 5.2 ensures that u� satisfies () on Ω∖K�

�. Moreover, if
K�
� ∩ ()Ω ∪ Σ) = ∅, then we can choose open sets Ω′′,Ω′ such that K�

� ⊂ Ω′′ ⋐
Ω′ ⋐ Ω∖Σ. By the definition of K�

� and applying Lemma 3.8, we get the existence
of R such that L�jR (Ω

′′) ⋐ Ω′ for each j, and therefore a uniform integrability of
{wj} on Ω′′ by Theorem 5.13. Hence, {wj} is locally uniformly integrable on the
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entireΩ∖Σ, and u� solves () onΩ by Theorem 5.2. Thus, Theorem 1.13 (i) holds
and this completes the proof. �

6.4. Proof of Theorems 1.18 and 1.19. We begin with the following proposition:

Proposition 6.2. Let m ≥ 3 and  > 0 be given. Then there exists a constant
 =  (m,, p1) > 0 such that for any � ∈ (ℝm)∗ with ‖�‖∗ ≤ , the minimizer
u� satisfies
(6.5) ‖u�‖∞ ≤  .

Moreover, L�"(Ω′′) ⋐ Ω′ holds provided " > 0 and Ω′′ ⊂ Ω′ ⊂ ℝm satisfy
(6.6) d�(Ω′′,ℝm∖Ω′) ≥ 2 + ".

Proof. Remark that the minimizer u� satisfies I�(u�) ≤ I�(0) = 0. Recalling (3.6)
and noting that b1 = 1∕2 in (3.5), we see that for each � ∈ (ℝm)∗ with ‖�‖∗ ≤ ,

‖u�‖
2
 ≤ 4

[

1 + 2‖�‖∗‖u�‖
]

≤ 4 + 8‖u�‖ .
Hence, minimizers are uniformly bounded in(ℝm)when ‖�‖∗ ≤  and by virtue
of Proposition 3.3, (6.5) holds.

Let Ω′′ ⊂ Ω′ satisfy (6.6). Notice that (6.5) implies that for each x, o ∈ ℝm and
each � ∈ (ℝm)∗ with ‖�‖∗ ≤ ,

(

l�o
)2 (x) = r2o(x) −

|

|

|

u�(x) − u�(o)
|

|

|

2
≥ r2o(x) − 4

2.

Hence, for any x ∈ ℝm ⧵Ω′ and o ∈ Ω′′,
(

l�o (x)
)2 ≥ 4 " + "2,

which implies L�"(Ω′′) ⋐ Ω′. �

Proof of Theorem 1.18. Define p1 as in (5.1) for m ≥ 3, and choose {�j , uj , wj} as
in Subsection 5.1. Under the assumptions of Theorem 1.18, in view of Proposition
6.2, there exists  =  (m,, p) such that ‖uj‖∞ ≤  and L�j" (Ω′′) ⋐ Ω′ for any
" > 0 with d�(Ω′′,ℝm ⧵Ω′) ≥ 2 + ". Then the local uniform higher integrability
of {wj} and the fact that u� solves () directly follow from Theorems 5.2 and
5.13. �

Proof of Theorem 1.19. The proof follow verbatim that of Theorem 1.13, with the
help of the L∞ estimates in Proposition 6.2, and is left to the reader. �
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APPENDIX A. WEAK SOLUTIONS WITH HIGHER DIMENSIONAL SET OF LIGHT
SEGMENTS

We construct a weak solution to () having a higher dimensional set of light
segments. The construction is similar to that of the function in Proposition 4.3, but
computations are more involved.

Let 4 ≤ m, 2 ≤ l ≤ m − 2 and write

x = (y, z, xm) ∈ ℝm−l ×ℝl−1 ×ℝ = ℝm.

Recall �"(t) and A"(t) in (4.14) and (4.16). Define U"(y, z, xm) by

U"(y, z, xm) ≐ �"(|y|)
(

1 − "2�|y|2�
)

#"(|z|)�"(xm)A"(xm),

where #"(t) is defined by #"(t) ≐ #1("t) and #1(t) satisfies

(A.1)
#1(t) ∈ C∞c (ℝ), #′1(t) ≤ 0 for t ≥ 0, supp #1 ⊂ [−2, 2],

#1(t) ≡ 1 for 0 ≤ t ≤ 1, #1(t) = 1 −
e2

2
exp

(

− 1
t − 1

)

for 1 < t ≤ 3
2
.

Remark that

U"(y, z, xm) = u"(y, xm)#"(|z|), U"(0, z, xm) = xm if |z| ≤ 1
"
and |xm| ≤ ".

In particular, the set of light segments of U" has dimension l.
Write

W"(y, z, xm) ≐
(

1 − |

|

DU"(y, z, xm)||
2
)− 1

2 ,

�U"(y, z, xm) ≐ −W"ΔU" −W 3
" D

2U"
(

DU", DU"
)

,
IIU" ≐ the second fundamental form corresponding to the graph U".

Then we shall prove the following result.

Proposition A.1. Assume 4 ≤ m, 2 ≤ l ≤ m − 2 and � ∈ [1, m − l). Then

(A.2) W" ∈ L
q
loc(ℝ

m) and �U" ,
‖

‖

‖

IIU"
‖

‖

‖

∈ Lq(ℝm) for all q < m − l
�

,

and U" satisfies

∫ℝm

DU" ⋅D�
√

1 − |DU"|2
dx = ∫ℝm

�U"� dx for each � ∈ C∞c (ℝ
m).

Proof. For (A.2), since �U" is amean curvature of the graphU" and |�U"| ≤ C‖ IIU" ‖,
it is enough to treat ‖ IIU" ‖. By U"(y, z, xm) = u"(y, xm)#"(|z|) = u"(r, xm)#"(s),
we have

(A.3) |

|

DU"||
2 =

[

(u")2r + (u")
2
m
]

#2" + u
2
"(#

′
")
2 = |

|

Du"||
2 #2" + u

2
"(#

′
")
2.
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From (4.18) and (A.1), notice that
|

|

u"(r, xm)|| ≤ 2", 0 ≤ #"(s) ≤ 1, |

|

#′"(s)|| ≤ C".
Thus, for sufficiently small ", thanks to (4.20), (4.21) and (A.3), we infer that
(A.4) |

|

W"(y, z, xm)|| ≤ C for each (y, z, xm) ∈ Ω1,
where

Ω1 ≐
{

(y, z, xm) ∈ ℝm ∶ either |xm| ≥
3"
2

or else 1
2"

≤ r = |y| and |xm| ≤
3"
2

}

.

Hence, it is easy to see that
‖

‖

‖

IIU"(y, z, xm)
‖

‖

‖

≤ C for all (y, z, xm) ∈ Ω1.

Next, we shall check the integrability of IIU" on

Ω2 ≐
{

(y, z, xm) ∈ ℝm ∶ r = |y| ≤ 1
2"
, s = |z| ≤ 1

"
, |xm| ≤ "

}

,

Ω3 ≐
{

(y, z, xm) ∈ ℝm ∶ r = |y| ≤ 1
2"
, s = |z| ≤ 1

"
, " ≤ |xm| ≤

3"
2

}

.

By (A.1), we have U"(y, z, xm) = u"(y, xm) on Ω2 ∪ Ω3, and we may use the com-
putations in the proof of Proposition 4.3. In particular, by (4.22),
(A.5)
W"(y, z, xm) ≤ C|y|−� , ‖

‖

‖

IIU"(y, z, xm)
‖

‖

‖

≤ C|y|−1 for each (y, z, xm) ∈ Ω2,

hence, from � ≥ 1, it follows that

(A.6) W",
‖

‖

‖

IIU"
‖

‖

‖

∈ Lq(Ω2) for all q < m − l
�

.

For Ω3, by (4.24),

(A.7) W"(y, z, xm) ≤ C
[

1 − a"(xm) + |y|2�
]−1∕2 for any (y, z, xm) ∈ Ω3

and as in the proof of Proposition 4.3, we may verify that

(A.8) W",
‖

‖

‖

IIU"
‖

‖

‖

∈ Lq(Ω3) for each q < m − l
�

.

Finally, we shall check the integrability of ‖ IIU" ‖ on

Ω4 ≐
{

(y, z, xm) ∈ ℝm ∶ r = |y| ≤ 1
2"
, 1
"
< s = |z| ≤ 3

2"
, |xm| ≤

3"
2

}

,

Ω5 ≐
{

(y, z, xm) ∈ ℝm ∶ r = |y| ≤ 1
2"
, 3
2"

≤ s = |z| ≤ 2
"
, |xm| ≤

3"
2

}

.

We first prove |DU"| < 1 onΩ4∪Ω5. SinceU"(r, s, xm) = (1−"2�r2�)#"(s)A"(xm)
on Ω4 ∪ Ω5,
(A.9)
(U")r = −2�"2�r2�−1#"A", (U")s =

(

1 − "2�r2�
)

#′"A", (U")m =
(

1 − "2�r2�
)

#"a",

(U")rr = −2�(2� − 1)"2�r2�−2#"A", (U")rs = −2�"2�r2�−1#′"A",

(U")rm = −2�"2�r2�−1#"a", (U")ss =
(

1 − "2�r2�
)

#′′"A",

(U")sm =
(

1 − "2�r2�
)

#′"a", (U")mm =
(

1 − "2�r2�
)

#"a
′
".
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Thus,

1 − |

|

DU"(y, z, xm)||
2

= 1 − 4�2"4�r4�−2#2"A
2
" −

(

1 − 2"2�r2� + "4�r4�
) [

(#′")
2A2" + #

2
"a
2
"
]

= 1 − (#′")
2A2" − #

2
"a
2
" + "

2�r2�
[(

2 − "2�r2�
) {

(#′")
2A2" + #

2
"a
2
"
}

− 4�2"2�r2�−2#2"A
2
"
]

.
By

|

|

A"(xm)|| ≤ 2",
1
2
≤ a"(xm) ≤ 1, "r = |"y| ≤ 1

2
for each (y, z, xm) ∈ Ω4 ∪ Ω5,

if " > 0 is sufficiently small, then
(

2 − "2�r2�
)

#2"a
2
" − 4�

2"2�r2�−2#2"A
2
" ≥

1
8
#2".

Therefore, for every (y, z, xm) ∈ Ω4 ∪ Ω5,
(A.10)
1 − |

|

DU"(y, z, xm)||
2 ≥ 1 − (#′"(|z|))

2A2"(xm) − #
2
"(|z|)a

2
"(xm) +

1
8
"2�|y|2�#2"(|z|).

When (y, z, xm) ∈ Ω5, by 3∕2 ≤ "|z| ≤ 2 and (A.1), we see that
(

#′"(|z|)
)2 ≤ C"2, #2"(|z|) ≤ #2"

( 3
2"

)

= 1
4
,

which implies that if " is sufficiently small, then for all (y, z, xm) ∈ Ω5,

1 − |

|

DU"(y, z, xm)||
2 ≥ 1 − C"4 − 1

4
≥ 1
2
> 0.

Hence, |DU"| < 1 on Ω5 and

(A.11) W",
‖

‖

‖

IIU"
‖

‖

‖

∈ L∞(Ω5).

On the other hand, when (y, z, xm) ∈ Ω4, we have #"(|z|) ≥ 1∕2, and (A.10)
yields

1 − |

|

DU"(y, z, xm)||
2 ≥ 1 − 4"2(#′"(|z|))

2 − #2"(|z|)a
2
"(xm) +

"2�|y|2�

32
.

Thus, to show |DU"| < 1, it suffices to prove

(A.12) 4"2
(

#′"(s)
)2+#2"(s) = 4"

4 (#′1("s)
)2+#21("s) < 1 for each 1

"
< s ≤ 3

2"
.

To this end, from (A.1) and

#′1(t) = −
e2

2
(t − 1)−2 exp

(

−(t − 1)−1
)

,

it follows that for 1 < t ≤ 3
2

4"4
(

#′1(t)
)2 + #21(t)

= "4e4(t − 1)−4 exp
(

−2 (t − 1)−1
)

+
[

1 − e2

2
exp

(

−(t − 1)−1
)

]2

= 1 − e2
[

1 − e2

4
exp

(

−(t − 1)−1
)

− "4e2(t − 1)−4 exp
(

−(t − 1)−1
)

]

exp
(

−(t − 1)−1
)

.



72 JAEYOUNG BYEON, NORIHISA IKOMA, ANDREA MALCHIODI, AND LUCIANO MARI

Since

1 − e2

4
exp

(

−(t − 1)−1
)

≥ 1 − e2

4
e−2 = 3

4
for every 1 < t ≤ 3

2
,

for sufficiently small " > 0,

(A.13) 4"4
(

#′1(t)
)2 + #21(t) ≤ 1 −

e2

2
exp

(

−(t − 1)−1
)

< 1.

Hence, |DU"| < 1 on Ω4. In addition, by 1 − 4"2(#′"(|z|))
2 − #2"(|z|)a

2
"(xm) ≥ 0,

we have
(A.14)
W"(y, z, xm) ≤ C

[

1 − 4"2
(

#′"(|z|)
)2 − #2"(|z|)a

2
"(xm) + |y|2�

]−1∕2
∀ (y, z, xm) ∈ Ω4.

Thus, W" ∈ Lq(Ω4) follows and W" ∈ Lqloc(ℝ
m) holds in view of (A.4), (A.6),

(A.8) and (A.11).
To show ‖ IIU" ‖ ∈ L

q(Ω4), by � ≥ 1, (4.5), (4.7), (4.8) and (A.9), for (y, z, xm) ∈
Ω4,

(A.15)

|

|

|

D2u||
|

≤ C
{

|y|2�−2 + |

|

#′′" (|z|)|| + |

|

#′"(|z|)|| + |

|

a′"(xm)||
}

,
|

|

|

D2u(Du, ⋅)||
|

≤ C
{

|y|2�−1 + |

|

#′"(|z|)|| + |

|

a′"(xm)||
}

,
|

|

|

D2u(Du,Du)||
|

≤ C
{

|y|4�−2 +
(

#′"(|z|)
)2 + |

|

a′"(xm)||
}

.

SinceW"(y, z, xm) ≤ Cr−� holds due to (A.12) and (A.14), we verify that
(A.16)
W"(y, z, xm)|y|2�−2+W 2

" (y, z, xm)|y|
2�−1+W 3

" (y, z, xm)|y|
4�−2 ≤ C|y|−1 ∈ Lq(Ω4)

for all q < (m − l)∕�.
On the other hand, by (A.12) and (A.13), we notice that

1 − 4"2
(

#′"(|z|)
)2 − #2"(|z|) ≥

e2

2
exp

(

− ("|z| − 1)−1
)

,

which yields

W"(y, z, xm) ≤ C exp
(1
2
("|z| − 1)−1

)

for all (y, z, xm) ∈ Ω4.

From (A.1),

|

|

#′′" (|z|)|| + |

|

#′"(|z|)|| ≤ C (|"z| − 1)−4 exp
(

− ("|z| − 1)−1
)

.

Hence,

(A.17)
W"(y, z, xm)

{

|

|

#′′" (|z|)|| + |

|

#′"(|z|)||
}

+W 3
" (y, z, xm)

(

#′"(|z|)
)2

≤ C ("|z| − 1)−4 exp
(

−1
2
("|z| − 1)−1

)

∈ L∞(Ω4).
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Moreover,
(A.18)

W 2
" (y, z, xm) ||#

′
"(|z|)||

=W 2−�−1
" (y, z, xm)W �−1

" (y, z, xm) ||#
′
"(|z|)||

≤ C exp
(

2 − �−1
2

("|z| − 1)−1
)

(C|y|−�)�
−1
("|z| − 1)−2 exp

(

− ("|z| − 1)−1
)

= C ("|z| − 1)−2 exp
(

− 1
2�
("|z| − 1)−1

)

|y|−1 ∈ Lq(Ω4) if q < m − l
�

.

By (A.15), (A.16), (A.17), (A.18) and W" ≥ 1, to show ‖ IIU" ‖ ∈ Lq(Ω4) for
q < (m − l)∕�, it is enough to prove

(A.19) W 3
" (x, y, zm) ||a

′
"(xm)|| ∈ L

q(Ω4) for each q < m − l
�

.

To prove (A.19), since a′"(xm) = 0 for |xm| ≤
"
2 and a" is even, we may suppose

"
2 < xm ≤ 3"

2 . In this case, from (4.15) and (A.1), notice that

1 − 4"2
(

#′"(|z|)
)2 − #2"(|z|)a

2
"(xm)

=
[

1 + #"(|z|)a"(xm)
] [

1 − #"(|z|)a"(xm)
]

− 4"4
(

#′1("|z|)
)2

≥ 1 − #"(|z|)a"(xm) − 4"4
(

#′1("|z|)
)2

≥ 1 −
[

1 − e2

2
exp

(

− ("|z| − 1)−1
)

]

[

1 − d" exp
(

−
(

xm − "
)−1

)]

− 4"4
(

#′1("|z|)
)2

≥ c0
{

exp
(

− ("|z| − 1)−1
)

+ exp
(

−
(

xm − "
)−1

)}

≐ c0R
2(|z|, xm).

Thus, by (A.14),

W"(y, z, xm) ≤ C
{

R2(|z|, xm) + |y|2�
}− 1

2 .
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Then we proceed as in (4.28) and for m−l
3�

< q < m−l
�

, we obtain

∫

3"
2

"
dxm ∫ 1

"<|z|<
3
2"

dz∫
|y|≤ 1

2"

(

W 3
" (y, z, xm) ||a

′
"(xm)||

)q dy

≤ C ∫

3"
2

"
dxm ∫ 1

"<|z|<
3
2"

dz∫
|y|≤R1∕� (|z|,xm)

R−3q(|z|, xm) ||a
′
"(xm)||

q dy

+ C ∫

3"
2

"
dxm ∫ 1

"<|z|<
3
2"

dz∫R1∕� (|z|,xm)≤|y|≤ 1
2"

|y|−3�q |
|

a′"(xm)||
q dy

≤ C ∫

3"
2

"
dxm ∫ 1

"<|z|<
3
2"

R−3q+
m−l
� (|z|, xm) ||a

′
"(xm)||

q dz

≤ C ∫

"
2

0
dt∫

3
2

1

{

exp
(

− 1
s − 1

)

+ exp
(

−1
t

)}

m−l−3�q
2� t−2q exp

(

−
q
t

)

ds

= C ∫

"
2

0
dt∫

1
2

0

{

exp
(

−1
s

)

+ exp
(

−1
t

)}

m−l−3�q
2� t−2q exp

(

−
q
t

)

ds

≤ C ∫

"
2

0
dt∫

t

0
exp

(

3�q − m + l
2�t

)

t−2q exp
(

−
q
t

)

ds

+ C ∫

"
2

0
dt∫

1
2

t
exp

(

3�q − m + l
2�s

)

t−2q exp
(

−
q
t

)

ds

≤ C ∫

"
2

0
t−2q exp

(

�q − m + l
2�t

)

dt <∞.

Hence, (A.19) holds and (A.2) follows.
For the assertion thatU" is a weak solution, we notice that by (A.4), (A.5), (A.7),

(A.11) and (A.14),

W"(y, z, xm) ≤ CR|y|
−� for each (y, z, xm) ∈ BR(0).

Hence, W" ∈ L1loc(ℝ
m). By arguing as in the proof of Proposition 4.1, we may

verify that U" is a weak solution and complete the proof. �
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