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Introduction

The aim of this thesis is to study generalized Feller processes and
extended Feller processes and to connect them to the theory of affine
and polynomial processes. This includes in particular a comprehensive
investigation of generalized Feller semigroups.

Generalized Feller semigroups are defined in analogy to Feller semi-
groups where the space of functions vanishing at infinity is replaced
by so-called #°(FE) -spaces. Here, 2°(E) denotes the space of func-
tions on a completely regular topological space E that do not grow
faster than a so-called admissible weight function p and that lie in the
closure of continuous bounded functions with respect to the norm on
2°(F) which is a weighted supremum norm induced by p. Therefore
- unlike Feller semigroups - generalized Feller semigroups act also on
unbounded functions, all other properties are similar. More precisely, a
generalized Feller semigroup is a family of positive linear bounded op-
erators from %”(F) to %°(F) such that the semigroup properties are
fulfilled, the norm of the operators remains bounded for small times
and for any map f in %°(E) the image under the semigroup converges
pointwise to f as t approaches 0. In a special setting generalized Feller
semigroups were introduced by Réckner and Sobol in [36] and gener-
alized in 2010 by Dorsek and Teichmann in [15]. They proved that
on A°(E) there is a Riesz representation theorem and showed that
just like Feller semigroups generalized Feller semigroups turn out to be
strongly continuous. In the article [15], Dorsek and Teichmann used
this to show convergence of splitting schemes for semigroups related
to stochastic partial differential equations and acting on functions of
controlled growth.

Versions of Markov processes corresponding to generalized Feller
semigroups, so-called generalized Feller processes were considered by
Cuchiero and Teichmann [14]. There they are used in order to show
existence and uniqueness of solutions of certain stochastic partial differ-
ential equations corresponding to infinite dimensional affine processes
whose finite dimensional projections lead to (rough) affine Volterra pro-
cesses.
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This thesis also treats affine processes as well as polynomial pro-
cesses. Affine processes are continuous-time Markov processes that are
stochastically continuous and for which the logarithm of the Fourier-
Laplace transform of the marginal distributions is an affine map of the
initial value. This includes for instance Lévy processes, squared Bessel
processes, Ornstein-Uhlenbeck processes or Wishart processes, depend-
ing on the considered state spaces. Indeed, on R affine processes were
first systematically analyzed in 1971 by Kawazu and Watanabe [28|.
On the canonical state space R} x R™ Duffie, Filipovi¢, and Schacher-
mayer provided a full characterization in [16]. Among many other
properties they showed in particular that on the canonical state space
affine processes are Feller processes. In 2013, Cuchiero and Teichmann
|13] then considered affine processes more generally on subsets of a
finite dimensional real vector space. They showed that all affine pro-
cesses admit cadlag versions. As it is (still) not known whether affine
processes on general state spaces are Feller or not, this property could
not be deduced therefrom as in the canonical state space, but needed
to be proved by different methods. Affine processes can also be viewed
as semimartingales with differential characteristics that depend in an
affine way on the state of the process. This as well as their analyti-
cal tractability and flexibility make affine processes popular choices for
modeling in Mathematical Finance, in particular for stochastic volatil-
ity modeling. Examples include the well-known Heston model [22] or
Barndorff-Nielson and Shepard model [3]. Thanks to Fourier-inversion
methods the expected value of many pay-off functions can be calculated
by just solving a generalized Riccati equation, which is important in
view of option pricing. For interest rate modeling so-called a-CIR mod-
els have been recently considered in [25] which show high flexibility in
capturing persistency of low interest rates together with the presence
of large jumps. An important generalization of affine processes beyond
the assumption of stochastic continuity, where times of jumps can be
both inaccessible and predictable, has been considered by Keller-Ressel
et al. in [29]. There, a general theory of finite dimensional affine semi-
martingales (beyond dt characteristics) is developed and it is shown
that the conditional characteristic function can be computed by solv-
ing measure differential equations of Riccati type.

An extension of affine processes are m-polynomial processes intro-
duced by Cuchiero et al. in [12]. They are essentially continuous-time
Markov processes such that for any k& smaller than m the Markov semi-
group maps polynomials of degree £ to polynomials of the same or lower
degree. They are a special class of semimartingales that includes all
affine processes except some trivial cases and provided that their Lévy
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measure admits moments up to order m. Polynomial processes permit
to calculate mixed moments in an easy way and facilitate parameter
estimation via generalized methods of moments or variance reduction
in the Monte Carlo simulations for pricing European claims.

In the following we explain in more detail the structure of the thesis
and the main contributions. After introducing general semigroup the-
ory in Chapter 1, as well as Markov and Feller semigroups in Chapter
2.1 and 2.2, in the first four subsections of Chapter 2.3 the founda-
tions of generalized Feller semigroups are explained. While the first
chapters, up to Chapter 2.2 provide a literature review, Chapter 2.3
contains several new results contributing to the theory of generalized
Feller processes, which are highlighted in talic subsequently. In Propo-
sition 2.3.46 we start by showing a weighted space version of the Stone-
WeierstrafS theorem (in the spirit of Leopoldo Nachbin) on the space
P (E), which we apply in the existence proof of generalized Feller pro-
cesses. In Proposition 2.3.54 we characterize generalized Feller semi-
groups of transport type which are generalized Feller semigroups such
that at any given time the semigroup operator can be described by a
composition of functions in %”(E) with a map from E to E.

In Theorem 2.3.65, under the condition that the generalized Feller
semigroup maps the constant function 1 to itself, the existence of a
generalized Feller processes is rigorously proved. In particular, this
yields stochastic processes whose conditional expectations are given
by a strongly continuous semigroup even in cases when the space E
is neither separable nor locally compact. This is a crucial difference
to the theory of Feller processes and thus one of the main results of
the thesis. Let us mention here also that generalized Feller processes
are usually not classical Markov processes in the sense that the Markov
property holds for all Borel-measurable functions. Indeed, it only holds
for Baire-measurable functions, hence generalized Feller processes are
strictly speaking only Markovian if the chosen o-algebra on F is the
Baire o-algebra (for this subtle point see Remark 2.3.66).

The proof of Theorem 2.3.65 relies on a general version of the Kol-
mogorov Extension Theorem. In order to apply it, we construct a
projective family of probability measures. For this purpose, on the
sub-level sets of the admissible weight function on £ x E we find a
continuous linear functional which can be represented by a (sub-) prob-
ability measure via the Riesz representation for #°(E x E). As we let
the sub-level set of the admissible weight function converge to the whole
space, such a sequence of (sub-) probability measures converges to a
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probability measure on E' X E. Inductively this then yields a projec-
tive family of probability measures with the desired properties. Then
the generalized Feller process is the canonical process on the product
space when equipped with a product measure according to the general
version of the Kolmogorov Extension Theorem. While in the case of
general admissible weight functions only Dirac distributions are admit-
ted as initial distributions, which is due to the subtle measurability
issues explained above, we show in Proposition 2.3.69 that for admis-
sible weight functions that are Baire measurable it is possible to use
general Radon measures as initial distributions.

In Definition 2.3.71 we use again Baire-measurable admissible weight
functions p to introduce a new class of stochastic processes called ez-
tended Feller processes. In Theorem 2.3.73 and Corollary 2.3.74 we
prove existence of these processes under the condition that the general-
ized Feller semigroup is quasi-contractive. We compare extended Feller
processes with generalized Feller processes and notice in Proposition
2.3.79 that if both exist, their induced laws are equivalent measures.

We also compare generalized Feller processes and extended Feller
processes with classical Feller processes. In Proposition 2.3.84 we see
that on locally compact spaces E a Feller process is a generalized Feller
process if the Feller semigroup applied to the admissible weight function
remains bounded for small times. Moreover, in Theorem 2.3.93 we
show that for continuous admissible weight functions extended Feller
processes can be reduced to Feller processes. This extends the notion
of Feller processes to spaces E that are not necessarily separable but
only o-compact.

In Theorem 2.3.96 we show that generalized Feller processes admit
a version that is cadlag or caglad if several conditions are met thereby
closing a gap in a statement in [14|. A similar statement for extended
Feller processes is proved in Theorem 2.3.99.

Chapter 3 of this thesis relates the theory of generalized Feller pro-
cesses to affine and polynomial processes. We show in Proposition 3.2.7
that under certain conditions an m-polynomial process is a generalized
Feller process. It follows then in Corollary 3.2.8 that under similar con-
ditions also affine processes are generalized Feller processes. This adds
to the existing theory of affine and polynomial processes since to date
it is not known whether affine and polynomial processes on generalized
state spaces are Feller or not.

In the last line of research we use the fact that the Fourier-Laplace
transform of an affine process is given as the solution of an ordinary
differential equation (ODE). We turn this idea around and in Theorem
3.3.2 obtain a stochastic representation of the solution of a large class
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of ordinary differential equations via affine processes. Since the vector
fields of the involved ordinary differential equations are not necessarily
locally Lipschitz continuous we obtain solutions also in cases where
standard ODE theory does not apply.
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Notation

Dual pair (see Definition 1.4.51)

closure of Cy, (E, Z) in B*(E; Z)

Borelo-algebra on the topological space FE

space of signed Radon measures on topological Hausdorft
space T’

set of Radon measures on topological Hausdorff space T
set of probability measures on measurable space (€2, X)

set of o- finite measures on measurable space (2, %)

space of signed Radon measures on topological Hausdorff
space T’

see Definition 2.3.20

bounded continuous maps from E to R

bounded continuous maps from E to Z

continuous maps with compact support from E to R
continuous maps with compact support from E to Z
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CHAPTER 1

One-Parameter Semigroups

This chapter is mostly based on the book by Nagel and Engel [18]
and on parts of the lecture notes [20]. For a background from func-
tional analysis it follows [41] and [39]. It provides a literature review
of semigroup theory which will be used thoughout this thesis. The
exposition is kept as self-contained as possible.

1.1. Definition and Motivation

DEFINITION 1.1.1. For an index set / = R or I = R, a one-
parameter family of mappings

(T(t))er
that map from the state space Z into itself is said to satisfy the
functional equation if for all t, s € I

(1.1.1) T(t+s)=T(t)oT(s).

REMARK 1.1.2. We note that (T'(t)),.p is an (algebraic) group of
maps from the state space Z onto itself equipped with the compo-
sition as group multiplication. Similarly, (T'(?)),cp, is a (algebraic)
semigroup of maps from the state space Z onto itself equipped with
the composition as semigroup multiplication. The map ¢ — T'(t) is a
group homomorphism between the additive group (R, +) and the group
mentioned above or a semigroup homomorphism between the additive
semigroup (R, +) and the semigroup mentioned above.

One-parameter families of mappings that satisfy the functional equa-
tion often arise in physical systems. This is outlined in the following
example taken from Nagel and Engel (|18], Epilogue, Section 1).

We consider a map

z:R— Z,

that maps time into the state space Z. For example, if we think of a
physical system such as the motion of planets we might want to look
at a map z that maps time to position and velocity of a planet. In this
case the state space Z is R® which is the product space of all possible
positions R3 and all possible velocity vectors R3. We now consider

15
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the set of these maps and make some additional assumptions on it.
Namely, we assume:

ASSUMPTION 1.1.3. For each starting time ty € R and each starting
point xo there exists a unique map 2y, », : R — Z such that

219,70 (tO) = To-
We also assume:

ASSUMPTION 1.1.4. For all maps z and all starting times u € R and
v € R and all starting points xo it holds that 2, ., (t + u) = 2y, (t + V)
for allt € R.

In other words, our first assumption means that we can start the
map at any time and any point and that this is done in a unique way
and the second means that the way the map evolves after its start does
not depend on its starting time. We show in the following that these
two assumptions give rise to a one-parameter family of mappings that
satisfy the functional equation.

If we fix a starting time ¢; € R and fix a time ¢ € R the first
assumption implies that for any starting point zy there is a unique
map 2y, 4, : Ry — Z such that 2z, ., (o) = xo and we can evaluate this
map at tg + t. This way we can define a map by

Tto,to-ﬁ-t . Z — Z
To = Zig.uxo(to + 1)

By the second assumption 2y, ., (to + t) and thus also Ty, 4,4+ depend
only on ¢ and not on . This allows us to define a map T'(t) := T3, 1,4+
as

4 — Z
To — 20,20 (t)

We now show that T'(t) o T'(s) = T'(t+s). We fix some arbitrary z € Z
and see that for s, € R

T(t)oT(s)x =T(t) (202(5)) = 20.20.(5) (t)-
By the second assumption we obtain

20,20,z () (t) = %5,20,2(5) (t+s).
Zs.20.0(s) 18 defined as the map such that its evaluation at its starting time
s is its starting point zo.(s). Written out this is 2., (s (5) = 20.(5).
But since the map zp, evaluated at s gives the same value as z; ., (s
evaluated at s and the map is unique by the first assumption we obtain
Zs,zoyl.(s)(') - ZO,x(') and
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Zsza(s)(t+ 8) = 202(t +8) = T(t + s)z.
Since x € Z was arbitrary this implies T'(t) o T'(s) = T'(t + s). Hence

(T()) e

is a one-parameter family of mappings that satisfy the functional equa-
tion.

1.2. Linear bounded operators on a Banach space

As state spaces of the one-parameter family of maps

(T())1er

from Definition 1.1.1 we would like to consider Banach spaces (that is
a complete normed vector space) over a field K. The field K chosen is
usually C or R.

Additionally, in the one-parameter family of maps we will constrain
ourselves to maps that are linear (see Definition1.2.2) and bounded (see
Definition 1.2.4). Before working with such a one-parameter family of
maps we will study this space of linear bounded maps on a Banach
space. We will need the theory of functional analysis. For the con-
venience of the reader, we state its terminology and prove important
assertions whenever we need them.

EXAMPLE 1.2.1. The probably simplest example of a Banach space

is R™ for n € N and the euclidean norm |z| := \/(xl)Q o ()’
where x = (z1,...,2,). Other important examples include LP-spaces
for 1 < p < 0o (see Example A.4.1), L>®-spaces (see Example A.4.2),
or the space of bounded functions > (see Proposition A.4.4).

We turn our attention to linear bounded operators. This part is
based on Chapter IT in [41].

DEFINITION 1.2.2. Let X,Y be vector spaces with a norm|-||. A
map
L:X—=Y

is called linear if for all v,u € X and X € C it holds
L(Au+ M) = AL(u) + A\L(v).

A linear map is also called operator. We will use the expression map
and operator interchangeably.

We want to look at the set of all such maps and we would like to
find a norm on it.
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DEFINITION 1.2.3. For a linear map L : X — Y between two
normed vector spaces X and Y we define a map ||-|| between the space
of such linear maps and R, by

(1.2.1)  ||L|| ;== inf {ML € Ry : ||L(x)|| < My ||z|/forall z € X}.
By linearity of L an equivalent formulation is

1Ll = sup [[L(x)]|.

ll=l|<1

DEFINITION 1.2.4. The space of bounded linear operators between
normed vector spaces X and Y is defined as

L(X,Y):={L: X — Y is linear and || L|| < oo}
where ||| is the map from Definition 1.2.3. We set
L(X):= L(X,X).
PROPOSITION 1.2.5. Let X, Y be normed vector spaces with norms

Il and [|-]ly -

(i) The map ||-|| from Definition 1.2.3 defines a norm on the space
L(X,Y).

(1) L(X,Y) is a vector space with norm ||-|

(1) L(X,Y) is a Banach space with respect to the norm ||-|| if Y
15 complete.

PROOF. (i) For g, f € L(X,Y) and x € X

lg() + f(@)lly < lg(@)lly + £ (@)lly
< lglHlll x + 1A 2]

hence

lg + £l < llgll + [I/1]-
Clearly also for all A € C

A1 = AL
and || f|| = 0 if and only if f = 0. Thus, ||-|| is a norm.
(ii) For g, f € L(X,Y) for all v,u € X and X\ € K it holds
g+ ) + [+ Av) = A (g(u) + F(w) + A (g(0) + F(0))



1.2. LINEAR BOUNDED OPERATORS ON A BANACH SPACE 19

Hence, g+ f is linear and for p € K also pf is linear. Clearly ||uf]| < oo
for p € K and the triangular inequality implies ||g + f|| < co. There-
fore L(X,Y) is a vector space.

(iii) We have to show that each Cauchy sequence in L(X,Y") converges
in L(X,Y). So let (f,),cn be a Cauchy sequence in L(X,Y’). We have
to show that it converges to some element of L(X,Y") and first need to
find such a candidate. For any z € X

[fn(@) = Fn (@) < [ fo = Sl ]

converges to zero for m,n — oo hence (f,()),, oy is a Cauchy sequence
in Y. Since Y is complete

f(z) = nh_{{)lo (fn(2)) pen

exists for each € X. We now show that f € L(X,Y’) and that (f,),,cx
converges to f in L(X,Y"). Linearity of f holds because for all v,u € X
and A € C

= )\nll_g)lo (fn(u))nEN + )‘nh_{{.lo (fn(v>>neN

= Af(u) + Af(v).

The convergence of (f,,),,cy to fin L(X,Y) we see in the following way.
For some £ > 0 we choose ny(e) > 0 such that for all m,n > ny(e) it
holds

[fn = full <e.

Furthermore, for each x € X we choose ny(z, ) > ny(e) such that for
all n > ny(z,¢) it holds
1f (@) = fa(@)lly <elllx

With this choice we obtain for n > ny(¢) and any z € X

1f(2) = fo(@lly < [[f@) = Frs@a @y + | fm@a @) = fal@)]l,
<ellzllx +ellzl-
Hence ||f — fn]] < 2¢ and f,, converges to f in L(X,Y'). Furthermore,
by
AL NS = fall + (12l
Il ]| is bounded for n > ng(e) , thus f € L(X,Y). O

REMARK 1.2.6. This proposition justifies to call ||-|| from Definition
1.2.3 the operator norm.
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PROPOSITION 1.2.7. Let X and Y be normed vector spaces and L :
X =Y be a linear map. Then the following assertions are equivalent:
(i) L is continuous.
(11) L is continuous at x = 0.
(1i1) There exists My > 0 such that ||Lz| < My ||z|| for all x € X.

(iv) L is uniformly continuous.

PROOF.
(i)=(ii) Clear.
(iii)=(iv) Clear.
(iv) = (i) Clear.
(ii)=-(iii) By contradiction assume that (iii) does not hold. Then for
any n € N there exists x,, € X such that ||Lz,|| > n||z,| holds. This
implies that for any n € N

I Gzl

Since the sequence <m) converges to zero this contradicts (ii).
"/ neN
U

REMARK 1.2.8. In particular, on a normed vector space X the norm
II|l : X — Ry is a continuous linear map.

LEMMA 1.2.9. Let XY, Z be vector spaces with norm ||-||.
(i) For Ly € L(X,Y) and Ly € L(Y, Z) also Ly o Ly € L(X,Z) and it
holds

| L1 o La|| < || L] || L]l -
(1) The map
L(X,Y) x L(Y, Z) — L(X, Z)
(Ll, Lg) — L1 [¢) L2

is continuous if L(X,Y) x L(Y, Z) is equipped with the product topology
(see Definition A.1.7).

PROOF. (i) Linearity of Lo Ly follows directly. In order to estimate

the norm we see for any My, > ||L1]| and any My, > | Lo| and any
reX

(L1 o Ly) (z)|| < My, || La()]|
< My, - My, ||=||.
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Taking the infimum on the right hand side we obtain
[(Lyo Ly) ()| < inf inf My, - My, ||z]]

My, >[|L1[|Mpy>|| Ll
< MLl - ([ L2l
and conclude.
(ii) We equip the space L(X,Y) x L(Y, Z) with the norm
LIX,Y)x L(Y,Z) - R,
(L1, L) = [| L1l + [| L] -
(It can easily be shown that this is indeed a norm.) We note that the
open sets in L(X,Y) x L(Y, Z) with respect to this norm are the same
as the open sets with respect to the product topology.
Let ¢ > 0 be arbitrary and let L, € L(X,Y) and Ly € L(Y, Z) be
arbitrary. Let 61,05 > Oand let Lj € L(X,Y) such that | L} — Ly|| < 6,
and Ly € L(X,Y) such that ||L; — Ls|| < 6. With

L L L L\ ?
5<_|| z||;|! 1||+\/(|| z||;|| 1||) iy

and for ¢ := &y + s

one obtains § < +——"—r
| L2l|+0+[ Ll

—i—HL;oLQ—L;oLIQ

HLloLQ—L’loL;” < HLloLQ—L;oL2
ey
§5HL2||+5HL'1H

< O Lol +6 - (6 + [|Lal])
<e.

+ HL; o (Lo - 1))

Hence, the map (Lq, L) — L o Ly is continuous with respect to the
topology induced by the chosen norm on L(X,Y) x L(Y, Z) thus also
with respect to the product topology. O

1.3. Uniformly continuous semigroups

As mentioned before, we would like to consider one-parameter fam-
ilies of mappings
(T<t))t€R+
that have a Banach space as state space. This will lead to uniformly
continuous semigroups (Definition 1.3.4). The following presentation is
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taken from Engel Nagel|18], chapter I, section 3. X will always denote
a Banach space over the field C.

DEFINITION 1.3.1. If for a Banach space X

(T<t))t€R+
is a one-parameter family of linear bounded operators on X that satis-

fies the Functional Equation (1.1.1) it is called (one-parameter) semigroup
on X.

REMARK 1.3.2. For a one-parameter semigroup the family of oper-
ators

(T(t))teﬂh

is an (algebraic) semigroup on (L(X), o). If this semigroup is equipped
with the operator norm from Definition 1.2.3, then by Lemma 1.2.9
the composition is a continuous operation (where the product space
L(X) x L(X) is equipped with the product topology). An algebraic
semigroup with continuous semigroup operation is called topological
SEMIGroup.

REMARK 1.3.3. One can also define a one-parameter group on the
Banach space X to be a family

(T(1))er

of linear bounded operators on X that satisfies the Functional Equation
(1.1.1). 1In this case, by Theorem A.4.19 both group operations of
(L(X),0) , composition and inversion, are continuous. Such a group
where both group operations are continuous is called topological group.

Since we have an algebraic semigroup homomorphism between the
topological semigroup (R, ,+) where addition is a continuous opera-
tion (with respect to the usual topology) and the topological semigroup
(L(X),0) where the composition is continuous with respect to the op-
erator norm it is natural to ask whether the semigroup homomorphism
is continuous. Such a semigroup homomorphism is called topological
semigroup homomorphism.

DEFINITION 1.3.4. A one-parameter semigroup
(T(0)ex,
on a Banach space X is uniformly continuous if
R, — L(X)
t— T(t)
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is continuous with respect to the operator norm on L(X) as defined in
Equation 1.2.1.

Written out in a more detailed fashion, uniform continuity means
that for every € > 0 there exists a 0 > 0 such that |s — ¢| < 0 implies

sup || T(t)x — T(s)x|| < e.
[ES
In order to discuss differentiability of a one-parameter semigroup
on a Banach space X, we introduce the notion of a derivative on a
normed vector space which is called Fréchet derivative.

A map f: U — Y between the open subset U of a normed vec-
tor space X D U and the normed vector space Y is called Fréchet
differentiable at x € U with derivative A(zx) if there exists a bounded
linear map A(z): X — Y such
N f(@+h) - flz) - A(z)n|| _

lim

0.
= Il

It is called simply Fréchet differentiable with Fréchet derivative

A: U— L(X,Y)
x — Ax)

on U if it is Fréchet differentiable at any x € U with derivative A(z).
If f is linear then also + — A(z) is linear. If X = R then derivatives
are interpreted as derivatives with respect to time and will frequently
be noted with a dot: 4 f(s) = f(s) for s € R.

Let X be a Banach space and [u,v] C R be a closed interval. Let
f: [u,v] = X be continuous. Then by compactness of [u,v]f is in

particular uniformly continuous and (I,,(f)), ey defined as

[(v—u)-27]
L(f):=2" > flut+i-2™")
1=0

is a Cauchy sequence hence converges. Thus we can define

DEFINITION 1.3.5. Let X be a Banach space and let f : [u,v] C
R — X be continuous. We let [ f(s)ds denote the Riemann integral.

Familiar properties of the integral can also be shown in the same
way (cf. [38], Chapter 3, Exercise 23). Therefore for u,v,w € U

[ tes= [ s [ s
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and for f: I > X andg: I — X and p,v € C

/uv pf(s) +vg(s)ds = u/uv f(s)ds + I//uvg(s)ds'

Furthermore, the fundamental theorem of calculus holds also in this
case. So for a continuous function f: I — X and uw and h such that
u,u+hel

(1.3.1) }lgr(l) ; / f(u)
and for a linear bounded operator L € L(X) it holds

(1.3.2) I (/:f(s)ds) _ /:L(f(s))ds.

Since the integral is defined just as the limit of Riemann sums and the
norm is continuous the triangle inequality yields

/ " f(s)as|) < / )l ds.

We need another tool from functional analysis:

LEMMA 1.3.6. Let U be a closed subspace of a normed vector space
X and let U # X. Then for any 0 < § < 1 there exists xs € X with
l|xs]| = 1 such that
s —ull =1 =10
for all uw € U.

PROOF. Choose some y € X \ U. Then for all u € U |||y —ul| >0
and since U is closed

d:= inf [ly —u| >0

because if not there would be a sequence in U converging to y in con-
tradiction to y € X \ U. For % there exists us € U such that

d
|y — us| < 1_4

Since U is a subspace ﬁ € X\ U. Also y_—“‘sH‘zland for any
uelU
|t = = ot o G By = sl
—ul| = —— |ly — (us + ||y — us|| w
1y — us]| 1y — us]|
1
> —0d
ly — us]l

>1—09.
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Hence the assertion holds for zs := O

Yy—us

ly—usl
We are now able to show that there exists a connection between a

uniformly continuous semigroup and a differential equation.

PROPOSITION 1.3.7. For a uniformly continuous semigroup

(T'())ser,
on a Banach space X the map
t— T(t)
is Fréchet differentiable and satisfies the differential equation

%T(t) =AT(t)=T(t)A fort € R,

(1.3.3) 7(0) = Id
for some bounded operator A € L(X) which is given by

d

t=0

PROOF. The proof has four steps.
First, we define a differentiable map

FS V() = /tT@) ds,

which is well defined since s — T'(s) is uniformly continuous hence
the Riemann integral exists. The differentiability follows also from the
assumption of uniform continuity which ensures by the fundamental
theorem of calculus that V(t) = T'(t).

Second, we show that V' (fy) has a continuous inverse for some small
to > 0. This means we first have to show that fg" T(s)ds is injective
and surjective.

We start with injectivity. By uniform continuity of 7' for a given 0 <
e < 1 there exists ¢t > 0 such that ||T(s) — Id|| < e for all 0 < s < t.

Hence
to to to
‘/ Id ds—/ T(s)ds §/ IIld —T(s)| ds
0 0 0

< toe’f.
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and for any x € X

(1.3.4)

to to to
‘ / T(s)xds — ‘ / Id zds — / T(s)xds
0 0 0

By linearity of fo s) ds and the definition of the norm, this inequality

to
/ Id z ds
0

> (to — t(]e’f) HZ'H .

implies that fo ds is aneCtIVG
In order to show that f s)ds is surjective we first show that the
image of fo s)ds is Closed Let (Un)nen be a converging sequence

that lies in the image of fo s)ds and that converges to some y.
(Yn)pen 1s @ Cauchy sequence in X We choose z,, for any n € N such

that g, = fo s)x,ds. Then the inequality

/0 “ P(s)uds — /0 " sy ds /0 " () ds

for some u,y € X implies that also (z,,),cy is a Cauchy sequence in X.

[ =

Hence it converges to some z € X and by continuity of foto T(s)ds

to to
/ T(s)xds = lim T(s)x,ds =y.
0

n— oo 0
Thus the image of fo s)ds is closed. We can use Riesz’ Lemma 1.3.6

to show that if the image of fo T(s)ds was not all of X then there
would be some z € X with [|z]| = 1 such that

to >
z— / T(s)—ds
0 to
But this contradicts

to to
‘/ Id ds—/ T(s)ds
0 0

Thus, JO T'(s)ds must be surjective and V(o) is invertible.
Its inverse (V(tp)) ™' : X — X is linear because for z1,zs, 91,52 € X

< tpe.
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such that y; = foto T(s)x1ds and y, = Oto T(s)zads and some A € C

(Vo)™ Oy + Aya) == (V ()~ ( /0 0 T(s) (Axy + Aaa) ds)
= (V(to)) ™" V(to) Az + A»)
= A\x1 + A\x3
=A(V(to) "y + A(V(t)) ™ 1.

In order to show boundedness (or equivalently continuity) of (V (¢y))~"
we use Inequality 1.3.4. So for any y,z € X with y = foto T(s)xds

|(V(t)) ™"yl = Il

Yl
to — toe

Third, we express T in terms of V. Because of the second step we can
write T'(t) as

T(t) = (V(to) ™" V(to)T(t).

In order to reach our objective we can absorb the T'(¢) of the right hand
side in the V' term in the following way:

(V ()™ V(t)T(8) = (V(t0)) ™ / "T(s)T(t) ds

Fourth, with the representation
T(t) = (V(to)) " (V(t+1to) = V(1)

Fréchet differentiability of T'(¢) follows from Fréchet differentiability of
V(t) and the continuity of (V(t))~". The Fréchet derivative can be
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calculated as

d (T(t)) = limT(t +h) —T(t)

dt h\0 h
T(h)—1
i ) =1
RN\O
= T(0)T'(t)
Setting A = T'(0) we obtain the statement of the proposition. O

REMARK 1.3.8. A =T(0) is called generator of the semigroup
(T'() e, -
In order to solve Equation 1.3.3 we define the object
o0 k
N (t4)
O
k=0

Here A € L(X) is a bounded linear operator on the Banach space X.
The series converges because for N, M € N and M > N it holds

M kN k M k
3 (tA) 3 (tA) 3 Al
— <

P k! —~ k! e k!

which converges to zero for M, N — oco. Hence

Nt A)E
=5

is a Cauchy sequence and its limit e exists and lies in the Banach
space L(X).

As in the case of the exponential of complex numbers x,y € C where
etV = e¥eY a similar property holds for the exponential of operators.

LEMMA 1.3.9. For a Banach space X and linear bounded operators
A, B € L(X) that commute it holds

PROOF. By definition

00 k
Ay =% (AJF]{;&.
k=0 ’

Since A and B commute we obtain
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00 l k—l
Z A+B ZZ k [)I[l A) (B) r
k=0 k=0 1=0
Yw
k=0 1=0

In the sum we sum up all possible combinations of powers of Ax and
Bz in a fashion that is described in the following table. It indicates for
which values of the indices k and [ we obtain the expression (A)" (B)™ x
under the sum.

(A4)" (4) (A)* (A4)°
B’ | k=0,l=0|k=11=1k=21=2[k=3,1=3
B |[k=1,1=0|k=21=1|k=3,1=2
(B | k=2,1=0|k=3,1=1
(B | k=3,1=0

We see that for a given & we sum up a diagonal in the table. By
changing the summation procedure to horizontal and vertical summa-
tion the limit remains unchanged because it exists and is unique and
we are therefore able to write the sum as

AeB = (B)™ (A" x
- mzzz%(:ﬂ

PROPOSITION 1.3.10. For some A € L(X) the map
R, — L(X)
t— et
s uniformly continuous and satisfies
eUH9A — tAesA fort s e Ry
" =1d
thus

{etA}t€R+

s a uniformly continuous semigroup.

PROOF. The equation
e(t—l—s)A — etAesA
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follows from Lemma 1.3.9. %4 = Id follows from the equation above

for t = 0 and s = 0 respectively.

In order to prove uniform continuity of t — e we need to show that
lim ||e(t+h)A - etAH =0
h—0

for all t € R,. We see that

im [e494 — ¢] < Jim [ — 1a]] [}

h—0 h—0
IS (hA)”
=l |3 S

: = WA
< (3 2L ey

= lim ("4 — 1) [|e"]

=0.

PROPOSITION 1.3.11.
(i) For some A € L(X) the map T(-) :

R, — L(X)
(1.3.5) t— et
s Fréchet differentiable and satisfies the differential equation
%T(t) = AT(t) forte R,
(1.3.6) T(0)=Id.

(i) A Fréchet differentiable map T'(-) : Ry — L(X) that satisfies Equa-
tion 1.3.6 for some A € L(X) is of the form 1.5.5.

PROOF.
First we show (i). Due to Proposition 1.3.10

T():t— e

is a uniformly continuous semigroup. Thus Proposition 1.3.7 yields
that ¢t — e is Fréchet differentiable and satisfies

d
%T(t) = BT(t) forteRy

T(0) = 1Id.
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for some bounded operator B € L(X) which is given by B = £
We have to show that 47'(t)| = A hence B = A. We calculate

im0

®], =

o = (hA)*

T & (hA)

= E; k!

< Tim [|.A7] Z h”A” -
h—0

=0

which implies (i).
Concerning (ii) we assume that there is a second Fréchet differentiable
map S(-) different from

that satisfies Equation 1.3.6. For an arbitrary but fixed ¢ € R, we
define

Q(s) = S(s)T(t - s)

for 0 < s < t and observe that the product rule which holds also
for Fréchet derivatives yields £Q(s) = 0 for all s € [0,#]. Hence
Q(0) = Q(t). This implies S(t) = T'(t) equals for all ¢t € R since t was
arbitrary. Thus S(-) = T'(+). O

To sum up, we have shown that a uniformly continuous semigroup
must satisfy Equation 1.3.6 and that ¢t — e satisfies Equation 1.3.6
and is the only map that does so. Hence, all uniform continuous semi-
groups are of the form ¢ — e where A is called the generator of the
uniformly continuous semigroup.

REMARK 1.3.12. For a Banach space X and some initial state xg €
X and a linear bounded operator A € L(X) we can define z(t) := ez
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and see in the calculation

tim ([0, — ety — Ahe'tay)

1
< lim (| (¢~ 1 — AR)]| et

LA tA
< lim - (P41 = 1 4] B) et
=0
that the Fréchet derivative of ¢t — x(¢) is ©(t) = Az(t). Thus t — ¢
is a solution of the initial value problem
(t) = Az(t) for teR,
z(0) = xo.
We can show as before that such a solution is also unique by assuming
that there is a second one y(t) and defining ¢(s) := z(s)y(t — s) for

0 < s <t for a fixed but arbitrary ¢ € Ry. Then “g(s) = 0 and
q(0) = q(t). Thus y(t) = z(t) for all t € R,.

We know that a uniformly continuous semigroup t — T'(f) on a
Banach space X is of the form ¢t — €' for a bounded linear operator
A € L(X). In general however, it can be difficult to calculate ' given
a bounded linear operator A € L(X). The following case is an example
where this calculation can be carried out.

EXAMPLE 1.3.13. For co > p > 1 the space

ﬁ:{f:N%C:E]ﬂMF<m}
k=0

with norm |||, = f = Oy |f(k)P)"/? is a Banach space (see for
example [41]). On (P one can think of a linear map as an infinite di-
mensional matrix. Given an infinite dimensional matrix A = (a;;)

as generator with
{]ﬁj—i:l
aﬁ::

1,JEN

0 otherwise
the exponential

[e’e] k Kk
etA :Z (A) t
k!
k=0
is an infinite dimensional matrix. Executing the matrix multiplication

A* shows that
_{lﬁj—i:k

0 otherwise

%,J

(4%)
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Thus, the entries of e are given by

(), = { o HI-iz0
) 0 otherwise

1.4. Strongly continuous semigroups

In the following, X will always denote a C-Banach space. The previ-
ous subsection presented some general results on uniformly continuous
semigroups. However, often the semigroup

(T'(1))sem,

on a Banach space X fails to be uniformly continuous but is still
strongly continuous. However, also in this case a mathematically rich
theory can be developed which will be done in the following. This
section largely follows Engel, Nagel [18].

1.4.1. Definition and elementary properties. One example
where a semigroup on a Banach space X fails to be uniformly con-
tinuous is presented below and taken from Engel, Nagel [18] chapter I,
section 4.

EXAMPLE 1.4.1. For a function f : R — C we define the left
translation T;(t) (f) of f by t € R as

Ti(t) (f) (s) = f(s + 1)
for all s € R.
Similarly, one can define the right translation T,(t) (f) of f by t € R
as

T.(t) (f) (s) == f(s = 1)

for all s € R. We consider the family of maps
(T2(t)) e,

on the Banach space LP(R) for some 1 < p < oo from Example
A.4.1. We see that f € LP(R) implies 7)(¢) f € LF(R) and ||| »r) =
IT2(8) || 1wy for any ¢ € Ry and that for each t € Ry, Tj(?) is a linear
map. Hence

(T:(1))cr,

is a family of bounded linear operators on LP(R). It is also a semigroup
on LP(R) as the Functional Equation (1.1.1) holds since for any u,v € R
and all s € R
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Ti(u+v)(f)(s) = f(s +u+v)
=Ti(u) (f) (s +v)
= Ti(v) (Ti(u) (f)) (s).

We show that it is not uniformly continuous. By contradiction, if it
was uniformly continuous then for every 2 > ¢ > (0 there would exist a

d > 0 such that |t| < § would imply

sup | T(t)f — fllpow) <&
£l e @)y <1

We define the function
fi(@) {(Ué)”p for0<a<3s
P =

0 else.

For this function

5 Ll
“f(SHLP(R):/o ‘(1/5) Plds = 1.
We see
(1/8)"7 for —5 <2 <0
(Ti()fs — f5) (x) = ¢ —(1/8)P for 0 <z <§
0 else

and compute

J p
||71l(5>f5 - deLp(R) = /5 ’(1/5)1/27 ds

=2

in contradiction to uniform continuity.

Thus, instead of focusing on uniform continuity we will look at the

following, weaker, concept of continuity:

DEFINITION 1.4.2. A one-parameter semigroup

(T'(1))cx,
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on a Banach space X is called strongly continuous (or Co—semigroup)
if for all z € X the orbit map &, :

R, - X
t—T(t)x
is continuous.

The natural objective is to obtain similar statements as in the case
of uniform continuity. As a tool from functional analysis we need to
use the uniform boundedness principle. In order to show it we first
prove Baire's theorem. The proofs for both theorems are based on the
versions that can be found in Werner [41], chapter 4.

DEFINITION 1.4.3. A set M is called convez if for all x,y € M and
al0 <A <TlalsoXx+ (1—\)ye M.

THEOREM 1.4.4. (Baire’s theorem,)

In a complete metric space (X, d) for a sequence of open, dense subsets
(On) ey 0ls0 (,ey On is dense in X.

PROOF. We need to show that for an arbitrary open ball
Uc(zg) :={z € X : d(z,20) < e}
with radius ¢ > 0 and center xo € X the intersection

%@dm<ﬂ00

neN
is nonempty. In order to show this, we will construct a sequence of

open balls (U, (1)), such that e, < 2=+ and

U (1) C (ﬁ Usk<xk>>

and

(@@@cm@@m<ﬂ00

for all & € N. If we have found such a sequence of open balls (Us, (7)) e
then its centers (zy)ren form a Cauchy sequence since g < 5’“2*1. Be-
cause of the completeness on X we see that (xy)reny converges to some
limit called z which then lies in

u@@m(ﬂ@&

neN
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as desired.

In order to construct the sequence of open balls (Us, (7x)),cy With the
mentioned properties we start out with U.(zo) and want to find U, (z1).
Since Oy is dense U.(xy) N Oy is nonempty. It is also open. Thus
there is an open ball U, (z;) contained in U.(x¢) N O;. We can easily
choose €1 < 2. By the same reasoning as before, the intersection
U, (z1) N Oq is nonempty and open so there is an open ball U, (x2)
which lies in U, (x1) N Oy where again we can choose g5 < . Carrying
out this procedure inductively we obtain (U., (74)),cy With the desired
properties. 0

We call aset N C X nowhere dense if N = . We call aset F C X
of first category if there exists a sequence (IN;),.y of nowhere dense sets
N; C X such that F' = J;2, N;. We call aset S C X of second category
if it is not of first category.

THEOREM 1.4.5. (Baire’s category theorem)
Let (X, d) be a complete metric space and F C X a set of first category.
Then X \ F = X.

PROOF. Let (NV;),cy be a sequence of nowhere dense sets N; C X
such that F' = |J;°, N;. Then

X\F:ﬁ(X\N Dﬁ (X\N,).

X\ N, is open. By assumption N; = @ for any i € N which means that
for any open set O C X the intersection

0N (X\ W) =0\,

is nonempty for any ¢ € N or put differently that (X \WL) is dense in
X for any i € N. Therefore we can apply Baire’s theorem (Theorem
1.4.4) to N2, (X \ NV;) and obtain that it is dense in X. Thus also
X \ F is dense in X. O

THEOREM 1.4.6. (Uniform boundedness principle)
Let X be a Banach space, Y a normed vector space and I an index set.
Let (T3),c; be a family of bounded linear operators mapping from X to
Y. If for all x € X

sup || T;z|| < oo
icl

holds, then also

sup || T;]| < oo.
el



1.4. STRONGLY CONTINUOUS SEMIGROUPS 37

PROOF. We will assume that X is nonempty, the statement being
trivial otherwise. We want to show that there exists Ny € N such that
we can find a small open ball Us(0) around 0 with radius § > 0 such
that for all x € Us(0) it holds

sup || T;x|| < No.
el

If we are able to find this we can conclude by computing

sup ||| = sup (sup HM’H)

iel iel \ ||lzlI<1

<ap (o, )
i€l \ yeUs(0) J
< Mo
)

The proof that there exist 6 > 0 and Ny € N such that
sup || Tiz|| < No
iel

holds for all = € Us(0) has three steps.
First, we find a candidate N € N to be the Ny mentioned above. For
this purpose, we use Baire’s category theorem. The assumption that

sup || Tiz|| < oo
i€l

holds for all z € X means that X =, _y £, where

neN
E, = {x € X :sup||Tiz|l < n} .
iel

By Baire’s category theorem (Theorem 1.4.5) X cannot be of first cat-
egory because if it was then X \ X = X which is impossible for a
nonempty set. Hence X is of second category which means it cannot
be written as the countable union of nowhere dense sets. Thus there is
some N € N such that Ey is not nowhere dense.

Second, we show that there is an open ball contained in Ey. We can
see that for each n € N E,, is closed when we write it as

E, = m{x € X :||Tiz|]| < n}
iel
and keep in mind that ||7;(-)|| is continuous which implies that

{o € X || Tiall < n} = L) ([0,m])
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is closed. Therefore the fact that £y is not nowhere dense means that

Ey = EDN is nonempty. This allows us to find y € Fn and € > 0 such
that the open ball U.(y) is contained in Ey.
Third, we show that U.(0) is contained in Ey. U.(y) C Ey means that
|z — y|| < e for some z € X implies that

sup | T3zl| < N.

iel
We see that also U.(—y) must be contained in Ey because

[z = (=y)ll <e
for some z € X implies

[(=2) —yll <e
which yields
sup [|T; (=2)[| < N
iel
hence
sup || Tz]| < N.
iel
Therefore also U.(0) is contained in Ey which can be seen by repre-
senting = € U.(0) as

1 (R R e)

and by observing that
Ey = {xEX:supHTixH §N}
i€l
is convex (see Definition A.3.71).

By setting Ny := N and 0 := ¢ we conclude. U

We want to establish statements that are equivalent to strong con-
tinuity. For this we will follow Engel, Nagel, chapter I, section 5[18].
We start with the following lemma.

LEMMA 1.4.7. Let X be a Banach space and K C R be a compact
set and
F : K — L(X)
be some function. Then the following three assertions are equivalent.
(i) For all x € X the map

K—X
t— F(t)x
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1S CONLINUOUS.
(1i) There is a dense subset D of X such that for all x € D the map
K—X
t— F(t)x
is continuous. Additionally,

sup || F(t)]| < oo.
teK

(11i) For any compact subset C' C X the map

Kx(C—=X
(t,z) = F(t)z

s uniformly continuous.

PROOF.
(iii) = (i) This is clear if we choose the compact set C' to be {x}.
(i) = (ii) All we need to show is

sup || F(t)]| < oo.
teK

The continuity of ¢ — || F(t)x| for each z € X implies that for each
x € X on the compact set K C R the function ¢t — || F(¢)z|| attains its
maximum. Therefore

sup || F(t)z]| < oo
teK

for each x € X and we conclude by applying the uniform boundedness
principle from Theorem 1.4.6.
(ii) = (ili) We have to show that for an arbitrary compact set C' C X
and for an arbitrary € > 0 there exists a 0 > 0 such that for all s,t € K
and z,y € C
|s —t[+[le —yll <o
implies
[1F(s)z — F(t)yll <e.
Using the inequality
[F(s)x = F(t)yl| < [F(s)z = F(t)z| + [ F(t)z — F(t)yl
we see that it is enough to find § > 0 such that for all t € K and all
z,y € C such that ||z —y|| < ¢
€

IF(t)e — F(tyyll <
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and for all z € C and s,t € K such that |[s —t| < ¢

|F(s)e = F(t)z] < .

For the first inequality, we see that by assumption

M :=sup ||F(t)]| < o0
tekK

|F (b — Pyl < 5

holds if ||z — y[| < 55;.

For the second inequality, we need to use the continuity of ¢ — F'(t)y
which however holds only for y € D. Therefore we approximate any
x € C' by some y € D and see that the compactness of C' yields that
we can approximate all x € C' with a given accuracy by just finitely
many (y;),_, , € D. Precisely, given v > 0 the density of D in X

implies that

.....

ccJum

yeD
where U, (y) are open balls with radius v > 0 and center y € D. Because
of the compactness of C already finitely many of these balls suffice to
cover C. The centers of these finitely many balls we call (v;),_,
Therefore, if we choose v = ¢5; then for any z € X we choose some

Yi € (Yi)i—i,. ., such that ||z — y;|| <~ which implies
€
1F'(s)z — F(s)yill < &
and .
1)z — Ft)y:ll < &

With this choice
[F(s)z — F(t)z| < ||[F(s)x — F(s)yl| + | F(s)y: — F @)y

~\~

1>
<%

+|IF(y: — F(t)a

>

~\~

[
<%

2¢e
=5t |F(s)ys — F'(t)yll

Using the continuity of t — F(t)y; for y; € D we choose 7 > 0 small
enough such that |s — ¢| < 7 implies

€

1F'(s)ys = F(t)will < &



1.4. STRONGLY CONTINUOUS SEMIGROUPS 41

for all (finitely many!) (v;),_; , and conclude that

,,,,,

IF(s)z — F(t)z| < g

, 557} we see that for all s,¢ € K and z,y € C

s —t[+[le —yll <o

Hence for  := min {T

implies
|F(s)z — F(t)y| <e
which is what we had to show. O

PROPOSITION 1.4.8. For a semigroup
(T(t))t€R+

on a Banach space X the following three assertions are equivalent.

(i)

(T'(1)) e,
15 strongly continuous.
(i1) For all x € X
limT'(t)x = .
N0

(iii)

(a) There is a dense subset D of X such that for all x € D
Iim T (t)x = .
N

(b) Additionally, there is 6 > 0 and M > 1 such that |T(t)|| < M for
all 0 <t <9.

PROOF.
(i) =(ii) is clear.
(i) = (iii) (a) is clear.
(ii) = (iii) (b) By contradiction we assume that for all § > 0 and all
M > 1 there is 0 <t < ¢ such that || T'(¢)|| > M. Hence we can choose
a sequence (t,), oy converging to 0 such that

Tim [7(t,)] = o0
On the other hand by (ii)
lim |7(t)a] = ||
for all z € X which implies that
sup || T(t,)z|| < oo
neN
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for all x € X. Hence, by the uniform boundedness principle (Theorem
1.4.6)

sup || T(t,)]] < o0
neN

in contradiction to

lim ||T(t,)] = oo
n—o0o

(iii) = (ii) If we choose 6 > 0 provided by (iii) (b) we obtain that 7'(¢)
is uniformly bounded on the compact interval [0,d]. Together with
(iii)(a) ¢ — T'(t) satisfies the assertion of Lemma 1.4.7 (ii) which is
equivalent to Lemma 1.4.7 (i) that yields that ¢ — T'(¢)x is continuous
on the compact interval [0, d] for all x € X. Thus (ii) follows.

(ii) = (i) Fix an arbitrary to € R,. We have to show right continuity

and left continuity

Regarding right continuity the functional equality yields
}111\2% T(ty+ h)x = }111{1(1) T(h)T(ty)x

and by (ii) we obtain

lion T(h)T (o) = T (to).

In order to show left continuity, we apply the functional equality and
obtain

fim [Tt + h)o = T(to)z|| = lim || T'(to + h) (v = T(=h)x)] .
By (ii), we know
liy (2 — T(=R)2)] = 0.
We need an estimate for T'(top + h) and use the fact that (ii) implies
(iii)(b). Therefore, we choose ty > § > 0 and M > 1 such that
IT@ < M
for 0 <t <. Thus,
1T (to + h)[| < 1T (to = S)[| - [|T(5 + h)|
< |IT(to — )|l - M
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for —0 < h < 0. Hence, we obtain for the limit
. B <1 oy
,111;% T (to + h)z — T(to)z|| < ,ILI/I% 1T (to + W) [[(x = T(=h)z)]

< lim [Tt = 8)|| - M - ||(z = T(=R)a)]
=0

and conclude. O

PROPOSITION 1.4.9. For a strongly continuous semigroup

(T(1))er,
on a Banach space X there exist constants w € R and M > 1 such that

forallt >0
7)) < Me™".

PROOF. The map ¢ — T'(t)z is continuous for all z € X. Hence

t — ||T'(t)z|| attains its maximum on the compact interval [0, 1] for all
r € X and

sup | T(t)a]] < oo

t€[0,1]
for all z € X. By the uniform boundedness principle (Theorem 1.4.6)

M = sup |T(t)| < oo.
te(0,1]

If we now want to bound ||T'(¢y)| for a fixed but arbitrary t, € Ry
we can write tgp = n+ s for n € N and s € [0,1] and obtain by the
functional equation for 7" that

1T (o)l = [[(TW)" T < TN - 11T (s)]] -
Thus
IT(t)|| < M™ = M- M"™ = M - "M < M- el M,

Setting w := In M and observing that ¢, € R, was arbitrary we obtain
the statement of the proposition. O

DEFINITION 1.4.10. In the following we will call a strongly contin-
uous semigroup for which w = 0 and M = 1 are possible in Proposition
1.4.9 contraction semigroup.

EXAMPLE 1.4.11. We take a second look at the left translation
semigroup
(T:(t)) ser,
from Example 1.4.1. We have already shown in Example 1.4.1 that the
semigroup is not uniformly continuous on LP(R). We now show that it
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is instead strongly continuous on LP(R). For this purpose we want to
use Proposition 1.4.8. Since for any f € LP(R)

|uﬂﬂﬂmmf:(/mkﬂ8+wfw)up

o0

=(/vaWW§UP

= Hf”Lp(R)

I Tl (o)) = 1 and statement (iii)(b) of Proposition 1.4.8 holds.

It remains to show (iii)(a). Therefore we have to find a dense subset
D c L’(R).

Since for all f € LP(R) it holds [7_|f(s)[" ds < oo for some & > 0 there
also exist a,b € R with a < b such that for the function

Jray () = { flz) fora<w<b

0 elsewhere

the estimate

Hf - f[“vb]HLP(R) <€

holds. On the other hand we can approximate the function fj, in the
following way. We define the so-called mollifiers

1 _ 1 i
Mo(z) = ka@mﬁJlﬂﬂ<p
0 if |z] >p

which are in C2° (R) which means they are infinitely differentiable func-

tions with compact support. It can be shown (see [19]) that the con-
volution ( f[avb])p defined by

(flam)’ (z) = /Rﬁp(w — ) fia) (y)dy

for each z € R is also in C° (R). Also it is known (see [19]) that since
f[a,b] € L*(R)

(fian))" = fiay
on LP([c,d]) for any real ¢ < d. Hence (fi.4)” approximates fj, ) also
in LP(R) thus f as well and since f € LP(R) was arbitrary C2° (R) is
dense in LP(R).
In order to show (iii)(a) of Proposition 1.4.8 it is therefore enough to
show that

i [T 6)F = 1,8 = 0



1.4. STRONGLY CONTINUOUS SEMIGROUPS 45

forall f € C° (R). Since a continuous function f with compact support
is also uniformly continuous. Therefore for any € > 0 there exists ¢t > 0
such that s < ¢ implies |f(r +s) — f(r)| < € for all » € R. Since the
support of f is bounded by some constant

C:= sup |z
zesupp{f}

we obtain

ITi(s) f — f||Lp(R) < ((C+1) E:0)1/1)

for all s < t. Hence
ti IT(0)f = £, ) = 0
and we conclude by applying Proposition 1.4.8.

1.4.2. Generators of strongly continuous semigroups. We
recall that for uniformly continuous semigroups (1'(t)),p, on a Banach
space X the map

R, — L(X)
t— T(t)
is Fréchet differentiable as shown in Proposition 1.3.7. We hope to show
some kind of differentiability also in the case of strongly continuous
semigroups. Since in this case we only have continuity of the orbit
maps
& it—=>THreX

we can hope to obtain differentiability at most for the orbit maps.
Regarding the continuity of the orbit maps we have seen in Proposition
1.4.8 that right continuity of all orbit maps at ¢t = 0 already implies
continuity of all orbit maps at any t € R,. The following lemma shows

that a similar statements holds also for differentiability. It its taken
from Nagel, Engel [18], chapter II, section 1.

LEMMA 1.4.12. For a strongly continuous semigroup (T'(t)),cr, on
a Banach space X and x € X it holds: If the orbit map

& it—=>THr e X

is right differentiable at t = 0 with &,(0) then it is also differentiable
on Ry and ils derivative is given by

&:(t) = T(£)6.(0)
= &(0)T(1)
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PRrROOF. We fix some arbitrary {, € R, and have to show right
differentiability

1

lim = [Tt + h)a = T(to)r — 0y (T (ko)) = 0
and left differentiability

.1

}IL% 7 | T (to + h)x — T'(to)x — O_ (T(to)z)|| = 0
and have to show that left and right derivative coincide

. (T(to)z) = d_ (T(to)z).

For right differentiability we use the semigroup property:

1
}1}{‘]% 7 (T'(to + h)x — T'(to)x)

= T(to) (}111{‘1(1) (%T(h)x - .CL'))
= T(t9)4:(0)
By the same token
fin 3 (T(to + K}z — Tlto)2)
= &(0)T (to).
Hence &, : t — T(t)r € X is right differentiable at ¢, € R,. For left

continuity we use the semigroup property to reduce the problem to the
one of right continuity:

1
}ll% 5 (T'(to + h)x — T'(to)x)

— }Ll}% T(ty + h) <(_E> (T(=h)x — x))

By the first part of the proof we know the limit of (—+) (T'(—=h)x — z).
By Proposition 1.4.9 we see that ||T(to + h)|| is bounded for h on a
compact interval. Thus we obtain

ti 7o+ 1) () (- = 2) = £.0)) =
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and conclude

o1
1111}% 7 (T'(to+ h)x — T(ty)x)

O

We do not know for which z € X the orbit t — £,(t) is differentiable
at £ = 0 but we can define a map that maps to this derivative whenever
possible:

DEFINITION 1.4.13. The generator A of a strongly continuous semi-
group
(T(t))t€R+
on a Banach space X is a map
A: DA CX—-X
defined by

. . Th)x — =z
im0 =y T

on its domain

{ | there exists &,(0)€X such that
D(A) =<zrzeX . ‘T(h)azfx o H _
We also say that A generates (T'(t)),cp, -
REMARK 1.4.14. The convergence

lim T(h)x —x

h—0 h

is to be taken with respect to the norm of the Banach space which
means that

: . Thzx—=x
§2(0) = lim ————
if and only if
: : T(h)x —x
lim €,(0) - —2—~| <0,

The domain D(A) is an important part of the operator A and the
generator should also be written as pair (A, D(A)) even though this is
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often omitted. It is also worth noting that the operator A : D(A) — X
does not have to be continuous. For x,y € D(A) and pu € C we obtain

g ’T(h) (uw+m2) — (px +py) L (0) — Mé:y(o)H
o [0 o gy [P0
—0,

thus D(A) is a vector space.

In the following result we see among other things that just like
uniformly continuous semigroups also strongly continuous semigroups
are linked to a differential equation. It is again taken from Nagel, Engel
[18], chapter II, section 1.

PROPOSITION 1.4.15. Let

(T(t))telR+

be a strongly continuous semigroup on a Banach space X. The gener-
ator (A, D(A)) has the properties:

(i) The operator A: D(A) — X is linear.

(11) For all x € D(A) and all t € Ry also T'(t)x € D(A) and

d
%T(t)x = AT (t)x
=T(t)Az.
(iii) For all x € X and all t € R,
t
/ T(s)xds € D(A)
0

and

Tt)r —x= A/tT(s)x ds.

For allx € D(A) and all t € Ry

T(t)xr —x = /OtT(s)Ax ds.
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PROOF.
(i) This follows from the linearity of T'(t) € L(X) for all £ € R, and
the definition of the operator

Az = lim M
h—0 h
(ii) By x € D(A) the map
& it—=>Tr e X

is right differentiable at t = 0 and by Lemma 1.4.12 differentiable on
R, . Thus, by the semigroup property T'(t)z € A and by Lemma 1.4.12
the derivative is given by

&(t) = T(1)&:(0)
— T(t)A
= AT(t).

(iii) For the first part of (iii) we have to show fg T(s)xds € D(A) and
to compute A f(f T'(s)xds. Therefore we need to find the limit

lin % (T(h) /O T(s)rds — /0 () ds).

Since we can pull continuous linear operators in the integral (see Equa-
tion 1.3.2) we can use the Functional Equation 1.1.1 and obtain

1 t+h h
}zli,‘r(l)ﬁ(/t T(s)xds—/o T(s)xds).

By continuity of s — T'(s)x for all z € X the fundamental theorem of
calculus (Equation 1.3.1) for Banach space valued integrals yields

lin % ( /t T syrds /O hT(s)xds) _ Tt — .

For the second part of (iii) when = € D(A) we already know

() — 2 = lim ( /Ot T(h+ s)z — T(s)z d5>

RN\0 h

and need to show that

lim ( /0 tT(s)%ds) - /0 tT(s)Axds.
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This follows directly from (ii) if we can pull the limit in the integral.
We can do so because

T(h)x —x

lim —Az||=0

AW)

by assumption so for some £ > 0 there exists hg > 0 such that for all
ho>h>0

HM el <
h
This implies that for all 0 < s <t
T — T -
7= e < g [HEE
< Me*t . ¢

by Proposition 1.4.9 for some w € R and M > 1 and we are allowed
to pull the limit in the integral by the dominated convergence which
holds true also for integrals of Banach space valued functions. O

In the next lemma we see how we can rescale a strongly contin-
uous semigroup in a way such that it remains a strongly continuous
semigroup and what the generator of the rescaled semigroup looks like.
(See also Nagel, Engel, chapter II, section 2.2 1[18])

LEMMA 1.4.16. (Rescaled Semigroup) For a strongly continuous
SEMLgroup

(T(t) s,
on a Banach space X with generator (A, D(A)), A € C fized, t > 0 and

S(t) :== e MT(t)

i)
(S()) ek,

is a strongly continuous semigroup on a Banach space X (called rescaled
semigroup) and
ii) its generator (B, D(B)) is given by (A — X\, D(A)).

PROOF.
i) If T(t) € L(X) then also

S(t) = e MT(t) € L(X).
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(S(t));cr, satisfies the Functional Equation 1.1.1 because

S(s+1t) =e T (5 1+ ¢)
= e MT()e T (s)
= S(t)S(s).

(S(t))ser, is also strongly continuous because for all z € X the orbit
map

t— e MT(t)
is the product of the two continuous maps t — e * and t — T'(t)x,
hence continuous.
ii) In order to determine the generator B of (5(t)),cp, for some x €
D(A) we have to find the limit

.1 IRV RNV

]111{% 7 (S(h)r —x) = ]111{% 7 (e™"T(h)zx — z)
It follows from the fact that for small 2 > 0 ||e™*"|| is bounded by some
C that

}lli{r(l) H% (e MT(h)x —z) — (—Ax + Az)

. Y VA VY
< }111{1(1) Hﬁ(e T(h)x —e :1:') —e MeM Ax

: 1,
+}1Ll{‘r(l) ’E (eMz — ) — (=)
) _ 1
< }111{1% He AhH HE (T(h)x — x) — M Ax
e
+0
=0

Therefore D(A) C D(B) and B = A — A. The representation
T(t) = e VS(1)
and the same reasoning as above yield that also D(B) C D(A). O

The generator (A, D(A)) has also several other important proper-
ties. One of them requires the following definition:

DEFINITION 1.4.17. For a linear operator A: X D D(A) — X on
a normed space X its graph gr(A) is defined as

gr(A) .= {(z,Az) C D(A) x X}.
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On X x X we define the norm
[ llxux s XXX =Ry

(@,y) = llzll + Nyl

and call a linear operator A : X D D(A) — X closed if its graph is
closed in the norm |||y, x -

DEFINITION 1.4.18. For a linear operator (A, D(A)) on a normed
space X the graph norm ||-|| , is defined as

Ila = D(A) € X = Ry
v = =l + [ Azl

LEMMA 1.4.19. Let A: D(A) C X — X be a closed linear map on
a Banach space X. Then D(A) is a Banach space with respect to ||-|| 4
and A is continuous with respect to |||, -

PRrROOF. Clearly, (D(A),||-||,) is a normed vector space with re-
spect to |||, - If (), is @ Cauchy sequence in (D(A), ||-|| 4), then
((#n, Azy),cn) is a Cauchy sequence in (X x X, [|-||yyx) which con-
verges in||-|| v, y to some (z,y) € X x X due to completeness of X x X.
Since A is closed (x,y) € gr(A) , hence (D(A), ||-|| ) is complete. Con-
tinuity follows immediately from ||Az| < ||z, - O

DEFINITION 1.4.20. For a linear operator A: X D D(A) — X on
a Banach space X the subspace D C D(A) is called a core for A if D
is closed in D(A) in the graph norm ||-|| .

LEMMA 1.4.21. Let D(A) be closed. A linear operator A : X D
D(A) — X on a Banach space X is closed if the following implication
holds:

If a sequence (x,,),cn C D(A) converges to zero as n tends to infinity
and for some y € X nll_)HQlo |Az,, — y|| =0, then y = 0.

PROOF. Let (2,),cny C D(A) be some sequence. In order to show
closedness of A we have to prove that from lim ||z, — Z|| = 0 for some
n—oo

z € X and lim ||Az, — g|]| = 0 for some g € X it follows 2 € D(A) and
n— oo
§ = A5,
z € D(A) holds due to closedness of D(A). For x,, := 2, — Z for all
n € Nit holds (z,),cy C D(A) and we obtain lim ||Az, — (§ — A2)|| =
n—oo

0 hence §y = AZ by the assumed implication and A is closed. O
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DEFINITION 1.4.22. If for a linear operator A: X D D(A) — X on
a Banach space X the closure of the graph gr(A) in the norm |[|-|| ¢,
is the graph of another linear operator A: X D D(A) — X then A is
called the closure of A and A is called closable.

LEMMA 1.4.23. A linear operator A : X D D(A) — X on a Banach
space X s closable if the following tmplication holds:
If a sequence (zn,),cny C D(A) converges to zero as n tends to infinity
and for some y € X nh_)rrolo |Az, — y|| =0, then y = 0.

PROOF. Let (2,),cy C D(A) be some sequence. If lim ||z, — 2| =
n—oo
0 for some Z € X and lim [|Az, —g| = 0 for some § € X we can
n—oo
define

Az = lim Az, = 4.
n—oo
Such an operator is well-defined because if for a different sequence

(%) nen € D(A) such that lim ||z, — 2| = 0 the sequence (Az,),cx
n—oo
converges, then by setting 2;, := 2, — z, we obtain a sequence (z,),,.y C

D(A) such that lim ||z — 0|| = 0, hence by the assumed implication
n—oo

lim [|Az] — Az,|| = 0. A inherits linearity from A and is closed by
n—oo
definition. ]

Following the a proof presented in Nagel, Engel 18], chapter II,
section 1, we can now show some important properties of the generator.

PROPOSITION 1.4.24. The generator (A, D(A)) of a strongly con-
tinuous semigroup
(T(*)sc,
18
(i) a closed operator
(ii) densely defined

(111) determines the strongly continuous semigroup uniquely.

PROOF.
(i) We have to show that for a sequence (z), .y With z,, € D(A) that
converges to some x € X and for a sequence (Axy),  that converges
to some y € X it holds that

(x,y) € {(z,Ax) C D(A) x X }.
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This is the case if we can show x € D(A) and y = Ax.

Given such two sequences (1), .y and (Azy), .y, in order to establish
a relationship between their respective limits, we first establish one
between x, and Az,. This is possible thanks to Proposition 1.4.15(iii)
which states

t
Tz, —x, = / T(s)Ax, ds.
0

Passing to the limit we obtain
t

T(t)x —x= lim [ T(s)Ax,ds.

n—oQ 0

As already seen in the proof of Proposition 1.4.15(iii), by dominated
convergence we can pull the limit inside the integral thanks to the
inequality

1T (s)Azy, — T(s)yll < Me" || Az, — y]|
for all 0 < s <t and for some w € R and M > 1 which holds because
by Proposition 1.4.9. Doing so we obtain

T(t)r —z = /OtT(S)y ds.

Dividing by ¢ and letting t — 0 yields thanks to the strong continuity of
(T'(5))ser, and the fundamental theorem of calculus (Equation 1.3.1)

T _
lim —(t)x - Y
t\0 t

Hence x € D(A) and Az = y.

(ii) In order to show that D(A) is dense in X we choose z € X ar-
bitrarily and construct a sequence in D(A) that converges to z. By
Proposition 1.4.15(iii) we know that

1
1/n

Strong continuity implies

1 1/n
—/ T(s)xds — x
1/n J,

hence we have found the sequence we were looking for and D(A) is
densely defined.

(iii) In order to show that (A, D(A)) uniquely determines the strongly
continuous semigroup (1'(t)),cp, , we assume that it is also the gener-

ator of a different strongly continuous semigroup {S(¢)},cp, and show

/1/” T(s)xds € D(A).
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that both semigroups are equal. For this end, we fix some arbitrary
to € Ry and z € D(A) and for 0 < s <t we define the orbit

s = ne(s) :=T(to — s)S(s)x.

If we are able to show that

d

—n.(s)=0
L (s)

for all 0 < s <ty it follows immediately that 7,(0) = 7.(tp). This
implies T'(tg)x = S(tp)x and we are done since ¢y € Ry and x € D(A)
were arbitrary.

In order to show
d
—n(s) =0
7o (s)

we try to write the difference quotient of 7,(s) in a way that makes use
of the difference quotients of the orbit maps s — S(s)z and s — T'(s)x
of which we know already the limit by Lemma 1.4.12. We obtain

7 (77$<S + h) - 7]9:(5))

(T'(tg —s —h) (S(s+ h)x — S(s)z))

>

3 (Tl — 5= B) = Tto — ) S(5)a)

For the second term we see that

lim % (Tt — s — ) — T(to — 5)) S(s)x)
= — lim 1 (T'(to —s) — (T'(ty — s — h)) S(s)x)

can be computed thanks to Proposition 1.4.15 (ii) which yields that
S(s)x € D(A). Thus, the derivative of the orbit map ¢t — —T'(¢)S(s)x
at tp — s is
—T(to — s)AS(s)x
by Lemma 1.4.12. For the first term we define the continuous function
f:
0,1] = X
S(s+h)z—S(s)x .
- % if h € (0,1]
AS(s)x if =0.

Since continuous functions map compact sets to compact sets the image
f(]0,1]) is compact. Therefore, if we set x := f(h) we see that by
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Proposition 1.4.8 the map
0,¢] x f(][0,1]) = X
(h,zp) = T(t —s—h)xy,
is uniformly continuous. Hence, for x;, — AS(s)z and h — 0 we obtain
T(t—s—h)x, = T(t—s)AS(s)x.

Thus the difference quotient is

dinw(s) =T(t—s)AS(s)x —T(t — s)AS(s)x
s
= 0.
and we conclude. O

The concept of a spectrum of a closed linear operator on a Banach
space defined below generalizes the concept of eigenvalues of matrices.

DEFINITION 1.4.25. The resolvent set p(A) of a densely defined
linear operator (A, D(A)) on a Banach space is defined as
p(A):={ e C: A= A: X DD(A) — X is bijective with continuous inverse} .
For\ € p(A) the resolvent R(\, A) is defined as:
X = D(A)
r— (A= A) .
The set
a(A) = C\ p(A)

is called spectrum.

REMARK 1.4.26. A closed bijective operator A : D(A) C X —
X is by Lemma 1.4.19 continuous with respect to (D(A),||:||,) (see
Definition 1.4.18) and by the open mapping theorem (Theorem A.4.9)
the preimage of an open set in X under A is an open set in (D(A), ||| 4) -
By [l < |I[[.4 the identity

(DA, [I1].4) = (X 111D

is a bounded linear operator between Banach spaces (compare Lemma
1.4.19) hence again by the open mapping theorem is an open map.
Thus, any open set in (D(A), ||-||4) is open in X and the inverse of a
closed bijective operator is continuous.

On the other hand, if the densely defined linear operator (A, D(A))
is not closed, then p(A) = . In order to see this, observe that by
non-closedness there is (z,), .y C D(A) such that z, — = € X and
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Az, — y € X but either x ¢ D(A) or x € D(A) but Az # y. If there
was some) € p(A) then due to continuity of R(\, A)
R(M\A)(A\x —y) = lim R(\, A) (A, — Azy) = z,
n—oo

which would yield x € D(A) and by
= R(\ A) (A\z — Ax),

and injectivity of R(A, A) we would obtain Az = y in contradiction to
non-closedness of A. Hence p(A) = 0.

However, thanks to closedness of the generator A we can hope for
p(A) # () and the following proposition yields that the resolvent set is
open (the proof follows [18|, Proposition IV.1.3):

PROPOSITION 1.4.27. For a closed opemtor A: XDODDA) — X
for p € p(A) and A € C such that |p — \| < it holds \ € p(A)

| R(u, A)H

and .
RN A) =Y (n—N)" R(u, A"+

n=0

PROOF. We write (A — A) in terms of (u — A) as
A—A=p—A—pu+AX
(1.4.1) =[Id+ (—p+ ) R(u,A)] (n—A).
By assumption i — A is bijective. Since
[(=p+ X R, A <1

the equation
(1d + (= + X (R(u, A)) & = 0
for some x € X implies x = 0 thus

Id + (—p+ A) R (1, A)

is injective which yields injectivity of A — A by Equation 1.4.1. Regard-
ing surjectivity of A\ — A; it is enough to show surjectivity of

Id+ (—p+ A R (un, A).
Let y € X. Then for

(1.4.2) %=ZHW—ANNMAWy

the series converges thanks to
(= A) R (p, Al <1,
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and we obtain

(Id+ (—p+ X)) (R(n, A)) =

= (Id + (=p+ ) (R( <y+z n= R (u, A )

=y + (—pu+A) (R(p, A) y

+ Z [(n—N) R (p, A)]'y

[e.9]

(=N (R, A [(m =N R, A)'y

=1

Hence, Id 4+ (—p+ A) R (u1, A) is a linear bounded bijective operator
and its continuous inverse is given by

Id+ (—p+NR :Z (=N R (p, A

Thus,

A—A=[ld+ (—p+ A R(u, A)] (n — A)
is surjective, and therefore also bijective. By the previous calculations
the resolvent is given by

R\, A) = ([ + (—p+ N R (1, A)] (n — A) 7
= (p—A) " ([ld+ (—p+ X R (n,A))

= R(p, A) <Z (b= N"R(n, A)”) :
n=0
U
Related to the strongly continuous semigroup (7'(t)),cp, . so far

we have been dealing with the two objects generator (A, D(A)) and
resolvent R(A, A). Its definition relates the generator A to the semi-
group (T(?));eg, - Also, the definition of the resolvent R(A, A) provides
a link between the resolvent and the generator A. The missing link is
a direct relation between resolvent R(\, A) and semigroup (7°(¢))
As a preparation we observe the following:

teRy -

LEMMA 1.4.28. For a generator (A, D(A)) of a strongly continuous
Semigroup

(T'(1))cx,
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on a Banach space X and for A € C and t > 0 the following equations
hold

e M () —x = (A—N\) /t e T (s)xds forv € X
0
= /t e™T(s) (A — N xds for x € D(A).
0

PROOF. For the rescaled semigroup S(t) = e MT'(¢) and its gener-
ator

(B,D(B)) = (A=A, D(A))
from Lemma 1.4.16, Proposition 1.4.15 (iii) states that

S(t)r —x = (A—A)/;S(t):cds forz e X

and
t
Stz —z = / S(t) (A — )z ds
0
which is the statement of the lemma. O

Heuristically, if in the Lemma above we choose A\ large and then let
t — oo, the left hand side converges to —x. This leads to the idea that

¢
lim [ e ™T(s)z=(A- X"z

t—o0 0

The idea is made precise in the integral representation of the resolvent
below which provides the link between the semigroup and the resolvent
of its generator. The theorem also shows that the spectrum of the
generator is contained in some left half plane of C. The proof follows
the one presented in chapter II, section 1 of Engel, Nagel [18]

THEOREM 1.4.29. Let
(T'())ser,
be a strongly continuous semigroup on the Banach space X such that
7)< Me*

for some constants w € R and M > 1. For the generator (A, D(A)) of

(T(1))cx,
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the following properties hold:
(i) If for A € C the expression

RNz : = /000 e T (s)x ds

¢
= lim e MT(s)x ds
t—oo

exists for all x € X, then X € p(A) and

R\ A)x :/ e T (s)x ds.
0

(11) If ReX > w, then A € p(A) and
R\ A)x = / e T (s)x ds
0

and [|[R(N, A)|| < 73

Reh—w”

PROOF. We first show that ii) follows from i) .

ii) In order to show existence of

t

lim e T (s)x ds
t—o0 0

for all x € X we first need to show that

(freasas)

is a Cauchy sequence for all x € X if ReA > w. For any u,v € R we
have

/ e MT(s)x ds

u

§/ He_’\ST(s)xH ds
S/ 6—(Re>\)sM€ws||xH ds
_ M/ e(wfReA)s H$|| ds

A \ e(w—Re/\)u e(w—ReA)v
1.4.3 = _
( ) {Re)\—w Re)\—w}HxH

Hence, for all z € X and for any € > 0 there exists some N € N such
that for all n,m > N it holds

/ e MT(s)x ds

<e.
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< /0 " e (s ds) .

is a Cauchy sequence and

lim (/ e_)‘sT(s)xds)

exists. By Equation 1.4.3 also

Thus,

t n
lim ‘(/ e MT(s)x ds) — lim (/ e T (s)x ds> H = 0.
t—o00 0 n—o00 0
Hence also

t
lim (/ e_’\ST(s)xds)
t—o00 0

exists. By i) A € p(A) and
R\, A)z = / e T (s)x ds
0

thus by Equation 1.4.3

| R\, A)z|| < |z|| for all z € X.

_M

ReA —w

i) We have to show that if for some A € C the integral
/00 e MT(s)x ds

exists, then for all z € X O

/00 e T (s)xds € D(A)

(A —A) (/OOO e MT(s)x ds) =z,

and for all x € D(A)

( /0 TN T(s) (A — A) ) ds) = 1.

The proof has two steps.
As a first step, we show the statement for A = 0.
We show first that for all z € X

/OO T(s)xds € D(A)

and
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and

(1.4.4) (—A) ( /O T (s) ds) .

Toward this end, we calculate

T(h)—1 t
= lim (h) — 1d lim T(s)xds.
AN\ 0 h t—oo  Jq

Since we can pull linear bounded operators in the integral (see Equation
1.3.2), this equals

.1 !
}111{% Etlggo i T(s+ h)x —T(s)xds.

Rewriting the integration bounds in the integral this yields

1 t+h h t
}lll\‘rré Etlggo (/0 T(s)xds _/o T(s)xds —/0 T(s)x ds) :

Since tlim fg T'(s)x ds converges by assumption we obtain
—00

t+h

¢
lim T(s)xds— / T(s)xds=0
0

t—o00 0

for any h > 0 thus
T(h)—1d [ 1 "
lim lim L/ T(s)xds =lim — —/ T(s)xds
R\0 t—o0 h 0 r\O h 0
= —l”

the last step being possible thanks to the fundamental theorem of cal-
culus (Equation 1.3.1) and strong continuity of

(T'(t)) e, -

Hence [ T(s)xds € D(A) and A (f;°T(s)xds) = —x.
Next, we fix some arbitrary € D(A) and show

(/OOO T(s) (—Az) ds) = 2.

By assumption we know
t

lim T(s)(—Ax) ds

t—o00 0
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converges in X. Proposition 1.4.15(iii) implies that for any ¢t € R

/0 T(s)(z) ds € D(A)

and
t

tim [ 7(s) (~Ax) ds = lim —A< /O "T(s) (@) ds>.

t—o00 0

Therefore it is sufficient to compute the right hand side. Since we know

by assumption that
t
lim T(s) (z) ds

t—o00 0

exists, closedness of the generator A (Proposition 1.4.24) yields

lm A < /0 "Ts) () ds) ' (tlgg /0 (s (@) ds) |

Thus,

/0 T T(s) (—Az) ds = —A (tlggo /0 tT(s) () ds) ,

and Equation 1.4.4 states

A (tlggo /0 tT(s) () ds) = 2.

As a second step, we show the statement for any A € C. So for a
strongly continuous semigroup (7'(?)),cr, with generator (4, D(A)) let
t

lim e MT(s)x ds
t—o00 0

exist for all z € X. We then use the rescaled semigroup
S(t) == e MT(t)
from Lemma 1.4.16 whose generator is given by
(B,D(B)) = (A—\D(A)).

Clearly
t

lim S(s)xds

t—o00 0

exists for all x € X. Thus, by the first step of the proof for all x € X

/OO S(s)xds € D(B)
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(—B) (/OOO S(s)x ds) _
)
(/OOO S(s) (- B) z) ds) -

We conclude by substituting back. U

and

and for all x € D(B

This corollary is taken from [20].
COROLLARY 1.4.30. Let
(T'()) e,
be a strongly continuous semigroup on the Banach space X such that
IT(t)] < Me™!

for some constants w € R and M > 1. Then for alln € N and A € C
such that ReX > w it holds

IR\ A -

PROOF. By Theorem 1.4.29 and the property of the integral that
we can pull linear operators inside (see Equation 1.3.2) we can write

R(\ A))

</ / / Alsitsot. +S")T(sl + 89+ ...+ sp)x dSldSQ...dSn> .

Using HT(t)H < Me“" we obtain

)" ]

(/ / / ‘ —A(s1+s2+...+sn) ‘M w(s1t+s2+...+sn) dsyds,.. dsn) ||33||
(/ / / (w=ReX)(s1tsattsn) 7o s, dsn) Il

IN
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1.4.3. Hille-Yosida Theorem. We turn our attention to the ques-
tion which kind of linear operators (A, D(A)) on X are generators
of some strongly continuous semigroup. We have seen in Proposition
1.3.10 that for any bounded linear operator A the family

(etA) teRL

of linear bounded operators is a uniformly continuous semigroup. How-
ever, generators of strongly continuous semigroup are unbounded if the
semigroup is not uniformly continuous. We have already seen that
not all unbounded linear operators are generators of semigroups and
that some necessary conditions have to be satisfied. From Proposition
1.4.24 we remember that a generator (A, D(A)) is closed and densely
defined. Furthermore, from Proposition 1.4.29 (ii) we observe that
there is w € R such that Re\ > w implies A € p(A) and from Corollary
1.4.30 we obtain that in this case the norm of the resolvent

RO\ A) = (A — A)!

is bounded by

M
(ReX —w)"
for some M > 1 and all n € N. We want to show that these necessary
conditions are also sufficient.
For this purpose, we will approximate the unbounded operator (A, D(A))
by bounded operators in order to apply the result for bounded oper-
ators from Proposition 1.3.10. For this approximation procedure, we
need to find bounded operators that are closely connected to (A, D(A)).
One such operator is clearly the resolvent

RO\ A) = (A — A)!

which by definition is a bounded operator whenever \ € p(A) which is
the case for Re\ > w according to Proposition 1.4.29, where w € R is
the exponent in the bound

1T < Me!

that holds for strongly continuous semigroups (see Proposition 1.4.9).
Since we do not want the approximation of the generator to appear out
of nowhere we choose not give present the most concise proof possible
but instead to follow a more didactic approach in the next two lemmata.

This subsection is based on chapter II, section 3a of Nagel, Engel
|18] and section 4 of Hairer [20].

In the following lemma we see that there are other operators that
can be expressed in terms of the resolvent and that are bounded linear
operators.

IR, A))" <
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LEMMA 1.4.31. Let (A, D(A)) be linear operator on X and A\ €
p(A). Forx e X

MR\, A)x = =Xz + N*R(\, A)z.
For z € D(A)
AR\, A)Ax = =z + N*R()\, A)x.
PrROOF. For z € X
MR A)z = A (A—XN) R\, Az + MR\, A)x
and for x € D(A)
AR(N, A)Az = AR(M\, A) (A — X) x + AR(\, A) Az
U

In order to approximate the generator (A, D(A)) of a strongly con-
tinuous semigroup on X by bounded operators related to the resolvent
we observe that for A > 0 large enough by Theorem 1.4.29 A € p(A).
For Az € D(A) we have the identity

Az = R\ A) (A — A) (Ax)
(1.4.5) = AR\ A) (Az) — R(\, A)A (Ax) .
By the previous lemma AR(A, A)A is a linear bounded operator for A
large enough. However, R(\, A)A? is in general not bounded. There-

fore, we would like to show that R(\, A)A (Ax) approaches zero when
A approaches infinity. Following this idea we show the next lemma.

LEMMA 1.4.32. Let (A, D(A)) be a linear operator on a Banach
space X for which there exists M > 0 and w € R such that [w, 00) C
p(A) and for all X € [w, 00)

IAR(A A < M.
Then for all y € D(A) it holds
lim AR\, A)y = y.

A—00

PROOF. We fix y € D(A). R(\, A) exists and as in Equation 1.4.5
above we obtain

AR(N A) (y) —y = R\, A)A(y),
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which yields the bounds
IAR(A, A) (y) — yll < [R(A, A)A ()]

< IARO A 14 )]

1
< SMIAWI.
Hence
lim [[AR(A, 4) (y) —y[| =0
—0
for any y € D(A). O

In the next step we would like to drop the assumption in Lemma
1.4.32 that y € D(A). Since a generator (A, D(A)) is densely defined,
the equation

lim AR\, A)y =y

A—00
holds true on a dense subset of X. We can use the following lemma.

LEMMA 1.4.33. Let X be a Banach space and let (L,,), .y € L(X)
be a sequence of bounded linear operators. If there exists C' < oo such
that

sup || L,|| < C
neN
then it holds: If for a dense subset D of X
lim L,z =0
n—o0
for all x € D, then
lim L,z =0
n—o0

forall x € X.

PROOF. For x € X fixed and arbitrary choose a sequence (z,,)
in D such that

meN

lim z,, — x.
m—0o0

Fix some arbitrary ¢ > 0 and choose m. such that ||z, — z|| < € for
all m > m.. We obtain

lim L,z ’ < || lim Ly, (x,)|| + || im L, (x — 2,,) H
n—o00 n—00 n—00
<0+ lim || L, |l& — @]
n—oo
<0+ Ce

Since € > 0 was arbitrary this implies the statement of the lemma. [

After these preparations, we obtain the Yosida approximation.
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PROPOSITION 1.4.34. (Yosida approzimation) For a densely defined
linear operator (A, D(A)) on a Banach space X for which there exists
M >0 and w € R such that [w,00) C p(A) and for all X € [w, o)

IAR(A, A)|| < M
it holds true: For ally € X and X € [w, o0)
lim AR\, A)y =y,
A—00

and for all x € D(A)
lim AR(\, A)Ax = Auz,

A—00

where the linear operator AR(\, A)A is bounded on D(A). Also for
Ay = MR(M\ A) = =\ + NV R(\, A)
we obtain for all x € D(A)
lim Ayx = Az.

A—00

PROOF. Since (A, D(A)) is densely defined we apply Lemma 1.4.33
to Lemma 1.4.32 and obtain

lim AR\, A)y =y

A—00

for all y € X. Setting y = Ax yields the second limit. By Lemma 1.4.31
for all z € D(A)

AMR(N, A)z = AR\, A)Ax

which implies the third limit. By the identity in Lemma 1.4.31, the
linear operator AR(\, A)A is bounded on D(A) for all A € [w,00). O

Using the approximations above, we can characterize the class of
linear operators that are a generator of some strongly continuous semi-
group. A first version of this theorem was proved by Hille and Yosida
in 1948. The following -more general- version was shown by Feller,
Miyadera and Phillips in 1952 (see Engel, Nagel, chapter 11T [18]).

THEOREM 1.4.35. (Hille-Yosida)
A closed and densely defined operator (A, D(A)) on the Banach
space X 1s the generator of a strongly continuous semigroup

(T(t))1er,
with
1T < Me*
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for M > 1 andw € R if and only if for all X\ € C the inequality ReX > w
implies A € p(A) and for all X € C such that Re\ > w the bound
M
RMANY| < ——m—
RO A <€

holds for every n > 1.

PROOF. It has already been shown in Proposition 1.4.24, Propo-
sition 1.4.29 (ii), and Corollary 1.4.30 that for a strongly continuous
semigroup

(T(t))ser,
with
IT()] < Me*

for M > 1 and w € R the stated properties hold. We only need to
show the other implication.

For this purpose, we use the Yosida approximation from Proposition
1.4.34 in order to approximate the operator (A, D(A)) pointwise on
D(A) by the sequence

(Aﬂ)nEN,n>w
of bounded linear operators where each A, is defined on all of X as

A, :=nAR(n, A).
By Proposition 1.3.10 we know that for each n € N, n > w the family

(Tn(t))er,
of bounded linear operators on X defined by

is a uniformly continuous semigroup. We want to show that

(i) for all t € Ry and for each z € X
T(t)x := nh_)n;(}TMt)x
exists and that
(ii)
{T(t)} ek,

is a strongly continuous semigroup on X which
(iii) possesses A as a generator.
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In order to show (i) it is enough to show that for all t € R, and for
all v € X

(TTL<t>x)neN, n>w

is a Cauchy sequence in X. The proof has three steps.
First, we show that for all x € X and for each n,m € N, n,m > w

(14.6) | Ta(t)x — To(t)z] < /Ot 1Tt — )T ()| | Anz — Apar] ds.

In order to do so, we would like to use the fact that since for each
n € N,n > w A, is a bounded operator with domain X, we know
the derivative of T, (t)x with respect to ¢ for any x € X and any
n € N, n > w. Thus, for x € X and n,m € N, n,m > w we write

Tu(t)e — To(t)z = /O dii (T (t — $)To(5)7) ds

using the fundamental theorem of calculus for Banach space valued
integrals. We derive the integrand and obtain by the product rule for
re Xandn,meN, n,m>w:

T.(t)x — Tp(t)r = /0 (—A T (t — 8)Th(s)x + T (t — ) AT, (s)x) ds.

A, and T,, (and A,, and T,,) commute by definition of T, (and T,,) for
any n,m € N, n,m > w. A, and A,, commute by their representations

A, = —nld +n*R(n, A)
and
Ay = —mld + m*R(m, A)

for any n,m € N, n,m > w. Hence by definition of 7,, also A,, and
T, commute for any n,m € N, n,m > w and we obtain the following
estimate:

(14.7) || Tu(t)z — T(t)z| < /Ot T (t — $)To()]| || Apz — Apz|| ds.

Second, since we know that

lim ||A,x — Apzx| =0

n,Mm—00

for all z € D(A), in order to show that for all ¢ € R, and for all
x € D(A)

(Tn (1) %) ey, now
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is a Cauchy sequence in X by the first step it suffices to show that
there exists C' < oo such that for all s € [0, ]

sup | Tu(s)] < C.

neN, n>w

This is shown as follows. For s € [0,t] and n € N, n > w by Lemma
1.3.9 we have for T,,(s) = e

Tn(S) _ 6(—snId+sn2R(n,A))
_ e—sne(anR(n,A)) )

We can estimate this and obtain for any n € N, n > w and s € [0, t]
and any v € X

< |I[sn? (R(n, A)]" z
T (s)a]| < e > X H

k=0

(snz ‘

—sn - (n—w))

= e Y A
k=0

Sn2
=e "Met—) ||zl
Snw

= Men— ||z||.

Therefore || T, (s)|| < Men—s for any n € N, n > w and s € [0,¢]. This
implies that for all s € [0,¢] and any n € N, n > w

(1.4.8) sup | T(s)|| < M - max {e* 1}
neN
where
no:=min{n € N: n > w}.
Hence by Inequality 1.4.6 and

lim |4,z — Apz|[ =0
n,m—00

[Tn () = Tn(t)2]
is a Cauchy sequence in X for all z € D(A) and since X is a Banach

space for all x € D(A) and ¢t € R, the Cauchy sequence converges to
some

T(t)x := lim T, (t)x.
n—oo
We also see that the inequalities

(1.4.9) 1Tz < Tim [T, ()] < Me™ |||
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hold for all z € D(A) and t € R,.
Third, we want to show that
T(t)x := lim T, (t)x.
n—oo
exists also for any x € X \D(A) and t € R,. We fix some z € X \D(A)
and choose a sequence (y,),,cy With ,, € D(A) such that

r = lim z,,
m—0o0

for all m € N. Since (2,),,cy is @ Cauchy sequence in X we see because
of Inequality 1.4.9

[T (#)m, = T(E)zm, || = 1T() (Zm, = Zm,)]|
< Me™ || Tmy — T, ||
that also (T'()m),,cy is @ Cauchy sequence in X. Thus,
T(t)x = A%T(t)xm

exists. This limit does not depend on the choice of the sequence which

we see in the following way. We choose another sequence (7,,),, oy With
Zm € D(A) for all m € N such that
z = lim z,,
m—r0o0
and see that the inequality
IT(O)Fm — T(O)am|| < Me™ |[Zm — 2|

which holds for all m € N and ¢t € R implies that (7'(t)x,),,cy and
(T'(t)Zm),pen converge to the same limit for all ¢ € R,. Furthermore,
the estimate

[Tl = lim [ T(E)e]| < lim Me [fa,,] = Me ja]
holds for any t € R,. Combined with Inequality 1.4.9, this yields
Il < Me™.
Since for any t € R,
(T(t) — Tim Tn(t)> =0
for x € D(A), D(A) is dense in X and

tngw
sup || T'(t) — T (t)|| < Me™ 4+ M - max {eno—w, 1}
neN

by Lemma 1.4.33
T(t)r = lim T, (t)x

n—o0

holds for any z € X and any t € R,.
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In order to show (ii) we already know that the family

(T'(t))cx,

as defined above is a family of linear bounded operators on X. We first
show that this family also satisfies the Functional Equation (1.1.1).
This is the case since for any x € X and any s, € R, we obtain

1Tt + s)e =T )T (s)z|

< <M~max{e"070—“,1}> lim |[(7,,(t)x — T(t)x)||

n—0o0
= 0.

hmT (s +t)x — hmT()T( )xH

hm T.(s)T,(t)x — hm T,(t )T(s)xH

For statement (ii) it remains to be shown that (T'(t)),cp, is strongly
continuous. We fix x € X and by Proposition 1.4.8 it is enough to
show that

t— T(t)z
is continuous from the right at ¢ = 0. We know that

t— To(t)x

is continuous for any n € N. If we can show that on some interval [0, o]
t — T,(t)x converges uniformly to t — T'(t)x we know from calculus
that then also t — T'(t)x is continuous on this interval. In order to
show this uniform convergence we fix some ¢ > 0 and ¢, € R, and by
Inequality 1.4.7 and Inequality 1.4.8 there exists nq(tg, z) such that for
all n,m > ny(t, z) and any s € [0, to]

ITo(s)2 = T(s)all < to - (M - max {e 1})2 1Anz — Anz]|
<e.
We can find no(t,x) > ny(to, z) such that for all n > ny(t, z)
IT(t)z — Tp(t)z| = HJLIEOTn(t)x - Tn(t)mH
< E.

no(t,z) depends on t but we can eliminate this dependence combining
both inequalities where we observe for n > n; (o, x)

”T(t)l’ - Tn(t)l’H < HT(t>x - Tno(t,a:) (t)l‘“ + HT(t)no(t,ac)'r - Tn(t)IH
< 2e.
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Hence we have shown uniform convergence of t — T),(t)x to t — T'(t)z
on [0,to] and therefore strong continuity of the semigroup

(T(*) e, -

For the proof of (iii) we need to show that (B, D(B)), the generator of
(T'(t)) g, » coincides with (A, D(A)).

We start by showing that for x € D(A)

hmT(t):L’ -z
t\0 t
hence D(A) C D(B) and B = A on D(A). Later we prove D(A) =

D(B). The proof of Equation 1.4.10 has two steps.
As a first step, we show that for y € X on some interval [0, ¢(]

(1.4.10)

— AxH =0,

En it = TL() Ay
converges uniformly to
n:t—T(t)Ax.
This is shown by the estimate
T (6) Ape — T(t) Az || < ||T5(t)Apx — T,,(t) Azx|| + || T (t) Az — T'(t) Ax||
<M - max {etf?oyl%j, 1} |Apz — Ax||
+ || T (t) Ax — T'(t) Az||
and the uniform convergence of

En it = To(b)y
to

E:t—T(t)y
known from the proof of (ii).
As a second step we show

Tt)r —x = /OtT(s)Aa:ds.

For some € > 0 we choose ng such that for 0 <t <ty and all n > nyg
T (t)Ape — T(t)Az|| <

and
T (t)x — T(t)z|| <e.
By the fundamental theorem of calculus

t
T.(t)r —a = / T, (t) Ay xds.
0
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Therefore

H— /0 t T(s)Azds + T(t)z — x

gH_/t (s)Azds + /OtTn(t)Anxds

H T, (t)Apxds + T, (t)r — o

+ | =Tu(t)z + T'(t)z||
<et+¢

and since € > 0 was arbitrary

Tt)r —x = /OtT(s)Axds.

We can use this and the fundamental theorem of calculus and the strong
continuity of (T'(?));cp, to directly compute

t
limfo T(s)Axds A
N0 t

=0.

limT(t)x —x
t\0 t

— Az

We still need to show that D(A) = D(B). By assumption of the the-
orem, for ReA > w one has A € p(A). The bound ||T(¢)|| < Me™
from Equation 1.4.9 yields that by Proposition 1.4.29 Re\ > w implies
also A € p(B). Therefore, for ReX > w the resolvent R(\, A) is a bi-
jection between X and D(A) and the resolvent R(\, B) is a bijection
between X and D(B). Hence A — B is a bijection between D(B) and
X and A — A is a bijection between D(A) and X. For y € X it holds
R(A\, A)y € D(A) and since D(A) C D(B) and B = A on D(A)

y=A=A) R\ Ay
— (A= B) R(\, A)y.
Hence by injectivity of (A — B)
R(A, A)y = R(A, By
for any y € X. Surjectivity of R(\, B) onto D(B) and R(\, A) onto
D(A) yields that this is only possible if D(B) = D(A).

O
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1.4.4. Lumer-Phillips Theorem. In the case of so-called dissipative
operators the conditions the operator needs to fulfill in order to gen-
erate a strongly continuous semigroup can be somewhat relaxed. The
presentation here follows Chapter II, Section 3b in [18].

DEFINITION 1.4.36. A linear operator(A, D(A)) on a Banach space
X is called dissipative if for all A > 0 and all x € D(A)

A = A)zl| = A]]

PROPOSITION 1.4.37. For a dissipative operator(A, D(A)) the fol-
lowing statements hold true:
(i) X — A is injective for all X\ > 0 and for all z € rg(A — A) and for
all A\ >0

(1.4.11) 1= A 2| < % 2.

(11) If X\ — A is surjective for some X\ > 0 then it is surjective for all
A >0 and (0,00) C p(A).

(ii1) A is closed if rg (A — A) is closed for some X > 0 and if A is closed
then rg (A — A) is closed for all A > 0.

(iv) If rg(A) C D(A), then A is closable and its closure A is dissipative
as well. In this case, for all A > 0

rg ()\ = fl) =rg(\— A).
PROOF. (i) If for some x,y € D(A)
A=Az =A=-A4)y,
then by definition of dissipativity
0=[A=A) (@ -yl =A==yl =0

hence x = y. Inequality 1.4.11 follows directly from the definition of
dissipativity for z = (A — A) z.

(ii) Let A\g — A be surjective for some Ay > 0. By (i) A\g — A is also
bijective hence Ay € p(A). By (i)

1
|R(Ao, A)|| < "
0

thus Proposition 1.4.27 yields that for A € R such that |A — \g| < Ao
A € p(A). Therefore (0,2)\) € p(A) and by (i)

1
RNA)| <<
1RO, A)] < 5
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for any A € (0,2)\). By applying Proposition 1.4.27 again we obtain
inductively (0,00) € p(A).
(iii) Let rg (Ao — A) be closed for some A\g > 0. By (i)

(M —A) " rg(Ng— A) = D(A)

exists and is a bounded linear operator. Therefore, by closedness of
rg (Ao — A) if a sequence (x,), .y in rg(Ag — A) converges to some x
then € rg (Ao — A) and by continuity of (\g — A)~"'

lim (A —A) "z, = (A —A) 'z

n—oo
Thus (Ao — A) ™" is a closed operator. This implies that Ao — A is a
closed operator since their respective graphs are identical. We still need
to show closedness of A. For this end, let (2,),.y be a sequence in D(A)
that converges to some z € X as n tends to infinity and let (Az,),
converge to some y in X as n tends to infinity. Then,z € D(A) by
closedness of \g — A and

lim Az, = — lim (A\gz, — Az,) + lim (Agzy)
n—oo

=—(Xoz — Az) + Moz
= Az.

Hence A is closed.

For the opposite direction, closedness of A implies closedness of A\ — A
for any A > 0 just as in the calculation above. However, this yields
closedness of (A — A)~" for any A > 0 where by (i)

A=A rg(A—A) = D(A)
is a well defined bounded linear operator. By continuity of (A — A)_l,
for any sequence (), in 1g (A — A) converging to some § in X as
n tends to infinity also (A — A)~'§, converges to (A — A) " in X.
Closedness of (A — A) ™" yields § € rg (A — A) hence rg (A — A) is closed
for any A > 0.
(iv) In order to show closability of A it suffices by Lemma 1.4.23 to
show that if a sequence (x,),.y C D(A) satisfies lim z,, = 0 and

n—oo
lim Az, =y

n—00

then y = 0. We need to use some inequality in order to find bounds for
y. We can use the one appearing in the definition of dissipativity and
obtain for any A > 0 and w € D(A) and n € N

INA=A)z, + N=A)w| > A|[A\x, + .
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The idea is now to send x,, on the right hand side to 0 and w to y in
order to obtain an upper bound for ||y|| which turns out to be 0. We

obtain for n — oo
o A—A

=y +wl| = [l

Now the assumption rg(A) C D(A) enters and we choose a sequence
(Wn)pen € D(A) such that

> ||wl|

and for A — oo

limw, =y.
n—o0

Then the closedness follows from
0= lim |-y +w,| > lim [Jw,|| = [[y| .
n—oo n—oo

In order to show that A is dissipative we have to show that for all A > 0
and all z € D(A)
H(/\ — A) LEH > M|z
By the definition of the closure of an operator there is a sequence
(#n)en € D(A) such that lim x, =z and
n—oo
lim Az, = Az

n—oo

and the dissipativity of A yields
(A = A) 2| > |2

and taking the limit on both sides we have shown dissipativity of A.
For the last assertion of (iv) let y € rg ()\ — A). Then

y =\ — Az

for some z € D(A) and again by the definition of the closure of an

operator there is a sequence (,),.y C D(A) such that limz, = x
n—oo

and
lim Az, = Ax.

n—oo
Hence
y = lim A\x,, — Ax,

n—oo
and rg (A — A) is dense in rg (A — A) . Since by (iii) rg (A — A) is closed
we obtain

rg(A—A)=rg(A—A).
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THEOREM 1.4.38. For a densely defined dissipative operator (A, D(A))
on a Banach space X the following statements are equivalent:

(i) The closure A generates a contraction semigroup.

(1) The image of A — A is dense in X for some A\ > 0 and thus for
all A > 0.

PROOF. (i) = (ii). By Theorem 1.4.29(ii) for all A > 0 it holds
A € p(A). Thus rg (A — A) = X for all A > 0. By Proposition 1.4.37
iv)

rig(A—A) =1g (A - 4)

for all A > 0. Thus the image of A — A is dense in X for all A > 0.

(ii)=(i). Let Ao > 0 be such that the image of Ay — A is dense in
X. By Proposition 1.4.37 (iv) A is closable with dissipative closure A
and

X=rg(Mo—A) =rg(N—A4).
Hence \g — A is surjective and by Proposition 1.4.37(ii) A — A is sur-
jective for any A > 0 and (0, 00) C p(A). By Proposition 1.4.37 (i) for
all A >0 .
IR <L

We may thus use Hille-Yosida Theorem (Theorem 1.4.35) and conclude.
U

1.4.5. Adjoint Semigroups. We consider the semigroup
(T'(1)) e,

on a Banach space X and construct another semigroup on its so-called
dual space that consists of the so-called adjoint operators. First, we
introduce adjoint operators and some of their properties.

DEFINITION 1.4.39. The dual space X' of a normed vector space
X is defined as

X' :={2": X = K| linear and continuous} .

Its elements are called functionals.

REMARK 1.4.40. If X is a normed vector space then by Proposition
1.2.5 X' is a Banach space. Its norm is the usual norm of the space of
linear bounded maps from Definition 1.2.3

(1.4.12)  ||2']] ;== inf {M, € Ry : |2/ (x)] < My ||z] forall x € X}.
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The dual space (X') of a dual space X' is called bidual and is
written X"\

DEFINITION 1.4.41. Let X,Y be normed vector spaces. To a (in
general unbounded) densely defined linear operator

L: DIL)cX—Y
we can associate a map
L': DL)ycY — X
on

N ,  there exists 2’ € X’ such that
DiL) = {y €Y' (Le) = o () for all & € D(L)

in the following way:
L'(y") (@) =y (L(x)).
The operator L' is called adjoint operator.

We see that for ¢y € D(L') the key requirement is that 3’ o L is
bounded on D(L) even though L is in general unbounded.
The adjoint operator possesses the following properties:

LEMMA 1.4.42. Let X, Y be normed vector spaces.

(i) For a densely defined linear operator (L, D(L)) and its adjoint op-
erator (L', D(L")) D(L') is a vector space and L' is linear.

(i1) If L is bounded then D(L') =Y.

(111) If L is bounded then also L' is bounded and ||L'|| = ||L|| .

PROOF.
(i) If y§,y5 € D(L') and p € C then for all x € D(L)

(1 + o) (L)) = pyn (L(x)) + o (L())
= L' (Y1) (%) + 1l (yo) (z)
and since
pL' (yh) + pl' (ys) € X'
D(L') is a vector space and

L'(pyy + pys) = pL' (yy) + pL' (v5).
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(ii) If L is bounded then L'y’ :=y' o L € X' for all y € Y".
(iii) By Definition 1.2.3 of the operator norm

IL]| = sup [|Lz]].

f[=lI<1

Moreover by Corollary A.4.8

sup ||[Lz|| = sup sup [y (Lz)].

lzl<1 =] <tlly"[|<1
Thus,
IL|| = sup sup |y (Lx)|
lzl<1lly’[I<1

= sup sup [y (Lz)]
<1zl <1

= sup |ly'o L||
ly/lI<1

= sup ||L'y/||
ly/lI<1

= 1]
O

We can now pose the question we would like to solve in this section.
If we are given a strongly continuous semigroup (7°(t)),c, on a Banach

space X we would like to know whether or not (7"(t)),cp, also forms
a strongly continuous semigroup. A first result is the following lemma.

LEMMA 1.4.43. If (T'(t)),cg, s a semigroup on a Banach space X
then (T'(1))er, is @ semigroup on X'.

PROOF. Since we know from Lemma 1.4.42 that (177(t)),cg, is a

family of bounded linear operators on the Banach space X’ we only
need to show that it satisfies the Functional Equation (1.1.1). For
s,t € R, we obtain for all ¢y € Y’

T'(s+6)(y) () : =y (T
(

Therefore the following definition is justified:
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DEFINITION 1.4.44. If (T'(1)),cp, is a semigroup on a Banach space
X, the family(7"(t)),cz, of bounded linear operators on X' is called
the adjoint semigroup.

However, in the following example we see that the adjoint semi-
group of a strongly continuous semigroup is not necessarily strongly
continuous.

EXAMPLE 1.4.45. In Example 1.4.11 we have seen that the left
translation semigroup

(T(1))em,

on L'(R) is strongly continuous. We want to find the adjoint opera-
tors of the left translation. It is known from functional analysis (see
Proposition A.4.3) that the dual space of L'(R) is the space L™ (R)

from Example A.4.2. For the right continuous semigroup

(T2 (1)) e,
from Example 1.4.1 it holds for f € L'(R) and g € L= (R) and t € R,

| mowie)-feds= [ g -0 1) ds
~ [ o9 sts+0yas
-/ " g(s) - [0 F(5)) ds.
Hence,
(T2(1) e,
on L* (R) is the family of adjoint operators of
(Ti(8))en,

on L'(R). Since we know that the latter is strongly continuous we
would like to know whether this is also the case for its family of adjoint
operators. However, we see that for sgn € L™ (R) defined as

lifx>0
sgn(z) = Oiffx:()
—lifx <O

we obtain for ¢t > 0
1T (t)sgn — sgn| oo (my = 1.

Thus, the adjoint semigroup is not strongly continuous.
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Since the adjoint semigroup is in general not strongly continuous
but we would still like to show some regularity a first idea is to ask
for less than strong continuity. Therefore, we introducelocally convex
vector spaces and weak topologies and hereby follow [41], chapter VIII

DEFINITION 1.4.46. Let X be a K-vector space. A map
p: X —0,00)

is called seminorm on X if

(i) for all A e K and z € X p(\x) = |A| p(z)
(ii) for all z,y € Xp(xz +y) < p(y) + p(x)

REMARK 1.4.47. A seminorm for which holds that p(z) = 0 implies
x = 01s a norm.

Just as in example A.1.3 where a norm induced a topology also a
family P of seminorms on X induces a topology. This is seen as follows.
For a finite subset F' C P and € > 0 we define

(1.4.13) Upe ={rv € X :p(x) <cforalpe F}
and the set of all such sets
= {Up.: F C P finite,e > 0}.
il replaces the set of open balls in the case of normed spaces.

PROPOSITION 1.4.48. Let X be a K-vector space, let P be a set of
seminorms on X, and let 3 be defined as above. Then the family of
subsets

7:={0 C X : for any x € O there is U € l such that x + U C O}
15 a topology on X.

PROOF. Concerning property (i) of a topology (in Definition A.1.1),
clearly 0, X € 7.
Concerning (ii), if O;,0y € 7 then for z € O; N Oy there exists
Fy C P finite,e; > 0 such that z + Up, ., C O; and there exists Fy C
P finite, g9 > 0 such that o 4+ Up, ., C Oz . Then o + Up,up, min(e1,e2) C
O1 N Os.
Concerning (iii), if 7 is some index set and O; € 7 for all i € I and
z € |JO; then x € O; for some j € I and by definition there exists

iel

F; C P finite, £; > 0 such that = + Up,., C O; C JO.. d

el



84 1. ONE-PARAMETER SEMIGROUPS

DEFINITION 1.4.49. Let X be a K-vector space and P be a set of
seminorms on X and 7 the topology from Proposition 1.4.48. Then(X, 1)
is called locally convex topological vector space.

Just as in the case of a normed vector space we can define dual
spaces:

DEFINITION 1.4.50. The dual space X' of a locally convex topolog-
ical vector space X is defined as

X' :={L: X — K] linear and continuous} .

DEFINITION 1.4.51. Let XY be K-vector spaces and (-, -) :

X xY =K
(z,y) = (z,9)

a bilinear map. (X,Y, (:,-)) is called dual pair if for all z € X \ {0}
there is y € Y such that (z,y) # 0 and for all y € Y \ {0} there is
x € X such that (z,y) # 0.

LEMMA 1.4.52. Let (X,Y,(-,-)) be a dual pair. Fory €Y define
Dy :
X — [0,00)
z — [z, y)].

Then p, is a seminorm on X.

(x,y)| and for a,b € X

PRrROOF. For A € K clearly |[(A\z,y)| = |||
L Y) |- O

[{a+b,9)| = [a,y) + (0, 9)] < [{a, 9)| + (b y

DEFINITION 1.4.53. Let (X, Y, (-,)) be a dual pair and

P:={p,:yeY}
a family of seminorms on X. The topology that is induced by P on X
via Proposition 1.4.48 is called o (X, Y)-topology.
REMARK 1.4.54. Let (X,Y,(-,-)) be a dual pair and (z,), .y C X
and z € X. Ifforally € Y lim (x,,y) = (z,y) then (x,),y converges
n—oo
to z in the o (X, Y)-topology.
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REMARK 1.4.55. For a locally convex topological vector space X
and its dual space X’ the map (-, ) :

X x X 5K
(v, 2') = o' ()
is bilinear.

PROPOSITION 1.4.56. Let X be a Banach space. Then(X, X', (-,-))
s a dual pair.

PROOF. If ' # 0 then there is some x € X such that 2'(z) # 0.
If © # 0 then by a corollary of the Hahn-Banach theorem (Corollary
A.4.7) there exists ' € X' such that 2/(z) # 0. O

Therefore, for € X and 2’ € X’ we can write (z,2') = (2/,z) =
' (x).

REMARK 1.4.57. Tt can also be shown that(X, X', (,-)) is a dual
pair when X is only a locally convex topological vector space (see [41],
Chapter VIIL.3, Example (a)). For this purpose however one first needs
to introduce the Hahn-Banach theorem for locally convex topological
vector spaces (see [41], Chapter VIIL.2 ), something we will omit.

DEFINITION 1.4.58. The topology o (X, X') is called weak topology,
the topology o (X', X) is called weak*- topology .

Turning back to our question whether the adjoint semigroup is con-
tinuous in some sense we obtain the following result.

PROPOSITION 1.4.59. If (T'(1))cp,
group on X then for the adjoint semigroup (1T"(t))

t—T'(t)y (z)

15 a strongly continuous semi-

teRy

is continuous for any x € X and any y' € X'.
PROOF. Since
T'()y(z) = (' o T(1)) ()
it follows from continuity of 3 and strong continuity of ¢ — 7'(t) that
ImT"(t)y'(x) =y o <limT(t)x>
t—s t—s
=y oT(s)x
=T"(s)y'(x).
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LEMMA 1.4.60. The map
t—=T'(t)y'(z)

is continuous for anyt € Ry, x € X andy' € X' if and only if for any
y' € X' the map &, :

R, — X'
t—T'(t)y

is continuous where X' is equipped with the o (X', X) -topology. There-
fore, this type of continuity s called weak™-continuity.

PRrROOF. Fix y € X'. f R, 5t — T"(t)y'(x) € K is continuous for
any ¢ € X then also t — (T"(t)y’ — 2') (x) for any 2’ € X' and any
x € X. Thus, for any ¢ > 0 and # € X and the sets U,y defined
in 1.4.13 the set

-1
(&) Ugeane+7)
is open. Hence, for any finite set F' C X and any € > 0 the set

&) (Ugraaerye +2) = () (€) (Ugeae +2)

zeF

is open. Thus, £, is continuous when X" is equipped with the o (X', X)
topology.

For the other direction, let ¢ > 0 and z € X be arbitrary. Then
(52’/)71 (Ug¢aypy.e + 2') is open for any 2’ € X’ and for any € > 0. For
any a € Kand z € X\ {0} by Corollary A.4.7 there exists ¢’ € X such
that a/(z) = a. Thus, for any § > 0 and the J-ball Bs(a) around a € K
the sets

(T'(t)y" — ) (x) € Bs(0)
and
T'(t)y () € Bs(a)
are the same and open. Hence, the map
t—=T'(t)y (x)

is continuous for any z € X. (l

However, instead of using a weaker concept of continuity we can
also restrict ourselves to a smaller space where we obtain even strong
continuity. The exact result is the proposition below. The proof follows
the one in [20], Section 4.1.1.
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PrROPOSITION 1.4.61.
Let

(T(t))teﬂh
be a strongly continuous semigroup on X with generator (A, D(A)) and
A’ the adjoint operator of A with domain D(A’). Then

i) for X7 := D(A’) C X' where the closure is to be taken with respect
to the norm topology of X' and

THt) == T'(t)|x+ for allt € Ry
the family
(TT(t))te]lh

is a strongly continuous semigroup on X' and
i) its generator Al is given by the restriction of A’ to the set

D(AY) :={y e D(A): Ay € X'}.

PRrROOF.
i) The proof has two steps.
First, we have to show that

(7)) ez,

is indeed a family of maps between the correct spaces, that is T7(t) €
L(XT) forallt € R,. In order to show this claim, we first let ¢/ € D(A’),
fix some t € R, and show that TT(t)y’ € D(A’). In other words,
we have to prove that there exits A’ (T7(t)y’) € X’ such that for all
x € D(A)

(T'(t)y) (Az) = A" (T (t)y) =.

Since by Lemma 1.4.42 T'(t) € L(X) implies D(T") = X’ we obtain
TT(t)y € X" and T'(t)y’ =y o T(t) and the equation we need to show
reduces to

Yy oT(t)o(Azx)=A oy o T(t)x

for all z € D(A). Also ¢y € D(A’) implies A'(y') € X' and A'(y)x =
y' o Ax for all + € D(A). By the invariance of D(A) under T'(¢) (see
Proposition 1.4.15) also T'(t)x € D(A) and the equation we need to
show reduces to

Yy oT(t)o(Azx) =y o AoT(t)x.
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This holds true due to Proposition 1.4.15. Furthermore, the equation
A (TH(t)y') = Aoy o T(t
(T'(t)y) = Aoy o T(1)
ex’
yields A’ (T(t)y’) € X'. Hence T7(t)y' € D(A') for y € D(A).
We still need to show that T7(¢)y’ € X' for any 3/ € XT\ D(A"). We
find a sequence (y,,),cny C D(A’) such that limy, = 3 in X’. Since
n—oo

by Lemma 1.4.42 TT is linear and bounded it is continuous on X'.
Therefore

(1) () = T'() (lim o)

n—oo
= lim 7'(t)(y,)
T2 00 e, o’
€D(A’)
lies in X
In the second step, since we know from Lemma 1.4.43 that the func-
tional equation holds for (TT(t)) IR, by the first part of the proof it is
a semigroup on X and all we need to show is strong continuity on XT.
Since by assumption (T'(t)),cp, is a strongly continuous semigroup, by
Proposition 1.4.8 there is § > 0 and M > 1 such that ||T(t)|]| < M
for 0 <t < 6. By Lemma 1.4.42 | T7(t)|| < ||T'(t)||. Therefore, there
is 0 > 0 and M > 1 such that ||TT(t)H < M for 0 <t <6 and by
Proposition 1.4.8 in order to show strong continuity of (TT(t))teR+ it
is enough to show

lim T1(t)y =9/
lim T'(t)y’ =y

on a dense subset of XT. As such a subset we take D(A’). We need to
find a suitable expression for T7(t)y’ = 3/ o T(t) € X’ and observe that
it follows from Proposition 1.4.15 that for x € X

T(t)xr —x = /Ot AT (s)xds.

We apply v’ on both sides of the equation and remember from Equation
1.3.2 that we can pull linear maps in the Banach space valued integral.
We obtain

(f o T() () — of (x) = / (o 0 AV T(s)(x)ds.

and since y' € D(A’) by the definition of adjoint operators A’ (') € X’

/0 ( 0 A) T(s) (x)ds. = / (A (1)) o (T(s) (x)ds
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Since this equation holds for all z € X we have shown
¢

THe)y —yf = / (A (1)) o (T(s)) ds.

0
We can therefore bound for 0 <¢ <4

t
|7 =yl < [ 14wl s
0
With ¢ — 0 the right hand side converges to zero and we conclude.

ii) First, we show that the limit

TT t /A 1 t
im 2OV =Y L o ) Ts)as,
N0 t ~o t o,

exists for all 3/ € D(A') and that this limit is A’ (y'). Since

t

. 1 / BT 1 ¢ T / /
i 5 [ o A T()ds =t [ 76 (4 () s

and the fact that
(T'(1) ser,

is a strongly continuous semigroup on X the right hand side converges
by the fundamental theorem of calculus to A’ (v/) .

Next, we want to show that the domain of the generator is not larger
than

{y eDA): Ay e XT}.
In order to determine this domain, we use the fact that for any \ €
p(AT) by its definition, R()\, AT) is a bijection between the domain of
the generator AT and XT. Therefore, we would like to find an expression
of R(\, AT) in terms of A’ without dependence on AT in order to express

the domain of A" in terms of A’. We recall that by Lemma 1.4.42 and
Proposition 1.4.9 for all t € R

[T @) < 1T O = 1T @) < Me*

for some M > 1 and w € R. Hence, by Theorem 1.4.29 if Re\ > w
then \ € p(A") and for all z € X1

R(A,AT)x:/ e T (s)ads
0

:/ e MT(s)zds.
0
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We want to express the right hand side by an operator depending on
A’. We have

RO\, A) = / " e (s)ds.

Since by definition (see Definition 1.4.25) it is a bounded operator for
Re) > w its transpose

RO\, A = ( /0 h e‘“T(s)ds)l

is defined on all of X’ (by Lemma 1.4.42). The integral is defined as
the limit of Riemann sums and transposing an operator is a continuous
operation according to Lemma 1.4.42. Thus, we can pull the transpose
in the integral and obtain

RN A) = /00 e T (s)ds
and 0
RO\ AT) = RO\ Ay
In order to simplify the right hand side further, we observe that
R A =\ —A4)7"
holds since
oA—A)TTN—A) =2 eX
for any 2/ € X', hence 2’ o (A— A)"" € D(A — A’) and
(A= A) (RO A) (@) = (A= A) (o (A= A)7)
=1
Moreover, for 2’ € D (A')
RMNA/(A=AYay=a'o(A—A) o (A= A)""
=,

Thus, we can rewrite the resolvent R(\, AT) as

RO\, AN — / T (5)ds
0

Xt
= R(A7 A)/’XT

- .Fi()\7 A/>|XT .

R(), A1) is a bijection between X' and the space where the generator
At is defined. Moreover,

RO A) i (XT) ={y e DA): Ay € XT}
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by definition of R(\, A’) and the operator AT can be defined only on
{y eDA): Ay e XT}.
U

A result concerning the size of the space X' from Proposition 1.4.61
is the following assertion. Like in the case of the previous proposition,
we follow the proof of [20], section 4.1.1.

PROPOSITION 1.4.62. Let
{T() }er,

be a strongly continuous semigroup on X with generator (A, D(A)) and
A’ the adjoint operator of A with domain D(A’). Then X' = D(A’) C
X' is dense in X' in the weak-*- topology which means that for each
y € X' there exists a sequence (y),),ey C X' such that

lim y, (z) = 3/ (x)
n— o0
for each x € X.

PROOF. Fix ¢y € X’. We have to find some good approximation
for 4/ in XT. By Theorem 1.4.29 (ii) in conjunction with Proposition
1.4.9 R(n, A) exists and is bounded (see Definition 1.4.25) for n € N
large enough, say n > N. Choosing an approximation of ¢ known from
Proposition 1.4.34, we set

v, :=ny R(n, A)
for any n € N, n > N. By Proposition 1.4.34 we know that
lim nR(n,A)(z) =«

n—oo

for all z € X hence by continuity of 3/
lim ny (R(n, A)()) = o/ (lim nR(n, 4)(x))
=y'(z).
We would like to show that
(Yn)nenmsn. C D(A) C Xt

in order to conclude. All we need to show is that y/, o A € X’ for any
n € N, n > N. This follows from

ny R(n, A)A = ny'R(n, A) (A —n) +ny' R(n, A) (n)
= —ny +n*y'R(n, A)
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and the fact that R(n, A) is bounded for n € N, n > N.
U

1.4.6. Weakly continuous semigroups. In this subsection we
see that so-called weakly continuous semigroups (see Definition 1.4.64)
are also strongly continuous. In the proof we follow [18], chapter I,
Theorem 5.8 and need to cite several results from functional analysis.

REMARK 1.4.63. The map f; . :
R, —-C
t — (T(t)x,x)

is continuous for any x € X and any 2’ € X' if and only if for any
r € X the map &, :

R, =X
t— T(t)x
is continuous where X is equipped with the o (X, X’) topology.

PROOF. The proof is almost identical to the one of Lemma 1.4.60.
O

DEFINITION 1.4.64. In case the conditions of Lemma 1.4.63 holds
true, we call the semigroup

(T<t))t€]R+
weakly continuous.

LEMMA 1.4.65. For a semigroup

(T(1))em,

on a Banach space X such that for any v € X and 2’ € X' the map

foar
R, —-C
t — (T(t)x,x)
15 continuous, it holds

sup [|[T'(t)]| < oo
t€(0,s]

for any s € R,.
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PROOF. It is enough to show that there is some ¢ > 0 such that
sup [|T(t)[| < oo
te(0,6]
because then by the semigroup property
sup [[T(t)]| < oo
te[0,s]
holds true for any s € R,.
We show this by contradiction and assume that

sup [|T(t)]| = oo
te[0,6]

for any ¢ > 0. Then there exists a sequence (t,), oy such that #, ~\, 0
and
lim [|T(t,)|] = oc.

tn,—00
By the uniform boundedness principle (Theorem 1.4.6) there exists
y € X such that

lim sup | 7t )yl| = .

tn—0
Interpreting (T(t,)y),cy as a family of maps
X' —=C
¥ — (T(t,)y, ")
we obtain that if for all 2 € X' by continuity of f, ,» at t =0
lim sup (T'(t,)y, 2') < oo

tn—0
holds true. Then, by the uniform boundedness principle (Theorem
1.4.6)
limsup sup  (T(t,)y,x') < .
=0 e x
2"l <1
However, by a corollary of the Hahn-Banach theorem (Corollary A.4.8)

swp (T(t)y.a') = [T (]l
¥eX
o'} <1

which yields the contradiction

oo > limsup  sup  (T'(t,)y,z") = limsup || T(t,)y| = oc.
tn—0 rex 4 tn—0
'] <1
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O

In the proof of the next proposition we need to work with the so-
called convex hull of a set.

DEFINITION 1.4.66. Let X be a K vector space and M C X some
subset. The convex hull of M is written coM and defined as

= >
Z)\ml RGNAGKZ)\ 1, A\, >0,
i=0 mZEMforallze{O N

coM =

Its closure is written as coM.

In the following proof we need a different definition of an integral
of Banach space valued functions than the one we have been using
previously in Definition 1.4.67. We introduce the following definition
from Rudin ([38], Definition 3.26):

DEFINITION 1.4.67. Let (@, %, ) be a measure space and let X
be a Banach space. Let f: @Q — X be a function such that for any
x' € X' the function 2’ (f) : @ — K is integrable with respect to pu.

We write
/ fdp =1y
Q
for y € X if for any 2/ € X’

/x’ (f)dp =2 (y).
Q

We are now able to show the main result of this subsection which is
taken from Engel, Nagel ([18]), Chapter I, Theorem 5.8. Our proof
follows the one presented there.

THEOREM 1.4.68. A semigroup
(T<t))t€]R+

on a Banach space X is strongly continuous if and only if for anyx € X
and any x' € X' the map fy .

R, —-C
t — (T(t)x,2)
18 continuous.

PROOF. We only have to show that weak continuity of
(1)) ser,



1.4. STRONGLY CONTINUOUS SEMIGROUPS 95

implies strong continuity of the semigroup. We use Proposition 1.4.8(iii).
Condition (b) in Proposition 1.4.8(iii) has already been shown in Lemma
1.4.65. We still have to show that the set

E = {x im | T(H)z — || = o}
t—0

is dense in X with respect to the topology induced by the norm. The
outline of the proof is as follows. Since E is convex (see Definition
A.3.71) it suffices by Proposition A.4.10 to show that some subset D C
E is dense in X with respect to the weak topology. As a first step, we
find a set D C X” such that X is contained in its weak closure. As a
second step, we show D C X. This implies that D is weakly dense in
X. Finally, we show that D is a subset of E and conclude.
In order to find such a weakly dense set, in the first step we fix z € X
and r > 0 and we define for 2’ € X’
(., 2 = 1/ (T(s)x,x") ds.
0

r

The map 2’ — (x,, ) is linear and due to

(@, )| < <Sl[tp] HT(S)H) I 12| ds
se|0,r

by Proposition 1.2.7 continuous. Hence x, € X”. Because of continuity
of s — (T'(s)x — x,z’') we obtain

1 [ 1 [
lim— [ (T(s)x,2")yds — (z,2") =lim- [ (T(s)x —x,2')ds
r—0r 0 r—0r 0
= 0.

Hence z, converges in o(X”, X’) to x as r tends to 0 and we define the
set

D:={z,e X":ze X, r>0}.

As a second step, we show D C X. For this purpose, we can use
Proposition A.4.11 on Banach space valued integration (according to
Definition 1.4.67). Interpreting

0,7] = X
s —T(s)x

as a map that is continuous when X is equipped with the weak topology,
this proposition yields that

z, €co{T (s)z: se0,r]} CX
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if
co{T (s)xz: s€[0,r]}

is compact in X in the weak topology. In order to show such com-
pactness we observe that since s — T'(s)x is continuous, when X is
equipped with the weak topology the image

{T (s)x: se€|0,r]}

of the compact set [0,r] is weakly compact. Then the Krein-Smulian
weak compactness theorem (Theorem A.4.12) states that the closed
convex hull of a weakly compact set is also weakly compact. Hence

co{T (s)xz: s€[0,r]}

is weakly compact and applying Proposition A.4.11 is justified and
yields D C X since

D ceo{T (s)z: se0,r]} C X.
It remains to be shown that D C E. For any z, € D by definition
Corollary A.4.8 of Hahn-Banach
. 1 AN /
fg [7(0)a, — o] =l sup [(T(E)a. ')~ (ar,2)]
e X
o'l <1

Thus, by definition of the adjoint operator (see Definition A.3.71)
(T'(t))" of T(t) and Lemma 1.4.42 (iii)

. T N /
15% Tz, — x| = 15% sup (2, (T(t)) ") — (2, 2")].
reX
2’| <1

Therefore, the definition of x, yields
lg% |T(t)z, — .|
=lim sup

t—0 $, c X,
o' <1

L rem ey s [ @ |

r T
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Again by the definition of the adjoint operator and changing integration
boundaries we obtain

lim |7z, —

1 r+t 1 r
=lim sup —/ (T(s)x,x") ds — —/ (T(s)x, ") ds|.
t—0 e X' T Ji T Jo
[l <1

Since t converges to 0, we can rearrange the two boundaries of the
integral and obtain

lim 1T (0)2, — |

1 r+t 1 t
<lim sup (—/ |<T(5)x,x’>]ds+—/ ]<T(5)x,x’>]ds).
t—0 e X' rJ. T Jo
[ <1

By definition of the norm of &’ |(T'(s)z,2")| < ||2'|| - ||T'(s)x||, hence

lim |7(t)a, — 2, < lim " [1a] ( sup [|[T(s)] + sup ||T<s>||)
—0 t=07 r<s<r+t 0<s<t
which converges to 0 as ¢t — 0 using Lemma 1.4.65.

Hence, x, € E for any x, € D which yields D C E and we con-
clude that F is dense in X in the weak topology, thus by Proposition
A.4.10 and convexity in the norm topology. Therefore, the semigroup
(T'(t)) g, is strongly continuous by Lemma 1.4.65 and Proposition

1.4.8. U

COROLLARY 1.4.69. A semigroup

(T'(1))sem,

on a Banach space X is strongly continuous if for any x € X and
' e X' the map fu .
R, - C
t — (T (t)x,z")
15 continuous at t = 0.
PROOF. Let x € X and 2/ € X’ be arbitrary and fixed. We have
to show continuity of ¢ — (T'(t)x,2’) at any ¢ € R, in order to use

Proposition 1.4.68 which permits us to conclude. Let s € R, be arbi-
trary. Right continuity of ¢ — (T'(t)z,2’) at t = s follows immediately
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from

(T(h + s),') = <T<h><T<s>x>, >
——
=y
and the continuity of f, ., at h = 0. Regarding left continuity of ¢t —
(T'(t)z,x') at t = s we have to show that

}lli}% (T(h+ 8)x,z")y — (T(s)x,z") = 0.

It holds
}Li;no (T(h+ s)x,z")y — (T(s)x,z") = }L% (T(h+s)(Id = T(=h)) z,z")
< sup IT@) im (Id — T(~h)) 2, 2')

teo,s z - .

=0

and by Lemma 1.4.65

sup [|T'(t)[| < oo
t€(0,s]

for any s € Ry thus t — (T(t)z,2’) is left continuous for any t €
R, . 0

DEFINITION 1.4.70. Let X be a Banach space and x € X arbitrary.

The map i(z) :

X =K

¥ —2(z)
is clearly linear and bounded. Hence i(z) € X" for any z € X. The
map

X =X
is injective by Corollary A.4.7. If it is also surjective then X is called
reflezive.

COROLLARY 1.4.71. On a reflerive Banach space the adjoint semi-
group of a strongly continuous semigroup is strongly continuous.

PROOF. Let X be a reflexive Banach space and let

(T(1))sem,

be a strongly continuous semigroup on X. By Proposition 1.4.59 for
the adjoint semigroup (see Definition 1.4.44)

(T'(t)) e,



1.4. STRONGLY CONTINUOUS SEMIGROUPS 99

the map

t— T'(t)2' (x)
is continuous for any x € X and any 2’ € X'. Since X is reflexive this
implies that also the map

t— (T'(t)x', 2"

is continuous for any 2”7 € X” and any 2’ € X’. Therefore, by Theorem
1.4.68 the adjoint semigroup

(T'(t)) ek,

is a strongly continuous semigroup on X'. U






CHAPTER 2

Markov, Feller and Generalized Feller Semigroups

Certain semigroups are of particular interest in probability theory
and can be used to define stochastic processes. For definitions and
terminology of stochastic processes we refer the reader to Appendix
A.3.3.

2.1. Markov Semigroups

There are several different ways to define Markov semigroups and
processes. This section largely follows the presentation in Chapter 3.1
in Revuz-Yor [35]. (E, &) will always denote a measurable space and

(2F. (G)es, - P)
a filtered probability space (see Definition A.3.75).

2.1.1. Definition of Markov semigroups. Using transition prob-
abilities that satisfy the Functional Equation (Equation 1.1.1) one ob-
tains an important semigroup on the space of bounded measurable
functions called Markov semigroup.

In order to introduce this semigroup, we first recall the definition
of transition kernels and transition probabilities.

DEFINITION 2.1.1. The map
K:QxE&—|0,00]
is called transition kernel from (Q, F) to(E,E) if
(i) for any A € £ the map
k(- A): Q— [0, 00]
is F-measurable and
(ii) for any w € ) the map
K(w,-): € —[0,00]
is a measure on (E,E).
If K(w,E) = 1 for all w € Q, then & is called transition probability
from (Q,F) to (E,&). If (Q,F) = (E,E) then we speak of transition
kernels /probabilities on(E,E).

101
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REMARK 2.1.2. If k(z,E) < 1 for all x € E but x(y, E) < 1 for
some y € FE, then one can add a new element to the space F, the
so-called cemetery {A}, and on En := E U {A} define a transition
probability (the properties can easily be checked)

K Ex xo(E,{A}) = [0,1]
by

’%/‘:EXS =K

and

K'({A},A)=0forany A€ &
K(x, AU{A}) =K'(x,A)+ 1 —k(z,F) for any A € &

for any z € Ea. For any function f on F the convention is to extend
it to Ex by setting f(A) = 0. Usually, the precise distinction between
x' and k will not be made and ' will simply be called &.

In the following we need two properties of transition kernels. The
first is that the integral of a positive, jointly measurable function with
respect to a transition kernel is measurable (see Lemma A.3.59). The
second property is that by composing two kernels one obtains again a
kernel (see Lemma A.3.60).

Above definitions and properties permit to define on the state space
of transition probabilities a one-parameter family of mappings that
fulfills the Functional Equation (Equation 1.3.3):

DEFINITION 2.1.3. A family (p(t)),cr, of transition probabilities

(kernels) on (E, £) is called semigroup of transition probabilities (kernels)
on (E,&)ifforall x € E, for all s,t € Ry and all A€ &

(2.1.1) p(s + 1) (x, A) = / p(s) (9, A)p(t) (x, dy)

E
and

p(0)(z,-) = s
hold. Here §, denotes the Dirac measure (see ExampleA.3.21). This
definition can be extended to the space (En, o0 (€,{A})) if necessary.

REMARK 2.1.4. Equation 2.1.1 most authors call Chapman-Kolmogorov
equation or Master Equation.
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REMARK 2.1.5. If (p(t)),cp, is a family of transition kernels on
(E,&) such that p(t)(z,F) < 1 for all x € E and all t € R, then
for the corresponding family of transition probabilities (p'(t));cp, on
(En,0(E,{A})) defined as in Remark 2.1.2 the condition

p(s+t)(x,A) = /E P'(t)(y, A)p'(s)(x,dy) for all A€ o (E,{A})

holds for any z € Ex and s,¢ € R, if Equation 2.1.1 holds for (p(t)),cg,
forall x € E, for all s,t € R, and all A € £. In order to simplify nota-
tion, the following statements will only be made for transition proba-
bilities on (F, ). They can be extended to transition probabilities on
(Ea,0(E,{A})) when necessary.

A semigroup of transition probabilities leads to a one-parameter
semigroup (see Definition 1.3.1) on the Banach space of measurable
bounded, real-valued functions on (E,E):

DEFINITION 2.1.6. For a semigroup of transition probabilities
(p(t))teR+
on (E, &) we define the Markov semigroup
(P(t))er,

on the space of bounded, real-valued, £-measurable functions by

POf() = [ F)p0)(edy)
E
REMARK 2.1.7. For a Markov semigroup

(P(t))ser,

on (E,€) for t € Ry P(t)f is defined also if f is non-negative, real-
valued an £-measurable.

Such a semigroup permits to define a stochastic process called
Markov process:

DEFINITION 2.1.8. Let (p(t))cg
abilities and (P(t)),cp, be the respective Markov semigroup. An adapted
process (see Definition A.3.87) (A),cp, on

<Q, F(G)er, ,P)

be a semigroup of transition prob-
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with state space (E, &) is called Markov process with respect to (gt)teR+
with semigroup of transition probabilities (p(t)),, if for any £-measurable

non-negative function
f EF— R+ U {OO}
and any 0 < s <t

(2.1.2) E[f(M)]Gs] = P(t —5)f(\s)

holds P-almost surely. Po Ay is called initial distribution of (A) ek, -

REMARK 2.1.9. By linearity, Equation 2.1.2 holds for £-measurable
bounded functions f : E — R as well. The definition of Markov
processes implies that fp(t — s) = Ky, \, or any t > s > 0 where k), x,
is the regular conditional probability (see Definition A.3.67).

REMARK 2.1.10. More generally, Markov processes can also be de-
fined for families (ps;), ,cp, of transition probabilities on (E, ) such
that forany 0 < s <r <t

pos(ir, A) = / Do (s A)poa (i, dy).
E

In this case P,; is not a semigroup but it is still possible to define a
Markov process in the above way where we replace Equation 2.1.2 by

E [f()\t)’ gs] = Ps7tf()\s)'

Such a family of transition probabilities and such Markov processes are
called inhomogeneous whereas the ones introduced above are called
homogeneous. In the following, we only consider homogeneous pro-
cesses and when speaking of Markov processes we always intend homo-
geneous ones.

REMARK 2.1.11. (Motivation)

By setting f = 14 for some A € £ in Equation 2.1.2 we see that a
Markov process possesses the properties that
(i) for predictions about the future it is sufficient to know the present
instead of the whole past and
(ii) that for such predictions the present time by itself is not important;
what matters is only the difference between the future time for which
a prediction is to be made and the present time.

It turns out that also the other direction is true which we want to
show in the following. The assumption that for a stochastic process
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(/\t)teR+ properties (i) and (ii) hold implies that the family of maps
(2P)pen, (0,7 defined for some r € R, as
Zp . R+ — Ml(E)
r—Po )\;1

satisfies Assumption 1.1.3 and Assumption 1.1.4 from Section 1.1. Thus,
for the family (7'(t)),cp, defined as

T(t) : My(E) — My(E)
Pol ' —PoXl,

(T'(t));cg, does not depend on r and has to be a one-parameter family
of mappings that satisfies the Functional Equation (Equation 1.3.3):

(2.1.3) T(t)oT(s)=T(t+s)
for any s,t € R,. The map
p(t): Ex & —|0,]
(z, A) = E [15,.,ealr =)

(which by assumption does not depend on r € R,) is a transition
probability. By definition for any r € R

T(t) (Po A (A)) =P (A4 (A)
= [ Bl peati] - PoA

— [ #®) .4 Pox o)

Hence, Equation 2.1.3 yields that (p(t)),cp, is a semigroup of transi-
tion probabilities and ()\t)telR+ is a Markov process with respect to its
natural filtration

(Fo)teR+ =0 (()\s)ogsgt)teR+

which is defined as the smallest filtration on (£, F) such that (A\¢),cg,
is adapted since for any A € £
L [1A()\t)‘]:so} =E[1a(A)[ A
=p(t—s) (A5, A)
— Pt s]-A()\s)
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2.1.2. Properties of Markov processes. If not stated other-
wise, for a Markov process <>‘t)teR+ with respect to a filtration as fil-

tration we take the natural filtration (F7), of the process (A)ier, -

The proofs of the next four propositions roughly follow Revuz-Yor
[35], Chapter IIL.1 .

PROPOSITION 2.1.12. (|35] , Proposition 1.4)
A stochastic process

()\t)tER.»,_
on the probability space (Q, F,P) with state space (E,E) is a Markov
process with respect to
0
(ft )t€R+

with wnitial distribution v and semigroup of transition probabilities

(p(t))teRJr

if and only if for all kK € N | all times 0 = tg < ... < tg, and all
non-negative, £-measurable functions fy, ..., fx

H fl(/\tq):|

:/E(/E (/Efk(xk)-p(tk—tkfl)(””’“*l’dxko

Sr—1(Tr—1) - p(te—1 — te—2) (Th—2,dzr—1)) - - - fo(xo)dv(zo).

(2.1.4) E

PROOF. In order to show the first implication, assume (\;),cp, is
such a Markov process. Then, the properties of conditional expecta-
tions yield

E ﬁfl()\t)]
=FE _E f[fi()\tl) g (()‘5)0<5<tk1>”

=K | f'L(Atz) - P (tk: - tk:—l) f()\tk—l)]

~E H O B[ (fir - P (= i) ) Qo] 0 (<As>ogs§t“)]]

=E |J] £i\) - P (teez — tret) (fimr - P (te — ticr) f) (AtH)]

etc. This proves one implication of the proposition.
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For the other implication, assuming Equation 2.1.4 holds we need
to show Equation 2.1.2. Tt is enough to prove that for any measurable
non-negative function f : £ — Ry U{oc}, any 0 < s < ¢ and any
A € F? the equation

(2.1.5) E[f(A) - 1a] = E [P (t = s) f(As) - 1a].-
holds. The set
D={Ac fg’ Equation 2.1.5 holds}

clearly is a Dynkin system by the monotone convergence theorem. Ap-
plying Equation 2.1.4 to both sides of Equation 2.1.5, we observe that
for n € N and

O=to<t1i <..<t,<s

and
FF,. F,eé&
the set

AR
i=0
is contained in D. Since the system of such sets is an intersection stable
generator of the product o-algebra ]—"SO, by Lemma A.3.15
D= F,
hence the assertion of the proposition follows. O

PROPOSITION 2.1.13. (|35] , Theorem 1.5)
Let E be a polish space (see Definition A.1.14), & its Borel o-algebra
and E¥+ the product o-algebra (see Definition A.3.7) of E®+. For any
semigroup of transition probabilities

(p(t) )tER+

on (E, &) and any probability measure v on (E,E), there exists a unique
probability measure P, on

(57 £%)
such that the coordinate process (see Definition A.3.5)
()\t)tER+
on
(EF+, &% P,)
15 a Markov process with respect to the filtration

(77)

teRy
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with semigroup of transition probabilities

(p(t) )teR+

and nitial distribution v.

PROOF. We want to define a probability measure P, on (E®+, E&+)

using Kolmogorov extension theorem. Forn € Nand 0 =t; < ... <1,
let J :={to,....,to,} C Ry. For Fy, Fy, ..., F,, € € we set

P (z0)
S

n—1

(p(tn —tn-1) (Tn-1,Fn)) - p(tn-1 — th—2) ($n27dxnl)> - dv(zo),

thereby obtaining a o-additive map on the generator

(o
e

of £/ which is a semi-ring (see Definition A.3.27). By applying Cara-
théodory extension theorem (Theorem A.3.29) we obtain a unique
probability measure P; on (E”, 7). Proceeding this way we obtain a
projective family (see Definition A.3.3)

Fy,....F, € 5}

(]P)J> JCR4, finite

of probability measures on

J eJ
(E ’8 )JCR+, finite
and by Kolmogorov extension theorem (Theorem A.3.102) there exists
a unique probability measure PP, on (ER+, €R+) such that for all finite

JCR, and F &’
p((157) 7 0)) =2t

holds where HE* is the projection from Definition A.3.5. By definition
of P, for the coordinate process (Il;), ., (see DefinitionA.3.5), on

(ER+, ER+. ]P)Z,) , subsequently denoted
()\t>t€R+ = (Ht)tER+ Y

Equation 2.1.4 holds for indicator functions fy, ..., f, of sets in £. By
linearity of the integral and monotone convergence (Theorem A.3.57)
and Proposition A.3.19 this implies that Equation 2.1.4 holds also for
all non-negative, £-measurable functions fy, ..., f,. Hence, by Proposi-

tion 2.1.12 ()‘t)te]R+ is a Markov process with the desired properties. [
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NOTATION 2.1.14. From now on, we always assume that for any
initial distribution v and semigroup of transition probabilities on (E, £)
there is a probability measure P, on

(5% %)
such that the coordinate process is a Markov process with respect to
(F?)scr, (e-g. because E is polish and we use Proposition 2.1.13). Un-
less specified otherwise, when we speak of a Markov process we always

intend one obtained in such a way. We write [E, instead of Ep, and for

x € E and Dirac measure (see Example A.3.21) §, we write P, instead
of ]P)(;I .

PROPOSITION 2.1.15. ([35]|, Proposition 1.6)

Let
()‘t)teR+
be a Markov process with the state space (E,E) on the measurable space
(5% %)
with respect to
() e,

with some semigroup of transition probabilities and for any initial dis-
tribution v let P, be the corresponding probability measure. Let

7. E® = Ry U{oo}

be measurable with respect to E%+. (Or let Z : E®+ — R be measurable,
bounded.) Then

E — RU{oco}
r— E, [Z]

s measurable with respect to £ and

mm:/&m@@.
E
PROOF. For some n € N and 0 < t; < ... < t, and arbitrary
Fy, .. F, €& weset
(216) F - {)\tl S F17 ...,)\tn € Fn} .

In the first step of the proof, we show the assertion of the proposition
for maps Z = 1r. By Proposition 2.1.12 for any z € £

E. [ir]

n—1

= / Y (/ (an—tnf1($n—1an)) 'Ptnl—fnz(x"—%dxn—l)> o Py gy (z,don).
I F
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Since by Lemma A.3.59
Tp—2 — / (Ptn—tn,1<xn—1a Fn)) : Ptnfl—tnfz (xn—Qv dxn—l)
anl

is £-measurable we can deduce inductively that

is also &-measurable. Additionally, by Proposition 2.1.12

(2.1.7) E, (1] = /Q E, [1r] dv(z)

holds.

In the second step of the proof, we prove the proposition for all
positive measurable maps Z. We define the set D C £®+ such that for
all F' € D both the equation

E, [1r] = /QIEx [1p] dv(x)

holds and the map

is &-measurable. One shows easily, that D is a Dynkin system and by
the previous step it contains the intersection stable generator of £®+,
hence by Lemma A.3.15 D = £®+. Since by Proposition A.3.19 any
positive random variable Z can be written as limit of positive simple
functions, the assertion of this proposition follows by Lemma A.3.17
and monotone convergence (Theorem A.3.57). O

PROPOSITION 2.1.16. (Markouv property, |35] , Proposition 1.7)
Let

()\t>tER+
be a Markov process with the state space (E,E) on the measurable space
(5%, 6%)
with respect to
0
(]:t )t€R+

with some semigroup of transition probabilities and for any initial dis-
tribution v let P, be the corresponding probability measure. Let

7Z: E* - Ry U{oco}
be measurable with respect to E*+ (Or let

Z: E® 53R
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be measurable, bounded). Let By, [Z] be the composition of x — E, [Z]
and

Ef - B
w—= A(w).
Forte R, let
0, E® — E*+
be the map
(W(5))ser, = (W(s+1))sep, -
Then for any t > 0 and any initial distribution v on (E, &)
(2.1.8) E, [Z 0 0,| F)] =E,, [Z]
holds P,-almost surely.
PROOF. As composition of two measurable maps E,, [Z] is clearly

measurable with respect to F_. As a first step, we want to show the
proposition for Z = 1r, where

P={\, €., N\, €F,}

for somen € Nand 0 <t; < ... <t, and F},..., F,, € € arbitrary. We
need to show that for any B € F? the equation
(2.1.9) E,[(1ro6;) - 1] =E, [Ey, [1r] - 15]
holds. The system of sets D C £+ defined as set of sets D € D such
that the equation

E,[(1ro6;)-1p] = E, [E,, [1r] - 1p]
holds is a Dynkin system as one can easily show. For any m € N and
(2.1.10) B ={)\, € F|,... )\, € F}

where 0 < s; < ... < s, < t and F},...,F € & are arbitrary the
equation

E,, [(11’* e} Qt) . 13/] = El, [E)\t [11’*] . 13/}
follows from applying Proposition 2.1.12 to both sides of the equation.

Thus, D contains the (intersection stable) generator of the o- algebra
E®+_ hence by Lemma A.3.15 D = %+ and the equation

]E,, [11’* o Qt’fto} = E/\t [11’*]

holds.
In a second step, we show the assertion of the proposition for all
positive measurable maps Z. For this purpose, we observe that the
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system of sets D’ C E*+ defined as set of all sets D’ € D’ such that the
equation
Eu [1D’ o (9,5’ ./_"to} = E/\t [1D’]

holds is a Dynkin system that contains an intersection stable generator
of £®+ hence by Lemma A.3.15 D' = £®+. Since by Proposition A.3.19
any positive random variable Z can be written as limit of positive
simple functions, the assertion of this proposition follows by monotone
convergence (Theorem A.3.57). U

REMARK 2.1.17. If p(t)(z, E) < 1 for some x € F and some t € R
such that the construction from Remark 2.1.2 needs to be employed
to obtain a semigroup of transition probabilities, Equation 2.1.8 in
Proposition 2.1.16 is shown only on the set {\; # A} as by convention
the right hand side of the equation is 0 if \;, = A.

Let (At)tGR_g_
measurable space (ER+, 5R+) with respect to the natural filtration and
for any initial distribution v let PP, be the corresponding probability
measure. The family (P(t))t€1R+ of maps defined by

P(t)f(x) == Eq [f(Ar)]
for all z € E and f € (*°(F) is a one-parameter semigroup on ¢>(F)
by the calculation

E, [f<)\5+t)] =[E, [Ex [f(>‘s+t)| '7:?”
=B [(P(s)f) (M)] -
One can define the generator A of the semigroup, only if the restric-
tion of the semigroup to some closed subspace D C ¢*°(F) is strongly
continuous. There are several ways to weaken the notion of a generator.

Following [9], one can always define the infinitesimal generator of
a Markov process:

DEFINITION 2.1.18. Let (/\t)teR+

space (E,&) on the measurable space (E®+, E%+) with respect to the
natural filtration and for any initial distribution v let P, be the corre-
sponding probability measure. Define

be a Markov process with the state space (F, ) on the

be a Markov process with the state

N0 t
and for any f € D(«/) and any x € E define
E )] —
o f(z) := lim— ()] f(x)
t\0 t
The linear map o7 is called infinitesimal generator.

D() = {f e l™(E): limEm FO] = flw) exists for all x € E} ,
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The next proposition motivates a different way to generalize the
notion of a generator for a Markov process:

PROPOSITION 2.1.19. Let (At),cp,
state space (E,E) on the measurable space (ER+,5R+) with respect to
the natural filtration (]--to)te]R+ and for any wnitial distribution v let P,
be the corresponding probability measure. Let (P(t)),cp, be the family
of maps defined by

be a Markov process with the

P(t)f(x) = Ea [f(Ar)]

for all z € E and f € (>*(F). Let D C (>*(E) be a closed subspace
and let the restriction of (P(t)),cp, on D be strongly continuous with

generator (A, D(A)). Then for any x € E and f € D(A) the process
(M,f) defined by
teRy

MY = F(0) — () / (Af) (\)ds

is a martingale with respect to Py and (Fy),cp. -

PROOF. We observe that if f € D(A) then clearly for all z € E

Eg

f(/\t)—f(Ao)—/(Af) (As)ds] =P

0

E. [(Af) ()] ds
-p P(t) (Af) (2)ds

t
01(@) - s [
0
t
01(w) - s [
0
=0,
where the last step is possible thanks to 1.4.15. Furthermore, the
process (Mtf ) defined by

teRy

MY = F(0) — () / (Af) (A)ds

is clearly adapted with respect to its natural filtration (]—"to)te]R+ and
bounded (since Af € (>°(E) by definition). By Proposition 2.1.16,
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(Mf) is a martingale with respect to P, for any x € FE since
tER 4

]—'0}
t

(Af) (Vo)ds + Eq {f(»)f(m [ a5 r

s

t
Ey |:f()\t)f()‘0)/(Af) (As)ds
0

=f(xs) = f(Ro)— Fd

t—s

(Af) (As)ds + Es {f(xtso(ﬂs)—f(xooes)— / (AF) (Ar 0 05)dr

0

=f(Xs) = f(Xo)—

.7-'0]

t—s
=f(As) = f(Qo)= [ (Af) (As)ds + Ex, {f(/\t—s) — f(0)- / (Af) (/\T)dr}

0

=f(As) = f(Ao)— | (Af) (As)ds.

O\m o\m O\m C.\m

This motivates the following definition (see for Example [35], Definition
VILL.8): O

DEFINITION 2.1.20. Let (A¢),cp, be a Markov process with the state

space (E, &) on the measurable space (ER+,8R+) with respect to the
natural filtration (F7),cp, and let f: E'U{A} — R be measurable.

If there exists a measurable map ¢ : £ U{A} — R such that for all
x € F and for every t € R,

t
/wMJMs<w
0

P,-almost surely and
t
M= F00) @)= [ grds
0
is well defined and is a right continuous martingale with respect to

(F7);cr, and probability measure P, then one defines Gf := g and
f € D(G) and calls G extended in finitesimal generator.

REMARK 2.1.21. The requirement that the martingale be right con-
tinuous becomes more clear when looking at Feller process and in par-
ticular at the existence of cadlag modifications in this case (see Theo-
rem 2.2.6).

This can be weakened further (see for example [12]):
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DEFINITION 2.1.22. Let (A¢)cp,
space (E,&) on the measurable space (E®+, £®+) with respect to the
natural filtration (F}),cp, and let f: E'U{A} — R be measurable.

If there exists a measurable map g : EU{A} — R such that for all
x € E and for every P,-almost surely and

be a Markov process with the state

t

M= F00) = @)= [ s
0
is well defined and is a local martingale (see Definition 3.0.2) with
respect to (]—'to)te]R+ and probability measure P, then one defines Gf :=
g and f € D(G) and calls G extended generator.

DEFINITION 2.1.23.
Let (A¢),cg be a Markov process on R?. Let the infinitesimal gen-
erator & be such that for any f € C*(R?) it holds for z € R?

1) =cof@+ Y a@E @y ¥ a2 @)

where for any 4,5 € {1, ...,d} a;;, b;, and ¢ < 0 are functions on R? and
the matrix

is non-negative and symmetric for any x € R? .
Then the vector

-----

77777

is called diffusion matriz of (A¢),.p provided they are Borel-measurable
and locally bounded. Furthermore, ¢ of (), is called killing rate.

REMARK 2.1.24. We want to heuristically explain the meaning of
the functions ¢, b;, and a;; for i, 5 € {1,...,d} in Definition 2.1.23 and
fix z € RY.

Regarding c, we see by setting f = 1 on some neighborhood around
x that

E, [f(\)] = he(z) + 1+ o{h).
and the measure P, loses mass with rate c because the process is
“killed” and moved to the cemetery, which explains its name.
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Regarding b;, by setting ¢ = 0 and f;(y) = y; we obtain

E, [A}j’ - x} = hb(z) + o(h)

which shows that infinitesimally (A;),.p, moves by the vector

which explains the term drift.
Regarding b;, by setting ¢ = 0 and

fie(y) = (i — ) (yr — o)

we obtain
E, [(Ag“ - x) (Ag@ - xk>] = hag(x) + o(h).

Thus, the instantaneous rate of change at 0 of the covariance of the
vector

is given by

EXAMPLE 2.1.25. (Brownian motion)

Let (Q, F,IP) be some probability space and (Wt)teR+ be a Brow-
nian motion on it (see Definition A.3.83 and Theorem A.3.84) and let
(]-"to)t€R+ be its natural filtration. It is well known that(W;), g, is a
Markov process which we will show in the following. Let f be a non-
negative, measurable map. Set g(x,y) := f(z + y). Then by Lemma
A.3.64

E[f(W)| F] = E[f(We = W + W) F]
= E[g(W; — W, W)| Fi]
=E[g(W; — W, W)| o (Wy)]
—E[f(W))] o (W,)]

Furthermore, by Proposition A.3.69

E[ /(W) o / F @), (W d).

By definition of Brownian motion for any y € R and any Borel set

A € B(R)
—(z - y)2> o

K, w, (Y, A exp
e /\/27rt—s < )

p(t - S) (ya A)
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and for any t € R y — p(t)(y, A) is measurable by Lemma A.3.59.
From the identity

2
/exp (_x) dr = V2mwo?
R

202

and completing the square it follows that(p(?)),cp, is a semigroup of
transition probabilities:

.4p®X%AmUX%dw

_ 1 —(z—y)? 1 —(z—y)°
—/R(/A%e"% 2 >d> 2wtexp< 2 >dy

2 2
L1 [ () () ) N,
B /A V2ms /2wt P 2st /Rexp 2st/ (s +1t) i

B S e A
_/A\/Qﬂ'(s-‘rt) p(2(8+t) )d
=p(s+1t)(z, A).

For all £k € N | all times 0 = t, < ... < t;, and all non-negative,
measurable functions fo, ..., fx

k
E [H fi(Wti):|

I 0w

k3

E

:/E</E (/Efk.(xk).p(tk_tk,l)(zk,l,dm))

Sfr—1(zr=1) - P (tk—1 — th—2) (Th—2,dxr—1)) - - - fo(xo)do(z0).

and by Proposition 2.1.12 (Wt)teR+ is a Markov process with respect
to (]:t0>teR+'

EXAMPLE 2.1.26. (Geometric Brownian motionon F = {x € R: = > 0}
is a Markov process)

Let (€2, F,P) be some probability space and (W;),, be a Brownian
motion on it. For any x € E let

o2
Sy = vexp ((a— ?)t—l-UWt) .

With the substitution

yim e wesn (o (a- )1
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for B, ' € B(R,) the calculation
E[15(S)1p(S9)] = E[1g (¢" (W) 1r (¢" (W2))]
= E |Lipey-1(5) (W) Ly (W2)]
= E |kwoar. (W, (67) (B) oy 1) (W3

= E [k, (We, (%) (B))16(S7)]

yields that the conditional regular probability (see Definition A.3.67)r sz gz
is given by

ks s1(w, B) = kw,w, (w, (¢") "' (B))

/ 1 exp —(z—w)2 s
(en)1(B) V27 (t—5) 2(t-s)

1 z
= exp
/B V27 (t — s)y?o? 2(t—s)o? Y

for any w € Ry, B € B(R,). It follows then exactly as in the case of
Brownian motion in Example 2.1.25 that (S7) is a Markov process
with respect to its natural filtration.

Furthermore, by Proposition A.3.92

(o ((5)em))...

is a martingale with respect to the natural filtration. Hence,

2
E[S}] = ze™E {exp ((—%) t+ aWt>} = ze™.

REMARK 2.1.27. More generally, if (\;),cp, is the R%valued solu-
tion of a stochastic differential equation (see Definition A.3.116)

d)\t = [L()\t)dt + O'(At)th

for a d-dimensional Brownian motion (see Definition A.3.83) W =
(Wt)te]R+ on the filtered probability space

(2 F, (Ficx, -P)

and for the measurable maps

tER+

and

,,,,,
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and if there is a constant C' > 0 such that for any =,y € R

(@) = u(y)l +lo(z) —o(y)] < Cle —yl,
(At)ser, is called Ito diffusion. One can show that (A),cp, is a Markov

process (see [32], Theorem 7.1.2). Then by Ito formula (A.3.115) p is
the drift and o the diffusion matrix as defined in Definition 2.1.23.

2.2. Feller semigroups

In this section we introduce Feller processes as special class of
Markov processes. Throughout this section, we make the assumption
that the state space E of the processes is locally compact (see Def-
inition A.1.12) and Hausdorff and has a base (see Definition A.1.2)
with at most countably many elements. Among other things, these
assumptions ensure that the space is polish (see Proposition A.1.15).

DEFINITION 2.2.1. A strongly continuous, positive (see Definition
2.3.39), contractive (see Definition 1.4.10) semigroup (Q(t)) on
Co(F) is called Feller semigroupon E.

teR4

PROPOSITION 2.2.2. ([35], Proposition 2.2) Let (P(t)),c, be a

Feller semigroup on E. Then there exists a semigroup of transition
probabilities (p(t));cp, on (E,B(E)) (or on (EU{A},B(EU{A})) )
such that for any t € Ry and any f € Cy(E)

P(t)f = / F)p(t) (. dy).

We call (p(1)) e, the associated Feller semigroup of transition probabilities.

REMARK 2.2.3. Either p(t)(z, -) is a probability measure on (E, &)
for any x € E or by Remark 2.1.2 p/(t)(z, -) is a probability measure on
(EU{A},B(EU{A})) for any z € E. In order to simplify notation,
in the following we assume without loss of generality the first case.
We set the cemetery A (see Remark 2.1.2) to be oo obtained from the
one-point-compactification of E (see Definition A.1.16).

PROOF. In the first step of the proof we construct a family of pos-
itive measures (p(t)(z,)),cg, on (£, B(E)) for any x € E', and in the
second we show that the family is a semigroup of transition probabili-
ties on (E, B (F)).

Fix some z € E and t € R,. Then the map

lo: f— P(t)f(z)
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is a bounded positive linear functional on Cy(E) hence by Riesz repre-
sentation theorem (A.4.13) there is a unique complex regular measure
P(z,-) on (E,B(FE)) such that

P@ﬂ@zéj@mmm@>

holds for any f € Cy(F). We need to show that p(t)(x,-) is a positive
measure. This is the case since due to metrizability of the topology
of E (see Proposition A.1.13) and separability (choose one element in
each of the sets of the countable base) any open set O C E can be
written as countable union of open balls

B.(z) ={y € E: d(z,y) <r}

for some (74),cy € Ry and (2x),cy € E:

O = UB"'k (Zk)

keN
Thus, by approximating each 1p, (-,) pointwise by a positive sequence
(fin)nen in Co(E) we obtain

p0)#.0) = [ 10w ds) = i [ s (e, @)} pl0)edy) 20

Since p(t)(x, -) is outer regular, this implies that p(t)(z,-) > 0 on all of
B (E).

As second step of the proof, we need to check the properties of a
semigroup of transition probabilities. By Theorem A.4.13

so either p(t)(z, -) is a probability measure on (E, B (F)) for any z € E
or by Remark 2.1.2 p(t)(z,-) is a probability measure on

(EU{A}, 0 (B(E)U{A})

for any x € E.
Next, we show measurability of

z = p(t)(z, A)
for any A € B(FE). Since by definition of (P(t))

w%éj@ﬂﬂ%@)

is in Cy(F), it is in particular measurable with respect to B (F). As
above, we can write any open set O C E as countable union

0 =B, (=)

keN

teRy the map
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for some (14),cy € Ry and (z),cy € £. We can approximate the
function 1 Br, (%) pointwise with positive functions

(fkn)nEN - CO(E)
which yields by dominated convergence (Theorem A.3.58)

z - /E o@)pt)(z,dy) = lim [ sup  {fe.(0)} p(t)(x. dy),

n—=o0 JE ke{l,...,n}

hence B (FE)-measurability of x — p(t)(x,0). One easily shows that
the family of sets M C 29 defined as

M :={M e B(FE): z — p(t)(x, M) is measurable}
is a Dynkin system hence M = B (F) by Lemma A.3.15.
Last, we see that indeed for any s, € Ry, any A € B(F) and any
rek

p(s + 1) (x, A) = / p(5)(, A)p(t)(x. dy)

E
since by assumption on (P(1)),cp,
P(s+1)f = P(t)P(s)f
holds for any f € Cy(F) and conclude by approximating 14 by some

sequence

(fn)nEN C CO<E)
as before. 0

PROPOSITION 2.2.4. Let (P(1)),cp,
and (p(t)),cg, s associated Feller semigroup of transition probabilities.

Then the family (Q(t))

be a Feller semigroup on E

teR, of linear bounded maps

Q) f () = [E F)p(t)(, dy)

is a Markov semigroup and by Proposition 2.1.13 for any probability
measure v on (E,B(E)) there exists a Markov process (At),cp, with
respect to its natural filtration (.7-;0)@@+ with semigroup of transition
probabilities (p(t)),cr, and initial distribution v. Such a Markov pro-
cess s called Feller process.

DEFINITION 2.2.5. A stochastic process ()., with a state space

that is closed is called cadldg process (from French: continue & droite,
limite a gauche) if all paths are cadldg paths, that is, they are right
continuous (thus A\, = Ay = li{r% A for any ¢ € R, ) and possess left

limits (hence A, := li;r% As exists in the state space for any ¢ > 0). If all
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paths are left continuous and possess right limits, we call the process
(and the paths) cdglad. For a cadlag process (A;),cp, we can define
the process (AM) g, as

AAt = s/
0 ift =0.

Wherever A\, # 0 for some t > 0 we call A)\; a jump.
One can show (see e.g. [35], Theorem 2.7)

THEOREM 2.2.6. A Feller process possesses a version (see Defini-
tion A.3.86) that is a cadlag process.

NOTATION 2.2.7. We remind the reader of the naming convention
for Markov processes from Notation 2.1.14 and add the convention
that for Feller processes we always consider the version that is a cadlag
process.

For Markov processes we know that the Markov property holds
(Proposition 2.1.16 ). For Feller processes we know more than that.

We define FZ as the completion (see Definition A.3.32) of (B (E))**
with respect to P, and set

Foo =V,

where the intersection is taken over all probability measures on (E, B (E)).
Furthermore, we call N”the set of all P,-null sets on F% and set
FY =0 (N"UF) and

E = mfty7
where again the intersection is taken over all probability measures on
(B, B(E)).

THEOREM 2.2.8. (Strong Markov property, |35] Theorem 3.1)
Let (M)ie, be a Feller process. Let

7. E® - R, U{co}
be measurable with respect to Fo, (Or let Z : E®+ — R be measurable,
bounded). Let Ey, [Z] be the composition of v — E, [Z] and

E* 5 F
w—= A (w).
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Fort ¢ R, let 0, : E®+ — E®+ be defined by

(W($)ser, = (W(s+1))er, -

Let 7 : E®+ — R, be a (Ft)teR+ -stopping time (see Definition
A.3.91) and F, C F the o-algebra of events determined prior to the
stopping time T (see Definition A.3.91). Define

Ar 1= M) (w) on {1 # oo}
and set
A=A on {17 =00}

Furthermore, define
0 = 0-()(w) on {1 # oo}

and on {1 = oo} set 0. as the map from EX+ to A.
Then for any initial measure v on (E,B (E)):

E, [Z 0 60.|F,] =E,, [Z]
on {\ # A}.

Since a Feller semigroup (P()),cp,on E is a strongly continuous

semigroup on Co(E), all results on strongly continuous semigroups from
Section 1.4 carry over. In particular, there exists a generator (see
Definition 1.4.13):

DEFINITION 2.2.9. The generator A of a Feller semigroup (P(t))
E is given by

teR4 on

A: D(A) C Co(E) — Co(E)
Ph)f—f

S fm ==

on the dense domain D (A) (see Proposition 1.4.24).
The limit is of course to be taken with respect to the norm of Cy(E).
Regarding the form of the generator of a Feller semigroup, in case
E =1R% d € N one can show:

THEOREM 2.2.10. (|35|, Theorem VII.1.13)
Let (P(t)),cr, be a Feller semigroup on RY and let

C*(RY c D(A).

Then
C*(RY) c D (A)
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and for f € C*(R?Y) and an open set U whose closure is compact it
holds for x € U:

62
Af@) =e@f@)+ Y @@ty Y eyt (@)
ie{l,....d} ! 1,5€{1,....d} B
(2.2.1)
0
s [ -1 - X w6 - ) @) Nedy)
R\ () ie{l,....,d} ¢

for functions a;j, 1,5 € {1,...,d} on U that do not depend on U such
that for any x € U the matriz

(aij)i,je{l,...,d}
is non-negative and symmetric, for functions b; i € {1,....,d} on U that
may depend on U, for a function ¢ < 0 on U that does not depend on
U and for a kernel N such that N(x,-) is a Radon measure on R\ {z}
that may depend on U.

REMARK 2.2.11. According to Definition 2.1.23, b = (b;(z ))ZG{L )
is the drift of the corresponding Feller process, a = (al])i’]e{l’m’ a0 is the
diffusion matrix, and c is the killing rate.

REMARK 2.2.12. We want to heuristically explain the meaning of
N. Setting ¢ =0, U = {z}and f(y) = 1a(y) for x ¢ A

P, [\ € Al = h- Nz, A) + o(h)

which shows that N(z,-) measures the time derivative at 0 of the prob-
ability that the process (A),cp, jumps from z into a certain set.

2.3. Generalized Feller semigroups

Generalized Feller semigroups have been introduced in a special
setting by Rockner and Sobol [36] in 2006 and were defined and inves-
tigated more generally in [15] in 2010. They are defined on so-called
BP—spaces which in turn are defined on completely regular spaces.
Thus, in order to define such semigroups, in the first subsection we
introduce completely regular spaces and other separation axioms. In
the second subsection, we define admissible weight functions before in-
troducing B-rho spaces in the third subsection. In this section (E,7)
will always denote a topological space that is completely regular. For
additional terminology regarding topology, the reader is referred to
Appendix A.1.
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2.3.1. Separation axioms.

DEFINITION 2.3.1. A topological space (T, 7) is called Hausdorff if
any two points x,y € T possess disjoint neighborhoods U, and U,,.

DEFINITION 2.3.2. A topological space (E,7) is called completely
reqular if it is Hausdorff and if for any closed set A C Y and any point
x € E '\ A there exists a continuous function f : E — [0, 1] such that
f(z)=1and f(y) =0 for all y € A.

DEFINITION 2.3.3. A topological space (N, 7) is called normal if
it is Hausdorff and if for all disjoint closed sets A, B C FE there are
disjoint neighborhoods U, of A and Up of B.

REMARK 2.3.4. There are different naming conventions in the lit-
erature. Some authors do not require completely regular spaces and
normal spaces to be Hausdorff and call the space we call completely reg-
ular Tychonoff space. Others do not define a completely regular space
or a normal space N to be Hausdorff but instead ask for less: They
demand that for any two points x,y € N there must be neighborhoods
U, of x and U, of y such that U, does not contain y and U, does not
contain x. However, here we follow the conventions of Bourbaki [7] and
use the definition in the sense stated above .

For normal spaces we have access to Urysohn’s Lemma:

LEMMA 2.3.5. (Urysohn’s Lemma, |7|, Chapter IX, §/, Theorem 1)
Let N be a normal space and A, B C N be nonempty closed sets. Then
there is a continuous function f : N — [0,1] with f(A) = {0} and
f(B) ={1}.

Additionally, the Tietze-Urysohn extension theorem is known:

THEOREM 2.3.6. (Tietze-Urysohn extension theorem) (|7], Chapter
IX, §4, Theorem 2 and [40] Lemma 7.9)
Let (N, 1) be a topological space. N is normal if and only if for each
closed subset A C N and each continuous function f: A — R there is
a continuous extension F': N — R.
If |f| - A = R is additionally bounded by C' < oo, then there is also
a continuous extension F : N — R such that |[F| : N — R is also
bounded by C < oo.

We note the following relationship between two of the separation
axioms.
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PROPOSITION 2.3.7. A normal space is completely reqular.

PROOF. By Urysohn’s Lemma (Lemma 2.3.5) the required function
exists. 0

For a completely regular space a statements similar to Tietze-Urysohn
extension theorem and Urysohn’s Lemma can be shown and will be
used frequently in the following sections.

PROPOSITION 2.3.8. Let E be completely regular and K C E com-
pact. Then a real-valued continuous function f € C (K,R) on K can
be extended to a continuous function F € C'(E,R) on all of E. If ad-
ditionally |f| < C' < oo then there is an extension F' € C (E,R) such
that |F| < C < oc.

PrROOF. We would like to apply the Tietze-Urysohn extension theo-
rem (Theorem 2.3.6). However, it allows the extension only on normal
spaces. But we can use Proposition A.1.10 in order to embed E by
an embedding ¢ in a compact Hausdorff set N which by Proposition
A.1.11 is normal. i(K) is also compact on N with respect to the sub-
space topology 7(i(E)) (see Lemma A.1.8) on N. Hence, by Lemma
A.1.9 i(K) is compact with respect to the topology of N. Since N is
Hausdorff, the compact set i(K) is closed (see Lemma A.1.5). We can
apply the Tietze-Urysohn extension Theorem (Theorem 2.3.6) on N
to extend the function foi™' € C(i(K),R) to a continuous function
G € C(N,R) such

foi 1|i(K) = Glix)
and |G| < C'if |f| < C. Therefore, F' := G o i possesses the desired
properties. U

PROPOSITION 2.3.9. (Urysohn’s Lemma in the completely reqular
case) Let E be completely reqular, K C E compact, A C E closed and
ANK = 0. Then there is a continuous function f : E — [0,1] such

that f(K) = {0}, f(A) = {1}.

PROOF. As in Proposition 2.3.8, we embed FE in a compact Haus-
dorff set N by an embedding i. i(K) is compact, hence closed in the
compact Hausdorff space N. Since i(A) is closed in the subspace topol-
ogy 7(i(E)), there is a closed set B C N such that BN i(E) = i(A)
and clearly B Ni(K) = (. Applying Urysohn’s Lemma in the normal
space N we see that there is a continuous function g : N — [0, 1] with
g(i(K)) = {0} and g(B) = {1}. Setting f := g o4, we conclude. O

COROLLARY 2.3.10. Let E be a completely reqular space, B(E) its
Borel o-algebra and p a measure on (E,B(E)) and B € B(E). If there
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is a sequence of compact sets (K,), .y and open sets (Oy,),, oy such that
K, C BCO, for anyn € N and

w(O, \ Kp,) — 0,
then there exists a sequence (fn),cn 0f non-negative continuous func-
tions with f, < 1o, for any n € N such that
n—oo
p-almost surely and in L' (E, 1).
PRrROOF. Thanks to Urysohn’s Lemma in the complete regular case
there is a sequence (gy), oy of non negative continuous functions with
lr, < gn < 1, for any n € N such that g, — 1p in L' (F, u) and pu-

probability. By Proposition A.3.53 there exists a subsequence (gn, )en
such that g,, — 1p almost surely. U

2.3.2. Admissible weight functions. In the definition of B*-
spaces in subsection 2.3.3 admissible weight functions appear. For this
purpose, we define and investigate them in this subsection.

DEFINITION 2.3.11. A function p: E — (0,00) is called admissible
weight function if the sets

Kr:={zxe E: p(z) <R}
are compact for all R > 0. The pair (F, p) is called weighted space.

REMARK 2.3.12. The identity £ = J, oy K, yields that E is o-
compact which means that it is the countable union of compact sets.

In order to investigate admissible weight functions further, we recall
the following definition from analysis (see also Figure 2.3.1):

DEFINITION 2.3.13. Let T" be a topological space. A function
f:T—R

is called lower (upper) semicontinuous if for any ¢ > 0 and any = €
T there exists a neighborhood U, of x such that f(y) > f(z) — ¢
(f(y) < f(x) +¢) for all y € U,.

LEMMA 2.3.14. An admissible weight function p : E — (0,00) is
lower semicontinuous.
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Qﬁ
> 1 P
0 w \
0 1 2

FI1GURE 2.3.1. The function is lower semicontinuous at
x=1, but not upper semicontinuous.

PROOF. For any € > 0 and any = € E the set
Kp(m)fs = {y SO p(y) < p(m) - 6}

is compact and x ¢ K,;)—.. Since E is Hausdorff, compact sets are
closed by Lemma A.1.5. Thus, there exists a neighborhood U, of x
such that U, N K- = 0. O

We know that on a compact set a continuous functions attains its
maximum and minimum. For semicontinuous functions similar state-
ments can be shown.

LEMMA 2.3.15. A lower (upper) semicontinuous function f on a
compact set K is bounded from below (above).

PROOF. Let f: K — R be lower semicontinuous and ¢ > 0. Then
for any x € K there is a neighborhood U, of x such that for any y € U,

fy) > flz)—e
Since K is compact, finitely many such neighborhoods suffice to cover
K.

For upper semicontinuous functions the assertion follows in the
same fashion. 0

LEMMA 2.3.16. On a compact set K a lower (upper) semicontinuous
function f: K — R attains its minimum (mazimum).

PROOF. Let f : K — R be lower semicontinuous. By Lemma
2.3.15 f is bounded from below. By lower semicontinuity, for any



2.3. GENERALIZED FELLER SEMIGROUPS 129

x € K there exists a neighborhood U, > x such that for all y € U,

10> 1)~ (760 - int 1)

rzeK
Ju

zeK
is an open cover of the compact set K hence the neighborhoods of
finitely many x;, ¢ € {1,...,n} suffice to cover K :

Kc |J U..

holds. Moreover,

holds. Taking the infimum on the left hand side yields

i > i ) > .
inf f(z) 2 i f (z;) 2 inf f(z)

Thus, the infimum of f: K — R is attained on K.
For upper semicontinuous functions the statement follows by the
same reasoning. O

.....

COROLLARY 2.3.17. An admissible weight function p : E — (0, 00)
attains its minimum on E.

The product space of weighted spaces is again a weighted space.

LEMMA 2.3.18. Let (E;, p;), © € {1,...,n} be weighted spaces. Then
(E1 X ... X Eyp, p)

15 a weighted space, where
p(x1, .y xy) = p1(z1) -+ pp (x0)

PROOF. We first show that F; x ... x F,, is completely regular. It is
clear that it is Hausdorff. Furthermore, for a closed set A C Fy x...x E,,
and x € Fy X...x E,\ A by definition of the product topology (Definition
A.1.7) we can find an open neighborhood U, of x given by

U= x U,
i=1,...,n
where each U’ C FE;, i € {1,...,n} is a neighborhood of z. By definition
of completely regular spaces, there exist continuous maps
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such that f;(z) = 1 and f;(y;) = 0 for all y; € E;\ U/ and the continuous
map
flxy,mn) = fi(wn) - fu(zn)
shows that £ X ... X E, is completely regular.
Next, we show that p is an admissible weight function. Let without
loss of generality p; > 1 for ¢ € {1,...,n}. Let R > 0 be arbitrary.
Then

{(z1,..yxn) € By X . X By topy (1) - p () < R}
C{r1€E:pi(r1) <R} x..x{x,€E,: p,(x,) <R}.
Since the right hand side is compact by Proposition A.1.17 we only
need to show closedness of the left hand side. For y = (y1, ..., y,) such
that p (y1,...,yn) > R, by lower semicontinuity of pi,...p, (see Lemma
2.3.14) for any € > 0 there exist open neighborhoods U;, C Ey of yy,

., Uy C E, of y, such that for any u; € Ug, i € {1,...,n}

pi(us) > pi(y:) — €.
Hence for v € Uy‘i X ... X U?jn

p(u) > (pr(yr) =€) - (pn(yn) — )
and the right hand side is larger than R for € small enough. Thus,

{(x1,...,xn) €E By X .. x Byt py (1) -+ - po (1) < R}

is a closed subset of a compact set, hence compact. U

LEMMA 2.3.19. A locally compact Hausdorff spaces E with count-
able base B is a weighted space.

PROOF. As a metrizable space (see Proposition A.1.15) , E is also
completely regular. We show that E is o-compact. By local compact-
ness, for any x € F there is a compact neighborhood K,. Thus, there
exists an open neighborhood O, C K, of z. By definition of the base,
there is B, C O,, B, € B such that x € B,. For any x € E the set
B, C K, is compact and by assumption,

E:UE

zeE
is the union of countably many elements, hence E is o-compact. Let

E:UKn

neN
be such a union. We define an admissible weight function in the fol-
lowing way:
p(x) = miIQ {n:zekK,}.
ne
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Ul

One example of a space on which it is always possible to find a
continuous admissible weight function is of course R",n € N.

2.3.3. #r-spaces. In thissubsection (£, p) always denotes a weighted
space and we introduce Z*-spaces where we follow [15].

DEFINITION 2.3.20. For a Banach space Z and an admissible weight
function p we define

BP(E;Z) = {f: E— Z:supplx) | f(z)] < oo}.

zelR

REMARK 2.3.21. By Corollary 2.3.17 for the space B(E; Z) we can
assume that p > 1, if necessary.

2.3.20 In the following, we would like to show that, provided the
norm is chosen well, this space is a Banach space. In order to do so,
we recall the following fact:

Let Z be a Banach space and T be some set. The space of all
bounded maps form T to Z

(T3 2) := {f: T — Z:sup|f(z)] < oo}
zeT
equipped with the norm
[Nl = f = sup [l f(@)]
zeT

is a Banach space (see Proposition A.4.4).
Turning back to the space BP(FE; Z) we observe:

PROPOSITION 2.3.22. B?(E; Z) is a vector space. On BP(E;Z) the
map

| o @
1], : fﬁigg 2)

is a norm. BP(E; Z) endowed with the norm ||-||, 1s a Banach space.

PRrROOF. That B?(E; Z) is a vector space follows easily and that [|-[|,
possesses the properties of a seminorm is clear. Furthermore, ||f|| =0
means that forall z € Y

LS ()]

p(z)
which by p > 0 implies f = 0. Hence, |-|, is a norm.

<0,
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Regarding completeness of B”(E;Z), let (fy),cy be a Cauchy se-
quence in B?(FE;Z). Then for any € > 0 there exists N, such that for
all n,m > N,

| fn(2) = fon ()]
e p(x) S

Thus, the sequence (g, ), o defined by

_ fa(2)
p(x)
is a Cauchy sequence in (*°(E; Z), hence by Proposition A.4.4 converges

in (>°(FE; Z) to a bounded function g € (*(F; Z) as n tends to infinity.
Defining

gn(T) :

f(@) == p(zx) - g(x)
we obtain ILm fo=fin BP(E;Z). O

REMARK 2.3.23. Similarly, we can define
Br(E; Z) = {f B — Z:supp(z) | f(@)| < oo, f measurable}
el

and obtain, that this is a Banach space.

NOTATION 2.3.24. We denote the space of bounded continuous

maps between a topological space T' and a normed vector space N
by Cb(T, N)

We remark Cy, (E,Z) C B?(E; Z) and define:

DEFINITION 2.3.25. The closure of Cy, (E, Z) in B?(E; Z) is denoted
by #°(E; 7).

PBP(E;Z) is a closed subspace of the Banach space B?(E;Z). It
holds:

LEMMA 2.3.26. A closed subset of a Banach space is itself complete.

PROOF. Any Cauchy sequence in the closed subset converges to
some limit in the Banach space. Since the subset is closed, the limit
must also lie in the closed subset. U

Therefore we obtain:

PROPOSITION 2.3.27. B*(E;Z) is a Banach space.

NOTATION 2.3.28. We write %°(E) := #°(E;R), B*(E) := B?(E;R),
and BP(FE) := BP(E;Z).



2.3. GENERALIZED FELLER SEMIGROUPS 133

In the following, we will study some important properties of this
space. A first one concerns the nature of its dual space. For this
purpose, we introduce Radon measures and signed measures. For ad-
ditional remarks on measure theory we refer to Appendix A.3.

DEFINITION 2.3.29. Let (€, F) be a measurable space. A map
p o F — Ris called signed measure if for all pairwise disjoint sets

L F,, ...e F
v (UE) - ZM (F3).
=1 =1

If this identity holds for a map pu : F — C, then the map is called
complex measure.
An important result for signed measures is the following:

THEOREM 2.3.30. (Hahn-Jordan decomposition, |30], Corollary 7.44)
For a signed measure p on the measurable space (2, F) there are
unique positive finite measures ut and p~ such that

po=p"—p"
and there exists a set A € F such that pt(A) =0 and p=(2\ A) = 0.

DEFINITION 2.3.31. For a signed or complex measure p on a o-
algebra F we define the total variation

| F = Ry U{oo}

| (F) = sup Y |p (Fy)l
k=1

where the supremum is taken over all finite partitions
F=|]J R,
k=1
such that the sets (Fi),c(y ,, C F are pairwise disjoint.

An application of the Hahn-Jordan decomposition theorem imme-
diately yields:

COROLLARY 2.3.32. The total variation of a signed measure is given

by
= p" +p
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DEFINITION 2.3.33. Let T be a Hausdorff topological space and
B(T) its Borel o-algebra. A Radon measure is a measure

w:B(T) = Ry U{oo}
that is
(i) locally finite, which means that every point z € T has a neigh-
borhood U, such that p (U,) < oo, and
(ii) inner regular, which means that for every B € B(T)
p(B) =sup{u(K): K C B, K compact} .
The space of Radon measures is denoted by M (T).

LEMMA 2.3.34. A Radon measure p on a Hausdorff topological space
T is outer reqular, that is for every B € B(T)

u(B)=inf{pu(0): O D> B,O0CT,Oopen}.
PRrOOF. For B € B(T') and some £ > 0 we choose a compact set
K.cT\B
such that
W(T\ B)\ K.) < <.
K. is closed since T' is Hausdorff. Thus, the set
(r'\K.) DB
is open and
n(T\K)\ B) <.
O
DEFINITION 2.3.35. A measure is called regular , if it is inner and

outer regular. A signed or complex measure p is called regular if |u| is
regular.

DEFINITION 2.3.36. Let T be a Hausdorff topological space. Let
B(T) be its Borel o-algebra. A signed Radon measure is a signed
measure p : B(T) — R for which |p| : B(T) — R, U {0} is a Radon
measure. Its space is denoted by M(T). In the same fashion, one can
also define a complez Radon measure and call the space M. (T).

Adding uniqueness to the statement already proved in [15], we can
completely characterize the dual space of °(F) by the following the-
orem.
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THEOREM 2.3.37. (Riesz representation for °(F))
Let { : °(E) — R be a continuous linear map. Then, there ezists
a unique signed Radon measure p such that

(2.3.1) /f w(dx) for all f € B°(F).
Additionally,

memm—ﬁy@mmm»

On the other hand, for any signed Radon measure p for which

Amwwwm

s finite,

s a continuous linear map.

REMARK 2.3.38. We call the space of such signed Radon measures
MP(E). As dual space (see Definition 1.4.39) of the Banach space
2*(F) it is a Banach space itself (by Proposition 1.2.5) with the norm

s 1= [ pto) ul (ds).

In other words, the theorem states
(#°(E)) = M"(E).

PRrROOF. We start with the last part of the assertion which is much
easier to show. We first note that by definition f € %°(F) is the
pointwise limit of continuous, hence measurable functions and as such
f is itself measurable (see Lemma A.3.17). Therefore, the integral

éﬂ@@x
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() = [ fo (o)
/ @)+ [ 1@l )
= [ e o

<11, ([ pte) ul (@) )

This also implies that the functional is indeed continuous by Proposi-
tion 1.2.7.

As for the more difficult first part of the assertion, the proof has
three steps. We first show the existence of a unique signed Radon
measure g such that for the map ¢ restricted to Cy(E, R):

is defined. It is finite thanks to

the equation

leyme (9) = / g(x)u(da) for all g € Cy(E,R)
E

holds true. In a second step, we prove

TP /E o() 1 (da)

and in the third step we show

/f p(dx) for all f € B°(F).

Regarding the first step, due to continuity of ¢, by Proposition 1.2.7
there is a constant M, > 0 such [{(g)| < M, ||g||, for all g € Cy(E,R).
Due to Corollary 2.3.17

lgll, = sup p(z)~" [lg(2)||
zelR

1 1
< — M, | —— su T .
<M (| (sunlaton)

zelR
N 7
TV

=Moo

Hence, |{(g)| < M« |9l and again by Proposition 1.2.7 the map
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is a continuous linear map as well. To this map, we would like to apply
Proposition A.4.15. For any € > 0, we therefore have to find a compact
set K such that |((g)] < e for all g € Cy(E,R), |g| <1 for which g =0
on K . Due to

[(g)] < "€|’L(%p(E),R) Hng
it suffices to choose K such that the inequality

£
(232) loll, < ———

10l (50 ).y
holds for all g € C,(E,R) for with g¢|, = 0 and |g| < 1 hold. Since we
know that for any such ¢ the relation

lg()]

gll, = sup
loll, = sap p(x)

1
sup ——
T€E\K p(r)

holds, by definition of the admissible weight function p we can choose
K to be

€

1l (0 (1) =
K= K<|u(@p<E>,R>) = {x € B: plz) < —Z23

in order to obtain Inequality 2.3.2 as desired. Thus, there exists a
unique signed Radon measure g such that

lg) = /Eg(:zr),u(das) for all g € C,(E, R).

As second step of the proof, we show

16 ancer = [ o) il (o)
Thanks to lower semicontinuity of the admissible weight function p :
E — (0,00) (see Lemma 2.3.14), it is possible to apply Proposition
A.4.17 in order to compute [, p(z)|u| (dz). Application of Proposition
A.4.17 yields

Y

/E pla) ] () = s

[E 9(x)p(dz)

where the supremum is taken over all functions g € C,(E,R) such
that |g| < p, and such that ¢ is |u|-integrable. For all these g it holds
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lgll, < 1. Hence

Lﬂﬂmm)

sup
g

= sup|{(g)|
g
< sgp 1l Lo ) )~ 1191, < Vel Lo () ) -
Regarding the other inequality, we observe that for
-1
1l Lo (ymy = sup [LfI],~ [€CF)]
fezr(E)

it is sufficient to take the supremum over all g € C,(E, R) since C,(E, R)
is dense in #”(E). This yields

—1
1l = s gl 14g)
gecb(EvR)
glr
< sup [ 19D

geCy(ER) JE ||9||p

sémmmww

and we conclude the second step.
As third step, we have to show that for a continuous linear map

(. B (E) =R

and the Radon measure p found in the first step the equation

Kﬂzéﬂwmm)

holds for all f € #°(E). As shown in the beginning of this proof, for
the Radon measure p found in the first step of the proof the map

f%éjwmw)

is a continuous linear functional on %*(E). By construction, it coin-
cides with the continuous linear map ¢ on the dense subset Cy(E,R).
Hence they coincide on all of #°(FE).

Ul

In the case of positive linear maps %”(FE) — R we always obtain a
statement like in the theorem above and do not need to check for con-
tinuity first. This is shown in the Proposition 2.3.41 which was proved
in [15]. We first show that if the continuous functional in Theorem
2.3.37 is positive, then its Radon measure given by Theorem 2.3.37 is
positive as well.
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DEFINITION 2.3.39. Let A and B be some sets and call R4 the set
of maps between A and R. For f € R* we write f > 0 if f(a) > 0 for
all a € A. A map

T:R*— R
such that f > 0 implies T'(f) > 0 is called positive.

COROLLARY 2.3.40. If the continuous linear map ¢ : B°(FE) — R
is positive, then the unique finite Radon measure p € MP(E) from
Theorem?2.3.37 is positive.

PROOF. By Theorem 2.3.37 we know that there exists a unique
signed Radon measure p such that Equation 2.3.1 and Equation 2.3.1
hold. Assume by contradiction that p is not positive. If u(O) > 0
would hold for any open set O C Y, then by outer regularity of Radon
measures (Lemma 2.3.34) p were positive. Thus, there must be an open
set O C Y and € > 0 such that u(0O) < —e < 0. By inner regularity of
Radon measures choose K./, C O compact such that |u| (O\ K.j2) < 5.
Then —5 < u(O \ K.2) implies p(K./2) < —5. By Proposition 2.3.9
there exists a continuous function g : E — [0, 1] such that g(O) = 0

and g(K./2) = 1. We obtain
l(g) = /E g(x)p(dx)
= x)pu(dx ) pu(dx
mem»w>+/ g(a)yu(da)

K)o
< [ (O Kep2) + p(Kep2)
e _t_,
< 2 2
in contradiction to positivity of £. Hence, the statement of the corollary
holds. U

PROPOSITION 2.3.41.
Let { : #BP(E) — R be a positive linear map. Then there ezists a
unique finite Radon measure p on E such that

05 = [ F@hlds) for il f € 3(E).
E
Additionally, p is positive and u € MP(E).
PROOF. By Corollary 2.3.40 we only need to show that
(: % (FE)—R
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is continuous. By contradiction, assume that this is not the case. Then
by Proposition 1.2.7 there exists a sequence (f,), oy in #”(E) such that
[fall, = 1 and [¢(f,)] > n® for all n € N. Hence either (—f,) > n® or

((fn) > n3 for all n € N and positivity of ¢ implies that for all n € N
the inequalities

£(|fn|) > E(_fn)

and

(| fal) = €(fn)
hold. Thus, for all n € N for g, := |f,| we obtain [|g,[|, =1 and
€(ga)] = L (I fal) = n°.

In order to obtain a contradiction, we now construct a map h € %°(E)
such that ¢(h) is not defined anymore. This is done by setting

N
h = 2
n=1
We see that (Am),,cy given by
N~ Y
hun ._Zl o

converges to h in #°(F). Furthermore h,,,h > 0 and h — h,, > 0 for
all m € N and positivity of ¢ yields ¢(h) > ¢ (h,,) for all m € N. The

inequality
~ L(gn) v
() =3 025
n=1 n=1

implies £(h) > lim ¢ (h,,) = co and we obtain that ¢(h) is not defined
m—0oQ

in contradiction to our assumption. 0

Investigating the space % (E) further, we obtain the following char-
acterization. The proof is again based on [15].

THEOREM 2.3.42. Let f: E — R. Then f € #°(E) if and only if
(i) for all R >0
f‘KR S Cb<KR7R)7

and

(ii)
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PROOF. We first show that f € #°(E) implies (i) and (ii).
We start with (i). Solet f € #°(F) and fix R > 0. Then by density
of Cy(E,R) in #°(E) there exists (gn),cy C Cp(E, R) such that

1
for any n € N. Therefore,
n\T) — J (T
sup |ga(e) — f(@)] < R - sup 22— @]
zeKp 2€Kn p(l’)
<r- L
n

Hence on Kp
(9alxn). o C Co(KR,R)

converges uniformly to f which implies that f|. € C,(Kg,R) which
is a well known result from analysis.

As for f € #°(F) implying (ii), let 6 > 0 be arbitrary. We have to
show that for R large enough the inequality

wp L@
z€E\Kg p(:r)

holds. By density of Cy(E,R) in #°(E), choose h € Cy(E,R) such
that

0
=1, <
Then
@l V@M@, )
weB\Kp P(T) ~ ceB\Kg p(x) veB\Kp P(T)
Jo )
p .

T2 semkg P(T)

Since h € Cy(E,R) is bounded by ||| is suffices to choose R such
that
2]

5

Next, we let f : £ — R and show that Properties (i) and (ii) imply
[ € #°(F£). We will do this by constructing a sequence (fy), oy C
%°(E) that converges to f in %°(E). For such a sequence (fy),cy C
2%*(E) that we have to construct, for any n € N it has to be possible to
approximate f, in °(F) by continuous bounded functions. Therefore,
it seems reasonable to investigate the candidate

gn(+) := min ((max (f(-), =n)) , n)

R>
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for any n € N, thereby already ensuring boundedness of all (g,),,cy. In
order to show that the sequence (gy), .y Possesses the desired proper-
ties, we have to prove (g),.y C $”(F) and lim g, = f in B°(E).
n—oo
Concerning the proof of (g),.y C #°(E), we fix n € N and by
Property (i) of our assumptions we obtain

Il € Co(KR,R)

for any R > 0, R € N. By Proposition 2.3.8, for any R > 0, R € N
we can find a continuous extension h,, p of 9n|KR on all of X such that
\hn.r| < n. h, g approximates g, in #°(E) as R > 0, R € N tends to
infinity because

hn - Yn
lim ||hn,R—gan = lim sup (@) = gn ()]
R—o0 R—=00pe E\Kg p(x)

Thus g, € #°(F) for any n € N.
In order to show

lim g, = f on #°(E),
n—oo
for any € > 0 by Property (ii) we can choose R > 0, R € N such that

21/ ()|

<€
ZPGE\KR p(x)
We then choose N € N such that
N > max |£(2)],

zeKp

which is possible because a continuous function attains its maximum
on a compact set. Then, g, = f on K for any n € N, n > N and

ol = e @) =)
I = onll,= s 550
21/(2)

z€E\KR p(x)
<e.

<

Since € > 0 was arbitrary, this yields lim g, = f in #”(F) and there-
n—oo
fore f € #*(F). O

The following property is similar to the fact that on a compact set
continuous functions attain their maximum. The proof follows [15].
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THEOREM 2.3.43. Let f € #°(E). If

supf(z) > 0,
zeE

then there exists z € E such that for all x € E
f@) _ ()

p(z) = plz)
PROOF. Due to

sup f(z) >0
el

we choose some y € E such that f(y) > 0 and by Theorem 2.3.42 we
can choose R large enough such that

@) _ fw)

su .

In order to estimate the supremum of % on the compact set K, we use
that by Lemma 2.3.14 p is lower semicontinuous and by Lemma A.2.1
%) is upper semicontinuous. By Theorem 2.3.37 f is continuous on Kpg.
Thus, % - f is upper semicontinuous as well and attains its maximum on
the compact set Kz at some point z € K . This yields the statement
of the theorem. 0

COROLLARY 2.3.44. Let f € SB°(FE). Then, there erists z € E such

that ||, = L.

PROOF. Set g := |f| € B(E). By the previous Theorem there

exists z € I such that ||g||, = igzg and we conclude by substituting

back in. O

Regarding maps defined on %”(FE), a composition with a bounded
continuous map is continuous:

LEMMA 2.3.45. Let h € Cy(R) and f € B°(E). Then

PB°(E) — B°(F)
f—hof

1S a continuous map.

PROOF. Since ho f\KR is continuous for any R > 0, by Theorem
2342 ho f € #°(E). Thus, we only need to show continuity. Let
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g € B°(F), € >0 and choose R, > [Mlae ~ Then

€

h —h
lho f—hogl, <e+ || 2L =P8
Kr. || s
< - (h —h
<e+ ingp(x) H( of 09)|KR6 -
xre

Let [a, b] be some interval such that f(Kg.) C [a,b] (which is possible
since on Kp_ f is continuous and attains maximum and minimum.).
Then A is uniformly continuous on [a — 1,0+ 1] and there is § > 0
such that for any z1, 25 € [a — 1,b + 1] such that |z, — 25| < § it holds
|h(z1) — h(z2)| <e. Thus, if || f —g||, < R% then

|7 = 9,

and consequently

o0

H(hof—hogﬂKREHOO <e,
which shows continuity of f — ho f. O

Theorem 2.3.42 shows that the space %°(FE) is closely related to
the space of continuous maps on a compact space. For such spaces
the Stone-Weierstrass theorem (Theorem A.2.6) holds. We show that
a version of it also holds for #*(E). For the definition of an algebra we
refer the reader to Definition A.2.5.

PROPOSITION 2.3.46. (Stone- Weierstraf$ for $°(E) )

Let A C Cy(E) be an algebra with respect to pointwise multiplication
that contains 1g and that separates points. Then A is dense in SB°(E)
with respect to ||-|| -

PROOF. The idea of the proof is to approximate elements of %°(FE)
by continuous bounded maps on F which in turn can be approximated
on Kp for any R > 0 via Stone-Weierstrass by elements in A that are
restricted to Kr. However, such an element in A, albeit bounded, may
have an arbitrary large bound that depends on R. Thus, it may not
approximate with respect to |-, on all of E. Therefore, it is rescaled
by a suitable polynomial such that an element in A is obtained whose
bounds do not depend on R. This yields an approximation with respect
o]/,

That idea will be carried out in the following. Let h € %”(F) and
e > 0. By definition of #°(F) there exists g. € Cy(F) such that

lge = All, <.
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R, := max (%, 1) )
€

The set A. C Cy(Kr,) defined as

Set

A= {f\KRe L fe A}
is an algebra that contains 1, and that separates points, hence by
Stone-Weierstrass (Theorem A.2.6) A, is dense in C'(Kg_). Thus, there
is f. € A such that

sup |f-(z) — ge(2)| < e.

w€Kn,
Clearly,

ac = s |fe(2)] < sup |9:(2)] + € =: B..
Set

Ye == sup | f-(z)].
rxeF

By Tietze-Urysohn (Theorem 2.3.6) there exists a continuous map
Pe - [_75776] — [_ﬁsaﬁe]

such that

B for [y| > B..

Again by Stone-Weierstrass, on a compact set the space of polynomials
is dense in the space of continuous maps. This means that there is a
polynomial p. on [—7.,~.] such that

oo(y) = {y for y € [—a, ag]

sup  [p(y) — w=(y)| <e,
ye[_'Ys»’Ys]

hence

(pe o fo) () = (w0 fo) () €
s (@) = T pla)

zeE
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Since A is an algebra p. o f. € A and
Hh —De© fer S Hh - ger + ||gs — Pe O szP + ||S05 © fz—: —De© szp

<e+ sup 98(17) - (Qpe © fE) (1’)
xEKRE p(I)
s ap |E@ o )@, -
2€E\K g, p() infp(z)
<e+ sup gs(x) - f6<37>
JZEKRE p(l‘)
+ 2sup |g5(32| te + — fg
el € IEHIl(REp(x)
€
<e+ — -+ 2 (5 + 5) + — )
e e
and A is dense in #°(F) . O

We recall the space Co(E,K). It is defined as the set of continuous
K-valued functions on E such that {x € E: |f(z)| > €} is compact for
any € > 0. It is equipped with the norm (see Proposition A.4.4)

Il = f = sup /()]
el

One can easily show that this is a Banach space (see Lemma A.4.5).
We set Co(E) := Co(E,R).

LEMMA 2.3.47. If the admissible weight function p is continuous,
then
(i) #°(E) C C(E),
(ii) [ € Co(E) implies f - p € B°(E),
(iii) f € B°(E) implies L € Co(E).

PROOF. (i) For f € #7(FE) by definition of #*(F) % is the uniform
limit of (97”) . for some (gn),,cy C Cy(E). Hence % is continuous and

ne

therefore also f.

(i) If f € Cy(E), then f-pis continuous and |J {p < n} is an open
neN
cover of E hence for any € > 0 finitely many such sets suffice to cover

the compact set {|f| > €}. Thus, for any € > 0 there exists R. > 0
such that |f| < e on E\ Kg. and by Theorem 2.3.42 f - p € #°(F).

(iii) By (i) % is continuous. By Theorem 2.3.42 for any ¢ > 0 there
is some R. > 0 such that {‘%) > 5} C Kpg.. Hence by closedness
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{)%‘ > 5} is compact and

% € Cy(F).

O

In the next lemma, C.(F) denotes the continuous maps with com-
pact support, which are the continuous maps f such that

{reE: flz) #0}

is compact.

LEMMA 2.3.48. Let (E, p) be a weighted space and E be locally com-
pact. Then C.(E) is dense in P°(E) with respect to || .

PROOF. By definition of %”(FE) we only need to show that C.(F)
is dense in Cy(E) with respect to [|-]|,. Let f € Cy(E) and & > 0.

Choose R, = % By local compactness each element in Ky has
a compact neighborhood hence by compactness of Kp_ finitely many
such compact neighborhood cover Ky . The union of these finitely
many neighborhoods is a compact neighborhood Uk, D Kg, . Let
Vi, C Uk, be an open neighborhood of Kp, and define the map
ge € Ob(KRg U UKRE \VKRE) as

. f on KRE
e = 0 OnUKRE\VKRE'

By normality of compact sets (Proposition A.1.11) and Tietze-Urysohn
(Theorem 2.3.6) this map can be extended to g € Cy(Ug,_ ) such
that ||¢.||.. = [|f|l..- Subsequently the map g, can be extended to
9 € Ce(E) with ||gc|| . = || fllo by stetting g. =0 on E\ Ug,_. Then

9:x) — F@)| | L) — £ (o)

Hgs - pr < sup +

z€Kp, p(ac) t€E\KR, p(x)
2|/
<04 ——=
S0+ R
= 2¢,
which proves the lemma since € > (0 was arbitrary. U

2.3.4. Generalized Feller Semigroups. As before, in this sub-
section (F, p) always denotes a weighted space. Since we have seen
that X := %°(F) is a Banach space we can define one-parameter semi-
groups on it (see Definition 1.3.1). In a special setting this was done by
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Réckner and Sobol [36] in 2006. Generalizing this idea, in 2010 Dorsek
and Teichmann [15] introduced generalized Feller semigroups.

DEFINITION 2.3.49. Let (P(t))
operators such that for any t € R

P(t): #°(E) — #B°(E).
We call the family (P (1)), generalized Feller semigroup on %°(E)

teR, be a family of bounded linear

if

P1 P(0) = Id, where Id is the identity on %*(E),
P2 P(t+s) = P(s)o P(t) for all s,t € R,

P3 forall f € #°(F)and allz € E

lim P(t) (x) = /(@)

P4 there exists ¢ > 0 and C' € R such that for all ¢ € [0, €]
1P 0 (i) < C,

and
P5 P(t) is positive (in the sense of Definition 2.3.39) for all ¢t € R,.

REMARK 2.3.50. Compared with the definition of Feller semigroups
(see Definition 2.2.1) in the definition of generalized Feller semigroups
Co(E) is replaced by #°(E) and instead of

QU oy <1

in the case of Feller semigroups only P4 is asked in the case of gener-
alized Feller semigroups. Strong continuity and positivity are proper-
ties that Feller semigroups and generalized Feller semigroups have in
common (for strong continuity and generalized Feller semigroups see
Theorem 2.3.51).

Furthermore, if £ is compact, then choosingp = 1

BP(E) = Cy(E) = Cy(E).

With Chapter 1 in mind, we are interested in the continuity prop-
erties of generalized Feller semigroups. It is proved in [15]:

THEOREM 2.3.51. Let (P(t)),cp, be a generalized Feller semigroup
on B°(E). Then (P(1)),cg, s strongly continuous on 2°(E).

PROOF. The proof is possible thanks to the deep result from Chap-
ter 1, Subsection 1.4.6 that strong continuity of a semigroup follows
from weak continuity (see Corollary 1.4.69).



2.3. GENERALIZED FELLER SEMIGROUPS 149
Therefore, it is enough to show that for any f € %°(FE) and any
p € (%°(E)) we obtain the right limit
lim (P(t = .
lim (P(£).f, ) = (f, )

We fix some f € #°(E) and u € (%°(FE))'. By Theorem 2.3.37
(#"(E)) = M°(E)
and

(P() /1) = / P(t) f (x)u(d).

E
Thus, the theorem follows immediately if we can show that

lim [ (P(t)f(x) = f(x)) p(dx) = 0

t—0 E

holds true. By P3, for all x € E we are given the right limit
lim P = :
lim P(t)(x) = f(0)

Hence, we obtain the above limit by dominated convergence (Theorem
A.3.58) if for some ¢y > 0 we can bound

(’P(t)f - f’)teﬂh,tdo
by a p- integrable function. By P4 we obtain for t < ¢35 < ¢ the bounds

P)F@) — flo)] < sup EEHE Iy

=Pt f = fl, p(z)
< (HP(t)HL(,%P(E)) + ||IdHL(,%’P(E))) ”f”p p(x)
< (C+ DA, o),

and by Theorem 2.3.37 (C'+1) [|f|| , p(x) is indeed integrable with re-
spect to p. Hence, it is justified to apply the dominated convergence
theorem which yields

lim [ (P(t)f(x) - f(2)) pu(de) = 0.

=0 Jp
Since f € #°(F) and p € (%’"(E))/ were arbitrary, we obtain the
statement of the theorem. O

Since we know the dual space of %°(F), we can connect general-
ized Feller semigroups to a family of positive finite Radon measures
on (E,B(E)). Furthermore,with respect to the Baire o-algebra By(E)
(see Definition A.3.38) we even obtain a semigroup of transition prob-
abilities.
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PROPOSITION 2.3.52. Let (P(1))er,
group on %B°(E) such that for any t € Ry
IP@)I < Me

for some M > 1 and w € R.
(i) There exists a unique family of positive finite Radon measures

be a generalized Feller semi-

(1)@ Myes, .,
on (E,B(E)) such that for allx € E, t € Ry and f € B*(E)

P@ﬂ@=éj@ﬂﬂ%@%

and p(t)(z,-) € MP(E).
(i1) For all x € E and t EAJRJr one defines for all positive measurable
maps f: E—R (or f € Br(E))

PO : = [ Fp(o)e,dy),
and obtains the bounds

P(t)p(x) = sup  |(P(O)f) (@) < p(@) [ P(O)]| gy < plx) M.
f € Gy(E)
Ifl<p
Hence, for all t € Ry P(t) can also be interpreted as a bounded linear
operator on

gP(E) = {f E—Z: Sugp(x)_1 | f(z)]| < o0, f measumble},
S
which will be done frequently without further mention. Furthermore,
||P(t)||L(%P(E)) = ”P(t>”L(§7J(E)) :
(ii1) If additionally E is locally compact (Definition A.1.12) with count-
able base (Definition A.1.2), then (p(t)) is a semigroup of transition

kernels.
(iv) The family (p(1)),c, defined as the restriction

tER+

P(t) = (V)] pxsy(e)

for any t € Ry is a semigroup of transition kernels with respect to the
Baire o-algebra By(E).
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REMARK 2.3.53. If the family of positive finite Radon measures
(p(t))eg, on (E,B(E)) permits to find a projective family of proba-
.y J J
bility measures on (E ,B(E) )JCR+,ﬁnite’
Proposition 2.1.13 one obtains the existence of a stochastic process such
that the conditional expectation is of a particular form. Results when

this is the case will be presented later in Theorem 2.3.65 and Theorem
2.3.73.

then in a similar way as in

PROOF. (i) By definition of generalized Feller semigroups, for any
t € Ry and x € E the map

#°(E) — R

gux: f__> Fwt)f(x)
is positive and linear and by strong continuity of (P(t)),cg, (see Theo-
rem 2.3.51) and exponential boundedness of strongly continuous semi-

groups (see Proposition 1.4.9) there exist constants w € R and M > 1
such that

[P f ()] < p(@) IP@)f]l, < plx)Me - | £,

holds true. Hence

#°(E) — R
bt f— P(t)f(z)
is also continuous. Thus, by Corollary 2.3.40 for any t € R, and any

x € E there is a unique positive finite Radon measure p(t)(z,:) €
MP(E) such that

(P()f) (x) = /E Fw)p(t) (. dy)
holds true.

(ii) P(t)f is clearly well-defined. Since p(t)(x,:) € MP(E) we ob-

serve

/ oWt (e dy) = [la = sup |(P(O)]) ()]
E feCy(E)

fl<p
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The calculation

sip (P(Of) (@) < pla)  sup (pw)
(B)

f c Cb(E) f c Cb zeFE p(l’)
fl<p fl<p
<p(xr) sup [[P@O)f,
feCy(E)
fl<p

< p(x) [P@)],

yields the statement of the Lemma.
(iii) In the first step, we show that (p(?));cp, is a family of transition
kernels and only have to show that for any A € B(F) and any t € R,

r — p(t)(x, A)

is measurable. Since E is locally compact with countable base, it is
also metrizable (see Proposition A.1.13). Let d be a metric and for
x € Eand e >0let B.(z) :=={y: d(z,y) < e} be an open ball.

We can approximate

lp.(»(y) = im 1 A (n _inf d(y,E)) :

n—>00 5¢ B2 (2)

(the infimum is strictly positive due to £\ B.(z) being closed). Then
by dominated convergence

plo)e B =t [ (18 (- _iat a0.2)) ) (o)

n—o0

= ) (14 (0 _r_a0.2)) @)

and x — p(t)(z, B-(z)) is measurable as limit of measurable maps since

1A (n inf d(y,z)> c ().

Z¢Be(z)

Since E is separable, there exists a sequence (2,),.y C E such that
(B:(%i))ien, ccq forms a countable base of B (E). As before

#) ( U Bﬁ») = anro (g (10 (v g 0)) )

and by taking the limit also x — p(t)(z, O) is measurable for any open
set O C E. Since the system of sets D € B(F) such that

x — p(t)(x, D)
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is measurable is a Dynkin system and it contains all open sets that
are an intersection stable generator of B(FE), it contains all of B(E) by
Lemma A.3.15. Hence, (p(t)),cp, is a family of transition kernels.

In the second step, we show that (p(zf))te]R+

sition kernels on (E, B(E)), or in other words, that additionally for any
A € B(E) and any s,t € Ry

/E p() (9, A)p(t) (z, dy) = p(s + )(z, A).
We know that for any f € %°(F)
/ / F(2p(s) (. d2)p(t) (. dy) = P(£)P(s) [
=P(s+1)f

/f p(s+t)(x,dz)

holds true. For any open set O C E we can approach 1o as in the
first step of the proof by a sequence %°(F), which yields by dominated
convergence

is a semigroup of tran-

/E p(3) (9, O)p(t) (. dy) = p(s + 1)(z, O).

As in the first step since the system of sets such that this equations
holds is a Dynkin system it follows that

/E p(3) (9, A)p(t) (x, dy) = p(s + 1)(z, A)

holds true for any A € B(E) .

(iv) For any Cy(E)-open set A € B(FE) (see Definition A.3.36) by
definition there is a sequence (ff)neN such that f4 1, pointwise.
Hence, for any t € R

v = p(t)(z, 4) = Tim P(1) fA(2)

is measurable with respect to Baire o-algebra By(F) as limit of maps
that are in #”(F) and therefore Baire-measurable (by virtue of being
pointwise limits of Cy(FE) functions). This property extends to all sets
A in the Dynkin system generated by the Cy(F)-open sets. Since the
system of Cy(FE)-open sets is intersection stable by Lemma A.3.15 the
property holds true also for the o-algebra generated by the Cy,(F)-open
sets. By Lemma A.3.37 this is precisely By(E) .
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Furthermore, for any A € By(F) and any s,t € R, by dominated
convergence

/E p() (g, A)p(t) (. dy) = lim P(t)P(s)

n—oo

= lim P(s 4 t)f

n
n—oo

- p(S + t)<y’A)

PROPOSITION 2.3.54. Let (1))
foranyt € Ry

teR, be a family of maps such that

W : E— E.
Then (P(1)),cgr, defined as

P)(f) = f ot

is a generalized Feller semigroup on BP(E), called generalized Feller
semigroup on B°(E) of transport type, if and only if the following
conditions hold:

(i) v = Id.
(11) For any t1ts € Ry

Y1, © iy = Yy 1y

(i1i) For any x € E

1{% () = .

(iv) For any t € Ry and any R > 0
Uil : Kn— B

18 continuous.
(v) For any t € Ry

sup pov(x)

= Ct < 0.
zel p(x)

(vi) For some § > 0 there is C' > 0 such that for all 0 <t < ¢
Cy < C.



2.3. GENERALIZED FELLER SEMIGROUPS 155

Furthermore, for a generalized Feller semigroup of transport type the
tdentity

(2.3.3) P(t)p(x) = sup |fo(x)| = poify(x)
f € Cy(E)
f1<p
holds true.

PROOF. We first show that the conditions (i)-(vi) are sufficient in
order to obtain a generalized Feller semigroup.

Fix t € R.. We show that P(t) is a bounded linear map from
PBP(E) to B°(E). For f € $°(F) and n € N, by definition of #°(E),
there is f,, € Cy(E) such that

1
17 = fll, < -

By Theorem 2.3.42 we obtain f,, o ¢, € #°(F) for any n € N since on
the one hand f,, o ¢y, € Cy(E) holds for any R > 0 and on the other

hand
| fn 0 ¥(2)]

lim sup ————— =0.
R_>OO$€E\KR p<x)

The inequality

. |f ote(w) — fr o thi(7)] _ |f othe(x) — fr o the(2)]| ) poy(x)
hep (@) = po(z) o)

1
<—-C
n

yields that f o, € #°(F) as a limit of functions in %”(E). Moreover,

I, = sup T2l 2]
<|fll,- C,

hence P(t) is a linear bounded operator on %A*(E).
The Properties P1, P2, and P5 of generalized Feller semigroups
are easy to check. For Property P4 we see that for all 0<t < §

1P| < Cy < C.

Regarding Property P3, we observe that for any x € E and any 0 <
t < 0 the inequality

poty(x) < Cs-p(r) =: R,
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holds true. Therefore, ¢,(z) € K, fort € [0,0) and because of f|, €
Cy(E) for all f € $B*(E) (see Theorem 2.3.42) we obtain ‘

fim o u(x) = f(x)

for any x € E.

Next, we show that if (P(?)),cp, is a generalized Feller semigroup,
then Properties (i) - (vi) and Equation 2.3.3 hold true.

Property (i) follows from P(0) = Id which yields

(2.3.4) foig=f forall fe B (F).

So by contradiction, if there was some = € E such that ¢y(x) # z,
then by definition of completely regular spaces, one could find some
map f, € Cp(E) C B°(F) such that f,.(x) =1 and fo(x) =0. But
this would contradict Equation 2.3.4.

Regarding Property (ii), as in the proof of Property (i) we obtain

(2.3.5) fo Wy oy,) = fo(yy,) forall f e B°(E).

and as above by contradiction, if Property (ii) did not hold, then one
could find a map in Z°(F) that would contradict Equation 2.3.5.

Property (iii) can be shown in the same way, since by definition of
generalized Feller semigroups

lim 0 1(z) = £(a)

holds for any = € E and any f € %°(F).

In order to show Property (iv), we fix some R > 0 and some arbi-
trary open set O in E. We have to show that v, '(O) is open in Ky
which respect to the subspace topology. We know by Theorem 2.3.42
that f oyl is continuous for any f € %°(E). For any z € O,

by definition of completely regular spaces, we know that we can find
fz € Cp (E) such that

fol <1,
fa(@) =1,
and
f2(E\ O) C {0}.
Clearly,

-1
U (feowil,) ' (0,2)
z€0

is open in K with respect to the subspace topology. On the other

hand
U 0.2 =0.

ze0O
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Thus,

Uil (O) = Wil (U (f) <0,2>)

zeO
= (footily,) " (0.2)
€0

is open in K with respect to the subspace topology.
Regarding Equation 2.3.3, by Lemma 2.3.52 P(t)p(x) is given for
any r € E by

P(t)p(z) = sup  [fouy(z)].
f € Cy(E)
fl<p
We observe that for any y € E and any n € N there is an open
neighborhood O,, , of y such that
1
plx) > ply) =~
holds true for any x € O,,,,. On E'\ O, , U {y} we define the function

1

P00 for x € E\ O,,,

and by Proposition 2.3.8 we can extend g, , to f,, € C,(E) such that
| fayl < pand p(y) — fay(y) = =. Hence, for any z € E

sSup |fo¢5(x)| :po¢s($).
feGy(E)
f1<p

Finally, Property (v) and (vi) follow since for any x € £
poih(z) = P(t)p(z),
and by Theorem 2.3.51 and Proposition 1.4.9 the estimate
IP@)I < Me"

holds true for some M > 1 and w € R. Thus, Lemma 2.3.52 implies
that for any x € £
povy(x) < plz)Me.
O
EXAMPLE 2.3.55. For a > 0 let (¢f'),cp, be a family of maps such

that for any t € R
vy R—R
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is defined as
Y (z) = o'z,
Then we define p(z) := max {In |z|, 1} and
P _ pla'z)

sup ———— = su
z€R /)(37) z€R P(x)

= max sup p(a%)) sup pla')
|z| > e In || lz] <e 1
<tln(a)+1
=: C,.
Therefore, (Pf),cp, defined as

PA(f) = fouy
is a generalized Feller semigroup.

It is also a Feller semigroup as it is clear that it maps Cy(R) to
Co(R), is positive and contractive in the supremum norm. Moreover,
strong continuity in the supremum norm follows from the fact that on
compact sets in metric spaces continuous maps are uniformly continu-
ous.

EXAMPLE 2.3.56. (generalized Feller semigroup of transport type,
but not Feller semigroup)
Consider £ = R? in polar coordinates, define

p: (0,00] x (0, 27] = (0,00
r
(7”, SD) -1+ 5
¥
and p(0,¢) = 1. Then p is an admissible weight function. For the map

Uilr ) = (re %)

by Proposition 2.3.54 P(t)(f) := fot is a generalized Feller semigroup
by

p(¢t(rv <ﬂ)) _ 1+ Tego

<
p(r,p) 1+Z =
But it is not a Feller semigroup because for g(r) := e " € Cy(R?)

(gown) (rg) =e™ 7 & Go(R?)
as can be see by letting ¢ approach 0.

Bl
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COROLLARY 2.3.57. Let (P(t)),cp,
group on BP(E) of transport type and let (wt)teR+ be as in Proposition
2.8.54. For some M >1 and w € R let

1P < Me,

and let A be the generator of (P(t))teR+, and A’ the adjoint of A (see
Definition 1.4.41). Then

be a generalized Feller semi-

(Q(t))teR+
defined as
Q(t)(n) = poty

is a semigroup on MP(E) and

(Q®lsw)

is a strongly continuous semigroup on D(A") C MP(E).

teR

PROOF. Fixt € R;. By Theorem 2.3.37 we obtain for u € #°(E) =
MP(E) and f € #°(F) the identities

w(P()(f)) = /E (f o ¢r(2)) uldz)

— [ ) (wou) @)
E
= (uov ) (f).
Furthermore, by Lemma 2.3.52 and Proposition 2.3.54

[ o in) = [ Pptantas)

E

~ [ Pplaln(ar
E
< [ Mepla)n(ds)
E
Hence,
Qt): M(E) — M(E)
p— pory !
is the adjoint operator of P(t) and the statement of the Corollary fol-
lows from Lemma 1.4.43 and Proposition 1.4.61. U

On normed vector spaces, we can determine a subset of the domain
of the generator and the generator on that subset. In the following,
D f will denote the Fréchet derivative of f (see Definition A.2.2).
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PROPOSITION 2.3.58. Let E' be a normed vector space, let (P(t)),cp,

be a generalized Feller semigroup on %°(E) of transport type, and
let (¢t)t€R+ be as in Proposition 2.3.54. Let A be the generator of

(P(t))te]R+ , and A’ its adjoint. Let t — Yy(x) be continuously differen-
tiable for any x € E and define the vector field

v(x) :=lim w
t\0 t

Letve C.(E,E).
Then CH(E,R) C D(A) and for f € C}(E,R)

Af(x) = (Df(x)) (v(z)) forz e E.

For n € D(A') and f € C}H(E,R)

Ap(f) = /E D f(2)(v(x))ulde).

PROOF. First, we observe that for f € C}(F,R) and any = € E,
the map

t— (foy)x

is continuously differentiable and for s > 0 the derivative is given by

dt

(F o 44) () = (DF (i (2)) (hm
— (DS (. () vt ()

t=s

We need to show that the difference quotient converges not only point-
wise to the derivative but also in the ||-|| -norm:

=0.

p

lim
h—0

f(Wn()) — f(z)
h

— (Df(2)) (v(z))

For this purpose, we fix € > 0 and we want to bound the left hand side
by a suitable expression. By the mean value theorem for any x € E
and any h > 0 there is 0 < s(z, h) < h such that

fn(x)) — f(x) _ d

h Cdt

(f o) ().

t=s(z,h)
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This yields the estimate
’f(wh(x)) — f(x)  (Df(x)) (v(z))

hp(z) p(x)
i o) e (D) (v(a))
p(z) p(z)
< (Df ws(xh ZL‘) ) ('U ¢smh 'I) ) o (Df(qujs(x,h)(x))) (U($))
- p(z) plz
N (Df (s (@) (w(x))  (Df(x)) (v(z))
p(z) p(z) '

Furthermore, we note that f € C}(F,R) and v € C.(E, E) imply that
there exists & > 0 such that for any z,y € Y satisfying ||z —y|| < ¢
the inequalities

IDf(z) = DfW)llLpm) <&

and
[v(z) —v(y)| <e
hold true. For any 0 < s < h := IIUﬂ
[¢s(z) — || < h-[jv], <6
Thus,

(Df Wsan) () (0Wseay (@) (Df Wosam (@) (v(z))
p(x) p(z)

<[PRenD] o) -

<e

L(E,R)

15
< D
< o S IDf(2)|| L og gy -

zel

and
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Combined, these results yield the bound

R L)

p

v(z)
p(x)

zeE

1
inf (o) -sup [|Df(z )HL(E,R)+§1€1§
xre

J/

~~

=C
Since C' does not depend on h and € > 0 was arbitrary, the left hand
side converges to 0 as h \, 0 which is what we had to show.
For € D(A") € MP(E) we obtain for f € C}(E,R) C D(A)
Auf) = wAf) = [ (D) (o) duto)
O

In order to determine the domain of the adjoint of the generator
we have to make additional assumptions. In particular, we look at
functions and measures defined on R".

PROPOSITION 2.3.59. Let E C R",n € N and let the conditions
of Proposition 2.3.58 be fulfilled and v € C}(E, E). For the Lebesque
measure X let ;1 < X be given by the density g,:

(2.3.6) w(B) = /Bgu(x))\(dx) for any B € B(E),
and for C >0 let g, € CY(E) fulfill

[ ot ( L) () < © / ) 19u(2)] (@A (d).

d_g“ —|— d_g“
Denote the space of such measures as MCPY(E) C MP(E). Then,
MCPYE) Cc D(A) and for p € MCPL(E)

(2.3.7)  A'(u)(B) = — /B div(v - g,) (x)A(dz) for any B € B(Y).

(Q(t))th+ defined as

Q) (1) = poyy
is a strongly continuous semigroup on D(A’) C MP(E) and its gener-
ator A is given by the restriction of A’ to the set

D(AD) = {y’ e DA : Ay € D(A’)} .
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PROOF. By

L/ () oL 4
Ep dxlg“ mda:ng“

we obtain boundedness of the linear map

) (z)dA(z) < C/Ep(l’) |gu ()] (z)dA(2)
L: MCr(E)c MP(E)— MP(E)
/Bgu(m))\(dx) — —/Bdiv (v-g,) (x)A(dz).

In order to show MC?(E) C D(A’"), we have to show that for u €
MCPY(E) and f € D(A)

u(Af) = Lu(f)

holds true. By definition and dominated convergence

uian) = [ (g HEDZIE )Y aan)

h\0 h
() — f@)
— i [ (FED=IED g, ) agae)

=g ([ (L2 g, 00) o) = [ (D2 ) aan).)

We want to substitute z := ¢ (). By our assumptions and the Picard-
Lindelf theorem (Theorem A.2.3) also the inverse v, 'exists. We see
that for some s > 0 and z = ¢,(y)

) @) — L (W) —vs(y) _
h—0 h h—0 h
= _’U(d]s(y))

= —v(x).
Furthermore, by Theorem A.2.4 for any ¢ > 0
r — YPy(x)
is continuously differentiable and clearly Dy = Id . We obtain

uan) =tim ([ (52 oo™ ) (@D (@™ (20) " Ata)

h\0

_/E(@.gﬁt(;p)) )\(das).)
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Written in terms of difference quotients this yields (using our assump-
tions and dominated convergence):

MMﬁZ/ﬁ%ﬂ)<%WW_@D—%@

h

-1

9u((¥n) " (2)) ((I1DYa]) ()" (2)))
h

+

—mxwuwrh>AM@‘

Calculating the derivatives using the chain rule we obtain:

— = ((IDYn]) (¥n) 7" (2)))
u(Af) = / fl= < ) Vau(z) + gu(z) - dh (1d| (I))Q

))\(d:r)
h=0

/ — f(@)0() - Vgu(z)A(dz)

- [ 1@t ((— <|th|>) ()" (m))) )

+ [ 1@ (@ UDu ) (@0 @) 5 ()7 @)

Making use of the rules for the derivative of the determinant, we can
show

A(dz).

h=0

pAD = [ ~f@)(@) - Vau(@)\(dn)Ada)
d -1
- [ 100ute): (|th\~tr (0en " 5 D)) (@)™ @) ) A
+ [ 5@ (vl - (0™ (D)) (@)™ @) g (@007 ()] A
Finally, this simplifies to
wAD = [ £@) (=0(@) - Vau(0) = (@) - div (0) @) A(d)
d -1
+ [ @ ) (@7 @) g (0™ @) M)
= Lp(f). i
Thus, MCPY(E) C D(A") and L(u) = A'(u) for p € MCP(E).
O

We were able to characterize operators that generate strongly con-
tinuous semigroups by the Hille-Yosida theorem (Theorem 1.4.35) and
would like to achieve a similar characterization of operators that gen-
erate generalized Feller semigroups. However, in this case we need to
assume that for the generalized Feller semigroup (P(t)),cp, with the
usual norm bounds

HP(t)HL(,%p(E)) < M exp (wt)
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the condition M = 1 holds. Under this condition, operators that gen-
erate generalized Feller semigroups are characterized in the following
theorem which was proved in [15].

THEOREM 2.3.60. Let A be a linear operator on %°(E) and D(A)
its domain. Let w € R. A 1is closable and A generates a generalized
Feller semigroup (P(1))cp, with

1P (o)) < exp (wi)

for allt € Ry if and only if
(i) D(A) is dense,
(i) For some \g > w the linear operator A — Xy has a dense image
(and hence for all A > w the linear operator A — X has a dense image)
and,
(111) A satisfies the generalized positive maximum principle, that is, for
f € D(A) with
(2.3.8) max (i,O) < /)

p p(z)
for some z € E the inequality

Af(z) Swf(z)
holds.

PROOF. First, we show the implication that for a closable linear
operator A on A*(E) with domain D(A) for which A generates a gen-
eralized Feller semigroup (P(1));cp, with

1P (0 (my) < exp (wi)
for all t € R, Properties (i) (ii) and (iii) hold.

(i) By Theorem 2.3.51 (P(t)),c,

group and by Proposition 1.4.24 its generator A has a dense domain.
Hence also D(A) is dense.

is a strongly continuous semi-

(ii) By Theorem 1.4.29 for all A > w we have A € p(A) and the
operator A — X is a bijection between its domain D(A) and %°(F).
Since the graph of A — X is the closure of the graph of A — A, the range

of A— \is dense in #°(F).

(iii) For f € D(A) and z € FE such that

o (£) <25



166 2. MARKOV, FELLER AND GENERALIZED FELLER SEMIGROUPS

we want to find an estimate for w and want to take the limit

as t — 0. For this purpose, we can use assumption
||P(t)||L(&7)P(E)) < exp (wt)
and would like to work with functions in D(A) that take values only
in R, in order to make better use of assumption 2.3.8. Therefore, for
f € D(A) we look at max (f,0) (which is clearly in #”(FE)) and we
obtain by positivity of the generalized Feller semigroup (P5)
P(t)f(z) < P(t) (max (f,0)) (2).

Then, our estimate on ||P(¢)|| g0y vields

P(t) (max (f,0)) (2) < p(2) [|P(£) (max (f,0))],
< p(z) exp (wt) [[max (£, 0)]],

max (%,0) <)

and the inequality

for some z € E implies

p(z) exp (wt) [|max (f,0)[|, < p(z) exp (wt)

Hence, we obtain

P(t)f(z) < exp (wt) f(2)

P(t)f(2) = f(z) _ exp(wt) f(2) = f(2)
t - t
Taking the limit as t — 0 yields Property (iii).

and

Next, we show the opposite implication. In a first step, we use
Lumer-Phillips theorem (Theorem 1.4.38) in order to find a strongly
continuous semigroup generated by A — w. Later, we show that its
rescaled semigroup indeed is a generalized Feller semigroup with the
desired properties.

For the application of Lumer-Phillips theorem we need to show
that A — w is densely defined, that there is some A > 0 such that
A — (A —w) has a dense image, and that A —w is dissipative. The first
two conditions follow immediately from Properties (i) and (ii).

As for the dissipativity of A—wlet f € D(A) and A > 0 be arbitrary.
To prove dissipativity of A — w we have to show that

A = (A=w) fll, = A, -



2.3. GENERALIZED FELLER SEMIGROUPS 167

We want to use Property (iii) for bounding || f|| ,- More precisely, by
Corollary 2.3.44 there exists z € E such that

1f(2)]
11, = POk

Defining g := (sgnf(z)) - f implies
(2)

If1l, = )

We see that g € D(A) since D(A) has to be a vector space and we can
apply Property (iii) to g. Therefore,

=

/—\

MIfl, = 255

(2)
SAQ@)+wg@)_Ag@)
p(z) p(z)  p(2)
< O+ = A)glo)
zel p($)
=[[(A+w—A4)f],
and A — w is dissipative.
Therefore, the the Lumer-Phillips theorem (Theorem 1.4.38) can be

applied and yields that A—w generates a strongly continuous semigroup
{S(t) }1er, on #°(E) such that for all f € #°(E) and for all £ > 0

IS, < LA, -

For the family of linear operators {P(¢)},.p, on %°(E) defined for any
teRy as

P(t) = S(t)e*!
Lemma 1.4.16 yields that {P(t)},cp, is a strongly continuous semigroup
as well and that its generator is given by A. Furthermore, for all ¢t > 0

1P, < e NI,

Having found the strongly continuous semigroup {P(t)},cp, . in a
next step we show that this is indeed a generalized Feller semigroup
with the desired properties. We need to check Properties P3, P4, and
P5.

Regarding Property P4, this follows directly form
HP(t)HL(,%P(E)) < exp (wt).
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Property P3 follows from strong continuity of {P(¢)},.p, and

lim (P(6)(x) — f(2)) < ple) lim (sup' (1)1 (“””)) ”')

t—0 =0 \ zcE p(x

= p(a) lim [|P(t)f — [l

In order to show property P5 (positivity) of {P(¢)},cp  we first observe
that by Post-Widder Inversion Formula (Theorem A.5.1) positivity of
(A= fl)fl for any A > w implies positivity of {P(t)},g, -

In order to show positivity of ()\ — fl)_l for any A > w, we fix \g >
w and functions f,g € %°(F) that satisfy f = (o —fl)_l g, such
that f is not positive. Clearly f € D(A). We show that under these

assumptions g is not positive either. An equivalent way of stating that
f is not positive is

« = inf M <0
zeE p(l’)
We would like to show that
g9(z)
2.3.9 £ :=inf —/—= <0
(239) w€b p(x)

holds as well and for this purpose we would like to bound ( by a suitable
expression depending on «. However, if we substitute

(/\0—121)f:9

in Inequality 2.3.9 we encounter the expression Af. We would like to
apply Property (iii) of this theorem and since this is only possible for
functions in D(A) we choose a sequence (f,),cny C DP(A) such that
Af, — Af and f, — f in #°(Y) as n — co. By uniform convergence,
limit and infimum can be interchanged, hence

inf@ = inf lim (/\0 _ A> fn(2)

ceEp(x)  z€En—o00 p(x)
n—oorCE p(gj) '

Similarly,
inf@ = lim imfM

zeE p(x) n—ooz€E p(x) '
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Since f, — f in #?(E) as n tends to infinity and f is not positive
there is some M € N such that for all n > M

sup — fn('r) >0

zeFE

and Theorem 2.3.43 yields that for any n € N, n > M thereis z, € £
such that for all x € E

_fn(w) _fn<zn)
o@) = plen)

hence

@) ()

25 p(r)  plan)
We can apply the generalized positive maximum principle to — f,, at z,
forn € N, n > M and obtain

A(=fa(z)) S w (=falzn)).

Therefore, the following estimates hold:

g 20 (inf (Ao — A) fn<x>)

Ripa) o s o)
S lim ()\0 - A) fn(zn)
n—oo p(2n)
< 1 )\Ofn<zn) (fn(zn))
= (A —w) lim <1nf fn(z )
n—oo \ z€FE p
/()
= (do =) ;Ielg p(x)
<0

To sum up, we have shown that for A > w g = (/\ — fl) f cannot
be positive when f € %°(FE) is not positive which proves that the
linear operator (A — fl)fl is positive. Thus {P(t)},cg,is positive and
property P5 of generalized Feller semigroup holds. In conjunction with
the previous parts of the proof this shows that{P(¢)}, . is indeed a

generalized Feller semigroup with generator A such that

||P(t)||L(33p(E)) < exp (wt) .
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If a generalized Feller semigroup (P(1)),cp, with
Hp(t)HL(gao(E)) < Mexp (wt)

does not satisfy M = 1, then Property (iii) in Theorem 2.3.60 does not
have to hold anymore. This is shown in the following counterexample.

ExAaMPLE 2.3.61. Let X =R and

1 if s <1
pls) = { |s| +1 else.
(Compare with Figure 2.3.2.) For ¢t € Ry let the maps
P,: #°(R) — #°(R)
be defined as
Bi(f)(s) == f(s+1).

The calculation

Sup|f(8+t)\ _ Sup|f(8+7f)|P(=5‘+15)
sk p(s) ser p(s+1)  p(s)
<|fl,(t+2)

shows by Proposition 2.3.54 that (Pt)t€R+ is a generalized Feller semi-

group.
There is indeed no w € R such that

||Pt||L(<%P(E)) < exp (wt)

holds true for all ¢ € R. In order to see this, we note that for any ¢t > 0
there is f; € #”(R) such that

1fill, =1
and
fi(l+1) =2+t
holds. Then
Pi(f)(1)
W =2+t

Hence [|F||, > 2+ for all ¢ > 0 and if there was w € R such that

HPtHL(%p(E)) < exp (wt)
then
o <1 7 <1 _
2 1{%(2 +1) < 1{% ||PtHL(,%P(E)) = 1{%65@ (wt) =1
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FIGURE 2.3.2. pis blue, f5 is red, fio is green

would yield a contradiction. Moreover, for all f € Z°(R) such that
1], <1 we obtain for all 5,¢ >0

(PG _ fs+8] _ pls+1)
p(s) p(s) = p(s)

<241t
Thus,

t
ruwp=z+tgzam(§)

for all £ > 0.
Fix same arbitrary n € N, n > 2. Define

|s|" if |s] <1
fa(s)i=Q 2—=(2—1s])" ifl<]s] <2
2 else.

fn € #°(R) and | fo , = 1 hold for all n € N, n > 1. Moreover,

L6 L)
S S )

For all s e R

. fals+1t) = fuls) _
lim ; = gn(s)
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holds true with g, € #”(R) defined as

—n|s|"" if —1<s<0
ns™ 1 fo<s<1
gn(8) =3 n(2—s"" ifl<s<?2
—n (245" if —2<s< -1
0 else.

In order to show that f,, € #”(R) lies in the domain of the generator A
of the semigroup (F;),., We have to prove convergence of the difference

quotient with respect to [[| :

(Bt )| 0

limsup
N0 seR

p(s)
For any s € R

s +0) = )~ t0nl)] = | | (P — tga(s)

s+t d
[ () sup| ot
d
<t (sup d—gn(s) )

seR S
<tn(n—1).

This inequality shows the convergence of the difference quotient with

respect to |||, and

<

) dr —tgu(s)

In particular, at s =1
Af,(1) =n.

Since n € N, n > 2 was arbitrary, this shows that Property (iii) of
Theorem 2.3.60 does not hold.

In the next lemma we see that for generalized Feller semigroups of
transport type, the problems encountered in Example 2.3.61 can be
overcome by choosing a more appropriate weight function as was done
by [14].

LEMMA 2.3.62. Let (E, p) be a weighted space and let (¢1),cp, be a
family of maps such that for any t € R,

T/}t:E—>E
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and such that the conditions from Lemma 2.3.54 are satisfied. Let
(P(t))cr, be the associated generalized Feller semigroup on %°(E) of
transport type, and let w € R and M, > 1 be such that

P(t)p < M, exp(wt)p.
Then

pu() := sup exp (—wt) (P(t)p) ()

s an admussible weight function on E such that the norms H~Hﬁw and
|[l, are equivalent and the bound

1P 100 (1)) < €xP (W)

holds for any t € R,.

PROOF. By Lemma 2.3.52 there exists w € R and M, > 1 such
that
(2.3.10) P(t)p < M, exp(wt)p.
We fix such w € R and want to find an admissible weight function g,
such that for any t € R
(2.3.11) P = exp (—wt) - (Pu © V)
holds true as it would permit the estimate

@)
||P(t>f||ﬁw _ xeg ﬁw(x)
|f (@ ()]
S Ty
= exp (wi) || f1l, -
Therefore, we define
pu(x) = SUp exp (—wt) (P(t)p) (z)

which implies Inequality 2.3.11 and show that this is indeed an admis-
sible weight function. For this purpose, we fix R > 0 and we have to
show that

{po <R} = [ {P()p < exp (wt) R}
tER
is compact. By Lemma 2.3.54

P(t)p(x) = p(¢r(x))
holds for any t € R and any x € E. The set
{P(0)p <exp(w-0) R} ={p < R}
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is compact hence closed since E is Hausdorff. For any ¢t € R, by
continuity of 1| Kn o

{Pp < exp (wt) Ry N {p < R} = {po i, <exp(wt) R} N {p <R}
= (i) "H{p < exp (wt) R} N {p < R}

is closed. Thus, by

{po <R} = () {P(t)p < exp (i) R}

teR4

= () {Pp < exp(wt) Ryn{p < R}

teRL

{p. < R} is a closed subset of the compact set {p < R}, hence compact.
Thus, p,, is an admissible weight function.
By definition p < p,, and by Inequality 2.3.10

ﬁw(x> < wa(x)'
This shows that the norms |- and [|-[[; are equivalent. O

EXAMPLE 2.3.63. Continuing Example 2.3.61, we take w = 1 and

2
obtain the admissible weight function

. _ fexp(52) if[s| <1
p%(x) T { |s| + 1 else.

We see that for the family of maps (fy),cy C & (R) from Example
2.3.61 1 is not a maximum of g—? anymore, or in other words
2

[fa()] _ fu(D)

SuUp— > = .
seR /0%(8) P (1)

1
2

Therefore (fy,),cn C B (R) is not a counterexample to Property (iii)
of Theorem 2.3.60. On the contrary, by Theorem 2.3.60 for h € D(A)
with

for some z € F

holds true.
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2.3.5. Generalized and Extended Feller Processes. As be-
fore, in this subsection (F, p) always denotes a weighted space. We let
I be some index set and let J C I be a finite subset.

For a finite index set J = {j1,...,jn()} we deal with the product
space

E7 = FE; x .. xEj,,
where E; = E for any j € J. We write any element z; € E7 as

Ty = <1‘j1, ""Ijn(J)> .
We recall that by Lemma 2.3.18 |
(EJ ,0®J)

is a weighted space where

P (@) = pi (@3y) - Pl (%'nw) )
with
p; By -+ R
x = p(x).

We rigorously prove a statement made in Theorem 2.11 in [14] and
show that for a generalized Feller semigroup (P(t)),cg, with P(¢)1 =1
for any t € R, we can define a probability space on which for the
coordinate process (A), ., and f € #”(E) the conditional expectation
of f(A\;) can be expressed in terms of the generalized Feller semigroup
(see Equation 2.3.12).

DEFINITION 2.3.64. Let (P({)),cr, be a generalized Feller semi-

group on A*(E), let v € MP(E) be a probability measure and let
(/\t)teR+ be an adapted stochastic process on the filtered probability
space

(ER+7 B(E)®+, (Ft)rer, ,Py> :
If for any t > s > 0 and any f € $*(F)

(2.3.12) By [fA)| Fs] = P (t = s) f(As)
holds true P, -almost surely and
P, o Aal =v

then (A¢),cp, is called generalized Feller process with respect to (F;)
and (P(t)),cp, and with initial distribution v.

teRy

We can show the existence of generalized Feller processes:
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THEOREM 2.3.65. Let (P(1)),cr, be a generalized Feller semigroup
on BP(E) such that for all t € R,
Pit)l =1,

and

IP@)] < Me
forw e R and M > 1. Then on the measurable space

(E%. B(E)™)
for any xo € E there exists a measure P,, and a right conlinuous
filtration (Fi),cp, (see Definition A.3.75) such that for any t > s >0
and any f € PBP(E) the canonical process (\;) is adapted with
respect to (F)

tER
teER
(2.3.13) Eay [FOIF] = Pt —5) FOA)
holds true P, -almost surely, and

P,, o )\0_1 = 0z -

REMARK 2.3.66. In general, a generalized Feller process (A¢),cp, is
strictly speaking not a Markov process, since Equation 2.3.13 does not
necessarily hold true for any positive Borel- measurable map f. This is
due to the fact, that indicator functions of Borel sets can be approx-
imated with continuous bounded functions by Corollary 2.3.10 only
almost everywhere with respect to one (or finitely many) measure(s),
but not necessarily simultaneously with respect to the entire family of
measures ((p(t —s)) (z,-)) ,cp on (£,B(£)) obtained by Proposition
2.3.52. However, for indicator functions of Cy(E)-open sets (see Def-
inition A.3.36) Equation 2.3.13 holds true by dominated convergence.
Since by Lemma A.3.37 the Cy(F)-open sets generate the Baire o-
algebra By(FE) (see Definition A.3.38) we conclude again by dominated
convergence that Equation 2.3.13 holds true for any indicator function
of sets in By(E). Thus, a generalized Feller process (\;) is a Markov
process with respect to the measurable space

(E5 Bo(EN™).

its natural filtration, and the probability measure P, restricted to this
space.

Note that, for locally compact separable spaces E a generalized
Feller process is a Markov process in the classical sense, meaning that
Equation 2.3.13 holds for all non-negative Borel-measurable maps. This
is the case since thanks to Urysohn’s Lemma in the completely regu-
lar case (see Proposition 2.3.9) and separability an open set can be

teR4
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approximated pointwise by continuous bounded functions. Therefore,
Equation 2.3.13 holds also for any map f that is the indicator function
of a set in the Dynkin system generated by the open sets. By Lemma
A.3.15 such a Dynkin system is the entire o-algebra and by Proposition
A.3.19 the generalized Feller process is a Markov process.

When we speak of generalized Feller processes usually we mean
those obtained via Theorem 2.3.65. As for Markov processes P, := Ps_
for any x € E.

We remind the reader that while B(E®+) > B(E)®+ holds true
because on B(E®+) every projection is continuous, hence measurable
with respect to B(E®+), the inclusion B(E®+) C B(E)®+ is in general
not true when the topology of E does not have a countable base (see
Definition A.1.2).

PROOF. The proof has three steps. In the first step, we construct
a projective family of probability measures (see Definition 2.1.3) on
J J
(B"B(E")) ;cq,. fuite
In the second step we use Theorem A.3.104 and obtain a probability
measure on (E®+ B(E)®+). The coordinate process (At)eg, on this
space then yields for any ¢t > s > 0 and any f € $*(E)

(2.3.14) Ea [fAIF] =P (t =) f(A)

where (’Fto)teR+ is the natural filtration of the coordinate process. In
the third step, we take the right continuous extension of this filtration
and show Equation 2.3.13.

For the first step, we let R > 0 and fix some xy € Ey. For any r > 0
let p(r)(xo,-) be the Radon measure given by the Riesz representation
theorem (Proposition 2.3.52) via

P(r)f(wo) = [ fy)p(r)(wo, dy).

Ey

For 0 < r, < 1y we define ™™ € Mpn®n (B, x E,,) by Riesz
representation (Proposition 2.3.52) on E,, X E,,, and Lemma 2.3.67
and the continuous functional

Jro o fro = [E (1{p,\1(y)<3} e (y) - Plra — rl)fm(y)) p(r1)(wo, dy)
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for f., € #Br(E,,) and f., € HABP=(E,,) as the unique measure in
MPri®Pr2(E. X E,,) such that

/E ( {pri(w)<R} " fri(y) - P(ro—r1) fra(y )) p(r1)(zo, dy)

1

- /E I . ).

By P(ry — 7)1 = 1 we obtain
g " (B X By

p(r1) (zo, {pr, (y) < R})
p(r1) (o, Er,)

P(r1)1(zo)
1.

IN

Then for any A € B(E,, x E,,) by monotonicity and boundedness, we
can define

Pl A) = im0 (4),

{ri.r2} -

One can easily show that pg, is a measure and by dominated con-
{ri,ra}

vergence P, is a probability measure on
(B, X E,.,,B(E,, X E,.)).

Furthermore, for any r3 > 7o by Riesz representation (Proposition
2.3.52) on E,, X E,, X E,, , Lemma 2.3.67 and the continuous functional

JruJratfrs = Epy XEpy l{ﬂm(y)<R}'1{Prr2(z)<R}'f”( Y) fra(2)-Prs—r2) fra(2 )Pgl 702}(‘1‘?47‘12)

R ) 9 . .
we define p25 "2} a5 the unique measure in MP1 @@ (E, X E,. %

E,,) and for any A € B(E,, x E,, x E,,) again by monotonicity and
boundedness

Pl (A) i= lim pfhirorsrs)(4),

Inductively, in this way we can define a family of probability measures

(pwo) JCRy, finite

on the respective measurable spaces
(B7,B(E))

JCR., finite

By an £/3 -argument and monotonicity it follows from pfh7 € M (BY)
for each finite J C R, and each R > 0 that for each finite .J C Ry the
measure p;’o is inner regular, hence a Radon measure.
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In order to apply the Generalized Kolmogorov Extension Theorem
(Theorem A.3.104), we need to show that this family is projective, i.e.

for any finite J and 7 € J and any A € (B (E))J\{i}

Pl (A x E;) = it (A).
We show this property by induction and start with the case J =
{r1i,r2}. For f € 2 (E,)

i Fly)pirr(dy, B,,) = i FW) 1k, (y)p(ri) (2o, dy)

which implies by uniqueness of the Radon measure (see Proposition
A.4.15) for any A € B(E,,)

,u/ﬁ(;{rl,"?}(A’ ET.2) = p(’r’1>(x0’ A N KR)
Thus,
pigl’”}(A x E,,) = }%iirolo#g;{rhm}(A x E,,)
= p(r)(z, A).

Furthermore, for any f € C,(E,,) it holds true by dominated conver-
gence that

/ L) f(2)pl7) (dy, d2)
Ery XEr,

= lim U(y) f(2)p 7 (dy, dz)

R—o0 By X Ery

— lim . (o <r} P2 = 1) f(W)p(r1) (w0, dy)

R—o0
= P(r1)P(ry — 1) f(x)
= P(ry) f(z)
=/ f(2)p(r2)(wo, dz).

Since the functionals

f= | fplrri(E, dz)

Er,

and

[ = f(2)p(ra2)(zo, dz)

E,
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coincide on Cy(E,,) and satisfy the conditions of Proposition A.4.15,
by uniqueness of the Radon measure in Proposition A.4.15 for any
AeB(E,,)

i (B x A) = p(ra) (o, A).
This implies in particular that for any f,., € %2 (E,,)

/ 1) fon ()7 (dy, d2) < o0
ET1 ><ET2

Next, we assume that there is N € N such that for any n < N and any
arbitrary finite index set J,, := {ry,...,7,} € R? ,0<r < ... <r, for
any i € {1,...,n} and any A € B (E/\"})

pin(Ax By) = p i (4),

and for any f, € % (E,,)
/ 1(5) A1) - Fon ()P (g, o ) < 00
Er1>< X B,

We want to show that for Jy,1 := {ry,....,rn11} € ]RJIH , where ry,q >
. > ry > 0 are arbitrary, for any ¢ € {1,..., N+ 1} and any A €
B (EJN+1\{Ti})

PR A% By,) = piy e\ (4),
and for any f, ., € #B7v+1 (L

T‘N+1)

/ L(y1) - 1yn) * frss (Uns1)P2Y T (dyn, .., dyns) < 0.
ET1>< ><ETN+1

In case i = N +1 and for bounded f,, € B°1(E,,),....fry € B~ (E,y)

/ Fra () <o o () Ly P2 (s oo dyvs)
FE,. x..xFE

TN+1

= Rhm fﬁ(yl) Tt fTN (yN)P(TNJrl - TN)l(yN)/‘f(;JN (dy17 "'7dyN)
TOJE, XX By 5/1—’

- / Fra01) - e Fron (D2 (dg o ),
E X ><E,N

and we conclude by uniqueness of the Radon measure and Lemma
2.3.67 that for any A € B (EJN+1\{7”N+1})

pgé\’“ (AXE

TN+1)

pJN“\{rN“}(A),
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since the corresponding functionals coincide on Cy(E/~N+1\Mry+1}) and
satisfy the conditions of Proposition A.4.15. Furthermore,

/ L(y1) - 2(yn) * fry (Una) DN (dyn, .. dyn1)
ET1><...><ETN+1

= / L) - Ayn) - P(rvar — rn) o (un)0iY (dyy, ... dy )
Erlx‘..xErN
< o0,

by assumption.
In case i = N and for f,, € Cy(E,,),....fry_, € Co(Ery_,) and fry,, €
Cy(Eyy.,) by dominated convergence

J

/ Frr@n) o oy N DN i (U412 (A s dy )
E,‘1><A.A><ETN+1

. R,J
= Rhm le (yl) Teee f'rN,l(yN—l) : P(TN+1 - TN)fTN+1 (yN)Mzo N(dy17 7dyN)

—00 Ery X..XBpy

J

:/E B ) o 1) PO = ) e (PR ()

Py XX Epy

JN—
[E . fra@1) oo frv_ (un—1) - P(rvg1 — *N—1) fras Un—1)P2g ' (dy1, -, dyn—1)

Py XX Ery g
= Frr@1) oo frn s (N 1) - Fraps e )PIY TN gy, dyy -1 dyg)
= % B B riY1): - Jry_1\YN-1 rN4+1\YN+1)Pxg Y1, -, QYN -1, AYN 41 ),

Ty X XN 2R N

and we can conclude as before.

For i € {1,..., N — 1} the desired properties follow in the same way
by definition of ngN ! and integration of continuous bounded functions
and from the assumption that the properties hold true for any n < V.
Thus, by induction it follows that for any m € N and any arbitrary
finite index set J,, = {ri, ...} € RT , 0 <1 < ... <1y for any
ie{l,...,m} and any A € B (EJ’"\{”})

pir(A x B,,) = pim\Urid(A).
Therefore, the family
J
(pIO)JC]R+,ﬁnite
is projective.
In the second step of the proof, in order to construct a measure P,

for any zo € E on (E®+,B(E)®+) we want to use Theorem A.3.104.

For this purpose since B(E)? C B(E”) for any finite J C R, we can
define the measure

Y S |
pxo T pIO|B(E)J ’
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and we have to find a compact class (see Definition A.3.103) C in E
such that for each t € R, and A € B(E})

(2.3.15) pi(A) =sup {pl¥(C): C C Aand C € C}.
We show that
C :={C: C compact, C C K for some R > 0}

is such a compact class and start by showing that C is a compact class
at all. We choose some arbitrary sequence {C;},. C C such that

(C =0
lEN
For C} we choose R; > 0 such that Cy C Kg,. Then
JE\ G > Kp,
leN

is an open cover of the compact set Kp, hence finitely many sets, say
without loss of generality {E'\ C1, E \ Cs, ..., E'\ C,,,}, suffice to cover
it. Thus,

m CZQKRIIQ)

and C C Kp, yields that
ﬂ CYl = ®7
and C is a compact class. By the identity
JKr=E,

R>0

for any ¢ > 0 and ¢t € R, there is some R. > 0 such that
pi) (B) =l (Kr.) <,

and by inner regularity of the Radon measure pif)} for any A € B(E)
there is a compact set A. C A such that

Pt (A) = pld (A <e.
Hence
pl (A) = pi (A N Kp.) < 2e,

and Equation 2.3.15 holds true. Thus, the conditions of Theorem
A.3.104 are satisfied.
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By applying that theorem, we obtain a probability measure P, on
the measurable space(E®+, B(E)®+) such that for any finite J C Ry
and

Ae B(E) c B(E’)
the probability is given by

2310)  p ((1057) () =00 = ()

with H{?* being the projection from E®+ on E” as defined in Definition
A.1.6. Moreover, by definition

Pwo © (/\0)_1 = Pig} = q(O)(x07 ) - 541807
and for any f € %°(E)

Eoo [f(A)] = | f(y)p(t)(zo, dy) = P(t) f(x0) < oc.

Ey

Let (At)er, = (Ilt);cp, be the the coordinate process (see Defini-
tion A.3.5) on (E®+, B(E)*+) and let (F7),, be its natural filtration
(see Definition A.3.80). We next show Equation 2.3.14 and to that end
that for any f € $°(F), any 0 < s <t,any F € F? , and any zo € E
the equation

By [f (M) - 1] = Ea [P (E = 5) f(As) - 1]

holds true. Since E,, [f(A\)] < oo by Proposition A.3.31 it is enough
to check

Euo [f(N) - 16] = By [P (t = 5) f(As) - 16]
for all G € G of an intersection stable generator G C F°. The set

{ﬂ (A\)7H(0;) 1 J C Ry, finite, O; C E; open for all j € J}
jed

is such an intersection stable generator. For any zo € F we fix k € N
and 0 <71y <ry < ... <1 < sandsetJ = {r,ry,.., st} For
O, € E, .., O, €FE, open by definition

Exo [f(At) ’ 1Or1 ()‘7“1) Tt 1Ork ()\Tk)]

= [ 00 10,02 o, () (s, ds. )
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and

Eyo [P (t—=5) f(A) 1o, (M) - Lo, (M)

= /EJ/\{t} (P (t—s) f(s)- lo,, (r) « ... lo,, (rk)) pi;\{t}(d'r’l, ey drg, ds).

By arguing as before by Proposition A.4.15 it is therefore enough to
show that the functionals

For [0 10, () Lo, (1)) Pl (drss i ds
E
and

f—= i (P(t—15)f(s)- 1o, (r1)- .. 1o, (%)) pl M (dry, ..., dry, ds)
E t

coincide of Cy(Ej).
By Corollary 2.3.10 there exists sequences of maps (bf)leN’ie{lwk}

where b} € C, (E,,) for any [ € N and i € {1, ...,k} such that

H b;_> H ]‘Orix---xOrkXEsXEt

ie{1,....k} ie{l,....k}

p; -almost surely and

H b;_> H 1OTZ.><...><OT,€><ES

ie{1,....k} ie{l,....k}

P W almost surely. For f € Cy(FEs) by the assumption P (t —s)1 =1
the map P (t — s) f remains bounded and

/ , (f(t) 1o, (r1) - ... lo,, (rk)) pi; (dri,...,drg, ds, dt)
EJ

= Jim [ (f(t)-bll (r1) - OF (rk)> Pl (dry, ..., dry, ds, dt)
E

l— o0
’
L . 1 ke R,J
= fim tim | (f(t)~bl (r1) - ... b} (rk)> pBT (dry, ooy dry, ds, dt)
- lli,rgolzlgnoo BT\ {t} Yorw<r}y = Yor <r} -

(P (=) £(s) b} (1) - 0f (1)) 9o\ (A oy iy, ds)
— i _ bl (r1) . bE I\ {1}
=Jim | (Pt =5) £(s) b} (r1) o 0F (1)) w2\ (i, o g, ds)

_ I\(1)
_[EJ,\M (P(t=9) 1) 10y, (1) - 1o,y (rs)) kg M, ., ds).

This shows Equation 2.3.14.
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In the third step of the proof, we show that for the right continuous
enlargement (see Definition A.3.76)

. (T0
(Ft)t€R+ T (‘Ft+)t€R+
the equation

Exo [f()‘t)|fs] = P(t - S) f(As)

holds as well P, - almost surely for f € #°(F) and t > s > 0 and any
xo € E. We fix such zy and f € $°(F). By Proposition A.3.95

(2.3.17) By [f(A)[ 7] = Iim E,, [FODIF]

holds true P, - almost surely for any ¢ > s > 0. Thus, it is sufficient
to show

P<t_s>f()‘s) :}AI{‘I’;P(t—T')f()\T)

P,,- almost surely for any ¢ > s > 0. Since we know by Equation
2.3.17 that the P, - almost sure limit exists, by Proposition A.3.53 it
is enough to show that

P(t_s)f()‘s) :lligp(t_r)f()‘r)

holds in PP, - probability for any ¢ > s > 0. We show this first for
s = 0. In this case, the left hand side is deterministic by P,, o (\o) ' =
., hence by Proposition A.3.52 it is sufficient to show convergence in
law (see Definition A.3.51). Therefore, we have to show that for any

h e Cb(R)

(2.3.18) lim Eq, (A (P (t—7) f(A))] =R (P (1) f(xo))-
The map
0,t] — B°(F)
r—P(t—r)f

is continuous by Theorem 2.3.51 and

PB°(E) — B°(E)
P({t—nr)f—=ho(P(t—r)f)

is continuous by Lemma 2.3.45. Thus, since [0, ¢] is compact and images
of compact sets under continuous mappings are compact, by strong

continuity of (P(t)),cp, Lemma 1.4.7 yields
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lim (E,, [h (P (t—7) f(\)] = (ho P (t) f) (z0))

r\0

=l (P (r) (ho P(t—1) ) (10) — (o P(1)]) (x0)

— (1 P ) (tigho P 1) £ ) a0) = (0 P (0. 00))
=0.

Thus, Equation 2.3.18 holds and
P (1) f(0) =i Pt = 1) F\)
in P, - probability for t > 0. We still need to show
P(t=5) fO\) =l Pt = 1) fO)

P,,- almost surely for any ¢ > s > 0. For € > 0, by definition of
Brorr=s (Ey x E,_,) there exists (fn),eny C Cb (Eo X Er_g) such that
fn (xvy) - P(t o S)f(ilf) o P<t - T‘)f(y) for any (ZC?y) € Ey x Eyp_s.
Then by dominated convergence

Hm By, (11— 00)-P(t-r) 70052 © 0]

= lm lim B, 11 0ar—n)i>e © 0] -
The set

Opn = |fn(Xos Mv—s)| > €

is open, hence by Corollary 2.3.10 there is a sequence (hnm),,cy C
Cy (Ey X E,_g) such that P, -almost surely

1071 = lim hn,ma
m—0o0

and 0 < Ay, < 1p,. By Lemma 2.3.67 we can approximate h,,, by
cylinder functions and by Proposition 2.3.52 (iv) we obtain

lan B, [11p(t-9)100)- Ple-r)fO—0)1>< © 6]

= lim lim lim E,, [hy,., o 04
r\(SN—00m—00 ’

= lim lim lim E, [Ey, [Anm]]

r\(SN—00M—+00

<limlim E,, [E,, [10,]]

7 \($N—00
= li{r;Exo [Ex, [L1P(-5)f0)~Pt—r) fO— o) ><] ]
= 0.
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This yields

P(t_‘S)f()‘s) :ll\rll}gp@_T)f()‘r)

in [P, - probability hence P, - almost surely since we know by Equation
2.3.17 that the P, - almost sure limit exists. Thus,

Exo [f()‘t)‘ Fs] = P<t - S) f(As)

Adapting a proof in [4], we can show:
LEMMA 2.3.67. Let (E;, p;) i € {1,...,n} be weighted spaces and
P @1y Z) 1= p1 (21) P ().
Then the linear map

V. P"(E)R..Q0 B™(E,) — B (F x..xE,)
H® .. ®fn—>fifn

is injective and its image is a dense linear subspace of B (F1 X ...x Ey,).
PROOF. First, we observe that by Lemma 2.3.18
(E1 X ... X Ep, p)

is indeed a weighted space. Furthermore, for f; € #i(E;), i € {1,...,n}
the map

(1, ey Tp) = fr(z1) - -+ folxy)
is in #°(Fy X ... x E,). In order to see this, observe that clearly

sup fi(@e) - folzn)

< Q.
(T1,0y@n)EELX.. X By | P1 (1) -+ pn (1)

Let € > 0. For sequences (g;"),,ey C Cs(E), @ € {1,...,n} such that

lim |lg/" — fi
m—ro0

pi:()

we obtain for (¢™), .y C Co(E1 X ... X E,) defined as
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for m large enough the inequality

1o fa =",

= sup

filwr) - flzn) g0 (21) - fo(22) - - fu(zn)
(z1yeeyn)EELX... X Ep, (xl) " Pn (.’L‘n) P1 (ml) c 0 Pn (ajn)

g (x1) - f2(332) folzn) _ gi"(21) - - - g7 (2n)
pr (@) - - - pn () pr(x1) - - pn (n)

folws) - fulea)
|12 (22)— pu )

—~

fi(x1) — g7 (1)

I 9" (@) || fa(z2) - - fa(@n) _ 95" (x2) - - - g’ (%)
pr (1) | [p2(z2) - pu(Tn)  p2(x2) - po (1) ’
<|Ifill ,,+e

and hence inductively
m [lg" — f1], = 0.
Thus,

(X1, ey Tp) = fr(z1) -+ - folxn)

is in B (Ey X ... X E,).
The map

B (Ey) x ... (Ey) — B(Ey x ... x Ey)
(fh ,fn) — f1 ot fn

is multilinear. Therefore, by definition of the tensor product (Proposi-
tion A.2.7) there exists a linear map

B (F) @ ... B (Ey) — B°(E1 X ... X Ey)
@@ fu—= fi-e- fa

In order to show injectivity of this map, for
0#ue B"(E)® ... B (E,)

according to Lemma A.2.8 we choose a representation

u=Y fle..ef],
7j=1
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with {f/}. .,

.....

..........

linearly independent. We need to show that
S A f#o
j=1
It is enough to observe that by linear independence of

----------

there are z; € F; such that f!(z;) # 0 for any i € {1,...,m — 1}, hence

fi() - fasi(zamn) # 0,
and by linear independence of {f}},cq1

m

Z flj(zl) T fﬁ-l(zn—l)fg #0.

J=1

Thus, there is some z, € E,, such that
S HE) - (e filza) #0,
j=1

and VU is injective.

Density of the image of U follows directly from Stone-Weierstrass
for 9Br-spaces (Proposition 2.3.46) as the image contains an algebra
that separates points and contains 1g, x. «g,- O

COROLLARY 2.3.68. Let (E;,p;) @ € {1,...,n} be weighted spaces
and

;0(931, 7:En) =P (Il) “ " Pn ('In) .
Then the linear map
U: BA(E)®..® B(E,) — BP(E; x ... x Ey,)
H®. . fn—=fi - fu

15 injective and its image is a linear subspace of D C BT’(El X ... x Ep)
given by

D= {Z flo o fi,meN, fl e Bi(E;),ic{l,..,n},je {1,...,m}}.
j=1

PROOF. The proof is a simplified version of the proof of Lemma
2.3.67. 0
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In Theorem 2.3.65 due to problems with the measurability of
r — P, [A]

for A € B(E)®+ as initial distributions of the generalized Feller pro-
cess we could only use Dirac measures. However, when the admissible
weight function is Baire measurable it is possible to use initial distri-
butions in M*(E):

PROPOSITION 2.3.69. Let p be Baire measurable. Let (P(1))cp
a generalized Feller semigroup on %B°(E) such that for all t € R,

P(t)1 =1,

be

and
[P < Me!

forw e R and M > 1. Then on the measurable space
(E". B(E)™)

for any probability measure v € MP(E) there exists a measure P, with
mass v(E) and a right continuous filtration (Fi),cp (see Definition
A.3.75) such that for any t > s > 0 and any f € B°(FE) the canonical

process (M) e, 15 adapted with respect to (Fi) g, »

holds true P, -almost surely, and

P,o)\' =v.

PROOF. By Theorem 2.3.65 for any xq € E for the Dirac distribu-
tion v = d,, the statement of the proposition holds true. Moreover, we
observe that by definition for any R > 0 the map 1y,cg. ,(,)<r) is Baire
measurable. By Proposition 2.3.52 (p(t)) is a semigroup of transition
probabilities with respect to the Baire o-algebra By(F). Thus, we can
show inductively that for any R > 0 , any finite J C R, and any
A € (By(E))’ for

(“fdj) JCR, , finite

and for

(v7,)
Pzo) jcr, finite
as defined in Theorem 2.3.65 the maps

To — Mng(A)

and
To — pgo (4)
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are measurable with respect to By(F). Therefore, for 0 < r < 1

we can define p " € MPn®re (B, x E,) by Riesz representation

(Proposition 2.3.52) on E,, X E,,, and Lemma 2.3.67 and the continuous
functional

fro o fro = /E (/E (]‘{pr1 w<r}  fri(y) - Plr2— Tl)frz(y)) p(ﬁ)(%t@)) v(dz)

for f., € $Br(E,,) and f., € H$BP=(E,,) as the unique measure in
MPr®Pr2 (B, x E,,) such that

/E (/ET <1{Pr1(y)<R} () - Prg — r1)fr2(y)) p(rﬁ(m,dy)) v(dz)
[ @R )

Inductively, as in the proof of Theorem 2.3.65 we can define for any
probability measure v € MP?(E) the family

(pi ) JCRy, finite

of probability measures on the respective measurable spaces

(E.B(E)),

CR+, finite °

Moreover, for any n € N and any arbitrary finite index set J :=
{ri,.om eRY,0<m < .o < oy for f, € Co(E)) ,eony frn € Co(Er,)

/ Fri 1) o o )P (g1, s ).
Er X...XEr,

B /E <R13nm /EE Mo n<r} e Hor, )<}

(Fra @)+ o s @) P = 1) fr (1)) 927 (g o dyn) ) w(da)

=/ </ fn(yl)-----frn(yn)pi(dyl,m,dyn)) v(dz).
E \JEp X...XEp,,

Furthermore, by dominated convergence it follows that for any bounded
Baire-measurable maps g,, € (*°(E,,) ..., g, € (*(E.,)

/ Gr1 (Y1) * ooe - Gy (Yn)D (dY1, -y dyn).
ET1 X.o.X Ep,

(2320) = ‘/E </E 5 9r (yl) CeeetGrp (yn)pg(dyly “eey dyn)> V(dl’)

This shows with the results of the proof of Theorem 2.3.65 that the
family

(pi) JCR4, finite
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is projective. By generalized Kolmogorov extension theorem (Theorem
A.3.104) this yields a probability measure P, on (E®+ B(E)®*+). It

follows that
() ) = [ ),

P, o (X)) =,
and for any f € #°(F) and any r > 0

E, [f(\)] = / P(r)f (x)p(dr) < 0.

E
As in Theorem 2.3.65 one can show that for any t > s > 0 and any
f € #°(E) for the natural filtration(F}),cp

E, [f)F] = P(t—s) f(A)
holds true P, -almost surely.

In the last part of the proof, we show that for the right continuous
enlargement ().~ of the natural filtration

EIP’U [f(At)| fs] - P<t - 8) f<)‘s)
holds as well P,- almost surely for f € #°(F) and t > s > 0 and any

probability measure v € MP(E) . In Theorem 2.3.65 this was shown

for any zy € E for the Dirac distribution v = d,, . As in Theorem
2.3.65

and

P(®) F() = im P (£ =7) F(0)

in P, - almost surely for any ¢ > 0. By definition of the Baire o-algebra
the map

T = LP(1)700)~P(t—r) F ) |>< (T)
is Baire measurable. Then by Equation 2.3.20 and dominated conver-
gence

7141{% E, [1\P(t)f(Ao)—P(t—r)f(Ar)|>6]

:/ (limExO [1|p(t)f(,\0)P(tr)f(/\r)>e]> dv(xo)
E \"\0
=0
and
P(6) (%) = lim Pt = 1) f0)

in P,- probability hence P - almost surely since we know by Proposition
A.3.95 that

Er, [fN)| ] = Hm Ep, [£(0)] 7]
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and that the P,- almost sure limit exists. The rest follows as in Theo-
rem 2.3.65 0

PROPOSITION 2.3.70. Let (\;)
on (E,p). Fort e R, let

0, : B — E*+

teRy be a generalized Feller process

be the map
(@(8))ser, = (W(s+1))ser, -

For any finite J C Ry andi € J let f € C, (EJ) or let f e B’ (E‘])
such that

f=1Tfi-g
with g € Cy (BN and f; € 27 (E;). For any such f let Ej, [f o H]}?*]

be the composition of x — E, [f o H%*} and
Ef - F
w— A (w).

Then if p is Baire measurable then for any t > 0 and any v €
M?(E)

(2.3.21) E, [fonﬂ§+ o0,

7| =B, [forr}]
holds true P,-almost surely.
PROOF. For any ¢,j € J denote by e;; the map
EUY 5 gl
T — .

For t € R denote
J+t:=J{i+1t}.
jed
For any f such that E, [f] is defined for any = € E we can approximate
f by cylinder functions according to Lemma 2.3.67. Then by Propo-
sition 2.3.52 Ey, [f] is Fp- measurable. We need to show that for any
such f and any A € F}

B, [(f 00:) 1a] = Ey [Ex, [f]14]

holds true. Since one can easily show that the system of sets D € F}
for which

E, [(fo0:)1p] =E, [Ey, [f] 1p]
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holds is a Dynkin system, by Lemma A.3.15 it is enough to show
E, [(f o 6:) 1] = E, [Ey, [f] 1c]

for any G € G, where G is an intersection stable generator of ]:P
Therefore, choosing n € N, 0 < 51 < ... < s, < tand F;, € B(Ej,) ,
i € {1,...,n} arbitrary and denoting

J i={s1,.., Sn}
it is enough to show that

E,[(fo0)1p]=E, [Ey [f]15]
holds true for
B ={)\, €F,,,...\;, € F, }.
Let g := [[g; with g; € C,(E;). We observe that for any zy € E
jeJ
(2.3.22) Ea, [g o HM = P(51) (go - - P(Sn-1 — 5n-2) (go_1 - P50 — 5n-1)gsn)) (x0).

Denote

J=(J+t)U{t}UJ"
By definition

5 [freron) ]

— (/E’ <ng (€t4j, (xt+j))> 1{%16&1 77777 $5n6FSn}p;f (da:j)> i

jeJ

Since p’ is a Radon measure for any probability measure v € M?(E),
by Corollary 2.3.10 for any such v and i € {1,...,n} there exists a
sequence (h!, )meN C Gy (Es,) such that

0,0
L Y 1{HZi€Fsi}
p;jj—almost surely and
hTwolE{t}uJ’\{si} — 1{H§Z}UJ/EFSZ-}
{t}uJ’

Dy -almost surely (where H;] and Hg}u‘], are the projections from
Definition A.1.6). Then by Equation2.3.20

(/Ej <ng (et+j,j ($t+j))> 1{151 €F51,4.4,zsn,€an}pZ (dxj)>

jeJ

= /E 77}13100 (/E] (Hga‘ (€t+4,5 (xt+j))> ( H hiwe (msi)> p;{o(dxj)> dv(zo).

JjeJ ie{l,..., n}
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Applying the definition of pio multiple times and dominated conver-

gence a comparison with E, [g o Hﬂjﬂ yields

/E i (/E ; (ng (er+7 (xw))) ( IT m») pi;(dxj)) dv()

jeJ ie{l,...,n}

N /EU w}gnoo (/EJ (E“ [g ° H]§+D ( H n}h?zo (Is)) pié}u‘ﬂ (dacj)> dv(zo)

R " ’
= (Aj (Ext [QOHJ+]) 1{7“\1 EFsl,m,?Csnepsn}pl{/t}UJ (dl‘j)) )

where we again used Equation2.3.20 in the last step. Thus,
E, [(g oI o et) 13/} —E, [EAt [g ° Hﬂﬂ 13/] .
For f € %7 (EJ) such that

f=1Tfi-g
with g € C,(E/M3) and f; € 7 (E))

E,[(foll}" 06,) 1n| =B, By [foll}'| 15]

follows from dominated convergence, which yields the assertion of the
proposition. ]

In Theorem 2.3.65 for the generalized Feller semigroup (P(t)),cg,
we required

P(t)l =1forallt € Ry,

which means that for any ¢ € R, P(t) is an isometry with respect to
the supremum norm. We would like to replace this condition by one
that instead depends on the [[-[| -norm.

We recall the cemetery A from Remark 2.1.2 and equip F U {A}
with a topology such that

B(EU{A}) =0 (B(E),{A}).

Consistent with the convention in Remark 2.1.2, we define °(EU{A}
as the space of maps f such that f|, € #°(F) and f(A) = 0. The
space Cy (E U {A}) is defined in the same way.

DEFINITION 2.3.71. Let (P(1)),cr, be a generalized Feller semi-
group on A”(FE), let v be a probability measure on

(EU{A},B(EU{A}))
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and let (%)teﬂh be an adapted stochastic process on the filtered prob-
ability space

((BU{AD™  BIEU{AN™, (F)ex, - P,)

If for any t > s > 0 and any real-valued map f on E U {A} that is
bounded and Baire-measurable

t—s)(f-p
(2.3.23) Ep, [ f(7)| Fs] = Pl p) ( )(%)
holds true P, -almost surely and
P,ov' = v,

then (v¢),cp, is called extended Feller process with respect to (F3)
and with respect to (P(t)),cp, with initial distribution v.

The reason why these processes a named in such a way will become
clear in Theorem 2.3.93.

t€R+

REMARK 2.3.72. As for generalized Feller processes, due to the
subtle measurability conditions extended Feller processes are in general
not Markov processes in the classical sense but on separable locally
compact spaces this is the case.

For contractive generalized Feller semigroups we obtain existence
of extended Feller processes as can be seen in the next theorem. We
remind the reader of the convention in Proposition 2.3.52(ii) that for

all positive measurable maps f: F — R (or f € B?(E))
/ f)p(t)(x, dy)

THEOREM 2.3.73. Let p be measurable with respect to the Baire
o-algebra Bo(E). Let (P(t)),cg, be a generalized Feller semigroup on
P°(E) such that for all t € R,

will simply be written as P(t)f(x

PO 0y < 1-

Then for any probability measure v on
(EU{A},B(EU{A}))

there exists a probability measure P!, on the measurable space

((Bu{ap™ . BEU{AY)
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such that for the canonical process (7,5)1@R+ and the natural filtration
(FD)ier, for anyt > s >0 and any real-valued map f on EU{A} that
15 bounded and Baire-measurable

(2.3.24) Ee, [f()| 77 = 2EZ9 - 0)

p

(7s)

holds true P, - almost surely and
P oy, =v.
If f is such that f - p € B°(EU{A}) then Equation 2.3.24 holds true

also for the right continuous extension of the filtration.

PROOF. We first define a family of sub-probability measures on the
space

((Buay’.BEUAYY)

After showing that this family of probability measures is projective,
we can apply the generalized Kolmogorov extension theorem (Theorem
A.3.104) and obtain the statement of this theorem. This proof is based
on the one of Theorem 2.3.65.

We fix some probability measure v on (EU{A},B(EU{A})). In
the first step of the proof, we define a family of probability measures

( (pi) ) JCR, finite
on

((Bufay’ . BEUYY)

We fix some s € R and by Theorem 2.3.37 we find p(s)(z,-) € MP(E)
such that

P9)f@) = [ Fps)a.dytor al a € Y.
By Proposition 2.3.52 for all x € £
P(s)p(x) < p(x),

and we define for all z € E the measures ¢(s)(z, -)

06 A) = [ 1a) 2L p(s) (o) for A € B(E)
E p(x)
Consequently, ¢(s)(z, E) < 1. For any s € R, for any x € E we define
the measures ¢(s)(x,-) on EU{A} by

q(s)(z, ')|B(E) = q(s)(z,)
and

q(s) (@, {A}) =1 —q(s)(z, E).



198 2. MARKOV, FELLER AND GENERALIZED FELLER SEMIGROUPS

Furthermore
q(s)(A,{A}) =1
for any s € R,. Thanks to Proposition 2.3.52 (iv), on the space
>(Eu{a})
of bounded Baire measurable maps we can define the semigroup (Q(t))
by

teR4

Q) f(x) = [E Fw)it) (. dy).

For any finite J := {rq,...,r,} C Ry by Lemma 2.3.67 there is a unique
continuous map 7, : 2"’ (EU{A})’) — R such that

s <(£) <Q<rn_1 ~ra_2) (i) (@ =) (£ )))) (e0)v(deo)
for any f e 2*°’ ((E U {A})‘]) given by

flas) =] ]fil=))-

jed

By Theorem 2.3.37 there exists a unique finite positive Radon measure
ul e M ((BU{Al),

such that for any f € 2%’ ((E U {A})J> :

Jon(F) = [ fl@s)w)(dz,),

EBJ
and

| @oud(dan) =1
EBJ
We define the family of finite measures

(q;,] ) JCR,, finite
on

((Bu{a’ . B((EU{AD))

JCRy, finite

B(E”) = [0,1]

A [ 0 i)

We first observe the non-obvious fact that for any finite J C R, the
measure p; is a Radon measure (since the space E” is non necessarily
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polish). Fix a finite J C R,. Let A € B <EJ> and € > 0 be arbitrary.

Then by |J Kg = FE there exists R. > 0 such that
R>0

o (B/\ (Kn)’) <

€
5

Since ,uy is a Radon measure there exists K C AN (Kg. ) such that

i (AN (Kr )\ K) < 5
Thus,
J(A\K) < qu]< \ (K&.) )+QZ<AQ(KRE)J:\K>
<S4

and the probability measure q;jj is inner regular, hence a Radon measure.
We need to show that the family

(ql, ) JCR,, finite

is projective. To this end, it is sufficient to show for any finite J :=
{ri,..,rn} C Ry and j € {1,....,n} for any A; € B(EU{A})", i €
{1, ...n}\ {j}

qVJ(Alx...XAj_1XEj><Aj+1...XAn) = q;,]\{"j}(Al><...><Aj_1><Aj+1...><An).
We observe that by Corollary 2.3.10 indicator functions of open sets can
be approximated almost surely by continuous bounded maps. Hence,
any set in the Borel o-algebra can be approximated almost surely by

continuous bounded maps. With such approximations and dominated
convergence projectivity of the family

<qV ) JCRy, finite

follows from the definition of the family

(MV ) JCR,, finite

on the cylinder functions.
In the last step of the proof, as in the proof of Theorem 2.3.65 on
can easily show that

C:={C: C compact, C C Kp for some R > 0}
U {CU{A}: C compact, C C Kp for some R > 0}
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is a compact class in F U {A} and that for each t € R, and A €
B(EU{A})

(¢") (A) =sup {(¢!") (C): C c Aand C € C},
such that we can apply Theorem A.3.104. This yields a measure P/, on

((BUfah™  (BEU{A})™).

Furthermore,
P, oyt = 1.
by definition of I, via the functional joy .

Equation 2.3.24 follows from the fact that we can approximate
bounded Borel-measurable functions almost surely by continuous bounded
function according to Corollary 2.3.10 and the same reasoning as in the
proof of Theorem 2.3.65.

Finally, for f such that f-p € #°(EU{A}) right continuity of the
filtration follows as in the proof of Theorem 2.3.65 for

(]:t)teRJr = (]:to-i-)teR+ :
]

COROLLARY 2.3.74. Let p be Baire measurable and let (P(1)),cp

be a generalized Feller semigroup on 9B°(FE) such that for some w € R
and allt € Ry

1P iy < €

Then for any probability measure v on (EU{A},B(EU{A})) there
exists a probability measure P!, on

((Bu{an™ BEU{A})

such that for the canonical process (”Yt)teRJr for anyt > s >0 and any
real-valued map f on E'U{A} that is bounded and Baire-measurable

P (t=5)(fp)
p

holds true P, - almost surely (where (FY),cp, is the natural filtration)
and

(2.3.25) Ep, [ f()] FJ] = (7s)

/ -1 _
P,oy, =v.

If f is such that f-p € B°(EU{A}) , then Equation 2.3.25 holds true

also for the right continuous extension of the filtration.
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PROOF. Define the rescaled semigroup (see Lemma 1.4.16) (S(t))
for any t € R, by

teR

S(t) :== e “'P(t).
Then clearly (S(1)),cp, is also a generalized Feller semigroup and satis-

fies the conditions of Theorem 2.3.73. This directly yields the statement
of this corollary. 0

REMARK 2.3.75. (P(1))eg,
let (p(t)(,")) ek, cep De the family of positive finite Radon measures
from Proposition 2.3.52. Comparing

_ PW)
q(s)(z, dy) : p(x)p(S)(fL‘,dy)

and p(s)(x,dy) we see that since p(s)(x,-) integrates p which becomes
arbitrarily large outside of compact sets , p(s)(x,-) must have a very
small mass in the periphery (the set, where p is large). In the center
(the set, where p is small) however, the mass of p(s)(z, ) may be very
large (but finite). On the other hand, by definition ¢(s)(z,-) has less
mass than p(s)(z,-) in the center but more in the periphery. Under
the right condition (namely [|P(s)|| (g = 1) such rescaling of mass
leads to ¢(s)(x,-) being a sub-probability measure even when the mass
of p(s)(x,-) is greater than one (but finite).

If the conditions of both of Theorem 2.3.73 and of Theorem 2.3.65
are satisfied, then in comparison to the generalized Feller process (\;) teRy
the (sub-)probability measure ¢(s)(z,dy) drives the extended Feller
process (%)te]R+ with higher probability to areas where p is large and
reduces the probability for areas where p is small to be entered by the
process. So relatively speaking, we can say that the generalized Feller
process ()., “lives more in the center” whereas the extended Feller
process ('Vt)te]m “lives more in the periphery”. Thus, if the process
(%)te]R+ starts in the periphery at x € E and map the f is small in the
periphery then over time E,(f(+,)) remains small. The precise result
can be found in Corollary 2.3.92.

be a generalized Feller semigroup and

REMARK 2.3.76. By Jensen’s inequality (Theorem A.3.73) for a
monotone concave (Definition A.3.72) function p and a supermartingale
(At)ier, the inequality

B [p (A)] < p (Ex [(A)]) < p (Ea [(Mo)]) = pl2),



202 2. MARKOV, FELLER AND GENERALIZED FELLER SEMIGROUPS

holds true, hence the condition

1PN Lsoary <1

holds true for (P(t)) defined by P(t) : f — E,[f(\)] for any

teR,.

teR4

REMARK 2.3.77. Of course in Theorem 2.3.65 and in Theorem
2.3.73 for an interval I C R, that contains 0 we can also work on
the product spaces

(B B(E)),
and

(Bu{ay . (BEUAY))

respectively.

REMARK 2.3.78. Let (P(t)),cr, be a generalized Feller semigroup
such that there exists a probability space (€2, F,P) and a family of
stochastic processes (Af),c; ,cp on($2, F,P) where I = R, or I D {0}
is an interval, such that P (A =2z) = 1 and Equation 2.3.13 holds
true. Then for X* := (Xf),., on (E',B(E)"), and the distribution
Py= (as in the sense of Definition A.3.25) P, := P, is a probability
measure as in Theorem 2.3.65. Therefore, also the family of stochas-
tic processes (Af),c; ,ep Will be called generalized Feller process. An
equivalent statement can be made about a family of stochastic pro-
cesses (V¢ )ies vep> Theorem 2.3.73, and extended Feller processes.

Next we want to compare the measures and thus the correspond-
ing canonical processes in Theorem 2.3.65 and in Theorem 2.3.73. It
is important to remember, that on the space (E],B(E)]) the canon-
ical processes (\;),.; and (7;),c; are the same. However, we choose
to denote them differently in order to point out that the probability
measures on the spaces (E’, B(E)") and

((Eu{an’ . BEU{AD))
are different.

PROPOSITION 2.3.79. Let T' > 0 and let I C Ry be an interval
that contains 0 or let I = Ry and let p be Baire measurable. Let
(P(t));er, be a generalized Feller semigroup on %°(E) such that both
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the conditions of Theorem 2.53.65 and of Theorem 2.3.73 are fulfilled.
Let

(P() (%, ))ierwer
be the family of probability measures from Proposition 2.3.52 such that
forallz e E;t € R, and f € B*(E)

PO1(@) = [ SWO(.dy)
E
For any initial distribution v denote by P, the measure on
(B, B(E)")

such that for the canonical process (A\;)
foranyt>s, s, t €. Let

(q<t) (.’E, '))te[O,T];xEE
be the family of (sub-) probability measures defined as

4(s)(z, 4) = [E u(@%p(sm dy) for A € B(E),

and for any initial distribution v denote by P, the measure on

((Eu{an’ . (BEU{AD))
fulfills Equation 2.3.24 for any

wer Bquation 2.3.13 holds true

such that the canonical process ()
t>s,s,tel.
Then the following assertions hold true:
(1) For allt € I

tel

Hp(t)HL(Bﬂ(E)) =1,

and for x; € arg minp(x)
zel

]P)/
o

B(E)!
15 a probability measure.
(ii) Let I =[0,T] and let A € B(E)!®T). Then

P, [A] = Ep, [14] = Ep, {IA | /:)((/)\j))} |

and

P0) | _ _
B 10 500 =B L = 4

hold true, hence IP’L|B(E)[0,T] and P, are equivalent measures (see Defi-
nition A.3.52).



204 2. MARKOV, FELLER AND GENERALIZED FELLER SEMIGROUPS

PROOF. (i) By Corollary 2.3.17

arg minp(x)
el

is non-empty. Let C' := p(z() and let ¢ € I be arbitrary. Then by
positivity of generalized Feller semigroups

(P(t)p) = (P(t) (C-1))
and by assumption of Theorem 2.3.65
(P(E)(C-1)) = (C-1).
Hence
(P(t)p) (zg) = C = p(xp)
and by Proposition 2.3.52
(P(t)p) (x5) < plap),
which proves
(P(t)p) (x0) = p(p)-
Since t € I was arbitrary by Proposition 2.3.52
||P<t)||L(BP(E)) =1,
holds true for any ¢ € I. The equation
(P(t)p) ()
plxg)

for any ¢ € I yields by definition of the probabilities I / in Theorem
2.3.65 for any t € [

]E;:gj(lE(’Vt)) = =1

P, (B0 = 1.
To
(i) Just like P, [ggy0.r the map Q, :

]

1S a measure on
(E0T), B(E)0T))

Its mass is given by

B, [Loon 20| = [ ([ pterptonden) ) ~sdvtan

=E,(1e(yr))
— P (E[O,T}).

v
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By Proposition A.3.31, it is enough to show that Q, and P’ |B )i0.1]

coincide on an intersection stable generator of B(E)®]. This is in-

deed the case as for any zp € F , n € N {ty,...,t,} C [0,7], and
Apys s Ay, € B(E) one can approximate the indicator functions 14, ,
.»14,, and p using an adaption of Corollary 2.3.10 by non-negative con-
tinuous bounded functions that converge almost surely with respect to

{0 toestn T , as defined in the proof of Theorem 2.3.65 and q{o et}
as defined in the proof of Theorem 2.3.73. Then one obtains by dom-
inated convergence, and the definition of the measureslP!, and P,

E, [IE[O,T] ay, (vey) e lag, ('Ytn)}

=E, [15(y7) - L, () - - Lay, ()]

_ </E </At1 </At (/E p(xT)p(Tftn)(xtn,de)) p(tntn_l)(xtn_l,dmn)> ) p(io)dzx(xo)>

po AT
poXol’

=Ep, |:1E('YT) Lag, (ver) e lag, ()

PROPOSITION 2.3.80. Let E = R? for somed € N, let I C R be an
interval containing 0 or all of Ry and let (A}),.; be an Ito diffusion (see
Remark 2.1.27) with state space E with drift p and diffusion matriz o
(see Remark 2.1.27), i.e., let (Af) 1 pep with A§ = x P- a.s. satisfy the
stochastic differential equation

dX, = p(AY)dt + o (A])dW,

with (Wy),¢; the d-dimensional Brownian motion (see Definition A.3.83)
on the filtered probability space

(. F, (F)es - P) -
Let (P(t)),c; be a semigroup of linear bounded operators on JB°(LE)
defined by

P(t)f(x) :=E[f(A7)]

for f € B°(E) and let

1P (z0m)) < 1-
Letp € C*(E), and let P’ be another probability measure on

(Q> f, (E>teI)

such that for the family of stochastic processes (’yf)tel’er with 7§ = x
P'-a.s. and any real-valued map f on E U {A} that is bounded and
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Baire-measurable

oy PO (f-p)
E'lf()] = ——— (=)
P
holds true.
Then the drift i’ = (1, .., i) of (Vi) with respect to P is given by
d 2
dp , . 0y(x)
My = :ul+ —<CC> J )
>l

the diffusion matriz is o' = o, and the killing rate ¢ <0 is

(i dl ZZ d:zf dxj w)) L

_711

(see Definition 2.1.23).

PROOF. By Ito formula (see Theorem A.3.115) and the assumption
1P (g0 (ry) < 1forany z € Eand t € [

v " dp
E[p(Af)] = p(z) +/(J Zl E(f) ZZ dxzdxj x) ds

< p(x).

Hence,

=1 1=

¢ dp 1 @2
2
E . Z E E ° <0.
dl‘i (x)[ﬁz(l') + 2 = - dxzdxj (x)o-lj ('T) — 0

Furthermore, for any x € E and f € C%(F) the infinitesimal generator
2" of (V)¢ is given by

o' f(z) = lim = OD = /(@)

t\.0 t
:}i{%z( (t)(f 0 iy f(z))
i (E[(fp(f;))(/\z)] 1)
(- P)@) + fo é (SL2p15(00)) ds + 4 fi éé (54202 (0)) ds
= Jimg o) @

KA ), (@) LS (), o5 (@)
_; dz; (@) p(x) +§;; dx;dx; (@) o)

Applying the product rule yields the assertion of the Proposition. [
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REMARK 2.3.81. If in Proposition 2.3.80

dp B
dx ZZ dx dx] 2 (z) =0

Jj=11i=1

holds true, the change of measure from P to P only produces a drift
as extra term. Let 0 < T < oo. Let Pr be the probability measure in
Girsanov (Theorem A.3.118) and let W be the d- dimensional Brownian
motion with respect to Pr defined by W, = W, + fo s)ds for a =
(al, ...,ad) : R? — R?, Then by
A\ = p(\)dt + oA\ )dW, + a(N)a(N)dt
= () + a(A)a(\y)) dt + a(A)dW,

the drift of (A),co 7 With respect to Py is (M) +o(N)a(N;). Thus, if
a is such that for any re€ EFandany 1 <17 <d

Z BB S oo

j=1
holds true, then on [0, 7] the probability measure Py appearing in the
theorem of Girsanov is the probability measure P’ from Proposition
2.3.80.

EXAMPLE 2.3.82. Let (E, p) be some weighted space and let (Q/Jt)telR+
be a family of maps such that (P(t)),cg, defined as

P(t)(f) = [ oty
is a generalized Feller semigroup on %”(F) of transport type as defined
in Proposition 2.3.54. We first determine a generalized Feller process
and later choose a specific (wt)t€R+ and admissible weight function p
such that the conditions of Theorem 2.3.73 are satisfied, which permits
us to construct a extended Feller process as in the proof of Theorem
2.3.73.
Regarding the generalized Feller process, for any = € E define

Bx) = (Wi(2))ep, € B*
and let
P, == @) € My (ER+,B(E)R+) .
Then for the canonical process <)‘t>t€R+ and any t € R, and any x €

P, (/\t = ¢t(x)) =1,

hence for the filtration (.7-"15)1‘@1&r where for any ¢ € R, F; is simply
the o-algebra generated by the B(E)®+-null sets, for t > s > 0 and
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f € $°(F) the stochastic process f()\;) is measurable with respect to
Fs and for any x € E P, -almost surely

Ep, [f(A)]| Fs] = f(Ae)
= [o(z)
= (fothr—s) (¥s())
= P(t—s) f(s(2))
= P(t—s) f(A).
Furthermore, by definition
P, o X" = da,
thus (/\t)te]R+ is a generalized Feller process.
Next, let in particular F = R and let p(x) := 2* + 1 be the admis-
sible weight function on £ and let
Y E— F
r— e 'z

Then [|P(t)|lpzo(s)) < 1 for any t € Ry since for [f| < p, f € #°(E)
and any t € Ry
(PO f(@)] _ |f (i)l
p(x) p(x)
p (P(z))
= o)
ple'x)
p(x)
B (e tz) +1
a2+
<1

Thus, the conditions of Theorem 2.3.73 are satisfied. By definition of P,
for any z € E the semigroup of transition probabilities (¢(t)),cp, of the
generalized Feller process (A¢),cp, is given by p(t)(z,dy) = de-vu(dy)
for any t € Ry, x € E. Thus, by construction in Theorem 2.3.73, the
semigroup of transition probabilities (¢(t)),cp, of the process (1), cp,
from Theorem 2.3.73 is given by

q(t)(x, dy) =

ple ')
p(l’) 5e—tx(dy)

e 2?2 41
= —56* T d
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forany t e Ry, z € E.

EXAMPLE 2.3.83. (Geometric Brownian motionon £ = {x € R: x > 0}

with p(z) = v/z)

Continuing Example 2.1.26, for any x € E and zu 20 let

o2
Sy = xexp <(u— 7) t+0’VVt) ,

where (W}),cg, is the Brownian motion on (§2, F,IP). We show that
(SF)ier, is a generalized Feller process, that the conditions of Theo-
rem 2.3.73 are fulfilled and construct the corresponding extended Feller
process ((Sf),) explicitly.

teR

+

As seen in Example 2.1.26, for any ¢ € Ry Pgq is given by Pgz(A4) =
[, &) (z,y)dy for any A € B(E) and,

11 —(lny—hﬂa:—(,u—%aQ)t)2
K(t)(z,y) = NN exp ( 507 ) :

It was also shown that (SY),.p, is a Markov process, hence for any
real-valued measurable map f on E that is bounded or positive and
any t € Ry

P(t)f(x) == E[f(57)],

— (lny —Inz — (u — %02) t)2
0= 0 e ( 207 )dy

is a Markov semigroup. We need to show that for any ¢t € R, P(t) is
a linear map form %”(FE) to B*(E) that is bounded. We calculate by
Ito formula (Theorem A.3.115)

e [(59)7] =2+ | s (st s~ [ L7 st |

0 0

1 1 ¢
:x1/2+(,u—02)/ E | (S7)'/?] ds,
54=57") [, Bl

and we see from

;i (E [(Sx)l/z}) _ (%M _ %02) E [(Sf)l/ﬂ

given by

that
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Hence, by positivity of P(t) on its domain and assumption %u—% 2<0
we obtain || P(t)||,se(my < 1 and

P(t)f € BY(E) = {f B B swppla) ™ )] < oo} |

In order to show P(t)f € #°(E) for any f € %B°(E), by density
of Cy(E) in A°(F) and continuity of P(t) it is sufficient to show that
f € Cy(E) implies P(t)f € #°(FE). We show below that in this case
even P(t)f € Cy(E) holds true.

Let (2,),.y C £ be a sequence such that limz, = z. Let a :=
n—oo

infz,, and b := supz,. Then for any n € N
neN neN

exp <— (lny—lnxn - (a— 502) t)2) < exp <— (lny—lna— (a— %0‘2) t)2>

202t 202t

ify < aele=39°)t, Furthermore,

exp <_ (Iny —Inzn, — (o — o?) t)2> < exp <—(1ny—lnb— (a—1o?) t)2>

=

202t 202t

if y > pelo=3")t, Hence, for all y > 0

_ _ — (o — L52)4)?
1 exp (ln y—Inz, (a 50 ) t) <
yg\/i 20’2t

202t

<—(lny—lna— (a— 502)75)2) |

1 f(lnyflnbf(af%(ﬂ)t)Q
* Yo/t P ( 202t

1 ()
yovi {ae(af%az)tgygbe(w%az)t} Y)-

The right hand side is integrable, thus by dominated convergence

Jim P(t)f(zn) = /E nlinéof(y)\/lg?y;\/g exp ( (Iny —1In mg;t(a —10%)t) ) dy
_ 1 1 f(lnyflnmf(a—%(ﬂ)t)z
_/Ef(y)myaﬁexp< P )dy
=P(t)f(x).

Since boundedness of P(t)f is clear by definition of P(t), we obtained
that for any ¢t € Ry P(t) maps Cy(E) to Cy(E).

Hence (P(1))cg, is a family of bounded linear operators on 2”(E)
that fulfills properties P1, P2 and P5 of generalized Feller semigroups
(see Definition 2.3.49) by virtue of being a Markov semigroup. Fur-
thermore P4 holds true thanks to |[P(t)| ;) < 1 and regarding
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P3 for all continuous bounded maps f by dominated convergence and
continuity of the Brownian motion

limP(1) () = B [lim(57)] = f(2).
t—0 t—0
By density of Cy(F) in %°(F) this convergence extends to any f €
B*(E) (just like in the proof of Proposition 2.3.89). Therefore (P(t))
is a contractive generalized Feller semigroup.

Since clearly for any ¢t € R,

teR,

(P()1) () =1
(P(t))ser, fulfills the conditions of Theorem 2.3.73 and of Theorem
2.3.65. Hence, we can define (Q(t)),cp, by

Q=L

and by Theorem 2.3.73 for any x € F there exists a probability measure
P’ and a Markov process ((Sf)/) such that (Sg’), =z.
teR 4

We next find the process ((Sf)/) explicitly. Thanks to Propo-
teR
sition 2.3.80 we already know what d;ift and killing rate are. Let
(Q, F, IED) be a different probability space and let 7 :  — R, be mea-
surable and distributed as P (7 <t¢) = 1 — exp ((%p = %02) t). Define
QO =QxQ, F:=FQF, and P := P®P. Then on the product space
(€2, F,IP") one can define the Brownian motion (W), as
W (w,®) == Wy(w)
and 7 : Q — R, as
' (w,®) == 7(@).

7" and W, are independent for any ¢ € R, and with

(57) = zexp (ut +oW)) fort <7’
A fort > 1/

we obtain that also ((Sf)/> is a Markov process and that
teRy

1 T / z\’
CE(F0) (5] = [£((57))
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as can be seen by the following calculation:

1 xr

SEL ) (SD)]

1 1 f(lnyflna:f(uflaz)tf
/ Iy )7\/7—? ( 202t 2 dy

/f(y) <
/ o < ((ny — lnm—yt)+102t) +02t1ny—02t1nm>dy

(Iny—Inz — ( 7%0 ) ) +20%tIn /Y — 20%tIn\/z
202t 4y

202t

—(Iny —Inz — ut)® + o262p — (Lo20)?
/fm———mp (ny ZIne —pt) + o = (57707,

202t

—(Iny — Inz — pt)? 1 1,
—ut — —o“t ) d
202t P M)W

/f FyUeXp

~[r ()]

If instead of (S7) = ((Sf)/> one wants to obtain a stochastic
teR4

process defined on
((Eu{ah™ BEU{ah™)

as in Theorem 2.3.73 one can choose the distribution IP(SI)/ and consider

the canonical process.

2.3.6. Relationship between extended Feller processes and
generalized Feller processes and Feller processes. Next we would
like to investigate the relationship between on the one hand the ex-
tended Feller process (7;),cp, from Theorem 2.3.73 and Feller processes
and on the other hand between generalized Feller processes ()\t)teR+
from Theorem 2.3.65 and Feller processes. Also in this subsection,
(E, p) will always denote a weighted space and as o-algebra on this
space we always take the Borel o-algebra. We start with a first result:

PROPOSITION 2.3.84. Let (F,p) be a weighted space and E be lo-
cally compact. Let ()‘t)teRJr be a Feller process on E with semigroup of
transition probabilities (p(t)),cr, on (E,B(E)) with initial distribution
v e MP(E). Let there be to > 0 and C > 0 such that for all x € E and
0<t<t,

E. [p(A)] < Cp().

Then <)‘t)teR+ 15 a generalized Feller process with respect to a right
continuous filtration (Fy),cp, and with initial distribution v.
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PROOF. We need to show that (P(t)) given by
teRy

P(t): #°(E) — $B°(F)

f%/f

is a generalized Feller semigroup and that there is a right continuous
filtration (F¢),c, such that (M), g, is adapted with respect to (F),cp,

and for initial distribution v € M*?(E) and any f € %°(E) and 0 <
s<t

Ep, [f(A)] F] = P (t —s) f(A)
holds true P, -almost surely. We know that (P(t)),cr, given by

P(t)IC()( )—>Co )

£ [ fmt
is a Feller semigroup.
First, we show that P(t) (#°(F)) = #*(E) and that

P(t): #°(E) — #°(E)

is a linear bounded map. For any f € #°(F) and 0 <t <+t

/f t)(z, dy)
/f t)(x, dy)

< HfH,,Cp( z).
Hence, for 0 <t <t
P(t): #°(E) — B*(E)
is a linear bounded map with

0] <
L(Br(E))

By Lemma 2.3.48 for any € > 0 and any f € B?(F) there is g. € Cy(E)
such that ||f — g.[|, <e. Hence for 0 <t <t

|Pws - P(t)g.

and since P(t)g. = P(t)g. € Cy(E) it follows that that P(t)(%*(E)) =
PP(E). For any 0 < s there is n € N such that s/n < t; and since

< Ce
p
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(p(?))ser, is a semigroup of transition probabilities on (£, B(E))

/f $)(x, dy)

=/f@m§+.+Qde
= (PG (PC1)) ()
P(t): #°(E) — #°(E)

is a linear bounded map for any ¢t > 0 and

Hp H < CTt/to]
L(Br(E

Hence,

In order to show that
P(t): #°(E) — #°(E)

is indeed a generalized Feller semigroup we have to show the properties
P1.....P5 from Definition 2.3.49 hold. P1 and P2 follow immediately
from the fact (p(t)),cp, 18 a semigroup of transition probabilities. P4

follows by assumption and positivity (P5) is obvious. It remains to be
shown that for all f € #°(F) and all z € E

lim P(t)f(2) = f(2).

Fix f € #°(F) and © € E. By Lemma 2.3.48 for any ¢ > 0 there
is g. € Co(E) such that [|f — g.[|, < e. By strong continuity of Feller
semigroups

1{% ﬁ(t)gs — Ge - =0.
Thus,
lim | P()£(@) — f(@)| = lim | P()f(x) - P(t)g.(x)]

+ ‘P(t)gg(:b‘) - gs(x)‘
+ |ge(x) — f(=)]
< lim HP(t)H 1f (@) = g-(2)Il, pl=)

N0 L(B*(E))
li ‘ﬁt (x) — g. ‘
+lim (t)ge(x) — ge(x)

+19:(z) — f ()|
< Cep(z) + ep(z).
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Since € > 0 was arbitrary, this implies

lim P(0)f () = f(z).

Hence, (P(t)) is a generalized Feller semigroup.

teRy
Finally, since ()‘t)teR+ is a Markov process with respect to its natural

filtration (F7),cp, for any initial distribution v and f € %°(E) and
0 < s <tit holds

Es, [f(\)| 7] = [E F)p(t — 5) (o dy) = P(t — ) (M)

P, -almost surely. As in the last step of the proof in Proposition 2.3.69,
this equation can be extended to the right continuous extension of

(]:g)teRy which yields the statement of the proposition. O

For an investigation where F is not locally compact we introduce
the following spaces:

DEFINITION 2.3.85. Set E?O(E) C (>*(F) as
Z"VO(E) ={f: f€(*(E), f measurable},
and (*(E) C E’S(E) as

(B) = {% L fe %"O(E)}.

REMARK 2.3.86. As closed subspaces of the Banach space (>(F),

both (*(E) and ((E) are Banach spaces with respect to -]l o -
For the next proposition we recall the definition of

Br(E) := B*(E,R)
in Remark 2.3.23.

PROPOSITION 2.3.87. Let p be an admissible weight function. De-

fine

Then the following assertions hold true: s -
(1) ® is an isometric isomorphism between L(BP(E)) and L({>(E)),
(i1)®| 10 (i) 18 an isometric isomorphism between L(%°(E)) and L((°(E)).
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PROOF. Clearly, w € L(Z\@’Z(E)) is well defined and @ is linear.

(i) We show first that ® is an isometry.
We calculate for any f € B?(FE)

1(®P) fllo = 1P (-2,
<Pl gy M-
Hence
H(‘I’P)HL(Z%(E)) < HPHL(B?(E))'
Furthermore, for ¢ > 0 let g. € /B;(E) be such that

1Pgll, = (1Pl o(goce) — ) lgell, -

Then % € (>(E) and
’)

jor (-5

p

< [

o0

= [Pyl

> (WPl =) |

ol

||(<I>P)||L(éovo(3)) 2 ”P||L(§:(E)) —¢&.

which shows that

Thus, ® is an isometry. .
Regarding ® being an isometric isomorphism between L(B?(FE))
and L({>(FE)) by injectivity of isomorphisms we only need to show

® (L(@(E))) = L(=(E)).

However, this is clear since for any @ € L(Z;O(E))
Q()=Q (%) p

is a linear map from B?(E) to B*(E) and the calculation

171, = H@ (f) y
p

shows that Q' € L(B?(E)). Then ® (Q') = Q yields surjectivity of ®.
(ii) Follows just like (i). O

< HQ||L(Z§<>(E)) Hpr
p
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COROLLARY 2.3.88. There is an isometric isomorphism between
contractive generalized Feller semigroups on 9BP(E) and strongly con-
tinuous, contractive, positive (see Definition 2.3.39) semigroups on

¢ (E).

PROOF. Use Proposition 2.3.87 above and strong continuity of gen-
eralized Feller semigroups (see Theorem 2.3.51). The respective re-
quired semigroup properties follow immediately. 0

Next, we want to characterize positive semigroups on ¢?(FE), for
which it is possible to obtain a transformation to a contractive gener-
alized Feller semigroup.

PROPOSITION 2.3.89. Let (Q(1));cp, be a positive semigroup on
(P(E) such that there is some w € R such that for any t € R,

1Q(¢ )”L w(E) = e,
Then (P(1))ex, defined by
P(t): #°(E) — $°(F)

f e Q) (%) o

s a contractive generalized Feller semigroup on E with generator A if
and only if
(i) for any g € (P(E) such that g - p € Cy(E) and any x € E

lim (Q(t)g) (=) = g(x)

holds true.
In this case, <Q(t)’€p(E)>teR is strongly continuous on (P(E) and its
+

A(f-p)
P

generator A is given by flf =
PROOF. If (P(t)),cg, is a generalized Feller semigroup on E, then

w P (f - p)
P

f—e

is a positive semigroup on ¢?(E) such that for any ¢t € R

QM Lipo(iy) < €

P3 of the definition of generalized Feller semigroups states that for any
feB(FE)and any x € E

o) (1) 0= () ),
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hence in particular the equation holds true for any f € Cy(F). (ii)
follows form Theorem 2.3.42.
On the other hand, let (Q(t))

implies % € (P(E), hence

fulfill (i) and (ii). f € #°(E)

teR4

P =00 (L) -pe o)

By

IPE)fIl, = e

0 (f)Hm <111,

(P(t));cr, Is contractive.

Thus, (P(t));cg, is a contractive semigroup on %°(E). It is a gen-
eralized Feller semigroup because P1 and P2 obviously hold true, and
P4 and P5 follow from contractivity and positivity in the assumption.
In order to show P3 we observe that (i) implies that for any f € Cy(E)
and any v € E

lim (P(1)) (x) = f().

and by density of Cy(E) in #°(F) for any € > 0 and g € #°(FE) there
is f. € Cy(E) such that [[g — [, < e and
Jim P(1)g(x) ~ 9(x)
= lim P(t)g(x) ~ im P(1)f.(x) + lim P(8)o(2) — f-(x) + fo(2) — g(a)
< lim |[P(t) (9(2) — fe(@))ll, p(2) + Lim P() fe(x) — fe(z) + |Ife — gllp(2)
——

-0 <e
< lim [ P(®)l] 20(2) + ep(a)
—0,
N —
<1
< 2ep(x).

Since € > 0 was arbitrary

limP(t)g(z) = g()

t—0

for any g € B?(F) and any x € E which yields P3. Hence, (P(t))
is a contractive generalized Feller semigroup.

teR,

Regarding strong continuity of (Q(t)| o0 E)> we use Proposition
) teR,
2.3.87(ii) and for the generator A observe that for any f € (?(FE)
_A(fp) H
P i~

lim

lim | Q) — f

=lm|P(f-p)=f-p—Af-p)ll,=0.

O
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We now would like to take a closer look at the results in the impor-
tant case when the admissible weight function is continuous.

COROLLARY 2.3.90. Let (Q(1)) e, be a positive semigroup on ¢°(E)
that fulfills the conditions of Proposition 2.3.89 for some w € R and a
continuous admissible weight function p. Then on the measurable space

((Eu{ap™ BEU{ah™)

for any probability measure v on (E,B(E)) there exists a probability
measure P!, on

((Bu{ap™ . BEU{AD™).

such that for the canonical process (’Yt)teR+ and the natural filtration
(]:t())teR+ foranyt > s >0 and any f € B°(FEU{A}) that is bounded
or positive

(2.3.26) ey, [f(0)| Fo] = e (Q (t = 5) (f)) ()
holds true P, - almost surely and
P oy, =v.

Here, for anyt € Ry and positive f € B°(EU{A}) Q(t)f is interpreted

oy = H0U-2

and the convention in Proposition 2.3.52(ii).
PROOF. Apply Proposition 2.3.89 and Theorem 2.3.73. 0

LEMMA 2.3.91. If the admissible weight function p is continuous,
then Co(E) = (P(E).

PROOF. Follows from Lemma 2.3.47(ii) and (iii). O

COROLLARY 2.3.92. If the admissible weight function p is contin-
uous, then there 1s an isometric isomorphism between contractive gen-
eralized Feller semigroups on %°(E) and strongly continuous, contrac-
tive, positive semigroups on Cy(E).

The following theorem is the reason why (7;),cp, Was name extended
Feller process. As stated before, we remind the reader that on gen-
eral weighted spaces an extended Feller process is not automatically a
Markov process due to the subtle measurability issues. However, this
is true if the weighted space is locally compact with countable base.
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THEOREM 2.3.93. Let (E, p) be a weighted space and let p be con-
tinuous. Let (P(t)),cg, be a generalized Feller semigroup on %°(E)
and let w € R be such that for any t € Ry

Hp(t)HL(,%ﬂ(E)) < e,
Then (Q(t>>teR+ deﬁned as
P)(f-p)

Q= et L

is a strongly continuous, positive, contractive semigroup on Cy(E) and
for any probability measure v on (E,B(F)) there exists a probability
measure P!, on

(E®+,B(E)*)
and a right continuous filtration (.7-",5)t€1R+ such that and for any t >
s >0 and for any f € Co(E) for the canonical process ()

(2.3.27) Epy [ f ()| Fs] = Q(t — 8) f(s)

holds true P, - almost surely and

/ -1 __
P,oX,” =v

teR

holds true.

PROOF. This follows immediately from Corollary 2.3.74 and Propo-
sition 2.3.87. O

2.3.7. Path properties. In the main theorems of this subsection,
path properties of generalized Feller processes and of extended Feller
processes are shown. In the case of generalized Feller processes, this
already was proved in [14]. However, we correct their statement in one
point. Also in this subsection, (E, p) always denotes a weighted space.

In order to prove path properties of generalized Feller processes, we
first need the following result regarding regularity of submartingales.
We base the proof on the one in [37].

PROPOSITION 2.3.94. Let (Q, F, (.I’-",:)te]R+ ,IP’) be a filtered probabil-

ity space and let (M), be a submartingale with respect to (Fy)
Let Q' C Q in F be the set where

t€R+ N

exists for any t € Ry. Define (&)teﬂ§+ by

— At—l— on Q/
)\t =
0 elsewhere.
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Then P(QY) = 1 and there is a set Q C Q in F with P (Q) = 1 such that

<;\t)te]R+ has cadlag paths on Q. Moreover, (M)
of (At)te]&r if

iR, 50 modification

t— N\
is right-continuous in L*(Q), F,P).

PROOF. By Theorem A.3.96 P(2) = 1. By Proposition A.3.98
(At+)ser, is a submartingale with respect to (Fi1 )., and by Theorem

A.3.96 there is a set Q C Q in F with P (Q) =1 on which
lim A,
r/‘l%,rrr‘le(@ *
exists. One can then show easily that (M), has cadlag paths on
Q:= QN Q. Thus, by definition, this is true also for (S\t)tek+ .
Fix some arbitrary t, € R,. By definition of \;, and P(Q)') = 1,

li A=A
o, 7€Q fo
P-almost surely. By Theorem A.3.93 (where in a neighbourhood O(ty)

of to boundedness of sup E][|\,|] follows from right-continuity in
reO(to)NQ
LYQ,F,P)of t — \)

lim A,
rNdo, reQ

converges in L'(Q2, F,P). By uniqueness of the limits (which follows
from Proposition A.3.53, Proposition A.3.56 and Remark A.3.50)

N
in L}(Q, F,P). Thus, right-continuity in L'(Q, F,P) of t — \; implies
||/\t0 - )\tOHLl(Q”F,]P:) =0,

or, what is equivalent, \,, = )\;, P-almost surely. As t, € R, was
arbitrary, we conclude. U

Moreover, [37] mentions that a similar result holds true also for left
continuity, which we prove below:

PROPOSITION 2.3.95. Let <Q, F, (]—})te]R+ ,IP’) be a filtered probabil-

ity space and let (M), be a submartingale with respect to (Fy)cp, -
Let € C Q be the set in F where

A = lim A,
r,/t,reQ
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exists for any t € Ry. Define (5\0 by

teR,
. A on
)\t =
0 elsewhere.

ThenP(QY) = 1 and there is a set Q C Q in F with P (Q) = 1 such that
(5\1‘) has caglad paths on Q. Moreover, (5\0 s a modification
teR4

] teR4
of M)iew, U
t— N\
is left-continuous in L'(Q, F,P).
PROOF. By Theorem A.3.96 P(Q)) = 1. By Proposition A.3.99
(At-)ser, is a submartingale with respect to (F;— ), and by Theorem

A.3.96 there is a set  C Q in F with P (Q) =1 on which

lim A\._
r™\¢t,r€Q

exists. One can then show easily that (\_)
Q:= QN Q. Thus, by definition, also (5\,5) .

Fix some arbitrary soty € R, such thatteﬁg < to. By definition of
(XQEM and P(QY) = 1,

teRy has caglad paths on

lim A, = A
r to, r€Q " to

P-almost surely. Fix an arbitrary ¢ € R_. We next show uniform
integrability (see Definition A.3.54) of the family of random variables
(max (A, ¢)) Let a € R;. Then

TGQQ[So,to] °

/ imax (A, ¢)| dP
{|max(Ar,c)|>a}

:/ max (A, ¢) dIP’—/ max (A, ¢) dP
{max(Ar,c)>a} {max(Ar,c)<—a}

S / ()\rl{)\r>c} + C]‘{)\TSC}) dP — / cdlP
{Ar>a}

{max(\r,c)<—a}
< / AdP — / cdP
{Ar>a} {max(Ar,c)<—a}

{Ar>a} {max(Ar,c)<—a}
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Moreover,
1
P({A >a}) < EE A1, say]
1
< -E|[N\]|].
< —E[\|

Hence,
Im P ({\. > a}) =0,

a—ro0
and clearly also
lim P ({max (A, ¢) < —a}) = 0.

a—r0o0

Therefore,
lim lmax (A, )| dP =0
a0 J{ max(Ar,c)|>a}

and the family of random variables (max (A, c)) is uniformly

T‘EQH[So,to]

integrable (see Proposition A.3.55).
By Proposition A.3.56 (and Proposition A.3.53)

.
Al max (A, €)

converges in L'(Q, F,P) to max <;\t0, c). Left-continuity in L'(Q, F,P)
of t — \; yields

lim (/ |max (Ar, ¢) — max (A¢g, €| dIF’)
r,/to Q

= Th/ntlo (/Q [Ar = Aol Len se apg>e} Tle= Aol 1y cony sep T 1A =€l son, Sc}dp)

< lim (/Q Ar = Aol Len, se agy>e} TIAF = Aol Lrn coong sep T 1A = Aol Lex e, /\togc}dp)

=o0.
This implies
Hmax (5%, c) —max (A, c)‘

= O7
LY(Q,F,P)
or, what is equivalent, max <;\t0,c) = max (N, c) P-almost surely.

Since ¢ € R_ was arbitrary and the countable union of null sets is
a null set

A, = lim max (/\to, —n) = lim max (A, —n) = A,
n—oo n—oo

P-almost surely.
As tg € R, was arbitrary, we conclude. O
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In order to state the result regarding path properties of generalized
Feller processes, we remind the reader of the definition of the resol-
vent in Definition 1.4.25. Since by Theorem 2.3.51 a generalized Feller
semigroup is strongly continuous, we can define the generator of the
semigroup (see Definition 1.4.13)

THEOREM 2.3.96. Let (P(t))tem be a generalized Feller semigroup
on BP(E) such that for any t € Ry P(t)1 =1 and

P < Me*

for some M >1 andw € R. Let A be the generator of (P(t)),cp, - Let
xo € E and let ()‘t)te]R+ be the generalized Feller process from Theorem

2.3.65 on the measurable space
(B*, B(E)*)

with probability measure Py, and right continuous filtration (J’-'t)t@&r as
in Theorem 2.3.65.
(i) For every countable family (f,), oy C B°(E) and B > w, f €N

for the family of stochastic processes <Ztﬁn> defined as
teR

ZP" = BR(B, A) fa(M)

there exists a family of stochastic processes

()
teR,

with cadlag paths (and one with caglad paths), such that for all t € R,

there is a Py, - null set Ny € o | | .7-"t> for which

teR4
ZPm = ZP on ER*+\ N,

foralln € N and all > w, f € N.

(i) Let p be Baire measurable and let v € MP(E) be the initial
distribution. If additionally to the assumptions in (i) M = 1 holds
true, then

(exp (—wit) p(Ar)) e,
is a supermartingale and if t — P(t)p(x) is continuous for v-almost
any v € E, then the supermartingale has a version such that the paths

are cadlag or caglad. In this case, there exists a family of stochastic
processes with cadlag paths (and one with caglad paths )

(),
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such that for all t € Ry there is a null set N, € B(E)®+ for which
o) = fu(Ny) on ER+\ N,

for alln € N,

(111) If additionally to the assumptions in (i) and (ii) there exists a
countable family (f,.),cn C B°(E) of sequentially continuous functions,
i.e. for any (Tm),,ey C £ with v, — v € E for anyn € N

fal@m) = ful),

and if this family separates points, i.e for any y,z € E ,y # z there
exists | € N such that

fily) # i),

then () has a version with cadlag paths (and one with caglad

paths).

teRy

PROOF. (i) We only treat the cadlag case since the caglad case
follows along the same lines. By Theorem 1.4.29 if a > w, then «a €
p(A) and for all f € #°(F)

(a— A7 f:=R(a,A)f = /OOO e~ P(s)f ds.

In order to find a cadlag version, we would like to use Proposition
2.3.94. For this purpose, we fix f € #°(F), f > 0 and a > w we define

the stochastic process <Yt°"f > by
teRL

Y= exp (—at) R(a, A) f(N).

is a supermartingale with respect to (), -

]

By the definition of the Riemann integral (see Definition 1.3.5), positiv-
ity of the semigroup (P(t)),cg, . and monotone convergence for condi-

tional expectations (Proposition A.3.65) and thanks to (\;) being
a generalized Feller process

We show that (Y;a’f)
t€R+
Let 0 < s <t and calculate

E., | ¥

]-"S} = exp (—at) E,, [/000 exp (—au) P(u) f(N\)du

tER+
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Ez, {/ exp (—au) P(u) f(At)du
0

7|
m—1

lim lim (n/m)- Z exp (—ain/m) P(in/m) f(A:)

n—00m—00 2
=0

= Eq,

|

= lim lim (n/m)- Z_ exp (—ain/m) Ey, [P(in/m) f(Ae)| Fs]

= nlgrolmlgnoo (n/m)- 4 : exp (—ain/m) P(in/m 4+t — s) f(\s)
=exp (a(t—s)) nll)Irolon}g)noo (n/m)- Z exp (—a (in/m+t—s)) P(in/m +t— s)f(As).
Thus,
E., (Y| 7] = e (-as) [ (e (—ar) PO)SO) dr
t—s
<y

The last inequality followed from f > 0 and positivity of the semigroup
(P(t))t€R+. Furthermore,

o0

., [¥] =exp(-as) [ (exp(-ar) B [POISO)

t—s
and due to absolute continuity of the integral (Theorem A.3.43)

t— /:0 (exp (—ar) E,, [P(r)f(As)]) dr,

and therefore
t - E, [Yﬂf }

is continuous.
We can apply Proposition 2.3.94 to (—Yto"f) and obtain that

teRy
there is a set Q;J € B(E)®+ with P,, (Q;f) = 1 on which
lim —Y®~f
rNt, r€Q

exists and there is a set Qu f C Q'a’f in F with P, <Qa7f) = 1 such
that (—Yf"f) defined as

tER+

3 — 7f !
_yef . T\lg?eQ yon fa
t =
0 elsewhere,
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has cadlag paths on Q, ;. Moreover,

()
teR4

()
teR L

Therefore, for any § > w f,n € N and f,, € #°(F), f, > 0 for the

stochastic process (Ztﬁ”) defined as
teRy

ZP" = BR(B, A) fu(Me)

is a version of

the limit
lim Z7"
N, 7€Q
exists on a set Q, C Qin F with P, (Q,) = 1. <Zf’">t€R has a
+

version (Zf ") defined as

teR4

_ lim Z”™ where it exists
Zf’" —  r\t,reQ
0 elsewhere,

with cadlag paths on ng in F with P, <Q5n> = 1. Since the count-

able union of null sets is a null set, for any ¢t € R, there exists a null
set N; € B(E)®+ such that Z" = Z”™ on E®+ \ N for any 8,n e N |
f > w . In particular, for any § > w 8 € N and any g € #°(FE), clearly

gt,9” € #°(F), and g*,g9~ > 0 and the process (Zf’g> defined as
teR4

BR(B, A)g(A) = BR(B, A)g™(Ae) — BR(B, A)g™ ()
has a version with cadlag paths.
(ii) As before, we only show the cadlag case, as the caglad case
follows along the same lines.
If P(t)p < exp (wt) p holds for some w € R, then
E, [exp (—wt) p(A)| F] = exp (—wt) P(t — s)p(As)
< exp (—ws) p(As)
and (exp (—wt) p(A)),cg, i a non-negative supermartingale. By Propo-
sition 2.3.94 there exists a set Q'p C Qin F with IP),,(Q/p) = 1 such that

li Ay
r\%,l?e@p( )
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exist and a stochastic process (p()\t)> with cadlag paths that is a
teRy
version of (p(M))er, -

Furthermore, by Yosida approximation (Proposition 1.4.34)
(2.3.28) lim [|[BR(8,A)fn = full, = 0.
B—00

Hence uniformly in ¢t € R

A A A

hm hmsupﬁR(B’ )fn( 7") _hmsupfn( 7‘) — 0’

B—roo r\¢t, r€Q p()\'r’) r\t,r€Q p(/\r)
and

lim [liminf BR(B, A) fa(Ar) — liminf fn(Ar) =0.

B—o0 |r\it, r€Q p(A) rt,reQ p(A,)
Thus, when

zpn

lim
m™t,reQ p(\,)

exists for any large § € N, then does

RO
™t,reQ p(\,)

As seen in (i) for any 8 > w, § € N there is a set Qlﬁn C Qin F with
P, (Q/Bn) = 1 on which

lim ZPn
r\t, 7€Q

exists for any ¢ € R, . Since p > 0 attains its minimum on F (see
Corollary 2.3.17) on Q/’Bn N Q;) also

T
11m
N, 7€Q p()\r)

exists and for any ¢t € R, we define

lim £ on N Q,, NQ
&(At> — r\t,reQ p(>\r) BEN, B>w B, P
P

0 elsewhere.
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(f—"(/\t)) is a version of <M> since for any 6 > 0 and 3
p teR teR,

p(At)
large enough on (] Qg, NQ)
BeEN, f>w
n n n T Z”@’n
f—()\t) G < | lim falAr) _ lim
P p(At) Nt reQ p(Ar) N\t reQp(Ny)
B,n Bn B,n
I /il B P/ A 100
mtre@p(Ar)  p(A) | [p(A)  p(Ae)
zer 7t
<| lim o — 2t 14925
T r\¢t, reQ ()\r) p()\t)
zpm P
=== — 2| +26,
p(At) (Ar)

and we know that for all B,n e N, > w

( Ztﬁ,n )
p(At) teR,
zr
p(A) teR,

are versions of each other. We obtain for any ¢ > 0 and for 5 large
enough and any s,t € R, on ) Q:B,n N Q;
BeN, f>w

and

Ztﬁ,n Zg,n

PO p(As)|

Therefore, also (7"(/\15)) has cadlag paths.

teRy

fn fn
?()‘t) - ?(As)

<2+

Thus, for any n € N

(22005000
has cadlag paths and is a version of

(fn()\t))teR+ )

The statement of the theorem then follows from the fact that the count-
able union of null sets is a null set.
(iii) follows directly. O

teR4
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EXAMPLE 2.3.97. Unlike stated in [14], Theorem 2.13 it is in gen-
eral not true that for f C %*(E) and generalized Feller process (\;)

the stochastic process
(ﬂ&U
p<)\t) tER+

has a version with left-continuous paths. As a counterexample take
E =R,

teR4

—x if v < —1
plz) =<Cz+2 if —1<x<0
r+1 ifz >0,

and f(z):=1 for x € R with A\(z) = 2 +t. According to Proposition
2.3.54

P)(f) = foN
is a generalized Feller semigroup of transport type and as shown in

Example 2.3.82 (M), is a generalized Feller process. But for z <0
and P, as in Example 2.3.82 clearly

fA) 1
p(Ae)  plz+1)
is P,-almost surely not left-continuous at t = —x.

COROLLARY 2.3.98. Let E be separable and locally compact and let
v € MP(E) be a probability measure . If (P(1)),cp, is a generalized
Feller semigroup on %°(E) such that for any t € R,

Pt)1=1
and P(t)p < exp (wt) p holds true for some w € R, and
{5 PO)o()

s continuous for v-almost any v € E, then the generalized Feller pro-
cess (M)eg, associated to (P(1)),cp, via Theorem 2.5.65 has a cadlag
or caglad version. In particular, this is the case for a generalized Feller
semigroup on BP(E) of transport type with an appropriately chosen
weight function (see Lemma 2.5.62).

PROOF. One can easily find a countable sequence (f,),,cy C Cp(E)
that separates points and apply Theorem 2.3.96 (iii). O

For the generalized Feller semigroup (P(t)),cp, on #”(E) let the
conditions of Theorem 2.3.73 be satisfied and let (7;),.p, be the corre-
sponding stochastic process. Then according to Proposition 2.3.87 the
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semigroup (Q(1)),cg, on £#(E) (see Definition 2.3.85) defined by

oty - POU-0)

p
is strongly continuous, contractive and positive. In order to show regu-
larity of the paths of f(+,) for any f € ¢°(F) one can proceed as in the
proof of Theorem 2.3.96 but for the Yosida approximation in Equation
2.3.28 one obtains an approximation with respect to the norm |-|_.

This yields the following result:

THEOREM 2.3.99. Let (P(t)),cr, be a generalized Feller semigroup

on B°(F), let the conditions of Theorem 2.3.73 be satisfied and let
(7t>t€R+ be the corresponding stochastic process on

(Bu{ap™.BEU{AD®).

(i) For every countable family (fn),cn C 0°(E U{A}) there exists
a family of stochastic processes with cadlag or caglad paths

(7). .

such that for all t € Ry there is a null set Ny € B(E U {A}®+ for
which
fa(ve) = fa(y) on(EU {A})R+ \Nt
for alln € N.
(it) If additionally to the assumption in (i) there exists a countable
Jamily (fn),en C P(EU{A}) of sequentially continuous functions that
separates points, then (%)teR+ has a version with cadlag or caglad paths.






CHAPTER 3

Affine and Polynomial Processes

Affine processes and polynomial processes are a special classes of
Markov processes.

Let V be a d-dimensional vector space with scalar product (-, ).
On V + 14V the scalar product is defined as

(a+1ib,c+id) = (a,c) +i(b,c) +i{a,d) — (b,d).

Let [|-]| denote the norm induced by scalar product. Let E C V be
a subset and let B(E) and B(V) be the respective Borel o-algebras.
S(V) (S4(V) ) denotes the set of (positive semidefinite) symmetric
matrices on V. We recall the definition of semigroups of transition
probabilities (Definition 2.1.3) and Markov processes (Definition 2.1.8)
and will use Notation 2.1.14. Moreover, we remind the reader of the
definition of the cemetery state A in Remark 2.1.2 and the convention
f(A) =0 for any map f and add the convention |A|| = co. We write
En = EU{A} and as in Remark 2.1.5 for simplicity of notation the
statements on Markov processes will be made only for the state space
E. They are valid also for the augmented state space Fa.
Let (p(t));cg, be a semigroup of transition probabilities on (E, B(E)),

r € E and let P, be the probability measure on

(E®+,B(E)*)

given by 2.1.13 such that the coordinate process (A¢),cp, is a Markov
process with respect to the filtration (]:t)te]R+ starting at  with semi-
group of transition probabilities (p(t)),cg, . Let(P(t)),cp, beits Markov
semigroup (see Definition 2.1.6). The natural filtration of (A),cp, is
called (F}?) . We set

teRy
Fli=o U F | C B(E)®*.
teR4
DEFINITION 3.0.1. A family of Markov processes

<()‘t)teR+ ’ (Px)er>

233
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is called stochastically continuous if for any t € R, and any z €
lim p(s) (z,-) = p(t) (z,-)
s—t

weakly (see Definition A.3.74) on F.

One can show that affine processes are semimartingales with char-
acteristics that are of a special affine form. The precise statement is
made in Theorem 3.1.12. In order to be able to state this result, we
next define semimartingales. For a complete introduction into semi-
martingales and their characteristics, the reader is referred to [24] on
which the brief introduction in this thesis is based. In order to be

as self contained as possible, all necessary definitions can be found in
Appendix A.6.

DEFINITION 3.0.2. Let (Q, F, (‘Ft)teR+ ,]P’) be a filtered probability

space. A stochastic process (A),cp, adapted to (), is called local

martingale if there exists a sequence (7,),.y of stopping times (see
Definition A.3.101) such that P- almost surely 7,, < 7,41 and lim 7,, —
n—oo

oo hold true and such that the stopped process

()\min(thn)>t€R+
is a martingale (see Definition A.3.91) for any n € N.

DEFINITION 3.0.3. A continuous function f: R, — R is called of
finite variation if for all ¢ > 0

V() = su { 3 1ftier) - £(8)

Oztogtlggtngt,neN}

is finite.
A real-valued stochastic process (A;),cp, 1s said to be of finite variation
if all paths are of finite variation.

DEFINITION 3.0.4. Let
(27, (Fce, - P)

be a filtered probability space. A real-valued stochastic process (V)
is called semimartingale if it can be written P-almost surely as

}Q:Y()—’—Mt—f—AtforaHtER_F,

t€R+
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where Y, is .Zy-measurable, (Mt)te]R+
at My = 0 P-almost surely and (At)te]R+ is a cadlag, adapted pro-

is a local martingale starting

cess of finite variation starting at Ay = 0 P-almost surely. An RY-
valued stochastic process (Y;l, ...,Yﬂ)te& is called d — dimensional
semimartingale if all components are real-valued semimartingales.

We recall, that on a set K whose closure is compact the generator of
a Feller process on R? can be written as the sum of four summands that
depend on drift, diffusion matrix, killing rate and a Radon measure,
respectively (see Theorem 2.2.10). Semimartingales can similarly be
characterized by so-called semimartingale characteristics (for a precise
definition see Definition A.6.21). For a given truncation function (see
Definition A.6.11), this is a triple consisting of generalizations of drift,
covariance matrix (see Theorem 2.2.10 and Definition 2.1.23) and the
compensator of a jump measure (see Theorem A.6.16). In particular,
the semimartingale characteristics lead to the canonical decomposition
of a semimartingale (see Theorem A.6.25). This is the decomposition
of a semimartingale as the sum of four summands: generalized drift, a
continuous local martingale, characterized by its covariance matrices,
compensated small jumps, and large jumps.

3.1. Affine Processes

Affine processes have been introduced in 1971 by Kawazu and Watan-
abe [28|, and in 2003 were characterized on the canonical state space
R x R™ by Duffie, Filipovic, Schachermayer [16] who have also shown
that on R} x R™ affine processes are Feller processes. Regarding more
general state spaces, in 2013, Cuchiero and Teichmann [13] showed
regularity and path properties if the state space is a certain non-empty
subset of a finite dimensional real vector space.

3.1.1. Affine processes on general state spaces. For the def-
inition of affine processes on general state spaces £ C V we follow

[13].We define
U={ueV+iV]z— ¢!*® is bounded on E},
and for any p > 1
Ur = {ue V+iV\x—>e<u’x> <pon E}

Furthermore, we assume that E contains d + 1 elements xq, ..., 441
such that for every j € {1,...,d + 1} the set

(fEl — Ty s Tj—1 — X5, Tjg1 — Ljyeeny Td41 — Z’j)

is linearly independent.
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DEFINITION 3.1.1. The Markov process (A;),cp, together with the
family of probability measures (), on the filtered measurable space

(B F (Fcs, )

and its semigroup of transition probabilities (p(t))cp, are called affine
if for every (t,u) € Ry xU there exist ® (t,u) € Cand ¥ (t,u) € V+iV
such that for all = € E and p > 1 on the subset of R, x P where & # 0
the map (t,u) — (¥ (¢,u),x) is locally continuous and

(3.1.1) / e (z,d€) = ® (t,u) V)
E

and if <( ier, » (Pr) e E> is stochastically continuous (see Definition
3.0.3).

In Theorem 3.6 in [13], it it proved that there exists a cadlag mo-
dification of an affine process:

THEOREM 3.1.2. Let <()‘t>t€R+ , (Pz)m€E> be an affine process on
(5% P (s, )

Then for each v € E there exists a P,-version (5\,5) of ()\t)t€R+
t€R+

such that (Xt> has cadlag paths and s adapted with respect to the
teR4

completion (‘Fir>t€]R+ of (.7-",g)t€]R+ with respect to the probability measure
P, (see Definition A.3.77).

In the following, when we talk about an affine process, we always
mean the version with cadlag paths.
The affine process

<()‘t)teR+ ’ (Pﬂf)er>

may take the value A ¢ RY. Thus, Definition 3.0.4 cannot be applied
directly. Therefore, if V' \ E is nonempty, then we identify A as one
point in V\ E . If V =E we extend V to V x R, set B} := E x {0},
and choose A as one point in (V x R)\ E;. We introduce the stopping
times

Tar(w) :=1inf {t € Ry| M(w) = A}
and

T__I@ﬁﬂ<mmmm
T N oo, if T, = T for some k
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with
imzznﬁ{teﬂ&Jqu&@gnzkorH&@»sz}.
s 't

Affine processes are semimartingales as was shown in Theorem 5.8
in [13]:

THEOREM 3.1.3. Let <()‘t)te]R+ , (Px)er> be an affine process on

(B P (F) e, )
and let T be a stopping time such that T < T.,,. Then ()\tl[QTA))tGR+

is a semimartingale with state space E'U {0} and (Amin(tf))teuh is a
semimartingale with state space EUA. There is a version (B,C,v) of

the characteristics of ()\mm(w))te]R+ relative to a truncation function x
(see Definition A.6.11) such that

min(¢,7)
By = / bi(As—)ds,
0

min(¢,7)
Ct7ij = / Cij()\s—)d$>
0

V((,d, dt> df) =K ()‘t<w)7 df) 1[0,T}dta

with measurable functions b : E — V and ¢ : E — S (V). Fur-
thermore, K (x,d€) is a transition kernel (see Definition 2.1.1) from
(E,B(E)) into (V,B(V)) and for allx € E

AmﬂwﬁnK@@<m,
K (z,{0}) =0,
and x + supp (K (z,-)) C EU{A}.

Furthermore, the differential characteristics of affine processes de-
pend in an affine way on the process itself (see Theorem3.1.5). One
can also show that affine processes are regular:

DEFINITION 3.1.4. The affine process ((At)teR+ : (Pw)a;eE> is called

regular if

F(u) = 0/ (® (t,u))]

t=0
and

R(u) == 0} (¥ (t,u))],_,
exist for all (z,u) € E x U and are continuous functions on U? for any
p=>1
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The following statement was proofed in [13] (Theorem 6.4). Among
other things, it states that the Fourier-Laplace transform of an affine
process is given by the solution of an ordinary differential equation.

THEOREM 3.1.5. Every affine process in reqular. Furthermore, for
ueld

F(u) = %(au,u>+<b,u>—c

4 [ (e~ 1= o (€) midg
1%
(a(z)u, u) + (B(z), u) — (7, )
[ (9~ 1= X (©) pte )
v
where x : 'V — V is a truncation function (see Definition A.6.11) such

that x (A —z) =0 forallz € E,beV,ae S(V), mis a signed
measure, c € R, v € V and

(R(u),2) = 5

x — B(z),
r — ax),
z = pl, dE),

are restrictions of linear maps on V' such that
b(z) =b+ B(x)
c(x) =a+ ar)
K (z,d&) = m(d§) + p(z, d§) + (c + (7, 2))0{a—a (dS),

where the expressions on the left hand side are known from Theorem
3.1.3.
Moreover, on the set Q := {(t,u) € Ry xU| P (s,u) # 0 for all s € [0,t]}

OV (t,u) = R(V (t,u)) U (0,u) =u
(3.1.3) 0 (t,u) = @ (t,u) F (¥ (s,u))ds ¢ (0,u) =1.

3.1.2. Affine processes on the canonical state space. On the
canonical state space E' = R’ x R" affine processes were characterized
in [16]. We mostly follow their notation.

We set d = m+n and V = R? and for € E we use the convention
r = (y,2) with y € R and z € R". The first m indices are collected
in the index set ¢ := {1,...,m} and the following ones in the index set
J ={m+1,...,d} . We observe that for any p > 1
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U={ueV+iV|z— el is bounded on E}
=C™ x iR"
= {ue V—i—’iV!x—>e<“’I> <pon E}
=U"r.
On the canonical state space the definition of affine processes can be

simplified in the following way:

DEFINITION 3.1.6. The Markov process (A¢),c, together with the
family of probability measures (IP), . on the filtered measurable space

(ER+,}ﬁ’(Ff)mR+>

and its semigroup of transition probabilities (p(t)),cp, is called affine
if for every (t,u) € Ry x iR? there exist ® (¢,u) € C and ¥ (t,u) € C?
such that for all z € £

/ € (1) (1, dE) = P+ (E)o)
E

and if <()‘t>t€R+ Py e E) is stochastically continuous (see Definition
3.0.3).

We will see in Theorem 3.1.8 that an affine process is a Feller process
with (see Theorem 2.2.10 and Definition 2.1.23) drift b+ Sz , diffusion
matrix

-----

Radon measure

N(z,dg) = m(d€) + y1pn(d) + ... + Ympim (dE),

and killing rate ¢+ (7, y). Since the affine process may not exit the set
E this implies that the parameters

(a,,b, 3,c,v,m, 1)

must be of a particular form. This is formulated in the definition of
admissible parameters in Definition 3.1.7.

In order to introduce admissible parameters, we first introduce more
notation. For a d-tuple 8 = (f1, ..., B4) we define f; := (53;),c,; and for
a d x d matrix a = (o) we set ary = ()e; jepr Also Yo=Y,
and U? := U ;. We write 1 := (1,...,1) for the dimension that makes
sense in a given situation. For ¢ € ¢ we define (i) := ¢\ {i} and for
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i€l weset Z(i):= ¢ U{i}. Fori e ( we define the m x m-matrix

Id(7) by
. 1 ifi=k=1
1@ = {0 else

The continuous truncation function y (see also Definition A.6.11) is
defined by
X = (Xh -"7Xd) :Rd - [_17 1]d
0 if € = 0,

It is an important tool in dissecting small jumps of which there may be
infinitely many from large jumps of which there are only finitely many
(see Lemma A.6.5). We can now define:

DEFINITION 3.1.7. (admissible parameters)
The parameters

(a7&7ba570777m7u>
are called admissible if

(3.1.5) a € S.,.(V) with ag = 0,

(3.1.6)
a = (o1, ..., ) with oy € S{ (V) and a; ¢ = «; ;1d(3) for all i € ¢,

(3.1.7) beF,

(3.1.8) B € R such that B = 0 and By € R for all i € ¢,

(3.1.9) ceRy,

(3.1.10) v ERT,

(3.1.11) m is a Borel measure on F \ {0} satisfying
(3.112) M= [ (@), 1)+ s ©IF) mde) < oo,

E\{0}
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(3.1.13)

o= (f1s o fim) 5 (Hi)ser .. are Borel measure on B\ {0} satisfying
(3.1.14)

M= [ (Quo €:2) + s ©I) s (d6) < o
E\{0}

The following theorem was proved by Dulffie, Filipovic and Schacher-
mayer (|16|, Theorem 2.7). It shows that affine processes are Feller
processes and characterizes them by means of their admissible param-
eters. Furthermore, it shows that the functions ¥ and ® are given as
the solution of an ordinary differential equation.

THEOREM 3.1.8. Let <()\t)t€R+ , (Px)er> be an affine process on

(ER+,]-“0’ (;f)teR+> .
Then (At)yer, is a Feller process on
(55 7 )0, 2.

for any x € E. Let A be the generator of (M), (see Definition 2.2.9)
Then C(E) is a core of A (see Definition 1.4.20) and C? (E) C D(A).
Furthermore, there exist admissible parameters
(a,0,b,8,¢,7,m, )
such that for f € C?(E)
d
Af(z) = % > (am + (e, ) /@)

ki1 (%ckaxl
+(b+ Bz, Vf(2) — (c+ {7,9) f(z)
(3.1.15) +/ (flz+&) — f(2) = (Vg f(x),xg (£)) m(dE)
E\{O}

" Z /\{0} f(x+8) = f(2) = (V@ f (@), Xg0) (€)) yin(dE).

Additionally,
/ e WEp(t) (x, de) = eftuHTEu).)
E
holds for (t,u) € Ry x U and ¢ (t,u) and V (t,u) are given by
¢

(3.1.16) o (t,u) = i F (U (s,u))ds
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and

oY (t,u) = RY <\I/y (t,u),et'ﬁzw)
(3.1.17) U2 (t,u) =P w

with W (0,u) = u. The vector fields RY and F are given by
(3.1.18)

Fu) = = (au, u) + (b, u) —

5 ¢
[ 1 g (€) mde)
B\{0}
RY (u) =3 (oyu, uy + <5iy,u> — %
+/ e — 1 — (ugay, xr (€)Y ma(de) fori € {1,..m}
E\{0)

with 37 = (ﬁT)i{l 0 € RY  foric{l,..,m}

.....

and % = (ﬂT)
On the other hand for admissible parameters (a,a, b, B,c,v,m, )
there exists a unique affine semigroup (P(t)),cp, on (E,B(E)) wzth

generator given by Equation 3.1.15 such that
/ € (1) (1, dE) = P+ (E)o)
E

holds for all (t,u) € Ry xU with ¢ (t,u) and ¥ (t,u) given by Equations
8.1.16 and 5.1.17.

REMARK 3.1.9. Affine processes with the convex cone of symmetric
positive semidefinite matrices as state space are Feller processes as well.
See [11] for details.

REMARK 3.1.10. The fact that a regular affine process on F is a
Feller process implies in particular by Theorem 2.2.6 that there exists
a modification of the affine process, that is cadlag.

REMARK 3.1.11. The differential equation
oY (t,u) = RY <\Ify (t,u),et'ﬁzw>

is called generalized Riccati equation.
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The following theorem was proved in |16]. It shows that regular
affine processes are semimartingales with characteristics that depend
in an affine way on the process itself. Furthermore, it shows, that by
assuming a semimartingale with certain characteristics one obtains a
process which is distributed like an affine process.

THEOREM 3.1.12. An affine process

(Mier, + ®oloc) = (((Wrew. + Zhier, ) » Be) e

with admissible parameters

(CL?a?b?/B?C?,y?m?/’L)

is a semimartingale. If p(t)(x, E) =1 for all (t,x) € Ry X E then for
anyr € B

(Meli<ra}) ep,
15 a semimartingale on

(27, (Frew. - P)

and has the characteristics (B, C,v) associated to truncation function
x from Equation 3.1.4 given by

(3.1.19) B, = /t (13 + BAS) ds,
0

t m
(3.1.20) C, = / <a—|— > aY) ds,
0 i=1

and

(3.1.21) v(dt,d€) = <m(d§)—|— Zm: qu,-(df)) dt

with the definitions

Eaz:b+éw5m@mmww,

Bri ifle #,for1<k<d.
If N = (Y’,Z’) 15 such that

</\t1{t<TA}> teR 4

R 5 e {ﬁm + (1= 0) [ oy Xk(E)e(dE), if L€ 1,
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15 an E-valued semimartingale on some filtered probability space

(Q/,]-"/, (7)) ,P’)
teR4

with P’ ()\6 = :p) = 1 and its characteristics (B/,C/,l//) are given by

Formulas 3.1.19, 3.1.20, and 3.1.21 where ()‘t)teRJr is replaced by (Xt)

then
/ / -1
P o (A ) _P,

teR

COROLLARY 3.1.13. Let f € B?(U) and p: U — R given by
p(u) 1= flul? + 1.
Assume that for any t € R,

uelU p(u) a

where W(t,u) is given by 3.1.17 and for some 6 > 0 there is C > 0 such
that for all0 <t <§

C, < C.

Then (foW(t,"));cr, is a generalized Feller semigroup on %°(U).

PROOF. (U(t,)),cg, fulfills the conditions of Proposition 2.3.54.
Proposition 7.4 (ii) in [16] states thatW(s, ) o U(¢,-) = V(s + ¢, -)
and from [16] Proposition 6.1 and Proposition 6.4 it follows that
(t,u) = U(t, u)
is continuous on Ry x U which implies that Property (iii) and (iv) in
Proposition 2.3.54 hold true. U

COROLLARY 3.1.14. Letn =0 and let f € B°(U) and p: U — R,
given by
pu) = lul* + 1.
Then (f o W(t,"))cp, € a generalized Feller semigroup on %°(U).
CHU) C D(A) and for f € CXHU) the generator is given by
Af(w) = (D) (u) - Rlu).
Let p € MP(U) be given by

wu(B) = /Bgu(u)d)\(u) for any B € B(U)
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for the Lebesgue measure X and g, € C*(U) and let

, d d
Ll 40 (s o) (0ir
< [ (1ulf + 1) gu(war)
for some C' > 0. Then, u € D(A’) and

A'(u)(B) = — /B div(R - g,) (u)d\(u) for any B € B(U).

(Q(t))ser, defined on D(A') C MP(U) as
Q(t) (1) = poty

15 a strongly continuous semigroup. Define
D(AT) = {u eDA): Aue D(A’)} .
If div(R - g,) € C*U) and
2 d d
){—(R- o (R -
L0 (G0 g (0 ) (A

< C’/u (lul> + 1) (R - g,) (w)dA(u)

for some C' > 0, then p € D(A") and the generator AT of (Q(t))
is given by the restriction of A’ to D(AT).

teR4

PROOF. By [16], Inequality 6.16 for all t € R
1w, w)” < [lu)®,

which implies that the conditions of Corollary 3.1.13 are satisfied. The
results for the generator follow from Proposition 2.3.58 and Corollary
2.3.57 and Proposition 2.3.59 yields the results for the adjoint semi-
group and its generator. U

3.2. Polynomial Processes

Polynomial processes were introduced in [12]|. This section mainly
follows their presentation.

Throughout this section, let E be a closed subspace of V' = R? for
some d € N and let the filtration (F;),cp, be right continuous.
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DEFINITION 3.2.1. Let

Pm =X E>x— Z Ozj:L‘j,A—>0 Osz]Rd

J,l3l<m

be the finite dimensional vector space of polynomials on E U {A} of

degree m. Here, j = (j1,...,Ja) € N¢, [j] = j1 + ... + jq and 29 =
- ay?t for k= (2, ..., 2q4) € E.

DEFINITION 3.2.2. Let m € N. If for any k£ € {0,...,m} and any
teR,

holds true, and if for any x € E and any f € P,

then ()‘t)teRJr is called m — polynomial process. If ()‘t)telR+ is an m-
polynomial process for any m € N, then it is called polynomial process.

We recall the definition of the extended generator (Definition 2.1.20).
Using semigroup theory, the following theorem is proved in [12]:

THEOREM 3.2.3. The following three statements are equivalent:
(i) (M)ier, % an m-polynomial process for some m € N.
(ii) For every k € {0,1,...m} there is a bounded linear map Ay on Py
such that for any t € R,

P(t)|73k = etAk'

(i1i) For any x € E, t € Ry and f € P,
B[ f] (z) < oo,
Po is in the domain of the extended generator G, and

M = f(N) - flz) - / GF(\)ds

s @ martingale with respect to (]—})teR+ and the probability measure P,.
Furthermore, for any k € {0, ..., m}
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REMARK 3.2.4. For an m-polynomial process (A¢),cp, , by Theo-
rem 3.2.3 and Proposition 2.3.94 for any f € P, there is a version of

the stochastic process <Mtf) that has cadlag paths (see Definition
teR4

2.2.5) and is a martingale with respect to (ft)t€R+ and the probability
measure P,. Since P, is finite dimensional this implies that for any
t € R, P,-almost surely

M/ = lim M/
s\(t,scQ

holds true for any f € P,,. Hence, for any t € R, P,-almost surely
(3.2.1) fxe) = (As)

for any f € P,,. Since P,, separates points, also P, -almost surely for
any t < R+

lim
s\, sEQf

>\t = lim )\5
s\(t,s€Q

(if not, then on some set with non-zero probability there would be some
i€{l,..,d}and t € R, such that

AL 2 lim sup)\’

s\, s€Q

or

A # loyins
where \! is the i-th component of )\; . But then some point-separating
g € P,, would yield a contradiction to Equation 3.2.1). One obtains
such a result also for the existence of left limits. Therefore, an m-
polynomial process (A¢),cp, has a cadlag modification and in the fol-
lowing when talking about m-polynomial processes we will always mean
one whose paths are cadlag.

Writing
p(, d€) = wipn(d€) + .. + Taptalde)

from Theorem 3.1.5 one can show as in Example 3.1 in [12]:

PROPOSITION 3.2.5. On a state space £ C R? , d > 2 that contains
d+ 1 elements x1, ..., xq4.1 such that for every j € {1,...,d + 1} the set

(ml —Tj, s Tj—1 — Xj, Tjp1 — Tjy ooy g1 — l’j)

is linearly independent an affine process (\;)
7=0,

ter, ST -polynomial if

/ €l m (d€) < oo,
ll€]1>1
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and for any 1 € {1,...,m}

/ €l i (d€) < oo,
l€]>1

PROOF. From Theorem 3.1.5 it follows that there is C' > 0 such
that

L1607 0 <€ 0+ tena )
R
The Proposition follows then from Theorem 2.15 in [12]. O

LEMMA 3.2.6. If O‘t)teRJr s an m-polynomial process and p € Py
k € {0,...,m} then there is a bounded linear map Ay on Py such that
forallz e F andt € Ry

P(t)p(x) = E; [p(A)] = (e p) () < el p(x)
holds true and E, [p(\)] < oo for allt € Ry and for all x € E.

PROOF. Follows directly from Theorem 3.2.3 (ii). O

PROPOSITION 3.2.7. Let (At),cp, be a polynomial process and for
some m € N let p € P,, be an admissible weight function on E. For
any f € Cy(E) and any t € Ry let P(t)f|, be continuous for any
R > 0. Then (At),cr, is a generalized Feller process on (E, p).

PROOF. We have to show that (M), is the stochastic process in
Theorem 2.3.65. By definition of the Markov process (\;)
t > s > 0 and any measurable map f: E — R,

teRy for any

(3.2.2) Ep, [f(A)|Fs] = P (t =) f(As)
holds true P, -almost surely and
P,o)\"' =v.

By Lemma 3.2.6

Ee, [f(A)[Fs] = P (t =) f(As)

holds true P, -almost surely for all f € #°(F) as well. In order to
show that ()‘t>teR+ is a generalized Feller process we still have to prove
that (P(t)),cg, 1 a generalized Feller semigroup. We fix some ¢ € Ry
and first show that f € %°(F) implies P (t) f € %#°(F). By Lemma
3.2.6 for any

feBr(E) = {f : E—R:supp(x)t|f(2)| < oo, f measurable}
el
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the map

T — /E f(y)p(t)(z, dy)

is well defined and
P (1) f(x) = / F)p(t) (=, dy)
< el £, pa).

Hence, P (t) is a linear bounded map from g’(E) to E/P(E) In order
to show P (t) f € #°(F) for any f € #°(E), by continuity of P (¢)
with respect to [|-|| ; and density of Cy(E) in #°(E) it is sufficient to
show that P (t) f € $°(F) holds true for any f € Cy(E). By Theorem
2.3.42 this is the case since P(t) f is clearly bounded and by assumption
P()f|k, is continuous for any R > 0.

Regarding the properties of generalized Feller semigroups in Defini-
tion 2.3.49, the properties P1 and P2 and positivity (P5) are clearly
satisfied for (P(t)),cg,. P4 holds true due to Lemma 3.2.6. Finally,
P3 is fulfilled since the paths of (\;),cp, are cadlag for all f € #°(E)
hence for all x € E we obtain by dominated convergence

lim P(t)f(2) = lim . [F(\)] = /(@)

Thus (P(1)).cg, is a generalized Feller semigroup and (A;),cp, Is a
generalized Feller process on (E, p). O

COROLLARY 3.2.8. On a state space E C R? , d > 2 that contains
d+ 1 elements x1,...,xq.1 such that for every j € {1,...,d+ 1} let
(At)ier, be an affine process with such that v = 0,

/ €l m (d€) < oo,
ll€]1>1

and for any 1 € {1,...,m}

/ €[ i (d€) < oo,
IEN1>1

Let p € P, be an admissible weight function on E. If for any f € Cy(F)
and any t € Ry P(1) [y, s continuous for any R > 0, then (At),ex,
is a generalized Feller process on (E, p).

PrOOF. Combine Proposition 3.2.7 and Proposition 3.2.5. 0



250 3. AFFINE AND POLYNOMIAL PROCESSES

3.3. Stochastic Representation of ODEs

We have seen in Theorem 3.1.8 and in Theorem 3.1.5 that for an
affine process

(e, » (Bo)oer)

with state space E the Fourier-Laplace transform is given by a solution
of the ordinary differential equation

oY (t,u) = RY <\I/y (t,u), et'ﬁzw> : U (0,u) =u,

U2 (tu) = e w.

In the following we turn this idea around and ask for which ordinary
differential equations we obtain a stochastic representation via affine
processes.

DEFINITION 3.3.1. Let
(i) E C R, d € N contain d+1 elements 1, ..., 7441 such that for every
je{l,..,d+ 1} the set
([L‘l — Ty, Tj—1 — Xy, Ljp1 — Ly ooy Tyl — .Z’j)
is linearly independent,

(ii) o be a signed d-dimensional vector valued measure on F such that
for all i € {1,...,d}

/E min (|(z, ), 1) (i (d, dy) + iy (der, dy)) < oo,

(iii) A be the affine process on E with respect to the characteristics
(B,0,v) with truncation function y and with

K (2,d€) = 210 (d€) + ... + Tapta(de)
and

bx) = / 3 (€) (g (dE) + o+ Tapralde))

as in Theorem 3.1.3, R
(iv) U C R, x C? be such that for (¢,u) C U for any x € E

E, [e*] = @ (t,u) e o),
and such that on U
OV (t,u) = R(V (t,u)) U (0,u) =u
0P (t,u) =@ (t,u) F(V(s,u))ds ¢ (0,u) =1,
where @, W, R, I’ are given by Equation 3.1.1 and Equation 3.1.2.
Then we call (E,L?, )\,,u> admissible setting.
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THEOREM 3.3.2. Let B, C RY and let Vi be an Ri-valued o-finite
measure on Ey and let v | l/im and V'™ be Ri—valued finite measures
on By. Let

poo= v — v+ iVim —
and
vi=vif+ v+ Z/im + v,
On E := FEy X Z X 7 define the measures

oY= vio ()

pre -— P’ o (jre)—l
_ . _ _ s
=t (1)

and

via the maps
J¥: E13x — (2,0,0) e E
je: By o2 — (2,1,0) € E,
i By 32— (2,0,1) €E
j™: By >x— (r,1,1) € E

Assume that (E,L?, ,(D,0,0)) is an admissible setting. Let
. 5
(0,log f,im, 5#) eu.

If e, € Ey for some h € {1,...,d}, then on exp (L?) the ordinary

differential equation

(3.3.1) oun(t) = up(?) /R (e = 1) pam)
u(0) = f,

with u™ = uf" - ... - w)* permits the stochastic representation

(332) un(8) = gy g [BRDIH im0 2]
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PROOF. By Theorem 3.1.5 for the affine process N = (N, Zy, Z)

E(e 0,0) |:€<10g(f)7Nt>+i7F,Z1,t+%ﬂ’ZQ,t]
hsYs

=& (1. ou(s). . ) ) (Pt 000)

where ® and U = (@y, @Z>, are given by Equation 3.1.3 and U :=
(@1, xifd) and UZ .— (xifdﬂ, @M). This yields ® = 1 and

B2 <t, (log(f), i, %ﬁ)) _ (m, %w) |

Moreover, with 7 = (1, ..., 74,0,0), . = (g1, ..., ftq) and R = (Ry, .., Rg12)
for any h € {1,...,d}

0,5, <t, (log(f), i, %m)

=Ry, (@y (t, (log(f),m, %ﬂ') U, %71’))

_ / (e<‘i/3’7n>+(i7r721>+<%7r,z2> _ 1) ﬂh(dn, dz, dZQ)
Rd+2

= /Rd (e@y’”) - 1) pn(dn).

We substitute,

un(t) := exp (W, (¢, (log(f), 1,i7))
and conclude. OJ

REMARK 3.3.3. The vector field on the right hand side in Equation
3.3.11is in general not locally Lipschitz continuous. Therefore, standard
theory involving the Picard-Lindel6f theorem can in general not be
applied. Furthermore, the right hand side in Equation 3.3.2 can easily
be simulated numerically.

COROLLARY 3.3.4. On the state space E = 7% x R x R with

<N> teR, = (Ve 21, O)f€R+
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let (E,Z;{, N, (1,0, 0)> be an admissible setting, where with multi index
k = (ki,...,kq) for any h € {1,...,d}

o0
D Jar] < oo,

Ik|=0
and
pr (dn, dzy, dzg) = Z }aﬁ‘ o (dn,dz,dz) .
k|=0 {keh,l{aﬁ<0},0}
Let

(0,log f,im, %7‘() el.

Then for any h € {1,...,d} on exp (LAl)

d

Nj,t iﬂ'th
ng e
Jj=1

uh(t> - E(ehvovo)

15 a stochastic representation of

(3.3.3) Oun(t) = | Y apu*(t)— 1],
|k|=0
with u* = uf* - ... usd.

ProoOF. Choose

Vf (dn) :Z al}él{al’;>0}5{k—eh} (dn)

k|=0

and
oo

Vr_e (dn) :Z al’zl{aﬁ<0}5{k—8h} (dn)
[k|=0
in Theorem 3.3.2. O






APPENDIX A
Appendix

A.1. Topology

DEFINITION A.1.1. Let X be a set and 7 a set of subsets of X.
Then 7 is called topology if
i) 0, X e,
(ii) an intersection of finitely many elements of 7 is in 7,
(iii) any union of elements of 7 is in 7.

A topological space is a pair (X, 7). For x € X aset U, C X
that contains x is called neighborhood of x if there is O € 7 such that
reOcCU,.

DEFINITION A.1.2. A base B C 7 of a topological space (X, 7) is
a family of subsets of X such that any element in 7 can be written as
the union of some elements in B . A local base of v € X is a family of
neighborhoods 4, of = such that for any neighborhood V' of x there is
some U € 4, such that U C V.

ExXAMPLE A.1.3. If X is a vector space with norm ||-|| (or a metric
space with metric d) then define for r > 0 the open balls

By(z) ={yeX: |ly—z|| <r} (Br(zx) ={ye X : dx,y) <r})
and
O:={0 C X : for any x € O there is r(z) > 0 such that B, (z) C O}
ThenQO is a topology.

DEFINITION A.1.4. A topological space (X, 7) is called metrizable
if there is a metric d on X such that the topology generated by d (see
Example A.1.3) coincides with 7.

The proof of the following Lemma roughly follows [40], Chapter 8.

LEMMA A.1.5. In a Hausdorff topological space compact sets are
closed.

255
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PROOF. Let X be a Hausdorff topological space and K C X be
compact. Without loss of generality assume X \ K # (. We have to
show that X \ K is open. Since X is Hausdorff for any z € X \ K and
any y € K there exist disjoint neighborhoods U,, > = and U,, > y.

Moreover,
U .

yeK
is an open cover of the compact set K hence a finite number of neigh-
borhoods suffices to cover K. Calling these points whose neighborhoods
suffice y; for i € {1,...,n} we obtain that the sets

U U..oK

and

is an open neighborhood of z in X \ K. As x € X \ K was arbitrary
such a neighborhood exists for all z € X \ K and it follows that X \ K
is open. ]

DEFINITION A.1.6. Let I be an index set and (£);),.; be a family
of sets. For J C J' C I the map

Hjl X Qz — X QL
ieJ’ ieJ
W' — W,
is called projection. For i € I the map Hﬂ} is written as II7" and for
J' =1 it is called coordinate map and simply written as II;.

DEFINITION A.1.7. (product topology)
Let (X, 7;).,.; be topological spaces,

X =[x

i€l

icl

and let (II;)
basis

;e1 be coordinate maps from Definition A.1.6. Then the

B .= {ﬂﬂjl(Oj) CX:05er;,JcClI ﬁnite}

jeJ
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defines the product topology 7 on X. By definition it is the coarsest
topology (the one with least open sets) such that all coordinate maps
are continuous.

LEMMA A.1.8. If (X, 7) is a topological space and U C X then
(U, my) is a topological space as well where 1y is defined as
w:={0NU: 0 erT}.
Ty 15 called subspace topology.

PRrROOF. This is shown by a simple verification of the three proper-
ties of a topology. 0

LEMMA A.1.9. Let (X, 7) be a topological space and let S C X be
equipped with the subspace topology Ts. Then a set K C S is compact
in(S,1s) if and only in it is compact in (X, T).

PROOF. Let K C S be compact in (X, 7) and let
or
iel
be a cover of K of sets that are open in (X,75). Then for each Of

there is a set O; € 7 such that OZ-S = 0; N S and by assumption there
is a finite cover

K C U Oij
je{ln}
of sets open in (X, 7). Hence,
S
Kc |J o
je{l,...,n}

is a finite cover of sets open in 7g and K is compact in (X, 7).
Let K C S be compact in (X, 7g). Then for any cover

o
iel
of sets open in (X, 7) the cover
Joins
iel
of sets open in (X, Tg) has a finite subcover, say
K C U Oz’j ns_s.

‘76{177'”}



258 A. APPENDIX

Hence
Kc |J o,
je{l,...,n}
is a finite cover of K of sets open in (X, 7) and K is compact in (X, 7).
U

PROPOSITION A.1.10. (|7|, Chapter IX, §1, Proposition 3 and Corol-
lary)

A topological space X is completely reqular if and only if it is home-
omorphic to a subspace of a compact Hausdorff space K. This means,
there exists a map i : X — K called embedding that is conltinuous and
that possesses an inverse on i(X) that is continuous when we equip
i(X) C K with the subspace topology form Lemma A.1.8 .

PROPOSITION A.1.11. A compact Hausdorff space is normal.

PROOF. Let X be a compact Hausdorff space and A, B C X be
closed, disjoint sets. Fix some x € A. Since X is Hausdorff for any
y € B there exist disjoint neighborhoods U, , of  and U, , of y.

Uv,.oB
yeB
is an open cover of B hence by compactness of B finitely many neigh-
borhoods suffice to cover B. Thus, there are y; € B, i € {1, ..., n}such
that:
V.= |J U,.DB

1e{1,..n}
The intersection B
U= () Usy
1€{1,..n}
is a neighborhood of z and by construction V, and U, are disjoint.
U U,D A
z€A

is an open cover of A and by compactness finitely many neighborhoods
suffice to cover A. Thus, there are x; € A, j € {1,...,m} such that:

Usp = |J Us, DA
je{l,..m}
By construction, Uy p and

Upa= [ Vi

je{l,..m}
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are disjoint open neighborhoods. 0

DEFINITION A.1.12. A topological space (X,7) is called locally
compact if each point x € X has a compact neighbourhood.

PROPOSITION A.1.13. (40|, Proposition 10.15) A topological space
that is locally compact and Hausdorff and possesses a base with just
countably many elements is metrizable.

DEFINITION A.1.14. A separable, topological space whose topology
is generated by a complete metric is called polish space.

PROPOSITION A.1.15. A topological space that is locally compact
and Hausdorff and possesses a base with just countably many elements
s polish.

PRrROOF. Combine [40], Proposition 13.17 and [40], Proposition 10.15.
U

DEFINITION A.1.16. (one-point-compactification) Let (X, 7) be a
topological space and co ¢ X. Then X* := X U {oo} equipped with
the topology

" =7U{X"\ A| A is closed and compact in (X, 7)}
is compact.

PROPOSITION A.1.17. ([40|, Proposition 8.12) (Tychonoff)
A non-empty product space

X =]]x
iel
s compact if and only if all X; are compact.

A.2. Analysis

LEMMA A.2.1. Let' Y be a topological space. The following proper-
ties hold true:

(1) A continuous function f: Y — R is upper and lower semicon-
tinuous.

(i) If f + Y — (0,00) is lower (upper) semicontinuous then g == *

~

is upper (lower) semicontinuous.
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(i) If f : Y — (0,00) and g : Y — (0,00) are lower (upper)
semicontinuous then also h := f - g is lower (upper) semicontinuous.

PROOF.
(i) Clear.
(ii) Let f: Y — (0,00) be lower semicontinuous and z € Y and ¢ > 0
arbitrary. Then for

f(:c)>5'—M>O

1+ ef(a)

there exists a neighborhood U, of = such that f(y) > f(x) — ¢ > 0 for
all y € U,. Therefore,

1 - 1
ORGED
1) 1
B (”f(x)—é) @)
1
_m—f‘é

for all y € U,. For f being upper semicontinuous, the assertion is
proved in the same way.

(iii) Let f: Y — (0,00) and g : Y — (0,00) be lower semicontinuous
and let x € Y and € > 0 be arbitrary. Then for § = > (0 there
exist neighborhoods U, and V, of x such that

fly) > f(x) =6

F@)+g()

for all y € U, and
9(y) > g(x) =4
for all y € V.. Then fory € U, NV,

h(y) = f(y) - 9(y)
> (f(z) —9) (9(x) —6)
= h(z) — ) + 9@ (f(x) +g(x))+4
> h(z) —e.

For f and g being upper semicontinuous, the assertion is proved in the
same way. U

DEFINITION A.2.2. Let X,Y be normed vector spaces and

f: X=>Y
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For x € X, f is said to be Fréchet dif ferentiable at z if there is a
linear bounded map
Df(x): X =Y

such that

Gt b~ f(@) ~ DE@hly

Al o 121l

If f is Fréchet differentiable at x for any x € X f it is simply called
Fréchet dif ferentiable.

THEOREM A.2.3. (|2], Theorem 7.6) Let E be a finite dimensional
Banach space, J CR and D C E open. Assume that

f:JxD—FE

s continuous and that for any x € D there is a neighbourhood in J x D
such that f s Lipschitz continuous on this neighbourhood. Then for
every (to,x9) € J X D there exists a unique solution

U(',to,xo) : J(to,ﬂfo) — D

=0.

of
dx
dt
for which J(to,xo) is the mazimal interval of existence. J(to,xo) is
open:

= f(t,z) and z(ty) = xo,

J(to, zo) = (™ (to, o), t" (to, 0))
and we either have
t™ =1t (to, x9) = inf J,
and
tT:=t"(tg, z9) = inf J,
or

lim min {dZSt (U(t,to,x’o),aD) ;)H} =0.

t—tt ’ HU(t,to,xQ

THEOREM A.2.4. (|21|Theorem 3.1) Let t € R, y,yo € RY, d € N
and f,n be Ri-valued. Let f(t,y,z) be continuous on an open (t,y, z)-
set B and possess continuous first order partials 88—;;, % with respect
to the components y and z.Then the unique solution

Yy = T](ta tO? Yo, Z)
of
y' = f(t,y,2) and y(to) = yo,

where 2 = (21, ..., 2¢) s a set of parameters, is of C'-class on its open
domain of definition.
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DEFINITION A.2.5. Let A be a K-vector space with a bilinear map
 AxXA— A
such that for any a,b,c € A and any p, A € K
a-(b+c)=a-b+a-c,
(b+c)-a=b-a+c-a
and

(Aa) - (ub) = (M) (b~ a).
Then A is called algebra.

THEOREM A.2.6. (Stone-Weierstrass on R, [30], VIII.4.7)
Let K be compact and A C C(K) be an algebra with respect to pointwise
multiplication . If
(i)l € A, and
(11)A separates points (which means that for any x,y € K, x # y there

is f € A such that f(z) # f(y) ),
then A is dense in C'(K) with respect to ||-]| ..

PROPOSITION A.2.7. (|4], Definition 1.1) Let U,V be K- wvector
spaces. There exists a K- vector space U®V denoted as tensor product
space and a map

p: UxV =>URV,

denoted as canonical bilinear map such that for any K- vector space
W and any bilinear map

b: UXxV —->W
there is a linear map L : U@V — W such that
Lo¢g=0b.

UxV2sw
o) 7
UV
URV and ¢ are unique up to a bijective linear map and u®v = ¢(u, v)
foranyue U, veV.
LEMMA A.2.8. (|4], Remark 17.12 (5))Let U,V be K- vector spaces.

Fvery x € U®V is given by x =), u; @ v; for some n € N and linear
i=1

..........



A.3. PROBABILITY THEORY 263

LEMMA A.2.9. (|4], Remark 1.2 (6))Let U, V,W be K- vector spaces.
Then

UQVeW =UV)eW=Ua(VaW).

A.3. Probability Theory
A.3.1. o-Algebras and Measures.

DEFINITION A.3.1. Let Q be some set and 2% its power set which is
the set of all subsets of 2. A family of sets ¥ C 2% is called o- algebra
on € if

i) Qex,

(ii) if £ € ¥ then Q\ F € 3, and

(iii) if F; € ¥ for any ¢ € N then |J E; € %.

ieN

If ¥ is a o-algebra on €, then the pair (£2,Y) is called measurable

space.

DEFINITION A.3.2. Let © be some set and 29 its power set and
G C 29 a family of subsets of Q). 0(G) is denotes the smallest o-algebra
such that G C ¢(Q2) and G is called generator of o(G).

LEMMA A.3.3. For g : (21,%1) — (22,%5) and a generator G of
Yy g is measurable if and only if g7'(A) € Xy for all A€ G.

PROOF. Define
M = {A €Yy: g '(A) € 21}.

One shows easily that this is a o-algebra. Since G C M this implies
Yo C M C . U

DEFINITION A.3.4. Let T be a topological space and O the set
of all open sets. Then B(T) := o(O) is called Borel o- algebra. If
not explicitly stated otherwise, on a topological space the o-algebra
considered is the Borel o-algebra.
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DEFINITION A.3.5. Let I be an index set, let (£;),., be a family
of sets and let J C J' C I. The family (IL;),., of coordinate maps (see
Definition A.1.6) is called coordinate process if €; = 2 for all i € I and
if (2, F) is a measurable space.

DEFINITION A.3.6. Let ¥; be a o-algebra on Q; and Y, be a o-
algebra on (25. A function

fil S)l — (22

is called ¥-Yo- measurable if for all E € Qs also f~Y(F) € Q. If it
is unambiguous which o-algebra is meant, the map is often just called
measurable . The smallest o-algebra on 2 with respect to which f is
measurable is denoted o(f). If I is a non-empty index and f; : € —
for alli € I then o (f;: i € I) is the smallest o-algebra on €; with
respect to which all f;, ¢ € I are measurable.

DEFINITION A.3.7. Let I be an index set and (2;, ;) be measurable
spaces for all 7 € I. Then
Q)Fi =0 (1): jeT)
iel
is defined as the smallest o-algebra on x {2; such that the coordinate
iel
maps H]I- 0 x Q; — (), are measurable for all j € 1. Written differently,
iel

QF=o ()" (B): EeFicl).

il

COROLLARY A.3.8. For anyi € I let G; C F; be a generator of F;.
Then

G = ((H{)*1 (E): E;€Gie I)
is a generator of @E
i€
PROOF. For any i € I by Lemma A.3.3 the projection
I (iéQ,-,a(g)) — (%, F)
is measurable. Hence

Q)7 co(9) c R)F.

el el
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LEMMA A.3.9. (|30],Corollary 1.97) (Doob-Dynkin lemma) Let X :
Q1 — Qy be a map between some non-empty set 1 and a measurable
space (Qo, F). Then f: Q — RU{—00, 00} is measurable with respect
to o(X) if and only if there is a F-measurable function

g: Qo — RU{—00,00}
such that f = g(X).

LEMMA A.3.10. ([30], Corollary 1.82) Let I be a non-empty index
set and (Ey1, &), (E2,&) and for all i € I also (2, F;) be measurable
spaces. For each i € I let Z; be a map from FEy to € such that & =
o(Z;:1€l). Then a map Y : Ey — Ej is & - & measurable if and
only if Z; oY is & — F; measurable for all 1 € I.

PROPOSITION A.3.11. (|30|, Proposition 1.23) B(R) is identical to
the o-algebra generated by the intervals (—oo,a), a € Q, or by the
intervals (—oo,al, a € Q, or by the intervals (a,00), a € Q or by the
intervals [a,00) , a € Q.

DEFINITION A.3.12. Let Q be some set and 2 its power set which
is the set of all subsets of Q. A family of sets D C 29 is called Dynkin-
system on §2 if

(i) QeD,

(ii) if A,B € D and A D B, then A\ B € D, and

(iii) if £; € D for any ¢ € N and if the sets (£;),.y are pairwise
disjoint, then |J E; € D.

i€EN

REMARK A.3.13. For G C 2 the smallest Dynkin system D on ()

such that G C D is denoted 4(G).

DEFINITION A.3.14. Let © be some set. P C 2%is called intersection
stable if A, B € P implies AN B € P.

LEMMA A.3.15. ([30], Proposition 1.19) (Dynkin’s -\ theorem) If
E C 2% is intersection stable, then
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LEMMA A.3.16. Let (21, F1), (Q2, F2), (E,E) be measurable spaces.
Let f: Q1 x Q9 = E be F1 ® Fo-E-measurable. For wy € O fixed
)
wy — f(wr,ws)
18 Fo-measurable.
PROOF. For the map
Gy @ Qo = Qp X
wy — (wy,ws)

i (A x Ay) € F, holds for any Ay € Fy, Ay € Fy, hence by Lemma
A.3.3 1, is measurable, thus f oi,,. O

LEMMA A.3.17. Let (2,%) be a measurable space and let
fn : (972) - (RU {_00700}7B(RU{_OO7OO}))7 neN
be a sequence of measurable functions. Then

mf fm sup fn, hm mf fn, limsupf,,

neN n—00

and , if it exists, lim f, are measurable.
n—oo

PROOF. We apply Lemma A.3.3 and obtain for any a € R

(;ngfn)_ —00,a) = [ J £, (~00.a) € 5y,

neN

hence, by Proposition A.3.11 indeed B(R U {—00,00}) C M and
inf f,

neN
is measurable. The same holds true for

sup f.
neN

By writing

liminf f,, = sup inf  f,
n—00 NeN o= N

n>N

we obtain measurability of

liminf f,
n—oo
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and analogously of

limsup f,.
n—oo

Finally, we observe, that if it exists,

lim f,, = limsupf, = liminff,.
n—00 n—00 n—00

U
DEFINITION A.3.18. Let (2, X) be a measurable space. A function
f: Q=R

is called simple function , if it can be written as

f :Z a;la,
=1

for some n € N, where o, ...,a, € R and Ay, ..., A, € ¥ are pairwise
disjoint.

PROPOSITION A.3.19. Let (2,%) be a measurable space and
f:Q—10,00]
measurable. Then there exists a sequence of non-negative simple func-

tions (fn),en such that
fon 7T

ProOOF. For n € N define

fn = min (2—n LGfj ,n) .

DEFINITION A.3.20. Let (€2,%) be a measurable space . A map
p: X — Ry U{oo} is called measure if it is o-additive which means,
that for all pairwise disjoint sets F1, Es, ... € X

H (UE) = ZM (E:) .

If additionally p(2) = 1 then u is called probability measure. If
pw(2) < oo then p is called finite. If there is a sequence (E;),.y C
YNsuch that 2 = |J E; and u(FE;) < oo the map is called o- finite. The

ieN
set of all probability measures on (€2, %) is denoted by M; (2,%). The
set of all o-finite measures on (€2, ) is called M, (€2, X).
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EXAMPLE A.3.21. On a measurable space (€2, X)) for w € €2 the map
dw 1 X —[0,1]

A 1 ifweAd
0 else

is a probability measure and called Dirac measure in w.

DEFINITION A.3.22. For a set €, a o-algebra ¥ C 2% and a measure
X — Ry U{oc} we call the triple (2, %, 1) measure space. If p is a
probability measure, then (€2, %, ) is called probability space.

DEFINITION A.3.23. Two measurable spaces (€2, %) and (€, %) are
called isomorphic if there is a measurable bijective map ¢ : € — 0,
called isomorphism, such that ¢! is measurable. Two measure spaces
(Q, %, p) and (2,3, 1) are called if (Q, X) and (€', ¥’) are isomorphic
and for their isomorphism ¢ the equation y' = p o o' holds true.

DEFINITION A.3.24. A measurable map between a probability space
(2, %, P) and a measurable space (E, &) is called random variable. If
we speak of random variables on (€, 3, IP) without specifying the space
E, then E = R is meant.

DEFINITION A.3.25. For a probability space (£2,%,P) and a real-
valued random variable X the probability measure Py := Po X! is
called distribution. For y =P o X1 we write

X ~ L.

EXAMPLE A.3.26. If y € R, 02 > 0 and X is a real-valued random
variable such that for any x € R

_(t=p?

22 dlt,

1 X
P <= [

then NV, ,2 :=Po X~1is called normal distribution with parameters ju
and o2.
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If X is Révalued, u € R? | ¥ is a positive definite d x d matrix and
for any x = (11, ...,z4) € R?

P(X < z) = det (27%)"1/? 7 (7 exp (; (t—p, 271t~ u)>> dtl) dtq,

— 00 — 00

with ¢ = (t1,...,t4) € R, then N, 5 :=Po X~ is called d-dimensional
normal distribution with parameters p and 3.

DEFINITION A.3.27. On Q a semiring is a system of sets S C
2%such that

WesS

(ii) if A,B € S, then A\ B is the finite union of pairwise disjoint
sets in S

(iii) if A, Be S, then ANB €S

DEFINITION A.3.28. Let S be a semiring on Q and p: S — [0, 00].
w is called o-subadditive if for any A, A, ..., A, € Ssuch that A C|J A;

=1

1 (A) SZ p(As) -

THEOREM A.3.29. (|30|, Proposition 1.53) (Caratheodory exten-
sion theorem)

Let S be a semiring on Q and p: S — [0,00] be an additive, o-
subadditive, o-finite map with (0) = 0. Then there exists a unique
extension of p to a measure fi on o (S) and i is o-finite.

DEFINITION A.3.30. A measure on (R" B(R")), n € N obtained
by extending the map

X }[ai,bi]) =(b—ay) ... (b, —ay)

for a; < b;, i € {1,...,n} by Theorem A.3.29 (and Proposition A.3.11
and Definition A.3.7) is called Lebesgue measure. If not stated oth-
erwise, as a measure on (R" B(R")) we always choose the Lebesgue
measure.
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PROPOSITION A.3.31. Let puy and ps be two (signed) measures on
the measurable space (2, %) that coincide on an intersection stable gen-
erator € of ¥ for which there are sets By Fy ... € €, E, C E, 41 for all
n € N, such that

Q=|JE,

neN

and py(Ey) = pe(E,) < 0o. Then py and ps coincide everywhere.
PROOF. For E € £ such that uy(E) = p2(E) < oo define
Dp:={AcX: mu(ENA) =pu(ENA}.

One can easily show that this is a Dynkin system and clearly £ C
Dg, hence §(E) C Dg. Therefore, by Proposition A.3.15

5(&) = (&) = 3.

Thus, Dp = ¥ and for any A € ¥ and any E € &€ such that p;(E) =
p2(E) < oo we obtain:

p(ENA) =pa(ENA).
In particular, for any A € X
i (A) = Tim g (B, 01 A) = Tim jio(E, 1 A) = pin(A).

DEFINITION A.3.32. Let (€, 3, ) be a measure space. A set N € ¥
such that u(N) = 0 is called null set. If for a second measure v on
(Q,%) any null set with respect to p is also a null set with respect to
v then v is said to be absolutely continuous with respect to p which is
denoted as v < p. If both v < pand v > p then p and v are called
equivalent. If for any null set NV also A € ¥ for any A C N then the
measure space (€2,3, u) is called complete. If ¥’ D ¥ is the smallest
o-algebra such that for a measure y/ on ¥ with /|y, = p the measure
space (€2,% 1) is complete then (2,3 1) is called completion of
(Q, %, p). If a property holds on the set Q\ N where N is a null set,
it is said to hold almost everywhere or almost surely in case if p is a
probability measure.

LEMMA A.3.33. The sum of two signed Radon measures is a signed
Radon measure.
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PROOF. Let py, ps be signed Radon measures on (€2,3). Then
w1+ po is clearly a signed measure on (2, 3) and |1 + pe| < |pa]+ | 2|
is locally finite. For any open set O C Qand ¢ > 0 there exists a
compact set K, C O such that

€2 |/~L1|(O\Ke) :MT<O\K€)+/~L1_ (O\Ke)
and
e > |2l (O\K2) = pg (O\ K2) + 13 (O\K.).
Thus,
2 > (i +h3) (O\NK:) + (ug + 42) (O\ K,
and the inequalities
(1 + 1) (O\NK2) > (p + o) (O \ K2),
and
(17 +413) (O\K2) > (1 + pa) ™ (O\ K2),
imply
|+ pia (O\ Ko) = (1 + pi2) " (O \ Ko) + (i + paa)~ (O\ K
< 2e.

Therefore, |u1 + 2| is inner regular and p; + po is a signed Radon
measure. U

PROPOSITION A.3.34. (|17], Chapter VIII, §1, Proposition 1.5) Let
(X, 7) be a topological space . A finite measure on the measurable space
(X,B(X)) is a Radon measure if for all open sets O C X

p(0)=sup{u(K): K C O, K compact} .

DEFINITION A.3.35. Let (2, X, P) be a probability space and I an
index set. A family of sets (4;),., C X is called independent if for any

finite J C I
ieJ ieJ
A family (B;),.; such that B; C X for any ¢ € I is called independent
if for any finite J C I and any family of sets (B;),., C X such that
B; € B; for any i € J

P (ﬂBz) =[[rB)
ieJ ieJ
holds true.

A family of random variables (X;),.; on (€2, 3, P) is called independent
if the family (o (X;)),c; is independent.
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DEFINITION A.3.36. Let Q # (0. A set O C Q is called Cy(9)-open,
if there exists a sequence (f,,),cy C Cp(€2) such that pointwise f,, * 1o.
The system of sets that are Cy,(€2)- open is called G (Cy(2)) .

In M.Schweizer’s lecture notes “Measure and Integration” (version
July 22, 2017) it is shown in Lemma IV.1.11:

LEMMA A.3.37. Let Q # 0 and let G (Cy(Q)) be the system of sets
that are Cy(2)- open. Then

o (G(Co(2))) = o (f] f € Co(Y)),

the smallest o-algebra such that all maps in Cy(S2) are measurable.

DEFINITION A.3.38. The smallest o-algebra such that all maps in
C(§2) are measurable i.e. o (C(Q)) is called Baire o-algebra and is
written By(€2).

REMARK A.3.39. Clearly, By(2) = o (Cy(£2)).
A.3.2. Integration and Conditional Expectation.

DEFINITION A.3.40. Let (€2, %, 1) be a measure space. For a mea-
surable function f: Q — [0, co] the integral

/ Jdu
Q
is defined as the supremum of

Z aift (A;)

over all positive simple functions

g :Z a;la, < f.
=1

DEFINITION A.3.41. Let (£, X, 1) be a measure space. For a mea-
surable function f : Q@ — Rand f* := max (f,0) and f~ := max (—f,0)
the integral is defined as

/Q fp = /Q Fdy - /Q fdu

provided not both [, f*du and [, f~du are infinity.
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For a signed measure p on (€2,%) and a measurable function f :
Q — R such that [, fd|u| < co the integral is defined as

ijuzéfm+—éfw—

If 14 is a probability measure, then

B(f):= | fdn

is called expected value.

DEFINITION A.3.42. Let (€2,%, 1) be a measure space. The set of
all measurable functions f: Q@ — R U {—o00, 00} such that

[ 1l < o

is called £' (92,3, 1) . Any element f € £ (Q, 3, u) is called integrable.
If f2e€L£Y(Q,%, 1), then f is called square — integrable.

THEOREM A.3.43. (|23], Theorem 12.34) Let (Q, %, 1) be a measure
space and f € LY(Q, %, u). Then for every € > 0 there exists § > 0
such that for any A € ¥ with u(A) < ¢

QZUMu<a

LEMMA A.3.44. Let (Q,%,P) be a probability space and (E1, &),
(Ey, &) measurable. Let XY € L' (Q,%,P) be independent random
variable that take values in (Ey, &) and (Eq, &). If f 1 (B, E2) — Ry
15 measurable then

mewnzé [ 1w Patin) )
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PROOF. For F} € & and F; € & by Proposition A.3.45
E[1pxp(X,Y)] =E[1g (X)1g(Y))
=E[1r (X)]E[1p(Y)]

— /E2 (/E1 1p (x)PX(da:)) g, (y) Py (dy)
— /El /52 Ly s, (%, y) Px (dz) Py (dy).

holds true. Hence the family D of sets{B € & ® &} such that

E[15(X,Y)] = /E /E s, y) Px (d) Py (dy)

holds true contains the (intersection stable) generator of & ® & (see
Corollary A.3.8) and is a Dynkin system as one can easily show. Thus,
by Lemma A.3.15 D = & ® &. Linearity of the integral and the ex-
pected value and Proposition A.3.19 and monotone convergence (The-
orem A.3.57) yield the statement of the Lemma. O

PROPOSITION A.3.45. (|30, Proposition 5.4) Let (Q2, X, P) be a prob-
ability space. If XY € LY (Q,%,P) are independent then X - Y €
LY (2,2, P) and

E[XY]=E[X]E[Y].
DEFINITION A.3.46. If a measure p on the measurable space (€2, 3)

is given by the measure v and the measurable map f : (2 — R, by the
relation

pu(A) = / f(z)v(dx) for any A € X
Q
then f is called density of u with respect to v.

THEOREM A.3.47. (Radon-Nikodym, [30], Corollary 7.34)

For o-finite measures v and v on the measurable space (2,%) v has
a density with respect to p if and only if v is absolutely continuous with
respect to (.

DEFINITION A.3.48. Let (2, %, 1) be a o -finite measure space and
E a topological space with Borel o- algebra B (E). Let fi, fo,...: Q —
E be a sequence of measurable maps. We say that

fn= f
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converges p-almost everywhere if there is a null set N € ¥ such that
for any w € Q\ N

fulw) = f(w).

DEFINITION A.3.49. Let (2,3, 1) be a o -finite measure space and
(E,d) a metric space with Borel o- algebra B (E). Let fi, fa,...: Q2 —
E be a sequence of measurable maps. We say that

fn—= f

converges in p-probability if for any £ > 0 and A € ¥ such that u(A) <
00

Tim p ({d (fn, f) > €} N A) = 0.

REMARK A.3.50. Let (£2,%, 1) be a o -finite measure space and
(E,d) a metric space with Borel o- algebra B (E). Let fi, fa,...: Q —
E be a sequence of measurable maps and let f,g : 2 — E be mea-
surable. If f, — f and f, — g converge in u-probability then for any
A € ¥ such that u(A) < oo and any n € N and any € > 0

n({d(g, f) >etnA) <p({d(g, fn) > /2t NA)+ p({d(fn, f) > /2} N A).
The right hand side converges to 0. Choosing a sequence (A,), .y C

of sets of finite mass such that A,, — Q we conclude that the limit with
respect to convergence in u-probability is u-almost everywhere unique.

DEFINITION A.3.51. Let E be a metric space and B(FE) its Borel o-
algebra. Let X, X, X, ... be random variables on the probability space
(Q, F,P) that take values in (E,B(F)). Then X,, — X converges in
law if for all h € Cy(F)

E[h(X,)] = E[R(X)].

PROPOSITION A.3.52. (|26], Lemma 3.7)
Let E be a metric space and B(FE) its Borel o-algebra. Let X, X1, X, ...
be random wvariables on the probability space (0, F,P) that take values
in (E,B(E)). Then
X,— X
in P-probability implies
X, > X
in law. If X is P-almost surely constant, then also the converse is true.
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PROPOSITION A.3.53. (|30|, Corollary 6.13) Let (2,3, 1) be a mea-
sure space and (F,d) a separable metric space with Borel o- algebra
B (E). Let fi, fa,...: Q — E be a sequence of measurable maps. Then

Jn= f
convergences in p-probability iof and only if there exists a subsequence
oty frgy oo 0 0 = E thatl converges p-almost everywhere to f.

DEFINITION A.3.54. ([30], Definition 6.16) Let (£2, %, 1) be a mea-
sure space. The family F C L' (Q, %, u) is called uniformly integrable
if

it sup [ (7] =) dp =0

0<g<LY Q) feF

PROPOSITION A.3.55. ([30|, Proposition 6.17) Let (2,5, 1) be a
measure space and let y be finite. Then the family F C L' (Q, %, i) s
uniformly integrable

(i) if
inf sup / (1] - a) du =0,

0<a<00f€]:
(i1) or if

inf sup/ |fldu = 0.
0<a<OOf€]: {‘f|>(l}

PROPOSITION A.3.56. (|30|, Proposition 6.25) Let (2,3, 1) be a
measure space and (fp), ey C L' (2,5, 1). Then the following state-

ments are equivalent:
(i) There is f € L* (Q, 3, u) such that

Jm (= fllzs o =0

(i) (fn)pen @8 uniformly integrable and there is a measurable map

f such that
lim f,=f
n—aoo
in p-probability.
The limits in (i) and (i) coincide.

THEOREM A.3.57. (Monotone Convergence Theorem, [30], Propo-
sition 4.20)
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Let (Q,%, 1) be a measure space, and

(fn)neN c Lt (0,3, )

and
f: Q= [—o00,00]

be measurable. Let f, 7 f almost everywhere for n — oo. Then
lim /fnd,u:/fd,u.
n—oo

THEOREM A.3.58. (Dominated Convergence Theorem, [30], Corol-
lary 6.26)

Let (Q,%, 1) be a measure space, f measurable and

(fn)neN C [’1 (Q7 27/“1“)

such that almost everywhere f,, — f. If there exists 0 < g € L' (2,3, p)
such that | f,| < g almost everywhere for all n € N then

i [ 14, = Sl du=0
e Ja
and f € LY (Q, 3, 1).
The proof of the next Lemma follows [30], Lemma 14.20.
LEMMA A.3.59. Let k be a transition kernel on (E,&) and
f: ExXE—|0,00]
be measurable with respect to £ ® E. Then

£ / F (@, y)n(z, dy)

18 E-measurable .

PROOF. The integral is defined because by Lemma A.3.16 for all
x € E the map y — f(z,y) is measurable. For A € £ and B € £ and
f = 14« we obtain measurability for

r — /f(a:,y)/i(a:,dy) = lak(x, B).

Defining D as the set of sets A € € ® & such that @ — [14k(x, dy) is
E

measurable we show easily that D is a Dynkin system. Since D contains
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the intersection stable generator of £ ® £ we obtain by Lemma A.3.15
that D = & ® £. Therefore

- / [, y)n(z, dy)

is measurable for all simple functions ( see Definition A.3.18). Since
any jointly measurable function

f: ExXE—|0,00]

can be written as the limit of simple functions (Proposition A.3.19),
the statement of the lemma follows from the fact, that the limit of
measurable functions is measurable (Lemma A.3.17). O

LEMMA A.3.60. If
k1t Ex & —[0,00]

and
K}QIEXS%[0,00]

are transition kernels on (E,E), then
i A) = [ raly. A) - (o dy)

E

is a transition kernel on (E,E).

PROOF. By Lemma A.3.59 for every A € £ the map

v [raly. ) ma(o.dy)
E
is measurable and by monotone convergence (Theorem A.3.57)

A— /Iig(y,A) k1 (z, dy)

is a measure on (F,E). O

DEFINITION A.3.61. Let (2,3, P) be a probability space, let X,Y
be two random variables and let /' C £be a sub o-algebra. Let X €
L1(Q,%,P) or X > 0. Then Y is called conditional expectation of X
with respect to F if Y is F- measurable and for each A € F

E[X - -14]=E[Y - 14].
In this case, it is written

Y =E[X|F].
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If X = 1g for some E € 3, then Y ,the conditional expectation of X
with respect to F , is called conditional probability of E with respect
to F and is written

Y =P[E|F].

PROPOSITION A.3.62. (|30|, Proposition 8.12) On a measure space
(2,2, P), where X € L' (Q,X,P) or X > 0. and F C +is a sub o-
algebra Y = E[X|F] exists and if Y = E[X|F] holds as well then
Y = Y'P-almost surely.

PROPOSITION A.3.63. (|30]|, Proposition 8.14) Let (Q,3,P) be a
probability space, let XY € LY (Q, 2, P) or X >0 andlet GC F CX
be o-algebras. Then

(i)
E[E[X]|F]IG] =E[X]|4],
(ii) for o(X) independent of F
E[X]F]=E[X],

(ii1) for Y measurable with respect to F and E[|XY|] < 0o
E[XY|F|=YE[X|F],

PROOF. (i) Let A € G. Then A € F and by definition

El4-E[X|F]|=E[la-X]=E[1l4-E[X|F]].
(ii) Clearly E[X] is measurable with respect to F and X and 14
are independent. Thus, by Proposition A.3.45 for any A € F

E[X14] =E[X]E[14] = E[E[X]14].
(iii) (sketch) Assume Y, X > 0 and approximate Y by
Y,=2"|2"Y].
Then by monotone convergence (Theorem A.3.57) for any A € F
lim E[14Y,E [X| F]] = E[14YE[X] F]]
and

lim E [14Y,E [X| F]] = E[14XY].

n—o0
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For the general case set Y ;=Y " — Y~ and X := X — X", O

LEMMA A.3.64. Let (Q, F,P) be a probability space and let X,Y
be random variables with measurable state space (F,E). Let X be in-
dependent of F and Y be measurable with respect to F. Then for the
measurable positive or bounded map g: E x E — R

Elg(X, V)| F] = E[g(X,Y)[o (Y)].
PROOF. For A, B € £ clearly
E[14(X)1p(Y)| F] = E[14(X)] 15(Y)
= E[14(X)15(Y)[o(Y)].
Furthermore, the set D C £ ® &£ such that for D € D the equation
E[1p(X,Y)[F] = E[1p(X,Y)[o(Y)]

holds true is a Dynkin system. Since by the first step, it contains
the generator of the o-algebra £ ® £, by Lemma A.3.15 it contains
all of £ ® £. Then the assertion of this Lemma follows from Propo-
sition A.3.19 and monotone convergence for conditional expectations
(see Proposition A.3.65). O

PROPOSITION A.3.65. (monotone convergence) On a probability
space (2,5, P) let (X,,),cy be a monotonically increasing sequence of
non-negative random variables such that

lim X, =X
n—oo

converges P-almost surely. Then
limE[X,|F]=E[X|F]
n—oo

P-almost surely.

PROOF. For any A € F by monotonically of the conditional expec-
tation and monotone convergence (see Theorem A.3.57)

E|limE[X,| F]14] = imE[E[X,|F] 14]

n—o0 n—o0

= Im E [X,1,]

n—o0

—E[X14].
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PROPOSITION A.3.66. (dominated convergence, |30|, Proposition
8.14) On a probability space (0,2, P) let Y € L1 (Q, 3, P) be a positive
random variable and (Xy,), .y a sequence of random variables such that
| X,| <Y foralln e N . If

lim X,, = X,

n—oo

P-almost surely then for sub o-algebra F C X
ILmE [ X, | Fl=E[X|F]

holds true almost surely and in L' (Q, 2, P).

DEFINITION A.3.67. (Regular conditional probability) Let (E, &)
be a measurable space, (2, A, P) a probability space, and F C A a sub-
o-algebra. Let X,Y be a random variables on (2, .4, P) with values in
(E,E). If kx r is a transition probability (see 2.1.1) from (€2, F) to
(E,E) such that for any F' € F and any B € £

E[lB(X)lp]:/S;KX7_7:(W,B)1F(W)P(CZW),

then rky r is called regular conditional probability. Furthermore, with
Lemma A.3.9 for any B € &£ define the o(Y')- measurable map

y — kxy(y, B)
such that
rxy (Y (w), B) = kxov)(w, B)
for any w € Q2.

PROPOSITION A.3.68. ([30]|, Proposition 8.36) Let B € B(R) be
a Borel set and let (E,E) be a measurable space that is isomorphic
to (B,B(B)) (see Definition A.3.23). Furthermore, let (2, A, P) be a
probability space, and F C A a sub-o-algebra and let X be a random
variable on (2, A, P) with values in (E, E). Then the Regular conditional
probability kKx r exists.

PROPOSITION A.3.69. (|30], Proposition 8.37) Let B € B(R) be
a Borel set, let (E,E) be a polish space, let (2, A,P) be a probability
space, and F C A a sub-c-algebra and let X be a random variable on
(Q, A,P) with values in (E,E). Let f : E — R be measurable and
E[lf(X)|] < oo. Then, for P-almost all w €

(/0] 7] @) = [ f@hxr(o,da).
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LEMMA A.3.70. Let (Q, A, P) be a probability space, (E,E) be a
measurable space and X,Y be independent (E,E)-valued random vari-
ables on (Q, A,P). Then for Z := X +Y and any B € £

HZ’X(ZL’,B> = Py(B — {L’) = Py_;,_gC(B)

PROOF. Due to independence of X and Y, by Lemma A.3.44 for
any F' € £ and any B € &

E[1p(X + Y)1p(X)] = /E ( /E Lp(z + y)lp(x)PX(da;)) Py (dy)

-/ ( / 1B_z<y>py<dy>) 1p(2) Py (dz))
:/E(py(B—x))lF(:c)Px(dx))

DEFINITION A.3.71. (convex set)
In a K-vector space V a subset C' C V is called convex if for any
A€ [0,1] and any ¢y, € C

Acp + (1= AN e € C

DEFINITION A.3.72. (convex map)
Let C be a convex set. Then a map f : C — R is called convex
map if for any A € [0,1] and any ¢1, ¢ € C

fQa+ (1 =A)c) <Af(ar) +(1—=A) f(ca).
A map f: C — R is called concave if —f is convex.

THEOREM A.3.73. (Jensen’s Inequality) (|30], Proposition 7.9)

Let I C R be an interval let X be a random variable that takes
values in I and let E[|X|] < oco. If ¢ is convez, then E[p(X)™] < 0o
and

¢ (E[X]) <E[p(X)].

DEFINITION A.3.74. Let E be a metric space, £ its Borel o-algebra
and i, i1, g, ... finite measures on (E,&). The sequence (i), oy iS

said to converge weakly to pu if for all continuous bounded functions
f e Cy(E)

n—00
E

lim [ f(@)dpa(z) = [ fa)dula)
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A.3.3. Stochastic Processes.

DEFINITION A.3.75. Let (2, F) be a measurable space and let I C
R. Let (F;),.; be a family of o-algebras such that for all s,¢ € I with
s<t

tel

Fs CF CF.
Then (F;),c; is called filtration. If (2, F, 1) is a measure (probability)
space, then (Q,F, (F),;.p) is called filtered measure (probability)

space. If
Fo= ()&

t>s,tel
for all s € I then the filtration is called right continuous. If

(0
s<t,sel

for all t € I then the filtration is called left continuous.

DEFINITION A.3.76. Given a filtration (F;),r, on a measurable
space (€0, F) by setting F;, := (| Fs one can define the right continuous

s>t

enlargement (}}Jr)teﬂh of (ft>te]R+'

DEFINITION A.3.77. (Completion of a filtration with respect to a
family of measures)

Let <Q, (Qt)t€R+> be a filtered measurable space and

goo:J Ugt

teRy

Let (1),erq be a family of measures on (€2, G) . For every v € M de-
fine (92, FZ, 1.,) as the completion (see Definition A.3.32) of (Q, G, 1)

and set
Foo = [ F

veM
Furthermore, call N'” the set of all u/-null sets on FZ and set

F/ =0 (N"UG,)

Fo= (7.
veM
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Then we call (Fy),cp, the completion of the filtration (Gi),cp, with
respect to the measure yu, and (]—"t)te]R+ the completion of the filtration
(Gt) e, with respect to the family of measures (tu),epq-

LEMMA A.3.78. (|26], Lemma 6.8) Let (Q,]—", (Ft)ter, ,u) be a

filtered measure space. Then for (F'),cp, , the completion of (F)
with respect to u, and for ((Fiy)") the completion of (Fiy)
with respect to u, for any t € R,

(_7:t+)f‘:m(]:5)_

s>t

teRy

t€R+ 7 t€R+

DEFINITION A.3.79. Let (£, F,P) be a probability space, I C R
and X = (X;),.; a family of random variables that take values in a
measure space (F,E) called state space. Then X is called stochastic
process. For each fixed w € Q) the map

I —-F
t— Xt(CU)
is called path.

DEFINITION A.3.80. Let I C R and let (X;),., be a stochastic
process on a probability space (Q2, F,P). Then the filtration (F;)
defined as

tel

ft =0 ((Xs)sﬁt,861>
is called natural filtration.

DEFINITION A.3.81.

A stochastic process X = (X),.; is said to have independent
increments if for any n € N and 0 < t; <ty < ... < t, the family
(Xti - Xti—l)ie{l ..... n}

is independent (see Definition A.3.35).

DEFINITION A.3.82. A real-valued stochastic process X = (X;)
is said to have stationary increments if for any r, sy, 59 €

X82+T - st ~ XS1+T - Xsl'

tel
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DEFINITION A.3.83. (Brownian motion, |30|, Definition 21.8)
Let <Q,]—", (.E)teR+ ,]P’) be a filtered probability space. A real-

valued, adapted stochastic process W = (I/Vt)te]R+ is called Brownian
motion if

(i) Wo =0,

(ii) W has stationary and independent increments (See Definition A.3.82
and A.3.81 ),

(iii) for any ¢t > 0 Wy ~ N, (see Example A.3.26),

(iv) the paths are continuous P- almost surely.

An Revalued adapted stochastic process W = (We)ier, is called
d-dimensional Browninan motion with initial distribution u if for any
B € B(R?)

P<W0 € B) = M<B>7
for any ¢t > s > 0 W, — W5 ~ Ny , and the other properties of the
one-dimensional case hold accordingly.

THEOREM A.3.84. (ezistence Brownian motion, |30|, Proposition
21.9)

There exists a probability space (Q, F,P) and a Brownian motion
W = (Wi),cg, onit.

LEMMA A.3.85. For Z ~ N (a,b)
E [oxp (2)] = /27

PROOF.

E [exp (Z)] :/ e~ T d

o0

o0 (z+b27a)27(b27a)2+a2
= / 6_ 2b2 dl’
—00
— M?/2-a

O

DEFINITION A.3.86. Let (2, F,[P) be a probability space and X =
(Xt)er, and Y = (Y3),cp, be stochastic processes. X and Y are called
modifications if P(X; =Y;) = 1 for any t € R, and X and Y are called
indistinguishable if on a set ' C Q with P(£)) = 1 the paths t — X;(w)
and t — Y;(w) are equal.
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DEFINITION A.3.87. Let (Q,]—", (Ft)ter, ,IP’) be a filtered proba-

bility space. A stochastic process X is called adapted with respect to
(F2)ier, if X is Fi-measurable for any ¢ € R..

DEFINITION A.3.88. A stochastic process (X),cp, on (2, F,P) is
called measurable if the map

Ry xQ—F
(t,w) = Xy(w)
is measurable with respect to the product o-algebra B (R;) ® F.

DEFINITION A.3.89. A stochastic process (X;),cp, on the filtered

probability space (Q, F, (}"t)teR+ ,]P’) is called progressively measurable
with respect to (Ft)ep, if for any ¢ >0
0,{] x Q2 — E
(s,w) = Xs(w)

is B (]0,t]) ® Fy-measurable.

Clearly, any progressively measurable stochastic process is measur-
able.

PROPOSITION A.3.90. (|27]Proposition 1.13) If a stochastic process
X on the filtered probability space (Q,]:, (]:t)teﬂh ,IF’) is adapted and
every path is left continuous or every path is right continuous, then X

is progresswely measurable with respect to (.7-})t€R+ .

DEFINITION A.3.91. Let I C R and let (Q,F,(F),.;,P) be a
filtered probability space. A stochastic process (X;),.; on (£, F) is
called submartingale with respect to (F),., if it is adapted to (F),.;.
if X, € £1(Q, F,P) for all t € I and if for any s,t € I such that s > ¢

E[X | F] > X;.
It is called supermartingale with respect to (F),c; if instead the in-
equality

E[X| F] < X3,
holds and martingale with respect to (F;),c; if it is both supermartin-

gale and submartingale with respect to (F),; -
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PROPOSITION A.3.92. Let (Wt)teR+ be the Brownian motion on the
probability space (2, F,P) and (Ft),cp, be its natural filtration defined
as Fr =0 ((WS>0§s§t) . Then

(i)

(W2)

teR,

is a martingale with respect to (F)

(i1)

teRy *

(o ((-5) ).

is a martingale with respect to (J’-})te]R+ .

PROOF. (i) By construction (W;),cp, is adapted, (W,)* € L' (P)
implies W; € L' (P) and for any 0 < s < ¢ independent increments
of the Brownian motion imply that o (W; — W) is independent of F;.
Hence by Proposition A.3.63

E[Wt|F5}:E[Wt—WS+WS|FS]
= E[W, — W,] + W,
= W.

(ii) By Lemma A.3.85 for any t € R,

[on((5)e-om)

As argued in (i) for any 0 < s < t o (W, — W) is independent of F;
and by Proposition A.3.63

oo ()10

Thus, by Lemma A.3.85

| <o

E} — Efexp (o (W, — W,))] exp ((-"j) t+ aWS) :

E [exp (o (W, — W))] = e (t=9)/2

(o ((-5) ).

is a martingale with respect to (F;)

and

teERy "
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THEOREM A.3.93. (|35|,Theorem I11.2.3) Let I = {0,—1,-2,...}
and let (Q, F, (Fy) P) be a filtered probability space. Let (X,,)

nel nel

be a submartingale with respect to (F,),c;. Then
lim X,
n\(—oo
converges P-almost surely. If additionally supE [| X, |] < oo, then (X,),c;
nel
s uniformly integrable,
lim X,
n\—0o0

converges in L' (0, F,P) and for every m € I
lim X, < B[ Xo| Fo]

with
Fono = ﬂ]:n.

nel

PROPOSITION A.3.94. (|30|,Proposition 11.7) Let
(2 F (Fa)ners - )

be a filtered probability space and let (X,), cy be a uniformly integrable
(see Definition A.3.54) submartingale with respect to (Fp),cy- Then
there exists a random wvariable X, that is measurable with respect to

Foo =0 ( U Fn> and
neN
Xp = X
P-almost surely and with respect to L' (Q, F,P). Furthermore,
Xn <E[ Xl Fl

for any n € N.

PROPOSITION A.3.95. ([35],Corollary 11.2.4) Let (X,), oy be a se-
quence of random variables on the probability space (), F,P) such that
tlim X, converges P-almost surely to the random variable X. Let Y be
— 00

a random variable such that E[|Y|] < oo and |X,| <Y for alln € N.
Let (Fp),en be a decreasing sequence of o-algebras such that F,, C F
for any n € N. Then

E|X

ﬂ]—"n] = lim [X,|F,]
n—oo
neN

P-almost surely.
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THEOREM A.3.96. (|35|, Theorem I1.2.5) Let (Q,]—“, (F)es, ,IP)

be a filtered probability space and let (X;) be a submartingale with

teRL

respect to (]:t)teﬂh' Then P-almost everywhere for any t € Ry
lim X,
rNt, reQ
exists and for any t > 0
lim X,
r t,reQ

ex1sts.

DEFINITION A.3.97. Let (2, F) be a measurable space and let
(X¢) be a stochastic process. For any t € R, set

teR
Xy = limsupX,,
rNt, reQ
and for any ¢ > 0 set
X = lim X,.
r 't reQ

PROPOSITION A.3.98. ([35], Proposition I1.2.6) Let

<Q, F o (F)rer, ,]P>>

be a filtered probability space and let (Xt)telR+ be a submartingale with
respect 10 (Fi)ye, - IfE[|Xi]] < oo for anyt € Ry, then E[[ X1 ]] < oo
for any t € Ry, and almost surely

X, <E[X..|F].

Moreover, (Xi+),cr, 15 a submartingale with respect to (Fii)yep, (see
Definition A.3.76).
If additionally, the map

t — E[X{]
15 right continuous, then
Xt = E[Xt+’ft] :
If (Xt)t€R+ is a martingale with respect to (Ft)t€R+, then (Xiy) is
a martingale with respect to (Fy)

teRy
teRy *
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PROPOSITION A.3.99. (|35|,Proposition 11.2.7) Let

<Q, Fo(F)rer, ,]P’)

be a filtered probability space and let (Xt>te]R+ be a submartingale with
respect 1o (Fi) e, - I E[[X:|] < oo foranyt € Ry, then E[|X;_|] < oo
for any t € Ry, and almost surely

Xi- <E[Xy| F].

(Xi-)ier, 15 a submartingale with respect to (Fi- ), (see Definition
A.8.76).
If additionally, the map

t — E[X{]
15 left continuous, then
th == ]E [Xt| ./T"tf] .

If (Xt)ier, is a martingale with respect to (Fy),cp, , then (Xi-)
a martingale with respect to (Fi_)

teR4 5

teRy *

PROPOSITION A.3.100. (35|, Theorem I11.2.9) Let (Q0, F,IP) be a fil-
tered probability space and let (‘Ft)teR+ be a right continuous and com-
plete filtration on it. Let (X;),.x be a submartingale with respect to

(Fi)ier, - 1
t — E[Xy]
is right-continuous, then (X;),.gp has a cadlag version that is a sub-

martingale with respect to (‘E>t€R+'

DEFINITION A.3.101. Let <Q,}", (Ft)ter, ,]P’> be a filtered proba-
bility space. A random variable 7: 2 — R, is called stopping time if
for any t € R,

{r <t} eF.
The o-algebra
Fr={AeF: An{r <t} e FRforallt e R}

is called the o-algebra of events determined prior to the stopping time
T.
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DEFINITION. Let T be an index set, and (£2;, F;) be measurable
spaces for all ¢ € T. A family of probability measures (Pr)pcr fnite
such that any Pr for F' C T finite is defined on the measurable space

<té<FQt’ ®]:t>

teF

is called projective family if for all finite K C L C T
Pyo (M%)~ = P,
where

L . Q0 F 0 F,
K (té: t7® t) — <texK t,® t)

teL teK

is the projection from Definition A.3.5.

THEOREM A.3.102. (Kolmogorov extension theorem, |34|, Theorem
2.19)

Let T # () be an index set, for any t € T let Q, be a polish space,
and let (PF)FcT, finite D€ @ projective family of probability measures on

(tgFQt, X)B (Qt)> :

tel

Then there exists a unique probability measure Pon

Q;, (X)B (2
(0 ®s00)
such that for all ' C T, finite and

Ae @B ()

tel

P ((11F) 7" (4)) = Pr(A),

where 1L is the projection from Definition A.3.5.

Theorem A.3.102 can be generalized using compact classes.
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DEFINITION A.3.103. A family C of subsets of a space X is called
compact class if for any sequence (Cy,),.y C C such that the inter-

section [ C, is empty, already some finite intersection [ C; is
neN 1€1, finite
empty.

THEOREM A.3.104. (Generalized Kolmogorov Extension Theorem,
|1], Theorem 15.26)
Let T # 0 be an index set and let

(Qt7 Et)

be a family of measurable spaces and for each finite subset F' C T let
Pr be a probability measure on

QF: XQt

teT

equipped with the product o-algebra
EF = ® Et'

teF

If {Pr} pep is a projective family of probability measures and if for each
t € T there is a compact class (see Definition A.3.103) C, € ¥, such
that for each A€,

P,(A) =sup{FP,(C): C C Aand C € C;},

then there is a unique probability measure P on

QT = X Qt
te’T
and
ET - ® Et'
teT

such that for all F C T, finite and A € Xp
P ((11F) 7" (4)) = Pr(4),
where 1% is the projection from Definition A.3.5.
A.3.4. Stochastic integration. Let (Q,]—", (]—",5)1@R+ ,IP’) be a fil-

tered probability space.

DEFINITION A.3.105. The space of (F3),cp, -martingales (My),cp,

at My = 0 such that M, € L? for any t € R, is denoted by .Z.

If additionally all paths are continuous the set is denoted by.Z . For

M € Ay we set | M|, =2 27" ([[My]| 2 A 1) and define the metric
n=1

(when identifying indistinguishable processes) d(M, N) := ||M — N|| ,,
on .
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THEOREM A.3.106. (|27|,Chapter I, Theorem 5.23).# is a complete
metric space with respect to ||-|| , when identifying indistinguishable
processes and M s a closed subspace of M.

DEFINITION A.3.107. A stochastic process X = (X),p s called

simple if there is a sequence of real numbers (t,), .y, to = 0 such that

lim ¢, and a sequence (), oy of random variables such that for any
n—oo

n € N &, is JF;, -measurable and such that there is a constant C' > 0
and for any w € )

sup |, (w)| < C.
neN

The set of simple process is denoted by .%.

DEFINITION A.3.108. For M € .# and X € £, and 0 <t < o©
define

t 00
/ XodM, =Y X, (M ip0 = Myni) -
0 i=0
THEOREM A.3.109. (|27], Chapter 1V, Theorem 1.8) If M is a
local martingale (see Definition 3.0.2) there is a continuous adapted,
increasing process(M) starting at (M), = 0 such that M* — (M) is a
martingale. It is unique up to indistinguishability.

DEFINITION A.3.110. Let M € .#. £ denotes the set of all F;
-adapted measurable stochastic processes such that for all ¢ > 0

E {/Otxgdums

The set of all elements of Z that are progressively measurable (see
Definition A.3.89) is denoted by .£*. On .¥

d(X,Y) ::g 27" (]E {/On (X, —Y,)d <M>81 A 1)

defines a metric.

THEOREM A.3.111. (|27], Chapter IV, Proposition 1.22) Denote
by L% the set of elements of L* such that

E UOOO X2d (M>4 < 00.

Then L% is a Hilbert space with respect to the scalar product (X,Y) =
E[[y° X.Y.d (M),].

< Q.
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PROPOSITION A.3.112. (|27], Chapter IV, Proposition 2.8) %, is
dense in £* with respect to the metric from Definition A.3.110.

PROPOSITION A.3.113. (|27], Chapter IV, Equation 2.14) (Ito isom
etry) For X € £ and M € A

(/OthdMs)Q =E Uotxfdwq :

Using density of %, in .£* and Ito isometry, we can define the
stochastic integral for all elements in Z*:

DEFINITION A.3.114. (|27],Chapter IV, Definition 2.9)
For X € .Z* the stochastic integral of X with respect to M € M is

the unique square integrable martingale NV such that for every sequence
(Xn)pen C 2 such that

lim d(X,, X) =0

n—oo

(f o) =

Such N € M5 is denoted by (f(f Xdes)

also

= 0.
M

lim
n—oo

teR4

THEOREM A.3.115. (|27, Chapter IV, Definition 3.6) (Ito formula)
Let X be a real-valued stochastic process such that it has P-almost
surely the decomposition

Xt:X0+Mt+Bt,

where M = (M;),cp, € A, and B = (By),cp, is the difference of
continuous non decreasing adapted processes starting at 0. Let f :
[0,00) x R — R be continuously differentiable in the first, and twice
continuously differentiable in the second variable. Then P-almost surely

i, Lo
f(t, Xy) :f(O,X0)+/O a—{(s,Xs)ds—i-/O 8—1C(S,Xs)st

t&f
+/(; %(S,Xs)dMs

1 [t of
+§/0 W(&Xs)dum

s
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DEFINITION A.3.116. Let (Q,f, (]—})te]R+ ,IP’) be a filtered proba-

bility space. Let W = (th, o Wtd)teR+ be the d-dimensional Brownian

motion (see Definition A.3.83) and p = (p',...,p%) : Ry x RY — R?

and o = (o) a0 Ry x R? — R%*¢ be measurable maps such

ije{l .,
that stochastic integrals below exist. A R%valued stochastic process

X = (th, e Xtd)te]R+ that satisfies the integral equations

t t t
X3:Xg+/ ul(s,Xs)ds—i—/ 01’1(8,X5)dW51+...+/ ohd(s, X )dwd
0 0 0

t t t
Xﬁ:Xg+/ /ﬂ(s,Xs)ds—i—/ Ud’l(s,Xs)dW51+...+/ o® (s, X )dW
0 0 0
for any t € R, is said to satisfy the stochastic differential equation
dXt = /L(t, Xt)dt + U(t, Xt>th

PROPOSITION A.3.117. (|5]|, Proposition 5.12) (Kolmogorov for-
ward equation/ Fokker-Planck equation)

LetX = (X;) be the solution of the stochastic differential equa-
tion

teR,

dXt = ILL(t, Xt)dt + O'(t, Xt)th
X, = Y,
and let p: Ry xR —- R and o : Ry x R — R be sufficiently smooth.

If for any t € Ry the distribution of P (X, < x) is given by a density
f(s,y;t,x) then

% (s,y;t,x) = (A*f) (s,y;t,z) for all (t,x) € (s,T) x R

f(s,y;t,x) = 6, ast N\ s.
A* is defined by
0 1 02
* t = —— t t —
(A1) (42) =~ (D62 + 5
THEOREM A.3.118. (Girsanov, [27|, Theorem 5.1)
Let (Q, F, (.7:,5)t€]R+ ,IP’) be a filtered probability space and let (]:t)teR+

be right continuous (see Definition A.3.75) and let Fy be complete (see
Definition A.3.32). Let W = (W}, ..,W¢) be the d-dimensional

teRy
Brownian motion such that P(Wy =0) = 1. Let a = (aj, .., a be

((o(t,2))* f(t,2)) -

>t€R+
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a vector of adapted stochastic processes such that for any 1 < 1 < d

and any 0 <T < o0
T
]P(/ (ai) dt<oo>:1.
0

If (Zt)teR+ defined by

doort 1t
Zy = E AW — = N d
t €xp <i21 /0 Qg s QA HaSH S>

is a martingale, then for each 0 < T < oo the d-dimensional stochastic
process W = (th, . Wﬂ,) [ ]deﬁned forany 1 <1 <d by
telo,T

Wi =W} — / ayds
0

is a d-dimensional Brownian motion on (Q, Fr, (]:t)te[oﬂ ,]f”T> where
P is defined by

]PT(A) =K [1AZT]
for any A € Fr.

A.4. Functional Analysis
EXAMPLE A.4.1. Let (2, %, 1) be a measure space. For 1 < p < 0o

we define the space

L (Q, 5, 1) = {f. O . . measureable, }

Jo lf (@) dp < oo.

It can be shown (see for example [39], Chapter 3 or [41], Chapter I)
that £ (2, %, 1) is a vector space and that the map

1/p
(R </Q 1f(s)I du)

is a seminorm on L£? (see 1.4.46). For any f € LP(R) we define the sets

f1:={g€ L2055 o= Flimaz =0
and the set of these sets

17(Q,50) = {[f] : f €L )}



A.4. FUNCTIONAL ANALYSIS 297

Then the map ||-|[;, g, defined as

M 2oy = 11 2o my

is a norm on the space LP (€2, X, ) which is a vector space. It can be
shown (see [38], Chapter 3 or [41], Chapter I) that with respect to this
norm LP (2, %, u) is also complete, thus a Banach space.

EXAMPLE A.4.2. Let (€2, %, 1) be a measure space. Define

f is measurable,
LN, u) =< f: Q—C: thereis C < oo such that
|f| < C almost surely.

(for the definition of almost surely see Definition A.3.32). On L>*(Q, %, p)
we define the map ||-[| ;g5 ) Via

1l e @50y = Inf {C € Ry : [f] < C almost surely} .

It can be shown (see for example [41], Chapter I ) that £°(Q, %, u)
is a vector space and that the map |||« g5, is @ seminorm on this
vector space. If we introduce the sets

[f] :== {g € L, 1) lg— fH*L“’(Q,E#) - O}

and define
L= (.5, p) = {[f]: fe L2551}
then it can be proved that the map ||| ;o5 ) defined as

Hm“Loo(Q,E,m = Hf”*LOO(Q,E,,u)

is a norm on L* (Q, %, 1) and that L (€, 3, 1) is complete, hence a
Banach space.

PROPOSITION A.4.3. ([41], Proposition 11.2.4) Let 1 < p < oo and
let q be defined by % + % = 1. Let (2,3, u) be a o-finite measure space
(see Definition A.3.20). Then the map

L9 — (LPY
[f—=1TF,
defined by
T = d
f(9) /Q gfdu

s an isometric isomorphism.
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Following Chapter I in [41], and recalling that for a Banach space
Z and some set, T'

(T 7) = {f T — Z: sup||f(o)| < oo}
zeT
we can show:
PROPOSITION A.4.4. (*(T;Z) is a vector space, the map
[l = f = sup|[f(2)]]
zeT

is a norm on {>°(T;Z), and with respect to this norm (*(T;Z) is a
Banach space.

PROOF. That (>°(T; Z) is a vector space follows easily because for
frget=(T;2)

sup || f(z) + g(@)x < sup [|f(2)] + sup [lg(@)], < oo
zeX zeX zeX

and for A € K
sup [[Af(2)[|, = Asup || f(z)]| -
rzeX

zeX

These expressions imply also that ||-||_ is a norm since 0] = 0
and | f||, = O clearly yields that f = 0.

In order to show that ¢>°(T'; Z) is a Banach space we need to show
that any Cauchy sequence (fy),cny C £2°(1'; Z) converges to some f €
(>°(T; Z) as n tends to infinity. In the proof we will use that pointwise
each Cauchy sequence (f,(2)),cy C Z converges.

Let ¢ > 0 be arbitrary. For £/2 there is N¢/o such that for all
m,n > N,/

1fn = fnlloe < €/2.
Hence for any x € T' and for m,n > N/,
1fn(2) = fm (@)l < /2.

Thus (fn(7)),ey € Z is a Cauchy sequence for all x € Z and by
assumption of Z being a Banach space there exists f(x) € Z such that
lim f,(x) = f(z) in Z. Having shown pointwise convergence we still
n—oo

need to show that f,, — f in (>°(T; Z). Since for all m,n > N,/
[fn(z) = fn ()] < /2.

and for any x there is N, ./, such that for all m > N,

[ fm(z) = f(2)]| < &/2
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we conclude that
1fn(2) = f@) < [ fm(2) = F(@)] + [[fulz) = fr(@)]]
<e/2+¢/2
for all x € X. Hence ¢*(T; Z) is a Banach space. O

LEMMA A.4.5. Let X be a topological space and K =R or K = C.
The space Co(X,K) equipped with the norm

[l = f = sup | f(z)].
zeX
15 a Banach space.

PROOF. For the sequence (fy), ey C Co(X, K) its limit
lim f,

n—oo

is continuous as the uniform limit of continuous functions and for any
€ > 0 there is ny € N such that

{:c € X : |lim fn(x)‘ > 5} ClreX: |fulr)>e/2).
Therefore, for any € > 0

{:EEX:

Jim 1. (0)| > <}

is a closed subset of a compact set, hence compact and Cy(X,K) is a
closed subspace of

(X K) = {f X - K: sup|f(z)| < oo}
reX
which is a Banach space by Proposition A.4.4. Thus, Cy(X,K) is a
Banach space as well (by Lemma 2.3.26). O

THEOREM A.4.6. (Hahn-Banach) (|41], Theorem II1.1.5) Let X be
a normed vector space and U C X a vector subspace. To any continuous
linear map v’ : U — K there is a continuous linear map ' : X — K
such that
x/|U — ul
and
"l = 111 -

COROLLARY A.4.7. Let X be a normed vector space and v € X,
x # 0. Then there is ' € X' such that ||| =1 and 2'(z) = ||z||.
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PROOF. The linear span
lin{z} :={ x| A € K}
is vector subspace of X and «’ : lin {z} — K defined as
u'(Az) ;== X||z]| for A e K

is a continuous linear map and ||«/|| = 1. By the Hahn-Banach theorem
there is a continuous linear extension ' : X — K of @' such that
|2’]| = 1 and 2/(x) = ||z|. O

COROLLARY A.4.8. Let X be a normed vector space. Then for all
reX

lzl| = sup  [2'(z)]
e X’
2] <1
PRrROOF. By Corollary A.4.7
z]| < sup  [2'(2)].
e X’
']l < 1
On the other hand, by the definition of the norm of linear maps
sup |2’ (x)] < [} ||| = [l=] -
reX
2/l <1
O

THEOREM A.4.9. (Open mapping theorem) (|41], Theorem IV.3.3)
Let X and Y be Banach spaces and L : X — Y be a linear bounded
surjective operator. Then L maps open sets to open sets.

PROPOSITION A.4.10. (|41]|, Proposition 1I11.3.8) Let X be a Ba-
nach space. For convex sets in X the weak and the norm closure coin-
cide.

THEOREM A.4.11. ([38] Theorem 3.27 ) Let X be a Banach space,
K be a compact Hausdorff space and p be a probability measure on the
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Borel o-algebra of K. If f : K — X is continuous and cof(K) is
compact in X then

/ fdp=y

K

exists in the sense of Definition 1.4.67 and y € cof(K).

THEOREM A.4.12. (Krein-Smulian weak compactness theorem, [31]
Theorem 2.8.14) The closed convex hull of a weakly compact subset of
a Banach space is itself weakly compact.

THEOREM A.4.13. (Riesz representation theorem, [39|, Theorem
6.19 ) Let X be a locally compact Hausdorff space and let ® be a complex
valued bounded linear operator on Co(X,C). Then there is a unique
reqular (Definition 2.3.35) complex measure p on (X, B (X)) such that

@f:/fd,u.

Additionally, for the total variation || (see Definition 2.3.31) of the
complex measure [

1] = [l (X).

PROPOSITION A.4.14. (|6], §5, Proposition 5) Let X be a com-
pletely regular space and ¢ : Cy(X,C) — C be a continuous linear
map . There exists a complex Radon measure p on X such that for all

f - Cb (X, (C)
() = /X f(@)uldr),

if and only if for each € > 0 there exists a compact set K. C X such
that for any function f € Gy (X,C) with [f| <1 and f|; =0

()l <e
holds. The complex Radon measure is unique.

Making slight adjustments in the proof in (6], §5, Proposition 5)
one obtains also a version of the above proposition, that holds on
Cb (X, R)Z
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PROPOSITION A.4.15. Let X be a completely reqular space and

0: Cy(X,R) = R be a continuous linear map . There exists a signed
Radon measure p on X such that for all f € C, (X,R)

- /X f(@)ulds

if and only if for each € > 0 there exists a compact set K. C X such
that for any function f € Gy, (X, R) with |[f| <1 and f|, =0

()l <e

holds. The signed Radon measure is unique.

PROPOSITION A.4.16. (|6], §5, Proposition 1b) Let X be a com-
pletely regular Hausdorff space. Let i be a complex Radon measure on
X and f: X — Ry a lower semicontinuous map. Then

/X )l () = sup /X g(@)u(dz)]

where the supremum is taken over all functions g € Cy(X, C) such that
lg| < f, and g is |p|-integrable.

Noting that for a signed measure u, a compact set K and f €
C(K,R,) the identity

f(z)|p] (dz) sup g9(z)p(dz)
/ gl < f, /K
g € C(K,R)

holds (see[8|, Chapter III, §1, n.6, Equation 9), making slight adjust-
ments in the proof of [6], §5, Proposition 1b one obtains the real version
of the preceding proposition:

PROPOSITION A.4.17. Let X be a completely regular Hausdorff
space. Let p be a signed Radon measure on X and f: X — R, a
lower semicontinuous map. Then

/X @) bl () = sup /X g(x)u(dz),

where the supremum is taken over all functions g € Cy(X,R) such that
lg| < f, and g is |u|-integrable.
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DEFINITION A.4.18. A Banach algebra A is a Banach space that is
an algebra (see Definition A.2.5) such that for any z,y € A

-yl < llzll - llyll-
If there is e € A such that for any x € A
er=ze=ux
and |le]| = 1, then e is called unity.

THEOREM A.4.19. (|10]|, Theorem VIL.2.2) For a Banach algebra
with unity the set of invertible elements G is open and the map
G—G
r— !
1S5 CONLINUOUS.

A.5. More Semigroups

THEOREM A.5.1. (Post-Widder Inversion Formula)(|18], Corol-
lary I11.5.5)

For every strongly continuous semigroup (T(t))teR+ on X with gen-
erator (A, D(A)) one has for all x € X

n—oo n—o0

T(t)x = lim {%R (%,A)}nx = lim [I - %A} _nx

uniformly for t in compact intervals.

A.6. Semimartingales

This subsection of the appendix is entirely taken from [24].

DEFINITION A.6.1. Let (Q, F, (&})t6R+ ,IP) be a filtered probabil-

ity space with right continuous filtration and let d € N. The o-algebra
2 on Q x Ry that is generated by all R%valued adapted stochastic
processes (as mappings on 2 x Ry ) with left continuous paths is called
predictableo-algebra. A Re-valued stochastic process (X;) is also
called predictable if the map

QxR :—R?
(w,t) = X (w)

is measurable with respect to &.

teR4
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DEFINITION A.6.2. Let <Q,ﬁ, (L%)teIRq ,IP) be a filtered proba-

bility space with right continuous filtration . The o-algebra & on
Q) x R, that is generated by all R%-valued adapted cadlag (see Def-
inition 2.2.5) stochastic processes (as mappings on  x R,) is called
optionalo-algebra. A Re-valued stochastic process (Xt);cp, is called
optional if the map

QOxRy:—R?
(w,t) = Xy(w)

is measurable with respect to 0.

PROPOSITION A.6.3. (|24]|, Proposition 1.1.2} )
P CO.

COROLLARY A.6.4. Due to Proposition A.3.90
0cCcFBRy).
LEMMA A.6.5. (|33], Lemma 13.12) Let E be a Polish space and
forT >0
f:00,T]:=» FE
be a cadlag function. Then, forn € N

#{eenianol> 1} <o

Hence, a cadlag function
g: Ry :— F
has at most countably many jumps.

PROOF. By contradiction, if there were infinitely many jumps of
f greater than % one would find a strictly increasing sequence

(tk)keN C (07 T]

where these jumps occur and by compactness of the interval there would
be a subsequence converging to some t € (0,7 in contradiction to left
continuity of f at t. 0

DEFINITION A.6.6. Two local martingales M, N are called orthogonal
if M - N is a local martingale.
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DEFINITION A.6.7. A local martingale M is called purely discontinuous
local martingale if My = 0 and if M is orthogonal to all continuous local
martingales.

THEOREM A.6.8. (|24],Theorem I1.4.18) Any local martingale M
admits a unique (up to indistinguishability) decomposition

M = My + M¢+ M¢,

where M§ = M¢ = 0, and M®is a continuous local martingale, and
M%is a purely discontinuous local martingale. M€ is called the continuous
part of M, M? is called purely discontinuous part of M.

THEOREM A.6.9. (|24], Theorem 1.4.2)

To each pair (M, N) of square integrable local martingales there
is a predictable unique (up to indistinguishability) process with finite
variation (M, N) such that

MN — (M, N)

15 a local martingale.

PROPOSITION A.6.10. (|24|, Proposition 1.4.27)

Let (Q,ﬁ, (ﬁt)teﬂh ,P) be a filtered probability space with right
continuous filtration. Let X be a semimartingale. There is a unique
(up to indistinguishability) continuous local martingale X¢ starting at
0 such that for any decomposition of X according to Definition 3.0.4
given by

X=Xo+M+A
up to indistinguishability X¢ = M€ holds (where M€ is the continu-
ous local martingale from Theorem A.6.8). X€ is called continuous
martingale part of X.

DEFINITION A.6.11. A truncation function on R? is a bounded
function

h:R*— R
such that h(z) = z in a neighborhood of 0.
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DEFINITION A.6.12. Let (Q, F, (ﬁt)t6R+ ,IP’) be a filtered proba-

bility space with right continuous filtration. Let F be a polish space
and & its Borel o-algebra. A random measure on R, x FE is a family

(e, dt. dz))

we)
of measures on

(Ry x E, B(Ry)® FE)
satisfying u(w, {0} x E) =0 for all w € Q.

DEFINITION A.6.13. Let (Q, F, (ﬁ})teIR+ ,IP’) be a filtered proba-
bility space with right continuous filtration, let £ C R, and let
(1w, dt. )

be a random measure on R, x E. Let W : QO xR, x E — E be a map
that is measurable with respect to & ® €. Then due to Corollary A.6.4
and Lemma A.3.16 for any w € ) the map

is B(R;) ® £-measurable and we can define

W py(w) == / W(w, s, x)p(w, ds, dz)

[0,t]xE

we

if [ |[W(w,s, z)| plw,ds,dz) < co and W x py(w) := oo otherwise.
[0,t]xE

DEFINITION A.6.14. Let (Q, F (P ier, ,IP’) be a filtered proba-
bility space with right continuous filtration, let £ C R, and let
(u(w, dt, dz))
be a random measure on R, x E. We call a random measure
(ulw, dt, d2)),cq

weN

optional if
(t,w) = W % ()
is optional for any optional map W : QO xR, x £ — F
We call a random measure

(u(w, dt, dz))

we
predictable if
(t7 (.O) — W :ut(w)
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is predictable for any predictable map W : Q xR, x F — F
We call an random measure

((w, dt,dx)), cq

that is optional P Jinite if there exists a strictly positive map V' on
2 x Ry x F, measurable with respect to & := & ® £ such that

w— /V(w,s,x)p(w,ds,dz)
R+><E

is integrable.

DEFINITION A.6.15. Let (Q, F, (L%)teﬂh ,IP) be a filtered proba-
bility space with right continuous filtration, let £ C R? and let £ be
its Borel o-algebra. An integer — valued random measure

((w, dt,dx)),cq

on R, x F is a random measure on R, X E such that
(p(w,{t} x E) <1lforallwe Qandallt € Ry
(i) for all A € B(R,) ® &€ and for all w € Q:p(w, A) € NU {0}
(iii) (p(w,dt,dx)),cq is P-o-finite.

THEOREM A.6.16. (24| Theorem II1.1.8)
Let <Q,9, (gt)teR+ ,]P’) be a filtered probability space with right
continuous filtration , let E C R and let € be its Borel o-algebra. Let

(w(w, dt,dx)),cq

be an P-o finite random measure on R, x E. Then there exists a
random measure
(:up(w’ dt’ dx))weQ
on Ry X E called compensator of p which is unique up to a P-null set
and which is characterized as being a predictable random measure on
R, x E such that either :
(i) For each non-negative & @ E-measurable function W on Q X

R, xFE

JIW st @) = [ W )] (),
Q Q

or
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(it) Let W be a non-negative &2 & E-measurable function on § x
Ry x E. Let (1,),cn be an increasing sequence of (ﬁt)t€R+—stopping

times with lim 7, — oo P- almost surely. Lel
n—oo

(t,w) = W * fimin(r, 1) (W)

be cadlag, adapted, starting at 0, with non-decreasing paths for any
n € N and

[0 206 <2
Q

for any n € N. Then for any n € N also
(t,w) = W (w)

min(7n,t)

15 cadlag, adapled, starting at 0, with non-decreasing paths and

/ ‘W 12 oo (@) dP() < oo,
Q
for any n € N. Additionally,

(W s pe — W 1)

teR4

15 a local martingale.

DEFINITION A.6.17. Let (Q, F, (ﬁt)teRJr ,]P’) be a filtered proba-

bility space with right continuous filtration. A subset A of 2 x R, is
called thin if it can be written as

A= (J{w Tuw)}

for a sequence (T},),, .y of stopping times.

PROPOSITION A.6.18. (|24|, Proposition 11.1.14)
Let

(Q, 97, (fgzt)te]lhr 7P)

be a filtered probability space with right continuous filtration. Let E C
R? and let € be its Borel o-algebra and let (u(w,dt,dx)) ., be an
integer-valued random measure on R, x E. Let d, be the Dirac measure
in x (see Example A.3.21). Then there exists a thin set D C Q x Ry
and an optional E-valued optional process B such that

:u(wa dt, de‘) = 21D<w7 S)é(s,ﬁs(w))(dtv d{L‘)

s>0
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PROPOSITION A.6.19. (|24|, Proposition 11.1.16)
Let

(Q,y, (‘g;t)teﬂh_ 7P)
be a filtered probability space with right continuous filtration. Let X be
a R-valued cadlag process. Then

1 (w, dt, dr) = Zl{AXs(w);ﬁO}é(s,AXs(w))(dt> dx)

s>0

is an integer-valued measure on Ry x R,

LEMMA A.6.20. (|24, Equation IT .2.5) Let (Q,ﬁ, (F)em, ,]P’)

be a filtered probability space with right continuous filtration. Let X be
a semaimartingale and h o truncation function. Then with

X(h) =) AX, - h(AX,)
s<t
the process
X(h):=X —X(h)
admits the decomposition
X(h)=Xo+ M(h)+ B(h)
with Fo- measurable random variableXy, a d-dimensional local martin-

gale M(h) starting at 0 and B(h) a predictable d-dimensional process
with finite variation.

DEFINITION A.6.21. Let (Q,ﬁ, (L%)tGR+ ,IP) be a filtered prob-

ability space with right continuous filtration. Let (X¢),.p, be a d-
dimensional semimartingale. For a fixed truncation function h, the
triple (B, C, v) is called semimartingale characteristics associated with
h where

(i) B = B(h) is the predictable d-dimensional process with finite
variation appearing in Lemma A.6.20,

(ii) C = (CY),; j<q for CV = <(XC)’ : (XC)‘7> is a continuous pro-
cess with finite variation (for the covariation process see TheoremA.6.9)
for the continuous martingale part X¢(see Proposition A.6.10)

(iii) v = (v(w, dt, dx)) o is the compensator (see Theorem A.6.16)

of the random measure ¥ = (u¥(w,dt,dr)) _, on Ry x R? from
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Proposition A.6.19 and as such v is a predictable random measure on
R, x R

DEFINITION A.6.22. Let
(27 (Fics, )

be a filtered probability space with right continuous filtration. Let
E C R? and let i be an integer-valued random measure on R, x E.
Let

W:QxRy xE—R

be a process that is measurable with respect to & ® €. Let v be the
compensator of p and define

- {fW(w,t,x)y(w; {t} x dz) if [|W(w,t,z)|v(w;{t} x dz) < o
Wt(w) =K FE E

00 else.

Furthermore, let D and ; be the thin set and optional process from
Proposition A.6.18 and define

W= W (w,t, Bi(w)1p(w, t) — W,(w).
Then W is said to belong to Gic(p) if for the process (Q),cp, defined

by o
(L)

there is a increasing sequence (7,), oy of (F), g, -stopping times with

lim 7,, — oo
n—oo

P- almost surely such that for any n € N the stopped process
(Qmin(t,rn))t€R+

has cadlag, adapted, non-decreasing paths starting at 0 and
for any n € N.

DEFINITION A.6.23. If W € Gjoe(p) then Wk (u — v) is defined

as any purely discontinuous local martingale M such that AM and W
are indistinguishable.

In [24] below Definition 1.1.27 it is shown that:
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PROPOSITION A.6.24. If W € Gioe(pt) then W x (u — v) exists and
15 unique up to indistinguishability.

THEOREM A.6.25. (|24, Theorem I1.2.34) (Canonical representa-
tion of a semimartingale) Let (Xy),c, be a d-dimensional semimartin-
gale and let (B, C,v) be its characteristics relative to a truncation func-
tion (see Definition A.6.11) h. Furthermore, let u** be the random mea-
sure assoctated to X via Proposition A.6.19 and X€ its continuous mar-
tingale part (see Proposition A.6.10). Then for W' (w,t,z) := h'(x)
W € Groe(p™) for 1 <i <d and

X =Xo+ X +h*(u*—v)+(x—h(2)*p™ + B,

where the d-dimensional integral h x (,uX — 1/) is defined componen-
twise.
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