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Introduction

The aim of this thesis is to study generalized Feller processes and
extended Feller processes and to connect them to the theory of a�ne
and polynomial processes. This includes in particular a comprehensive
investigation of generalized Feller semigroups.

Generalized Feller semigroups are de�ned in analogy to Feller semi-
groups where the space of functions vanishing at in�nity is replaced
by so-called Bρ(E) -spaces. Here, Bρ(E) denotes the space of func-
tions on a completely regular topological space E that do not grow
faster than a so-called admissible weight function ρ and that lie in the
closure of continuous bounded functions with respect to the norm on
Bρ(E) which is a weighted supremum norm induced by ρ. Therefore
- unlike Feller semigroups - generalized Feller semigroups act also on
unbounded functions, all other properties are similar. More precisely, a
generalized Feller semigroup is a family of positive linear bounded op-
erators from Bρ(E) to Bρ(E) such that the semigroup properties are
ful�lled, the norm of the operators remains bounded for small times
and for any map f in Bρ(E) the image under the semigroup converges
pointwise to f as t approaches 0. In a special setting generalized Feller
semigroups were introduced by Röckner and Sobol in [36] and gener-
alized in 2010 by Dörsek and Teichmann in [15]. They proved that
on Bρ(E) there is a Riesz representation theorem and showed that
just like Feller semigroups generalized Feller semigroups turn out to be
strongly continuous. In the article [15], Dörsek and Teichmann used
this to show convergence of splitting schemes for semigroups related
to stochastic partial di�erential equations and acting on functions of
controlled growth.

Versions of Markov processes corresponding to generalized Feller
semigroups, so-called generalized Feller processes were considered by
Cuchiero and Teichmann [14]. There they are used in order to show
existence and uniqueness of solutions of certain stochastic partial di�er-
ential equations corresponding to in�nite dimensional a�ne processes
whose �nite dimensional projections lead to (rough) a�ne Volterra pro-
cesses.
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8 INTRODUCTION

This thesis also treats a�ne processes as well as polynomial pro-
cesses. A�ne processes are continuous-time Markov processes that are
stochastically continuous and for which the logarithm of the Fourier-
Laplace transform of the marginal distributions is an a�ne map of the
initial value. This includes for instance Lévy processes, squared Bessel
processes, Ornstein-Uhlenbeck processes or Wishart processes, depend-
ing on the considered state spaces. Indeed, on R+ a�ne processes were
�rst systematically analyzed in 1971 by Kawazu and Watanabe [28].
On the canonical state space Rn

+×Rm Du�e, Filipovi¢, and Schacher-
mayer provided a full characterization in [16]. Among many other
properties they showed in particular that on the canonical state space
a�ne processes are Feller processes. In 2013, Cuchiero and Teichmann
[13] then considered a�ne processes more generally on subsets of a
�nite dimensional real vector space. They showed that all a�ne pro-
cesses admit càdlàg versions. As it is (still) not known whether a�ne
processes on general state spaces are Feller or not, this property could
not be deduced therefrom as in the canonical state space, but needed
to be proved by di�erent methods. A�ne processes can also be viewed
as semimartingales with di�erential characteristics that depend in an
a�ne way on the state of the process. This as well as their analyti-
cal tractability and �exibility make a�ne processes popular choices for
modeling in Mathematical Finance, in particular for stochastic volatil-
ity modeling. Examples include the well-known Heston model [22] or
Barndor�-Nielson and Shepard model [3]. Thanks to Fourier-inversion
methods the expected value of many pay-o� functions can be calculated
by just solving a generalized Riccati equation, which is important in
view of option pricing. For interest rate modeling so-called α-CIR mod-
els have been recently considered in [25] which show high �exibility in
capturing persistency of low interest rates together with the presence
of large jumps. An important generalization of a�ne processes beyond
the assumption of stochastic continuity, where times of jumps can be
both inaccessible and predictable, has been considered by Keller-Ressel
et al. in [29]. There, a general theory of �nite dimensional a�ne semi-
martingales (beyond dt characteristics) is developed and it is shown
that the conditional characteristic function can be computed by solv-
ing measure di�erential equations of Riccati type.

An extension of a�ne processes are m-polynomial processes intro-
duced by Cuchiero et al. in [12]. They are essentially continuous-time
Markov processes such that for any k smaller than m the Markov semi-
group maps polynomials of degree k to polynomials of the same or lower
degree. They are a special class of semimartingales that includes all
a�ne processes except some trivial cases and provided that their Lévy
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measure admits moments up to order m. Polynomial processes permit
to calculate mixed moments in an easy way and facilitate parameter
estimation via generalized methods of moments or variance reduction
in the Monte Carlo simulations for pricing European claims.

In the following we explain in more detail the structure of the thesis
and the main contributions. After introducing general semigroup the-
ory in Chapter 1, as well as Markov and Feller semigroups in Chapter
2.1 and 2.2, in the �rst four subsections of Chapter 2.3 the founda-
tions of generalized Feller semigroups are explained. While the �rst
chapters, up to Chapter 2.2 provide a literature review, Chapter 2.3
contains several new results contributing to the theory of generalized
Feller processes, which are highlighted in italic subsequently. In Propo-
sition 2.3.46 we start by showing a weighted space version of the Stone-
Weierstraÿ theorem (in the spirit of Leopoldo Nachbin) on the space
Bρ(E), which we apply in the existence proof of generalized Feller pro-
cesses. In Proposition 2.3.54 we characterize generalized Feller semi-
groups of transport type which are generalized Feller semigroups such
that at any given time the semigroup operator can be described by a
composition of functions in Bρ(E) with a map from E to E.

In Theorem 2.3.65, under the condition that the generalized Feller
semigroup maps the constant function 1 to itself, the existence of a
generalized Feller processes is rigorously proved. In particular, this
yields stochastic processes whose conditional expectations are given
by a strongly continuous semigroup even in cases when the space E
is neither separable nor locally compact. This is a crucial di�erence
to the theory of Feller processes and thus one of the main results of
the thesis. Let us mention here also that generalized Feller processes
are usually not classical Markov processes in the sense that the Markov
property holds for all Borel-measurable functions. Indeed, it only holds
for Baire-measurable functions, hence generalized Feller processes are
strictly speaking only Markovian if the chosen σ-algebra on E is the
Baire σ-algebra (for this subtle point see Remark 2.3.66).

The proof of Theorem 2.3.65 relies on a general version of the Kol-
mogorov Extension Theorem. In order to apply it, we construct a
projective family of probability measures. For this purpose, on the
sub-level sets of the admissible weight function on E × E we �nd a
continuous linear functional which can be represented by a (sub-) prob-
ability measure via the Riesz representation for Bρ(E ×E). As we let
the sub-level set of the admissible weight function converge to the whole
space, such a sequence of (sub-) probability measures converges to a
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probability measure on E × E. Inductively this then yields a projec-
tive family of probability measures with the desired properties. Then
the generalized Feller process is the canonical process on the product
space when equipped with a product measure according to the general
version of the Kolmogorov Extension Theorem. While in the case of
general admissible weight functions only Dirac distributions are admit-
ted as initial distributions, which is due to the subtle measurability
issues explained above, we show in Proposition 2.3.69 that for admis-
sible weight functions that are Baire measurable it is possible to use
general Radon measures as initial distributions.

In De�nition 2.3.71 we use again Baire-measurable admissible weight
functions ρ to introduce a new class of stochastic processes called ex-
tended Feller processes. In Theorem 2.3.73 and Corollary 2.3.74 we
prove existence of these processes under the condition that the general-
ized Feller semigroup is quasi-contractive. We compare extended Feller
processes with generalized Feller processes and notice in Proposition
2.3.79 that if both exist, their induced laws are equivalent measures.

We also compare generalized Feller processes and extended Feller
processes with classical Feller processes. In Proposition 2.3.84 we see
that on locally compact spaces E a Feller process is a generalized Feller
process if the Feller semigroup applied to the admissible weight function
remains bounded for small times. Moreover, in Theorem 2.3.93 we
show that for continuous admissible weight functions extended Feller
processes can be reduced to Feller processes. This extends the notion
of Feller processes to spaces E that are not necessarily separable but
only σ-compact.

In Theorem 2.3.96 we show that generalized Feller processes admit
a version that is càdlàg or càglàd if several conditions are met thereby
closing a gap in a statement in [14]. A similar statement for extended
Feller processes is proved in Theorem 2.3.99.

Chapter 3 of this thesis relates the theory of generalized Feller pro-
cesses to a�ne and polynomial processes. We show in Proposition 3.2.7
that under certain conditions an m-polynomial process is a generalized
Feller process. It follows then in Corollary 3.2.8 that under similar con-
ditions also a�ne processes are generalized Feller processes. This adds
to the existing theory of a�ne and polynomial processes since to date
it is not known whether a�ne and polynomial processes on generalized
state spaces are Feller or not.

In the last line of research we use the fact that the Fourier-Laplace
transform of an a�ne process is given as the solution of an ordinary
di�erential equation (ODE). We turn this idea around and in Theorem
3.3.2 obtain a stochastic representation of the solution of a large class
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of ordinary di�erential equations via a�ne processes. Since the vector
�elds of the involved ordinary di�erential equations are not necessarily
locally Lipschitz continuous we obtain solutions also in cases where
standard ODE theory does not apply.





Notation

〈·, ·〉 Dual pair (see De�nition 1.4.51)
Bρ(E;Z) closure of Cb (E,Z) in Bρ(E;Z)
B(E) Borelσ-algebra on the topological space E
M(T )) space of signed Radon measures on topological Hausdor�

space T
M+(T )) set of Radon measures on topological Hausdor� space T
M1 (Ω,Σ) set of probability measures on measurable space (Ω,Σ)
Mσ (Ω,Σ) set of σ- �nite measures on measurable space (Ω,Σ)
Mc(T )) space of signed Radon measures on topological Hausdor�

space T
Bρ(E;Z) see De�nition 2.3.20
Cb(E) bounded continuous maps from E to R
Cb (E,Z) bounded continuous maps from E to Z
Cc(E) continuous maps with compact support from E to R
Cc (E,Z) continuous maps with compact support from E to Z
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CHAPTER 1

One-Parameter Semigroups

This chapter is mostly based on the book by Nagel and Engel [18]
and on parts of the lecture notes [20]. For a background from func-
tional analysis it follows [41] and [39]. It provides a literature review
of semigroup theory which will be used thoughout this thesis. The
exposition is kept as self-contained as possible.

1.1. De�nition and Motivation

Definition 1.1.1. For an index set I = R or I = R+ a one-
parameter family of mappings

(T (t))t∈I

that map from the state space Z into itself is said to satisfy the
functional equation if for all t, s ∈ I
(1.1.1) T (t+ s) = T (t) ◦ T (s).

Remark 1.1.2. We note that (T (t))t∈R is an (algebraic) group of
maps from the state space Z onto itself equipped with the compo-
sition as group multiplication. Similarly, (T (t))t∈R+

is a (algebraic)
semigroup of maps from the state space Z onto itself equipped with
the composition as semigroup multiplication. The map t → T (t) is a
group homomorphism between the additive group (R,+) and the group
mentioned above or a semigroup homomorphism between the additive
semigroup (R+,+) and the semigroup mentioned above.

One-parameter families of mappings that satisfy the functional equa-
tion often arise in physical systems. This is outlined in the following
example taken from Nagel and Engel ([18], Epilogue, Section 1).

We consider a map
z : R→ Z,

that maps time into the state space Z. For example, if we think of a
physical system such as the motion of planets we might want to look
at a map z that maps time to position and velocity of a planet. In this
case the state space Z is R6 which is the product space of all possible
positions R3 and all possible velocity vectors R3. We now consider
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16 1. ONE-PARAMETER SEMIGROUPS

the set of these maps and make some additional assumptions on it.
Namely, we assume:

Assumption 1.1.3. For each starting time t0 ∈ R and each starting
point x0 there exists a unique map zt0,x0 : R→ Z such that

zt0,x0(t0) = x0.

We also assume:

Assumption 1.1.4. For all maps z and all starting times u ∈ R and
v ∈ R and all starting points x0 it holds that zu,x0(t+ u) = zv,x0(t+ v)
for all t ∈ R.

In other words, our �rst assumption means that we can start the
map at any time and any point and that this is done in a unique way
and the second means that the way the map evolves after its start does
not depend on its starting time. We show in the following that these
two assumptions give rise to a one-parameter family of mappings that
satisfy the functional equation.

If we �x a starting time t0 ∈ R and �x a time t ∈ R the �rst
assumption implies that for any starting point x0 there is a unique
map zt0,x0 : R+ → Z such that zt0,x0(t0) = x0 and we can evaluate this
map at t0 + t. This way we can de�ne a map by

Tt0,t0+t : Z → Z

x0 → zt0,x0(t0 + t)

By the second assumption zt0,x0(t0 + t) and thus also Tt0,t0+t depend
only on t and not on t0. This allows us to de�ne a map T (t) := Tt0,t0+t

as

Z → Z

x0 → z0,x0(t).

We now show that T (t)◦T (s) = T (t+s). We �x some arbitrary x ∈ Z
and see that for s, t ∈ R

T (t) ◦ T (s)x = T (t) (z0,x(s)) = z0,z0,x(s)(t).

By the second assumption we obtain

z0,z0,x(s)(t) = zs,z0,x(s)(t+ s).

zs,z0,x(s) is de�ned as the map such that its evaluation at its starting time
s is its starting point z0,x(s). Written out this is zs,z0,x(s)(s) = z0,x(s).
But since the map z0,x evaluated at s gives the same value as zs,z0,x(s)

evaluated at s and the map is unique by the �rst assumption we obtain
zs,z0,x(s)(·) = z0,x(·) and
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zs,z0,x(s)(t+ s) = z0,x(t+ s) = T (t+ s)x.

Since x ∈ Z was arbitrary this implies T (t) ◦ T (s) = T (t+ s). Hence

(T (t))t∈R

is a one-parameter family of mappings that satisfy the functional equa-
tion.

1.2. Linear bounded operators on a Banach space

As state spaces of the one-parameter family of maps

(T (t))t∈R

from De�nition 1.1.1 we would like to consider Banach spaces (that is
a complete normed vector space) over a �eld K. The �eld K chosen is
usually C or R.

Additionally, in the one-parameter family of maps we will constrain
ourselves to maps that are linear (see De�nition1.2.2) and bounded (see
De�nition 1.2.4). Before working with such a one-parameter family of
maps we will study this space of linear bounded maps on a Banach
space. We will need the theory of functional analysis. For the con-
venience of the reader, we state its terminology and prove important
assertions whenever we need them.

Example 1.2.1. The probably simplest example of a Banach space

is Rn for n ∈ N and the euclidean norm |x| :=
√

(x1)2 + ...+ (xn)2

where x = (x1, ..., xn). Other important examples include Lp-spaces
for 1 ≤ p < ∞ (see Example A.4.1), L∞-spaces (see Example A.4.2),
or the space of bounded functions `∞ (see Proposition A.4.4).

We turn our attention to linear bounded operators. This part is
based on Chapter II in [41].

Definition 1.2.2. Let X, Y be vector spaces with a norm‖·‖. A
map

L : X → Y

is called linear if for all v, u ∈ X and λ ∈ C it holds

L(λu+ λv) = λL(u) + λL(v).

A linear map is also called operator .We will use the expression map
and operator interchangeably.

We want to look at the set of all such maps and we would like to
�nd a norm on it.
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Definition 1.2.3. For a linear map L : X → Y between two
normed vector spaces X and Y we de�ne a map ‖·‖ between the space
of such linear maps and R+ by

(1.2.1) ‖L‖ := inf {ML ∈ R+ : ‖L(x)‖ ≤ML ‖x‖ for all x ∈ X} .

By linearity of L an equivalent formulation is

‖L‖ = sup
‖x‖≤1

‖L(x)‖ .

Definition 1.2.4. The space of bounded linear operators between
normed vector spaces X and Y is de�ned as

L(X, Y ) := {L : X → Y is linear and ‖L‖ <∞}

where ‖·‖ is the map from De�nition 1.2.3. We set

L(X) := L(X,X).

Proposition 1.2.5. Let X, Y be normed vector spaces with norms
‖·‖X and ‖·‖Y .

(i) The map ‖·‖ from De�nition 1.2.3 de�nes a norm on the space
L(X, Y ).

(ii) L(X, Y ) is a vector space with norm ‖·‖

(iii) L(X, Y ) is a Banach space with respect to the norm ‖·‖ if Y
is complete.

Proof. (i) For g, f ∈ L(X, Y ) and x ∈ X

‖g(x) + f(x)‖Y ≤ ‖g(x)‖Y + ‖f(x)‖Y
≤ ‖g‖ ‖x‖X + ‖f‖ ‖x‖X

hence
‖g + f‖ ≤ ‖g‖+ ‖f‖ .

Clearly also for all λ ∈ C

‖λf‖ = |λ| ‖f‖

and ‖f‖ = 0 if and only if f = 0. Thus, ‖·‖ is a norm.

(ii) For g, f ∈ L(X, Y ) for all v, u ∈ X and λ ∈ K it holds

g(λu+ λv) + f(λu+ λv) = λ (g(u) + f(u)) + λ (g(v) + f(v)) .
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Hence, g+f is linear and for µ ∈ K also µf is linear. Clearly ‖µf‖ <∞
for µ ∈ K and the triangular inequality implies ‖g + f‖ < ∞. There-
fore L(X, Y ) is a vector space.

(iii) We have to show that each Cauchy sequence in L(X, Y ) converges
in L(X, Y ). So let (fn)n∈N be a Cauchy sequence in L(X, Y ). We have
to show that it converges to some element of L(X, Y ) and �rst need to
�nd such a candidate. For any x ∈ X

‖fn(x)− fm(x)‖ ≤ ‖fn − fm‖ ‖x‖
converges to zero for m,n→∞ hence (fn(x))n∈N is a Cauchy sequence
in Y . Since Y is complete

f(x) := lim
n→∞

(fn(x))n∈N

exists for each x ∈ X. We now show that f ∈ L(X, Y ) and that (fn)n∈N
converges to f in L(X, Y ). Linearity of f holds because for all v, u ∈ X
and λ ∈ C

f(λu+ λv) : = lim
n→∞

(fn(λu+ λv))n∈N

= λ lim
n→∞

(fn(u))n∈N + λ lim
n→∞

(fn(v))n∈N

= λf(u) + λf(v).

The convergence of (fn)n∈N to f in L(X, Y ) we see in the following way.
For some ε > 0 we choose n0(ε) > 0 such that for all m,n > n0(ε) it
holds

‖fn − fm‖ < ε.

Furthermore, for each x ∈ X we choose n1(x, ε) > n0(ε) such that for
all n ≥ n1(x, ε) it holds

‖f(x)− fn(x)‖Y < ε ‖x‖X .
With this choice we obtain for n > n0(ε) and any x ∈ X
‖f(x)− fn(x)‖Y ≤

∥∥f(x)− fn1(x,ε)(x)
∥∥
Y

+
∥∥fn1(x,ε)(x)− fn(x)

∥∥
Y

≤ ε ‖x‖X + ε ‖x‖X .
Hence ‖f − fn‖ ≤ 2ε and fn converges to f in L(X, Y ). Furthermore,
by

‖f‖ ≤ ‖f − fn‖+ ‖fn‖
‖f‖ is bounded for n > n0(ε) , thus f ∈ L(X, Y ). �

Remark 1.2.6. This proposition justi�es to call ‖·‖ from De�nition
1.2.3 the operator norm.
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Proposition 1.2.7. Let X and Y be normed vector spaces and L :
X → Y be a linear map. Then the following assertions are equivalent:
(i) L is continuous.
(ii) L is continuous at x = 0.
(iii) There exists ML ≥ 0 such that ‖Lx‖ ≤ML ‖x‖ for all x ∈ X.
(iv) L is uniformly continuous.

Proof.

(i)⇒(ii) Clear.
(iii)⇒(iv) Clear.
(iv) ⇒(i) Clear.
(ii)⇒(iii) By contradiction assume that (iii) does not hold. Then for
any n ∈ N there exists xn ∈ X such that ‖Lxn‖ > n ‖xn‖ holds. This
implies that for any n ∈ N∥∥∥∥L( xn

n ‖xn‖

)∥∥∥∥ > 1.

Since the sequence
(

xn
n‖xn‖

)
n∈N

converges to zero this contradicts (ii).
�

Remark 1.2.8. In particular, on a normed vector spaceX the norm
‖·‖ : X → R+ is a continuous linear map.

Lemma 1.2.9. Let X, Y, Z be vector spaces with norm ‖·‖.
(i) For L1 ∈ L(X, Y ) and L2 ∈ L(Y, Z) also L1 ◦ L2 ∈ L(X,Z) and it
holds

‖L1 ◦ L2‖ ≤ ‖L1‖ ‖L2‖ .
(ii) The map

L(X, Y )× L(Y, Z)→ L(X,Z)

(L1, L2)→ L1 ◦ L2

is continuous if L(X, Y )×L(Y, Z) is equipped with the product topology
(see De�nition A.1.7).

Proof. (i) Linearity of L1◦L2 follows directly. In order to estimate
the norm we see for any ML1 > ‖L1‖ and any ML2 > ‖L2‖ and any
x ∈ X

‖(L1 ◦ L2) (x)‖ ≤ML1 ‖L2(x)‖
≤ML1 ·ML2 ‖x‖ .
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Taking the in�mum on the right hand side we obtain

‖(L1 ◦ L2) (x)‖ ≤ inf
ML1

>‖L1‖
inf

ML2
>‖L2‖

ML1 ·ML2 ‖x‖

≤ ‖L1‖ · ‖L2‖ ‖x‖
and conclude.

(ii) We equip the space L(X, Y )× L(Y, Z) with the norm

L(X, Y )× L(Y, Z)→ R+

(L1, L2)→ ‖L1‖+ ‖L2‖ .
(It can easily be shown that this is indeed a norm.) We note that the
open sets in L(X, Y )×L(Y, Z) with respect to this norm are the same
as the open sets with respect to the product topology.

Let ε > 0 be arbitrary and let L1 ∈ L(X, Y ) and L2 ∈ L(Y, Z) be
arbitrary. Let δ1, δ2 > 0 and let L

′
1 ∈ L(X, Y ) such that

∥∥L′1 − L1

∥∥ < δ1

and L
′
2 ∈ L(X, Y ) such that

∥∥L′2 − L2

∥∥ < δ2. With

δ < −‖L2‖+ ‖L1‖
2

+

√(
‖L2‖+ ‖L1‖

2

)2

+ ε

one obtains δ < ε
‖L2‖+δ+‖L1‖ and for δ := δ1 + δ2∥∥∥L1 ◦ L2 − L
′

1 ◦ L
′

2

∥∥∥ ≤ ∥∥∥L1 ◦ L2 − L
′

1 ◦ L2

∥∥∥+
∥∥∥L′1 ◦ L2 − L

′

1 ◦ L
′

2

∥∥∥
≤
∥∥∥(L1 − L

′

1

)
◦ L2

∥∥∥+
∥∥∥L′1 ◦ (L2 − L

′

2

)∥∥∥
≤ δ ‖L2‖+ δ

∥∥∥L′1∥∥∥
≤ δ ‖L2‖+ δ · (δ + ‖L1‖)
≤ ε.

Hence, the map (L1, L2) → L1 ◦ L2 is continuous with respect to the
topology induced by the chosen norm on L(X, Y ) × L(Y, Z) thus also
with respect to the product topology. �

1.3. Uniformly continuous semigroups

As mentioned before, we would like to consider one-parameter fam-
ilies of mappings

(T (t))t∈R+

that have a Banach space as state space. This will lead to uniformly
continuous semigroups (De�nition 1.3.4). The following presentation is
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taken from Engel Nagel[18], chapter I, section 3. X will always denote
a Banach space over the �eld C.

Definition 1.3.1. If for a Banach space X

(T (t))t∈R+

is a one-parameter family of linear bounded operators on X that satis-
�es the Functional Equation (1.1.1) it is called (one-parameter) semigroup
on X .

Remark 1.3.2. For a one-parameter semigroup the family of oper-
ators

(T (t))t∈R+

is an (algebraic) semigroup on (L(X), ◦). If this semigroup is equipped
with the operator norm from De�nition 1.2.3, then by Lemma 1.2.9
the composition is a continuous operation (where the product space
L(X) × L(X) is equipped with the product topology). An algebraic
semigroup with continuous semigroup operation is called topological
semigroup.

Remark 1.3.3. One can also de�ne a one-parameter group on the
Banach space X to be a family

(T (t))t∈R

of linear bounded operators onX that satis�es the Functional Equation
(1.1.1). In this case, by Theorem A.4.19 both group operations of
(L(X), ◦) , composition and inversion, are continuous. Such a group
where both group operations are continuous is called topological group.

Since we have an algebraic semigroup homomorphism between the
topological semigroup (R+,+) where addition is a continuous opera-
tion (with respect to the usual topology) and the topological semigroup
(L(X), ◦) where the composition is continuous with respect to the op-
erator norm it is natural to ask whether the semigroup homomorphism
is continuous. Such a semigroup homomorphism is called topological
semigroup homomorphism.

Definition 1.3.4. A one-parameter semigroup

(T (t))t∈R+

on a Banach space X is uniformly continuous if

R+ → L(X)

t→ T (t)
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is continuous with respect to the operator norm on L(X) as de�ned in
Equation 1.2.1.

Written out in a more detailed fashion, uniform continuity means
that for every ε > 0 there exists a δ > 0 such that |s− t| < δ implies

sup
‖x‖≤1

‖T (t)x− T (s)x‖ < ε.

In order to discuss di�erentiability of a one-parameter semigroup
on a Banach space X, we introduce the notion of a derivative on a
normed vector space which is called Fréchet derivative.

A map f : U → Y between the open subset U of a normed vec-
tor space X ⊃ U and the normed vector space Y is called Fréchet
differentiable at x ∈ U with derivative A(x) if there exists a bounded
linear map A(x) : X → Y such

lim
‖h‖→0

‖f(x+ h)− f(x)− A(x)h‖
‖h‖

= 0.

It is called simply Fréchet differentiable with Fréchet derivative

A : U → L(X, Y )

x→ A(x)

on U if it is Fréchet di�erentiable at any x ∈ U with derivative A(x).
If f is linear then also x → A(x) is linear. If X = R then derivatives
are interpreted as derivatives with respect to time and will frequently
be noted with a dot: d

dt
f(s) = ḟ(s) for s ∈ R.

Let X be a Banach space and [u, v] ⊂ R be a closed interval. Let
f : [u, v] → X be continuous. Then by compactness of [u, v]f is in
particular uniformly continuous and (In(f))n∈N de�ned as

In(f) := 2−n
b(v−u)·2nc∑

i=0

f(u+ i · 2−n)

is a Cauchy sequence hence converges. Thus we can de�ne

Definition 1.3.5. Let X be a Banach space and let f : [u, v] ⊂
R→ X be continuous. We let

∫ v
u
f(s)ds denote the Riemann integral .

Familiar properties of the integral can also be shown in the same
way (cf. [38], Chapter 3, Exercise 23). Therefore for u, v, w ∈ U∫ w

u

f(s)ds =

∫ v

u

f(s)ds+

∫ w

v

f(s)ds
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and for f : I → X and g : I → X and µ, ν ∈ C∫ v

u

µf(s) + νg(s)ds = µ

∫ v

u

f(s)ds+ ν

∫ v

u

g(s)ds.

Furthermore, the fundamental theorem of calculus holds also in this
case. So for a continuous function f : I → X and u and h such that
u, u+ h ∈ I

(1.3.1) lim
h→0

1

h

∫ u+h

u

f(s)ds = f(u)

and for a linear bounded operator L ∈ L(X) it holds

(1.3.2) L

(∫ v

u

f(s)ds

)
=

∫ v

u

L (f(s)) ds.

Since the integral is de�ned just as the limit of Riemann sums and the
norm is continuous the triangle inequality yields∥∥∥∥∫ w

u

f(s)ds

∥∥∥∥ ≤ ∫ w

u

‖f(s)‖ ds.

We need another tool from functional analysis:

Lemma 1.3.6. Let U be a closed subspace of a normed vector space
X and let U 6= X. Then for any 0 < δ < 1 there exists xδ ∈ X with
‖xδ‖ = 1 such that

‖xδ − u‖ ≥ 1− δ
for all u ∈ U.

Proof. Choose some y ∈ X \ U . Then for all u ∈ U ,‖y − u‖ > 0
and since U is closed

d := inf
u∈U
‖y − u‖ > 0

because if not there would be a sequence in U converging to y in con-
tradiction to y ∈ X \ U . For d

1−δ there exists uδ ∈ U such that

‖y − uδ‖ <
d

1− δ
.

Since U is a subspace y−uδ
‖y−uδ‖

∈ X \ U. Also
∥∥∥ y−uδ
‖y−uδ‖

∥∥∥ = 1 and for any
u ∈ U ∥∥∥∥ y − uδ

‖y − uδ‖
− u
∥∥∥∥ =

1

‖y − uδ‖
‖y − (uδ + ‖y − uδ‖u)‖

≥ 1

‖y − uδ‖
d

> 1− δ.
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Hence the assertion holds for xδ := y−uδ
‖y−uδ‖

. �

We are now able to show that there exists a connection between a
uniformly continuous semigroup and a di�erential equation.

Proposition 1.3.7. For a uniformly continuous semigroup

(T (t))t∈R+

on a Banach space X the map

t→ T (t)

is Fréchet di�erentiable and satis�es the di�erential equation

d

dt
T (t) = AT (t) = T (t)A for t ∈ R+

T (0) = Id(1.3.3)

for some bounded operator A ∈ L(X) which is given by

A =
d

dt
T (t)

∣∣∣∣
t=0

.

Proof. The proof has four steps.
First, we de�ne a di�erentiable map

t→ V (t) :=

∫ t

0

T (s) ds,

which is well de�ned since s → T (s) is uniformly continuous hence
the Riemann integral exists. The di�erentiability follows also from the
assumption of uniform continuity which ensures by the fundamental
theorem of calculus that V̇ (t) = T (t).
Second, we show that V (t0) has a continuous inverse for some small
t0 > 0. This means we �rst have to show that

∫ t0
0
T (s) ds is injective

and surjective.
We start with injectivity. By uniform continuity of T for a given 0 <
ε < 1 there exists t0 > 0 such that ‖T (s)− Id‖ < ε for all 0 < s < t0.
Hence ∥∥∥∥∫ t0

0

Id ds−
∫ t0

0

T (s) ds

∥∥∥∥ ≤ ∫ t0

0

‖Id − T (s)‖ ds

< t0ε.
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and for any x ∈ X

∥∥∥∥∫ t0

0

T (s)x ds

∥∥∥∥ ≥ ∥∥∥∥∫ t0

0

Id x ds
∥∥∥∥− ∥∥∥∥∫ t0

0

Id x ds−
∫ t0

0

T (s)x ds

∥∥∥∥
(1.3.4)

> (t0 − t0ε) ‖x‖ .

By linearity of
∫ t0

0
T (s) ds and the de�nition of the norm, this inequality

implies that
∫ t0

0
T (s) ds is injective.

In order to show that
∫ t0

0
T (s) ds is surjective we �rst show that the

image of
∫ t0

0
T (s) ds is closed. Let (yn)n∈N be a converging sequence

that lies in the image of
∫ t0

0
T (s) ds and that converges to some y.

(yn)n∈N is a Cauchy sequence in X . We choose xn for any n ∈ N such
that yn =

∫ t0
0
T (s)xnds. Then the inequality∥∥∥∥∫ t0

0

T (s)u ds−
∫ t0

0

T (s)v ds

∥∥∥∥ > ∥∥∥∥∫ t0

0

T (s) ds

∥∥∥∥ ‖u− v‖
for some u, y ∈ X implies that also (xn)n∈N is a Cauchy sequence in X.
Hence it converges to some x ∈ X and by continuity of

∫ t0
0
T (s) ds

∫ t0

0

T (s)x ds = lim
n→∞

∫ t0

0

T (s)xn ds = y.

Thus the image of
∫ t0

0
T (s) ds is closed. We can use Riesz' Lemma 1.3.6

to show that if the image of
∫ t0

0
T (s) ds was not all of X then there

would be some z ∈ X with ‖z‖ = 1 such that∥∥∥∥z − ∫ t0

0

T (s)
z

t0
ds

∥∥∥∥ ≥ ε.

But this contradicts∥∥∥∥∫ t0

0

Id ds−
∫ t0

0

T (s) ds

∥∥∥∥ < t0ε.

Thus,
∫ t0

0
T (s) ds must be surjective and V (t0) is invertible.

Its inverse (V (t0))−1 : X → X is linear because for x1, x2, y1, y2 ∈ X
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such that y1 =
∫ t0

0
T (s)x1 ds and y2 =

∫ t0
0
T (s)x2 ds and some λ ∈ C

(V (t0))−1 (λy1 + λy2) == (V (t0))−1

(∫ t0

0

T (s) (λx1 + λx2) ds

)
= (V (t0))−1 V (t0) (λx1 + λx2)

= λx1 + λx2

= λ (V (t0))−1 y1 + λ (V (t0))−1 y2.

In order to show boundedness (or equivalently continuity) of (V (t0))−1

we use Inequality 1.3.4. So for any y, x ∈ X with y =
∫ t0

0
T (s)x ds∥∥(V (t0))−1 y

∥∥ = ‖x‖

<
‖y‖

t0 − t0ε
.

Third, we express T in terms of V. Because of the second step we can
write T (t) as

T (t) = (V (t0))−1 V (t0)T (t).

In order to reach our objective we can absorb the T (t) of the right hand
side in the V term in the following way:

(V (t0))−1 V (t0)T (t) = (V (t0))−1

∫ t0

0

T (s)T (t) ds

= (V (t0))−1

∫ t0

0

T (s+ t) ds

= (V (t0))−1

∫ t+t0

t

T (s) ds

= (V (t0))−1

(∫ t+t0

0

T (s) ds−
∫ t

0

T (s) ds

)
= (V (t0))−1 (V (t+ t0)− V (t)) .

Fourth, with the representation

T (t) = (V (t0))−1 (V (t+ t0)− V (t))

Fréchet di�erentiability of T (t) follows from Fréchet di�erentiability of
V (t) and the continuity of (V (t0))−1. The Fréchet derivative can be
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calculated as
d

dt
(T (t)) = lim

h↘0

T (t+ h)− T (t)

h

= lim
h↘0

T (h)− Id
h

T (t)

= Ṫ (0)T (t)

Setting A = Ṫ (0) we obtain the statement of the proposition. �

Remark 1.3.8. A = Ṫ (0) is called generator of the semigroup

(T (t))t∈R+
.

In order to solve Equation 1.3.3 we de�ne the object

etA :=
∞∑
k=0

(tA)k

k!
.

Here A ∈ L(X) is a bounded linear operator on the Banach space X.
The series converges because for N,M ∈ N and M ≥ N it holds∥∥∥∥∥

M∑
k=0

(tA)k

k!
−

N∑
k=0

(tA)k

k!

∥∥∥∥∥ ≤
M∑
k=N

tk ‖A‖k

k!

which converges to zero for M,N →∞. Hence(
N∑
k=0

(tA)k

k!

)
N∈N

is a Cauchy sequence and its limit etA exists and lies in the Banach
space L(X).
As in the case of the exponential of complex numbers x, y ∈ C where
ex+y = exey a similar property holds for the exponential of operators.

Lemma 1.3.9. For a Banach space X and linear bounded operators
A,B ∈ L(X) that commute it holds

eA+B = eAeB

Proof. By de�nition

eA+Bx =
∞∑
k=0

(A+B)k x

k!
.

Since A and B commute we obtain



1.3. UNIFORMLY CONTINUOUS SEMIGROUPS 29

∞∑
k=0

(A+B)k x

k!
=
∞∑
k=0

k∑
l=0

k!
(k−l)!l! (A)l (B)k−l x

k!

=
∞∑
k=0

k∑
l=0

(B)k−l

(k − l)!
(A)l x

l!

In the sum we sum up all possible combinations of powers of Ax and
Bx in a fashion that is described in the following table. It indicates for
which values of the indices k and l we obtain the expression (A)n (B)m x
under the sum.

(A)0 (A)1 (A)2 (A)3

(B)0 k = 0, l = 0 k = 1, l = 1 k = 2, l = 2 k = 3, l = 3

(B)1 k = 1, l = 0 k = 2, l = 1 k = 3, l = 2 ...

(B)2 k = 2, l = 0 k = 3, l = 1 ... ...

(B)3 k = 3, l = 0 ... ... ...

We see that for a given k we sum up a diagonal in the table. By
changing the summation procedure to horizontal and vertical summa-
tion the limit remains unchanged because it exists and is unique and
we are therefore able to write the sum as

eA+Bx =
∞∑
m=0

∞∑
n=0

(B)m

m!

(A)n x

n!

= eAeBx.

�

Proposition 1.3.10. For some A ∈ L(X) the map

R+ → L(X)

t→ etA

is uniformly continuous and satis�es

e(t+s)A = etAesA for t, s ∈ R+

e0·A = Id

thus {
etA
}
t∈R+

is a uniformly continuous semigroup.

Proof. The equation

e(t+s)A = etAesA
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follows from Lemma 1.3.9. e0·A = Id follows from the equation above
for t = 0 and s = 0 respectively.
In order to prove uniform continuity of t→ etA we need to show that

lim
h→0

∥∥e(t+h)A − etA
∥∥ = 0

for all t ∈ R+. We see that

lim
h→0

∥∥e(t+h)A − etA
∥∥ ≤ lim

h→0

∥∥ehA − Id
∥∥∥∥etA∥∥

= lim
h→0

∥∥∥∥∥
∞∑
k=1

(hA)k

k!

∥∥∥∥∥∥∥etA∥∥
≤ lim

h→0

(
∞∑
k=1

hk ‖A‖k

k!

)∥∥etA∥∥
= lim

h→0

(
eh‖A‖ − 1

) ∥∥etA∥∥
= 0.

�

Proposition 1.3.11.
(i) For some A ∈ L(X) the map T (·) :

R+ → L(X)

t→ etA(1.3.5)

is Fréchet di�erentiable and satis�es the di�erential equation

d

dt
T (t) = AT (t) for t ∈ R+

T (0) = Id.(1.3.6)

(ii) A Fréchet di�erentiable map T (·) : R+ → L(X) that satis�es Equa-
tion 1.3.6 for some A ∈ L(X) is of the form 1.3.5.

Proof.

First we show (i). Due to Proposition 1.3.10

T (·) : t→ etA

is a uniformly continuous semigroup. Thus Proposition 1.3.7 yields
that t→ etA is Fréchet di�erentiable and satis�es

d

dt
T (t) = BT (t) for t ∈ R+

T (0) = Id.
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for some bounded operatorB ∈ L(X) which is given byB = d
dt
T (t)

∣∣
t=0

.

We have to show that d
dt
T (t)

∣∣
0

= A hence B = A. We calculate

= lim
h→0

1

h
‖T (h)− T (0)− hA‖

= lim
h→0

1

h

∥∥∥∥∥
∞∑
k=0

(hA)k

k!
− Id− hA

∥∥∥∥∥
= lim

h→0

∥∥∥∥∥1

h

∞∑
k=2

(hA)k

k!

∥∥∥∥∥
≤ lim

h→0

∥∥hA2
∥∥ ∞∑
k=2

(h ‖A‖)k−2

(k − 2)!

= 0

which implies (i).
Concerning (ii) we assume that there is a second Fréchet di�erentiable
map S(·) di�erent from

T (·) : t→ etA

that satis�es Equation 1.3.6. For an arbitrary but �xed t ∈ R+ we
de�ne

Q(s) = S(s)T (t− s)

for 0 ≤ s ≤ t and observe that the product rule which holds also
for Fréchet derivatives yields d

ds
Q(s) = 0 for all s ∈ [0, t]. Hence

Q(0) = Q(t). This implies S(t) = T (t) equals for all t ∈ R+ since t was
arbitrary. Thus S(·) = T (·). �

To sum up, we have shown that a uniformly continuous semigroup
must satisfy Equation 1.3.6 and that t → etA satis�es Equation 1.3.6
and is the only map that does so. Hence, all uniform continuous semi-
groups are of the form t → etA where A is called the generator of the
uniformly continuous semigroup.

Remark 1.3.12. For a Banach space X and some initial state x0 ∈
X and a linear bounded operator A ∈ L(X) we can de�ne x(t) := etAx0
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and see in the calculation

lim
h→0

1

h

(∥∥e(t+h)Ax0 − etAx0 − AhetAx0

∥∥)
≤ lim

h→0

1

h

(∥∥(ehA − Id− Ah
)∥∥ ∥∥etAx0

∥∥)
≤ lim

h→0

1

h

((
eh‖A‖ − 1− ‖A‖h

) ∥∥etAx0

∥∥)
= 0

that the Fréchet derivative of t→ x(t) is ẋ(t) = Ax(t). Thus t→ etAx0

is a solution of the initial value problem

ẋ(t) = Ax(t) for t∈R+

x(0) = x0.

We can show as before that such a solution is also unique by assuming
that there is a second one y(t) and de�ning q(s) := x(s)y(t − s) for
0 ≤ s ≤ t for a �xed but arbitrary t ∈ R+. Then d

ds
q(s) = 0 and

q(0) = q(t). Thus y(t) = x(t) for all t ∈ R+.

We know that a uniformly continuous semigroup t → T (t) on a
Banach space X is of the form t → etA for a bounded linear operator
A ∈ L(X). In general however, it can be di�cult to calculate etA given
a bounded linear operator A ∈ L(X). The following case is an example
where this calculation can be carried out.

Example 1.3.13. For ∞ > p ≥ 1 the space

`p :=

{
f : N→ C :

∞∑
k=0

|f(k)|p <∞

}
with norm ‖·‖`p : f → (

∑∞
k=0 |f(k)|p)1/p is a Banach space (see for

example [41]). On `p one can think of a linear map as an in�nite di-
mensional matrix. Given an in�nite dimensional matrix A = (aij)i,j∈N
as generator with

aij =

{
1 if j − i = 1
0 otherwise

the exponential

etA =
∞∑
k=0

(A)k tk

k!

is an in�nite dimensional matrix. Executing the matrix multiplication
Ak shows that (

Ak
)
i,j

=

{
1 if j − i = k
0 otherwise .
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Thus, the entries of etA are given by(
etA
)
i,j

=

{
tj−i

(j−i)! if j − i ≥ 0

0 otherwise
.

1.4. Strongly continuous semigroups

In the following, X will always denote a C-Banach space. The previ-
ous subsection presented some general results on uniformly continuous
semigroups. However, often the semigroup

(T (t))t∈R+

on a Banach space X fails to be uniformly continuous but is still
strongly continuous . However, also in this case a mathematically rich
theory can be developed which will be done in the following. This
section largely follows Engel, Nagel [18].

1.4.1. De�nition and elementary properties. One example
where a semigroup on a Banach space X fails to be uniformly con-
tinuous is presented below and taken from Engel, Nagel [18] chapter I,
section 4.

Example 1.4.1. For a function f : R → C we de�ne the left
translation Tl(t) (f) of f by t ∈ R as

Tl(t) (f) (s) := f(s+ t)

for all s ∈ R.
Similarly, one can de�ne the right translation Tr(t) (f) of f by t ∈ R
as

Tr(t) (f) (s) := f(s− t)
for all s ∈ R. We consider the family of maps

(Tl(t))t∈R+

on the Banach space Lp(R) for some 1 ≤ p < ∞ from Example
A.4.1. We see that f ∈ Lp(R) implies Tl(t)f ∈ Lp(R) and ‖f‖Lp(R) =

‖Tl(t)f‖Lp(R) for any t ∈ R+ and that for each t ∈ R+, Tl(t) is a linear
map. Hence

(Tl(t))t∈R+

is a family of bounded linear operators on Lp(R). It is also a semigroup
on Lp(R) as the Functional Equation (1.1.1) holds since for any u, v ∈ R
and all s ∈ R
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Tl(u+ v)(f)(s) = f(s+ u+ v)

= Tl(u) (f) (s+ v)

= Tl(v) (Tl(u) (f)) (s).

We show that it is not uniformly continuous. By contradiction, if it
was uniformly continuous then for every 2 > ε > 0 there would exist a
δ > 0 such that |t| < δ would imply

sup
‖f‖Lp(R)≤1

‖Tl(t)f − f‖Lp(R) < ε.

We de�ne the function

fδ(x) :=

{
(1/δ)1/p for 0 ≤ x ≤ δ

0 else.

For this function

‖fδ‖Lp(R) =

∫ δ

0

∣∣∣(1/δ)1/p
∣∣∣p ds = 1.

We see

(Tl(δ)fδ − fδ) (x) =


(1/δ)1/p for − δ ≤ x ≤ 0

− (1/δ)1/p for 0 ≤ x ≤ δ

0 else

and compute

‖Tl(δ)fδ − fδ‖Lp(R) =

∫ δ

−δ

∣∣∣(1/δ)1/p
∣∣∣p ds

= 2

in contradiction to uniform continuity.

.

Thus, instead of focusing on uniform continuity we will look at the
following, weaker, concept of continuity:

Definition 1.4.2. A one-parameter semigroup

(T (t))t∈R+
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on a Banach space X is called strongly continuous (or C0−semigroup)
if for all x ∈ X the orbit map ξx :

R+ → X

t→ T (t)x

is continuous.

The natural objective is to obtain similar statements as in the case
of uniform continuity. As a tool from functional analysis we need to
use the uniform boundedness principle. In order to show it we �rst
prove Baire ′s theorem. The proofs for both theorems are based on the
versions that can be found in Werner [41], chapter 4.

Definition 1.4.3. A set M is called convex if for all x, y ∈M and
all 0 ≤ λ ≤ 1 also λx+ (1− λ) y ∈M.

Theorem 1.4.4. (Baire's theorem)
In a complete metric space (X, d) for a sequence of open, dense subsets
(On)n∈N also

⋂
n∈NOn is dense in X.

Proof. We need to show that for an arbitrary open ball

Uε(x0) := {x ∈ X : d(x, x0) < ε}
with radius ε > 0 and center x0 ∈ X the intersection

Uε(x0) ∩

(⋂
n∈N

On

)
is nonempty. In order to show this, we will construct a sequence of
open balls (Uεk(xk))k∈N such that εk <

εk−1

2
and

Uεk(xk) ⊂

(
k−1⋂
n=1

Uεk(xk)

)
and

Uεk(xk) ⊂ Uε(x0) ∩

(
k⋂

n=1

On

)
for all k ∈ N. If we have found such a sequence of open balls (Uεk(xk))k∈N
then its centers (xk)k∈N form a Cauchy sequence since εk <

εk−1

2
. Be-

cause of the completeness on X we see that (xk)k∈N converges to some
limit called x which then lies in

Uε(x0) ∩

(⋂
n∈N

On

)
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as desired.
In order to construct the sequence of open balls (Uεk(xk))k∈N with the
mentioned properties we start out with Uε(x0) and want to �nd Uε1(x1).
Since O1 is dense Uε(x0) ∩ O1 is nonempty. It is also open. Thus
there is an open ball Uε1(x1) contained in Uε(x0) ∩ O1. We can easily
choose ε1 < ε0

2
. By the same reasoning as before, the intersection

Uε1(x1) ∩ O2 is nonempty and open so there is an open ball Uε2(x2)
which lies in Uε1(x1)∩O2 where again we can choose ε2 <

ε1
2
. Carrying

out this procedure inductively we obtain (Uεk(xk))k∈N with the desired
properties. �

We call a set N ⊂ X nowhere dense if N̊ = Ø. We call a set F ⊂ X
of first category if there exists a sequence (Ni)i∈N of nowhere dense sets
Ni ⊂ X such that F =

⋃∞
i=1Ni.We call a set S ⊂ X of second category

if it is not of �rst category.

Theorem 1.4.5. (Baire's category theorem)
Let (X, d) be a complete metric space and F ⊂ X a set of �rst category.
Then X \ F = X.

Proof. Let (Ni)i∈N be a sequence of nowhere dense sets Ni ⊂ X
such that F =

⋃∞
i=1Ni. Then

X \ F =
∞⋂
i=1

(X \Ni) ⊃
∞⋂
i=1

(
X \Ni

)
.

X \Ni is open. By assumption N̊i = Ø for any i ∈ N which means that
for any open set O ⊂ X the intersection

O ∩
(
X \Ni

)
= O \Ni

is nonempty for any i ∈ N or put di�erently that
(
X \N i

)
is dense in

X for any i ∈ N. Therefore we can apply Baire's theorem (Theorem
1.4.4) to

⋂∞
i=1

(
X \Ni

)
and obtain that it is dense in X. Thus also

X \ F is dense in X. �

Theorem 1.4.6. (Uniform boundedness principle)
Let X be a Banach space, Y a normed vector space and I an index set.
Let (Ti)i∈I be a family of bounded linear operators mapping from X to
Y. If for all x ∈ X

sup
i∈I
‖Tix‖ <∞

holds, then also
sup
i∈I
‖Ti‖ <∞.
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Proof. We will assume that X is nonempty, the statement being
trivial otherwise. We want to show that there exists N0 ∈ N such that
we can �nd a small open ball Uδ(0) around 0 with radius δ > 0 such
that for all x ∈ Uδ(0) it holds

sup
i∈I
‖Tix‖ ≤ N0.

If we are able to �nd this we can conclude by computing

sup
i∈I
‖Ti‖ = sup

i∈I

(
sup
‖x‖≤1

‖Tix‖

)

≤ sup
i∈I

(
sup

y∈Uδ(0)

∥∥∥Ti (y
δ

)∥∥∥)

≤ N0

δ
.

The proof that there exist δ > 0 and N0 ∈ N such that

sup
i∈I
‖Tix‖ < N0

holds for all x ∈ Uδ(0) has three steps.
First, we �nd a candidate N ∈ N to be the N0 mentioned above. For
this purpose, we use Baire's category theorem. The assumption that

sup
i∈I
‖Tix‖ <∞

holds for all x ∈ X means that X =
⋃
n∈NEn where

En :=

{
x ∈ X : sup

i∈I
‖Tix‖ ≤ n

}
.

By Baire's category theorem (Theorem 1.4.5) X cannot be of �rst cat-
egory because if it was then X \X = X which is impossible for a
nonempty set. Hence X is of second category which means it cannot
be written as the countable union of nowhere dense sets. Thus there is
some N ∈ N such that EN is not nowhere dense.
Second, we show that there is an open ball contained in EN . We can
see that for each n ∈ N En is closed when we write it as

En =
⋂
i∈I

{x ∈ X : ‖Tix‖ ≤ n}

and keep in mind that ‖Ti(·)‖ is continuous which implies that

{x ∈ X : ‖Tix‖ ≤ n} = ‖Ti(·)‖−1 ([0, n])
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is closed. Therefore the fact that EN is not nowhere dense means that
E̊N = E̊N is nonempty. This allows us to �nd y ∈ EN and ε > 0 such
that the open ball Uε(y) is contained in EN .
Third, we show that Uε(0) is contained in EN . Uε(y) ⊂ EN means that
‖z − y‖ < ε for some z ∈ X implies that

sup
i∈I
‖Tiz‖ ≤ N.

We see that also Uε(−y) must be contained in EN because

‖z − (−y)‖ < ε

for some z ∈ X implies

‖(−z)− y‖ < ε

which yields
sup
i∈I
‖Ti (−z)‖ ≤ N

hence
sup
i∈I
‖Tiz‖ ≤ N.

Therefore also Uε(0) is contained in EN which can be seen by repre-
senting x ∈ Uε(0) as

x =
1

2

(x− y)︸ ︷︷ ︸
∈EN

+ (x− (−y))︸ ︷︷ ︸
∈EN


and by observing that

EN =

{
x ∈ X : sup

i∈I
‖Tix‖ ≤ N

}
is convex (see De�nition A.3.71).
By setting N0 := N and δ := ε we conclude. �

We want to establish statements that are equivalent to strong con-
tinuity. For this we will follow Engel, Nagel, chapter I, section 5[18].
We start with the following lemma.

Lemma 1.4.7. Let X be a Banach space and K ⊂ R be a compact
set and

F : K → L(X)

be some function. Then the following three assertions are equivalent.
(i) For all x ∈ X the map

K → X

t→ F (t)x
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is continuous.
(ii) There is a dense subset D of X such that for all x ∈ D the map

K → X

t→ F (t)x

is continuous. Additionally,

sup
t∈K
‖F (t)‖ <∞.

(iii) For any compact subset C ⊂ X the map

K × C → X

(t, x)→ F (t)x

is uniformly continuous.

Proof.

(iii) ⇒ (i) This is clear if we choose the compact set C to be {x}.
(i) ⇒ (ii) All we need to show is

sup
t∈K
‖F (t)‖ <∞.

The continuity of t → ‖F (t)x‖ for each x ∈ X implies that for each
x ∈ X on the compact set K ⊂ R the function t→ ‖F (t)x‖ attains its
maximum. Therefore

sup
t∈K
‖F (t)x‖ <∞

for each x ∈ X and we conclude by applying the uniform boundedness
principle from Theorem 1.4.6.
(ii) ⇒ (iii) We have to show that for an arbitrary compact set C ⊂ X
and for an arbitrary ε > 0 there exists a δ > 0 such that for all s, t ∈ K
and x, y ∈ C

|s− t|+ ‖x− y‖ < δ

implies
‖F (s)x− F (t)y‖ < ε.

Using the inequality

‖F (s)x− F (t)y‖ < ‖F (s)x− F (t)x‖+ ‖F (t)x− F (t)y‖
we see that it is enough to �nd δ > 0 such that for all t ∈ K and all
x, y ∈ C such that ‖x− y‖ < δ

‖F (t)x− F (t)y‖ < ε

2
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and for all x ∈ C and s, t ∈ K such that |s− t| < δ

‖F (s)x− F (t)x‖ < ε

2
.

For the �rst inequality, we see that by assumption

M := sup
t∈K
‖F (t)‖ <∞

so
‖F (t)x− F (t)y‖ < ε

2
holds if ‖x− y‖ < ε

2M
.

For the second inequality, we need to use the continuity of t → F (t)y
which however holds only for y ∈ D. Therefore we approximate any
x ∈ C by some y ∈ D and see that the compactness of C yields that
we can approximate all x ∈ C with a given accuracy by just finitely
many (yi)i=1,...,n ∈ D. Precisely, given γ > 0 the density of D in X
implies that

C ⊂
⋃
y∈D

Uγ(y)

where Uγ(y) are open balls with radius γ > 0 and center y ∈ D. Because
of the compactness of C already �nitely many of these balls su�ce to
cover C. The centers of these �nitely many balls we call (yi)i=1,...,n .
Therefore, if we choose γ = ε

6M
then for any x ∈ X we choose some

yi ∈ (yi)i=1,...,n such that ‖x− yi‖ < γ which implies

‖F (s)x− F (s)yi‖ <
ε

6

and
‖F (t)x− F (t)yi‖ <

ε

6
.

With this choice

‖F (s)x− F (t)x‖ < ‖F (s)x− F (s)yi‖︸ ︷︷ ︸
< ε

6

+ ‖F (s)yi − F (t)yi‖

+ ‖F (t)yi − F (t)x‖︸ ︷︷ ︸
< ε

6

=
2ε

6
+ ‖F (s)yi − F (t)yi‖

Using the continuity of t → F (t)yi for yi ∈ D we choose τ > 0 small
enough such that |s− t| < τ implies

‖F (s)yi − F (t)yi‖ <
ε

6
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for all (�nitely many!) (yi)i=1,...,n and conclude that

‖F (s)x− F (t)x‖ < ε

2
.

Hence for δ := min
{
τ, ε

2M

}
we see that for all s, t ∈ K and x, y ∈ C

|s− t|+ ‖x− y‖ < δ

implies
‖F (s)x− F (t)y‖ < ε

which is what we had to show. �

Proposition 1.4.8. For a semigroup

(T (t))t∈R+

on a Banach space X the following three assertions are equivalent.
(i)

(T (t))t∈R+

is strongly continuous.
(ii) For all x ∈ X

lim
t↘0

T (t)x = x.

(iii)
(a) There is a dense subset D of X such that for all x ∈ D

lim
t↘0

T (t)x = x.

(b) Additionally, there is δ > 0 and M ≥ 1 such that ‖T (t)‖ ≤ M for
all 0 ≤ t ≤ δ.

Proof.

(i) ⇒(ii) is clear.
(ii) ⇒ (iii) (a) is clear.
(ii) ⇒ (iii) (b) By contradiction we assume that for all δ > 0 and all
M ≥ 1 there is 0 ≤ t ≤ δ such that ‖T (t)‖ > M . Hence we can choose
a sequence (tn)n∈N converging to 0 such that

lim
n→∞

‖T (tn)‖ =∞.

On the other hand by (ii)

lim
n→∞

‖T (tn)x‖ = ‖x‖

for all x ∈ X which implies that

sup
n∈N
‖T (tn)x‖ <∞
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for all x ∈ X. Hence, by the uniform boundedness principle (Theorem
1.4.6)

sup
n∈N
‖T (tn)‖ <∞

in contradiction to
lim
n→∞

‖T (tn)‖ =∞.

(iii)⇒ (ii) If we choose δ > 0 provided by (iii) (b) we obtain that T (t)
is uniformly bounded on the compact interval [0, δ] . Together with
(iii)(a) t → T (t) satis�es the assertion of Lemma 1.4.7 (ii) which is
equivalent to Lemma 1.4.7 (i) that yields that t→ T (t)x is continuous
on the compact interval [0, δ] for all x ∈ X. Thus (ii) follows.
(ii) ⇒ (i) Fix an arbitrary t0 ∈ R+. We have to show right continuity

lim
h↘0

T (t0 + h)x→ T (t0)x

and left continuity

lim
h↗0

T (t0 + h)x→ T (t0)x.

Regarding right continuity the functional equality yields

lim
h↘0

T (t0 + h)x = lim
h↘0

T (h)T (t0)x

and by (ii) we obtain

lim
h↘0

T (h)T (t0)x = T (t0)x.

In order to show left continuity, we apply the functional equality and
obtain

lim
h↗0
‖T (t0 + h)x− T (t0)x‖ = lim

h↗0
‖T (t0 + h) (x− T (−h)x)‖ .

By (ii), we know
lim
h↗0
‖(x− T (−h)x)‖ = 0.

We need an estimate for T (t0 + h) and use the fact that (ii) implies
(iii)(b). Therefore, we choose t0 > δ > 0 and M ≥ 1 such that

‖T (t)‖ ≤M

for 0 ≤ t ≤ δ. Thus,

‖T (t0 + h)‖ ≤ ‖T (t0 − δ)‖ · ‖T (δ + h)‖
≤ ‖T (t0 − δ)‖ ·M
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for −δ ≤ h ≤ 0. Hence, we obtain for the limit

lim
h↗0
‖T (t0 + h)x− T (t0)x‖ ≤ lim

h↗0
‖T (t0 + h)‖ ‖(x− T (−h)x)‖

≤ lim
h↗0
‖T (t0 − δ)‖ ·M · ‖(x− T (−h)x)‖

= 0

and conclude. �

Proposition 1.4.9. For a strongly continuous semigroup

(T (t))t∈R+

on a Banach space X there exist constants ω ∈ R and M ≥ 1 such that
for all t ≥ 0

‖T (t)‖ ≤Meωt.

Proof. The map t → T (t)x is continuous for all x ∈ X. Hence
t→ ‖T (t)x‖ attains its maximum on the compact interval [0, 1] for all
x ∈ X and

sup
t∈[0,1]

‖T (t)x‖ <∞

for all x ∈ X. By the uniform boundedness principle (Theorem 1.4.6)

M := sup
t∈[0,1]

‖T (t)‖ <∞.

If we now want to bound ‖T (t0)‖ for a �xed but arbitrary t0 ∈ R+

we can write t0 = n + s for n ∈ N and s ∈ [0, 1] and obtain by the
functional equation for T that

‖T (t0)‖ = ‖(T (1))n T (s)‖ ≤ ‖(T (1))‖n · ‖T (s)‖ .
Thus

‖T (t0)‖ ≤Mn+1 = M ·Mn = M · en·lnM ≤M · et0·lnM .
Setting ω := lnM and observing that t0 ∈ R+ was arbitrary we obtain
the statement of the proposition. �

Definition 1.4.10. In the following we will call a strongly contin-
uous semigroup for which ω = 0 andM = 1 are possible in Proposition
1.4.9 contraction semigroup.

Example 1.4.11. We take a second look at the left translation
semigroup

(Tl(t))t∈R+

from Example 1.4.1. We have already shown in Example 1.4.1 that the
semigroup is not uniformly continuous on Lp(R). We now show that it
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is instead strongly continuous on Lp(R). For this purpose we want to
use Proposition 1.4.8. Since for any f ∈ Lp(R)

‖Tl(t)f‖Lp(R) =

(∫ ∞
−∞
|f(s+ t)|p ds

)1/p

=

(∫ ∞
−∞
|f(s)|p ds

)1/p

= ‖f‖Lp(R)

‖Tl(t)‖L(Lp(R)) = 1 and statement (iii)(b) of Proposition 1.4.8 holds.
It remains to show (iii)(a). Therefore we have to �nd a dense subset
D ⊂ Lp(R).
Since for all f ∈ Lp(R) it holds

∫∞
−∞ |f(s)|p ds <∞ for some ε > 0 there

also exist a, b ∈ R with a < b such that for the function

f[a,b](x) :=

{
f(x) for a ≤ x ≤ b

0 elsewhere

the estimate ∥∥f − f[a,b]

∥∥
Lp(R)

< ε

holds. On the other hand we can approximate the function f[a,b] in the
following way. We de�ne the so-called mollifiers

ηρ(x) :=

{
1
ρ
C exp

(
1

|x/ρ|2−1

)
if |x| < ρ

0 if |x| ≥ ρ

which are in C∞c (R) which means they are in�nitely di�erentiable func-
tions with compact support. It can be shown (see [19]) that the con-
volution

(
f[a,b]

)ρ de�ned by(
f[a,b]

)ρ
(x) :=

∫
R
ηρ(x− y)f[a,b](y)dy

for each x ∈ R is also in C∞c (R). Also it is known (see [19]) that since
f[a,b] ∈ Lp(R) (

f[a,b]

)ρ → f[a,b]

on Lp([c, d]) for any real c < d. Hence
(
f[a,b]

)ρ approximates f[a,b] also
in Lp(R) thus f as well and since f ∈ Lp(R) was arbitrary C∞c (R) is
dense in Lp(R).
In order to show (iii)(a) of Proposition 1.4.8 it is therefore enough to
show that

lim
t↘0
‖Tl(t)f − f‖Lp(R) = 0
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for all f ∈ C∞c (R). Since a continuous function f with compact support
is also uniformly continuous. Therefore for any ε > 0 there exists t > 0
such that s < t implies |f(r + s)− f(r)| < ε for all r ∈ R. Since the
support of f is bounded by some constant

C := sup
x∈supp{f}

‖x‖

we obtain

‖Tl(s)f − f‖Lp(R) ≤ ((C + t) εp)1/p

for all s < t. Hence

lim
t↘0
‖Tl(t)f − f‖Lp(R) = 0

and we conclude by applying Proposition 1.4.8.

1.4.2. Generators of strongly continuous semigroups. We
recall that for uniformly continuous semigroups (T (t))t∈R+

on a Banach
space X the map

R+ → L(X)

t→ T (t)

is Fréchet di�erentiable as shown in Proposition 1.3.7. We hope to show
some kind of di�erentiability also in the case of strongly continuous
semigroups. Since in this case we only have continuity of the orbit
maps

ξx : t→ T (t)x ∈ X
we can hope to obtain di�erentiability at most for the orbit maps.
Regarding the continuity of the orbit maps we have seen in Proposition
1.4.8 that right continuity of all orbit maps at t = 0 already implies
continuity of all orbit maps at any t ∈ R+. The following lemma shows
that a similar statements holds also for di�erentiability. It its taken
from Nagel, Engel [18], chapter II, section 1.

Lemma 1.4.12. For a strongly continuous semigroup (T (t))t∈R+
on

a Banach space X and x ∈ X it holds: If the orbit map

ξx : t→ T (t)x ∈ X

is right di�erentiable at t = 0 with ξ̇x(0) then it is also di�erentiable
on R+ and its derivative is given by

ξ̇x(t) = T (t)ξ̇x(0)

= ξ̇x(0)T (t)
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Proof. We �x some arbitrary t0 ∈ R+ and have to show right
di�erentiability

lim
h↘0

1

h
‖T (t0 + h)x− T (t0)x− ∂+ (T (t0)x)‖ = 0

and left di�erentiability

lim
h↗0

1

h
‖T (t0 + h)x− T (t0)x− ∂− (T (t0)x)‖ = 0

and have to show that left and right derivative coincide

∂+ (T (t0)x) = ∂− (T (t0)x) .

For right di�erentiability we use the semigroup property:

lim
h↘0

1

h
(T (t0 + h)x− T (t0)x)

= T (t0)

(
lim
h↘0

(
1

h
T (h)x− x

))
= T (t0)ξ̇x(0)

By the same token

lim
h↘0

1

h
(T (t0 + h)x− T (t0)x)

= ξ̇x(0)T (t0).

Hence ξx : t → T (t)x ∈ X is right di�erentiable at t0 ∈ R+. For left
continuity we use the semigroup property to reduce the problem to the
one of right continuity:

lim
h↗0

1

h
(T (t0 + h)x− T (t0)x)

= lim
h↗0

T (t0 + h)

((
−1

h

)
(T (−h)x− x)

)
By the �rst part of the proof we know the limit of

(
− 1
h

)
(T (−h)x− x).

By Proposition 1.4.9 we see that ‖T (t0 + h)‖ is bounded for h on a
compact interval. Thus we obtain

lim
h↗0

T (t0 + h)

((
−1

h

)
(T (−h)x− x)− ξ̇x(0)

)
= 0,
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and conclude

lim
h↗0

1

h
(T (t0 + h)x− T (t0)x)

= T (t0)ξ̇x(0)

= ξ̇x(0)T (t0).

�

We do not know for which x ∈ X the orbit t→ ξx(t) is di�erentiable
at t = 0 but we can de�ne a map that maps to this derivative whenever
possible:

Definition 1.4.13. The generator A of a strongly continuous semi-
group

(T (t))t∈R+

on a Banach space X is a map

A : D (A) ⊂ X → X

de�ned by

Ax := ξ̇x(0) = lim
h↘0

T (h)x− x
h

on its domain

D(A) :=

{
x ∈ X|

there exists ξ̇x(0)∈X such that

lim
h↘0

∥∥∥T (h)x−x
h
− ξ̇x(0)

∥∥∥ = 0

}
.

We also say that A generates (T (t))t∈R+
.

Remark 1.4.14. The convergence

lim
h→0

T (h)x− x
h

is to be taken with respect to the norm of the Banach space which
means that

ξ̇x(0) = lim
h→0

T (h)x− x
h

if and only if

lim
h→0

∥∥∥∥ξ̇x(0)− T (h)x− x
h

∥∥∥∥ = 0.

The domain D(A) is an important part of the operator A and the
generator should also be written as pair (A,D(A)) even though this is
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often omitted. It is also worth noting that the operator A : D(A)→ X
does not have to be continuous. For x, y ∈ D(A) and µ ∈ C we obtain

lim
h→0

∥∥∥∥T (h) (µx+ µy)− (µx+ µy)

h
− µξ̇x(0)− µξ̇y(0)

∥∥∥∥
≤ µlim

h→0

∥∥∥∥T (h) (x)− (x)

h
− ξ̇x(0)

∥∥∥∥+ µlim
h→0

∥∥∥∥T (h)(y)− (y)

h
− ξ̇y(0)

∥∥∥∥
= 0,

thus D(A) is a vector space.

In the following result we see among other things that just like
uniformly continuous semigroups also strongly continuous semigroups
are linked to a di�erential equation. It is again taken from Nagel, Engel
[18], chapter II, section 1.

Proposition 1.4.15. Let

(T (t))t∈R+

be a strongly continuous semigroup on a Banach space X. The gener-
ator (A,D(A)) has the properties:
(i) The operator A : D(A)→ X is linear.
(ii) For all x ∈ D(A) and all t ∈ R+ also T (t)x ∈ D(A) and

d

dt
T (t)x = AT (t)x

= T (t)Ax.

(iii) For all x ∈ X and all t ∈ R+∫ t

0

T (s)x ds ∈ D(A)

and

T (t)x− x = A

∫ t

0

T (s)x ds.

For all x ∈ D(A) and all t ∈ R+

T (t)x− x =

∫ t

0

T (s)Axds.
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Proof.

(i) This follows from the linearity of T (t) ∈ L(X) for all t ∈ R+ and
the de�nition of the operator

Ax := lim
h→0

T (h)x− x
h

.

(ii) By x ∈ D(A) the map

ξx : t→ T (t)x ∈ X

is right di�erentiable at t = 0 and by Lemma 1.4.12 di�erentiable on
R+. Thus, by the semigroup property T (t)x ∈ A and by Lemma 1.4.12
the derivative is given by

ξ̇x(t) = T (t)ξ̇x(0)

= T (t)A

= AT (t).

(iii) For the �rst part of (iii) we have to show
∫ t

0
T (s)xds ∈ D(A) and

to compute A
∫ t

0
T (s)xds. Therefore we need to �nd the limit

lim
h↘0

1

h

(
T (h)

∫ t

0

T (s)x ds−
∫ t

0

T (s)x ds

)
.

Since we can pull continuous linear operators in the integral (see Equa-
tion 1.3.2) we can use the Functional Equation 1.1.1 and obtain

lim
h↘0

1

h

(∫ t+h

t

T (s)x ds−
∫ h

0

T (s)x ds

)
.

By continuity of s→ T (s)x for all x ∈ X the fundamental theorem of
calculus (Equation 1.3.1) for Banach space valued integrals yields

lim
h↘0

1

h

(∫ t+h

t

T (s)x ds−
∫ h

0

T (s)x ds

)
= T (t)x− x.

For the second part of (iii) when x ∈ D(A) we already know

T (t)x− x = lim
h↘0

(∫ t

0

T (h+ s)x− T (s)x

h
ds

)
and need to show that

lim
h↘0

(∫ t

0

T (s)
T (h)x− x

h
ds

)
=

∫ t

0

T (s)Axds.
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This follows directly from (ii) if we can pull the limit in the integral.
We can do so because

lim
h↘0

∥∥∥∥T (h)x− x
h

− Ax
∥∥∥∥ = 0

by assumption so for some ε > 0 there exists h0 > 0 such that for all
h0 > h > 0 ∥∥∥∥T (h)x− x

h
− Ax

∥∥∥∥ < ε.

This implies that for all 0 ≤ s ≤ t∥∥∥∥T (s)
T (h)x− x

h
− T (s)Ax

∥∥∥∥ ≤ ‖T (s)‖ ·
∥∥∥∥T (h)x− x

h
− Ax

∥∥∥∥
≤Meωt · ε

by Proposition 1.4.9 for some ω ∈ R and M ≥ 1 and we are allowed
to pull the limit in the integral by the dominated convergence which
holds true also for integrals of Banach space valued functions. �

In the next lemma we see how we can rescale a strongly contin-
uous semigroup in a way such that it remains a strongly continuous
semigroup and what the generator of the rescaled semigroup looks like.
(See also Nagel, Engel, chapter II, section 2.2 l[18])

Lemma 1.4.16. (Rescaled Semigroup) For a strongly continuous
semigroup

(T (t))t∈R+

on a Banach space X with generator (A,D(A)) , λ ∈ C �xed, t ≥ 0 and

S(t) := e−λtT (t)

i)
(S(t))t∈R+

is a strongly continuous semigroup on a Banach space X (called rescaled
semigroup) and
ii) its generator (B,D(B)) is given by (A− λ,D(A)).

Proof.

i) If T (t) ∈ L(X) then also

S(t) = e−λtT (t) ∈ L(X).
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(S(t))t∈R+
satis�es the Functional Equation 1.1.1 because

S(s+ t) = e−λ(s+t)T (s+ t)

= e−λtT (t)e−λsT (s)

= S(t)S(s).

(S(t))t∈R+
is also strongly continuous because for all x ∈ X the orbit

map
t→ e−λtT (t)x

is the product of the two continuous maps t → e−λt and t → T (t)x,
hence continuous.
ii) In order to determine the generator B of (S(t))t∈R+

for some x ∈
D(A) we have to �nd the limit

lim
h↘0

1

h
(S(h)x− x) = lim

h↘0

1

h

(
e−λhT (h)x− x

)
It follows from the fact that for small h > 0

∥∥e−λh∥∥ is bounded by some
C that

lim
h↘0

∥∥∥∥1

h

(
e−λhT (h)x− x

)
− (−λx+ Ax)

∥∥∥∥
≤ lim

h↘0

∥∥∥∥1

h

(
e−λhT (h)x− e−λhx

)
− e−λheλhAx

∥∥∥∥
+ lim

h↘0

∥∥∥∥1

h

(
e−λhx− x

)
− (−λx)

∥∥∥∥
≤ lim

h↘0

∥∥e−λh∥∥︸ ︷︷ ︸
≤C

∥∥∥∥1

h
(T (h)x− x)− eλhAx

∥∥∥∥
+ 0

= 0

Therefore D(A) ⊂ D(B) and B = A− λ. The representation

T (t) = e−(−λ)tS(t)

and the same reasoning as above yield that also D(B) ⊂ D(A). �

The generator (A,D(A)) has also several other important proper-
ties. One of them requires the following de�nition:

Definition 1.4.17. For a linear operator A : X ⊃ D(A)→ X on
a normed space X its graph gr(A) is de�ned as

gr(A) := {(x,Ax) ⊂ D(A)×X} .
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On X ×X we de�ne the norm

‖·‖X×X : X ×X → R+

(x, y)→ ‖x‖+ ‖y‖ ,
and call a linear operator A : X ⊃ D(A) → X closed if its graph is
closed in the norm ‖·‖X×X .

Definition 1.4.18. For a linear operator (A,D(A)) on a normed
space X the graph norm ‖·‖A is de�ned as

‖·‖A : D(A) ⊂ X → R+

x→ ‖x‖+ ‖Ax‖ .

Lemma 1.4.19. Let A : D(A) ⊂ X → X be a closed linear map on
a Banach space X. Then D(A) is a Banach space with respect to ‖·‖A
and A is continuous with respect to ‖·‖A .

Proof. Clearly, (D(A), ‖·‖A) is a normed vector space with re-
spect to ‖·‖A . If (xn)n∈N is a Cauchy sequence in (D(A), ‖·‖A), then(
(xn, Axn)n∈N

)
is a Cauchy sequence in

(
X ×X, ‖·‖X×X

)
which con-

verges in‖·‖X×X to some (x, y) ∈ X×X due to completeness of X×X.
Since A is closed (x, y) ∈ gr(A) , hence (D(A), ‖·‖A) is complete. Con-
tinuity follows immediately from ‖Ax‖ ≤ ‖x‖A . �

Definition 1.4.20. For a linear operator A : X ⊃ D(A)→ X on
a Banach space X the subspace D ⊂ D(A) is called a core for A if D
is closed in D(A) in the graph norm ‖·‖A.

Lemma 1.4.21. Let D(A) be closed. A linear operator A : X ⊃
D(A)→ X on a Banach space X is closed if the following implication
holds:
If a sequence (xn)n∈N ⊂ D(A) converges to zero as n tends to in�nity
and for some y ∈ X lim

n→∞
‖Axn − y‖ = 0, then y = 0.

Proof. Let (zn)n∈N ⊂ D(A) be some sequence. In order to show
closedness of A we have to prove that from lim

n→∞
‖zn − ẑ‖ = 0 for some

ẑ ∈ X and lim
n→∞

‖Azn − ŷ‖ = 0 for some ŷ ∈ X it follows ẑ ∈ D(A) and
ŷ = Aẑ.

ẑ ∈ D(A) holds due to closedness of D(A). For xn := zn − ẑ for all
n ∈ N it holds (xn)n∈N ⊂ D(A) and we obtain lim

n→∞
‖Axn − (ŷ − Aẑ)‖ =

0 hence ŷ = Aẑ by the assumed implication and A is closed. �
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Definition 1.4.22. If for a linear operator A : X ⊃ D(A)→ X on
a Banach space X the closure of the graph gr(A) in the norm ‖·‖X×X
is the graph of another linear operator Ā : X ⊃ D(Ā)→ X then Ā is
called the closure of A and A is called closable.

Lemma 1.4.23. A linear operator A : X ⊃ D(A)→ X on a Banach
space X is closable if the following implication holds:
If a sequence (xn)n∈N ⊂ D(A) converges to zero as n tends to in�nity
and for some y ∈ X lim

n→∞
‖Axn − y‖ = 0, then y = 0.

Proof. Let (zn)n∈N ⊂ D(A) be some sequence. If lim
n→∞

‖zn − ẑ‖ =

0 for some ẑ ∈ X and lim
n→∞

‖Azn − ŷ‖ = 0 for some ŷ ∈ X we can
de�ne

Āẑ := lim
n→∞

Azn = ŷ.

Such an operator is well-de�ned because if for a di�erent sequence
(z′n)n∈N ⊂ D(A) such that lim

n→∞
‖z′n − ẑ‖ = 0 the sequence (Azn)n∈N

converges, then by setting z′′n := z′n−zn we obtain a sequence (z′′n)n∈N ⊂
D(A) such that lim

n→∞
‖z′′n − 0‖ = 0, hence by the assumed implication

lim
n→∞

‖Az′n − Azn‖ = 0. Ā inherits linearity from A and is closed by
de�nition. �

Following the a proof presented in Nagel, Engel [18], chapter II,
section 1, we can now show some important properties of the generator.

Proposition 1.4.24. The generator (A,D(A)) of a strongly con-
tinuous semigroup

(T (t))t∈R+

is
(i) a closed operator
(ii) densely de�ned
(iii) determines the strongly continuous semigroup uniquely.

Proof.

(i) We have to show that for a sequence (xn)n∈N with xn ∈ D(A) that
converges to some x ∈ X and for a sequence (Axn)n∈N that converges
to some y ∈ X it holds that

(x, y) ∈ {(x,Ax) ⊂ D(A)×X} .
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This is the case if we can show x ∈ D(A) and y = Ax.
Given such two sequences (xn)n∈N and (Axn)n∈N, in order to establish
a relationship between their respective limits, we �rst establish one
between xn and Axn. This is possible thanks to Proposition 1.4.15(iii)
which states

T (t)xn − xn =

∫ t

0

T (s)Axn ds.

Passing to the limit we obtain

T (t)x− x = lim
n→∞

∫ t

0

T (s)Axn ds.

As already seen in the proof of Proposition 1.4.15(iii), by dominated
convergence we can pull the limit inside the integral thanks to the
inequality

‖T (s)Axn − T (s)y‖ ≤Meωt ‖Axn − y‖
for all 0 ≤ s ≤ t and for some ω ∈ R and M ≥ 1 which holds because
by Proposition 1.4.9. Doing so we obtain

T (t)x− x =

∫ t

0

T (s)y ds.

Dividing by t and letting t→ 0 yields thanks to the strong continuity of
(T (s))s∈R+

and the fundamental theorem of calculus (Equation 1.3.1)

lim
t↘0

T (t)x− x
t

= y.

Hence x ∈ D(A) and Ax = y.
(ii) In order to show that D(A) is dense in X we choose x ∈ X ar-
bitrarily and construct a sequence in D(A) that converges to x. By
Proposition 1.4.15(iii) we know that

1

1/n

∫ 1/n

0

T (s)x ds ∈ D(A).

Strong continuity implies

1

1/n

∫ 1/n

0

T (s)x ds→ x

hence we have found the sequence we were looking for and D(A) is
densely de�ned.
(iii) In order to show that (A,D(A)) uniquely determines the strongly
continuous semigroup (T (t))t∈R+

, we assume that it is also the gener-
ator of a di�erent strongly continuous semigroup {S(t)}t∈R+

and show
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that both semigroups are equal. For this end, we �x some arbitrary
t0 ∈ R+ and x ∈ D(A) and for 0 ≤ s ≤ t0 we de�ne the orbit

s→ ηx(s) := T (t0 − s)S(s)x.

If we are able to show that
d

ds
ηx(s) = 0

for all 0 ≤ s ≤ t0 it follows immediately that ηx(0) = ηx(t0). This
implies T (t0)x = S(t0)x and we are done since t0 ∈ R+ and x ∈ D(A)
were arbitrary.
In order to show

d

ds
ηx(s) = 0

we try to write the di�erence quotient of ηx(s) in a way that makes use
of the di�erence quotients of the orbit maps s→ S(s)x and s→ T (s)x
of which we know already the limit by Lemma 1.4.12. We obtain

1

h
(ηx(s+ h)− ηx(s))

=
1

h
(T (t0 − s− h) (S(s+ h)x− S(s)x))

+
1

h
((T (t0 − s− h)− T (t0 − s))S(s)x) .

For the second term we see that

lim
h→0

1

h
((T (t0 − s− h)− T (t0 − s))S(s)x)

= − lim
h→0

1

h
(T (t0 − s)− (T (t0 − s− h))S(s)x)

can be computed thanks to Proposition 1.4.15 (ii) which yields that
S(s)x ∈ D(A). Thus, the derivative of the orbit map t→ −T (t)S(s)x
at t0 − s is

−T (t0 − s)AS(s)x

by Lemma 1.4.12. For the �rst term we de�ne the continuous function
f :

[0, 1]→ X

h→
{

S(s+h)x−S(s)x
h

if h ∈ (0, 1]
AS(s)x if = 0.

Since continuous functions map compact sets to compact sets the image
f([0, 1]) is compact. Therefore, if we set xh := f(h) we see that by
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Proposition 1.4.8 the map

[0, t]× f([0, 1])→ X

(h, xh)→ T (t− s− h)xh

is uniformly continuous. Hence, for xh → AS(s)x and h→ 0 we obtain

T (t− s− h)xh → T (t− s)AS(s)x.

Thus the di�erence quotient is

d

ds
ηx(s) = T (t− s)AS(s)x− T (t− s)AS(s)x

= 0.

and we conclude. �

The concept of a spectrum of a closed linear operator on a Banach
space de�ned below generalizes the concept of eigenvalues of matrices.

Definition 1.4.25. The resolvent set ρ(A) of a densely de�ned
linear operator (A,D(A)) on a Banach space is de�ned as
ρ(A) := {λ ∈ C : λ−A : X ⊃ D(A)→ X is bijective with continuous inverse} .

Forλ ∈ ρ(A) the resolvent R(λ,A) is de�ned as:

X → D(A)

x→ (λ− A)−1x.

The set
σ(A) := C \ ρ(A)

is called spectrum.

Remark 1.4.26. A closed bijective operator A : D(A) ⊂ X →
X is by Lemma 1.4.19 continuous with respect to (D(A), ‖·‖A) (see
De�nition 1.4.18) and by the open mapping theorem (Theorem A.4.9)
the preimage of an open set inX underA is an open set in (D(A), ‖·‖A) .
By ‖·‖ ≤ ‖·‖A the identity

(D(A), ‖·‖A)→ (X, ‖·‖)

is a bounded linear operator between Banach spaces (compare Lemma
1.4.19) hence again by the open mapping theorem is an open map.
Thus, any open set in (D(A), ‖·‖A) is open in X and the inverse of a
closed bijective operator is continuous.

On the other hand, if the densely de�ned linear operator (A,D(A))
is not closed, then ρ(A) = ∅. In order to see this, observe that by
non-closedness there is (xn)n∈N ⊂ D(A) such that xn → x ∈ X and
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Axn → y ∈ X but either x /∈ D(A) or x ∈ D(A) but Ax 6= y. If there
was someλ ∈ ρ(A) then due to continuity of R(λ,A)

R(λ,A) (λx− y) = lim
n→∞

R(λ,A) (λxn − Axn) = x,

which would yield x ∈ D(A) and by

x = R(λ,A) (λx− Ax) ,

and injectivity of R(λ,A) we would obtain Ax = y in contradiction to
non-closedness of A. Hence ρ(A) = ∅.

However, thanks to closedness of the generator A we can hope for
ρ(A) 6= ∅ and the following proposition yields that the resolvent set is
open (the proof follows [18], Proposition IV.1.3):

Proposition 1.4.27. For a closed operator A : X ⊃ D(A) → X
for µ ∈ ρ(A) and λ ∈ C such that |µ− λ| < 1

‖R(µ,A)‖ it holds λ ∈ ρ(A)

and

R(λ,A) =
∞∑
n=0

(µ− λ)nR(µ,A)n+1.

Proof. We write (λ− A) in terms of (µ− A) as

λ− A = µ− A− µ+ λ

= [Id + (−µ+ λ)R (µ,A)] (µ− A) .(1.4.1)

By assumption µ− A is bijective. Since

‖(−µ+ λ)R (µ,A)‖ < 1

the equation
(Id + (−µ+ λ) (R(µ,A))x = 0

for some x ∈ X implies x = 0 thus

Id + (−µ+ λ)R (µ,A)

is injective which yields injectivity of λ−A by Equation 1.4.1. Regard-
ing surjectivity of λ− A; it is enough to show surjectivity of

Id + (−µ+ λ)R (µ,A) .

Let y ∈ X. Then for

(1.4.2) z :=
∞∑
i=0

[(µ− λ)R (µ,A)]i y

the series converges thanks to

‖(µ− λ)R (µ,A)‖ < 1,
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and we obtain

(Id + (−µ+ λ) (R(µ,A)) z

= (Id + (−µ+ λ) (R(µ,A))

(
y+

∞∑
i=1

[(µ− λ)R (µ,A)]i y

)
=y + (−µ+ λ) (R(µ,A) y

+
∞∑
i=1

[(µ− λ)R (µ,A)]i y

+ (−µ+ λ) (R(µ,A)
∞∑
i=1

[(µ− λ)R (µ,A)]i y

=y.

Hence, Id + (−µ+ λ)R (µ,A) is a linear bounded bijective operator
and its continuous inverse is given by

(Id + (−µ+ λ)R (µ,A))−1 =
∞∑
i=0

[(µ− λ)R (µ,A)]i .

Thus,
λ− A = [Id + (−µ+ λ)R (µ,A)] (µ− A)

is surjective, and therefore also bijective. By the previous calculations
the resolvent is given by

R(λ,A) = ([Id + (−µ+ λ)R (µ,A)] (µ− A))−1

= (µ− A)−1 ([Id + (−µ+ λ)R (µ,A)])−1

= R(µ,A)

(
∞∑
n=0

(µ− λ)nR (µ,A)n
)
.

�

Related to the strongly continuous semigroup (T (t))t∈R+
, so far

we have been dealing with the two objects generator (A,D(A)) and
resolvent R(λ,A). Its de�nition relates the generator A to the semi-
group (T (t))t∈R+

. Also, the de�nition of the resolvent R(λ,A) provides
a link between the resolvent and the generator A. The missing link is
a direct relation between resolvent R(λ,A) and semigroup (T (t))t∈R+

.
As a preparation we observe the following:

Lemma 1.4.28. For a generator (A,D(A)) of a strongly continuous
semigroup

(T (t))t∈R+
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on a Banach space X and for λ ∈ C and t > 0 the following equations
hold

e−λtT (t)x− x = (A− λ)

∫ t

0

e−λsT (s)x ds for x ∈ X

=

∫ t

0

e−λsT (s) (A− λ)x ds for x ∈ D(A).

Proof. For the rescaled semigroup S(t) = e−λtT (t) and its gener-
ator

(B,D(B)) = (A− λ,D(A))

from Lemma 1.4.16, Proposition 1.4.15 (iii) states that

S(t)x− x = (A− λ)

∫ t

0

S(t)x ds for x ∈ X

and

S(t)x− x =

∫ t

0

S(t) (A− λ)x ds

which is the statement of the lemma. �

Heuristically, if in the Lemma above we choose λ large and then let
t→∞, the left hand side converges to −x. This leads to the idea that

lim
t→∞

∫ t

0

e−λsT (s)x = (A− λ)−1 x.

The idea is made precise in the integral representation of the resolvent
below which provides the link between the semigroup and the resolvent
of its generator. The theorem also shows that the spectrum of the
generator is contained in some left half plane of C. The proof follows
the one presented in chapter II, section 1 of Engel, Nagel [18]

Theorem 1.4.29. Let

(T (t))t∈R+

be a strongly continuous semigroup on the Banach space X such that

‖T (t)‖ ≤Meωt

for some constants ω ∈ R and M ≥ 1. For the generator (A,D(A)) of

(T (t))t∈R+
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the following properties hold:
(i) If for λ ∈ C the expression

R(λ)x : =

∫ ∞
0

e−λsT (s)x ds

= lim
t→∞

∫ t

0

e−λsT (s)x ds

exists for all x ∈ X, then λ ∈ ρ(A) and

R(λ,A)x =

∫ ∞
0

e−λsT (s)x ds.

(ii) If Reλ > ω, then λ ∈ ρ(A) and

R(λ,A)x =

∫ ∞
0

e−λsT (s)x ds

and ‖R(λ,A)‖ ≤ M
Reλ−ω .

Proof. We �rst show that ii) follows from i) .

ii) In order to show existence of

lim
t→∞

∫ t

0

e−λsT (s)x ds

for all x ∈ X we �rst need to show that(∫ n

0

e−λsT (s)x ds

)
n∈R+

is a Cauchy sequence for all x ∈ X if Reλ > ω. For any u, v ∈ R we
have ∥∥∥∥∫ v

u

e−λsT (s)x ds

∥∥∥∥ ≤ ∫ v

u

∥∥e−λsT (s)x
∥∥ ds

≤
∫ v

u

e−(Reλ)sMeωs ‖x‖ ds

= M

∫ v

u

e(ω−Reλ)s ‖x‖ ds

= M

{
e(ω−Reλ)u

Reλ− ω
− e(ω−Reλ)v

Reλ− ω

}
‖x‖(1.4.3)

Hence, for all x ∈ X and for any ε > 0 there exists some N ∈ N such
that for all n,m > N it holds∥∥∥∥∫ m

n

e−λsT (s)x ds

∥∥∥∥ ≤ ε.
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Thus, (∫ n

0

e−λsT (s)x ds

)
n∈R+

is a Cauchy sequence and

lim
n→∞

(∫ n

0

e−λsT (s)x ds

)
exists. By Equation 1.4.3 also

lim
t→∞

∥∥∥∥(∫ t

0

e−λsT (s)x ds

)
− lim

n→∞

(∫ n

0

e−λsT (s)x ds

)∥∥∥∥ = 0.

Hence also

lim
t→∞

(∫ t

0

e−λsT (s)x ds

)
exists. By i) λ ∈ ρ(A) and

R(λ,A)x =

∫ ∞
0

e−λsT (s)x ds

thus by Equation 1.4.3

‖R(λ,A)x‖ ≤ M

Reλ− ω
‖x‖ for all x ∈ X.

i) We have to show that if for some λ ∈ C the integral∫ ∞
0

e−λsT (s)x ds

exists, then for all x ∈ X∫ ∞
0

e−λsT (s)x ds ∈ D(A)

and

(λ− A)

(∫ ∞
0

e−λsT (s)x ds

)
= x,

and for all x ∈ D(A)(∫ ∞
0

e−λsT (s) ((λ− A)x) ds

)
= x.

The proof has two steps.
As a �rst step, we show the statement for λ = 0.
We show �rst that for all x ∈ X∫ ∞

0

T (s)x ds ∈ D(A)
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and

(1.4.4) (−A)

(∫ ∞
0

T (s)x ds

)
= x.

Toward this end, we calculate

lim
h↘0

T (h)− T (0)

h

∫ ∞
0

T (s)x ds

= lim
h↘0

T (h)− Id
h

lim
t→∞

∫ t

0

T (s)x ds.

Since we can pull linear bounded operators in the integral (see Equation
1.3.2), this equals

lim
h↘0

1

h
lim
t→∞

∫ t

0

T (s+ h)x− T (s)x ds.

Rewriting the integration bounds in the integral this yields

lim
h↘0

1

h
lim
t→∞

(∫ t+h

0

T (s)x ds−
∫ h

0

T (s)x ds−
∫ t

0

T (s)x ds

)
.

Since lim
t→∞

∫ t
0
T (s)x ds converges by assumption we obtain

lim
t→∞

∫ t+h

0

T (s)x ds−
∫ t

0

T (s)x ds = 0

for any h > 0 thus

lim
h↘0

lim
t→∞

T (h)− Id
h

∫ t

0

T (s)x ds = lim
h↘0

1

h

(
−
∫ h

0

T (s)x ds

)
= −x,

the last step being possible thanks to the fundamental theorem of cal-
culus (Equation 1.3.1) and strong continuity of

(T (t))t∈R+
.

Hence
∫∞

0
T (s)x ds ∈ D(A) and A

(∫∞
0
T (s)x ds

)
= −x.

Next, we �x some arbitrary x ∈ D(A) and show(∫ ∞
0

T (s) (−Ax) ds

)
= x.

By assumption we know

lim
t→∞

∫ t

0

T (s) (−Ax) ds
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converges in X. Proposition 1.4.15(iii) implies that for any t ∈ R+∫ t

0

T (s) (x) ds ∈ D(A)

and

lim
t→∞

∫ t

0

T (s) (−Ax) ds = lim
t→∞

− A
(∫ t

0

T (s) (x) ds

)
.

Therefore it is su�cient to compute the right hand side. Since we know
by assumption that

lim
t→∞

∫ t

0

T (s) (x) ds

exists, closedness of the generator A (Proposition 1.4.24) yields

lim
t→∞

− A
(∫ t

0

T (s) (x) ds

)
= −A

(
lim
t→∞

∫ t

0

T (s) (x) ds

)
.

Thus, ∫ ∞
0

T (s) (−Ax) ds = −A
(

lim
t→∞

∫ t

0

T (s) (x) ds

)
,

and Equation 1.4.4 states

−A
(

lim
t→∞

∫ t

0

T (s) (x) ds

)
= x.

As a second step, we show the statement for any λ ∈ C. So for a
strongly continuous semigroup (T (t))t∈R+

with generator (A,D(A)) let

lim
t→∞

∫ t

0

e−λsT (s)x ds

exist for all x ∈ X. We then use the rescaled semigroup

S(t) := e−λtT (t)

from Lemma 1.4.16 whose generator is given by

(B,D(B)) = (A− λ,D(A)) .

Clearly

lim
t→∞

∫ t

0

S(s)x ds

exists for all x ∈ X. Thus, by the �rst step of the proof for all x ∈ X∫ ∞
0

S(s)x ds ∈ D(B)
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and

(−B)

(∫ ∞
0

S(s)x ds

)
= x

and for all x ∈ D(B)(∫ ∞
0

S(s) ((−B)x) ds

)
= x.

We conclude by substituting back. �

This corollary is taken from [20].

Corollary 1.4.30. Let

(T (t))t∈R+

be a strongly continuous semigroup on the Banach space X such that

‖T (t)‖ ≤Meωt

for some constants ω ∈ R and M ≥ 1. Then for all n ∈ N and λ ∈ C
such that Reλ > ω it holds

‖(R(λ,A))n‖ ≤ M

(Reλ− ω)n
.

Proof. By Theorem 1.4.29 and the property of the integral that
we can pull linear operators inside (see Equation 1.3.2) we can write

(R(λ,A))n x

=

(∫ ∞
0

...

∫ ∞
0

∫ ∞
0

e−λ(s1+s2+...+sn)T (s1 + s2 + ...+ sn)x ds1ds2...dsn

)
.

Using ‖T (t)‖ ≤Meωt we obtain

‖(R(λ,A))n x‖

≤
(∫ ∞

0

...

∫ ∞
0

∫ ∞
0

∣∣e−λ(s1+s2+...+sn)
∣∣Meω(s1+s2+...+sn) ds1ds2...dsn

)
‖x‖

= M

(∫ ∞
0

...

∫ ∞
0

∫ ∞
0

e(ω−Reλ)(s1+s2+...+sn) ds1ds2...dsn

)
‖x‖

≤ M

(
1

Reλ− ω

)n
‖x‖ .

�
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1.4.3. Hille-Yosida Theorem. We turn our attention to the ques-
tion which kind of linear operators (A,D(A)) on X are generators
of some strongly continuous semigroup. We have seen in Proposition
1.3.10 that for any bounded linear operator A the family(

etA
)
t∈R+

of linear bounded operators is a uniformly continuous semigroup. How-
ever, generators of strongly continuous semigroup are unbounded if the
semigroup is not uniformly continuous. We have already seen that
not all unbounded linear operators are generators of semigroups and
that some necessary conditions have to be satis�ed. From Proposition
1.4.24 we remember that a generator (A,D(A)) is closed and densely
de�ned. Furthermore, from Proposition 1.4.29 (ii) we observe that
there is ω ∈ R such that Reλ > ω implies λ ∈ ρ(A) and from Corollary
1.4.30 we obtain that in this case the norm of the resolvent

R(λ,A) = (λ− A)−1

is bounded by

‖(R(λ,A))n‖ ≤ M

(Reλ− ω)n

for some M ≥ 1 and all n ∈ N. We want to show that these necessary
conditions are also su�cient.
For this purpose, we will approximate the unbounded operator (A,D(A))
by bounded operators in order to apply the result for bounded oper-
ators from Proposition 1.3.10. For this approximation procedure, we
need to �nd bounded operators that are closely connected to (A,D(A)).
One such operator is clearly the resolvent

R(λ,A) = (λ− A)−1

which by de�nition is a bounded operator whenever λ ∈ ρ(A) which is
the case for Reλ > ω according to Proposition 1.4.29, where ω ∈ R is
the exponent in the bound

‖T (t)‖ ≤Meωt

that holds for strongly continuous semigroups (see Proposition 1.4.9).
Since we do not want the approximation of the generator to appear out
of nowhere we choose not give present the most concise proof possible
but instead to follow a more didactic approach in the next two lemmata.

This subsection is based on chapter II, section 3a of Nagel, Engel
[18] and section 4 of Hairer [20].

In the following lemma we see that there are other operators that
can be expressed in terms of the resolvent and that are bounded linear
operators.



66 1. ONE-PARAMETER SEMIGROUPS

Lemma 1.4.31. Let (A,D(A)) be linear operator on X and λ ∈
ρ(A). For x ∈ X

λAR(λ,A)x = −λx+ λ2R(λ,A)x.

For x ∈ D(A)

λR(λ,A)Ax = −λx+ λ2R(λ,A)x.

Proof. For x ∈ X

λAR(λ,A)x = λ (A− λ)R(λ,A)x+ λ2R(λ,A)x

and for x ∈ D(A)

λR(λ,A)Ax = λR(λ,A) (A− λ)x+ λR(λ,A)λx.

�

In order to approximate the generator (A,D(A)) of a strongly con-
tinuous semigroup on X by bounded operators related to the resolvent
we observe that for λ > 0 large enough by Theorem 1.4.29 λ ∈ ρ(A).
For Ax ∈ D(A) we have the identity

Ax = R(λ,A) (λ− A) (Ax)

= λR(λ,A) (Ax)−R(λ,A)A (Ax) .(1.4.5)

By the previous lemma λR(λ,A)A is a linear bounded operator for λ
large enough. However, R(λ,A)A2 is in general not bounded. There-
fore, we would like to show that R(λ,A)A (Ax) approaches zero when
λ approaches in�nity. Following this idea we show the next lemma.

Lemma 1.4.32. Let (A,D(A)) be a linear operator on a Banach
space X for which there exists M > 0 and ω ∈ R such that [ω,∞) ⊂
ρ(A) and for all λ ∈ [ω,∞)

‖λR(λ,A)‖ ≤M.

Then for all y ∈ D(A) it holds

lim
λ→∞

λR(λ,A)y = y.

Proof. We �x y ∈ D(A). R(λ,A) exists and as in Equation 1.4.5
above we obtain

λR(λ,A) (y)− y = R(λ,A)A (y) ,
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which yields the bounds

‖λR(λ,A) (y)− y‖ ≤ ‖R(λ,A)A (y)‖

≤ 1

λ
‖λR(λ,A)‖ ‖A (y)‖

≤ 1

λ
M ‖A (y)‖ .

Hence
lim
λ→0
‖λR(λ,A) (y)− y‖ = 0

for any y ∈ D(A). �

In the next step we would like to drop the assumption in Lemma
1.4.32 that y ∈ D(A). Since a generator (A,D(A)) is densely de�ned,
the equation

lim
λ→∞

λR(λ,A)y = y

holds true on a dense subset of X. We can use the following lemma.

Lemma 1.4.33. Let X be a Banach space and let (Ln)n∈N ∈ L(X)
be a sequence of bounded linear operators. If there exists C < ∞ such
that

sup
n∈N
‖Ln‖ ≤ C

then it holds: If for a dense subset D of X

lim
n→∞

Lnx = 0

for all x ∈ D, then
lim
n→∞

Lnx = 0

for all x ∈ X.

Proof. For x ∈ X �xed and arbitrary choose a sequence (xm)m∈N
in D such that

lim
m→∞

xm → x.

Fix some arbitrary ε > 0 and choose mε such that ‖xm − x‖ < ε for
all m > mε. We obtain∥∥∥ lim

n→∞
Lnx

∥∥∥ ≤ ∥∥∥ lim
n→∞

Ln (xm)
∥∥∥+

∥∥∥ lim
n→∞

Ln (x− xm)
∥∥∥

≤ 0 + lim
n→∞

‖Ln‖ ‖x− xm‖

≤ 0 + Cε

Since ε > 0 was arbitrary this implies the statement of the lemma. �

After these preparations, we obtain the Yosida approximation.
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Proposition 1.4.34. (Yosida approximation) For a densely de�ned
linear operator (A,D(A)) on a Banach space X for which there exists
M > 0 and ω ∈ R such that [ω,∞) ⊂ ρ(A) and for all λ ∈ [ω,∞)

‖λR(λ,A)‖ ≤M

it holds true: For all y ∈ X and λ ∈ [ω,∞)

lim
λ→∞

λR(λ,A)y = y,

and for all x ∈ D(A)

lim
λ→∞

λR(λ,A)Ax = Ax,

where the linear operator λR(λ,A)A is bounded on D(A). Also for

Aλ := λAR(λ,A) = −λ+ λ2R(λ,A)

we obtain for all x ∈ D(A)

lim
λ→∞

Aλx = Ax.

Proof. Since (A,D(A)) is densely de�ned we apply Lemma 1.4.33
to Lemma 1.4.32 and obtain

lim
λ→∞

λR(λ,A)y = y

for all y ∈ X. Setting y = Ax yields the second limit. By Lemma 1.4.31
for all x ∈ D(A)

λAR(λ,A)x = λR(λ,A)Ax

which implies the third limit. By the identity in Lemma 1.4.31, the
linear operator λR(λ,A)A is bounded on D(A) for all λ ∈ [ω,∞). �

Using the approximations above, we can characterize the class of
linear operators that are a generator of some strongly continuous semi-
group. A �rst version of this theorem was proved by Hille and Yosida
in 1948. The following -more general- version was shown by Feller,
Miyadera and Phillips in 1952 (see Engel, Nagel, chapter III [18]).

Theorem 1.4.35. (Hille-Yosida)
A closed and densely de�ned operator (A,D(A)) on the Banach

space X is the generator of a strongly continuous semigroup

(T (t))t∈R+

with
‖T (t)‖ ≤Meωt
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forM ≥ 1 and ω ∈ R if and only if for all λ ∈ C the inequality Reλ > ω
implies λ ∈ ρ(A) and for all λ ∈ C such that Reλ > ω the bound

‖(R(λ,A))n‖ ≤ M

(Reλ− ω)n

holds for every n ≥ 1.

Proof. It has already been shown in Proposition 1.4.24, Propo-
sition 1.4.29 (ii), and Corollary 1.4.30 that for a strongly continuous
semigroup

(T (t))t∈R+

with
‖T (t)‖ ≤Meωt

for M ≥ 1 and ω ∈ R the stated properties hold. We only need to
show the other implication.

For this purpose, we use the Yosida approximation from Proposition
1.4.34 in order to approximate the operator (A,D(A)) pointwise on
D(A) by the sequence

(An)n∈N, n>ω

of bounded linear operators where each An is de�ned on all of X as

An := nAR(n,A).

By Proposition 1.3.10 we know that for each n ∈ N, n > ω the family

(Tn(t))t∈R+

of bounded linear operators on X de�ned by

Tn(t) := etAn =
∞∑
k=0

(tAn)k

k!

is a uniformly continuous semigroup. We want to show that

(i) for all t ∈ R+ and for each x ∈ X

T (t)x := lim
n→∞

Tn(t)x

exists and that
(ii)

{T (t)}t∈R+

is a strongly continuous semigroup on X which
(iii) possesses A as a generator.
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In order to show (i) it is enough to show that for all t ∈ R+ and for
all x ∈ X

(Tn(t)x)n∈N, n>ω

is a Cauchy sequence in X. The proof has three steps.
First, we show that for all x ∈ X and for each n,m ∈ N, n,m > ω

‖Tn(t)x− Tm(t)x‖ ≤
∫ t

0

‖Tm(t− s)Tn(s)‖ ‖Anx− Amx‖ ds.(1.4.6)

In order to do so, we would like to use the fact that since for each
n ∈ N, n > ω An is a bounded operator with domain X, we know
the derivative of Tn(t)x with respect to t for any x ∈ X and any
n ∈ N, n > ω. Thus, for x ∈ X and n,m ∈ N, n,m > ω we write

Tn(t)x− Tm(t)x =

∫ t

0

d

ds
(Tm(t− s)Tn(s)x) ds

using the fundamental theorem of calculus for Banach space valued
integrals. We derive the integrand and obtain by the product rule for
x ∈ X and n,m ∈ N, n,m > ω:

Tn(t)x− Tm(t)x =

∫ t

0

(−AmTm(t− s)Tn(s)x+ Tm(t− s)AnTn(s)x) ds.

An and Tn (and Am and Tm) commute by de�nition of Tn (and Tm) for
any n,m ∈ N, n,m > ω. An and Am commute by their representations

An = −nId + n2R(n,A)

and
Am = −mId +m2R(m,A)

for any n,m ∈ N, n,m > ω. Hence by de�nition of Tn also Am and
Tn commute for any n,m ∈ N, n,m > ω and we obtain the following
estimate:

‖Tn(t)x− Tm(t)x‖ ≤
∫ t

0

‖Tm(t− s)Tn(s)‖ ‖Anx− Amx‖ ds.(1.4.7)

Second, since we know that

lim
n,m→∞

‖Anx− Amx‖ = 0

for all x ∈ D(A), in order to show that for all t ∈ R+ and for all
x ∈ D(A)

(Tn(t)x)n∈N, n>ω
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is a Cauchy sequence in X by the �rst step it su�ces to show that
there exists C <∞ such that for all s ∈ [0, t]

sup
n∈N, n>ω

‖Tn(s)‖ ≤ C.

This is shown as follows. For s ∈ [0, t] and n ∈ N, n > ω by Lemma
1.3.9 we have for Tn(s) = esAn :

Tn(s) = e(−snId+sn2R(n,A))

= e−sne(sn
2R(n,A)).

We can estimate this and obtain for any n ∈ N, n > ω and s ∈ [0, t]
and any x ∈ X

‖Tn(s)x‖ ≤ e−sn
∞∑
k=0

∥∥∥[sn2 (R(n,A))]
k
x
∥∥∥

k!

= e−snM
∞∑
k=0

(
sn2

(n−ω)

)k
k!

‖x‖

= e−snMe
sn2

(n−ω) ‖x‖
= Me

snω
n−ω ‖x‖ .

Therefore ‖Tn(s)‖ ≤ Me
snω
n−ω for any n ∈ N, n > ω and s ∈ [0, t]. This

implies that for all s ∈ [0, t] and any n ∈ N, n > ω

(1.4.8) sup
n∈N
‖Tn(s)‖ ≤M ·max

{
e
sn0ω
n0−ω , 1

}
where

n0 := min {n ∈ N : n > ω} .
Hence by Inequality 1.4.6 and

lim
n,m→∞

‖Anx− Amx‖ = 0

‖Tn(t)x− Tm(t)x‖
is a Cauchy sequence in X for all x ∈ D(A) and since X is a Banach
space for all x ∈ D(A) and t ∈ R+ the Cauchy sequence converges to
some

T (t)x := lim
n→∞

Tn(t)x.

We also see that the inequalities

(1.4.9) ‖T (t)x‖ ≤ lim
n→∞

‖Tn(t)x‖ ≤Metω ‖x‖
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hold for all x ∈ D(A) and t ∈ R+.
Third, we want to show that

T (t)x := lim
n→∞

Tn(t)x.

exists also for any x ∈ X \D(A) and t ∈ R+. We �x some x ∈ X \D(A)
and choose a sequence (xm)m∈N with xm ∈ D(A) such that

x = lim
m→∞

xm

for allm ∈ N. Since (xm)m∈N is a Cauchy sequence in X we see because
of Inequality 1.4.9

‖T (t)xm1 − T (t)xm2‖ = ‖T (t) (xm1 − xm2)‖
≤Metω ‖xm1 − xm2‖

that also (T (t)xm)m∈N is a Cauchy sequence in X. Thus,

T (t)x := lim
m→∞

T (t)xm

exists. This limit does not depend on the choice of the sequence which
we see in the following way. We choose another sequence (x̃m)m∈N with
x̃m ∈ D(A) for all m ∈ N such that

x = lim
m→∞

x̃m

and see that the inequality

‖T (t)x̃m − T (t)xm‖ ≤Metω ‖x̃m − xm‖
which holds for all m ∈ N and t ∈ R+ implies that (T (t)xm)m∈N and
(T (t)x̃m)m∈N converge to the same limit for all t ∈ R+. Furthermore,
the estimate

‖T (t)x‖ = lim
m→∞

‖T (t)xm‖ ≤ lim
m→∞

Metω ‖xm‖ = Metω ‖x‖

holds for any t ∈ R+. Combined with Inequality 1.4.9, this yields

‖T (t)‖ ≤Metω.

Since for any t ∈ R+ (
T (t)− lim

n→∞
Tn(t)

)
x = 0

for x ∈ D(A), D(A) is dense in X and

sup
n∈N
‖T (t)− Tn(t)‖ ≤Metω +M ·max

{
e
tn0ω
n0−ω , 1

}
by Lemma 1.4.33

T (t)x = lim
n→∞

Tn(t)x

holds for any x ∈ X and any t ∈ R+.
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In order to show (ii) we already know that the family

(T (t))t∈R+

as de�ned above is a family of linear bounded operators on X. We �rst
show that this family also satis�es the Functional Equation (1.1.1).
This is the case since for any x ∈ X and any s, t ∈ R+ we obtain

‖T (t+ s)x− T (t)T (s)x‖

=
∥∥∥ lim
n→∞

Tn(s+ t)x− lim
n→∞

Tn(t)T (s)x
∥∥∥

=
∥∥∥ lim
n→∞

Tn(s)Tn(t)x− lim
n→∞

Tn(t)T (s)x
∥∥∥

≤
(
M ·max

{
e
sn0ω
n0−ω , 1

})
lim
n→∞

‖(Tn(t)x− T (t)x)‖

= 0.

For statement (ii) it remains to be shown that (T (t))t∈R+
is strongly

continuous. We �x x ∈ X and by Proposition 1.4.8 it is enough to
show that

t→ T (t)x

is continuous from the right at t = 0. We know that

t→ Tn(t)x

is continuous for any n ∈ N. If we can show that on some interval [0, t0]
t → Tn(t)x converges uniformly to t → T (t)x we know from calculus
that then also t → T (t)x is continuous on this interval. In order to
show this uniform convergence we �x some ε > 0 and t0 ∈ R+ and by
Inequality 1.4.7 and Inequality 1.4.8 there exists n1(t0, x) such that for
all n,m > n1(t0, x) and any s ∈ [0, t0]

‖Tn(s)x− Tm(s)x‖ ≤ t0 ·
(
M ·max

{
e
t0n0ω
n0−ω , 1

})2

‖Anx− Amx‖

≤ ε.

We can �nd n0(t, x) > n1(t0, x) such that for all n ≥ n0(t, x)

‖T (t)x− Tn(t)x‖ =
∥∥∥ lim
n→∞

Tn(t)x− Tn(t)x
∥∥∥

< ε.

n0(t, x) depends on t but we can eliminate this dependence combining
both inequalities where we observe for n > n1(t0, x)

‖T (t)x− Tn(t)x‖ ≤
∥∥T (t)x− Tn0(t,x)(t)x

∥∥+
∥∥T (t)n0(t,x)x− Tn(t)x

∥∥
≤ 2ε.
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Hence we have shown uniform convergence of t→ Tn(t)x to t→ T (t)x
on [0, t0] and therefore strong continuity of the semigroup

(T (t))t∈R+
.

For the proof of (iii) we need to show that (B,D(B)), the generator of
(T (t))t∈R+

, coincides with (A,D(A)) .

We start by showing that for x ∈ D(A)

(1.4.10)
∥∥∥∥lim
t↘0

T (t)x− x
t

− Ax
∥∥∥∥ = 0,

hence D(A) ⊂ D(B) and B = A on D(A). Later we prove D(A) =
D(B). The proof of Equation 1.4.10 has two steps.
As a �rst step, we show that for y ∈ X on some interval [0, t0]

ξ̇n : t→ Tn(t)Any

converges uniformly to
η : t→ T (t)Ax.

This is shown by the estimate

‖Tn(t)Anx− T (t)Ax‖ ≤‖Tn(t)Anx− Tn(t)Ax‖+ ‖Tn(t)Ax− T (t)Ax‖

≤M ·max
{
e
t0n0ω
n0−ω , 1

}
‖Anx− Ax‖

+ ‖Tn(t)Ax− T (t)Ax‖
and the uniform convergence of

ξn : t→ Tn(t)y

to
ξ : t→ T (t)y

known from the proof of (ii).
As a second step we show

T (t)x− x =

∫ t

0

T (s)Axds.

For some ε > 0 we choose n0 such that for 0 ≤ t ≤ t0 and all n > n0

‖Tn(t)Anx− T (t)Ax‖ ≤ ε

and
‖Tn(t)x− T (t)x‖ ≤ ε.

By the fundamental theorem of calculus

Tn(t)x− x =

∫ t

0

Tn(t)Anxds.
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Therefore∥∥∥∥−∫ t

0

T (s)Axds+ T (t)x− x
∥∥∥∥ ≤∥∥∥∥−∫ t

0

T (s)Axds+

∫ t

0

Tn(t)Anxds

∥∥∥∥
+

∥∥∥∥−∫ t

0

Tn(t)Anxds+ Tn(t)x− x
∥∥∥∥

+ ‖−Tn(t)x+ T (t)x‖
≤εt+ ε

and since ε > 0 was arbitrary

T (t)x− x =

∫ t

0

T (s)Axds.

We can use this and the fundamental theorem of calculus and the strong
continuity of (T (t))t∈R+

to directly compute

∥∥∥∥lim
t↘0

T (t)x− x
t

− Ax
∥∥∥∥ =

∥∥∥∥∥lim
t↘0

∫ t
0
T (s)Axds

t
− Ax

∥∥∥∥∥
= 0.

We still need to show that D(A) = D(B). By assumption of the the-
orem, for Reλ > ω one has λ ∈ ρ(A). The bound ‖T (t)‖ ≤ Metω

from Equation 1.4.9 yields that by Proposition 1.4.29 Reλ > ω implies
also λ ∈ ρ(B). Therefore, for Reλ > ω the resolvent R(λ,A) is a bi-
jection between X and D(A) and the resolvent R(λ,B) is a bijection
between X and D(B). Hence λ − B is a bijection between D(B) and
X and λ − A is a bijection between D(A) and X. For y ∈ X it holds
R(λ,A)y ∈ D(A) and since D(A) ⊂ D(B) and B = A on D(A)

y = (λ− A)R(λ,A)y

= (λ−B)R(λ,A)y.

Hence by injectivity of (λ−B)

R(λ,A)y = R(λ,B)y

for any y ∈ X. Surjectivity of R(λ,B) onto D(B) and R(λ,A) onto
D(A) yields that this is only possible if D(B) = D(A).

�
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1.4.4. Lumer-Phillips Theorem. In the case of so-called dissipative
operators the conditions the operator needs to ful�ll in order to gen-
erate a strongly continuous semigroup can be somewhat relaxed. The
presentation here follows Chapter II, Section 3b in [18].

Definition 1.4.36. A linear operator(A,D(A)) on a Banach space
X is called dissipative if for all λ > 0 and all x ∈ D(A)

‖(λ− A)x‖ ≥ λ ‖x‖ .

Proposition 1.4.37. For a dissipative operator(A,D(A)) the fol-
lowing statements hold true:
(i) λ − A is injective for all λ > 0 and for all z ∈ rg (λ− A) and for
all λ > 0

(1.4.11)
∥∥(λ− A)−1 z

∥∥ ≤ 1

λ
‖z‖ .

(ii) If λ − A is surjective for some λ > 0 then it is surjective for all
λ > 0 and (0,∞) ⊂ ρ(A).
(iii) A is closed if rg (λ− A) is closed for some λ > 0 and if A is closed
then rg (λ− A) is closed for all λ > 0.
(iv) If rg(A) ⊂ D(A), then A is closable and its closure Ā is dissipative
as well. In this case, for all λ > 0

rg
(
λ− Ā

)
= rg (λ− A).

Proof. (i) If for some x, y ∈ D(A)

(λ− A)x = (λ− A) y,

then by de�nition of dissipativity

0 = ‖(λ− A) (x− y)‖ ≥ λ ‖(x− y)‖ ≥ 0

hence x = y. Inequality 1.4.11 follows directly from the de�nition of
dissipativity for z = (λ− A)x.
(ii) Let λ0 − A be surjective for some λ0 > 0 . By (i) λ0 − A is also
bijective hence λ0 ∈ ρ(A). By (i)

‖R(λ0, A)‖ ≤ 1

λ0

thus Proposition 1.4.27 yields that for λ ∈ R such that |λ− λ0| < λ0

λ ∈ ρ(A). Therefore (0, 2λ0) ∈ ρ(A) and by (i)

‖R(λ,A)‖ ≤ 1

λ
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for any λ ∈ (0, 2λ0) . By applying Proposition 1.4.27 again we obtain
inductively (0,∞) ∈ ρ(A).
(iii) Let rg (λ0 − A) be closed for some λ0 > 0. By (i)

(λ0 − A)−1 : rg (λ0 − A)→ D(A)

exists and is a bounded linear operator. Therefore, by closedness of
rg (λ0 − A) if a sequence (xn)n∈N in rg (λ0 − A) converges to some x
then x ∈ rg (λ0 − A) and by continuity of (λ0 − A)−1

lim
n→∞

(λ0 − A)−1 xn = (λ0 − A)−1 x.

Thus (λ0 − A)−1 is a closed operator. This implies that λ0 − A is a
closed operator since their respective graphs are identical. We still need
to show closedness of A. For this end, let (zn)n∈N be a sequence in D(A)
that converges to some z ∈ X as n tends to in�nity and let (Azn)n∈N
converge to some y in X as n tends to in�nity. Then,z ∈ D(A) by
closedness of λ0 − A and

lim
n→∞

Azn = − lim
n→∞

(λ0zn − Azn) + lim
n→∞

(λ0zn)

= − (λ0z − Az) + λ0z

= Az.

Hence A is closed.
For the opposite direction, closedness of A implies closedness of λ−A
for any λ > 0 just as in the calculation above. However, this yields
closedness of (λ− A)−1 for any λ > 0 where by (i)

(λ− A)−1 : rg (λ− A)→ D(A)

is a well de�ned bounded linear operator. By continuity of (λ− A)−1,
for any sequence (ỹn)n∈N in rg (λ− A) converging to some ỹ in X as
n tends to in�nity also (λ− A)−1 ỹn converges to (λ− A)−1 ỹ in X.
Closedness of (λ− A)−1 yields ỹ ∈ rg (λ− A) hence rg (λ− A) is closed
for any λ > 0.
(iv) In order to show closability of A it su�ces by Lemma 1.4.23 to
show that if a sequence (xn)n∈N ⊂ D(A) satis�es lim

n→∞
xn = 0 and

lim
n→∞

Axn = y

then y = 0. We need to use some inequality in order to �nd bounds for
y. We can use the one appearing in the de�nition of dissipativity and
obtain for any λ > 0 and ω ∈ D(A) and n ∈ N

‖λ (λ− A)xn + (λ− A)ω‖ ≥ λ ‖λxn + ω‖ .
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The idea is now to send xn on the right hand side to 0 and ω to y in
order to obtain an upper bound for ‖y‖ which turns out to be 0. We
obtain for n→∞ ∥∥∥∥−y +

(
λ− A
λ

)
ω

∥∥∥∥ ≥ ‖ω‖
and for λ→∞

‖−y + ω‖ ≥ ‖ω‖ .
Now the assumption rg(A) ⊂ D(A) enters and we choose a sequence
(ωn)n∈N ⊂ D(A) such that

lim
n→∞

ωn = y.

Then the closedness follows from

0 = lim
n→∞

‖−y + ωn‖ ≥ lim
n→∞

‖ωn‖ = ‖y‖ .

In order to show that Ā is dissipative we have to show that for all λ > 0
and all x ∈ D(Ā) ∥∥(λ− Ā)x∥∥ ≥ λ ‖x‖ .
By the de�nition of the closure of an operator there is a sequence
(xn)n∈N ⊂ D(A) such that lim

n→∞
xn = x and

lim
n→∞

Axn = Āx

and the dissipativity of A yields

‖(λ− A)xn‖ ≥ λ ‖xn‖
and taking the limit on both sides we have shown dissipativity of Ā.

For the last assertion of (iv) let y ∈ rg
(
λ− Ā

)
. Then

y = λx− Āx
for some x ∈ D(Ā) and again by the de�nition of the closure of an
operator there is a sequence (xn)n∈N ⊂ D(A) such that lim

n→∞
xn = x

and
lim
n→∞

Axn = Āx.

Hence
y = lim

n→∞
λxn − Axn

and rg (λ− A) is dense in rg
(
λ− Ā

)
. Since by (iii) rg

(
λ− Ā

)
is closed

we obtain
rg (λ− A) = rg

(
λ− Ā

)
.

�
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Theorem 1.4.38. For a densely de�ned dissipative operator (A,D(A))
on a Banach space X the following statements are equivalent:

(i) The closure Ā generates a contraction semigroup.
(ii) The image of λ−A is dense in X for some λ > 0 and thus for

all λ > 0.

Proof. (i) ⇒ (ii). By Theorem 1.4.29(ii) for all λ > 0 it holds
λ ∈ ρ(Ā). Thus rg

(
λ− Ā

)
= X for all λ > 0. By Proposition 1.4.37

(iv)
rg (λ− A) = rg

(
λ− Ā

)
for all λ > 0. Thus the image of λ− A is dense in X for all λ > 0.

(ii)⇒(i). Let λ0 > 0 be such that the image of λ0 − A is dense in
X. By Proposition 1.4.37 (iv) A is closable with dissipative closure Ā
and

X = rg (λ0 − A) = rg
(
λ0 − Ā

)
.

Hence λ0 − Ā is surjective and by Proposition 1.4.37(ii) λ − Ā is sur-
jective for any λ > 0 and (0,∞) ⊂ ρ(A). By Proposition 1.4.37 (i) for
all λ > 0 ∥∥R (λ, Ā)∥∥ ≤ 1

λ
.

We may thus use Hille-Yosida Theorem (Theorem 1.4.35) and conclude.
�

1.4.5. Adjoint Semigroups. We consider the semigroup

(T (t))t∈R+

on a Banach space X and construct another semigroup on its so-called
dual space that consists of the so-called adjoint operators. First, we
introduce adjoint operators and some of their properties.

Definition 1.4.39. The dual space X ′ of a normed vector space
X is de�ned as

X ′ := {x′ : X → K| linear and continuous} .
Its elements are called functionals .

Remark 1.4.40. If X is a normed vector space then by Proposition
1.2.5 X

′
is a Banach space. Its norm is the usual norm of the space of

linear bounded maps from De�nition 1.2.3

(1.4.12) ‖x′‖ := inf {Mx′ ∈ R+ : |x′(x)| ≤Mx′ ‖x‖ for all x ∈ X} .
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The dual space (X ′)′ of a dual space X ′ is called bidual and is
written X ′′.

Definition 1.4.41. Let X, Y be normed vector spaces. To a (in
general unbounded) densely de�ned linear operator

L : D(L) ⊂ X → Y

we can associate a map

L′ : D(L′) ⊂ Y ′ → X ′

on

D(L′) :=

{
y′ ∈ Y ′ : there exists x′ ∈ X ′ such that

y′(Lx) = x′ (x) for all x ∈ D(L)

}
in the following way:

L′(y′)(x) := y′ (L(x)) .

The operator L′ is called adjoint operator.

We see that for y′ ∈ D(L′) the key requirement is that y′ ◦ L is
bounded on D(L) even though L is in general unbounded.

The adjoint operator possesses the following properties:

Lemma 1.4.42. Let X, Y be normed vector spaces.

(i) For a densely de�ned linear operator (L,D(L)) and its adjoint op-
erator (L′,D(L′)) D(L′) is a vector space and L′ is linear.

(ii) If L is bounded then D(L′) = Y ′.

(iii) If L is bounded then also L′ is bounded and ‖L′‖ = ‖L‖ .

Proof.

(i) If y′1, y
′
2 ∈ D(L′) and µ ∈ C then for all x ∈ D(L)

(µy′1 + µy′2)(L(x)) = µy′1(L(x)) + µy′2(L(x))

= µL′(y′1)(x) + µL′(y′2)(x)

and since
µL′(y′1) + µL′(y′2) ∈ X ′

D(L′) is a vector space and

L′(µy′1 + µy′2) = µL′(y′1) + µL′(y′2).
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(ii) If L is bounded then L′y′ := y′ ◦ L ∈ X ′ for all y′ ∈ Y ′.
(iii) By De�nition 1.2.3 of the operator norm

‖L‖ = sup
‖x‖≤1

‖Lx‖ .

Moreover by Corollary A.4.8

sup
‖x‖≤1

‖Lx‖ = sup
‖x‖≤1

sup
‖y′‖≤1

|y′ (Lx)| .

Thus,

‖L‖ = sup
‖x‖≤1

sup
‖y′‖≤1

|y′ (Lx)|

= sup
‖y′‖≤1

sup
‖x‖≤1

|y′ (Lx)|

= sup
‖y′‖≤1

‖y′ ◦ L‖

= sup
‖y′‖≤1

‖L′y′‖

= ‖L′‖ .
�

We can now pose the question we would like to solve in this section.
If we are given a strongly continuous semigroup (T (t))t∈R+

on a Banach
space X we would like to know whether or not (T ′(t))t∈R+

also forms
a strongly continuous semigroup. A �rst result is the following lemma.

Lemma 1.4.43. If (T (t))t∈R+
is a semigroup on a Banach space X

then (T ′(t))t∈R+
is a semigroup on X ′.

Proof. Since we know from Lemma 1.4.42 that (T ′(t))t∈R+
is a

family of bounded linear operators on the Banach space X ′ we only
need to show that it satis�es the Functional Equation (1.1.1). For
s, t ∈ R+ we obtain for all y′ ∈ Y ′

T ′(s+ t)(y′)(x) : = y′ (T (s+ t)(x))

= y′ (T (s)T (t)(x))

= {T ′(s)(y′)} (T (t)(x))

= T ′(t)T ′(s)(y′)(x).

�

Therefore the following de�nition is justi�ed:
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Definition 1.4.44. If (T (t))t∈R+
is a semigroup on a Banach space

X, the family(T ′(t))t∈R+
of bounded linear operators on X ′ is called

the adjoint semigroup.

However, in the following example we see that the adjoint semi-
group of a strongly continuous semigroup is not necessarily strongly
continuous.

Example 1.4.45. In Example 1.4.11 we have seen that the left
translation semigroup

(Tl(t))t∈R+

on L1(R) is strongly continuous. We want to �nd the adjoint opera-
tors of the left translation. It is known from functional analysis (see
Proposition A.4.3) that the dual space of L1(R) is the space L∞ (R)
from Example A.4.2. For the right continuous semigroup

(Tr(t))t∈R+

from Example 1.4.1 it holds for f ∈ L1(R) and g ∈ L∞ (R) and t ∈ R+∫ ∞
−∞

[Tr(t)(g)] (s) · f(s) ds =

∫ ∞
−∞

g(s− t) · f(s) ds

=

∫ ∞
−∞

g(s) · f(s+ t)) ds

=

∫ ∞
−∞

g(s) · [Tl(t)f(s)] ds.

Hence,
(Tr(t))t∈R+

on L∞ (R) is the family of adjoint operators of

(Tl(t))t∈R+

on L1(R). Since we know that the latter is strongly continuous we
would like to know whether this is also the case for its family of adjoint
operators. However, we see that for sgn ∈ L∞ (R) de�ned as

sgn(x) :=

 1 if x > 0
0 if x = 0
−1 if x < 0

we obtain for t > 0

‖Tr(t)sgn− sgn‖L∞(R) = 1.

Thus, the adjoint semigroup is not strongly continuous.
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Since the adjoint semigroup is in general not strongly continuous
but we would still like to show some regularity a �rst idea is to ask
for less than strong continuity. Therefore, we introducelocally convex
vector spaces and weak topologies and hereby follow [41], chapter VIII
.

Definition 1.4.46. Let X be a K-vector space. A map

p : X → [0,∞)

is called seminorm on X if
(i) for all λ ∈ K and x ∈ X p (λx) = |λ| p(x)
(ii) for all x, y ∈ Xp(x+ y) ≤ p(y) + p(x)

Remark 1.4.47. A seminorm for which holds that p(x) = 0 implies
x = 0 is a norm.

Just as in example A.1.3 where a norm induced a topology also a
family P of seminorms on X induces a topology. This is seen as follows.
For a �nite subset F ⊂ P and ε > 0 we de�ne

(1.4.13) UF,ε = {x ∈ X : p(x) ≤ ε for all p ∈ F}

and the set of all such sets

U := {UF,ε : F ⊂ P �nite, ε > 0} .

U replaces the set of open balls in the case of normed spaces.

Proposition 1.4.48. Let X be a K-vector space, let P be a set of
seminorms on X, and let U be de�ned as above. Then the family of
subsets

τ := {O ⊂ X : for any x ∈ O there is U ∈ U such that x+ U ⊂ O}

is a topology on X.

Proof. Concerning property (i) of a topology (in De�nition A.1.1),
clearly ∅, X ∈ τ .
Concerning (ii), if O1, O2 ∈ τ then for x ∈ O1 ∩ O2 there exists
F1 ⊂ P �nite, ε1 > 0 such that x + UF1,ε1 ⊂ O1 and there exists F2 ⊂
P �nite, ε2 > 0 such that x+UF2,ε2 ⊂ O2 . Then x+UF1∪F2,min(ε1,ε2) ⊂
O1 ∩O2.
Concerning (iii), if I is some index set and Oi ∈ τ for all i ∈ I and
x ∈

⋃
i∈I
Oi then x ∈ Oj for some j ∈ I and by de�nition there exists

Fj ⊂ P �nite, εj > 0 such that x+ UFj ,εj ⊂ Oj ⊂
⋃
i∈I
Oi. �
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Definition 1.4.49. Let X be a K-vector space and P be a set of
seminorms onX and τ the topology from Proposition 1.4.48. Then(X, τ)
is called locally convex topological vector space.

Just as in the case of a normed vector space we can de�ne dual
spaces:

Definition 1.4.50. The dual space X ′ of a locally convex topolog-
ical vector space X is de�ned as

X ′ := {L : X → K| linear and continuous} .

Definition 1.4.51. Let X, Y be K-vector spaces and 〈·, ·〉 :

X × Y → K
(x, y)→ 〈x, y〉

a bilinear map. (X, Y, 〈·, ·〉) is called dual pair if for all x ∈ X \ {0}
there is y ∈ Y such that 〈x, y〉 6= 0 and for all y ∈ Y \ {0} there is
x ∈ X such that 〈x, y〉 6= 0.

Lemma 1.4.52. Let (X, Y, 〈·, ·〉) be a dual pair. For y ∈ Y de�ne
py :

X → [0,∞)

x→ |〈x, y〉| .

Then py is a seminorm on X.

Proof. For λ ∈ K clearly |〈λx, y〉| = |λ| |〈x, y〉| and for a, b ∈ X
|〈a+ b, y〉| = |〈a, y〉+ 〈b, y〉| ≤ |〈a, y〉|+ |〈b, y〉|. �

Definition 1.4.53. Let (X, Y, 〈·, ·〉) be a dual pair and

P := {py : y ∈ Y }

a family of seminorms on X. The topology that is induced by P on X
via Proposition 1.4.48 is called σ (X, Y )-topology.

Remark 1.4.54. Let (X, Y, 〈·, ·〉) be a dual pair and (xn)n∈N ⊂ X
and x ∈ X. If for all y ∈ Y lim

n→∞
〈xn, y〉 = 〈x, y〉 then (xn)n∈N converges

to x in the σ (X, Y )-topology.
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Remark 1.4.55. For a locally convex topological vector space X
and its dual space X ′ the map 〈·, ·〉 :

X ×X ′ → K
(x, x′)→ x′(x)

is bilinear.

Proposition 1.4.56. Let X be a Banach space. Then(X,X ′, 〈·, ·〉)
is a dual pair.

Proof. If x′ 6= 0 then there is some x ∈ X such that x′(x) 6= 0.
If x 6= 0 then by a corollary of the Hahn-Banach theorem (Corollary
A.4.7) there exists x′ ∈ X ′ such that x′(x) 6= 0. �

Therefore, for x ∈ X and x′ ∈ X ′ we can write 〈x, x′〉 = 〈x′, x〉 =
x′(x).

Remark 1.4.57. It can also be shown that(X,X ′, 〈·, ·〉) is a dual
pair when X is only a locally convex topological vector space (see [41],
Chapter VIII.3, Example (a)). For this purpose however one �rst needs
to introduce the Hahn-Banach theorem for locally convex topological
vector spaces (see [41], Chapter VIII.2 ), something we will omit.

Definition 1.4.58. The topology σ (X,X ′) is called weak topology ,
the topology σ (X ′, X) is called weak ∗- topology .

Turning back to our question whether the adjoint semigroup is con-
tinuous in some sense we obtain the following result.

Proposition 1.4.59. If (T (t))t∈R+
is a strongly continuous semi-

group on X then for the adjoint semigroup (T ′(t))t∈R+

t→ T ′(t)y′(x)

is continuous for any x ∈ X and any y′ ∈ X ′.

Proof. Since

T ′(t)y′(x) = (y′ ◦ T (t)) (x)

it follows from continuity of y′ and strong continuity of t→ T (t) that

lim
t→s

T ′(t)y′(x) = y′ ◦
(

lim
t→s

T (t)x
)

= y′ ◦ T (s)x

= T ′(s)y′(x).

�
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Lemma 1.4.60. The map

t→ T ′(t)y′(x)

is continuous for any t ∈ R+, x ∈ X and y′ ∈ X ′ if and only if for any
y′ ∈ X ′ the map ξ′y′ :

R+ → X ′

t→ T ′(t)y′

is continuous where X ′ is equipped with the σ (X ′, X) -topology. There-
fore, this type of continuity is called weak ∗-continuity.

Proof. Fix y′ ∈ X ′. If R+ 3 t→ T ′(t)y′(x) ∈ K is continuous for
any x ∈ X then also t → (T ′(t)y′ − z′) (x) for any z′ ∈ X ′ and any
x ∈ X. Thus, for any ε > 0 and x ∈ X and the sets U{|〈·,x〉|},ε de�ned
in 1.4.13 the set (

ξ′y′
)−1 (

U{|〈·,x〉|},ε + z′
)

is open. Hence, for any �nite set F ⊂ X and any ε > 0 the set(
ξ′y′
)−1 (

U{|〈·,x〉|:x∈F},ε + z′
)

=
⋂
x∈F

(
ξ′y′
)−1 (

U{|〈·,x〉|},ε + z′
)

is open. Thus, ξ′y′ is continuous when X
′ is equipped with the σ (X ′, X)

topology.
For the other direction, let ε > 0 and x ∈ X be arbitrary. Then(

ξ′y′
)−1 (

U{|〈·,x〉|},ε + z′
)
is open for any z′ ∈ X ′ and for any ε > 0. For

any a ∈ K and x ∈ X \{0} by Corollary A.4.7 there exists a′ ∈ X such
that a′(x) = a. Thus, for any δ > 0 and the δ-ball Bδ(a) around a ∈ K
the sets

(T ′(t)y′ − a′) (x) ∈ Bδ(0)

and
T ′(t)y′(x) ∈ Bδ(a)

are the same and open. Hence, the map

t→ T ′(t)y′(x)

is continuous for any x ∈ X. �

However, instead of using a weaker concept of continuity we can
also restrict ourselves to a smaller space where we obtain even strong
continuity. The exact result is the proposition below. The proof follows
the one in [20], Section 4.1.1.



1.4. STRONGLY CONTINUOUS SEMIGROUPS 87

Proposition 1.4.61.
Let

(T (t))t∈R+

be a strongly continuous semigroup on X with generator (A,D(A)) and
A′ the adjoint operator of A with domain D(A′). Then
i) for X† := D(A′) ⊂ X ′ where the closure is to be taken with respect
to the norm topology of X ′ and

T †(t) := T ′(t)|X† for all t ∈ R+

the family (
T †(t)

)
t∈R+

is a strongly continuous semigroup on X† and
ii) its generator A† is given by the restriction of A′ to the set

D(A†) :=
{
y′ ∈ D(A′) : A′y′ ∈ X†

}
.

Proof.

i) The proof has two steps.
First, we have to show that (

T †(t)
)
t∈R+

is indeed a family of maps between the correct spaces, that is T †(t) ∈
L(X†) for all t ∈ R+. In order to show this claim, we �rst let y′ ∈ D(A′),
�x some t ∈ R+ and show that T †(t)y′ ∈ D(A′). In other words,
we have to prove that there exits A′

(
T †(t)y′

)
∈ X ′ such that for all

x ∈ D(A) (
T †(t)y′

)
(Ax) = A′

(
T †(t)y′

)
x.

Since by Lemma 1.4.42 T (t) ∈ L(X) implies D(T ′) = X ′ we obtain
T †(t)y′ ∈ X ′ and T †(t)y′ = y′ ◦ T (t) and the equation we need to show
reduces to

y′ ◦ T (t) ◦ (Ax) = A′ ◦ y′ ◦ T (t)x

for all x ∈ D(A). Also y′ ∈ D(A′) implies A′(y′) ∈ X ′ and A′(y′)x =
y′ ◦ Ax for all x ∈ D(A). By the invariance of D(A) under T (t) (see
Proposition 1.4.15) also T (t)x ∈ D(A) and the equation we need to
show reduces to

y′ ◦ T (t) ◦ (Ax) = y′ ◦ A ◦ T (t)x.
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This holds true due to Proposition 1.4.15. Furthermore, the equation

A′
(
T †(t)y′

)
= A′ ◦ y′︸ ︷︷ ︸

∈X′

◦ T (t)

yields A′
(
T †(t)y′

)
∈ X ′. Hence T †(t)y′ ∈ D(A′) for y′ ∈ D(A′).

We still need to show that T †(t)y′ ∈ X† for any y′ ∈ X† \ D(A′). We
�nd a sequence (y′n)n∈N ⊂ D(A′) such that lim

n→∞
y′n = y′ in X ′. Since

by Lemma 1.4.42 T † is linear and bounded it is continuous on X ′.
Therefore

T †(t) (y′) = T †(t)
(

lim
n→∞

y′n

)
= lim

n→∞
T †(t) (y′n)︸ ︷︷ ︸
∈D(A′)

lies in X†.
In the second step, since we know from Lemma 1.4.43 that the func-
tional equation holds for

(
T †(t)

)
t∈R+

, by the �rst part of the proof it is
a semigroup on X† and all we need to show is strong continuity on X†.
Since by assumption (T (t))t∈R+

is a strongly continuous semigroup, by
Proposition 1.4.8 there is δ > 0 and M ≥ 1 such that ‖T (t)‖ ≤ M
for 0 ≤ t ≤ δ. By Lemma 1.4.42

∥∥T †(t)∥∥ ≤ ‖T (t)‖ . Therefore, there
is δ > 0 and M ≥ 1 such that

∥∥T †(t)∥∥ ≤ M for 0 ≤ t ≤ δ and by
Proposition 1.4.8 in order to show strong continuity of

(
T †(t)

)
t∈R+

it
is enough to show

lim
t↘0

T †(t)y′ = y′

on a dense subset of X†. As such a subset we take D(A′). We need to
�nd a suitable expression for T †(t)y′ = y′ ◦ T (t) ∈ X ′ and observe that
it follows from Proposition 1.4.15 that for x ∈ X

T (t)x− x =

∫ t

0

AT (s)xds.

We apply y′ on both sides of the equation and remember from Equation
1.3.2 that we can pull linear maps in the Banach space valued integral.
We obtain

(y′ ◦ T (t)) (x)− y′ (x) =

∫ t

0

(y′ ◦ A)T (s)(x)ds.

and since y′ ∈ D(A′) by the de�nition of adjoint operators A′ (y′) ∈ X ′∫ t

0

(y′ ◦ A)T (s)(x)ds. =

∫ t

0

(A′ (y′)) ◦ (T (s)) (x)ds
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Since this equation holds for all x ∈ X we have shown

T †(t)y′ − y′ =
∫ t

0

(A′ (y′)) ◦ (T (s)) ds.

We can therefore bound for 0 ≤ t ≤ δ∥∥T †(t)y′ − y′∥∥ ≤ ∫ t

0

‖A′ (y′)‖M ds.

With t→ 0 the right hand side converges to zero and we conclude.

ii) First, we show that the limit

lim
t↘0

T †(t)y′ − y′

t
= lim

t↘0

1

t

∫ t

0

(y′ ◦ A)T (s)ds.

exists for all y′ ∈ D(A†) and that this limit is A′ (y′). Since

lim
t↘0

1

t

∫ t

0

(y′ ◦ A)T (s)ds = lim
t↘0

1

t

∫ t

0

T †(s) (A′ (y′)) ds

and the fact that (
T †(t)

)
t∈R+

is a strongly continuous semigroup on X† the right hand side converges
by the fundamental theorem of calculus to A′ (y′) .
Next, we want to show that the domain of the generator is not larger
than {

y′ ∈ D(A′) : A′y′ ∈ X†
}
.

In order to determine this domain, we use the fact that for any λ ∈
ρ(A†) by its de�nition, R(λ,A†) is a bijection between the domain of
the generator A† andX†. Therefore, we would like to �nd an expression
of R(λ,A†) in terms of A′ without dependence on A† in order to express
the domain of A† in terms of A′. We recall that by Lemma 1.4.42 and
Proposition 1.4.9 for all t ∈ R+∥∥T †(t)∥∥ ≤ ‖T ′(t)‖ = ‖T (t)‖ ≤Meωt

for some M ≥ 1 and ω ∈ R. Hence, by Theorem 1.4.29 if Reλ > ω
then λ ∈ ρ(A†) and for all x ∈ X†

R(λ,A†)x =

∫ ∞
0

e−λsT †(s)xds

=

∫ ∞
0

e−λsT ′(s)xds.
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We want to express the right hand side by an operator depending on
A′. We have

R(λ,A) =

∫ ∞
0

e−λsT (s)ds.

Since by de�nition (see De�nition 1.4.25) it is a bounded operator for
Reλ > ω its transpose

R(λ,A)′ =

(∫ ∞
0

e−λsT (s)ds

)′
is de�ned on all of X ′ (by Lemma 1.4.42). The integral is de�ned as
the limit of Riemann sums and transposing an operator is a continuous
operation according to Lemma 1.4.42. Thus, we can pull the transpose
in the integral and obtain

R(λ,A)′ =

∫ ∞
0

e−λsT ′(s)ds

and

R(λ,A†) = R(λ,A)′|X† .
In order to simplify the right hand side further, we observe that

R(λ,A)′ = (λ− A′)−1

holds since
x′ ◦ (λ− A)−1 (λ− A) = x′ ∈ X ′

for any x′ ∈ X ′, hence x′ ◦ (λ− A)−1 ∈ D (λ− A′) and
(λ− A′) (R(λ,A)′(x′)) = (λ− A′)

(
x′ ◦ (λ− A)−1)

= x′.

Moreover, for x′ ∈ D (A′)

R(λ,A)′((λ− A′)x′) = x′ ◦ (λ− A) ◦ (λ− A)−1

= x′.

Thus, we can rewrite the resolvent R(λ,A†) as

R(λ,A†) =

∫ ∞
0

e−λsT
′
(s)ds

∣∣∣∣
X†

= R(λ,A)′|X†
= R(λ,A′)|X† .

R(λ,A†) is a bijection between X† and the space where the generator
A† is de�ned. Moreover,

R(λ,A′)|X† (X†) =
{
y′ ∈ D(A′) : A′y′ ∈ X†

}
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by de�nition of R(λ,A′) and the operator A† can be de�ned only on{
y′ ∈ D(A′) : A′y′ ∈ X†

}
.

. �

A result concerning the size of the space X† from Proposition 1.4.61
is the following assertion. Like in the case of the previous proposition,
we follow the proof of [20], section 4.1.1.

Proposition 1.4.62. Let

{T (t)}t∈R+

be a strongly continuous semigroup on X with generator (A,D(A)) and
A′ the adjoint operator of A with domain D(A′). Then X† = D(A′) ⊂
X ′ is dense in X ′ in the weak-*- topology which means that for each
y′ ∈ X ′ there exists a sequence (y′n)n∈N ⊂ X† such that

lim
n→∞

y′n(x) = y′(x)

for each x ∈ X.

Proof. Fix y′ ∈ X ′. We have to �nd some good approximation
for y′ in X†. By Theorem 1.4.29 (ii) in conjunction with Proposition
1.4.9 R(n,A) exists and is bounded (see De�nition 1.4.25) for n ∈ N
large enough, say n > N . Choosing an approximation of y′ known from
Proposition 1.4.34, we set

y′n := ny′R(n,A)

for any n ∈ N, n > N . By Proposition 1.4.34 we know that

lim
n→∞

nR(n,A)(x)→ x

for all x ∈ X hence by continuity of y′

lim
n→∞

ny′ (R(n,A)(x)) = y′
(

lim
n→∞

nR(n,A)(x)
)

= y′ (x) .

We would like to show that

(y′n)n∈N,n>N. ⊂ D(A′) ⊂ X†

in order to conclude. All we need to show is that y′n ◦ A ∈ X ′ for any
n ∈ N, n > N . This follows from

ny′R(n,A)A = ny′R(n,A) (A− n) + ny′R(n,A) (n)

= −ny′ + n2y′R(n,A)
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and the fact that R(n,A) is bounded for n ∈ N, n > N .

�

1.4.6. Weakly continuous semigroups. In this subsection we
see that so-called weakly continuous semigroups (see De�nition 1.4.64)
are also strongly continuous. In the proof we follow [18], chapter I,
Theorem 5.8 and need to cite several results from functional analysis.

Remark 1.4.63. The map fx,x′ :

R+ → C
t→ 〈T (t)x, x′〉

is continuous for any x ∈ X and any x′ ∈ X ′ if and only if for any
x ∈ X the map ξx :

R+ → X

t→ T (t)x

is continuous where X is equipped with the σ (X,X ′) topology.

Proof. The proof is almost identical to the one of Lemma 1.4.60.
�

Definition 1.4.64. In case the conditions of Lemma 1.4.63 holds
true, we call the semigroup

(T (t))t∈R+

weakly continuous .

Lemma 1.4.65. For a semigroup

(T (t))t∈R+

on a Banach space X such that for any x ∈ X and x′ ∈ X ′ the map
fx,x′ :

R+ → C
t→ 〈T (t)x, x′〉

is continuous, it holds

sup
t∈[0,s]

‖T (t)‖ <∞

for any s ∈ R+.
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Proof. It is enough to show that there is some δ > 0 such that

sup
t∈[0,δ]

‖T (t)‖ <∞

because then by the semigroup property

sup
t∈[0,s]

‖T (t)‖ <∞

holds true for any s ∈ R+.
We show this by contradiction and assume that

sup
t∈[0,δ]

‖T (t)‖ =∞

for any δ > 0. Then there exists a sequence (tn)n∈N such that tn ↘ 0
and

lim
tn→∞

‖T (tn)‖ =∞.

By the uniform boundedness principle (Theorem 1.4.6) there exists
y ∈ X such that

lim sup
tn→0

‖T (tn)y‖ =∞.

Interpreting (T (tn)y)n∈N as a family of maps

X ′ → C
x′ → 〈T (tn)y, x′〉

we obtain that if for all x′ ∈ X ′ by continuity of fy,x′ at t = 0

lim sup
tn→0

〈T (tn)y, x′〉 <∞

holds true. Then, by the uniform boundedness principle (Theorem
1.4.6)

lim sup
tn→0

sup
x′ ∈ X
‖x′‖ ≤ 1

′
〈T (tn)y, x′〉 <∞.

However, by a corollary of the Hahn-Banach theorem (Corollary A.4.8)

sup
x′ ∈ X
‖x′‖ ≤ 1

′
〈T (tn)y, x′〉 = ‖T (tn)y‖ ,

which yields the contradiction

∞ > lim sup
tn→0

sup
x′ ∈ X
‖x′‖ ≤ 1

′
〈T (tn)y, x′〉 = lim sup

tn→0
‖T (tn)y‖ =∞.
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�

In the proof of the next proposition we need to work with the so-
called convex hull of a set.

Definition 1.4.66. Let X be a K vector space and M ⊂ X some
subset. The convex hull of M is written coM and de�ned as

coM :=


n∑
i=0

λimi

∣∣∣∣∣ n ∈ N, λi ∈ K
n∑
i=0

λi = 1, λi ≥ 0,

mi ∈M for all i ∈ {0, ..., n} .


Its closure is written as coM .

In the following proof we need a di�erent de�nition of an integral
of Banach space valued functions than the one we have been using
previously in De�nition 1.4.67. We introduce the following de�nition
from Rudin ([38], De�nition 3.26):

Definition 1.4.67. Let (Q,Σ, µ) be a measure space and let X
be a Banach space. Let f : Q → X be a function such that for any
x′ ∈ X ′ the function x′ (f) : Q → K is integrable with respect to µ.
We write ∫

Q

fdµ = y

for y ∈ X if for any x′ ∈ X ′∫
Q

x′ (f) dµ = x′ (y) .

We are now able to show the main result of this subsection which is
taken from Engel, Nagel ([18]), Chapter I, Theorem 5.8. Our proof
follows the one presented there.

Theorem 1.4.68. A semigroup

(T (t))t∈R+

on a Banach space X is strongly continuous if and only if for any x ∈ X
and any x′ ∈ X ′ the map fx,x′ :

R+ → C
t→ 〈T (t)x, x′〉

is continuous.

Proof. We only have to show that weak continuity of

(T (t))t∈R+
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implies strong continuity of the semigroup. We use Proposition 1.4.8(iii).
Condition (b) in Proposition 1.4.8(iii) has already been shown in Lemma
1.4.65. We still have to show that the set

E :=
{
x : lim

t→0
‖T (t)x− x‖ = 0

}
is dense in X with respect to the topology induced by the norm. The
outline of the proof is as follows. Since E is convex (see De�nition
A.3.71) it su�ces by Proposition A.4.10 to show that some subset D ⊂
E is dense in X with respect to the weak topology. As a �rst step, we
�nd a set D ⊂ X ′′ such that X is contained in its weak closure. As a
second step, we show D ⊂ X. This implies that D is weakly dense in
X. Finally, we show that D is a subset of E and conclude.
In order to �nd such a weakly dense set, in the �rst step we �x x ∈ X
and r > 0 and we de�ne for x′ ∈ X ′

〈xr, x′〉 :=
1

r

∫ r

0

〈T (s)x, x′〉 ds.

The map x′ → 〈xr, x′〉 is linear and due to

|〈xr, x′〉| ≤

(
sup
s∈[0,r]

‖T (s)‖

)
‖x‖ ‖x′‖ ds

by Proposition 1.2.7 continuous. Hence xr ∈ X ′′. Because of continuity
of s→ 〈T (s)x− x, x′〉 we obtain

lim
r→0

1

r

∫ r

0

〈T (s)x, x′〉 ds− 〈x, x′〉 = lim
r→0

1

r

∫ r

0

〈T (s)x− x, x′〉 ds

= 0.

Hence xr converges in σ(X ′′, X ′) to x as r tends to 0 and we de�ne the
set

D := {xr ∈ X ′′ : x ∈ X, r > 0} .

As a second step, we show D ⊂ X. For this purpose, we can use
Proposition A.4.11 on Banach space valued integration (according to
De�nition 1.4.67). Interpreting

[0, r]→ X

s→ T (s)x

as a map that is continuous whenX is equipped with the weak topology,
this proposition yields that

xr ∈ co {T (s)x : s ∈ [0, r]} ⊂ X
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if

co {T (s)x : s ∈ [0, r]}

is compact in X in the weak topology. In order to show such com-
pactness we observe that since s → T (s)x is continuous, when X is
equipped with the weak topology the image

{T (s)x : s ∈ [0, r]}

of the compact set [0, r] is weakly compact. Then the Krein-�mulian
weak compactness theorem (Theorem A.4.12) states that the closed
convex hull of a weakly compact set is also weakly compact. Hence

co {T (s)x : s ∈ [0, r]}

is weakly compact and applying Proposition A.4.11 is justi�ed and
yields D ⊂ X since

D ⊂ co {T (s)x : s ∈ [0, r]} ⊂ X.

It remains to be shown that D ⊂ E. For any xr ∈ D by de�nition
Corollary A.4.8 of Hahn-Banach

lim
t→0
‖T (t)xr − xr‖ = lim

t→0
sup

x′ ∈ X ′
‖x′‖ ≤ 1

|〈T (t)xr, x
′〉 − 〈xr, x′〉| .

Thus, by de�nition of the adjoint operator (see De�nition A.3.71)
(T (t))′ of T (t) and Lemma 1.4.42 (iii)

lim
t→0
‖T (t)xr − xr‖ = lim

t→0
sup

x′ ∈ X ′
‖x′‖ ≤ 1

∣∣〈xr, (T (t))′ x′
〉
− 〈xr, x′〉

∣∣ .
Therefore, the de�nition of xr yields

lim
t→0
‖T (t)xr − xr‖

= lim
t→0

sup
x′ ∈ X ′
‖x′‖ ≤ 1

∣∣∣∣1r
∫ r

0

〈
T (s)x, (T (t))

′
x′
〉
ds− 1

r

∫ r

0

〈T (s)x, x′〉 ds
∣∣∣∣ .
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Again by the de�nition of the adjoint operator and changing integration
boundaries we obtain

lim
t→0
‖T (t)xr − xr‖

= lim
t→0

sup
x′ ∈ X ′
‖x′‖ ≤ 1

∣∣∣∣1r
∫ r+t

t

〈T (s)x, x′〉 ds− 1

r

∫ r

0

〈T (s)x, x′〉 ds
∣∣∣∣ .

Since t converges to 0, we can rearrange the two boundaries of the
integral and obtain

lim
t→0
‖T (t)xr − xr‖

≤ lim
t→0

sup
x′ ∈ X ′
‖x′‖ ≤ 1

(
1

r

∫ r+t

r

|〈T (s)x, x′〉| ds+
1

r

∫ t

0

|〈T (s)x, x′〉| ds
)
.

By de�nition of the norm of x′ |〈T (s)x, x′〉| < ‖x′‖ · ‖T (s)x‖, hence

lim
t→0
‖T (t)xr − xr‖ ≤ lim

t→0

t

r
‖x‖

(
sup

r≤s≤r+t
‖T (s)‖+ sup

0≤s≤t
‖T (s)‖

)
which converges to 0 as t→ 0 using Lemma 1.4.65.

Hence, xr ∈ E for any xr ∈ D which yields D ⊂ E and we con-
clude that E is dense in X in the weak topology, thus by Proposition
A.4.10 and convexity in the norm topology. Therefore, the semigroup
(T (t))t∈R+

is strongly continuous by Lemma 1.4.65 and Proposition
1.4.8. �

Corollary 1.4.69. A semigroup

(T (t))t∈R+

on a Banach space X is strongly continuous if for any x ∈ X and
x′ ∈ X ′ the map fx,x′

R+ → C
t→ 〈T (t)x, x′〉

is continuous at t = 0.

Proof. Let x ∈ X and x′ ∈ X ′ be arbitrary and �xed. We have
to show continuity of t → 〈T (t)x, x′〉 at any t ∈ R+ in order to use
Proposition 1.4.68 which permits us to conclude. Let s ∈ R+ be arbi-
trary. Right continuity of t→ 〈T (t)x, x′〉 at t = s follows immediately
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from

〈T (h+ s)x, x′〉 =

〈
T (h)(T (s)x)︸ ︷︷ ︸

:=y

, x′

〉
and the continuity of fy,x′ at h = 0. Regarding left continuity of t →
〈T (t)x, x′〉 at t = s we have to show that

lim
h↗0
〈T (h+ s)x, x′〉 − 〈T (s)x, x′〉 = 0.

It holds

lim
h↗0
〈T (h+ s)x, x′〉 − 〈T (s)x, x′〉 = lim

h↗0
〈T (h+ s) (Id− T (−h))x, x′〉

≤ sup
t∈[0,s]

‖T (t)‖ lim
h↗0
〈(Id− T (−h))x, x′〉︸ ︷︷ ︸

=0

and by Lemma 1.4.65
sup
t∈[0,s]

‖T (t)‖ <∞

for any s ∈ R+ thus t → 〈T (t)x, x′〉 is left continuous for any t ∈
R+. �

Definition 1.4.70. Let X be a Banach space and x ∈ X arbitrary.
The map i(x) :

X ′ → K
x′ → x′(x)

is clearly linear and bounded. Hence i(x) ∈ X ′′ for any x ∈ X. The
map

X → X ′′

x → i(x)

is injective by Corollary A.4.7. If it is also surjective then X is called
reflexive.

Corollary 1.4.71. On a re�exive Banach space the adjoint semi-
group of a strongly continuous semigroup is strongly continuous.

Proof. Let X be a re�exive Banach space and let

(T (t))t∈R+

be a strongly continuous semigroup on X. By Proposition 1.4.59 for
the adjoint semigroup (see De�nition 1.4.44)

(T ′(t))t∈R+
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the map
t→ T ′(t)x′(x)

is continuous for any x ∈ X and any x′ ∈ X ′. Since X is re�exive this
implies that also the map

t→ 〈T ′(t)x′, x′′〉
is continuous for any x′′ ∈ X ′′ and any x′ ∈ X ′. Therefore, by Theorem
1.4.68 the adjoint semigroup

(T ′(t))t∈R+

is a strongly continuous semigroup on X ′. �





CHAPTER 2

Markov, Feller and Generalized Feller Semigroups

Certain semigroups are of particular interest in probability theory
and can be used to de�ne stochastic processes. For de�nitions and
terminology of stochastic processes we refer the reader to Appendix
A.3.3.

2.1. Markov Semigroups

There are several di�erent ways to de�ne Markov semigroups and
processes. This section largely follows the presentation in Chapter 3.1
in Revuz-Yor [35]. (E, E) will always denote a measurable space and(

Ω,F , (Gt)t∈R+
,P
)

a �ltered probability space (see De�nition A.3.75).

2.1.1. De�nition of Markov semigroups. Using transition prob-
abilities that satisfy the Functional Equation (Equation 1.1.1) one ob-
tains an important semigroup on the space of bounded measurable
functions called Markov semigroup.

In order to introduce this semigroup, we �rst recall the de�nition
of transition kernels and transition probabilities .

Definition 2.1.1. The map

κ : Ω× E → [0,∞]

is called transition kernel from (Ω,F) to(E, E) if
(i) for any A ∈ E the map

κ(·, A) : Ω→ [0,∞]

is F -measurable and
(ii) for any ω ∈ Ω the map

κ(ω, ·) : E → [0,∞]

is a measure on (E, E).
If κ(ω,E) = 1 for all ω ∈ Ω, then κ is called transition probability
from (Ω,F) to (E, E) . If (Ω,F) = (E, E) then we speak of transition
kernels/probabilities on(E, E).

101
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Remark 2.1.2. If κ(x,E) ≤ 1 for all x ∈ E but κ(y, E) < 1 for
some y ∈ E, then one can add a new element to the space E, the
so-called cemetery {4}, and on E4 := E ∪ {4} de�ne a transition
probability (the properties can easily be checked)

κ′ : E4 × σ (E , {4})→ [0, 1]

by
κ′|:E×E = κ

and

κ′({4} , A) = 0 for any A ∈ E
κ′(x,A ∪ {4}) = κ′(x,A) + 1− κ(x,E) for any A ∈ E

for any x ∈ E4. For any function f on E the convention is to extend
it to E4 by setting f(4) = 0. Usually, the precise distinction between
κ′ and κ will not be made and κ′ will simply be called κ.

In the following we need two properties of transition kernels. The
�rst is that the integral of a positive, jointly measurable function with
respect to a transition kernel is measurable (see Lemma A.3.59). The
second property is that by composing two kernels one obtains again a
kernel (see Lemma A.3.60).

Above de�nitions and properties permit to de�ne on the state space
of transition probabilities a one-parameter family of mappings that
ful�lls the Functional Equation (Equation 1.3.3):

Definition 2.1.3. A family (p(t))t∈R+
of transition probabilities

(kernels) on (E, E) is called semigroup of transition probabilities (kernels)
on (E, E) if for all x ∈ E, for all s, t ∈ R+ and all A ∈ E

(2.1.1) p(s+ t)(x,A) =

∫
E

p(s)(y, A)p(t)(x, dy)

and
p(0)(x, ·) = δx

hold. Here δx denotes the Dirac measure (see ExampleA.3.21). This
de�nition can be extended to the space (E4, σ (E , {4})) if necessary.

Remark 2.1.4. Equation 2.1.1 most authors call Chapman-Kolmogorov
equation or Master Equation.
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Remark 2.1.5. If (p(t))t∈R+
is a family of transition kernels on

(E, E) such that p(t)(x,E) ≤ 1 for all x ∈ E and all t ∈ R+, then
for the corresponding family of transition probabilities (p′(t))t∈R+

on
(E4, σ (E , {4})) de�ned as in Remark 2.1.2 the condition

p′(s+ t)(x,A) =

∫
E4

p′(t)(y, A)p′(s)(x, dy) for all A∈ σ (E , {4})

holds for any x ∈ E4 and s, t ∈ R+ if Equation 2.1.1 holds for (p(t))t∈R+

for all x ∈ E, for all s, t ∈ R+ and all A ∈ E . In order to simplify nota-
tion, the following statements will only be made for transition proba-
bilities on (E, E). They can be extended to transition probabilities on
(E4, σ (E , {4})) when necessary.

A semigroup of transition probabilities leads to a one-parameter
semigroup (see De�nition 1.3.1) on the Banach space of measurable
bounded, real-valued functions on (E, E):

Definition 2.1.6. For a semigroup of transition probabilities

(p(t))t∈R+

on (E, E) we de�ne the Markov semigroup

(P (t))t∈R+

on the space of bounded, real-valued, E-measurable functions by

P (t)f(x) :=

∫
E

f(y)p(t)(x, dy).

Remark 2.1.7. For a Markov semigroup

(P (t))t∈R+

on (E, E) for t ∈ R+ P (t)f is de�ned also if f is non-negative, real-
valued an E-measurable.

Such a semigroup permits to de�ne a stochastic process called
Markov process :

Definition 2.1.8. Let (p(t))t∈R+
be a semigroup of transition prob-

abilities and (P (t))t∈R+
be the respective Markov semigroup. An adapted

process (see De�nition A.3.87) (λt)t∈R+
on(

Ω,F , (Gt)t∈R+
,P
)
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with state space (E, E) is called Markov process with respect to (Gt)t∈R+

with semigroup of transition probabilities (p(t))t∈R+
if for any E-measurable

non-negative function

f : E → R+ ∪ {∞}
and any 0 ≤ s < t

(2.1.2) E [f(λt)| Gs] = P (t− s)f(λs)

holds P-almost surely. P ◦ λ−1
0 is called initial distribution of (λt)t∈R+

.

Remark 2.1.9. By linearity, Equation 2.1.2 holds for E-measurable
bounded functions f : E → R as well. The de�nition of Markov
processes implies that fp(t − s) = κλt,λs or any t > s ≥ 0 where κλt,λs
is the regular conditional probability (see De�nition A.3.67).

Remark 2.1.10. More generally, Markov processes can also be de-
�ned for families (ps,t)s,t∈R+

of transition probabilities on (E, E) such
that for any 0 ≤ s ≤ r ≤ t

ps,t(x,A) =

∫
E

ps,r(y, A)pr,t(x, dy).

In this case Ps,t is not a semigroup but it is still possible to de�ne a
Markov process in the above way where we replace Equation 2.1.2 by

E [f(λt)| Gs] = Ps,tf(λs).

Such a family of transition probabilities and such Markov processes are
called inhomogeneous whereas the ones introduced above are called
homogeneous . In the following, we only consider homogeneous pro-
cesses and when speaking of Markov processes we always intend homo-
geneous ones.

Remark 2.1.11. (Motivation)
By setting f = 1A for some A ∈ E in Equation 2.1.2 we see that a

Markov process possesses the properties that
(i) for predictions about the future it is su�cient to know the present
instead of the whole past and
(ii) that for such predictions the present time by itself is not important;
what matters is only the di�erence between the future time for which
a prediction is to be made and the present time.

It turns out that also the other direction is true which we want to
show in the following. The assumption that for a stochastic process
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(λt)t∈R+
properties (i) and (ii) hold implies that the family of maps

(zP)P∈M1(Ω,F) de�ned for some r ∈ R+ as

zP : R+ →M1(E)

r → P ◦ λ−1
r

satis�es Assumption 1.1.3 and Assumption 1.1.4 from Section 1.1. Thus,
for the family (T (t))t∈R+

de�ned as

T (t) : M1(E)→M1(E)

P ◦ λ−1
r → P ◦ λ−1

r+t

(T (t))t∈R+
does not depend on r and has to be a one-parameter family

of mappings that satis�es the Functional Equation (Equation 1.3.3):

(2.1.3) T (t) ◦ T (s) = T (t+ s)

for any s, t ∈ R+. The map

p(t) : E × E → [0,∞]

(x,A)→ E
[
1λr+t∈A1λr=x

]
(which by assumption does not depend on r ∈ R+) is a transition
probability. By de�nition for any r ∈ R+

T (t)
(
P ◦ λ−1

r (A)
)

= P
(
λ−1
r+t(A)

)
=

∫
E

E
[
1λr+t∈A1λr=x

]
· P ◦ λ−1

r (dx)

=

∫
E

p(t) (x,A) · P ◦ λ−1
r (dx).

Hence, Equation 2.1.3 yields that (p(t))t∈R+
is a semigroup of transi-

tion probabilities and (λt)t∈R+
is a Markov process with respect to its

natural �ltration (
F0
t

)
t∈R+

:= σ
(
(λs)0≤s≤t

)
t∈R+

which is de�ned as the smallest �ltration on (Ω,F) such that (λt)t∈R+

is adapted since for any A ∈ E

E
[
1A(λt)| F0

s

]
= E [1A(λt)|λs]
= p(t− s) (λs, A)

= Pt−s1A(λs).
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2.1.2. Properties of Markov processes. If not stated other-
wise, for a Markov process (λt)t∈R+

with respect to a �ltration as �l-
tration we take the natural �ltration (F0

t )t∈R+
of the process (λt)t∈R+

.
The proofs of the next four propositions roughly follow Revuz-Yor

[35], Chapter III.1 .

Proposition 2.1.12. ([35] , Proposition 1.4)
A stochastic process

(λt)t∈R+

on the probability space (Ω,F ,P) with state space (E, E) is a Markov
process with respect to (

F0
t

)
t∈R+

with initial distribution v and semigroup of transition probabilities

(p(t))t∈R+

if and only if for all k ∈ N , all times 0 = t0 < ... < tk, and all
non-negative, E-measurable functions f0, ..., fk

(2.1.4) E

[
k∏
i=0

fi(λti)

]

=

∫
E

· · ·
(∫

E

(∫
E

fk(xk) · p (tk − tk−1) (xk−1, dxk)

)
·fk−1(xk−1) · p (tk−1 − tk−2) (xk−2, dxk−1)) · · · f0(x0)dν(x0).

Proof. In order to show the �rst implication, assume (λt)t∈R+
is

such a Markov process. Then, the properties of conditional expecta-
tions yield

E

[
k∏
i=0

fi(λti)

]

= E

[
E

[
k∏
i=0

fi(λti)

∣∣∣∣∣σ ((λs)0≤s≤tk−1

)]]

= E

[
k−1∏
i=0

fi(λti) · P (tk − tk−1) f(λtk−1
)

]

= E

[
k−2∏
i=0

fi(λti) · E
[

(fk−1 · P (tk − tk−1) f) (λtk−1
)
∣∣σ ((λs)0≤s≤tk−2

)]]

= E

[
k−2∏
i=0

fi(λti) · P (tk−2 − tk−1) (fk−1 · P (tk − tk−1) f) (λtk−2
)

]
etc. This proves one implication of the proposition.
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For the other implication, assuming Equation 2.1.4 holds we need
to show Equation 2.1.2. It is enough to prove that for any measurable
non-negative function f : E → R+ ∪ {∞}, any 0 ≤ s < t and any
A ∈ F0

s the equation

(2.1.5) E [f(λt) · 1A] = E [P (t− s) f(λs) · 1A] .

holds. The set

D =
{
A ∈ F0

s

∣∣Equation 2.1.5 holds
}

clearly is a Dynkin system by the monotone convergence theorem. Ap-
plying Equation 2.1.4 to both sides of Equation 2.1.5, we observe that
for n ∈ N and

0 = t0 < t1 < ... < tn ≤ s

and
F0,F1, ..., Fn ∈ E

the set
n⋂
i=0

λ−1
ti

(Fi)

is contained in D. Since the system of such sets is an intersection stable
generator of the product σ-algebra F0

s , by Lemma A.3.15

D = F0
s ,

hence the assertion of the proposition follows. �

Proposition 2.1.13. ([35] , Theorem 1.5)
Let E be a polish space (see De�nition A.1.14), E its Borel σ-algebra
and ER+ the product σ-algebra (see De�nition A.3.7) of ER+. For any
semigroup of transition probabilities

(p(t))t∈R+

on (E, E) and any probability measure v on (E, E), there exists a unique
probability measure Pν on (

ER+ , ER+
)

such that the coordinate process (see De�nition A.3.5)

(λt)t∈R+

on (
ER+ , ER+ ,Pν

)
is a Markov process with respect to the �ltration(

F0
t

)
t∈R+
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with semigroup of transition probabilities

(p(t))t∈R+

and initial distribution v.

Proof. We want to de�ne a probability measure Pν on
(
ER+ , ER+

)
using Kolmogorov extension theorem. For n ∈ N and 0 = t0 < ... < tn
let J := {t0, ..., tn} ⊂ R+. For F0, F1, ..., Fn ∈ E we set

PJ
(
×
i∈J

Fi

)

:=

∫
F0

· · ·
(∫

Fn−1

(p (tn − tn−1) (xn−1, Fn)) · p (tn−1 − tn−2) (xn−2, dxn−1)

)
· · · dν(x0),

thereby obtaining a σ-additive map on the generator{
×
i∈J
Fi

∣∣∣∣ F0, ..., Fn ∈ E
}

of EJ which is a semi-ring (see De�nition A.3.27). By applying Cara-
théodory extension theorem (Theorem A.3.29) we obtain a unique
probability measure PJ on

(
EJ , EJ

)
. Proceeding this way we obtain a

projective family (see De�nition A.3.3)

(PJ)J⊂R+, �nite

of probability measures on(
EJ , EJ

)
J⊂R+, �nite

and by Kolmogorov extension theorem (Theorem A.3.102) there exists
a unique probability measure Pν on

(
ER+ , ER+

)
such that for all �nite

J ⊂ R+ and F ∈ EJ

Pν
((

Π
R+

J

)−1

(F )

)
= PJ(F )

holds where Π
R+

J is the projection from De�nition A.3.5. By de�nition
of Pν , for the coordinate process (Πt)t∈R+

(see De�nitionA.3.5), on(
ER+ , ER+ ,Pν

)
, subsequently denoted

(λt)t∈R+
:= (Πt)t∈R+

,

Equation 2.1.4 holds for indicator functions f0, ..., fn of sets in E . By
linearity of the integral and monotone convergence (Theorem A.3.57)
and Proposition A.3.19 this implies that Equation 2.1.4 holds also for
all non-negative, E-measurable functions f0, ..., fn. Hence, by Proposi-
tion 2.1.12 (λt)t∈R+

is a Markov process with the desired properties. �
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Notation 2.1.14. From now on, we always assume that for any
initial distribution ν and semigroup of transition probabilities on (E, E)
there is a probability measure Pν on(

ER+ , ER+
)

such that the coordinate process is a Markov process with respect to
(F0

t )t∈R+
(e.g. because E is polish and we use Proposition 2.1.13). Un-

less speci�ed otherwise, when we speak of a Markov process we always
intend one obtained in such a way. We write Eν instead of EPν and for
x ∈ E and Dirac measure (see Example A.3.21) δx we write Px instead
of Pδx .

Proposition 2.1.15. ([35], Proposition 1.6)
Let

(λt)t∈R+

be a Markov process with the state space (E, E) on the measurable space(
ER+ , ER+

)
with respect to (

F0
t

)
t∈R+

with some semigroup of transition probabilities and for any initial dis-
tribution ν let Pν be the corresponding probability measure. Let

Z : ER+ → R+ ∪ {∞}
be measurable with respect to ER+ . (Or let Z : ER+ → R be measurable,
bounded.) Then

E → R ∪ {∞}
x→ Ex [Z]

is measurable with respect to E and

Eν [Z] =

∫
E

Ex [Z] dν(x).

Proof. For some n ∈ N and 0 ≤ t1 < ... < tn and arbitrary
Ft1 , ..., Ftn ∈ E we set

(2.1.6) Γ = {λt1 ∈ F1, ..., λtn ∈ Fn} .
In the �rst step of the proof, we show the assertion of the proposition
for maps Z = 1Γ. By Proposition 2.1.12 for any x ∈ E
Ex [1Γ]

=

∫
F1

· · ·

(∫
Fn−1

(
Ptn−tn−1(xn−1, Fn)

)
· Ptn−1−tn−2(xn−2, dxn−1)

)
· · · Pt1−t0(x, dx1).
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Since by Lemma A.3.59

xn−2 →
∫
Fn−1

(
Ptn−tn−1(xn−1, Fn)

)
· Ptn−1−tn−2(xn−2, dxn−1)

is E-measurable we can deduce inductively that

x→ Ex [1Γ]

is also E-measurable. Additionally, by Proposition 2.1.12

(2.1.7) Eν [1Γ] =

∫
Ω

Ex [1Γ] dν(x)

holds.
In the second step of the proof, we prove the proposition for all

positive measurable maps Z. We de�ne the set D ⊂ ER+ such that for
all F ∈ D both the equation

Eν [1F ] =

∫
Ω

Ex [1F ] dν(x)

holds and the map
x→ Ex [1F ]

is E-measurable. One shows easily, that D is a Dynkin system and by
the previous step it contains the intersection stable generator of ER+ ,
hence by Lemma A.3.15 D = ER+ . Since by Proposition A.3.19 any
positive random variable Z can be written as limit of positive simple
functions, the assertion of this proposition follows by Lemma A.3.17
and monotone convergence (Theorem A.3.57). �

Proposition 2.1.16. (Markov property, [35] , Proposition 1.7)
Let

(λt)t∈R+

be a Markov process with the state space (E, E) on the measurable space(
ER+ , ER+

)
with respect to (

F0
t

)
t∈R+

with some semigroup of transition probabilities and for any initial dis-
tribution ν let Pν be the corresponding probability measure. Let

Z : ER+ → R+ ∪ {∞}
be measurable with respect to ER+ (Or let

Z : ER+ → R
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be measurable, bounded). Let Eλt [Z] be the composition of x→ Ex [Z]
and

ER+ → E

ω → λt(ω).

For t ∈ R+ let
θt : ER+ → ER+

be the map
(ω(s))s∈R+

→ (ω(s+ t))s∈R+
.

Then for any t > 0 and any initial distribution ν on (E, E)

(2.1.8) Eν
[
Z ◦ θt| F0

t

]
= Eλt [Z]

holds Pν-almost surely.

Proof. As composition of two measurable maps Eλt [Z] is clearly
measurable with respect to F0

t . As a �rst step, we want to show the
proposition for Z = 1Γ, where

Γ = {λt1 ∈ F1, ..., λtn ∈ Fn}

for some n ∈ N and 0 ≤ t1 < ... < tn and F1, ..., Fn ∈ E arbitrary. We
need to show that for any B ∈ F0

t the equation

(2.1.9) Eν [(1Γ ◦ θt) · 1B] = Eν [Eλt [1Γ] · 1B]

holds. The system of sets D ⊂ ER+ de�ned as set of sets D ∈ D such
that the equation

Eν [(1Γ ◦ θt) · 1D] = Eν [Eλt [1Γ] · 1D]

holds is a Dynkin system as one can easily show. For any m ∈ N and

(2.1.10) B′ = {λs1 ∈ F ′1, ..., λsm ∈ F ′m}

where 0 ≤ s1 < ... < sm ≤ t and F ′1, ..., F
′
m ∈ E are arbitrary the

equation
Eν [(1Γ ◦ θt) · 1B′ ] = Eν [Eλt [1Γ] · 1B′ ]

follows from applying Proposition 2.1.12 to both sides of the equation.
Thus, D contains the (intersection stable) generator of the σ- algebra
ER+ , hence by Lemma A.3.15 D = ER+ and the equation

Eν
[
1Γ ◦ θt| F0

t

]
= Eλt [1Γ]

holds.
In a second step, we show the assertion of the proposition for all

positive measurable maps Z. For this purpose, we observe that the
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system of sets D′ ⊂ ER+ de�ned as set of all sets D′ ∈ D′ such that the
equation

Eν
[
1D′ ◦ θt| F0

t

]
= Eλt [1D′ ]

holds is a Dynkin system that contains an intersection stable generator
of ER+ hence by Lemma A.3.15 D′ = ER+ . Since by Proposition A.3.19
any positive random variable Z can be written as limit of positive
simple functions, the assertion of this proposition follows by monotone
convergence (Theorem A.3.57). �

Remark 2.1.17. If p(t)(x,E) < 1 for some x ∈ E and some t ∈ R+

such that the construction from Remark 2.1.2 needs to be employed
to obtain a semigroup of transition probabilities, Equation 2.1.8 in
Proposition 2.1.16 is shown only on the set {λt 6= ∆} as by convention
the right hand side of the equation is 0 if λt = ∆.

Let (λt)t∈R+
be a Markov process with the state space (E, E) on the

measurable space
(
ER+ , ER+

)
with respect to the natural �ltration and

for any initial distribution ν let Pν be the corresponding probability
measure. The family (P (t))t∈R+

of maps de�ned by

P (t)f(x) := Ex [f(λt)]

for all x ∈ E and f ∈ `∞(E) is a one-parameter semigroup on `∞(E)
by the calculation

Ex [f(λs+t)] = Ex
[
Ex
[
f(λs+t)| F0

t

]]
= Ex [(P (s)f) (λt)] .

One can de�ne the generator A of the semigroup, only if the restric-
tion of the semigroup to some closed subspace D ⊂ `∞(E) is strongly
continuous. There are several ways to weaken the notion of a generator.

Following [9], one can always de�ne the infinitesimal generator of
a Markov process:

Definition 2.1.18. Let (λt)t∈R+
be a Markov process with the state

space (E, E) on the measurable space
(
ER+ , ER+

)
with respect to the

natural �ltration and for any initial distribution ν let Pν be the corre-
sponding probability measure. De�ne

D(A ) :=

{
f ∈ `∞(E) : lim

t↘0

Ex [f(λt)]− f(x)

t
exists for all x ∈ E

}
,

and for any f ∈ D(A ) and any x ∈ E de�ne

A f(x) := lim
t↘0

Ex [f(λt)]− f(x)

t
.

The linear map A is called infinitesimal generator .
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The next proposition motivates a di�erent way to generalize the
notion of a generator for a Markov process:

Proposition 2.1.19. Let (λt)t∈R+
be a Markov process with the

state space (E, E) on the measurable space
(
ER+ , ER+

)
with respect to

the natural �ltration (F0
t )t∈R+

and for any initial distribution ν let Pν
be the corresponding probability measure. Let (P (t))t∈R+

be the family
of maps de�ned by

P (t)f(x) := Ex [f(λt)]

for all x ∈ E and f ∈ `∞(E). Let D ⊂ `∞(E) be a closed subspace
and let the restriction of (P (t))t∈R+

on D be strongly continuous with
generator (A,D(A)). Then for any x ∈ E and f ∈ D(A) the process(
M f

t

)
t∈R+

de�ned by

M f
t := f(λt)− f(λ0)−

t∫
0

(Af) (λs)ds

is a martingale with respect to Px and (F0
t )t∈R+

.

Proof. We observe that if f ∈ D(A) then clearly for all x ∈ E

Ex

f(λt)− f(λ0)−
t∫
0

(Af) (λs)ds

 = P (t)f(x)− f(x)−
t∫
0

Ex [(Af) (λs)] ds

= P (t)f(x)− f(x)−
t∫
0

P (t) (Af) (x)ds

= 0,

where the last step is possible thanks to 1.4.15. Furthermore, the
process

(
M f

t

)
t∈R+

de�ned by

M f
t := f(λt)− f(λ0)−

t∫
0

(Af) (λs)ds

is clearly adapted with respect to its natural �ltration (F0
t )t∈R+

and
bounded (since Af ∈ `∞(E) by de�nition). By Proposition 2.1.16,
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M f

t

)
t∈R+

is a martingale with respect to Px for any x ∈ E since

Ex

f(λt)− f(λ0)−
t∫
0

(Af) (λs)ds

∣∣∣∣∣∣F0
s


= f(λs)− f(λ0)−

s∫
0

(Af) (λs)ds+ Ex

f(λt)− f(λs)−
t∫
s

(Af) (λr)dr

∣∣∣∣∣∣F0
s


= f(λs)− f(λ0)−

s∫
0

(Af) (λs)ds+ Ex

f(λt−s ◦ θs)− f(λ0 ◦ θs)−
t−s∫

0

(Af) (λr ◦ θs)dr

∣∣∣∣∣∣F0
s


= f(λs)− f(λ0)−

s∫
0

(Af) (λs)ds+ Eλs

f(λt−s)− f(λ0)−
t−s∫

0

(Af) (λr)dr


= f(λs)− f(λ0)−

s∫
0

(Af) (λs)ds.

This motivates the following de�nition (see for Example [35], De�nition
VII.1.8): �

Definition 2.1.20. Let (λt)t∈R+
be a Markov process with the state

space (E, E) on the measurable space
(
ER+ , ER+

)
with respect to the

natural �ltration (F0
t )t∈R+

and let f : E ∪ {∆} → R be measurable.
If there exists a measurable map g : E ∪ {∆} → R such that for all
x ∈ E and for every t ∈ R+

t∫
0

|g(λs)| ds <∞

Px-almost surely and

M f
t := f(λt)− f(x)−

t∫
0

g(λs)ds

is well de�ned and is a right continuous martingale with respect to
(F0

t )t∈R+
and probability measure Px then one de�nes Gf := g and

f ∈ D(G) and calls G extended infinitesimal generator .

Remark 2.1.21. The requirement that the martingale be right con-
tinuous becomes more clear when looking at Feller process and in par-
ticular at the existence of càdlàg modi�cations in this case (see Theo-
rem 2.2.6).

This can be weakened further (see for example [12]):
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Definition 2.1.22. Let (λt)t∈R+
be a Markov process with the state

space (E, E) on the measurable space
(
ER+ , ER+

)
with respect to the

natural �ltration (F0
t )t∈R+

and let f : E ∪ {∆} → R be measurable.
If there exists a measurable map g : E ∪ {∆} → R such that for all
x ∈ E and for every Px-almost surely and

M f
t := f(λt)− f(x)−

t∫
0

g(λs)ds

is well de�ned and is a local martingale (see De�nition 3.0.2) with
respect to (F0

t )t∈R+
and probability measure Px then one de�nes Gf :=

g and f ∈ D(G) and calls G extended generator .

Definition 2.1.23.
Let (λt)t∈R be a Markov process on Rd. Let the in�nitesimal gen-

erator A be such that for any f ∈ C2
c (Rd) it holds for x ∈ Rd

A f(x) = c(x)f(x) +
∑

i∈{1,...,d}

bi(x)
∂f

∂xi
(x) +

1

2

∑
i,j∈{1,...,d}

aij(x)
∂2f

∂xi∂xj
(x))

where for any i, j ∈ {1, ..., d} aij, bi, and c ≤ 0 are functions on Rd and
the matrix

(aij(x))i,j∈{1,...,d}

is non-negative and symmetric for any x ∈ Rd .
Then the vector

(bi(x))i∈{1,...,d}

is called drift of (λt)t∈R , and the matrix

(aij(x))i,j∈{1,...,d}

is called diffusion matrix of (λt)t∈R provided they are Borel-measurable
and locally bounded. Furthermore, c of (λt)t∈R is called killing rate.

Remark 2.1.24. We want to heuristically explain the meaning of
the functions c, bi, and aij for i, j ∈ {1, ..., d} in De�nition 2.1.23 and
�x x ∈ Rd.

Regarding c, we see by setting f = 1 on some neighborhood around
x that

Ex [f(λh)] = hc(x) + 1 + o(h).

and the measure Pλt loses mass with rate c because the process is
�killed� and moved to the cemetery, which explains its name.
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Regarding bi, by setting c = 0 and fi(y) = yi we obtain

Ex
[
λ

(i)
h − xi

]
= hbi(x) + o(h)

which shows that in�nitesimally (λt)t∈R+
moves by the vector

(bi(x))i∈{1,...,d})

which explains the term drift .
Regarding bi, by setting c = 0 and

fik(y) = (yi − xi) (yk − xk)
we obtain

Ex
[(
λ

(i)
h − xi

)(
λ

(k)
h − xk

)]
= haik(x) + o(h).

Thus, the instantaneous rate of change at 0 of the covariance of the
vector (

λ
(i)
h

)
i∈{1,...,d}

is given by
(aij)i,j∈{1,...,d} .

Example 2.1.25. (Brownian motion)
Let (Ω,F ,P) be some probability space and (Wt)t∈R+

be a Brow-
nian motion on it (see De�nition A.3.83 and Theorem A.3.84) and let
(F0

t )t∈R+
be its natural �ltration. It is well known that(Wt)t∈R+

is a
Markov process which we will show in the following. Let f be a non-
negative, measurable map. Set g(x, y) := f(x + y). Then by Lemma
A.3.64

E [f(Wt)| Fs] = E [f(Wt −Ws +Ws)| Fs]
= E [g(Wt −Ws,Ws)| Fs]
= E [g(Wt −Ws,Ws)|σ (Ws)]

= E [f(Wt)|σ (Ws)] .

Furthermore, by Proposition A.3.69

E [f(Wt)|σ (Ws)] =

∫
f(x)κWt,Ws(Ws, dx).

By de�nition of Brownian motion for any y ∈ R and any Borel set
A ∈ B(R)

p(t− s)(y, A) := κWt,Ws(y, A) =

∫
A

1√
2π (t− s)

exp

(
− (x− y)2

2 (t− s)

)
dx
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and for any t ∈ R y → p(t)(y, A) is measurable by Lemma A.3.59.
From the identity ∫

R
exp

(
−x2

2σ2

)
dx =

√
2πσ2

and completing the square it follows that(p(t))t∈R+
is a semigroup of

transition probabilities:∫
R
p(s)(y,A)p(t)(x, dy)

=

∫
R

(∫
A

1√
2πs

exp

(
− (z − y)

2

2s

)
dz

)
1√
2πt

exp

(
− (x− y)

2

2t

)
dy

=

∫
A

1√
2πs

1√
2πt

exp

−tz2 − sx2 +
(
tz+sx√
s+t

)2
2st


∫

R
exp

−
(
tz+sx
s+t − y

)2
2st/ (s+ t)

 dy

 dz

=

∫
A

1√
2π (s+ t)

exp

(
− (z − x)

2

2 (s+ t)

)
dz

= p(s+ t)(x,A).

For all k ∈ N , all times 0 = t0 < ... < tk, and all non-negative,
measurable functions f0, ..., fk

E

[
k∏
i=0

fi(Wti)

]

E

[
k∏
i=0

fi(Wti)

∣∣∣∣∣Fs
]

=

∫
E

· · ·
(∫

E

(∫
E

fk(xk) · p (tk − tk−1) (xk−1, dxk)

)
·fk−1(xk−1) · p (tk−1 − tk−2) (xk−2, dxk−1)) · · · f0(x0)δ0(x0).

and by Proposition 2.1.12 (Wt)t∈R+
is a Markov process with respect

to (F0
t )t∈R+

.

Example 2.1.26. (Geometric Brownian motion onE = {x ∈ R : x > 0}
is a Markov process)

Let (Ω,F ,P) be some probability space and (Wt)t∈R+
be a Brownian

motion on it. For any x ∈ E let

Sxt = x exp

((
α− σ2

2

)
t+ σWt

)
.

With the substitution

y := ϕx(z) := x exp

(
σz +

(
α− σ2

2

)
t

)
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for B,F ∈ B(R+) the calculation

E [1B(Sxt )1F (Sxs )] = E [1B (ϕx (Wt)) 1F (ϕx (Ws))]

= E
[
1(ϕx)−1(B) (Wt) 1(ϕx)−1(F ) (Ws)

]
= E

[
κWt,Ws(Ws, (ϕ

x)−1 (B))1(ϕx)−1(F ) (Ws)
]

= E
[
κWt,Ws(Ws, (ϕ

x)−1 (B))1F (Sxs )
]

yields that the conditional regular probability (see De�nition A.3.67)κSxt ,Sxs
is given by
κSxt ,Sxs (w,B) = κWt,Ws

(w, (ϕx)
−1

(B))

=

∫
(ϕx)−1(B)

1√
2π (t− s)

exp

(
− (z − w)

2

2 (t− s)

)
dz

=

∫
B

1√
2π (t− s) y2σ2

exp

−
(

ln
(
y
x

)
−
(
α− σ2

2

)
t− w

)2
2 (t− s)σ2

 dy

for any w ∈ R+, B ∈ B(R+). It follows then exactly as in the case of
Brownian motion in Example 2.1.25 that (Sxt )t∈R+

is a Markov process
with respect to its natural �ltration.

Furthermore, by Proposition A.3.92(
exp

((
−σ

2

2

)
t+ σWt

))
t∈R+

is a martingale with respect to the natural �ltration. Hence,

E [Sxt ] = xeαtE
[
exp

((
−σ

2

2

)
t+ σWt

)]
= xeαt.

Remark 2.1.27. More generally, if (λt)t∈R+
is the Rd-valued solu-

tion of a stochastic di�erential equation (see De�nition A.3.116)

dλt = µ(λt)dt+ σ(λt)dWt

for a d-dimensional Brownian motion (see De�nition A.3.83) W =
(Wt)t∈R+

on the �ltered probability space(
Ω,F , (Ft)t∈R+

,P
)

and for the measurable maps

µ =
(
µ1, ..., µd

)
: Rd → Rd

and
σ =

(
σi,j
)
i,j∈{1,...,d} : Rd → Rd×d
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and if there is a constant C > 0 such that for any x, y ∈ R

|µ(x)− µ(y)|+ |σ(x)− σ(y)| < C |x− y| ,
(λt)t∈R+

is called Ito diffusion. One can show that (λt)t∈R+
is a Markov

process (see [32], Theorem 7.1.2). Then by Ito formula (A.3.115) µ is
the drift and σ the di�usion matrix as de�ned in De�nition 2.1.23.

2.2. Feller semigroups

In this section we introduce Feller processes as special class of
Markov processes. Throughout this section, we make the assumption
that the state space E of the processes is locally compact (see Def-
inition A.1.12) and Hausdor� and has a base (see De�nition A.1.2)
with at most countably many elements. Among other things, these
assumptions ensure that the space is polish (see Proposition A.1.15).

Definition 2.2.1. A strongly continuous, positive (see De�nition
2.3.39), contractive (see De�nition 1.4.10) semigroup (Q(t))t∈R+

on
C0(E) is called Feller semigroupon E.

Proposition 2.2.2. ([35], Proposition 2.2) Let (P (t))t∈R+
be a

Feller semigroup on E. Then there exists a semigroup of transition
probabilities (p(t))t∈R+

on (E,B (E)) (or on (E ∪ {4} ,B (E ∪ {∆})) )
such that for any t ∈ R+ and any f ∈ C0(E)

P (t)f =

∫
E

f(y)p(t)(x, dy).

We call (p(t))t∈R+
the associated Feller semigroup of transition probabilities.

Remark 2.2.3. Either p(t)(x, ·) is a probability measure on (E, E)
for any x ∈ E or by Remark 2.1.2 p′(t)(x, ·) is a probability measure on
(E ∪ {4} ,B (E ∪ {∆})) for any x ∈ E. In order to simplify notation,
in the following we assume without loss of generality the �rst case.
We set the cemetery ∆ (see Remark 2.1.2) to be ∞ obtained from the
one-point-compacti�cation of E (see De�nition A.1.16).

Proof. In the �rst step of the proof we construct a family of pos-
itive measures (p(t)(x, ·))t∈R+

on (E,B (E)) for any x ∈ E , and in the
second we show that the family is a semigroup of transition probabili-
ties on (E,B (E)).

Fix some x ∈ E and t ∈ R+. Then the map

`x : f → P (t)f(x)
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is a bounded positive linear functional on C0(E) hence by Riesz repre-
sentation theorem (A.4.13) there is a unique complex regular measure
P (x, ·) on (E,B (E)) such that

P (t)f(x) =

∫
E

f(y)p(t)(x, dy)

holds for any f ∈ C0(E). We need to show that p(t)(x, ·) is a positive
measure. This is the case since due to metrizability of the topology
of E (see Proposition A.1.13) and separability (choose one element in
each of the sets of the countable base) any open set O ⊂ E can be
written as countable union of open balls

Br(z) := {y ∈ E : d(z, y) < r}
for some (rk)k∈N ∈ R+ and (zk)k∈N ∈ E:

O =
⋃
k∈N

Brk(zk)

Thus, by approximating each 1Brk (zk) pointwise by a positive sequence
(fkn)n∈N in C0(E) we obtain

p(t)(x,O) =

∫
E

1O(y)p(t)(x, dy) = lim
n→∞

∫
E

sup
k∈{1,...,n}

{fkn(y)} p(t)(x, dy) ≥ 0.

Since p(t)(x, ·) is outer regular, this implies that p(t)(x, ·) ≥ 0 on all of
B (E).

As second step of the proof, we need to check the properties of a
semigroup of transition probabilities. By Theorem A.4.13

p(t)(x,E) = ‖`x‖ ≤ 1

so either p(t)(x, ·) is a probability measure on (E,B (E)) for any x ∈ E
or by Remark 2.1.2 p(t)(x, ·) is a probability measure on

(E ∪ {4} , σ (B (E) ∪ {4}))
for any x ∈ E.

Next, we show measurability of

x→ p(t)(x,A)

for any A ∈ B (E). Since by de�nition of (P (t))t∈R+
the map

x→
∫
E

f(y)p(t)(x, dy)

is in C0(E), it is in particular measurable with respect to B (E). As
above, we can write any open set O ⊂ E as countable union

O =
⋃
k∈N

Brk(zk)
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for some (rk)k∈N ∈ R+ and (zk)k∈N ∈ E. We can approximate the
function 1Brk (zk) pointwise with positive functions

(fkn)n∈N ⊂ C0(E)

which yields by dominated convergence (Theorem A.3.58)

x→
∫
E

1O(y)p(t)(x, dy) = lim
n→∞

∫
E

sup
k∈{1,...,n}

{fkn(y)} p(t)(x, dy),

hence B (E)-measurability of x → p(t)(x,O). One easily shows that
the family of setsM⊂ 2Ω de�ned as

M := {M ∈ B (E) : x→ p(t)(x,M) is measurable}
is a Dynkin system henceM = B (E) by Lemma A.3.15.

Last, we see that indeed for any s, t ∈ R+, any A ∈ B (E) and any
x ∈ E

p(s+ t)(x,A) =

∫
E

p(s)(y, A)p(t)(x, dy)

since by assumption on (P (t))t∈R+

P (s+ t)f = P (t)P (s)f

holds for any f ∈ C0(E) and conclude by approximating 1A by some
sequence

(fn)n∈N ⊂ C0(E)

as before. �

Proposition 2.2.4. Let (P (t))t∈R+
be a Feller semigroup on E

and (p(t))t∈R+
its associated Feller semigroup of transition probabilities.

Then the family (Q(t))t∈R+
of linear bounded maps

Q(t)f(x) :=

∫
E

f(y)p(t)(x, dy)

is a Markov semigroup and by Proposition 2.1.13 for any probability
measure v on (E,B (E)) there exists a Markov process (λt)t∈R+

with
respect to its natural �ltration (F0

t )t∈R+
with semigroup of transition

probabilities (p(t))t∈R+
and initial distribution v. Such a Markov pro-

cess is called Feller process .

Definition 2.2.5. A stochastic process (λt)t∈R+
with a state space

that is closed is called càdl àg process (from French: continue à droite,
limite à gauche) if all paths are càdl àg paths , that is, they are right
continuous (thus λt = λt+ := lim

s↘t
λs for any t ∈ R+) and possess left

limits (hence λt− := lim
s↗t

λs exists in the state space for any t > 0). If all
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paths are left continuous and possess right limits, we call the process
(and the paths) càgl àd . For a càdlàg process (λt)t∈R+

we can de�ne
the process (∆λt)t∈R+

as

∆λt :=

{
λt − lim

s↗t
λs if t > 0

0 if t = 0.

Wherever ∆λt 6= 0 for some t > 0 we call ∆λt a jump.

One can show (see e.g. [35], Theorem 2.7)

Theorem 2.2.6. A Feller process possesses a version (see De�ni-
tion A.3.86) that is a càdlàg process.

Notation 2.2.7. We remind the reader of the naming convention
for Markov processes from Notation 2.1.14 and add the convention
that for Feller processes we always consider the version that is a càdlàg
process.

For Markov processes we know that the Markov property holds
(Proposition 2.1.16 ). For Feller processes we know more than that.

We de�ne Fν∞ as the completion (see De�nition A.3.32) of (B (E))R+

with respect to Pν and set

F∞ =
⋂
ν

Fν∞,

where the intersection is taken over all probability measures on (E,B (E)).
Furthermore, we call N νthe set of all Pν-null sets on Fν∞ and set
Fνt := σ (N ν ∪ F0

t ) and

Ft =
⋂
ν

Fνt ,

where again the intersection is taken over all probability measures on
(E,B (E)).

Theorem 2.2.8. (Strong Markov property, [35] Theorem 3.1)
Let (λt)t∈R+

be a Feller process. Let

Z : ER+ → R+ ∪ {∞}

be measurable with respect to F∞ (Or let Z : ER+ → R be measurable,
bounded). Let Eλt [Z] be the composition of x→ Ex [Z] and

ER+ → E

ω → λt(ω).
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For t ∈ R+ let θt : ER+ → ER+ be de�ned by

(ω(s))s∈R+
→ (ω(s+ t))s∈R+

.

Let τ : ER+ → R+ be a (Ft)t∈R+
-stopping time (see De�nition

A.3.91) and Fτ ⊂ F∞ the σ-algebra of events determined prior to the
stopping time τ (see De�nition A.3.91). De�ne

λτ := λτ(ω)(ω) on {τ 6=∞}
and set

λτ = ∆ on {τ =∞} .
Furthermore, de�ne

θτ := θτ(ω)(ω) on {τ 6=∞}

and on {τ =∞} set θτ as the map from ER+ to ∆.
Then for any initial measure ν on (E,B (E)):

Eν [Z ◦ θτ | Fτ ] = Eλτ [Z]

on {λτ 6= ∆} .

Since a Feller semigroup (P (t))t∈R+
on E is a strongly continuous

semigroup on C0(E), all results on strongly continuous semigroups from
Section 1.4 carry over. In particular, there exists a generator (see
De�nition 1.4.13):

Definition 2.2.9. The generatorA of a Feller semigroup (P (t))t∈R+
on

E is given by

A : D (A) ⊂ C0(E)→ C0(E)

f → lim
h↘0

P (h)f − f
h

on the dense domain D (A) (see Proposition 1.4.24).

The limit is of course to be taken with respect to the norm of C0(E).

Regarding the form of the generator of a Feller semigroup, in case
E = Rd, d ∈ N one can show:

Theorem 2.2.10. ([35], Theorem VII.1.13)
Let (P (t))t∈R+

be a Feller semigroup on Rd and let

C∞c (Rd) ⊂ D (A) .

Then
C2
c (Rd) ⊂ D (A)
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and for f ∈ C2
c (Rd) and an open set U whose closure is compact it

holds for x ∈ U :

Af(x) = c(x)f(x) +
∑

i∈{1,...,d}

bi(x)
∂f

∂xi
(x) +

1

2

∑
i,j∈{1,...,d}

aij(x)
∂2f

∂xi∂xj
(x))

+

∫
Rd\{x}

f(y)− f(x)−
∑

i∈{1,...,d}

1U(y) (yi − xi)
∂f

∂xi
(x)

N(x, dy)

(2.2.1)

for functions aij, i, j ∈ {1, ..., d} on U that do not depend on U such
that for any x ∈ U the matrix

(aij)i,j∈{1,...,d}

is non-negative and symmetric, for functions bi i ∈ {1, ..., d} on U that
may depend on U , for a function c ≤ 0 on U that does not depend on
U and for a kernel N such that N(x, ·) is a Radon measure on Rd \{x}
that may depend on U.

Remark 2.2.11. According to De�nition 2.1.23, b = (bi(x))i∈{1,...,d}
is the drift of the corresponding Feller process, a = (aij)i,j∈{1,...,d} is the
di�usion matrix, and c is the killing rate.

Remark 2.2.12. We want to heuristically explain the meaning of
N . Setting c = 0, U = {x}and f(y) = 1A(y) for x /∈ A

Px [λh ∈ A] = h ·N(x,A) + o(h)

which shows that N(x, ·) measures the time derivative at 0 of the prob-
ability that the process (λt)t∈R+

jumps from x into a certain set.

2.3. Generalized Feller semigroups

Generalized Feller semigroups have been introduced in a special
setting by Röckner and Sobol [36] in 2006 and were de�ned and inves-
tigated more generally in [15] in 2010. They are de�ned on so-called
Bρ−spaces which in turn are de�ned on completely regular spaces.
Thus, in order to de�ne such semigroups, in the �rst subsection we
introduce completely regular spaces and other separation axioms. In
the second subsection, we de�ne admissible weight functions before in-
troducing B-rho spaces in the third subsection. In this section (E, τ)
will always denote a topological space that is completely regular. For
additional terminology regarding topology, the reader is referred to
Appendix A.1.
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2.3.1. Separation axioms.

Definition 2.3.1. A topological space (T, τ) is called Hausdorff if
any two points x, y ∈ T possess disjoint neighborhoods Ux and Uy.

Definition 2.3.2. A topological space (E, τ) is called completely
regular if it is Hausdor� and if for any closed set A ⊂ Y and any point
x ∈ E \ A there exists a continuous function f : E → [0, 1] such that
f(x) = 1 and f(y) = 0 for all y ∈ A.

Definition 2.3.3. A topological space (N, τ) is called normal if
it is Hausdor� and if for all disjoint closed sets A, B ⊂ E there are
disjoint neighborhoods UA of A and UB of B.

Remark 2.3.4. There are di�erent naming conventions in the lit-
erature. Some authors do not require completely regular spaces and
normal spaces to be Hausdor� and call the space we call completely reg-
ular Tychonoff space. Others do not de�ne a completely regular space
or a normal space N to be Hausdor� but instead ask for less: They
demand that for any two points x, y ∈ N there must be neighborhoods
Ux of x and Uy of y such that Ux does not contain y and Uy does not
contain x. However, here we follow the conventions of Bourbaki [7] and
use the de�nition in the sense stated above .

For normal spaces we have access to Urysohn's Lemma:

Lemma 2.3.5. (Urysohn's Lemma, [7], Chapter IX, �4, Theorem 1)
Let N be a normal space and A,B ⊂ N be nonempty closed sets. Then
there is a continuous function f : N → [0, 1] with f(A) = {0} and
f(B) = {1}.

Additionally, the Tietze-Urysohn extension theorem is known:

Theorem 2.3.6. (Tietze-Urysohn extension theorem) ([7], Chapter
IX, �4, Theorem 2 and [40] Lemma 7.9)
Let (N, τ) be a topological space. N is normal if and only if for each
closed subset A ⊂ N and each continuous function f : A→ R there is
a continuous extension F : N → R.
If |f | : A → R is additionally bounded by C < ∞, then there is also
a continuous extension F : N → R such that |F | : N → R is also
bounded by C <∞.

We note the following relationship between two of the separation
axioms.
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Proposition 2.3.7. A normal space is completely regular.

Proof. By Urysohn's Lemma (Lemma 2.3.5) the required function
exists. �

For a completely regular space a statements similar to Tietze-Urysohn
extension theorem and Urysohn's Lemma can be shown and will be
used frequently in the following sections.

Proposition 2.3.8. Let E be completely regular and K ⊂ E com-
pact. Then a real-valued continuous function f ∈ C (K,R) on K can
be extended to a continuous function F ∈ C (E,R) on all of E. If ad-
ditionally |f | < C < ∞ then there is an extension F ∈ C (E,R) such
that |F | < C <∞.

Proof. We would like to apply the Tietze-Urysohn extension theo-
rem (Theorem 2.3.6). However, it allows the extension only on normal
spaces. But we can use Proposition A.1.10 in order to embed E by
an embedding i in a compact Hausdor� set N which by Proposition
A.1.11 is normal. i(K) is also compact on N with respect to the sub-
space topology τ(i(E)) (see Lemma A.1.8) on N . Hence, by Lemma
A.1.9 i(K) is compact with respect to the topology of N . Since N is
Hausdor�, the compact set i(K) is closed (see Lemma A.1.5). We can
apply the Tietze-Urysohn extension Theorem (Theorem 2.3.6) on N
to extend the function f ◦ i−1 ∈ C(i(K),R) to a continuous function
G ∈ C(N,R) such

f ◦ i−1
∣∣
i(K)

= G|i(K)

and |G| ≤ C if |f | ≤ C. Therefore, F := G ◦ i possesses the desired
properties. �

Proposition 2.3.9. (Urysohn's Lemma in the completely regular
case) Let E be completely regular, K ⊂ E compact, A ⊂ E closed and
A ∩ K = ∅. Then there is a continuous function f : E → [0, 1] such
that f(K) = {0}, f(A) = {1}.

Proof. As in Proposition 2.3.8, we embed E in a compact Haus-
dor� set N by an embedding i. i(K) is compact, hence closed in the
compact Hausdor� space N . Since i(A) is closed in the subspace topol-
ogy τ(i(E)), there is a closed set B ⊂ N such that B ∩ i(E) = i(A)
and clearly B ∩ i(K) = ∅. Applying Urysohn's Lemma in the normal
space N we see that there is a continuous function g : N → [0, 1] with
g(i(K)) = {0} and g(B) = {1}. Setting f := g ◦ i, we conclude. �

Corollary 2.3.10. Let E be a completely regular space, B(E) its
Borel σ-algebra and µ a measure on (E,B(E)) and B ∈ B(E). If there
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is a sequence of compact sets (Kn)n∈N and open sets (On)n∈N such that
Kn ⊂ B ⊂ On for any n ∈ N and

µ(On \Kn)→ 0,

then there exists a sequence (fn)n∈N of non-negative continuous func-
tions with fn ≤ 1On for any n ∈ N such that

lim
n→∞

fn = 1B

µ-almost surely and in L1 (E, µ).

Proof. Thanks to Urysohn's Lemma in the complete regular case
there is a sequence (gn)n∈N of non negative continuous functions with
1Kn ≤ gn ≤ 1On for any n ∈ N such that gn → 1B in L1 (E, µ) and µ-
probability. By Proposition A.3.53 there exists a subsequence (gnk)k∈N
such that gnk → 1B almost surely. �

2.3.2. Admissible weight functions. In the de�nition of Bρ-
spaces in subsection 2.3.3 admissible weight functions appear. For this
purpose, we de�ne and investigate them in this subsection.

Definition 2.3.11. A function ρ : E → (0,∞) is called admissible
weight function if the sets

KR := {x ∈ E : ρ(x) ≤ R}
are compact for all R ≥ 0. The pair (E, ρ) is called weighted space.

Remark 2.3.12. The identity E =
⋃
n∈NKn yields that E is σ-

compact which means that it is the countable union of compact sets.

In order to investigate admissible weight functions further, we recall
the following de�nition from analysis (see also Figure 2.3.1):

Definition 2.3.13. Let T be a topological space. A function

f : T → R

is called lower (upper) semicontinuous if for any ε > 0 and any x ∈
T there exists a neighborhood Ux of x such that f(y) > f(x) − ε
(f(y) < f(x) + ε) for all y ∈ Ux.

Lemma 2.3.14. An admissible weight function ρ : E → (0,∞) is
lower semicontinuous.
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0 1 2
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x

y

Figure 2.3.1. The function is lower semicontinuous at
x=1, but not upper semicontinuous.

Proof. For any ε > 0 and any x ∈ E the set

Kρ(x)−ε := {y ∈ E : ρ(y) ≤ ρ(x)− ε}

is compact and x /∈ Kρ(x)−ε. Since E is Hausdor�, compact sets are
closed by Lemma A.1.5. Thus, there exists a neighborhood Ux of x
such that Ux ∩Kρ(x)−ε = ∅. �

We know that on a compact set a continuous functions attains its
maximum and minimum. For semicontinuous functions similar state-
ments can be shown.

Lemma 2.3.15. A lower (upper) semicontinuous function f on a
compact set K is bounded from below (above).

Proof. Let f : K → R be lower semicontinuous and ε > 0. Then
for any x ∈ K there is a neighborhood Ux of x such that for any y ∈ Ux

f(y) > f(x)− ε.

Since K is compact, �nitely many such neighborhoods su�ce to cover
K.

For upper semicontinuous functions the assertion follows in the
same fashion. �

Lemma 2.3.16. On a compact set K a lower (upper) semicontinuous
function f : K → R attains its minimum (maximum).

Proof. Let f : K → R be lower semicontinuous. By Lemma
2.3.15 f is bounded from below. By lower semicontinuity, for any
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x ∈ K there exists a neighborhood Ux 3 x such that for all y ∈ Ux

f(y) > f(x)− 1

2

(
f(x)− inf

x∈K
f(x)

)
holds. Moreover, ⋃

x∈K

Ux

is an open cover of the compact set K hence the neighborhoods of
�nitely many xi, i ∈ {1, ..., n} su�ce to cover K :

K ⊂
⋃

i∈{1,...,n}

Uxi .

This implies that for all y ∈ K

f(y) >
1

2
min

i∈{1,...,n}
f(xi) +

1

2

(
inf
x∈K

f(x)

)
holds. Taking the in�mum on the left hand side yields

inf
x∈K

f(x) ≥ min
i∈{1,...,n}

f(xi) ≥ inf
x∈K

f(x).

Thus, the in�mum of f : K → R is attained on K.
For upper semicontinuous functions the statement follows by the

same reasoning. �

Corollary 2.3.17. An admissible weight function ρ : E → (0,∞)
attains its minimum on E.

The product space of weighted spaces is again a weighted space.

Lemma 2.3.18. Let (Ei, ρi), i ∈ {1, ..., n} be weighted spaces. Then

(E1 × ...× En, ρ)

is a weighted space, where

ρ (x1, ..., xn) := ρ1 (x1) · · · ρn (xn) .

Proof. We �rst show that E1× ...×En is completely regular. It is
clear that it is Hausdor�. Furthermore, for a closed set A ⊂ E1×...×En
and x ∈ E1×...×En\A by de�nition of the product topology (De�nition
A.1.7) we can �nd an open neighborhood Ux of x given by

Ux = ×
i=1,...,n

U i
x,

where each U i
x ⊂ Ei, i ∈ {1, ..., n} is a neighborhood of x. By de�nition

of completely regular spaces, there exist continuous maps

fi : Ei → [0, 1]
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such that fi(x) = 1 and fi(yi) = 0 for all yi ∈ Ei\U i
x and the continuous

map
f(x1, ..., xn) := f1(x1) · · · fn(xn)

shows that E1 × ...× En is completely regular.
Next, we show that ρ is an admissible weight function. Let without

loss of generality ρi ≥ 1 for i ∈ {1, ..., n}. Let R > 0 be arbitrary.
Then

{(x1, ..., xn) ∈ E1 × ...× En : ρ1 (x1) · · · ρn (xn) ≤ R}
⊂ {x1 ∈ E1 : ρ1 (x1) ≤ R} × ...× {xn ∈ En : ρn (xn) ≤ R} .

Since the right hand side is compact by Proposition A.1.17 we only
need to show closedness of the left hand side. For y = (y1, ..., yn) such
that ρ (y1, ..., yn) > R, by lower semicontinuity of ρ1,...ρn (see Lemma
2.3.14) for any ε > 0 there exist open neighborhoods U ε

y1
⊂ E1 of y1,

..., U ε
yn ⊂ En of yn such that for any ui ∈ U ε

yi
, i ∈ {1, ..., n}

ρi(ui) > ρi(yi)− ε.
Hence for u ∈ U ε

y1
× ...× U ε

yn

ρ(u) > (ρ1(y1)− ε) · · · (ρn(yn)− ε)
and the right hand side is larger than R for ε small enough. Thus,

{(x1, ..., xn) ∈ E1 × ...× En : ρ1 (x1) · · · ρn (xn) ≤ R}
is a closed subset of a compact set, hence compact. �

Lemma 2.3.19. A locally compact Hausdor� spaces E with count-
able base B is a weighted space.

Proof. As a metrizable space (see Proposition A.1.15) , E is also
completely regular. We show that E is σ-compact. By local compact-
ness, for any x ∈ E there is a compact neighborhood Kx. Thus, there
exists an open neighborhood Ox ⊂ Kx of x. By de�nition of the base,
there is Bx ⊂ Ox, Bx ∈ B such that x ∈ Bx. For any x ∈ E the set
Bx ⊂ Kx is compact and by assumption,

E =
⋃
x∈E

Bx

is the union of countably many elements, hence E is σ-compact. Let

E =
⋃
n∈N

Kn

be such a union. We de�ne an admissible weight function in the fol-
lowing way:

ρ(x) := min
n∈N
{n : x ∈ Kn} .
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�

One example of a space on which it is always possible to �nd a
continuous admissible weight function is of course Rn,n ∈ N.

2.3.3. Bρ-spaces. In this subsection (E, ρ) always denotes a weighted
space and we introduce Bρ-spaces where we follow [15].

Definition 2.3.20. For a Banach space Z and an admissible weight
function ρ we de�ne

Bρ(E;Z) :=

{
f : E → Z : sup

x∈E
ρ(x)−1 ‖f(x)‖ <∞

}
.

Remark 2.3.21. By Corollary 2.3.17 for the space Bρ(E;Z) we can
assume that ρ ≥ 1, if necessary.

2.3.20 In the following, we would like to show that, provided the
norm is chosen well, this space is a Banach space. In order to do so,
we recall the following fact:

Let Z be a Banach space and T be some set. The space of all
bounded maps form T to Z

`∞(T ;Z) :=

{
f : T → Z : sup

x∈T
‖f(x)‖ <∞

}
equipped with the norm

‖·‖∞ : f → sup
x∈T
‖f(x)‖

is a Banach space (see Proposition A.4.4).
Turning back to the space Bρ(E;Z) we observe:

Proposition 2.3.22. Bρ(E;Z) is a vector space. On Bρ(E;Z) the
map

‖·‖ρ : f → sup
x∈E

‖f(x)‖
ρ(x)

is a norm. Bρ(E;Z) endowed with the norm ‖·‖ρ is a Banach space.

Proof. That Bρ(E;Z) is a vector space follows easily and that ‖·‖ρ
possesses the properties of a seminorm is clear. Furthermore, ‖f‖ρ = 0
means that for all x ∈ Y

‖f(x)‖
ρ(x)

≤ 0,

which by ρ > 0 implies f = 0. Hence, ‖·‖ρ is a norm.
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Regarding completeness of Bρ(E;Z), let (fn)n∈N be a Cauchy se-
quence in Bρ(E;Z). Then for any ε > 0 there exists Nε such that for
all n,m > Nε

sup
x∈E

‖fn(x)− fm(x)‖
ρ(x)

< ε.

Thus, the sequence (gn)n∈N de�ned by

gn(x) :=
fn(x)

ρ(x)

is a Cauchy sequence in `∞(E;Z), hence by Proposition A.4.4 converges
in `∞(E;Z) to a bounded function g ∈ `∞(E;Z) as n tends to in�nity.
De�ning

f(x) := ρ(x) · g(x)

we obtain lim
n→∞

fn = f in Bρ(E;Z). �

Remark 2.3.23. Similarly, we can de�ne

B̃ρ(E;Z) :=

{
f : E → Z : sup

x∈E
ρ(x)−1 ‖f(x)‖ <∞, f measurable

}
and obtain, that this is a Banach space.

Notation 2.3.24. We denote the space of bounded continuous
maps between a topological space T and a normed vector space N
by Cb(T,N).

We remark Cb (E,Z) ⊂ Bρ(E;Z) and de�ne:

Definition 2.3.25. The closure of Cb (E,Z) in Bρ(E;Z) is denoted
by Bρ(E;Z).

Bρ(E;Z) is a closed subspace of the Banach space Bρ(E;Z). It
holds:

Lemma 2.3.26. A closed subset of a Banach space is itself complete.

Proof. Any Cauchy sequence in the closed subset converges to
some limit in the Banach space. Since the subset is closed, the limit
must also lie in the closed subset. �

Therefore we obtain:

Proposition 2.3.27. Bρ(E;Z) is a Banach space.

Notation 2.3.28. We write Bρ(E) := Bρ(E;R), B̃ρ(E) := B̃ρ(E;R),
and Bρ(E) := Bρ(E;Z).
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In the following, we will study some important properties of this
space. A �rst one concerns the nature of its dual space. For this
purpose, we introduce Radon measures and signed measures. For ad-
ditional remarks on measure theory we refer to Appendix A.3.

Definition 2.3.29. Let (Ω,F) be a measurable space. A map
µ : F → R is called signed measure if for all pairwise disjoint sets
F1, F2, ... ∈ F

µ

(
∞⋃
i=1

Fi

)
=
∞∑
i=1

µ (Fi) .

If this identity holds for a map µ : F → C, then the map is called
complex measure.

An important result for signed measures is the following:

Theorem 2.3.30. (Hahn-Jordan decomposition, [30], Corollary 7.44)
For a signed measure µ on the measurable space (Ω,F) there are

unique positive �nite measures µ+ and µ− such that

µ = µ+ − µ−

and there exists a set A ∈ F such that µ+(A) = 0 and µ−(Ω \ A) = 0.

Definition 2.3.31. For a signed or complex measure µ on a σ-
algebra F we de�ne the total variation

|µ| : F :→ R+ ∪ {∞}
as

|µ| (F ) = sup
n∑
k=1

|µ (Fk)|

where the supremum is taken over all �nite partitions

F =
n⋃
k=1

Fk,

such that the sets (Fk)k∈{1,...,n} ⊂ F are pairwise disjoint.

An application of the Hahn-Jordan decomposition theorem imme-
diately yields:

Corollary 2.3.32. The total variation of a signed measure is given
by

|µ| = µ+ + µ−.
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Definition 2.3.33. Let T be a Hausdor� topological space and
B(T ) its Borel σ-algebra. A Radon measure is a measure

µ : B(T )→ R+ ∪ {∞}

that is
(i) locally finite, which means that every point x ∈ T has a neigh-

borhood Ux such that µ (Ux) <∞, and
(ii) inner regular , which means that for every B ∈ B(T )

µ (B) = sup {µ (K) : K ⊂ B, K compact} .

The space of Radon measures is denoted byM+(T ).

Lemma 2.3.34. A Radon measure µ on a Hausdor� topological space
T is outer regular , that is for every B ∈ B(T )

µ (B) = inf {µ (O) : O ⊃ B, O ⊂ T, O open} .

Proof. For B ∈ B(T ) and some ε > 0 we choose a compact set

Kε ⊂ T \B

such that
µ ((T \B) \Kε) < ε.

Kε is closed since T is Hausdor�. Thus, the set

(T \Kε) ⊃ B

is open and
µ ((T \Kε) \B) < ε.

�

Definition 2.3.35. A measure is called regular , if it is inner and
outer regular. A signed or complex measure µ is called regular if |µ| is
regular.

Definition 2.3.36. Let T be a Hausdor� topological space. Let
B(T ) be its Borel σ-algebra. A signed Radon measure is a signed
measure µ : B(T ) → R for which |µ| : B(T ) → R+ ∪ {∞} is a Radon
measure. Its space is denoted byM(T ). In the same fashion, one can
also de�ne a complex Radon measure and call the spaceMc(T ).

Adding uniqueness to the statement already proved in [15], we can
completely characterize the dual space of Bρ(E) by the following the-
orem.



2.3. GENERALIZED FELLER SEMIGROUPS 135

Theorem 2.3.37. (Riesz representation for Bρ(E))
Let ` : Bρ(E)→ R be a continuous linear map. Then, there exists

a unique signed Radon measure µ such that

(2.3.1) `(f) =

∫
E

f(x)µ(dx) for all f ∈ Bρ(E).

Additionally,

‖`‖L(Bρ(E),R) =

∫
E

ρ(x) |µ| (dx).

On the other hand, for any signed Radon measure µ for which∫
E

ρ(x) |µ| (dx)

is �nite,

Bρ(E)→ R

f →
∫
E

f(x)µ(dx)

is a continuous linear map.

Remark 2.3.38. We call the space of such signed Radon measures
Mρ(E). As dual space (see De�nition 1.4.39) of the Banach space
Bρ(E) it is a Banach space itself (by Proposition 1.2.5) with the norm

‖·‖ : µ→
∫
E

ρ(x) |µ| (dx).

In other words, the theorem states

(Bρ(E))′ =Mρ(E).

Proof. We start with the last part of the assertion which is much
easier to show. We �rst note that by de�nition f ∈ Bρ(E) is the
pointwise limit of continuous, hence measurable functions and as such
f is itself measurable (see Lemma A.3.17). Therefore, the integral∫

E

f(x)µ(dx)



136 2. MARKOV, FELLER AND GENERALIZED FELLER SEMIGROUPS

is de�ned. It is �nite thanks to∣∣∣∣∫
E

f(x)µ(dx)

∣∣∣∣ =

∣∣∣∣∫
E

f(x)µ+(dx)−
∫
E

f(x)µ−(dx)

∣∣∣∣
≤
∫
E

|f(x)|µ+(dx) +

∫
E

|f(x)|µ−(dx)

=

∫
E

|f(x)|
ρ(x)

· ρ(x) |µ| (dx)

≤ ‖f‖ρ ·
(∫

E

ρ(x) |µ| (dx)

)
.

This also implies that the functional is indeed continuous by Proposi-
tion 1.2.7.

As for the more di�cult �rst part of the assertion, the proof has
three steps. We �rst show the existence of a unique signed Radon
measure µ such that for the map ` restricted to Cb(E,R):

`|Cb(E,C) : Cb(E,R)→ R

the equation

`|Cb(E,C) (g) =

∫
E

g(x)µ(dx) for all g ∈ Cb(E,R)

holds true. In a second step, we prove

‖`‖L(Bρ(E),R) =

∫
E

ρ(x) |µ| (dx)

and in the third step we show

`(f) =

∫
E

f(x)µ(dx) for all f ∈ Bρ(E).

Regarding the �rst step, due to continuity of `, by Proposition 1.2.7
there is a constant Mρ ≥ 0 such |`(g)| ≤ Mρ ‖g‖ρ for all g ∈ Cb(E,R).
Due to Corollary 2.3.17

‖g‖ρ = sup
x∈E

ρ(x)−1 ‖g(x)‖

≤ 1

Mρ

·Mρ

 1

min
x∈E

ρ(x)


︸ ︷︷ ︸

:=M∞

(
sup
x∈E
‖g(x)‖

)
.

Hence, |`(g)| ≤M∞ ‖g‖∞ and again by Proposition 1.2.7 the map

`|Cb(E,C) : Cb(E,R)→ R
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is a continuous linear map as well. To this map, we would like to apply
Proposition A.4.15. For any ε > 0, we therefore have to �nd a compact
set K such that |`(g)| ≤ ε for all g ∈ Cb(E,R), |g| ≤ 1 for which g = 0
on K . Due to

|`(g)| ≤ ‖`‖L(Bρ(E),R) ‖g‖ρ
it su�ces to choose K such that the inequality

(2.3.2) ‖g‖ρ ≤
ε

‖`‖L(Bρ(E),R)

holds for all g ∈ Cb(E,R) for with g|K = 0 and |g| ≤ 1 hold. Since we
know that for any such g the relation

‖g‖ρ = sup
x∈E

‖g(x)‖
ρ(x)

≤ sup
x∈E\K

1

ρ(x)

holds, by de�nition of the admissible weight function ρ we can choose
K to be

K := K( ‖`‖L(Bρ(E),R)
ε

) =

{
x ∈ E : ρ(x) ≤

‖`‖L(Bρ(E),R)

ε

}
in order to obtain Inequality 2.3.2 as desired. Thus, there exists a
unique signed Radon measure µ such that

`(g) =

∫
E

g(x)µ(dx) for all g ∈ Cb(E,R).

As second step of the proof, we show

‖`‖L(Bρ(E),R) =

∫
E

ρ(x) |µ| (dx).

Thanks to lower semicontinuity of the admissible weight function ρ :
E → (0,∞) (see Lemma 2.3.14), it is possible to apply Proposition
A.4.17 in order to compute

∫
E
ρ(x) |µ| (dx). Application of Proposition

A.4.17 yields ∫
E

ρ(x) |µ| (dx) = sup
g

∣∣∣∣∫
E

g(x)µ(dx)

∣∣∣∣ ,
where the supremum is taken over all functions g ∈ Cb(E,R) such
that |g| ≤ ρ, and such that g is |µ|-integrable. For all these g it holds
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‖g‖ρ ≤ 1. Hence

sup
g

∣∣∣∣∫
E

g(x)µ(dx)

∣∣∣∣ = sup
g
|`(g)|

≤ sup
g
‖`‖L(Bρ(E),R) · ‖g‖ρ ≤ ‖`‖L(Bρ(E),R) .

Regarding the other inequality, we observe that for

‖`‖L(Bρ(E),R) = sup
f∈Bρ(E)

‖f‖−1
ρ |`(f)|

it is su�cient to take the supremum over all g ∈ Cb(E,R) since Cb(E,R)
is dense in Bρ(E). This yields

‖`‖L(Bρ(E),R) = sup
g∈Cb(E,R)

‖g‖−1
ρ |`(g)|

≤ sup
g∈Cb(E,R)

∫
E

|g(x)|
‖g‖ρ

|µ| (dx)

≤
∫
E

ρ(x) |µ| (dx)

and we conclude the second step.
As third step, we have to show that for a continuous linear map

` : Bρ(E)→ R

and the Radon measure µ found in the �rst step the equation

`(f) =

∫
E

f(x)µ(dx)

holds for all f ∈ Bρ(E). As shown in the beginning of this proof, for
the Radon measure µ found in the �rst step of the proof the map

f →
∫
E

f(x)µ(dx)

is a continuous linear functional on Bρ(E). By construction, it coin-
cides with the continuous linear map ` on the dense subset Cb(E,R).
Hence they coincide on all of Bρ(E).

�

In the case of positive linear maps Bρ(E)→ R we always obtain a
statement like in the theorem above and do not need to check for con-
tinuity �rst. This is shown in the Proposition 2.3.41 which was proved
in [15]. We �rst show that if the continuous functional in Theorem
2.3.37 is positive, then its Radon measure given by Theorem 2.3.37 is
positive as well.
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Definition 2.3.39. Let A and B be some sets and call RA the set
of maps between A and R. For f ∈ RA we write f ≥ 0 if f(a) ≥ 0 for
all a ∈ A. A map

T : RA → RB

such that f ≥ 0 implies T (f) ≥ 0 is called positive.

Corollary 2.3.40. If the continuous linear map ` : Bρ(E) → R
is positive, then the unique �nite Radon measure µ ∈ Mρ(E) from
Theorem2.3.37 is positive.

Proof. By Theorem 2.3.37 we know that there exists a unique
signed Radon measure µ such that Equation 2.3.1 and Equation 2.3.1
hold. Assume by contradiction that µ is not positive. If µ(O) ≥ 0
would hold for any open set O ⊂ Y , then by outer regularity of Radon
measures (Lemma 2.3.34) µ were positive. Thus, there must be an open
set O ⊂ Y and ε > 0 such that µ(O) < −ε < 0. By inner regularity of
Radon measures chooseKε/2 ⊂ O compact such that |µ| (O\Kε/2) < ε

2
.

Then − ε
2
< µ(O \ Kε/2) implies µ(Kε/2) < − ε

2
. By Proposition 2.3.9

there exists a continuous function g : E → [0, 1] such that g(O) = 0
and g(Kε/2) = 1. We obtain

`(g) =

∫
E

g(x)µ(dx)

=

∫
O\Kε/2

g(x)µ(dx) +

∫
Kε/2

g(x)µ(dx)

≤ |µ| (O \Kε/2) + µ(Kε/2)

<
ε

2
− ε

2
= 0

in contradiction to positivity of `. Hence, the statement of the corollary
holds. �

Proposition 2.3.41.
Let ` : Bρ(E) → R be a positive linear map. Then there exists a

unique �nite Radon measure µ on E such that

`(f) =

∫
E

f(x)µ(dx) for all f ∈ Bρ(E).

Additionally, µ is positive and µ ∈Mρ(E).

Proof. By Corollary 2.3.40 we only need to show that

` : Bρ(E)→ R
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is continuous. By contradiction, assume that this is not the case. Then
by Proposition 1.2.7 there exists a sequence (fn)n∈N in Bρ(E) such that
‖fn‖ρ = 1 and |`(fn)| ≥ n3 for all n ∈ N . Hence either `(−fn) ≥ n3 or
`(fn) ≥ n3 for all n ∈ N and positivity of ` implies that for all n ∈ N
the inequalities

`(|fn|) ≥ `(−fn)

and
`(|fn|) ≥ `(fn)

hold. Thus, for all n ∈ N for gn := |fn| we obtain ‖gn‖ρ = 1 and

|`(gn)| = ` (|fn|) ≥ n3.

In order to obtain a contradiction, we now construct a map h ∈ Bρ(E)
such that `(h) is not de�ned anymore. This is done by setting

h :=
∞∑
n=1

gn
n2
.

We see that (hm)m∈N given by

hm :=
m∑
n=1

gn
n2

converges to h in Bρ(E). Furthermore hm, h > 0 and h − hm > 0 for
all m ∈ N and positivity of ` yields `(h) ≥ ` (hm) for all m ∈ N. The
inequality

` (hm) =
m∑
n=1

` (gn)

n2
≥

m∑
n=1

n

implies `(h) ≥ lim
m→∞

` (hm) =∞ and we obtain that `(h) is not de�ned
in contradiction to our assumption. �

Investigating the space Bρ(E) further, we obtain the following char-
acterization. The proof is again based on [15].

Theorem 2.3.42. Let f : E → R. Then f ∈ Bρ(E) if and only if
(i) for all R > 0

f |KR ∈ Cb(KR,R),

and
(ii)

lim
R→∞

sup
x∈E\KR

|f(x)|
ρ(x)

= 0.



2.3. GENERALIZED FELLER SEMIGROUPS 141

Proof. We �rst show that f ∈ Bρ(E) implies (i) and (ii).
We start with (i). So let f ∈ Bρ(E) and �x R > 0. Then by density

of Cb(E,R) in Bρ(E) there exists (gn)n∈N ⊂ Cb(E,R) such that

‖gn − f‖ρ <
1

n
for any n ∈ N. Therefore,

sup
x∈KR

|gn(x)− f(x)| ≤ R · sup
x∈KR

|gn(x)− f(x)|
ρ(x)

≤ R · 1

n
.

Hence on KR (
gn|KR

)
n∈N ⊂ Cb(KR,R)

converges uniformly to f which implies that f |KR ∈ Cb(KR,R) which
is a well known result from analysis.

As for f ∈ Bρ(E) implying (ii), let δ > 0 be arbitrary. We have to
show that for R large enough the inequality

sup
x∈E\KR

|f(x)|
ρ(x)

< δ

holds. By density of Cb(E,R) in Bρ(E), choose h ∈ Cb(E,R) such
that

‖h− f‖ρ <
δ

2
.

Then

sup
x∈E\KR

|f(x)|
ρ(x)

≤ sup
x∈E\KR

|f(x)− h(x)|
ρ(x)

+ sup
x∈E\KR

|h(x)|
ρ(x)

≤ δ

2
+ sup

x∈E\KR

|h(x)|
ρ(x)

.

Since h ∈ Cb(E,R) is bounded by ‖h‖∞ is su�ces to choose R such
that

R >
2 ‖h‖∞
δ

.

Next, we let f : E → R and show that Properties (i) and (ii) imply
f ∈ Bρ(E). We will do this by constructing a sequence (fn)n∈N ⊂
Bρ(E) that converges to f in Bρ(E). For such a sequence (fn)n∈N ⊂
Bρ(E) that we have to construct, for any n ∈ N it has to be possible to
approximate fn in Bρ(E) by continuous bounded functions. Therefore,
it seems reasonable to investigate the candidate

gn(·) := min ((max (f(·),−n)) , n)
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for any n ∈ N, thereby already ensuring boundedness of all (gn)n∈N. In
order to show that the sequence (gn)n∈N possesses the desired proper-
ties, we have to prove (gn)n∈N ⊂ Bρ(E) and lim

n→∞
gn = f in Bρ(E).

Concerning the proof of (gn)n∈N ⊂ Bρ(E), we �x n ∈ N and by
Property (i) of our assumptions we obtain

gn|KR ∈ Cb(KR,R)

for any R > 0, R ∈ N. By Proposition 2.3.8, for any R > 0, R ∈ N
we can �nd a continuous extension hn,R of gn|KR on all of X such that
|hn,R| ≤ n. hn,R approximates gn in Bρ(E) as R > 0, R ∈ N tends to
in�nity because

lim
R→∞

‖hn,R − gn‖ρ = lim
R→∞

sup
x∈E\KR

|hn,R(x)− gn(x)|
ρ(x)

≤ lim
R→∞

2n

R
= 0.

Thus gn ∈ Bρ(E) for any n ∈ N.
In order to show

lim
n→∞

gn = f on Bρ(E),

for any ε > 0 by Property (ii) we can choose R > 0, R ∈ N such that

sup
x∈E\KR

2 |f(x)|
ρ(x)

< ε.

We then choose N ∈ N such that

N > max
x∈KR

|f(x)| ,

which is possible because a continuous function attains its maximum
on a compact set. Then, gn = f on KR for any n ∈ N, n > N and

‖f − gn‖ρ = sup
x∈E\KR

|f(x)− gn(x)|
ρ(x)

≤ sup
x∈E\KR

2 |f(x)|
ρ(x)

≤ ε.

Since ε > 0 was arbitrary, this yields lim
n→∞

gn = f in Bρ(E) and there-

fore f ∈ Bρ(E). �

The following property is similar to the fact that on a compact set
continuous functions attain their maximum. The proof follows [15].
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Theorem 2.3.43. Let f ∈ Bρ(E). If

sup
x∈E

f(x) > 0,

then there exists z ∈ E such that for all x ∈ E

f(x)

ρ(x)
≤ f(z)

ρ(z)
.

Proof. Due to

sup
x∈E

f(x) > 0

we choose some y ∈ E such that f(y) > 0 and by Theorem 2.3.42 we
can choose R large enough such that

sup
x∈E\KR

|f(x)|
ρ(x)

<
f(y)

ρ(y)
.

In order to estimate the supremum of f
ρ
on the compact set KR, we use

that by Lemma 2.3.14 ρ is lower semicontinuous and by Lemma A.2.1
1
ρ
is upper semicontinuous. By Theorem 2.3.37 f is continuous on KR.

Thus, 1
ρ
·f is upper semicontinuous as well and attains its maximum on

the compact set KR at some point z ∈ KR . This yields the statement
of the theorem. �

Corollary 2.3.44. Let f ∈ Bρ(E). Then, there exists z ∈ E such
that ‖f‖ρ = |f(z)|

ρ(z)
.

Proof. Set g := |f | ∈ Bρ(E). By the previous Theorem there
exists z ∈ E such that ‖g‖ρ = g(z)

ρ(z)
and we conclude by substituting

back in. �

Regarding maps de�ned on Bρ(E), a composition with a bounded
continuous map is continuous:

Lemma 2.3.45. Let h ∈ Cb(R) and f ∈ Bρ(E). Then

Bρ(E)→ Bρ(E)

f → h ◦ f

is a continuous map.

Proof. Since h ◦ f |KR is continuous for any R > 0, by Theorem
2.3.42 h ◦ f ∈ Bρ(E). Thus, we only need to show continuity. Let
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g ∈ Bρ(E), ε > 0 and choose Rε >
‖h‖∞
ε

. Then

‖h ◦ f − h ◦ g‖ρ ≤ ε+

∥∥∥∥∥ h ◦ f − h ◦ gρ

∣∣∣∣
KRε

∥∥∥∥∥
∞

≤ ε+
1

inf
x∈E

ρ(x)
·
∥∥∥(h ◦ f − h ◦ g)|KRε

∥∥∥
∞
.

Let [a, b] be some interval such that f(KRε) ⊂ [a, b] (which is possible
since on KRε f is continuous and attains maximum and minimum.).
Then h is uniformly continuous on [a− 1, b+ 1] and there is δ > 0
such that for any x1, x2 ∈ [a− 1, b+ 1] such that |x1 − x2| < δ it holds
|h(x1)− h(x2)| < ε. Thus, if ‖f − g‖ρ <

δ
Rε

then∥∥∥(f − g)|KRε
∥∥∥
∞
≤ ‖f − g‖ρ ·Rε < δ,

and consequently ∥∥∥(h ◦ f − h ◦ g)|KRε
∥∥∥
∞
< ε,

which shows continuity of f → h ◦ f . �

Theorem 2.3.42 shows that the space Bρ(E) is closely related to
the space of continuous maps on a compact space. For such spaces
the Stone-Weierstrass theorem (Theorem A.2.6) holds. We show that
a version of it also holds for Bρ(E). For the de�nition of an algebra we
refer the reader to De�nition A.2.5.

Proposition 2.3.46. (Stone-Weierstraÿ for Bρ(E) )
Let A ⊂ Cb(E) be an algebra with respect to pointwise multiplication

that contains 1E and that separates points. Then A is dense in Bρ(E)
with respect to ‖·‖ρ.

Proof. The idea of the proof is to approximate elements of Bρ(E)
by continuous bounded maps on E which in turn can be approximated
on KR for any R > 0 via Stone-Weierstrass by elements in A that are
restricted to KR. However, such an element in A, albeit bounded, may
have an arbitrary large bound that depends on R. Thus, it may not
approximate with respect to ‖·‖ρ on all of E. Therefore, it is rescaled
by a suitable polynomial such that an element in A is obtained whose
bounds do not depend on R. This yields an approximation with respect
to ‖·‖ρ.

That idea will be carried out in the following. Let h ∈ Bρ(E) and
ε > 0. By de�nition of Bρ(E) there exists gε ∈ Cb(E) such that

‖gε − h‖ρ < ε.
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Set

Rε := max

(
‖gε‖∞
ε

, 1

)
.

The set Aε ⊂ Cb(KRε) de�ned as

Aε :=
{
f |KRε : f ∈ A

}
is an algebra that contains 1KRε and that separates points, hence by
Stone-Weierstrass (Theorem A.2.6) Aε is dense in C(KRε). Thus, there
is fε ∈ A such that

sup
x∈KRε

|fε(x)− gε(x)| < ε.

Clearly,

αε := sup
x∈KRε

|fε(x)| ≤ sup
x∈E
|gε(x)|+ ε =: βε.

Set

γε := sup
x∈E
|fε(x)| .

By Tietze-Urysohn (Theorem 2.3.6) there exists a continuous map

ϕε : [−γε, γε]→ [−βε, βε]

such that

ϕε(y) =

{
y for y ∈ [−αε, αε]
βε for |y| ≥ βε.

Again by Stone-Weierstrass, on a compact set the space of polynomials
is dense in the space of continuous maps. This means that there is a
polynomial pε on [−γε, γε] such that

sup
y∈[−γε,γε]

|pε(y)− ϕε(y)| < ε,

hence

sup
x∈E

∣∣∣∣(pε ◦ fε) (x)− (ϕε ◦ fε) (x)

ρ(x)

∣∣∣∣ ≤ ε

inf
x∈E

ρ(x)
.
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Since A is an algebra pε ◦ fε ∈ A and

‖h− pε ◦ fε‖ρ ≤ ‖h− gε‖ρ + ‖gε − ϕε ◦ fε‖ρ + ‖ϕε ◦ fε − pε ◦ fε‖ρ

≤ ε+ sup
x∈KRε

∣∣∣∣gε(x)− (ϕε ◦ fε) (x)

ρ(x)

∣∣∣∣
+ sup

x∈E\KRε

∣∣∣∣gε(x)− (ϕε ◦ fε) (x)

ρ(x)

∣∣∣∣+
ε

inf
x∈E

ρ(x)

≤ ε+ sup
x∈KRε

∣∣∣∣gε(x)− fε(x)

ρ(x)

∣∣∣∣
+ 2sup

x∈E

∣∣∣∣ |gε(x)|+ ε

Rε

∣∣∣∣+
ε

inf
x∈KRε

ρ(x)

≤ ε+
ε

inf
x∈KRε

ρ(x)
+ 2 (ε+ ε) +

ε

inf
x∈KRε

ρ(x)
,

and A is dense in Bρ(E) . �

We recall the space C0(E,K). It is de�ned as the set of continuous
K-valued functions on E such that {x ∈ E : |f(x)| ≥ ε} is compact for
any ε > 0. It is equipped with the norm (see Proposition A.4.4)

‖·‖∞ : f → sup
x∈E
‖f(x)‖ .

One can easily show that this is a Banach space (see Lemma A.4.5).
We set C0(E) := C0(E,R).

Lemma 2.3.47. If the admissible weight function ρ is continuous,
then
(i) Bρ(E) ⊂ C(E),
(ii) f ∈ C0(E) implies f · ρ ∈ Bρ(E),
(iii) f ∈ Bρ(E) implies f

ρ
∈ C0(E).

Proof. (i) For f ∈ Bρ(E) by de�nition of Bρ(E) f
ρ
is the uniform

limit of
(
gn
ρ

)
n∈N

for some (gn)n∈N ⊂ Cb(E). Hence f
ρ
is continuous and

therefore also f .
(ii) If f ∈ C0(E), then f ·ρ is continuous and

⋃
n∈N
{ρ < n} is an open

cover of E hence for any ε > 0 �nitely many such sets su�ce to cover
the compact set {|f | ≥ ε}. Thus, for any ε > 0 there exists Rε > 0
such that |f | < ε on E \KRε and by Theorem 2.3.42 f · ρ ∈ Bρ(E).

(iii) By (i) f
ρ
is continuous. By Theorem 2.3.42 for any ε > 0 there

is some R′ε > 0 such that
{∣∣∣fρ ∣∣∣ ≥ ε

}
⊂ KR′ε . Hence by closedness
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}
is compact and

f

ρ
∈ C0(E).

�

In the next lemma, Cc(E) denotes the continuous maps with com-
pact support, which are the continuous maps f such that

{x ∈ E : f(x) 6= 0}
is compact.

Lemma 2.3.48. Let (E, ρ) be a weighted space and E be locally com-
pact. Then Cc(E) is dense in Bρ(E) with respect to ‖·‖ρ .

Proof. By de�nition of Bρ(E) we only need to show that Cc(E)
is dense in Cb(E) with respect to ‖·‖ρ . Let f ∈ Cb(E) and ε > 0.

Choose Rε :=
‖f‖∞
ε

. By local compactness each element in KRε has
a compact neighborhood hence by compactness of KRε �nitely many
such compact neighborhood cover KRε . The union of these �nitely
many neighborhoods is a compact neighborhood UKRε ⊃ KRε . Let
VKRε ⊂ UKRε be an open neighborhood of KRε and de�ne the map
g̃ε ∈ Cb(KRε ∪ UKRε \ VKRε ) as

g̃ε : =

{
f on KRε

0 on UKRε \ VKRε .

By normality of compact sets (Proposition A.1.11) and Tietze-Urysohn
(Theorem 2.3.6) this map can be extended to g′ε ∈ Cb(UKRε ) such
that ‖g′ε‖∞ = ‖f‖∞. Subsequently the map g′ε can be extended to
gε ∈ Cc(E) with ‖gε‖∞ = ‖f‖∞ by stetting gε ≡ 0 on E \ UKRε . Then

‖gε − f‖ρ ≤ sup
x∈KRε

|gε(x)− f(x)|
ρ(x)

+ sup
x∈E\KRε

|gε(x)− f(x)|
ρ(x)

≤ 0 +
2 ‖f‖∞
Rε

= 2ε,

which proves the lemma since ε > 0 was arbitrary. �

2.3.4. Generalized Feller Semigroups. As before, in this sub-
section (E, ρ) always denotes a weighted space. Since we have seen
that X := Bρ(E) is a Banach space we can de�ne one-parameter semi-
groups on it (see De�nition 1.3.1). In a special setting this was done by
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Röckner and Sobol [36] in 2006. Generalizing this idea, in 2010 Dörsek
and Teichmann [15] introduced generalized Feller semigroups.

Definition 2.3.49. Let (P (t))t∈R+
be a family of bounded linear

operators such that for any t ∈ R+

P (t) : Bρ(E)→ Bρ(E).

We call the family (P (t))t∈R+
generalized Feller semigroup on Bρ(E)

if

P1 P (0) = Id, where Id is the identity on Bρ(E),
P2 P (t+ s) = P (s) ◦ P (t) for all s, t ∈ R+,
P3 for all f ∈ Bρ(E) and all x ∈ E

lim
t↘0

P (t)f(x) = f(x),

P4 there exists ε > 0 and C ∈ R such that for all t ∈ [0, ε]

‖P (t)‖L(Bρ(E)) ≤ C,

and
P5 P (t) is positive (in the sense of De�nition 2.3.39) for all t ∈ R+.

Remark 2.3.50. Compared with the de�nition of Feller semigroups
(see De�nition 2.2.1) in the de�nition of generalized Feller semigroups
C0(E) is replaced by Bρ(E) and instead of

‖Q(t)‖L(C0(E)) ≤ 1

in the case of Feller semigroups only P4 is asked in the case of gener-
alized Feller semigroups. Strong continuity and positivity are proper-
ties that Feller semigroups and generalized Feller semigroups have in
common (for strong continuity and generalized Feller semigroups see
Theorem 2.3.51).

Furthermore, if E is compact, then choosingρ = 1

Bρ(E) = Cb(E) = C0(E).

With Chapter 1 in mind, we are interested in the continuity prop-
erties of generalized Feller semigroups. It is proved in [15]:

Theorem 2.3.51. Let (P (t))t∈R+
be a generalized Feller semigroup

on Bρ(E). Then (P (t))t∈R+
is strongly continuous on Bρ(E).

Proof. The proof is possible thanks to the deep result from Chap-
ter 1, Subsection 1.4.6 that strong continuity of a semigroup follows
from weak continuity (see Corollary 1.4.69).
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Therefore, it is enough to show that for any f ∈ Bρ(E) and any
µ ∈ (Bρ(E))′ we obtain the right limit

lim
t↘0
〈P (t)f, µ〉 = 〈f, µ〉 .

We �x some f ∈ Bρ(E) and µ ∈ (Bρ(E))′. By Theorem 2.3.37

(Bρ(E))′ =Mρ(E)

and
〈P (t)f, µ〉 =

∫
E

P (t)f(x)µ(dx).

Thus, the theorem follows immediately if we can show that

lim
t→0

∫
E

(P (t)f(x)− f(x))µ(dx) = 0

holds true. By P3, for all x ∈ E we are given the right limit

lim
t↘0

P (t)f(x) = f(x).

Hence, we obtain the above limit by dominated convergence (Theorem
A.3.58) if for some t0 > 0 we can bound

(|P (t)f − f |)t∈R+, t<t0

by a µ- integrable function. By P4 we obtain for t < t0 < ε the bounds

|P (t)f(x)− f(x)| ≤ sup
x∈E

|P (t)f(x)− f(x)|
ρ(x)

ρ(x)

= ‖P (t)f − f‖ρ ρ(x)

≤
(
‖P (t)‖L(Bρ(E)) + ‖Id‖L(Bρ(E))

)
‖f‖ρ ρ(x)

≤ (C + 1) ‖f‖ρ ρ(x),

and by Theorem 2.3.37 (C + 1) ‖f‖ρ ρ(x) is indeed integrable with re-
spect to µ. Hence, it is justi�ed to apply the dominated convergence
theorem which yields

lim
t→0

∫
E

(P (t)f(x)− f(x))µ(dx) = 0.

Since f ∈ Bρ(E) and µ ∈ (Bρ(E))
′
were arbitrary, we obtain the

statement of the theorem. �

Since we know the dual space of Bρ(E), we can connect general-
ized Feller semigroups to a family of positive �nite Radon measures
on (E,B(E)). Furthermore,with respect to the Baire σ-algebra B0(E)
(see De�nition A.3.38) we even obtain a semigroup of transition prob-
abilities.
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Proposition 2.3.52. Let (P (t))t∈R+
be a generalized Feller semi-

group on Bρ(E) such that for any t ∈ R+

‖P (t)‖ ≤Meωt

for some M ≥ 1 and ω ∈ R.
(i) There exists a unique family of positive �nite Radon measures

(p(t)(x, ·))t∈R+,x∈E

on (E,B(E)) such that for all x ∈ E, t ∈ R+ and f ∈ Bρ(E)

P (t)f(x) =

∫
E

f(y)p(t)(x, dy),

and p(t)(x, ·) ∈Mρ(E).
(ii) For all x ∈ E and t ∈ R+ one de�nes for all positive measurable
maps f : E → R (or f ∈ B̃ρ(E))

P̃ (t)f(x) : =

∫
E

f(y)p(t)(x, dy),

and obtains the bounds

P̃ (t)ρ(x) = sup
f ∈ Cb(E)
|f | ≤ ρ

|(P (t)f) (x)| ≤ ρ(x) ‖P (t)‖L(Bρ(E)) ≤ ρ(x)Meωt.

Hence, for all t ∈ R+ P (t) can also be interpreted as a bounded linear
operator on

B̃ρ(E) :=

{
f : E → Z : sup

x∈E
ρ(x)−1 ‖f(x)‖ <∞, f measurable

}
,

which will be done frequently without further mention. Furthermore,

‖P (t)‖L(Bρ(E)) = ‖P (t)‖L(B̃ρ(E)) .

(iii) If additionally E is locally compact (De�nition A.1.12) with count-
able base (De�nition A.1.2), then (p(t))t∈R+

is a semigroup of transition
kernels.
(iv) The family (p̂(t))t∈R+

de�ned as the restriction

p̂(t) = p(t)|E×B0(E)

for any t ∈ R+ is a semigroup of transition kernels with respect to the
Baire σ-algebra B0(E).
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Remark 2.3.53. If the family of positive �nite Radon measures
(p(t))t∈R+

on (E,B(E)) permits to �nd a projective family of proba-
bility measures on

(
EJ ,B(E)J

)
J⊂R+, �nite

, then in a similar way as in
Proposition 2.1.13 one obtains the existence of a stochastic process such
that the conditional expectation is of a particular form. Results when
this is the case will be presented later in Theorem 2.3.65 and Theorem
2.3.73.

Proof. (i) By de�nition of generalized Feller semigroups, for any
t ∈ R+ and x ∈ E the map

Bρ(E)→ R
`t,x : f → P (t)f(x)

is positive and linear and by strong continuity of (P (t))t∈R+
(see Theo-

rem 2.3.51) and exponential boundedness of strongly continuous semi-
groups (see Proposition 1.4.9) there exist constants ω ∈ R and M ≥ 1
such that

|P (t)f(x)| ≤ ρ(x) ‖P (t)f‖ρ ≤ ρ(x)Meωt · ‖f‖ρ

holds true. Hence

Bρ(E)→ R
`t,x : f → P (t)f(x)

is also continuous. Thus, by Corollary 2.3.40 for any t ∈ R+ and any
x ∈ E there is a unique positive �nite Radon measure p(t)(x, ·) ∈
Mρ(E) such that

(P (t)f) (x) =

∫
E

f(y)p(t)(x, dy)

holds true.

(ii) P (t)f is clearly well-de�ned. Since p(t)(x, ·) ∈ Mρ(E) we ob-
serve ∫

E

ρ(y)p(t)(x, dy) = ‖`t,x‖ = sup
f ∈ Cb(E)
|f | ≤ ρ

|(P (t)f) (x)| .



152 2. MARKOV, FELLER AND GENERALIZED FELLER SEMIGROUPS

The calculation

sup
f ∈ Cb(E)
|f | ≤ ρ

|(P (t)f) (x)| ≤ ρ(x) sup
f ∈ Cb(E)
|f | ≤ ρ

(
sup
x∈E

|(P (t)f) (x)|
ρ(x)

)

≤ ρ(x) sup
f ∈ Cb(E)
|f | ≤ ρ

‖P (t)f‖ρ

≤ ρ(x) ‖P (t)‖ρ
yields the statement of the Lemma.

(iii) In the �rst step, we show that (p(t))t∈R+
is a family of transition

kernels and only have to show that for any A ∈ B(E) and any t ∈ R+

x→ p(t)(x,A)

is measurable. Since E is locally compact with countable base, it is
also metrizable (see Proposition A.1.13). Let d be a metric and for
x ∈ E and ε > 0 let Bε(z) := {y : d(z, y) < ε} be an open ball.

We can approximate

1Bε(z)(y) = lim
n→∞

1 ∧
(
n · inf

z̃ /∈Bε(z)
d(y, z̃)

)
.

(the in�mum is strictly positive due to E \ Bε(z) being closed). Then
by dominated convergence

p(t)(x,Bε(z)) = lim
n→∞

∫
E

(
1 ∧

(
n · inf

z̃ /∈Bε(z)
d(y, z̃)

))
p(t)(x, dy)

= lim
n→∞

P (t)

(
1 ∧

(
n · inf

z̃ /∈Bε(z)
d(y, z̃)

))
(x),

and x→ p(t)(x,Bε(z)) is measurable as limit of measurable maps since

1 ∧
(
n · inf

z̃ /∈Bε(z)
d(y, z̃)

)
∈ Bρ(E).

Since E is separable, there exists a sequence (z̃n)n∈N ⊂ E such that
(Bε(z̃i))i∈N, ε∈Q forms a countable base of B (E). As before

p(t)

x, ⋃
i∈{1,...,m}

Bε(z̃i)

 = lim
n→∞

P (t)

(
sup

i∈{1,...,m}

(
1 ∧

(
n · inf

z̃i /∈Bε(z̃i)
d(y, z̃i)

)))
(x),

and by taking the limit also x→ p(t)(x,O) is measurable for any open
set O ⊂ E. Since the system of sets D ∈ B(E) such that

x→ p(t)(x,D)
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is measurable is a Dynkin system and it contains all open sets that
are an intersection stable generator of B(E), it contains all of B(E) by
Lemma A.3.15. Hence, (p(t))t∈R+

is a family of transition kernels.
In the second step, we show that (p(t))t∈R+

is a semigroup of tran-
sition kernels on (E,B(E)), or in other words, that additionally for any
A ∈ B(E) and any s, t ∈ R+∫

E

p(s)(y, A)p(t)(x, dy) = p(s+ t)(x,A).

We know that for any f ∈ Bρ(E)∫
E

∫
E

f(z)p(s)(y, dz)p(t)(x, dy) = P (t)P (s)f

= P (s+ t)f

=

∫
E

f(z)p(s+ t)(x, dz)

holds true. For any open set O ⊂ E we can approach 1O as in the
�rst step of the proof by a sequence Bρ(E), which yields by dominated
convergence ∫

E

p(s)(y,O)p(t)(x, dy) = p(s+ t)(x,O).

As in the �rst step since the system of sets such that this equations
holds is a Dynkin system it follows that∫

E

p(s)(y, A)p(t)(x, dy) = p(s+ t)(x,A)

holds true for any A ∈ B(E) .
(iv) For any Cb(E)-open set A ∈ B(E) (see De�nition A.3.36) by

de�nition there is a sequence
(
fAn
)
n∈N such that fAn ↗ 1A pointwise.

Hence, for any t ∈ R+

x→ p(t)(x,A) = lim
n→∞

P (t)fAn (x)

is measurable with respect to Baire σ-algebra B0(E) as limit of maps
that are in Bρ(E) and therefore Baire-measurable (by virtue of being
pointwise limits of Cb(E) functions). This property extends to all sets
A in the Dynkin system generated by the Cb(E)-open sets. Since the
system of Cb(E)-open sets is intersection stable by Lemma A.3.15 the
property holds true also for the σ-algebra generated by the Cb(E)-open
sets. By Lemma A.3.37 this is precisely B0(E) .
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Furthermore, for any A ∈ B0(E) and any s, t ∈ R+ by dominated
convergence ∫

E

p(s)(y, A)p(t)(x, dy) = lim
n→∞

P (t)P (s)fAn

= lim
n→∞

P (s+ t)fAn

= p(s+ t)(y, A).

�

Proposition 2.3.54. Let (ψt)t∈R+
be a family of maps such that

for any t ∈ R+

ψt : E → E.

Then (P (t))t∈R+
de�ned as

P (t)(f) := f ◦ ψt
is a generalized Feller semigroup on Bρ(E), called generalized Feller
semigroup on Bρ(E) of transport type, if and only if the following
conditions hold:
(i) ψ0 = Id.
(ii) For any t1,t2 ∈ R+

ψt1 ◦ ψt2 = ψt1+t2 .

(iii) For any x ∈ E
lim
t↘0

ψt(x) = x.

(iv) For any t ∈ R+ and any R > 0

ψt|KR : KR → E

is continuous.
(v) For any t ∈ R+

sup
x∈E

ρ ◦ ψt(x)

ρ(x)
=: Ct <∞.

(vi) For some δ > 0 there is C > 0 such that for all 0 ≤ t < δ

Ct < C.
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Furthermore, for a generalized Feller semigroup of transport type the
identity

(2.3.3) P (t)ρ(x) = sup
f ∈ Cb(E)
|f | ≤ ρ

|f ◦ ψt(x)| = ρ ◦ ψt(x)

holds true.

Proof. We �rst show that the conditions (i)-(vi) are su�cient in
order to obtain a generalized Feller semigroup.

Fix t ∈ R+. We show that P (t) is a bounded linear map from
Bρ(E) to Bρ(E). For f ∈ Bρ(E) and n ∈ N, by de�nition of Bρ(E),
there is fn ∈ Cb(E) such that

‖f − fn‖ρ <
1

n
.

By Theorem 2.3.42 we obtain fn ◦ ψt ∈ Bρ(E) for any n ∈ N since on
the one hand fn ◦ ψt|KR ∈ Cb(E) holds for any R > 0 and on the other
hand

lim
R→∞

sup
x∈E\KR

|fn ◦ ψt(x)|
ρ(x)

= 0.

The inequality

sup
x∈E

|f ◦ ψt(x)− fn ◦ ψt(x)|
ρ(x)

= sup
x∈E

|f ◦ ψt(x)− fn ◦ ψt(x)|
ρ ◦ ψt(x)

· ρ ◦ ψt(x)

ρ(x)

≤ 1

n
· Ct

yields that f ◦ψt ∈ Bρ(E) as a limit of functions in Bρ(E). Moreover,

‖f ◦ ψt‖ρ = sup
x∈E

|f ◦ ψt(x)|
ρ ◦ ψt(x)

· ρ ◦ ψt(x)

ρ(x)

≤ ‖f‖ρ · Ct,

hence P (t) is a linear bounded operator on Bρ(E).
The Properties P1, P2, and P5 of generalized Feller semigroups

are easy to check. For Property P4 we see that for all 0<t < δ

‖P (t)‖ ≤ Ct ≤ C.

Regarding Property P3, we observe that for any x ∈ E and any 0 ≤
t < δ the inequality

ρ ◦ ψt(x) ≤ Cδ · ρ(x) =: Rx
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holds true. Therefore, ψt(x) ∈ KRx for t ∈ [0, δ) and because of f |KRx ∈
Cb(E) for all f ∈ Bρ(E) (see Theorem 2.3.42) we obtain

lim
t↘0

f ◦ ψt(x) = f(x)

for any x ∈ E.
Next, we show that if (P (t))t∈R+

is a generalized Feller semigroup,
then Properties (i) - (vi) and Equation 2.3.3 hold true.

Property (i) follows from P (0) = Id which yields

(2.3.4) f ◦ ψ0 = f for all f ∈ Bρ(E).

So by contradiction, if there was some x ∈ E such that ψ0(x) 6= x,
then by de�nition of completely regular spaces, one could �nd some
map fx ∈ Cb(E) ⊂ Bρ(E) such that fx(x) = 1 and f ◦ ψ0(x) = 0. But
this would contradict Equation 2.3.4.

Regarding Property (ii), as in the proof of Property (i) we obtain

(2.3.5) f ◦ (ψt1 ◦ ψt2) = f ◦ (ψt1+t2) for all f ∈ Bρ(E).

and as above by contradiction, if Property (ii) did not hold, then one
could �nd a map in Bρ(E) that would contradict Equation 2.3.5.

Property (iii) can be shown in the same way, since by de�nition of
generalized Feller semigroups

lim
t↘0

f ◦ ψt(x) = f(x)

holds for any x ∈ E and any f ∈ Bρ(E).
In order to show Property (iv), we �x some R > 0 and some arbi-

trary open set O in E. We have to show that ψ−1
t (O) is open in KR

which respect to the subspace topology. We know by Theorem 2.3.42
that f ◦ ψt|KR is continuous for any f ∈ Bρ(E). For any x ∈ O,
by de�nition of completely regular spaces, we know that we can �nd
fx ∈ Cb (E) such that

|fx| ≤ 1,

fx(x) = 1,

and
fx(E \O) ⊂ {0} .

Clearly, ⋃
x∈O

(
fx ◦ ψt|KR

)−1
(0, 2)

is open in KR with respect to the subspace topology. On the other
hand ⋃

x∈O

(fx)
−1 (0, 2) = O.
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Thus,

ψt|−1
KR

(O) = ψt|−1
KR

(⋃
x∈O

(fx)
−1 (0, 2)

)
=
⋃
x∈O

(
fx ◦ ψt|KR

)−1
(0, 2)

is open in KR with respect to the subspace topology.
Regarding Equation 2.3.3, by Lemma 2.3.52 P (t)ρ(x) is given for

any x ∈ E by

P (t)ρ(x) = sup
f ∈ Cb(E)
|f | ≤ ρ

|f ◦ ψt(x)| .

We observe that for any y ∈ E and any n ∈ N there is an open
neighborhood On,y of y such that

ρ(x) > ρ(y)− 1

n

holds true for any x ∈ On,y. On E \On,y ∪ {y} we de�ne the function

gn,y(x) :=

{
ρ(y)− 1

n
for x = y

0 for x ∈ E \On,y,

and by Proposition 2.3.8 we can extend gn,y to fn,y ∈ Cb(E) such that
|fn,y| < ρ and ρ(y)− fn,y(y) = 1

n
. Hence, for any x ∈ E

sup
f ∈ Cb(E)
|f | ≤ ρ

|f ◦ ψs(x)| = ρ ◦ ψs(x).

Finally, Property (v) and (vi) follow since for any x ∈ E
ρ ◦ ψt(x) = P (t)ρ(x),

and by Theorem 2.3.51 and Proposition 1.4.9 the estimate

‖P (t)‖ ≤Meωt

holds true for some M ≥ 1 and ω ∈ R. Thus, Lemma 2.3.52 implies
that for any x ∈ E

ρ ◦ ψt(x) ≤ ρ(x)Meωt.

�

Example 2.3.55. For α > 0 let (ψαt )t∈R+
be a family of maps such

that for any t ∈ R+

ψαt : R→ R



158 2. MARKOV, FELLER AND GENERALIZED FELLER SEMIGROUPS

is de�ned as
ψαt (x) = αtx.

Then we de�ne ρ(x) := max {ln |x| , 1} and

sup
x∈R

ρ(ψαt (x))

ρ(x)
= sup

x∈R

ρ(αtx)

ρ(x)

= max

 sup
|x| > e

ρ(αtx)

ln |x|
, sup
|x| ≤ e

ρ(αtx)

1


≤ t ln(α) + 1

=: Ct.

Therefore, (Pα
t )t∈R+

de�ned as

Pα
t (f) := f ◦ ψαt

is a generalized Feller semigroup.
It is also a Feller semigroup as it is clear that it maps C0(R) to

C0(R), is positive and contractive in the supremum norm. Moreover,
strong continuity in the supremum norm follows from the fact that on
compact sets in metric spaces continuous maps are uniformly continu-
ous.

Example 2.3.56. (generalized Feller semigroup of transport type,
but not Feller semigroup)

Consider E = R2 in polar coordinates, de�ne

ρ : (0,∞]× (0, 2π]→ (0,∞]

(r, ϕ)→ 1 +
r

ϕ
,

and ρ(0, ϕ) = 1. Then ρ is an admissible weight function. For the map

ψt(r, ϕ) :=
(
re−

t
ϕ , ϕ

)
by Proposition 2.3.54 P (t)(f) := f ◦ψt is a generalized Feller semigroup
by

ρ (ψt(r, ϕ))

ρ (r, ϕ)
=

1 + re
− t
ϕ

ϕ

1 + r
ϕ

≤ 1.

But it is not a Feller semigroup because for g(r) := e−r ∈ C0(R2)

(g ◦ ψt) (r, ϕ) = e−re
− t
ϕ
/∈ C0(R2)

as can be see by letting ϕ approach 0.



2.3. GENERALIZED FELLER SEMIGROUPS 159

Corollary 2.3.57. Let (P (t))t∈R+
be a generalized Feller semi-

group on Bρ(E) of transport type and let (ψt)t∈R+
be as in Proposition

2.3.54. For some M ≥ 1 and ω ∈ R let

‖P (t)‖ ≤Meωt,

and let A be the generator of (P (t))t∈R+
, and A′ the adjoint of A (see

De�nition 1.4.41). Then
(Q(t))t∈R+

de�ned as
Q(t)(µ) := µ ◦ ψ−1

t

is a semigroup onMρ(E) and(
Q(t)|D(A′)

)
t∈R+

is a strongly continuous semigroup on D(A′) ⊂Mρ(E).

Proof. Fix t ∈ R+. By Theorem 2.3.37 we obtain for µ ∈ Bρ(E)′ =
Mρ(E) and f ∈ Bρ(E) the identities

µ (P (t)(f)) =

∫
E

(f ◦ ψt(x))µ(dx)

=

∫
E

f(y)
(
µ ◦ ψ−1

t

)
(dy)

=
(
µ ◦ ψ−1

t

)
(f) .

Furthermore, by Lemma 2.3.52 and Proposition 2.3.54∫
E

ρ(x)µ ◦ ψ−1
t (dx) =

∫
E

P (t)ρ(x)µ(dx)

=

∫
E

P (t)ρ(x)µ(dx)

≤
∫
E

Meωtρ(x)µ(dx).

Hence,

Q(t) : Mρ(E)→Mρ(E)

µ→ µ ◦ ψ−1
t

is the adjoint operator of P (t) and the statement of the Corollary fol-
lows from Lemma 1.4.43 and Proposition 1.4.61. �

On normed vector spaces, we can determine a subset of the domain
of the generator and the generator on that subset. In the following,
Df will denote the Fréchet derivative of f (see De�nition A.2.2).
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Proposition 2.3.58. Let E be a normed vector space, let (P (t))t∈R+

be a generalized Feller semigroup on Bρ(E) of transport type, and
let (ψt)t∈R+

be as in Proposition 2.3.54. Let A be the generator of
(P (t))t∈R+

, and A′ its adjoint. Let t→ ψt(x) be continuously di�eren-
tiable for any x ∈ E and de�ne the vector �eld

v(x) := lim
t↘0

ψt(x)− x
t

.

Let v ∈ Cc(E,E).
Then C1

c (E,R) ⊂ D(A) and for f ∈ C1
c (E,R)

Af(x) = (Df(x)) (v(x)) for x ∈ E.

For µ ∈ D(A′) and f ∈ C1
c (E,R)

A′µ(f) =

∫
E

Df(x)(v(x))µ(dx).

Proof. First, we observe that for f ∈ C1
c (E,R) and any x ∈ E,

the map

t→ (f ◦ ψt)x

is continuously di�erentiable and for s ≥ 0 the derivative is given by

d

dt

∣∣∣∣
t=s

(f ◦ ψt) (x) = (Df(ψs (x)))

(
lim
h↘0

ψh(ψs (x))− ψs (x)

h

)
= (Df(ψs (x))) v(ψs (x)).

We need to show that the di�erence quotient converges not only point-
wise to the derivative but also in the ‖·‖ρ-norm:

lim
h→0

∥∥∥∥f(ψh(x))− f(x)

h
− (Df(x)) (v(x))

∥∥∥∥
ρ

= 0.

For this purpose, we �x ε > 0 and we want to bound the left hand side
by a suitable expression. By the mean value theorem for any x ∈ E
and any h > 0 there is 0 ≤ s(x, h) ≤ h such that

f(ψh(x))− f(x)

h
=

d

dt

∣∣∣∣
t=s(x,h)

(f ◦ ψt) (x).
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This yields the estimate∣∣∣∣f(ψh(x))− f(x)

hρ(x)
− (Df(x)) (v(x))

ρ(x)

∣∣∣∣
=

∣∣∣∣∣
d
dt

∣∣
t=s(x,h)

(f ◦ ψt)x
ρ(x)

− (Df(x)) (v(x))

ρ(x)

∣∣∣∣∣
≤

∣∣∣∣∣
(
Df(ψs(x,h)(x))

) (
v(ψs(x,h)(x))

)
ρ(x)

−
(
Df(ψs(x,h)(x))

)
(v(x))

ρ(x)

∣∣∣∣∣
+

∣∣∣∣∣
(
Df(ψs(x,h)(x))

)
(v(x))

ρ(x)
− (Df(x)) (v(x))

ρ(x)

∣∣∣∣∣ .
Furthermore, we note that f ∈ C1

c (E,R) and v ∈ Cc(E,E) imply that
there exists δ > 0 such that for any x, y ∈ Y satisfying ‖x− y‖ < δ
the inequalities

‖Df(x)−Df(y)‖L(E,R) < ε,

and

‖v(x)− v(y)‖ < ε

hold true. For any 0 ≤ s ≤ h := δ
‖v‖∞

‖ψs(x)− x‖ < h · ‖v‖∞ < δ.

Thus, ∣∣∣∣∣
(
Df(ψs(x,h)(x))

) (
v(ψs(x,h)(x))

)
ρ(x)

−
(
Df(ψs(x,h)(x))

)
(v(x))

ρ(x)

∣∣∣∣∣
≤
∥∥∥∥Df(ψs(x,h)(x))

ρ(x)

∥∥∥∥
L(E,R)

·
∥∥v(ψs(x,h)(x))− v(x)

∥∥︸ ︷︷ ︸
<ε

≤ ε

inf
x∈E

ρ(x)
· sup
x∈E
‖Df(x)‖L(E,R) ,

and ∣∣∣∣∣
(
Df(ψs(x,h)(x))

)
(v(x))

ρ(x)
− (Df(x)) (v(x))

ρ(x)

∣∣∣∣∣
≤
∥∥Df(ψs(x,h)(x))−Df(x)

∥∥
L(E,R)︸ ︷︷ ︸

<ε

·
∥∥∥∥v(x)

ρ(x)

∥∥∥∥ .
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Combined, these results yield the bound∥∥∥∥f(ψh(x))− f(x)

h
− (Df(x)) (v(x))

∥∥∥∥
ρ

≤ ε

 1

inf
x∈E

ρ(x)
· sup
x∈E
‖Df(x)‖L(E,R) + sup

x∈E

∥∥∥∥v(x)

ρ(x)

∥∥∥∥︸ ︷︷ ︸
:=C

 .

Since C does not depend on h and ε > 0 was arbitrary, the left hand
side converges to 0 as h↘ 0 which is what we had to show.

For µ ∈ D(A′) ⊂Mρ(E) we obtain for f ∈ C1
c (E,R) ⊂ D(A)

A′µ(f) = µ(Af) =

∫
E

(Df(x)) (v(x)) dµ(x).

�

In order to determine the domain of the adjoint of the generator
we have to make additional assumptions. In particular, we look at
functions and measures de�ned on Rn.

Proposition 2.3.59. Let E ⊂ Rn,n ∈ N and let the conditions
of Proposition 2.3.58 be ful�lled and v ∈ C1

c (E,E). For the Lebesgue
measure λ let µ� λ be given by the density gµ:

(2.3.6) µ(B) =

∫
B

gµ(x)λ(dx) for any B ∈ B(E),

and for C > 0 let gµ ∈ C1(E) ful�ll∫
E

ρ(x)

(∣∣∣∣ ddx1

gµ + ...
d

dxn
gµ

∣∣∣∣) (x)λ(dx) < C

∫
E

ρ(x) |gµ(x)| (x)λ(dx).

Denote the space of such measures as MCρ,1(E) ⊂ Mρ(E). Then,
MCρ,1(E) ⊂ D(A′) and for µ ∈MCρ,1(E)

(2.3.7) A′(µ)(B) = −
∫
B

div (v · gµ) (x)λ(dx) for any B ∈ B(Y ).

(Q(t))t∈R+
de�ned as

Q(t)(µ) := µ ◦ ψ−1
t

is a strongly continuous semigroup on D(A′) ⊂ Mρ(E) and its gener-
ator A† is given by the restriction of A′ to the set

D(A†) :=
{
y′ ∈ D(A′) : A′y′ ∈ D(A′)

}
.
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Proof. By∫
E

ρ(x)

(∣∣∣∣ ddx1

gµ + ...
d

dxn
gµ

∣∣∣∣) (x)dλ(x) < C

∫
E

ρ(x) |gµ(x)| (x)dλ(x)

we obtain boundedness of the linear map

L : MCρ,1(E) ⊂Mρ(E)→Mρ(E)∫
B

gµ(x)λ(dx)→ −
∫
B

div (v · gµ) (x)λ(dx).

In order to show MCρ,1(E) ⊂ D(A′), we have to show that for µ ∈
MCρ,1(E) and f ∈ D(A)

µ(Af) = Lµ(f)

holds true. By de�nition and dominated convergence

µ(Af) =

∫
E

(
lim
h↘0

f(ψh(x))− f(x)

h
· gµ(x)

)
λ(dx)

= lim
h↘0

∫
E

(
f(ψh(x))− f(x)

h
· gµ(x)

)
λ(dx)

= lim
h↘0

(∫
E

(
f(ψh(x))

h
· gµ(x)

)
λ(dx)−

∫
E

(
f(x)

h
· gµ(x)

)
λ(dx).

)
We want to substitute z := ψh(x). By our assumptions and the Picard-
Lindelöf theorem (Theorem A.2.3) also the inverse ψ−1

h exists. We see
that for some s > 0 and x = ψs(y)

lim
h→0

(ψh)
−1 (x)− x
h

= lim
h→0

(ψs−h(y))− ψs(y)

h
=

= −v(ψs(y))

= −v(x).

Furthermore, by Theorem A.2.4 for any t ≥ 0

x→ ψt(x)

is continuously di�erentiable and clearly Dψ0 = Id . We obtain

µ(Af) = lim
h↘0

(∫
E

(
f(z)

h
· gµ((ψh)

−1 (z))

)(
(|Dψh|) ((ψh)

−1 (z))
)−1

λ(dz)

−
∫
E

(
f(x)

h
· gµ(x)

)
λ(dx).

)
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Written in terms of di�erence quotients this yields (using our assump-
tions and dominated convergence):

µ(Af) =

∫
E

lim
h↘0

f(x)

(
gµ((ψh)

−1 (x))− gµ(x)

h

+
gµ((ψh)

−1 (x))
(
(|Dψh|) ((ψh)

−1 (x))
)−1 − gµ((ψh(x))−1)

h

)
λ(dx).

Calculating the derivatives using the chain rule we obtain:

µ(Af) =

∫
E

f(x)

(
−v(x) · ∇gµ(x) + gµ(x) ·

− d
dh

(
(|Dψh|) ((ψh)−1 (x))

)
(|Id| (x))2

∣∣∣∣∣
h=0

)
λ(dx)

=

∫
E

−f(x)v(x) · ∇gµ(x)λ(dx)

−
∫
E

f(x)gµ(x) ·
((

d

dh
(|Dψh|)

)
((ψh)−1 (x))

)∣∣∣∣
h=0

λ(dx)

+

∫
E

f(x)
(
(D (|Dψh|)) ((ψh)−1 (x))

) d

dh

(
(ψh)−1) (x)

∣∣∣∣
h=0

λ(dx).

Making use of the rules for the derivative of the determinant, we can
show

µ(Af) =

∫
E

−f(x)v(x) · ∇gµ(x)λ(dx)λ(dx)

−
∫
E

f(x)gµ(x) ·
(
|Dψh| · tr

(
(Dψh)−1 d

dh
(Dψh)

)
((ψh)−1 (x))

∣∣∣∣
h=0

)
λ(dx)

+

∫
E

f(x)
(
|Dψh| · tr

(
(Dψh)−1 (D2ψh

))
((ψh)−1 (x))

) d

dh

(
(ψh)−1) (x)

∣∣∣∣
h=0

λ(dx).

Finally, this simpli�es to

µ(Af) =

∫
E

f(x) (−v(x) · ∇gµ(x)− gµ(x) · (div (v) (x)))λ(dx)

+

∫
E

f(x)
(
(1 · tr (0)) ((ψh)−1 (x))

) d

dh

(
(ψh)−1) (x)

∣∣∣∣
h=0︸ ︷︷ ︸

=0

λ(dx)

= Lµ(f).

Thus,MCρ,1(E) ⊂ D(A′) and L(µ) = A′(µ) for µ ∈MCρ,1(E).
�

We were able to characterize operators that generate strongly con-
tinuous semigroups by the Hille-Yosida theorem (Theorem 1.4.35) and
would like to achieve a similar characterization of operators that gen-
erate generalized Feller semigroups. However, in this case we need to
assume that for the generalized Feller semigroup (P (t))t∈R+

with the
usual norm bounds

‖P (t)‖L(Bρ(E)) ≤M exp (ωt)
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the condition M = 1 holds. Under this condition, operators that gen-
erate generalized Feller semigroups are characterized in the following
theorem which was proved in [15].

Theorem 2.3.60. Let A be a linear operator on Bρ(E) and D(A)
its domain. Let ω ∈ R. A is closable and Ā generates a generalized
Feller semigroup (P (t))t∈R+

with

‖P (t)‖L(Bρ(E)) ≤ exp (ωt)

for all t ∈ R+ if and only if
(i) D(A) is dense,
(ii) For some λ0 > ω the linear operator A − λ0 has a dense image
(and hence for all λ > ω the linear operator A− λ has a dense image)
and,
(iii) A satis�es the generalized positive maximum principle, that is, for
f ∈ D(A) with

(2.3.8) max

(
f

ρ
, 0

)
≤ f(z)

ρ(z)

for some z ∈ E the inequality

Af(z) ≤ wf(z)

holds.

Proof. First, we show the implication that for a closable linear
operator A on Bρ(E) with domain D(A) for which Ā generates a gen-
eralized Feller semigroup (P (t))t∈R+

with

‖P (t)‖L(Bρ(E)) ≤ exp (ωt)

for all t ∈ R+, Properties (i) (ii) and (iii) hold.

(i) By Theorem 2.3.51 (P (t))t∈R+
is a strongly continuous semi-

group and by Proposition 1.4.24 its generator Ā has a dense domain.
Hence also D(A) is dense.

(ii) By Theorem 1.4.29 for all λ > ω we have λ ∈ ρ(Ā) and the
operator Ā − λ is a bijection between its domain D(Ā) and Bρ(E).
Since the graph of Ā−λ is the closure of the graph of A−λ, the range
of A− λ is dense in Bρ(E).

(iii) For f ∈ D(A) and z ∈ E such that

max

(
f

ρ
, 0

)
≤ f(z)

ρ(z)
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we want to �nd an estimate for P (t)f(z)−f(z)
t

and want to take the limit
as t→ 0. For this purpose, we can use assumption

‖P (t)‖L(Bρ(E)) ≤ exp (ωt)

and would like to work with functions in D(A) that take values only
in R+ in order to make better use of assumption 2.3.8. Therefore, for
f ∈ D(A) we look at max (f, 0) (which is clearly in Bρ(E)) and we
obtain by positivity of the generalized Feller semigroup (P5)

P (t)f(z) ≤ P (t) (max (f, 0)) (z).

Then, our estimate on ‖P (t)‖L(Bρ(E)) yields

P (t) (max (f, 0)) (z) ≤ ρ(z) ‖P (t) (max (f, 0))‖ρ
≤ ρ(z) exp (ωt) ‖max (f, 0)‖ρ

and the inequality

max

(
f

ρ
, 0

)
≤ f(z)

ρ(z)

for some z ∈ E implies

ρ(z) exp (ωt) ‖max (f, 0)‖ρ ≤ ρ(z) exp (ωt)
f(z)

ρ(z)
.

Hence, we obtain
P (t)f(z) ≤ exp (ωt) f(z)

and
P (t)f(z)− f(z)

t
≤ exp (ωt) f(z)− f(z)

t
.

Taking the limit as t→ 0 yields Property (iii).

Next, we show the opposite implication. In a �rst step, we use
Lumer-Phillips theorem (Theorem 1.4.38) in order to �nd a strongly
continuous semigroup generated by Ā − ω. Later, we show that its
rescaled semigroup indeed is a generalized Feller semigroup with the
desired properties.

For the application of Lumer-Phillips theorem we need to show
that A − ω is densely de�ned, that there is some λ > 0 such that
λ− (A− ω) has a dense image, and that A−ω is dissipative. The �rst
two conditions follow immediately from Properties (i) and (ii).

As for the dissipativity of A−ω let f ∈ D(A) and λ > 0 be arbitrary.
To prove dissipativity of A− ω we have to show that

‖(λ− (A− ω)) f‖ρ ≥ λ ‖f‖ρ .
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We want to use Property (iii) for bounding ‖f‖ρ. More precisely, by
Corollary 2.3.44 there exists z ∈ E such that

‖f‖ρ =
|f(z)|
ρ(z)

.

De�ning g := (sgnf(z)) · f implies

‖f‖ρ =
g(z)

ρ(z)
.

We see that g ∈ D(A) since D(A) has to be a vector space and we can
apply Property (iii) to g. Therefore,

λ ‖f‖ρ = λ
g(z)

ρ(z)

≤ λ
g(z)

ρ(z)
+ ω

g(z)

ρ(z)
− Ag(z)

ρ(z)

≤ sup
x∈E

|(λ+ ω − A) g(x)|
ρ(x)

= ‖(λ+ ω − A) f‖ρ
and A− ω is dissipative.

Therefore, the the Lumer-Phillips theorem (Theorem 1.4.38) can be
applied and yields that Ā−ω generates a strongly continuous semigroup
{S(t)}t∈R+

on Bρ(E) such that for all f ∈ Bρ(E) and for all t ≥ 0

‖S(t)f‖ρ ≤ ‖f‖ρ .

For the family of linear operators {P (t)}t∈R+
on Bρ(E) de�ned for any

t ∈ R+ as
P (t) = S(t)eωt

Lemma 1.4.16 yields that {P (t)}t∈R+
is a strongly continuous semigroup

as well and that its generator is given by Ā. Furthermore, for all t ≥ 0

‖P (t)f‖ρ ≤ eωt ‖f‖ρ .

Having found the strongly continuous semigroup {P (t)}t∈R+
, in a

next step we show that this is indeed a generalized Feller semigroup
with the desired properties. We need to check Properties P3, P4, and
P5.
Regarding Property P4, this follows directly form

‖P (t)‖L(Bρ(E)) ≤ exp (ωt) .
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Property P3 follows from strong continuity of {P (t)}t∈R+
and

lim
t→0

(P (t)f(x)− f(x)) ≤ ρ(x) lim
t→0

(
sup
x∈E

|P (t)f(x)− f(x)|
ρ(x)

)
= ρ(x) lim

t→0
‖P (t)f − f‖ρ .

In order to show property P5 (positivity) of {P (t)}t∈R+
we �rst observe

that by Post-Widder Inversion Formula (Theorem A.5.1) positivity of(
λ− Ā

)−1 for any λ > ω implies positivity of {P (t)}t∈R+
.

In order to show positivity of
(
λ− Ā

)−1 for any λ > ω, we �x λ0 >

ω and functions f, g ∈ Bρ(E) that satisfy f =
(
λ0 − Ā

)−1
g, such

that f is not positive. Clearly f ∈ D(Ā). We show that under these
assumptions g is not positive either. An equivalent way of stating that
f is not positive is

α := inf
x∈E

f(x)

ρ(x)
< 0.

We would like to show that

(2.3.9) β := inf
x∈E

g(x)

ρ(x)
< 0

holds as well and for this purpose we would like to bound β by a suitable
expression depending on α. However, if we substitute(

λ0 − Ā
)
f = g

in Inequality 2.3.9 we encounter the expression Āf . We would like to
apply Property (iii) of this theorem and since this is only possible for
functions in D(A) we choose a sequence (fn)n∈N ⊂ D(A) such that
Afn → Āf and fn → f in Bρ(Y ) as n→∞. By uniform convergence,
limit and in�mum can be interchanged, hence

inf
x∈E

g(x)

ρ(x)
= inf

x∈E
lim
n→∞

(
λ0 − Ā

)
fn(x)

ρ(x)

= lim
n→∞

inf
x∈E

(λ0 − A) fn(x)

ρ(x)
.

Similarly,

inf
x∈E

f(x)

ρ(x)
= lim

n→∞
inf
x∈E

fn(x)

ρ(x)
.
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Since fn → f in Bρ(E) as n tends to in�nity and f is not positive
there is some M ∈ N such that for all n > M

sup
x∈E
− fn(x) > 0

and Theorem 2.3.43 yields that for any n ∈ N , n > M there is zn ∈ E
such that for all x ∈ E

−fn(x)

ρ(x)
≤ −fn(zn)

ρ(zn)

hence

inf
x∈E

fn(x)

ρ(x)
=
fn(zn)

ρ(zn)
.

We can apply the generalized positive maximum principle to −fn at zn
for n ∈ N , n > M and obtain

A (−fn(zn)) ≤ ω (−fn(zn)) .

Therefore, the following estimates hold:

inf
x∈E

g(x)

ρ(x)
= lim

n→∞

(
inf
x∈E

(λ0 − A) fn(x)

ρ(x)

)
≤ lim

n→∞

(λ0 − A) fn(zn)

ρ(zn)

≤ lim
n→∞

λ0fn(zn)− ω (fn(zn))

ρ(zn)

= (λ0 − ω) lim
n→∞

(
inf
x∈E

fn(x)

ρ(x)

)
= (λ0 − ω) inf

x∈E

f(x)

ρ(x)

< 0

To sum up, we have shown that for λ > ω g =
(
λ− Ā

)
f cannot

be positive when f ∈ Bρ(E) is not positive which proves that the
linear operator

(
λ− Ā

)−1 is positive. Thus {P (t)}t∈R+
is positive and

property P5 of generalized Feller semigroup holds. In conjunction with
the previous parts of the proof this shows that{P (t)}t∈R+

is indeed a
generalized Feller semigroup with generator Ā such that

‖P (t)‖L(Bρ(E)) ≤ exp (ωt) .

�
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If a generalized Feller semigroup (P (t))t∈R+
with

‖P (t)‖L(Bρ(E)) ≤M exp (ωt)

does not satisfy M = 1, then Property (iii) in Theorem 2.3.60 does not
have to hold anymore. This is shown in the following counterexample.

Example 2.3.61. Let X = R and

ρ(s) :=

{
1 if |s| ≤ 1

|s|+ 1 else.

(Compare with Figure 2.3.2.) For t ∈ R+ let the maps

Pt : Bρ(R)→ Bρ(R)

be de�ned as
Pt(f)(s) := f(s+ t).

The calculation

sup
s∈R

|f(s+ t)|
ρ(s)

= sup
s∈R

|f(s+ t)|
ρ(s+ t)

ρ(s+ t)

ρ(s)

≤ ‖f‖ρ (t+ 2)

shows by Proposition 2.3.54 that (Pt)t∈R+
is a generalized Feller semi-

group.
There is indeed no ω ∈ R such that

‖Pt‖L(Bρ(E)) ≤ exp (ωt)

holds true for all t ∈ R. In order to see this, we note that for any t > 0
there is ft ∈ Bρ(R) such that

‖ft‖ρ = 1

and
ft(1 + t) = 2 + t.

holds. Then
Pt(ft)(1)

ρ(1)
= 2 + t.

Hence ‖Pt‖ρ ≥ 2 + t for all t > 0 and if there was ω ∈ R such that

‖Pt‖L(Bρ(E)) ≤ exp (ωt)

then
2 = lim

t↘0
(2 + t) ≤ lim

t↘0
‖Pt‖L(Bρ(E)) ≤ lim

t↘0
exp (ωt) = 1
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−4 −2 0 2 4
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Figure 2.3.2. ρ is blue, f2 is red, f10 is green

would yield a contradiction. Moreover, for all f ∈ Bρ(R) such that
‖f‖ρ ≤ 1 we obtain for all s, t ≥ 0

|Pt(f)(s)|
ρ(s)

=
|f(s+ t)|
ρ(s)

≤ ρ(s+ t)

ρ(s)
≤ 2 + t.

Thus,

‖Pt‖ρ = 2 + t ≤ 2 exp

(
t

2

)
for all t ≥ 0.

Fix same arbitrary n ∈ N, n ≥ 2. De�ne

fn(s) :=

 |s|n if |s| ≤ 1
2− (2− |s|)n if 1 < |s| < 2

2 else.

fn ∈ Bρ(R) and ‖fn‖ρ = 1 hold for all n ∈ N, n ≥ 1. Moreover,

sup
s∈R

|fn(s)|
ρ(s)

≤ fn(1)

ρ(1)
.

For all s ∈ R

lim
t↘0

fn(s+ t)− fn(s)

t
= gn(s)
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holds true with gn ∈ Bρ(R) de�ned as

gn(s) :=


−n |s|n−1 if − 1 ≤ s < 0
nsn−1 if 0 ≤ s ≤ 1

n (2− s)n−1 if 1 < s < 2

−n (2 + s)n−1 if − 2 < s < −1
0 else.

In order to show that fn ∈ Bρ(R) lies in the domain of the generator A
of the semigroup (Pt)t∈R+

we have to prove convergence of the di�erence
quotient with respect to ‖‖ρ:

lim
t↘0

sup
s∈R

∣∣∣∣ 1

ρ(s)

(
fn(s+ t)− fn(s)

t
− gn(s)

)∣∣∣∣ = 0.

For any s ∈ R

|fn(s+ t)− fn(s)− tgn(s)| =
∣∣∣∣∫ s+t

s

gn(r)dr − tgn(s)

∣∣∣∣
≤
∣∣∣∣∫ s+t

s

(
gn(s) + sup

s∈R

∣∣∣∣ ddsgn(s)

∣∣∣∣) dr − tgn(s)

∣∣∣∣
≤ t

(
sup
s∈R

∣∣∣∣ ddsgn(s)

∣∣∣∣)
≤ tn (n− 1) .

This inequality shows the convergence of the di�erence quotient with
respect to ‖‖ρ and

Afn = gn.

In particular, at s = 1

Afn(1) = n.

Since n ∈ N, n ≥ 2 was arbitrary, this shows that Property (iii) of
Theorem 2.3.60 does not hold.

In the next lemma we see that for generalized Feller semigroups of
transport type, the problems encountered in Example 2.3.61 can be
overcome by choosing a more appropriate weight function as was done
by [14].

Lemma 2.3.62. Let (E, ρ) be a weighted space and let (ψt)t∈R+
be a

family of maps such that for any t ∈ R+

ψt : E → E
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and such that the conditions from Lemma 2.3.54 are satis�ed. Let
(P (t))t∈R+

be the associated generalized Feller semigroup on Bρ(E) of
transport type, and let ω ∈ R and Mω ≥ 1 be such that

P (t)ρ ≤Mω exp(ωt)ρ.

Then
ρ̃ω(x) := sup

t∈R+

exp (−ωt) (P (t)ρ) (x)

is an admissible weight function on E such that the norms ‖·‖ρ̃ω and
‖·‖ρ are equivalent and the bound

‖P (t)‖L(Bρ̃ω (E)) ≤ exp (ωt)

holds for any t ∈ R+.

Proof. By Lemma 2.3.52 there exists ω ∈ R and Mω ≥ 1 such
that

(2.3.10) P (t)ρ ≤Mω exp(ωt)ρ.

We �x such ω ∈ R and want to �nd an admissible weight function ρ̃ω
such that for any t ∈ R+

(2.3.11) ρ̃ω ≥ exp (−ωt) · (ρ̃ω ◦ ψt)
holds true as it would permit the estimate

‖P (t)f‖ρ̃ω = sup
x∈E

|f (ψt(x))|
ρ̃ω(x)

≤ exp (ωt) sup
x∈E

|f (ψt(x))|
ρ̃ω (ψt(x))

= exp (ωt) ‖f‖ρ̃ω .
Therefore, we de�ne

ρ̃ω(x) := sup
t∈R+

exp (−ωt) (P (t)ρ) (x)

which implies Inequality 2.3.11 and show that this is indeed an admis-
sible weight function. For this purpose, we �x R > 0 and we have to
show that

{ρ̃ω ≤ R} =
⋂
t∈R+

{P (t)ρ ≤ exp (ωt)R}

is compact. By Lemma 2.3.54

P (t)ρ(x) = ρ(ψt(x))

holds for any t ∈ R+and any x ∈ E. The set
{P (0)ρ ≤ exp (ω · 0)R} = {ρ ≤ R}
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is compact hence closed since E is Hausdor�. For any t ∈ R+, by
continuity of ψt|KR ,

{Ptρ ≤ exp (ωt)R} ∩ {ρ ≤ R} =
{
ρ ◦ ψt|KR ≤ exp (ωt)R

}
∩ {ρ ≤ R}

=
(
ψt|KR

) −1 {ρ ≤ exp (ωt)R} ∩ {ρ ≤ R}

is closed. Thus, by

{ρ̃ω ≤ R} =
⋂
t∈R+

{P (t)ρ ≤ exp (ωt)R}

=
⋂
t∈R+

{Ptρ ≤ exp (ωt)R} ∩ {ρ ≤ R}

{ρ̃ω ≤ R} is a closed subset of the compact set {ρ ≤ R}, hence compact.
Thus, ρ̃ω is an admissible weight function.

By de�nition ρ ≤ ρ̃ω and by Inequality 2.3.10

ρ̃ω(x) ≤Mωρ(x).

This shows that the norms ‖·‖ρand ‖·‖ρ̃ω are equivalent. �

Example 2.3.63. Continuing Example 2.3.61, we take ω = 1
2
and

obtain the admissible weight function

ρ̃ 1
2
(x) :=

{
exp

(
s−1

2

)
if |s| ≤ 1

|s|+ 1 else.

We see that for the family of maps (fn)n∈N ⊂ B
ρ̃ 1

2 (R) from Example
2.3.61 1 is not a maximum of fn

ρ̃ 1
2

anymore, or in other words

sup
s∈R

|fn(s)|
ρ̃ 1

2
(s)

>
fn(1)

ρ̃ 1
2
(1)

.

Therefore (fn)n∈N ⊂ B
ρ̃ 1

2 (R) is not a counterexample to Property (iii)
of Theorem 2.3.60. On the contrary, by Theorem 2.3.60 for h ∈ D(A)
with

max

(
h

ρ̃ 1
2

, 0

)
≤ h(z)

ρ̃ 1
2
(z)

for some z ∈ E

Ah(z) ≤ 1

2
h(z)

holds true.
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2.3.5. Generalized and Extended Feller Processes. As be-
fore, in this subsection (E, ρ) always denotes a weighted space. We let
I be some index set and let J ⊂ I be a �nite subset.

For a �nite index set J =
{
j1, ..., jn(J)

}
we deal with the product

space
EJ := Ej1 × ...× Ejn(J)

,

where Ej = E for any j ∈ J . We write any element xJ ∈ EJ as

xJ :=
(
xj1 , ..., xjn(J)

)
.

We recall that by Lemma 2.3.18 ,(
EJ , ρ⊗J

)
is a weighted space where

ρ⊗J(xJ) := ρj1 (xj1) · · · ρjn(J)

(
xjn(J)

)
,

with

ρj : Ej → R
x→ ρ(x).

We rigorously prove a statement made in Theorem 2.11 in [14] and
show that for a generalized Feller semigroup (P (t))t∈R+

with P (t)1 = 1
for any t ∈ R+, we can de�ne a probability space on which for the
coordinate process (λt)t∈R+

and f ∈ Bρ(E) the conditional expectation
of f(λt) can be expressed in terms of the generalized Feller semigroup
(see Equation 2.3.12).

Definition 2.3.64. Let (P (t))t∈R+
be a generalized Feller semi-

group on Bρ(E), let ν ∈ Mρ(E) be a probability measure and let
(λt)t∈R+

be an adapted stochastic process on the �ltered probability
space (

ER+ ,B(E)R+ , (Ft)t∈R+
,Pν
)
.

If for any t ≥ s ≥ 0 and any f ∈ Bρ(E)

(2.3.12) Eν [f(λt)| Fs] = P (t− s) f(λs)

holds true Pν -almost surely and

Pν ◦ λ−1
0 = ν

then (λt)t∈R+
is called generalized Feller process with respect to (Ft)t∈R+

and (P (t))t∈R+
and with initial distribution ν.

We can show the existence of generalized Feller processes:
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Theorem 2.3.65. Let (P (t))t∈R+
be a generalized Feller semigroup

on Bρ(E) such that for all t ∈ R+

P (t)1 = 1,

and
‖P (t)‖ ≤Meωt

for ω ∈ R and M ≥ 1. Then on the measurable space(
ER+ ,B(E)R+

)
for any x0 ∈ E there exists a measure Px0 and a right continuous
�ltration (Ft)t∈R+

(see De�nition A.3.75) such that for any t ≥ s ≥ 0

and any f ∈ Bρ(E) the canonical process (λt)t∈R+
is adapted with

respect to (Ft)t∈R+
,

(2.3.13) Ex0 [f(λt)| Fs] = P (t− s) f(λs)

holds true Px0 -almost surely, and

Px0 ◦ λ−1
0 = δx0 .

Remark 2.3.66. In general, a generalized Feller process (λt)t∈R+
is

strictly speaking not a Markov process, since Equation 2.3.13 does not
necessarily hold true for any positive Borel- measurable map f. This is
due to the fact, that indicator functions of Borel sets can be approx-
imated with continuous bounded functions by Corollary 2.3.10 only
almost everywhere with respect to one (or �nitely many) measure(s),
but not necessarily simultaneously with respect to the entire family of
measures ((p(t− s)) (x, ·))x∈E on (E,B(E)) obtained by Proposition
2.3.52. However, for indicator functions of Cb(E)-open sets (see Def-
inition A.3.36) Equation 2.3.13 holds true by dominated convergence.
Since by Lemma A.3.37 the Cb(E)-open sets generate the Baire σ-
algebra B0(E) (see De�nition A.3.38) we conclude again by dominated
convergence that Equation 2.3.13 holds true for any indicator function
of sets in B0(E). Thus, a generalized Feller process (λt)t∈R+

is a Markov
process with respect to the measurable space(

ER+ , (B0(E))R+

)
,

its natural �ltration, and the probability measure Px0 restricted to this
space.

Note that, for locally compact separable spaces E a generalized
Feller process is a Markov process in the classical sense, meaning that
Equation 2.3.13 holds for all non-negative Borel-measurable maps. This
is the case since thanks to Urysohn's Lemma in the completely regu-
lar case (see Proposition 2.3.9) and separability an open set can be
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approximated pointwise by continuous bounded functions. Therefore,
Equation 2.3.13 holds also for any map f that is the indicator function
of a set in the Dynkin system generated by the open sets. By Lemma
A.3.15 such a Dynkin system is the entire σ-algebra and by Proposition
A.3.19 the generalized Feller process is a Markov process.

When we speak of generalized Feller processes usually we mean
those obtained via Theorem 2.3.65. As for Markov processes Px := Pδx
for any x ∈ E.

We remind the reader that while B(ER+) ⊃ B(E)R+ holds true
because on B(ER+) every projection is continuous, hence measurable
with respect to B(ER+), the inclusion B(ER+) ⊂ B(E)R+ is in general
not true when the topology of E does not have a countable base (see
De�nition A.1.2).

Proof. The proof has three steps. In the �rst step, we construct
a projective family of probability measures (see De�nition 2.1.3) on(

EJ ,B
(
EJ
))
J⊂R+, �nite

.

In the second step we use Theorem A.3.104 and obtain a probability
measure on

(
ER+ ,B(E)R+

)
. The coordinate process (λt)t∈R+

on this
space then yields for any t ≥ s ≥ 0 and any f ∈ Bρ(E)

(2.3.14) Ex0

[
f(λt)| F0

s

]
= P (t− s) f(λs)

where (F0
t )t∈R+

is the natural �ltration of the coordinate process. In
the third step, we take the right continuous extension of this �ltration
and show Equation 2.3.13.

For the �rst step, we let R > 0 and �x some x0 ∈ E0. For any r ≥ 0
let p(r)(x0, ·) be the Radon measure given by the Riesz representation
theorem (Proposition 2.3.52) via

P (r)f(x0) =

∫
Et

f(y)p(r)(x0, dy).

For 0 ≤ r1 < r2 we de�ne µR,{r1,r2}x0 ∈ Mρr1⊗ρr2 (Er1 × Er2) by Riesz
representation (Proposition 2.3.52) on Er1 × Er2 , and Lemma 2.3.67
and the continuous functional

fr1 · fr2 →
∫
Er1

(
1{ρr1 (y)<R} · fr1(y) · P (r2 − r1)fr2(y)

)
p(r1)(x0, dy)
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for fr1 ∈ Bρr1 (Er1) and fr2 ∈ Bρr2 (Er2) as the unique measure in
Mρr1⊗ρr2 (Er1 × Er2) such that∫

Er1

(
1{ρr1 (y)<R} · fr1(y) · P (r2 − r1)fr2(y)

)
p(r1)(x0, dy)

=

∫
Er1×Er2

fr1(y)fr2(z)µR,{r1,r2}x0
(dy, dz).

By P (r2 − r1)1 = 1 we obtain

µR,{r1,r2}x0
(Er1 × Er2) = p(r1) (x0, {ρr1(y) < R})

≤ p(r1)(x0, Er1)

= P (r1)1(x0)

= 1.

Then for any A ∈ B (Er1 × Er2) by monotonicity and boundedness, we
can de�ne

p{r1,r2}x0
(A) := lim

R→∞
µR,{r1,r2}x0

(A).

One can easily show that p{r1,r2}x0 is a measure and by dominated con-
vergence p{r1,r2}x0 is a probability measure on

(Er1 × Er2 ,B (Er1 × Er2)) .

Furthermore, for any r3 > r2 by Riesz representation (Proposition
2.3.52) on Er1×Er2×Er3 , Lemma 2.3.67 and the continuous functional

fr1 ·fr2 ·fr3 →
∫
Er1×Er2

1{ρr1 (y)<R}·1{ρr2 (z)<R}·fr1 (y)·fr2 (z)·P (r3−r2)fr3 (z)p
{r1,r2}
x0 (dy, dz)

we de�ne µR,{r1,r2,r3}x0 as the unique measure inMρr1⊗ρr2⊗ρr3 (Er1×Er2×
Er3) and for any A ∈ B (Er1 × Er2 × Er3) again by monotonicity and
boundedness

p{r1,r2,r3}x0
(A) := lim

R→∞
µR,{r1,r2,r3}x0

(A).

Inductively, in this way we can de�ne a family of probability measures(
pJx0

)
J⊂R+, �nite

on the respective measurable spaces(
EJ ,B

(
EJ
))
J⊂R+,�nite

.

By an ε/3 -argument and monotonicity it follows from µR,Jx0
∈Mρ⊗J (EJ)

for each �nite J ⊂ R+ and each R > 0 that for each �nite J ⊂ R+ the
measure pJx0

is inner regular, hence a Radon measure.
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In order to apply the Generalized Kolmogorov Extension Theorem
(Theorem A.3.104), we need to show that this family is projective, i.e.
for any �nite J and i ∈ J and any A ∈ (B (E))J\{i}

pJx0
(A× Ei) = pJ\{i}x0

(A).

We show this property by induction and start with the case J =
{r1, r2}. For f ∈ Bρr1 (Er1)∫

Er1

f(y)µR,{r1,r2}x0
(dy, Er2) =

∫
Er1

f(y)1KR(y)p(r1)(x0, dy)

which implies by uniqueness of the Radon measure (see Proposition
A.4.15) for any A ∈ B (Er1)

µR,{r1,r2}x0
(A,Er2) = p(r1)(x0, A ∩KR).

Thus,

p{r1,r2}x0
(A× Er2) = lim

R→∞
µR,{r1,r2}x0

(A× Er2)

= p(r1)(x,A).

Furthermore, for any f ∈ Cb(Er2) it holds true by dominated conver-
gence that∫

Er1×Er2
1(y)f(z)p{r1,r2}x0

(dy, dz)

= lim
R→∞

∫
Er1×Er2

1(y)f(z)µR,{r1,r2}x0
(dy, dz)

= lim
R→∞

∫
Er2

1{ρr1 (y)<R}P (r2 − r1)f(y)p(r1)(x0, dy)

= P (r1)P (r2 − r1)f(x)

= P (r2)f(x)

=

∫
Er2

f(z)p(r2)(x0, dz).

Since the functionals

f →
∫
Er2

f(z)p{r1,r2}x0
(E, dz)

and

f →
∫
Er2

f(z)p(r2)(x0, dz)
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coincide on Cb(Er2) and satisfy the conditions of Proposition A.4.15,
by uniqueness of the Radon measure in Proposition A.4.15 for any
A ∈ B (Er2)

p{r1,r2}x0
(Er1 × A) = p(r2)(x0, A).

This implies in particular that for any fr2 ∈ Bρr2 (Er2)∫
Er1×Er2

1(y)fr2(z)p{r1,r2}x0
(dy, dz) <∞.

Next, we assume that there is N ∈ N such that for any n ≤ N and any
arbitrary �nite index set Jn := {r1, ..., rn} ∈ Rn

+ , 0 ≤ r1 < ... < rn for
any i ∈ {1, ..., n} and any A ∈ B

(
EJn\{ri}

)
pJnx0

(A× Eri) = pJn\{ri}x0
(A),

and for any frn ∈ Bρrn (Ern)∫
Er1×...×Ern

1(y1) · ...1(yn−1) · frn(yn)pJnx0
(dy1, ..., dyn) <∞.

We want to show that for JN+1 := {r1, ..., rN+1} ∈ RN+1
+ , where rN+1 >

... > r1 ≥ 0 are arbitrary, for any i ∈ {1, ..., N + 1} and any A ∈
B
(
EJN+1\{ri}

)
pJN+1
x0

(A× Eri) = pJN+1\{ri}
x0

(A),

and for any frN+1
∈ BρrN+1 (ErN+1

)∫
Er1×...×ErN+1

1(y1) · ...1(yN) · frN+1
(yN+1)pJN+1

x0
(dy1, ..., dyN+1) <∞.

In case i = N+1 and for bounded fr1 ∈ Bρr1 (Er1),...,frN ∈ BρrN (ErN )∫
Er1×...×ErN+1

fr1(y1) · ... · frN (yN )1(yN+1)pJN+1
x0

(dy1, ..., dyN+1)

= lim
R→∞

∫
Er1×...×ErN

fr1(y1) · ... · frN (yN )P (rN+1 − rN )1︸ ︷︷ ︸
=1

(yN )µR,JNx0
(dy1, ..., dyN )

=

∫
Er1×...×ErN

fr1(y1) · ... · frN (yN )pJN+1
x0

(dy1, ..., dyN ),

and we conclude by uniqueness of the Radon measure and Lemma
2.3.67 that for any A ∈ B

(
EJN+1\{rN+1}

)
pJN+1
x0

(A× ErN+1
) = pJN+1\{rN+1}

x0
(A),
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since the corresponding functionals coincide on Cb(E
JN+1\{rN+1}) and

satisfy the conditions of Proposition A.4.15. Furthermore,∫
Er1×...×ErN+1

1(y1) · ...1(yN) · frN+1
(yN+1)pJN+1

x0
(dy1, ..., dyN+1)

=

∫
Er1×...×ErN

1(y1) · ...1(yN) · P (rN+1 − rN)frN+1
(yN)pJNx0

(dy1, ..., dyN)

<∞,

by assumption.
In case i = N and for fr1 ∈ Cb(Er1),...,frN−1

∈ Cb(ErN−1
) and frN+1

∈
Cb(ErN+1

) by dominated convergence
∫
Er1×...×ErN+1

fr1 (y1) · ... · frN−1 (yN−1)1(yN )frN+1 (yN+1)p
JN+1
x0 (dy1, ..., dyN+1)

= lim
R→∞

∫
Er1×...×ErN

fr1 (y1) · ... · frN−1 (yN−1) · P (rN+1 − rN )frN+1 (yN )µ
R,JN
x0 (dy1, ..., dyN )

=

∫
Er1×...×ErN

fr1 (y1) · ...frN−1 (yN−1) · P (rN+1 − rN )frN+1 (yN )p
JN
x0 (dy1, ..., dyN )

=

∫
Er1×...×ErN−1

fr1 (y1) · ... · frN−1 (yN−1) · P (rN+1 − rN−1)frN+1 (yN−1)p
JN−1
x0 (dy1, ..., dyN−1)

=

∫
Er1×...×ErN−1

×ErN+1

fr1 (y1) · ... · frN−1 (yN−1) · frN+1 (yN+1)p
JN+1\{rN}
x0 (dy1, ..., dyN−1, dyN+1),

and we can conclude as before.
For i ∈ {1, ..., N − 1} the desired properties follow in the same way

by de�nition of pJN+1
x0 and integration of continuous bounded functions

and from the assumption that the properties hold true for any n ≤ N .
Thus, by induction it follows that for any m ∈ N and any arbitrary
�nite index set Jm := {r1, ..., rm} ∈ Rm

+ , 0 ≤ r1 < ... < rm for any
i ∈ {1, ...,m} and any A ∈ B

(
EJm\{ri}

)
pJmx0

(A× Eri) = pJm\{ri}x0
(A).

Therefore, the family (
pJx0

)
J⊂R+, �nite

is projective.
In the second step of the proof, in order to construct a measure Px0

for any x0 ∈ E on
(
ER+ ,B(E)R+

)
we want to use Theorem A.3.104.

For this purpose since B(E)J ⊂ B(EJ) for any �nite J ⊂ R+, we can
de�ne the measure

p̂Jx0
:= pJx0

∣∣
B(E)J

,
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and we have to �nd a compact class (see De�nition A.3.103) C in E
such that for each t ∈ R+ and A ∈ B(Et)

(2.3.15) p{t}x0
(A) = sup

{
p{t}x0

(C) : C ⊂ A and C ∈ C
}
.

We show that

C := {C : C compact, C ⊂ KR for some R ≥ 0}

is such a compact class and start by showing that C is a compact class
at all. We choose some arbitrary sequence {Cl}l∈N ⊂ C such that⋂

l∈N

Cl = ∅.

For C1 we choose R1 ≥ 0 such that C1 ⊂ KR1 . Then⋃
l∈N

E \ Cl ⊃ KR1

is an open cover of the compact set KR1 hence �nitely many sets, say
without loss of generality {E \ C1, E \ C2, ..., E \ Cm} , su�ce to cover
it. Thus, ⋂

l∈{1,...,m}

Cl ∩KR1 = ∅

and C1 ⊂ KR1 yields that ⋂
l∈{1,...,m}

Cl = ∅,

and C is a compact class. By the identity⋃
R≥0

KR = E,

for any ε > 0 and t ∈ R+ there is some Rε ≥ 0 such that

p{t}x0
(E)− p{t}x0

(KRε) < ε,

and by inner regularity of the Radon measure p{t}x0 for any A ∈ B(E)
there is a compact set Aε ⊂ A such that

p{t}x0
(A)− p{t}x0

(Aε) < ε.

Hence
p{t}x0

(A)− p{t}x0
(Aε ∩KRε) < 2ε,

and Equation 2.3.15 holds true. Thus, the conditions of Theorem
A.3.104 are satis�ed.
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By applying that theorem, we obtain a probability measure Px0 on
the measurable space

(
ER+ ,B(E)R+

)
such that for any �nite J ⊂ R+

and
A ∈ B(E)J ⊂ B(EJ)

the probability is given by

(2.3.16) Px0

((
Π

R+

J

)−1

(A)

)
= p̂Jx0

(A) = pJx0
(A)

with Π
R+

J being the projection from ER+ on EJ as de�ned in De�nition
A.1.6. Moreover, by de�nition

Px0 ◦ (λ0)−1 = p{0}x0
= q(0)(x0, ·) = δx0 ,

and for any f ∈ Bρ(E)

Ex0 [f(λt)] =

∫
Et

f(y)p(t)(x0, dy) = P (t)f(x0) <∞.

Let (λt)t∈R+
:= (Πt)t∈R+

be the the coordinate process (see De�ni-
tion A.3.5) on

(
ER+ ,B(E)R+

)
and let (F0

t )t∈R+
be its natural �ltration

(see De�nition A.3.80). We next show Equation 2.3.14 and to that end
that for any f ∈ Bρ(E), any 0 ≤ s < t, any F ∈ F0

s , and any x0 ∈ E
the equation

Ex0 [f(λt) · 1F ] = Ex0 [P (t− s) f(λs) · 1F ]

holds true. Since Ex0 [f(λt)] < ∞ by Proposition A.3.31 it is enough
to check

Ex0 [f(λt) · 1G] = Ex0 [P (t− s) f(λs) · 1G]

for all G ∈ G of an intersection stable generator G ⊂ F0
s . The set{⋂

j∈J

(λj)
−1 (Oj) : J ⊂ R+, �nite, Oj ⊂ Ej open for all j ∈ J

}
is such an intersection stable generator. For any x0 ∈ E we �x k ∈ N
and 0 ≤ r1 ≤ r2 ≤ ... ≤ rk ≤ s and set J

′
:= {r1, r2, ..., rk, s, t} . For

Or1 ∈ Er1 ,..., Ork ∈ Erk open by de�nition

Ex0

[
f(λt) · 1Or1 (λr1) · ... · 1Ork (λrk)

]
=

∫
EJ
′

(
f(t) · 1Or1 (r1) · ... · 1Ork (rk)

)
pJ
′

x0
(dr1, ..., drk, ds, dt)



184 2. MARKOV, FELLER AND GENERALIZED FELLER SEMIGROUPS

and

Ex0

[
P (t− s) f(λs) · 1Or1 (λr1) · ... · 1Ork (λrk)

]
=

∫
EJ
′ \{t}

(
P (t− s) f(s) · 1Or1 (r1) · ... · 1Ork (rk)

)
pJ
′\{t}
x0

(dr1, ..., drk, ds).

By arguing as before by Proposition A.4.15 it is therefore enough to
show that the functionals

f →
∫
EJ
′

(
f(t) · 1Or1 (r1) · ... · 1Ork (rk)

)
pJ
′

x0
(dr1, ..., drk, ds, dt)

and

f →
∫
EJ
′ \{t}

(
P (t− s) f(s) · 1Or1 (r1) · ... · 1Ork (rk)

)
pJ
′\{t}
x0

(dr1, ..., drk, ds)

coincide of Cb(Es).
By Corollary 2.3.10 there exists sequences of maps (bil)l∈N,i∈{1,...,k}

where bil ∈ Cb (Eri) for any l ∈ N and i ∈ {1, ..., k} such that∏
i∈{1,...,k}

bil →
∏

i∈{1,...,k}

1Ori×...×Ork×Es×Et

pJ
′
x0
-almost surely and∏

i∈{1,...,k}

bil →
∏

i∈{1,...,k}

1Ori×...×Ork×Es

p
J
′\{t}
x0 -almost surely. For f ∈ Cb(Es) by the assumption P (t− s) 1 = 1
the map P (t− s) f remains bounded and∫

EJ
′

(
f(t) · 1Or1 (r1) · ... · 1Ork (rk)

)
pJ
′

x0
(dr1, ..., drk, ds, dt)

= lim
l→∞

∫
EJ
′

(
f(t) · b1l (r1) · ... · bkl (rk)

)
pJ
′

x0
(dr1, ..., drk, ds, dt)

= lim
l→∞

lim
R→∞

∫
EJ
′

(
f(t) · b1l (r1) · ... · bkl (rk)

)
µR,J

′

x0
(dr1, ..., drk, ds, dt)

= lim
l→∞

lim
R→∞

∫
EJ
′ \{t}

1{ρr1 (y)<R} · ... · 1{ρrk (y)<R} · ...

·
(
P (t− s) f(s) · b1l (r1) · ... · bkl (rk)

)
p
J
′
\{t}

x0 (dr1, ..., drk, ds)

= lim
l→∞

∫
EJ
′ \{t}

(
P (t− s) f(s) · b1l (r1) · ... · bkl (rk)

)
p
J
′
\{t}

x0 (dr1, ..., drk, ds)

=

∫
EJ
′ \{t}

(
P (t− s) f(s) · 1Or1 (r1) · ... · 1Ork (rk)

)
p
J
′
\{t}

x0 (dr1, ..., drk, ds).

This shows Equation 2.3.14.
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In the third step of the proof, we show that for the right continuous
enlargement (see De�nition A.3.76)

(Ft)t∈R+
:=
(
F0
t+

)
t∈R+

the equation

Ex0 [f(λt)| Fs] = P (t− s) f(λs)

holds as well Px0- almost surely for f ∈ Bρ(E) and t ≥ s ≥ 0 and any
x0 ∈ E. We �x such x0 and f ∈ Bρ(E). By Proposition A.3.95

(2.3.17) Ex0 [f(λt)| Fs] = lim
r↘s

Ex0

[
f(λt)| F0

r

]
holds true Px0- almost surely for any t ≥ s ≥ 0. Thus, it is su�cient
to show

P (t− s) f(λs) = lim
r↘s

P (t− r) f(λr)

Px0- almost surely for any t ≥ s ≥ 0. Since we know by Equation
2.3.17 that the Px0- almost sure limit exists, by Proposition A.3.53 it
is enough to show that

P (t− s) f(λs) = lim
r↘s

P (t− r) f(λr)

holds in Px0- probability for any t ≥ s ≥ 0. We show this �rst for
s = 0. In this case, the left hand side is deterministic by Px0 ◦ (λ0)−1 =
δx0 , hence by Proposition A.3.52 it is su�cient to show convergence in
law (see De�nition A.3.51). Therefore, we have to show that for any
h ∈ Cb(R)

(2.3.18) lim
r↘0

Ex0 [h (P (t− r) f(λr))] = h (P (t) f(x0)) .

The map

[0, t]→ Bρ(E)

r → P (t− r) f

is continuous by Theorem 2.3.51 and

Bρ(E)→ Bρ(E)

P (t− r) f → h ◦ (P (t− r) f)

is continuous by Lemma 2.3.45. Thus, since [0, t] is compact and images
of compact sets under continuous mappings are compact, by strong
continuity of (P (t))t∈R+

Lemma 1.4.7 yields
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lim
r↘0

(Ex0 [h (P (t− r) f(λr))]− (h ◦ P (t) f) (x0))

= lim
r↘0

(P (r) (h ◦ P (t− r) f) (x0)− (h ◦ P (t) f) (x0))

=

(
lim
r↘0

P (r)

(
lim
r↘0

h ◦ P (t− r) f
)

(x0)− (h ◦ P (t) f) (x0)

)
= 0.

Thus, Equation 2.3.18 holds and

P (t) f(λ0) = lim
r↘0

P (t− r) f(λr)

in Px0- probability for t ≥ 0. We still need to show

P (t− s) f(λs) = lim
r↘s

P (t− r) f(λr)

Px0- almost surely for any t ≥ s ≥ 0. For ε > 0, by de�nition of
Bρ0·ρr−s (E0 × Er−s) there exists (fn)n∈N ⊂ Cb (E0 × Er−s) such that
fn (x, y)→ P (t− s) f (x)− P (t− r) f (y) for any (x, y) ∈ E0 × Er−s.
Then by dominated convergence

lim
r↘s

Ex0

[
1|P (t−s)f(λ0)−P (t−r)f(λr−s)|>ε ◦ θs

]
= lim

r↘s
lim
n→∞

Ex0

[
1|fn(λ0,λr−s)|>ε ◦ θs

]
.

The set
On := |fn(λ0, λr−s)| > ε

is open, hence by Corollary 2.3.10 there is a sequence (hn,m)m∈N ⊂
Cb (E0 × Er−s) such that Px0-almost surely

1On = lim
m→∞

hn,m,

and 0 ≤ hn,m ≤ 1On . By Lemma 2.3.67 we can approximate hn,m by
cylinder functions and by Proposition 2.3.52 (iv) we obtain

lim
r↘s

Ex0

[
1|P (t−s)f(λ0)−P (t−r)f(λr−s)|>ε ◦ θs

]
= lim

r↘s
lim
n→∞

lim
m→∞

Ex0 [hn,m ◦ θs]

= lim
r↘s

lim
n→∞

lim
m→∞

Ex0 [Eλs [hn,m]]

≤ lim
r↘s

lim
n→∞

Ex0 [Eλs [1On ]]

= lim
r↘s

Ex0

[
Eλs

[
1|P (t−s)f(λ0)−P (t−r)f(λr−s)|>ε

]]
= 0.
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This yields

P (t− s) f(λs) = lim
r↘s

P (t− r) f(λr)

in Px0- probability hence Px0- almost surely since we know by Equation
2.3.17 that the Px0- almost sure limit exists. Thus,

Ex0 [f(λt)| Fs] = P (t− s) f(λs).

�

Adapting a proof in [4], we can show:

Lemma 2.3.67. Let (Ei, ρi) i ∈ {1, ..., n} be weighted spaces and

ρ (x1, ..., xn) := ρ1 (x1) · · · ρn (xn) .

Then the linear map

Ψ : Bρ1(E1)⊗ ...⊗Bρn(En)→ Bρ(E1 × ...× En)

f1 ⊗ ...⊗ fn → f1 · · · fn

is injective and its image is a dense linear subspace of Bρ(E1×...×En).

Proof. First, we observe that by Lemma 2.3.18

(E1 × ...× En, ρ)

is indeed a weighted space. Furthermore, for fi ∈ Bρi(Ei), i ∈ {1, ..., n}
the map

(x1, ..., xn)→ f1(x1) · · · fn(xn)

is in Bρ(E1 × ...× En). In order to see this, observe that clearly

sup
(x1,...,xn)∈E1×...×En

∣∣∣∣ f1(x1) · · · fn(xn)

ρ1 (x1) · · · ρn (xn)

∣∣∣∣ <∞.
Let ε > 0. For sequences (gmi )m∈N ⊂ Cb(Ei), i ∈ {1, ..., n} such that

lim
m→∞

‖gmi − fi‖ρi = 0

we obtain for (gm)m∈N ⊂ Cb(E1 × ...× En) de�ned as

gm := gm1 · · · gmn ,
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for m large enough the inequality

‖f1 · · · fn − gm‖ρ

= sup
(x1,...,xn)∈E1×...×En

∣∣∣∣ f1(x1) · · · fn(xn)

ρ1 (x1) · · · ρn (xn)
− gm1 (x1) · f2(x2) · ·fn(xn)

ρ1 (x1) · · · ρn (xn)

+
gm1 (x1) · f2(x2) · ·fn(xn)

ρ1 (x1) · · · ρn (xn)
− gm1 (x1) · · · gmn (xn)

ρ1 (x1) · · · ρn (xn)

∣∣∣∣
≤ sup

(x1,...,xn)∈E1×...×En

∣∣∣∣f1(x1)− gm1 (x1)

ρ1 (x1)

∣∣∣∣︸ ︷︷ ︸
<ε

∣∣∣∣ f2(x2) · · · fn(xn)

ρ2 (x2) · · · ρn (xn)

∣∣∣∣

+

∣∣∣∣gm1 (x1)

ρ1 (x1)

∣∣∣∣︸ ︷︷ ︸
<‖fi‖ρi+ε

∣∣∣∣ f2(x2) · ·fn(xn)

ρ2 (x2) · · · ρn (xn)
− gm2 (x2) · · · gmn (xn)

ρ2 (x2) · · · ρn (xn)

∣∣∣∣
 ,

and hence inductively

lim
m→∞

‖gm − f‖ρ = 0.

Thus,
(x1, ..., xn)→ f1(x1) · · · fn(xn)

is in Bρ(E1 × ...× En).
The map

Bρ1(E1)× ...Bρn(En)→ Bρ(E1 × ...× En)

(f1, ..., fn)→ f1 · ... · fn

is multilinear. Therefore, by de�nition of the tensor product (Proposi-
tion A.2.7) there exists a linear map

Bρ1(E1)⊗ ...⊗Bρ1(E1)→ Bρ(E1 × ...× En)

f1 ⊗ ...⊗ fn → f1 · · · fn.

In order to show injectivity of this map, for

0 6= u ∈ Bρ1(E1)⊗ ...⊗Bρn(En)

according to Lemma A.2.8 we choose a representation

u =
m∑
j=1

f j1 ⊗ ...⊗ f jn,
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with
{
f ji
}
j∈{1,...,m} ⊂ Bρi(Ei) for any i ∈ {1, ..., n} and{

f j1
}
j∈{1,...,m} , ...,

{
f jn
}
j∈{1,...,m}

linearly independent. We need to show that
m∑
j=1

f j1 · ... · f jn 6= 0.

It is enough to observe that by linear independence of{
f j1
}
j∈{1,...,m} , ...,

{
f jn−1

}
j∈{1,...,m}

there are zi ∈ Ei such that f 1
i (zi) 6= 0 for any i ∈ {1, ...,m− 1}, hence

f 1
1 (z1) · · · f 1

n−1(zn−1) 6= 0,

and by linear independence of {f jn}j∈{1,...,m}
m∑
j=1

f j1 (z1) · · · f jn−1(zn−1)f jn 6= 0.

Thus, there is some zn ∈ En such that
m∑
j=1

f j1 (z1) · · · f jn−1(zn−1)f jn(zn) 6= 0,

and Ψ is injective.
Density of the image of Ψ follows directly from Stone-Weierstrass

for Bρ-spaces (Proposition 2.3.46) as the image contains an algebra
that separates points and contains 1E1×...×En . �

Corollary 2.3.68. Let (Ei, ρi) i ∈ {1, ..., n} be weighted spaces
and

ρ (x1, ..., xn) := ρ1 (x1) · · · ρn (xn) .

Then the linear map

Ψ : B̃ρ1(E1)⊗ ...⊗ B̃ρn(En)→ B̃ρ(E1 × ...× En)

f1 ⊗ ...⊗ fn → f1 · · · fn

is injective and its image is a linear subspace of D ⊂ B̃ρ(E1× ...×En)
given by

D :=


m∑
j=1

f j1 · ... · f
j
n, m ∈ N, f ji ∈ B̃ρi(Ei), i ∈ {1, ..., n} , j ∈ {1, ...,m}

 .

Proof. The proof is a simpli�ed version of the proof of Lemma
2.3.67. �



190 2. MARKOV, FELLER AND GENERALIZED FELLER SEMIGROUPS

In Theorem 2.3.65 due to problems with the measurability of

x→ Px [A]

for A ∈ B(E)R+ as initial distributions of the generalized Feller pro-
cess we could only use Dirac measures. However, when the admissible
weight function is Baire measurable it is possible to use initial distri-
butions inMρ(E):

Proposition 2.3.69. Let ρ be Baire measurable. Let (P (t))t∈R+
be

a generalized Feller semigroup on Bρ(E) such that for all t ∈ R+

P (t)1 = 1,

and
‖P (t)‖ ≤Meωt

for ω ∈ R and M ≥ 1. Then on the measurable space(
ER+ ,B(E)R+

)
for any probability measure ν ∈Mρ(E) there exists a measure Pν with
mass ν(E) and a right continuous �ltration (Ft)t∈R+

(see De�nition
A.3.75) such that for any t ≥ s ≥ 0 and any f ∈ Bρ(E) the canonical
process (λt)t∈R+

is adapted with respect to (Ft)t∈R+
,

(2.3.19) Eν [f(λt)| Fs] = P (t− s) f(λs)

holds true Pν -almost surely, and
Pν ◦ λ−1

0 = ν.

Proof. By Theorem 2.3.65 for any x0 ∈ E for the Dirac distribu-
tion ν = δx0 the statement of the proposition holds true. Moreover, we
observe that by de�nition for any R > 0 the map 1{y∈E: ρ(y)<R} is Baire
measurable. By Proposition 2.3.52 (p(t)) is a semigroup of transition
probabilities with respect to the Baire σ-algebra B0(E). Thus, we can
show inductively that for any R > 0 , any �nite J ⊂ R+ and any
A ∈ (B0(E))J for (

µR,Jx0

)
J⊂R+, �nite

and for (
pJx0

)
J⊂R+, �nite

as de�ned in Theorem 2.3.65 the maps

x0 → µR,Jx0
(A)

and
x0 → pJx0

(A)
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are measurable with respect to B0(E). Therefore, for 0 ≤ r1 < r2

we can de�ne µR,{r1,r2}ν ∈ Mρr1⊗ρr2 (Er1 × Er2) by Riesz representation
(Proposition 2.3.52) on Er1×Er2 , and Lemma 2.3.67 and the continuous
functional

fr1 · fr2 →
∫
E

(∫
Er1

(
1{ρr1 (y)<R} · fr1(y) · P (r2 − r1)fr2(y)

)
p(r1)(x, dy)

)
ν(dx)

for fr1 ∈ Bρr1 (Er1) and fr2 ∈ Bρr2 (Er2) as the unique measure in
Mρr1⊗ρr2 (Er1 × Er2) such that∫

E

(∫
Er1

(
1{ρr1 (y)<R} · fr1(y) · P (r2 − r1)fr2(y)

)
p(r1)(x, dy)

)
ν(dx)

=

∫
Er1×Er2

fr1(y)fr2(z)µR,{r1,r2}ν (dy, dz).

Inductively, as in the proof of Theorem 2.3.65 we can de�ne for any
probability measure ν ∈Mρ(E) the family(

pJν
)
J⊂R+, �nite

of probability measures on the respective measurable spaces(
EJ ,B

(
EJ
))
J⊂R+, �nite

.

Moreover, for any n ∈ N and any arbitrary �nite index set J :=
{r1, ..., rn} ∈ Rn

+ , 0 ≤ r1 < ... < rn for fr1 ∈ Cb(Er1) ,..., frn ∈ Cb(Ern)∫
Er1×...×Ern

fr1 (y1) · ... · frn (yn)pJν (dy1, ..., dyn).

=

∫
E

(
lim
R→∞

∫
Er1×...×Ern−1

1{ρr1 (y1)<R} · ... · 1{ρrn (yn)<R}(
fr1 (y1) · ... · frn−1 (yn−1)P (rn − rn−1)frn (yn−1)

)
p
J\{rn}
x (dy1, ..., dyn−1)

)
ν(dx)

=

∫
E

(∫
Er1×...×Ern

fr1 (y1) · ... · frn (yn)pJx(dy1, ..., dyn)

)
ν(dx).

Furthermore, by dominated convergence it follows that for any bounded
Baire-measurable maps gr1 ∈ `∞(Er1) ,..., grn ∈ `∞(Ern)∫

Er1×...×Ern
gr1 (y1) · ... · grn (yn)pJν (dy1, ..., dyn).

=

∫
E

(∫
Er1×...×Ern

gr1 (y1) · ... · grn (yn)pJx(dy1, ..., dyn)

)
ν(dx).(2.3.20)

This shows with the results of the proof of Theorem 2.3.65 that the
family (

pJν
)
J⊂R+, �nite
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is projective. By generalized Kolmogorov extension theorem (Theorem
A.3.104) this yields a probability measure Pν on

(
ER+ ,B(E)R+

)
. It

follows that

Pν
((

Π
R+

J

)−1

(A)

)
=

∫
E

pJx(A)ν(dx),

and
Pν ◦ (λ0)−1 = ν,

and for any f ∈ Bρ(E) and any r ≥ 0

Eν [f(λr)] =

∫
E

P (r)f(x)ν(dx) <∞.

As in Theorem 2.3.65 one can show that for any t ≥ s ≥ 0 and any
f ∈ Bρ(E) for the natural �ltration(F0

t )t∈R+

Eν
[
f(λt)| F0

s

]
= P (t− s) f(λs)

holds true Pν -almost surely.
In the last part of the proof, we show that for the right continuous

enlargement (Ft)t∈R+
of the natural �ltration

EPν [f(λt)| Fs] = P (t− s) f(λs)

holds as well Pν- almost surely for f ∈ Bρ(E) and t ≥ s ≥ 0 and any
probability measure ν ∈ Mρ(E) . In Theorem 2.3.65 this was shown
for any x0 ∈ E for the Dirac distribution ν = δx0 . As in Theorem
2.3.65

P (t) f(λ0) = lim
r↘0

P (t− r) f(λr)

in Px0- almost surely for any t ≥ 0. By de�nition of the Baire σ-algebra
the map

x→ 1|P (t)f(λ0)−P (t−r)f(λr)|>ε(x)

is Baire measurable. Then by Equation 2.3.20 and dominated conver-
gence

lim
r↘0

Eν
[
1|P (t)f(λ0)−P (t−r)f(λr)|>ε

]
=

∫
E

(
lim
r↘0

Ex0

[
1|P (t)f(λ0)−P (t−r)f(λr)|>ε

])
dν(x0)

= 0

and
P (t) f(λ0) = lim

r↘0
P (t− r) f(λr)

in Pν- probability hence Pν- almost surely since we know by Proposition
A.3.95 that

EPν [f(λt)| Fs] = lim
r↘s

EPν
[
f(λt)| F0

r

]
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and that the Pν- almost sure limit exists. The rest follows as in Theo-
rem 2.3.65 �

Proposition 2.3.70. Let (λt)t∈R+
be a generalized Feller process

on (E, ρ). For t ∈ R+ let

θt : ER+ → ER+

be the map
(ω(s))s∈R+

→ (ω(s+ t))s∈R+
.

For any �nite J ⊂ R+ and i ∈ J let f ∈ Cb
(
EJ
)
or let f ∈ Bρ⊗J

(
EJ
)

such that
f := fi · g

with g ∈ Cb(EJ\{i}) and fi ∈ Bρi (Ei). For any such f let Eλt
[
f ◦ Π

R+

J

]
be the composition of x→ Ex

[
f ◦ Π

R+

J

]
and

ER+ → E

ω → λt(ω).

Then if ρ is Baire measurable then for any t > 0 and any ν ∈
Mρ(E)

(2.3.21) Eν
[
f ◦ Π

R+

J ◦ θt
∣∣∣F0

t

]
= Eλt

[
f ◦ Π

R+

J

]
holds true Pν-almost surely.

Proof. For any i, j ∈ J denote by ej,i the map

E{j} → E{i}

x→ x.

For t ∈ R+ denote
J + t :=

⋃
j∈J

{j + t} .

For any f such that Ex [f ] is de�ned for any x ∈ E we can approximate
f by cylinder functions according to Lemma 2.3.67. Then by Propo-
sition 2.3.52 Eλt [f ] is F0

t - measurable. We need to show that for any
such f and any A ∈ F0

t

Eν [(f ◦ θt) 1A] = Eν [Eλt [f ] 1A]

holds true. Since one can easily show that the system of sets D ∈ F0
t

for which
Eν [(f ◦ θt) 1D] = Eν [Eλt [f ] 1D]
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holds is a Dynkin system, by Lemma A.3.15 it is enough to show

Eν [(f ◦ θt) 1G] = Eν [Eλt [f ] 1G]

for any G ∈ G, where G is an intersection stable generator of F0
t .

Therefore, choosing n ∈ N, 0 ≤ s1 < ... < sn ≤ t and Fsi ∈ B (Esi) ,
i ∈ {1, ..., n} arbitrary and denoting

J ′ := {s1, ..., sn}
it is enough to show that

Eν [(f ◦ θt) 1B′ ] = Eν [Eλt [f ] 1B′ ]

holds true for
B′ = {λs1 ∈ F s1 , ..., λsn ∈ Fsn} .

Let g :=
∏
j∈J
gj with gj ∈ Cb(Ej). We observe that for any x0 ∈ E

Ex0
[
g ◦Π

R+

J

]
= P (s1)

(
gs1 · ...P (sn−1 − sn−2)

(
gsn−1 · P (sn − sn−1)gsn

))
(x0).(2.3.22)

Denote

J̃ := (J + t) ∪ {t} ∪ J ′.
By de�nition

Eν
[(
g ◦ Π

R+

J ◦ θt
)

1B′
]

=

(∫
EJ̃

(∏
j∈J

gj (et+j,j (xt+j))

)
1{xs1∈Fs1 ,...,xsn∈Fsn}p

J̃
ν (dxJ̃)

)
.

Since pJ̃ν is a Radon measure for any probability measure ν ∈ Mρ(E),
by Corollary 2.3.10 for any such ν and i ∈ {1, ..., n} there exists a
sequence

(
hmi,x0

)
m∈N ⊂ Cb (Esi) such that

hmi,x0
1
EJ̃\{si} → 1{ΠJ̃si∈F si}

pJ̃ν -almost surely and

hmi,x0
1
E{t}∪J

′\{si} → 1{
Π
{t}∪J′
si

∈F si
}

p
{t}∪J ′
ν -almost surely (where ΠJ̃

si
and Π

{t}∪J ′
si are the projections from

De�nition A.1.6). Then by Equation2.3.20(∫
EJ̃

(∏
j∈J

gj (et+j,j (xt+j))

)
1{xs1∈Fs1 ,...,xsn∈Fsn}p

J̃
ν (dxJ̃)

)

=

∫
E0

lim
m→∞

∫
EJ̃

(∏
j∈J

gj (et+j,j (xt+j))

) ∏
i∈{1,...,n}

hmi,x0 (xsi)

 pJ̃x0(dxJ̃)

 dν(x0).
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Applying the de�nition of pJ̃x0
multiple times and dominated conver-

gence a comparison with Ex
[
g ◦ Π

R+

J

]
yields

∫
E0

lim
m→∞

∫
EJ̃

(∏
j∈J

gj (et+j,j (xt+j))

) ∏
i∈{1,...,n}

hmi,x0 (xsi)

 pJ̃x0(dxJ̃)

 dν(x0)

=

∫
E0

lim
m→∞

∫
EJ̃

(
Ext

[
g ◦Π

R+

J

]) ∏
i∈{1,...,n}

hmi,x0 (xsi)

 p{t}∪J
′

x0 (dxJ̃)

 dν(x0)

=

(∫
EJ̃

(
Ext

[
g ◦Π

R+

J

])
1{xs1∈Fs1 ,...,xsn∈Fsn}p

{t}∪J′
ν (dxJ̃)

)
,

where we again used Equation2.3.20 in the last step. Thus,

Eν
[(
g ◦ Π

R+

J ◦ θt
)

1B′
]

= Eν
[
Eλt
[
g ◦ Π

R+

J

]
1B′
]
.

For f ∈ Bρ⊗J
(
EJ
)
such that

f := fi · g

with g ∈ Cb(EJ\{i}) and fi ∈ Bρi (Ei)

Eν
[(
f ◦ Π

R+

J ◦ θt
)

1B′
]

= Eν
[
Eλt
[
f ◦ Π

R+

J

]
1B′
]

follows from dominated convergence, which yields the assertion of the
proposition. �

In Theorem 2.3.65 for the generalized Feller semigroup (P (t))t∈R+

we required
P (t)1 = 1 for all t ∈ R+,

which means that for any t ∈ R+ P (t) is an isometry with respect to
the supremum norm. We would like to replace this condition by one
that instead depends on the ‖·‖ρ-norm.

We recall the cemetery ∆ from Remark 2.1.2 and equip E ∪ {∆}
with a topology such that

B(E ∪ {∆}) = σ (B(E), {∆}) .

Consistent with the convention in Remark 2.1.2, we de�ne Bρ(E∪{4}
as the space of maps f such that f |E ∈ Bρ(E) and f(∆) = 0. The
space C0 (E ∪ {4}) is de�ned in the same way.

Definition 2.3.71. Let (P (t))t∈R+
be a generalized Feller semi-

group on Bρ(E), let ν be a probability measure on

(E ∪ {∆} ,B(E ∪ {∆}))
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and let (γt)t∈R+
be an adapted stochastic process on the �ltered prob-

ability space(
(E ∪ {4})R+ ,B(E ∪ {∆})R+ , (Ft)t∈R+

,P′ν
)
.

If for any t ≥ s ≥ 0 and any real-valued map f on E ∪ {∆} that is
bounded and Baire-measurable

(2.3.23) EP′ν [f(γt)| Fs] =
P (t− s) (f · ρ)

ρ
(γs)

holds true P′ν -almost surely and

P′ν ◦ γ−1
0 = ν,

then (γt)t∈R+
is called extended Feller process with respect to (Ft)t∈R+

and with respect to (P (t))t∈R+
with initial distribution v.

The reason why these processes a named in such a way will become
clear in Theorem 2.3.93.

Remark 2.3.72. As for generalized Feller processes, due to the
subtle measurability conditions extended Feller processes are in general
not Markov processes in the classical sense but on separable locally
compact spaces this is the case.

For contractive generalized Feller semigroups we obtain existence
of extended Feller processes as can be seen in the next theorem. We
remind the reader of the convention in Proposition 2.3.52(ii) that for
all positive measurable maps f : E → R (or f ∈ B̃ρ(E))

P̃ (t)f(x) : =

∫
E

f(y)p(t)(x, dy)

will simply be written as P (t)f(x).

Theorem 2.3.73. Let ρ be measurable with respect to the Baire
σ-algebra B0(E). Let (P (t))t∈R+

be a generalized Feller semigroup on
Bρ(E) such that for all t ∈ R+

‖P (t)‖L(Bρ(E)) ≤ 1.

Then for any probability measure ν on

(E ∪ {∆} ,B(E ∪ {∆}))

there exists a probability measure P′ν on the measurable space(
(E ∪ {4})R+ ,B(E ∪ {∆})R+

)
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such that for the canonical process (γt)t∈R+
and the natural �ltration

(F0
t )t∈R+

for any t ≥ s ≥ 0 and any real-valued map f on E∪{∆} that
is bounded and Baire-measurable

(2.3.24) EP′ν

[
f(γt)| F0

s

]
=
P (t− s) (f · ρ)

ρ
(γs)

holds true P′ν - almost surely and

P′ν ◦ γ−1
0 = ν.

If f is such that f · ρ ∈ Bρ(E ∪ {4}) then Equation 2.3.24 holds true
also for the right continuous extension of the �ltration.

Proof. We �rst de�ne a family of sub-probability measures on the
space (

(E ∪ {∆})J , (B (E ∪ {∆}))J
)
J⊂R+, �nite

.

After showing that this family of probability measures is projective,
we can apply the generalized Kolmogorov extension theorem (Theorem
A.3.104) and obtain the statement of this theorem. This proof is based
on the one of Theorem 2.3.65.

We �x some probability measure ν on (E ∪ {∆} ,B(E ∪ {∆})). In
the �rst step of the proof, we de�ne a family of probability measures((

pJν
))
J⊂R+, �nite

on (
(E ∪ {∆})J , (B (E ∪ {∆}))J

)
J⊂R+, �nite

.

We �x some s ∈ R+ and by Theorem 2.3.37 we �nd p(s)(x, ·) ∈Mρ(E)
such that

P (s)f(x) =

∫
E

f(y)p(s)(x, dy) for all x ∈ Y.

By Proposition 2.3.52 for all x ∈ E
P (s)ρ(x) ≤ ρ(x),

and we de�ne for all x ∈ E the measures q(s)(x, ·)

q(s)(x,A) :=

∫
E

1A(y)
ρ(y)

ρ(x)
p(s)(x, dy) for A ∈ B(E).

Consequently, q(s)(x,E) ≤ 1. For any s ∈ R+ for any x ∈ E we de�ne
the measures q̃(s)(x, ·) on E ∪ {∆} by

q̃(s)(x, ·)|B(E) := q(s)(x, ·)
and

q̃(s)(x, {∆}) := 1− q(s)(x,E).
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Furthermore
q̃(s)(∆, {∆}) := 1

for any s ∈ R+. Thanks to Proposition 2.3.52 (iv), on the space
˜̀∞(E ∪ {∆})

of bounded Baire measurable maps we can de�ne the semigroup (Q(t))t∈R+

by

Q(t)f(x) =

∫
E

f(y)q̃(t)(x, dy).

For any �nite J := {r1, ..., rn} ⊂ R+ by Lemma 2.3.67 there is a unique
continuous map jJ,ν : Bρ⊗J ((E ∪ {∆})J)→ R such that

fr1 · ... · frn →
∫
E
Q(r1)

((
fr1
ρr1

)
· ... ·

(
Q(rn−1 − rn−2)

(
frn−1

ρrn−1

)
·
(
Q(rn − rn−1)

(
frn
ρrn

))))
(x0)ν(dx0)

for any f ∈ Bρ⊗J
(

(E ∪ {∆})J
)
given by

f(xJ) :=
∏
j∈J

fj(xj).

By Theorem 2.3.37 there exists a unique �nite positive Radon measure

µJν ∈Mρ⊗J
(

(E ∪ {∆})J
)
,

such that for any f ∈ Bρ⊗J
(

(E ∪ {∆})J
)
.

jJ,ν(f) =

∫
EJ
f(xJ)µJν (dxJ),

and ∫
EJ
ρ⊗J(xJ)µJν (dxJ) = 1.

We de�ne the family of �nite measures(
qJν
)
J⊂R+, �nite

on (
(E ∪ {∆})J ,B((E ∪ {∆})J)

)
J⊂R+, �nite

by

B(EJ)→ [0, 1]

A→
∫
A

ρ⊗J(xJ)µJν (dxJ).

We �rst observe the non-obvious fact that for any �nite J ⊂ R+ the
measure pJν is a Radon measure (since the space EJ is non necessarily



2.3. GENERALIZED FELLER SEMIGROUPS 199

polish). Fix a �nite J̃ ⊂ R+. Let A ∈ B
(
E J̃
)
and ε > 0 be arbitrary.

Then by
⋃
R>0

KR = E there exists Rε > 0 such that

qJ̃ν

(
E J̃ \ (KRε)

J̃
)
<
ε

2
.

Since µJ̃ν is a Radon measure there exists K ⊂ A ∩ (KRε)
J̃ such that

µJ̃ν

(
A ∩ (KRε)

J̃ \K
)
<

ε

2Rε

.

Thus,

qJ̃ν (A \K) ≤ qJ̃ν

(
E J̃ \ (KRε)

J̃
)

+ qJ̃ν

(
A ∩ (KRε)

J̃ \K
)

≤ ε

2
+
ε

2
,

and the probability measure qJ̃ν is inner regular, hence a Radon measure.
We need to show that the family(

qJν
)
J⊂R+, �nite

is projective. To this end, it is su�cient to show for any �nite J :=
{r1, ..., rn} ⊂ R+ and j ∈ {1, ..., n} for any Ai ∈ B(E ∪ {∆})ri , i ∈
{1, ..., n} \ {j}

qJν (A1×...×Aj−1×Ej×Aj+1...×An) = qJ\{rj}ν (A1×...×Aj−1×Aj+1...×An).

We observe that by Corollary 2.3.10 indicator functions of open sets can
be approximated almost surely by continuous bounded maps. Hence,
any set in the Borel σ-algebra can be approximated almost surely by
continuous bounded maps. With such approximations and dominated
convergence projectivity of the family(

qJν
)
J⊂R+, �nite

follows from the de�nition of the family(
µJν
)
J⊂R+, �nite

on the cylinder functions.
In the last step of the proof, as in the proof of Theorem 2.3.65 on

can easily show that

C : = {C : C compact, C ⊂ KR for some R ≥ 0}⋃
{C ∪ {∆} : C compact, C ⊂ KR for some R ≥ 0}
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is a compact class in E ∪ {∆} and that for each t ∈ R+ and A ∈
B(E ∪ {∆})(

q{t}ν
)

(A) = sup
{(
q{t}ν
)

(C) : C ⊂ A and C ∈ C
}
,

such that we can apply Theorem A.3.104. This yields a measure P′ν on(
(E ∪ {∆})R+ , (B(E ∪ {∆})) R+

)
.

Furthermore,
P′ν ◦ γ−1

0 = ν,

by de�nition of P′ν via the functional j{0},ν .
Equation 2.3.24 follows from the fact that we can approximate

bounded Borel-measurable functions almost surely by continuous bounded
function according to Corollary 2.3.10 and the same reasoning as in the
proof of Theorem 2.3.65.

Finally, for f such that f · ρ ∈ Bρ(E ∪{4}) right continuity of the
�ltration follows as in the proof of Theorem 2.3.65 for

(Ft)t∈R+
:=
(
F0
t+

)
t∈R+

.

�

Corollary 2.3.74. Let ρ be Baire measurable and let (P (t))t∈R+

be a generalized Feller semigroup on Bρ(E) such that for some ω ∈ R
and all t ∈ R+

‖P (t)‖L(Bρ(E)) ≤ eωt.

Then for any probability measure ν on (E ∪ {4} ,B(E ∪ {∆})) there
exists a probability measure P′ν on(

(E ∪ {4})R+ ,B(E ∪ {∆})R+

)
such that for the canonical process (γt)t∈R+

for any t ≥ s ≥ 0 and any
real-valued map f on E ∪ {∆} that is bounded and Baire-measurable

(2.3.25) EP′ν

[
f(γt)| F0

s

]
=
e−ωtP (t− s) (f · ρ)

ρ
(γs)

holds true P′ν - almost surely (where (F0
t )t∈R+

is the natural �ltration)
and

P′ν ◦ γ−1
0 = ν.

If f is such that f ·ρ ∈ Bρ(E ∪{4}) , then Equation 2.3.25 holds true
also for the right continuous extension of the �ltration.
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Proof. De�ne the rescaled semigroup (see Lemma 1.4.16) (S(t))t∈R+

for any t ∈ R+ by
S(t) := e−ωtP (t).

Then clearly (S(t))t∈R+
is also a generalized Feller semigroup and satis-

�es the conditions of Theorem 2.3.73. This directly yields the statement
of this corollary. �

Remark 2.3.75. (P (t))t∈R+
be a generalized Feller semigroup and

let (p(t)(x, ·))t∈R+, x∈E be the family of positive �nite Radon measures
from Proposition 2.3.52. Comparing

q(s)(x, dy) :=
ρ(y)

ρ(x)
p(s)(x, dy)

and p(s)(x, dy) we see that since p(s)(x, ·) integrates ρ which becomes
arbitrarily large outside of compact sets , p(s)(x, ·) must have a very
small mass in the periphery (the set, where ρ is large). In the center
(the set, where ρ is small) however, the mass of p(s)(x, ·) may be very
large (but �nite). On the other hand, by de�nition q(s)(x, ·) has less
mass than p(s)(x, ·) in the center but more in the periphery. Under
the right condition (namely ‖P (s)‖L(Bρ(E)) = 1) such rescaling of mass
leads to q(s)(x, ·) being a sub-probability measure even when the mass
of p(s)(x, ·) is greater than one (but �nite).

If the conditions of both of Theorem 2.3.73 and of Theorem 2.3.65
are satis�ed, then in comparison to the generalized Feller process (λt)t∈R+

the (sub-)probability measure q(s)(x, dy) drives the extended Feller
process (γt)t∈R+

with higher probability to areas where ρ is large and
reduces the probability for areas where ρ is small to be entered by the
process. So relatively speaking, we can say that the generalized Feller
process (λt)t∈R+

�lives more in the center� whereas the extended Feller
process (γt)t∈R+

�lives more in the periphery�. Thus, if the process
(γt)t∈R+

starts in the periphery at x ∈ E and map the f is small in the
periphery then over time Ex(f(γt)) remains small. The precise result
can be found in Corollary 2.3.92.

Remark 2.3.76. By Jensen's inequality (Theorem A.3.73) for a
monotone concave (De�nition A.3.72) function ρ and a supermartingale
(λt)t∈R+

the inequality

Ex [ρ (λt)] ≤ ρ (Ex [(λt)]) ≤ ρ (Ex [(λ0)]) = ρ(x),
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holds true, hence the condition

‖P (t)‖L(Bρ(Y )) ≤ 1

holds true for (P (t))t∈R+
de�ned by P (t) : f → Ex [f (λt)] for any

t ∈ R+.

Remark 2.3.77. Of course in Theorem 2.3.65 and in Theorem
2.3.73 for an interval I ⊂ R+ that contains 0 we can also work on
the product spaces (

EI ,B(E)I
)
,

and (
E ∪ {∆}I , (B(E ∪ {∆})) I

)
respectively.

Remark 2.3.78. Let (P (t))t∈R+
be a generalized Feller semigroup

such that there exists a probability space (Ω,F ,P) and a family of
stochastic processes (λxt )t∈I, x∈E on(Ω,F ,P) where I = R+ or I ⊃ {0}
is an interval, such that P (λx0 = x) = 1 and Equation 2.3.13 holds
true. Then for λx := (λxt )t∈I, on

(
EI ,B(E)I

)
, and the distribution

Pλx (as in the sense of De�nition A.3.25) Px := Pλx is a probability
measure as in Theorem 2.3.65. Therefore, also the family of stochas-
tic processes (λxt )t∈I, x∈E will be called generalized Feller process. An
equivalent statement can be made about a family of stochastic pro-
cesses (γxt )t∈I, x∈E, Theorem 2.3.73, and extended Feller processes.

Next we want to compare the measures and thus the correspond-
ing canonical processes in Theorem 2.3.65 and in Theorem 2.3.73. It
is important to remember, that on the space

(
EI ,B(E)I

)
the canon-

ical processes (λt)t∈I and (γt)t∈I are the same. However, we choose
to denote them di�erently in order to point out that the probability
measures on the spaces

(
EI ,B(E)I

)
and(

(E ∪ {∆})I , (B(E ∪ {∆}))I
)

are di�erent.

Proposition 2.3.79. Let T > 0 and let I ⊂ R+ be an interval
that contains 0 or let I = R+ and let ρ be Baire measurable. Let
(P (t))t∈R+

be a generalized Feller semigroup on Bρ(E) such that both
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the conditions of Theorem 2.3.65 and of Theorem 2.3.73 are ful�lled.
Let

(p(t) (x, ·))t∈I,;x∈E
be the family of probability measures from Proposition 2.3.52 such that
for all x ∈ E, t ∈ R+ and f ∈ Bρ(E)

P (t)f(x) =

∫
E

f(y)p(t)(x, dy).

For any initial distribution ν denote by Pν the measure on(
EI ,B(E)I

)
such that for the canonical process (λt)t∈I Equation 2.3.13 holds true
for any t ≥ s, s, t ∈ I. Let

(q(t) (x, ·))t∈[0,T ];x∈E

be the family of (sub-) probability measures de�ned as

q(s)(x,A) :=

∫
E

1A(y)
ρ(y)

ρ(x)
p(s)(x, dy) for A ∈ B(E),

and for any initial distribution ν denote by P′ν the measure on(
(E ∪ {∆})I , (B(E ∪ {∆}))I

)
such that the canonical process (γt)t∈I ful�lls Equation 2.3.24 for any
t ≥ s, s, t ∈ I.

Then the following assertions hold true:
(i) For all t ∈ I

‖P (t)‖L(Bρ(E)) = 1,

and for x′0 ∈ arg min
x∈E

ρ(x)

P′x′0
∣∣∣
B(E)I

is a probability measure.
(ii) Let I = [0, T ] and let A ∈ B(E)[0,T ]. Then

P′ν [A] = EP′ν [1A] = EPν

[
1A ·

ρ(λT )

ρ(λ0)

]
,

and

EP′ν

[
1A ·

ρ(γ0)

ρ(γT )

]
= EPν [1A] = Pν [A]

hold true, hence P′ν |B(E)[0,T ] and Pν are equivalent measures (see De�-
nition A.3.32).
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Proof. (i) By Corollary 2.3.17

arg min
x∈E

ρ(x)

is non-empty. Let C := ρ(x′0) and let t ∈ I be arbitrary. Then by
positivity of generalized Feller semigroups

(P (t)ρ) ≥ (P (t) (C · 1))

and by assumption of Theorem 2.3.65

(P (t) (C · 1)) = (C · 1) .

Hence
(P (t)ρ) (x′0) ≥ C = ρ(x′0)

and by Proposition 2.3.52

(P (t)ρ) (x′0) ≤ ρ(x′0),

which proves
(P (t)ρ) (x′0) = ρ(x′0).

Since t ∈ I was arbitrary by Proposition 2.3.52

‖P (t)‖L(Bρ(E)) = 1,

holds true for any t ∈ I. The equation

E′x′0(1E(γt)) =
(P (t)ρ) (x′0)

ρ(x′0)
= 1

for any t ∈ I yields by de�nition of the probabilities P′x′0 in Theorem
2.3.65 for any t ∈ I

P′x′0(E[0,t]) = 1.

(ii) Just like P′ν |B(E)[0,T ] the map Qν :

A→ EPν

[
1A ·

ρ(λT )

ρ(λ0)

]
is a measure on (

E[0,T ],B(E)[0,T ]
)
.

Its mass is given by

Eν
[
1E[0,T ]

ρ(λT )

ρ(λ0)

]
=

∫
E

(∫
E

ρ(xT )p(T )(x0, dxT )

)
1

ρ(x0)
dν(x0)

= E′ν(1E(γT ))

= P′ν(E[0,T ]).
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By Proposition A.3.31, it is enough to show that Qν and P′ν |B(E)[0,T ]

coincide on an intersection stable generator of B(E)[0,T ]. This is in-
deed the case as for any x0 ∈ E , n ∈ N ,{t1, ..., tn} ⊂ [0, T ], and
At1 , ..., Atn ∈ B(E) one can approximate the indicator functions 1At1 ,
...,1Atn and ρ using an adaption of Corollary 2.3.10 by non-negative con-
tinuous bounded functions that converge almost surely with respect to
p
{0,t1,...,tn,T}
x0 , as de�ned in the proof of Theorem 2.3.65 and q{0,t1,...,tn,T}x0

, as de�ned in the proof of Theorem 2.3.73. Then one obtains by dom-
inated convergence, and the de�nition of the measuresP′ν and Pν
E′ν
[
1E[0,T ] · 1At1 (γt1 ) · ... · 1Atn (γtn )

]
= E′ν

[
1E(γT ) · 1At1 (γt1 ) · ... · 1Atn (γtn )

]
=

(∫
E

(∫
At1

...

(∫
Atn

(∫
E
ρ(xT )p(T − tn)(xtn , dxT )

)
p(tn − tn−1)(xtn−1 , dxtn )

)
...

)
1

ρ(x0)
dν(x0)

)

= EPν

[
1E(γT ) · 1At1 (γt1 ) · ... · 1Atn (γtn )

ρ ◦ λT
ρ ◦ λ0

]
.

�

Proposition 2.3.80. Let E = Rd for some d ∈ N, let I ⊂ R+ be an
interval containing 0 or all of R+ and let (λxt )t∈I be an Ito di�usion (see
Remark 2.1.27) with state space E with drift µ and di�usion matrix σ
(see Remark 2.1.27), i.e., let (λxt )t∈I,x∈E with λx0 = x P- a.s. satisfy the
stochastic di�erential equation

dλxt = µ(λxt )dt+ σ(λxt )dWt

with (Wt)t∈I the d-dimensional Brownian motion (see De�nition A.3.83)
on the �ltered probability space(

Ω,F , (Ft)t∈I ,P
)
.

Let (P (t))t∈I be a semigroup of linear bounded operators on Bρ(E)
de�ned by

P (t)f(x) := E [f(λxt )]

for f ∈ Bρ(E) and let

‖P (t)‖L(Bρ(E)) ≤ 1.

Letρ ∈ C2(E), and let P′ be another probability measure on(
Ω,F , (Ft)t∈I

)
such that for the family of stochastic processes (γxt )t∈I,x∈E with γx0 = x

P′-a.s. and any real-valued map f on E ∪ {∆} that is bounded and
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Baire-measurable

E′ [f(γxt )] =
P (t) (f · ρ)

ρ
(x)

holds true.
Then the drift µ′ = (µ′1, ..., µ

′
d) of (γt)t∈I with respect to P′ is given by

µ′i = µi+
d∑
j=1

dρ

dxj
(x)

σ2
ij(x)

ρ(x)
,

the di�usion matrix is σ′ = σ, and the killing rate c′ < 0 is

c′(x) =

 d∑
i=1

dρ

dxi
(x)µi(x) +

1

2

d∑
j=1

d∑
i=1

d2ρ

dxidxj
(x)σ2

ij(x)

 1

ρ(x)
.

(see De�nition 2.1.23).

Proof. By Ito formula (see Theorem A.3.115) and the assumption
‖P (t)‖L(Bρ(E)) ≤ 1 for any x ∈ E and t ∈ I

E [ρ(λxt )] = ρ(x) +

∫ t

0

 d∑
i=1

dρ

dxi
(x)µi(x) +

1

2

d∑
j=1

d∑
i=1

d2ρ

dxidxj
(x)σ2

ij(x)

 ds

≤ ρ(x).

Hence,
d∑
i=1

dρ

dxi
(x)µi(x) +

1

2

d∑
j=1

d∑
i=1

d2ρ

dxidxj
(x)σ2

ij(x) ≤ 0.

Furthermore, for any x ∈ E and f ∈ C2
c (E) the in�nitesimal generator

A ′ of (γt)t∈I is given by

A ′f(x) = lim
t↘0

E′ [f(γxt )]− f(x)

t

= lim
t↘0

1

t

(
P (t) (f · ρ)

ρ
(x)− f(x)

)
= lim
t↘0

1

t

(
E [(f · ρ)(λxt )]

ρ(x)
− f(x)

)

= lim
t↘0

1

t


(f · ρ)(x) +

∫ t
0

d∑
i=1

(
d(f ·ρ)
dxi

µi(λs)
)
ds+ 1

2

∫ t
0

d∑
j=1

d∑
i=1

(
d2(f ·ρ)
dxidxj

σ2
ij(λs)

)
ds

ρ(x)
− f(x)


=

d∑
i=1

d(f · ρ)

dxi
(x)

µi(x)

ρ(x)
+

1

2

d∑
j=1

d∑
i=1

d2(f · ρ)

dxidxj
(x)

σ2
ij(x)

ρ(x)
.

Applying the product rule yields the assertion of the Proposition. �
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Remark 2.3.81. If in Proposition 2.3.80
d∑
i=1

dρ

dxi
(x)µi(x) +

1

2

d∑
j=1

d∑
i=1

d2ρ

dxidxj
(x)σ2

ij(x) = 0

holds true, the change of measure from P to P′ only produces a drift
as extra term. Let 0 ≤ T < ∞. Let P̃T be the probability measure in
Girsanov (Theorem A.3.118) and let W̃ be the d-dimensional Brownian
motion with respect to P̃T de�ned by Wt = W̃t +

∫ t
0
a(λs)ds for a =(

a1, ..., ad
)

: Rd → Rd. Then by

dλt = µ(λt)dt+ σ(λt)dW̃t + σ(λt)a(λt)dt

= (µ(λt) + σ(λt)a(λt)) dt+ σ(λt)dW̃t,

the drift of (λt)t∈[0,T ] with respect to P̃T is µ(λt) + σ(λt)a(λt). Thus, if
a is such that for any x ∈ E and any 1 ≤ i ≤ d

d∑
j=1

dρ

dxj
(x)

σ2
ij(x)

ρ(x)
=

d∑
j=1

σij(x)aj(x)

holds true, then on [0, T ] the probability measure P̃T appearing in the
theorem of Girsanov is the probability measure P′ from Proposition
2.3.80.

Example 2.3.82. Let (E, ρ) be some weighted space and let (ψt)t∈R+

be a family of maps such that (P (t))t∈R+
de�ned as

P (t)(f) := f ◦ ψt
is a generalized Feller semigroup on Bρ(E) of transport type as de�ned
in Proposition 2.3.54. We �rst determine a generalized Feller process
and later choose a speci�c (ψt)t∈R+

and admissible weight function ρ
such that the conditions of Theorem 2.3.73 are satis�ed, which permits
us to construct a extended Feller process as in the proof of Theorem
2.3.73.

Regarding the generalized Feller process, for any x ∈ E de�ne

β(x) := (ψt(x))t∈R+
∈ ER+

and let
Px := δβ(x) ∈M1

(
ER+ ,B(E)R+

)
.

Then for the canonical process (λt)t∈R+
and any t ∈ R+ and any x ∈ E

Px (λt = ψt(x)) = 1,

hence for the �ltration (Ft)t∈R+
where for any t ∈ R+ Ft is simply

the σ-algebra generated by the B(E)R+-null sets, for t > s ≥ 0 and
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f ∈ Bρ(E) the stochastic process f(λt) is measurable with respect to
Fs and for any x ∈ E Px-almost surely

EPx [f(λt)| Fs] = f(λt)

= f ◦ ψt(x)

= (f ◦ ψt−s) (ψs(x))

= P (t− s) f(ψs(x))

= P (t− s) f(λs).

Furthermore, by de�nition

Px ◦ λ−1
0 = δx,

thus (λt)t∈R+
is a generalized Feller process.

Next, let in particular E = R and let ρ(x) := x2 + 1 be the admis-
sible weight function on E and let

ψt : E → E

x→ e−tx.

Then ‖P (t)‖L(Bρ(E)) ≤ 1 for any t ∈ R+ since for |f | ≤ ρ, f ∈ Bρ(E)
and any t ∈ R+

|P (t)f(x)|
ρ(x)

=
|f (ψt(x))|
ρ(x)

≤ ρ (ψt(x))

ρ(x)

=
ρ (e−tx)

ρ(x)

=
(e−tx)

2
+ 1

x2 + 1
≤ 1.

Thus, the conditions of Theorem 2.3.73 are satis�ed. By de�nition of Px
for any x ∈ E the semigroup of transition probabilities (q(t))t∈R+

of the
generalized Feller process (λt)t∈R+

is given by p(t)(x, dy) = δe−tx(dy)
for any t ∈ R+, x ∈ E. Thus, by construction in Theorem 2.3.73, the
semigroup of transition probabilities (q(t))t∈R+

of the process (γt)t∈R+

from Theorem 2.3.73 is given by

q(t)(x, dy) =
ρ(e−tx)

ρ(x)
δe−tx(dy)

=
e−2tx2 + 1

x2 + 1
δe−tx(dy)
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for any t ∈ R+, x ∈ E.

Example 2.3.83. (Geometric Brownian motion onE = {x ∈ R : x > 0}
with ρ(x) =

√
x)

Continuing Example 2.1.26, for any x ∈ E and 1
2
µ− 1

8
σ2 ≤ 0 let

Sxt = x exp

((
µ− σ2

2

)
t+ σWt

)
,

where (Wt)t∈R+
is the Brownian motion on (Ω,F ,P). We show that

(Sxt )t∈R+
is a generalized Feller process, that the conditions of Theo-

rem 2.3.73 are ful�lled and construct the corresponding extended Feller
process

(
(Sxt )

′
)
t∈R+

explicitly.

As seen in Example 2.1.26, for any t ∈ R+ PSxt is given by PSxt (A) =∫
A
κ(t)(x, y)dy for any A ∈ B(E) and,

κ(t)(x, y) =
1√
2π

1

yσ
√
t

exp

(
−
(
ln y − lnx−

(
µ− 1

2
σ2
)
t
)2

2σ2t

)
.

It was also shown that (Sxt )t∈R+
is a Markov process, hence for any

real-valued measurable map f on E that is bounded or positive and
any t ∈ R+

P (t)f(x) := E [f(Sxt )] ,

given by

P (t)f(x) =

∫
E

f(y)
1√
2π

1

yσ
√
t

exp

(
−
(
ln y − lnx−

(
µ− 1

2
σ2
)
t
)2

2σ2t

)
dy

is a Markov semigroup. We need to show that for any t ∈ R+ P (t) is
a linear map form Bρ(E) to Bρ(E) that is bounded. We calculate by
Ito formula (Theorem A.3.115)

E
[
(Sxt )1/2

]
= x1/2 + E

[∫ t

0

1

2
(Sxs )−1/2 (Sxs µ) ds−

∫ t

0

1

8
(Sxs )−3/2 (Sxs σ)2 ds

]
= x1/2 +

(
1

2
µ− 1

8
σ2

)∫ t

0
E
[
(Sxs )1/2

]
ds,

and we see from
d

dt

(
E
[
(Sxt )1/2

])
=

(
1

2
µ− 1

8
σ2

)
E
[
(Sxt )1/2

]
that

P (t)ρ(x) = E
[
(Sxt )1/2

]
= ρ(x) exp

((
1

2
µ− 1

8
σ2

)
t

)
.
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Hence, by positivity of P (t) on its domain and assumption 1
2
µ− 1

8
σ2 ≤ 0

we obtain ‖P (t)‖L(Bρ(E)) ≤ 1 and

P (t)f ∈ Bρ(E) =

{
f : E → E : sup

x∈E
ρ(x)−1 ‖f(x)‖ <∞

}
.

In order to show P (t)f ∈ Bρ(E) for any f ∈ Bρ(E), by density
of Cb(E) in Bρ(E) and continuity of P (t) it is su�cient to show that
f ∈ Cb(E) implies P (t)f ∈ Bρ(E). We show below that in this case
even P (t)f ∈ Cb(E) holds true.

Let (xn)n∈N ⊂ E be a sequence such that lim
n→∞

xn = x. Let a :=

inf
n∈N

xn and b := sup
n∈N

xn. Then for any n ∈ N

exp

(
−
(
ln y − lnxn −

(
α− 1

2
σ2
)
t
)2

2σ2t

)
≤ exp

(
−
(
ln y − ln a−

(
α− 1

2
σ2
)
t
)2

2σ2t

)

if y ≤ ae(α−
1
2
σ2)t. Furthermore,

exp

(
−
(
ln y − lnxn −

(
α− 1

2
σ2
)
t
)2

2σ2t

)
≤ exp

(
−
(
ln y − ln b−

(
α− 1

2
σ2
)
t
)2

2σ2t

)

if y ≥ be(α−
1
2
σ2)t. Hence, for all y > 0

1

yσ
√
t

exp

(
−
(
ln y − lnxn −

(
α− 1

2
σ2
)
t
)2

2σ2t

)
≤ 1

yσ
√
t

exp

(
−
(
ln y − ln a−

(
α− 1

2
σ2
)
t
)2

2σ2t

)
.

+
1

yσ
√
t

exp

(
−
(
ln y − ln b−

(
α− 1

2
σ2
)
t
)2

2σ2t

)

+
1

yσ
√
t
1{

ae(α−
1
2
σ2)t≤y≤be(α−

1
2
σ2)t

}(y).

The right hand side is integrable, thus by dominated convergence

lim
n→∞

P (t)f(xn) =

∫
E

lim
n→∞

f(y)
1√
2π

1

yσ
√
t

exp

(
−
(
ln y − lnxn −

(
α− 1

2
σ2
)
t
)2

2σ2t

)
dy

=

∫
E

f(y)
1√
2π

1

yσ
√
t

exp

(
−
(
ln y − lnx−

(
α− 1

2
σ2
)
t
)2

2σ2t

)
dy

= P (t)f(x).

Since boundedness of P (t)f is clear by de�nition of P (t), we obtained
that for any t ∈ R+ P (t) maps Cb(E) to Cb(E).

Hence (P (t))t∈R+
is a family of bounded linear operators on Bρ(E)

that ful�lls properties P1, P2 and P5 of generalized Feller semigroups
(see De�nition 2.3.49) by virtue of being a Markov semigroup. Fur-
thermore P4 holds true thanks to ‖P (t)‖L(Bρ(E)) ≤ 1 and regarding
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P3 for all continuous bounded maps f by dominated convergence and
continuity of the Brownian motion

lim
t→0

P (t)f(x) = Ex
[
lim
t→0

f(Sxt )
]

= f(x).

By density of Cb(E) in Bρ(E) this convergence extends to any f ∈
Bρ(E) (just like in the proof of Proposition 2.3.89). Therefore (P (t))t∈R+

is a contractive generalized Feller semigroup.
Since clearly for any t ∈ R+

(P (t)1) (x) = 1

(P (t))t∈R+
ful�lls the conditions of Theorem 2.3.73 and of Theorem

2.3.65. Hence, we can de�ne (Q(t))t∈R+
by

Q(t)(f) :=
P (t) (f · ρ)

ρ

and by Theorem 2.3.73 for any x ∈ E there exists a probability measure
P′x and a Markov process

(
(Sxt )

′
)
t∈R+

such that (Sx0 )
′
= x.

We next �nd the process
(

(Sxt )
′
)
t∈R+

explicitly. Thanks to Propo-

sition 2.3.80 we already know what drift and killing rate are. Let(
Ω̃, F̃ , P̃

)
be a di�erent probability space and let τ̃ : Ω̃→ R+ be mea-

surable and distributed as P (τ̃ ≤ t) = 1 − exp
((

1
2
µ− 1

8
σ2
)
t
)
. De�ne

Ω′ := Ω× Ω̃, F ′ := F⊗F̃ , and P′ := P⊗ P̃. Then on the product space
(Ω′,F ′,P′) one can de�ne the Brownian motion (W ′

t)t∈R+
as

W ′
t(ω, ω̃) := Wt(ω)

and τ ′ : Ω̃→ R+ as

τ ′(ω, ω̃) := τ̃(ω̃).

τ ′ and W ′
t are independent for any t ∈ R+ and with

(Sxt )
′
=

{
x exp (µt+ σW ′

t) for t < τ ′

∆ for t ≥ τ ′

we obtain that also
(

(Sxt )
′
)
t∈R+

is a Markov process and that

1

ρ
E [(f · ρ) (Sxt )] = E′

[
f((Sxt )

′
)
]
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as can be seen by the following calculation:

1

ρ
E [(f · ρ) (Sxt )]

=

∫
R+

f(y)

√
y
√
x

1
√

2πt

1

yσ
exp

(
−
(
ln y − lnx−

(
µ− 1

2
σ2
)
t
)2

2σ2t

)
dy

=

∫
R+

f(y)
1
√

2πt

1

yσ
exp

(
−
(
ln y − lnx−

(
µ− 1

2
σ2
)
t
)2

+ 2σ2t ln
√
y − 2σ2t ln

√
x

2σ2t

)
dy

=

∫
R+

f(y)
1
√

2πt

1

yσ
exp

(
−
(
(ln y − lnx− µt) + 1

2
σ2t
)2

+ σ2t ln y − σ2t lnx

2σ2t

)
dy

=

∫
R+

f(y)
1
√

2πt

1

yσ
exp

(
− (ln y − lnx− µt)2 + σ2t2µ−

(
1
2
σ2t
)2

2σ2t

)
dy

=

∫
R+

f(y)
1
√

2πt

1

yσ
exp

(
− (ln y − lnx− µt)2

2σ2t

)
exp

(
1

2
µt−

1

8
σ2t

)
dy

= E′
[
f
(

(Sxt )
′)]

.

If instead of (Sxt )
′

=
(

(Sxt )
′
)
t∈R+

one wants to obtain a stochastic

process de�ned on (
(E ∪ {4})R+ ,B(E ∪ {∆})R+

)
as in Theorem 2.3.73 one can choose the distribution P

(Sx)
′ and consider

the canonical process.

2.3.6. Relationship between extended Feller processes and
generalized Feller processes and Feller processes. Next we would
like to investigate the relationship between on the one hand the ex-
tended Feller process (γt)t∈R+

from Theorem 2.3.73 and Feller processes
and on the other hand between generalized Feller processes (λt)t∈R+

from Theorem 2.3.65 and Feller processes. Also in this subsection,
(E, ρ) will always denote a weighted space and as σ-algebra on this
space we always take the Borel σ-algebra. We start with a �rst result:

Proposition 2.3.84. Let (E, ρ) be a weighted space and E be lo-
cally compact. Let (λt)t∈R+

be a Feller process on E with semigroup of
transition probabilities (p(t))t∈R+

on (E,B(E)) with initial distribution
ν ∈Mρ(E). Let there be t0 > 0 and C > 0 such that for all x ∈ E and
0 ≤ t ≤ t0

Ex [ρ(λt)] ≤ Cρ(x).

Then (λt)t∈R+
is a generalized Feller process with respect to a right

continuous �ltration (Ft)t∈R+
and with initial distribution ν.
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Proof. We need to show that
(
P̃ (t)

)
t∈R+

given by

P̃ (t) : Bρ(E)→ Bρ(E)

f →
∫
E

f(y)p(t)(·, dy)

is a generalized Feller semigroup and that there is a right continuous
�ltration (Ft)t∈R+

such that (λt)t∈R+
is adapted with respect to (Ft)t∈R+

and for initial distribution ν ∈ Mρ(E) and any f ∈ Bρ(E) and 0 ≤
s ≤ t

EPν [f(λt)| Fs] = P̃ (t− s) f(λs)

holds true Pν -almost surely. We know that (P (t))t∈R+
given by

P (t) : C0(E)→ C0(E)

f →
∫
E

f(y)p(t)(·, dy)

is a Feller semigroup.
First, we show that P̃ (t) (Bρ(E)) = Bρ(E) and that

P̃ (t) : Bρ(E)→ Bρ(E)

is a linear bounded map. For any f ∈ Bρ(E) and 0 ≤ t ≤ t0

P̃ (t)f(x) =

∫
E

f(y)p(t)(x, dy)

=

∫
E

f(y)

ρ(y)
ρ(y)p(t)(x, dy)

≤ ‖f‖ρCρ(x).

Hence, for 0 ≤ t ≤ t0

P̃ (t) : Bρ(E)→ Bρ(E)

is a linear bounded map with∥∥∥P̃ (t)
∥∥∥
L(Bρ(E))

≤ C.

By Lemma 2.3.48 for any ε > 0 and any f ∈ Bρ(E) there is gε ∈ C0(E)
such that ‖f − gε‖ρ < ε. Hence for 0 ≤ t ≤ t0∥∥∥P̃ (t)f − P̃ (t)gε

∥∥∥
ρ
< Cε

and since P̃ (t)gε = P (t)gε ∈ C0(E) it follows that that P̃ (t)(Bρ(E)) =
Bρ(E). For any 0 < s there is n ∈ N such that s/n < t0 and since
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(p(t))t∈R+
is a semigroup of transition probabilities on (E,B(E))

P̃ (s)f(x) =

∫
E

f(y)p(s)(x, dy)

=

∫
E

f(y)p(
s

n
+ ...+

s

n
)(x, dy)

=
(
P̃ (

s

n
)...
(
P̃ (

s

n
)f
))

(x).

Hence,
P̃ (t) : Bρ(E)→ Bρ(E)

is a linear bounded map for any t > 0 and∥∥∥P̃ (t)
∥∥∥
L(Bρ(E))

≤ Cdt/t0e.

In order to show that

P̃ (t) : Bρ(E)→ Bρ(E)

is indeed a generalized Feller semigroup we have to show the properties
P1,...,P5 from De�nition 2.3.49 hold. P1 and P2 follow immediately
from the fact (p(t))t∈R+

is a semigroup of transition probabilities. P4
follows by assumption and positivity (P5) is obvious. It remains to be
shown that for all f ∈ Bρ(E) and all x ∈ E

lim
t↘0

P̃ (t)f(x) = f(x).

Fix f ∈ Bρ(E) and x ∈ E. By Lemma 2.3.48 for any ε > 0 there
is gε ∈ C0(E) such that ‖f − gε‖ρ < ε. By strong continuity of Feller
semigroups

lim
t↘0

∥∥∥P̃ (t)gε − gε
∥∥∥
∞

= 0.

Thus,

lim
t↘0

∣∣∣P̃ (t)f(x)− f(x)
∣∣∣ = lim

t↘0

∣∣∣P̃ (t)f(x)− P̃ (t)gε(x)
∣∣∣

+
∣∣∣P̃ (t)gε(x)− gε(x)

∣∣∣
+ |gε(x)− f(x)|

≤ lim
t↘0

∥∥∥P̃ (t)
∥∥∥
L(Bρ(E))

‖f(x)− gε(x)‖ρ ρ(x)

+ lim
t↘0

∣∣∣P̃ (t)gε(x)− gε(x)
∣∣∣

+ |gε(x)− f(x)|
≤ Cερ(x) + ερ(x).
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Since ε > 0 was arbitrary, this implies

lim
t↘0

P̃ (t)f(x) = f(x).

Hence,
(
P̃ (t)

)
t∈R+

is a generalized Feller semigroup.

Finally, since (λt)t∈R+
is a Markov process with respect to its natural

�ltration (F0
t )t∈R+

for any initial distribution ν and f ∈ Bρ(E) and
0 ≤ s ≤ t it holds

EPν
[
f(λt)| F0

s

]
=

∫
E

f(y)p(t− s)(λs, dy) = P̃ (t− s)f(λs)

Pν -almost surely. As in the last step of the proof in Proposition 2.3.69,
this equation can be extended to the right continuous extension of
(F0

t )t∈R+
, which yields the statement of the proposition. �

For an investigation where E is not locally compact we introduce
the following spaces:

Definition 2.3.85. Set ˜̀∞(E) ⊂ `∞(E) as˜̀∞(E) := {f : f ∈ `∞(E), f measurable} ,

and `ρ(E) ⊂ ˜̀∞(E) as

`ρ(E) :=

{
f

ρ
: f ∈ Bρ(E)

}
.

Remark 2.3.86. As closed subspaces of the Banach space `∞(E),
both ˜̀∞(E) and `ρ(E) are Banach spaces with respect to ‖·‖∞ .

For the next proposition we recall the de�nition of

B̃ρ(E) := B̃ρ(E,R)

in Remark 2.3.23.

Proposition 2.3.87. Let ρ be an admissible weight function. De-
�ne

Φ :L(B̃ρ(E))→ L(˜̀∞(E))

P → P ((·) · ρ)

ρ
.

Then the following assertions hold true:
(i) Φ is an isometric isomorphism between L(B̃ρ(E)) and L(˜̀∞(E)),
(ii)Φ|L(Bρ(E))) is an isometric isomorphism between L(Bρ(E)) and L(`ρ(E)).
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Proof. Clearly, P ((·)·ρ)
ρ
∈ L(˜̀∞(E)) is well de�ned and Φ is linear.

(i) We show �rst that Φ is an isometry.
We calculate for any f ∈ B̃ρ(E)

‖(ΦP ) f‖∞ = ‖P (f · ρ)‖ρ
≤ ‖P‖L(B̃ρ(E)) · ‖f‖∞ .

Hence
‖(ΦP )‖L( ˜̀∞(E)) ≤ ‖P‖L(B̃ρ(E)) .

Furthermore, for ε > 0 let gε ∈ B̃ρ(E) be such that

‖Pgε‖ρ ≥
(
‖P‖L(B̃ρ(E)) − ε

)
‖gε‖ρ .

Then gε
ρ
∈ ˜̀∞(E) and∥∥∥∥(ΦP )

(
gε
ρ

)∥∥∥∥
∞

=

∥∥∥∥∥∥
P
(
gε
ρ
· ρ
)

ρ

∥∥∥∥∥∥
∞

= ‖Pgε‖ρ

≥
(
‖P‖L(Bρ(E)) − ε

)∥∥∥∥gερ
∥∥∥∥
∞
,

which shows that

‖(ΦP )‖L( ˜̀∞(E)) ≥ ‖P‖L(B̃ρ(E)) − ε.

Thus, Φ is an isometry.
Regarding Φ being an isometric isomorphism between L(B̃ρ(E))

and L(˜̀∞(E)) by injectivity of isomorphisms we only need to show

Φ
(
L(B̃ρ(E))

)
= L(˜̀∞(E)).

However, this is clear since for any Q ∈ L(˜̀∞(E))

Q′(·) := Q

(
(·)
ρ

)
· ρ

is a linear map from B̃ρ(E) to B̃ρ(E) and the calculation

‖Q′f‖ρ =

∥∥∥∥Q(fρ
)
· ρ
∥∥∥∥
ρ

≤ ‖Q‖L( ˜̀∞(E)) ‖f‖ρ

shows that Q′ ∈ L(B̃ρ(E)). Then Φ (Q′) = Q yields surjectivity of Φ.
(ii) Follows just like (i). �
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Corollary 2.3.88. There is an isometric isomorphism between
contractive generalized Feller semigroups on Bρ(E) and strongly con-
tinuous, contractive, positive (see De�nition 2.3.39) semigroups on
`ρ(E).

Proof. Use Proposition 2.3.87 above and strong continuity of gen-
eralized Feller semigroups (see Theorem 2.3.51). The respective re-
quired semigroup properties follow immediately. �

Next, we want to characterize positive semigroups on `ρ(E), for
which it is possible to obtain a transformation to a contractive gener-
alized Feller semigroup.

Proposition 2.3.89. Let (Q(t))t∈R+
be a positive semigroup on

`ρ(E) such that there is some ω ∈ R such that for any t ∈ R+

‖Q(t)‖L(`ρ(E)) ≤ eωt.

Then (P (t))t∈R+
de�ned by

P (t) : Bρ(E)→ Bρ(E)

f → e−ωtQ(t)

(
f

ρ

)
· ρ

is a contractive generalized Feller semigroup on E with generator A if
and only if
(i) for any g ∈ `ρ(E) such that g · ρ ∈ Cb(E) and any x ∈ E

lim
t↘0

(Q(t)g) (x) = g(x)

holds true.
In this case,

(
Q(t)|`ρ(E)

)
t∈R+

is strongly continuous on `ρ(E) and its

generator Ã is given by Ãf = A(f ·ρ)
ρ

.

Proof. If (P (t))t∈R+
is a generalized Feller semigroup on E, then

f → eωt
P (t) (f · ρ)

ρ

is a positive semigroup on `ρ(E) such that for any t ∈ R+

‖Q(t)‖L(`ρ(E)) ≤ eωt.

P3 of the de�nition of generalized Feller semigroups states that for any
f ∈ Bρ(E) and any x ∈ E

lim
t↘0

Q(t)

(
f

ρ

)
(x) =

(
f

ρ

)
(x),
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hence in particular the equation holds true for any f ∈ Cb(E). (ii)
follows form Theorem 2.3.42.

On the other hand, let (Q(t))t∈R+
ful�ll (i) and (ii). f ∈ Bρ(E)

implies f
ρ
∈ `ρ(E), hence

P (t)f = Q(t)

(
f

ρ

)
· ρ ∈ Bρ(E).

By

‖P (t)f‖ρ = e−ωt
∥∥∥∥Q(t)

(
f

ρ

)∥∥∥∥
∞
≤ ‖f‖ρ ,

(P (t))t∈R+
is contractive.

Thus, (P (t))t∈R+
is a contractive semigroup on Bρ(E). It is a gen-

eralized Feller semigroup because P1 and P2 obviously hold true, and
P4 and P5 follow from contractivity and positivity in the assumption.
In order to show P3 we observe that (i) implies that for any f ∈ Cb(E)
and any x ∈ E

lim
t↘0

(P (t)f) (x) = f(x),

and by density of Cb(E) in Bρ(E) for any ε > 0 and g ∈ Bρ(E) there
is fε ∈ Cb(E) such that ‖g − fε‖ρ < ε and

lim
t→0

P (t)g(x)− g(x)

= lim
t→0

P (t)g(x)− lim
t→0

P (t)fε(x) + lim
t→0

P (t)fε(x)− fε(x) + fε(x)− g(x)

≤ lim
t→0
‖P (t) (g(x)− fε(x))‖ρ ρ(x) + lim

t→0
P (t)fε(x)− fε(x)︸ ︷︷ ︸

=0

+ ‖fε − g‖︸ ︷︷ ︸
≤ε

ρ(x)

≤ lim
t→0
‖P (t)‖ρ︸ ︷︷ ︸
≤1

ερ(x) + ερ(x)

≤ 2ερ(x).

Since ε > 0 was arbitrary

lim
t→0

P (t)g(x) = g(x)

for any g ∈ Bρ(E) and any x ∈ E which yields P3. Hence, (P (t))t∈R+

is a contractive generalized Feller semigroup.
Regarding strong continuity of

(
Q(t)|`ρ(E)

)
t∈R+

we use Proposition

2.3.87(ii) and for the generator Ã observe that for any f ∈ `ρ(E)

lim
t↘0

∥∥∥∥Q(t)f − f − A (f · ρ)

ρ

∥∥∥∥
∞

= lim
t↘0
‖P (f · ρ)− f · ρ− A (f · ρ)‖ρ = 0.

�
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We now would like to take a closer look at the results in the impor-
tant case when the admissible weight function is continuous.

Corollary 2.3.90. Let (Q(t))t∈R+
be a positive semigroup on `ρ(E)

that ful�lls the conditions of Proposition 2.3.89 for some ω ∈ R and a
continuous admissible weight function ρ. Then on the measurable space(

(E ∪ {4})R+ ,B(E ∪ {∆})R+

)
for any probability measure ν on (E,B(E)) there exists a probability
measure P′ν on (

(E ∪ {4})R+ ,B(E ∪ {∆})R+

)
,

such that for the canonical process (γt)t∈R+
and the natural �ltration

(F0
t )t∈R+

for any t ≥ s ≥ 0 and any f ∈ Bρ(E ∪ {4}) that is bounded
or positive

(2.3.26) EP′ν

[
f(γt)| F0

s

]
= e−ωt (Q (t− s) (f)) (γs)

holds true P′ν - almost surely and

P′ν ◦ γ−1
0 = ν.

Here, for any t ∈ R+ and positive f ∈ Bρ(E∪{4}) Q(t)f is interpreted
as

Q(t)f :=
P (t) (f · ρ)

ρ

and the convention in Proposition 2.3.52(ii).

Proof. Apply Proposition 2.3.89 and Theorem 2.3.73. �

Lemma 2.3.91. If the admissible weight function ρ is continuous,
then C0(E) = `ρ(E).

Proof. Follows from Lemma 2.3.47(ii) and (iii). �

Corollary 2.3.92. If the admissible weight function ρ is contin-
uous, then there is an isometric isomorphism between contractive gen-
eralized Feller semigroups on Bρ(E) and strongly continuous, contrac-
tive, positive semigroups on C0(E).

The following theorem is the reason why (γt)t∈R+
was name extended

Feller process . As stated before, we remind the reader that on gen-
eral weighted spaces an extended Feller process is not automatically a
Markov process due to the subtle measurability issues. However, this
is true if the weighted space is locally compact with countable base.
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Theorem 2.3.93. Let (E, ρ) be a weighted space and let ρ be con-
tinuous. Let (P (t))t∈R+

be a generalized Feller semigroup on Bρ(E)
and let ω ∈ R be such that for any t ∈ R+

‖P (t)‖L(Bρ(E)) ≤ eωt.

Then (Q(t))t∈R+
de�ned as

Q(t)f := e−ωt
P (t) (f · ρ)

ρ

is a strongly continuous, positive, contractive semigroup on C0(E) and
for any probability measure ν on (E,B(E)) there exists a probability
measure P′ν on (

ER+ ,B(E)R+
)

and a right continuous �ltration (Ft)t∈R+
such that and for any t ≥

s ≥ 0 and for any f ∈ C0(E) for the canonical process (γt)t∈R+

(2.3.27) EP′ν [f(γt)| Fs] = Q(t− s)f(γs)

holds true P′ν - almost surely and

P′ν ◦ λ−1
0 = ν

holds true.

Proof. This follows immediately from Corollary 2.3.74 and Propo-
sition 2.3.87. �

2.3.7. Path properties. In the main theorems of this subsection,
path properties of generalized Feller processes and of extended Feller
processes are shown. In the case of generalized Feller processes, this
already was proved in [14]. However, we correct their statement in one
point. Also in this subsection, (E, ρ) always denotes a weighted space.

In order to prove path properties of generalized Feller processes, we
�rst need the following result regarding regularity of submartingales.
We base the proof on the one in [37].

Proposition 2.3.94. Let
(

Ω,F , (Ft)t∈R+
,P
)
be a �ltered probabil-

ity space and let (λt)t∈R+
be a submartingale with respect to (Ft)t∈R+

.
Let Ω′ ⊂ Ω in F be the set where

λt+ := lim
r↘t, r∈Q

λr

exists for any t ∈ R+. De�ne
(
λ̄t
)
t∈R+

by

λ̄t :=

{
λt+ on Ω′

0 elsewhere.
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Then P(Ω′) = 1 and there is a set Ω̃ ⊂ Ω in F with P
(

Ω̃
)

= 1 such that(
λ̄t
)
t∈R+

has càdlàg paths on Ω̃. Moreover,
(
λ̄t
)
t∈R+

is a modi�cation
of (λt)t∈R+

if
t→ λt

is right-continuous in L1(Ω,F ,P).

Proof. By Theorem A.3.96 P(Ω′) = 1. By Proposition A.3.98
(λt+)t∈R+

is a submartingale with respect to (Ft+)t∈R+
and by Theorem

A.3.96 there is a set Ω̂ ⊂ Ω in F with P
(

Ω̂
)

= 1 on which

lim
r↗t, r∈Q

λr+

exists. One can then show easily that (λt+)t∈R+
has càdlàg paths on

Ω̃ := Ω̂ ∩ Ω′. Thus, by de�nition, this is true also for
(
λ̄t
)
t∈R+

.
Fix some arbitrary t0 ∈ R+. By de�nition of λ̄t0 and P(Ω′) = 1,

lim
r↘t0, r∈Q

λr = λ̄t0

P-almost surely. By Theorem A.3.93 (where in a neighbourhood O(t0)
of t0 boundedness of sup

r∈O(t0)∩Q
E [|λr|] follows from right-continuity in

L1(Ω,F ,P) of t→ λt)
lim

r↘t0, r∈Q
λr

converges in L1(Ω,F ,P). By uniqueness of the limits (which follows
from Proposition A.3.53, Proposition A.3.56 and Remark A.3.50)

lim
r↘t0, r∈Q

λr = λ̄t0

in L1(Ω,F ,P). Thus, right-continuity in L1(Ω,F ,P) of t→ λt implies∥∥λ̄t0 − λt0∥∥L1(Ω,F ,P)
= 0,

or, what is equivalent, λ̄t0 = λt0 P-almost surely. As t0 ∈ R+ was
arbitrary, we conclude. �

Moreover, [37] mentions that a similar result holds true also for left
continuity, which we prove below:

Proposition 2.3.95. Let
(

Ω,F , (Ft)t∈R+
,P
)
be a �ltered probabil-

ity space and let (λt)t∈R+
be a submartingale with respect to (Ft)t∈R+

.
Let Ω′ ⊂ Ω be the set in F where

λt− := lim
r↗t, r∈Q

λr
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exists for any t ∈ R+. De�ne
(
λ̂t

)
t∈R+

by

λ̂t :=

{
λt− on Ω′

0 elsewhere.

Then P(Ω′) = 1 and there is a set Ω̃ ⊂ Ω in F with P
(

Ω̃
)

= 1 such that(
λ̂t

)
t∈R+

has càglàd paths on Ω̃. Moreover,
(
λ̂t

)
t∈R+

is a modi�cation

of (λt)t∈R+
if

t→ λt

is left-continuous in L1(Ω,F ,P).

Proof. By Theorem A.3.96 P(Ω′) = 1. By Proposition A.3.99
(λt−)t∈R+

is a submartingale with respect to (Ft−)t∈R+
and by Theorem

A.3.96 there is a set Ω̂ ⊂ Ω in F with P
(

Ω̂
)

= 1 on which

lim
r↘t, r∈Q

λr−

exists. One can then show easily that (λt−)t∈R+
has càglàd paths on

Ω̃ := Ω̂ ∩ Ω′. Thus, by de�nition, also
(
λ̂t

)
t∈R+

.

Fix some arbitrary s0,t0 ∈ R+ such that s0 < t0. By de�nition of(
λ̂t

)
t∈R+

and P(Ω′) = 1,

lim
r↗t0, r∈Q

λr = λ̂t0

P-almost surely. Fix an arbitrary c ∈ R−. We next show uniform
integrability (see De�nition A.3.54) of the family of random variables
(max (λr, c))r∈Q∩[s0,t0]. Let a ∈ R+. Then∫

{|max(λr,c)|>a}
|max (λr, c)| dP

=

∫
{max(λr,c)>a}

max (λr, c) dP−
∫
{max(λr,c)<−a}

max (λr, c) dP

≤
∫
{λr>a}

(
λr1{λr>c} + c1{λr≤c}

)
dP−

∫
{max(λr,c)<−a}

cdP

≤
∫
{λr>a}

λrdP−
∫
{max(λr,c)<−a}

cdP

≤
∫
{λr>a}

λt0dP−
∫
{max(λr,c)<−a}

cdP
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Moreover,

P ({λr > a}) ≤ 1

a
E
[
λr1{λr>a}

]
≤ 1

a
E [|λr|] .

Hence,
lim
a→∞

P ({λr > a}) = 0,

and clearly also

lim
a→∞

P ({max (λr, c) < −a}) = 0.

Therefore,

lim
a→∞

∫
{|max(λr,c)|>a}

|max (λr, c)| dP = 0

and the family of random variables (max (λr, c))r∈Q∩[s0,t0] is uniformly
integrable (see Proposition A.3.55).

By Proposition A.3.56 (and Proposition A.3.53)

lim
r↗t0, r∈Q

max (λr, c)

converges in L1(Ω,F ,P) to max
(
λ̂t0 , c

)
. Left-continuity in L1(Ω,F ,P)

of t→ λt yields

lim
r↗t0

(∫
Ω
|max (λr, c)−max (λt0 , c)| dP

)
= lim
r↗t0

(∫
Ω
|λr − λt0 | 1{λr>c, λt0>c} + |c− λt0 | 1{λr≤c, λt0>c} + |λr − c| 1{λr>c, λt0≤c}dP

)
≤ lim
r↗t0

(∫
Ω
|λr − λt0 | 1{λr>c, λt0>c} + |λr − λt0 | 1{λr≤c, λt0>c} + |λr − λt0 | 1{λr>c, λt0≤c}dP

)
= 0.

This implies ∥∥∥max
(
λ̂t0 , c

)
−max (λt0 , c)

∥∥∥
L1(Ω,F ,P)

= 0,

or, what is equivalent, max
(
λ̂t0 , c

)
= max (λt0 , c) P-almost surely.

Since c ∈ R− was arbitrary and the countable union of null sets is
a null set

λ̂t0 = lim
n→∞

max
(
λ̂t0 ,−n

)
= lim

n→∞
max (λt0 ,−n) = λt0

P-almost surely.
As t0 ∈ R+ was arbitrary, we conclude. �
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In order to state the result regarding path properties of generalized
Feller processes, we remind the reader of the de�nition of the resol-
vent in De�nition 1.4.25. Since by Theorem 2.3.51 a generalized Feller
semigroup is strongly continuous, we can de�ne the generator of the
semigroup (see De�nition 1.4.13)

Theorem 2.3.96. Let (P (t))t∈R+
be a generalized Feller semigroup

on Bρ(E) such that for any t ∈ R+ P (t)1 = 1 and

‖P (t)‖ ≤Meωt

for some M ≥ 1 and ω ∈ R. Let A be the generator of (P (t))t∈R+
. Let

x0 ∈ E and let (λt)t∈R+
be the generalized Feller process from Theorem

2.3.65 on the measurable space(
ER+ ,B(E)R+

)
with probability measure Px0 and right continuous �ltration (Ft)t∈R+

as
in Theorem 2.3.65.

(i) For every countable family (fn)n∈N ⊂ Bρ(E) and β > ω, β ∈ N
for the family of stochastic processes

(
Zβ,n
t

)
t∈R+

de�ned as

Zβ,n
t := βR(β,A)fn(λt)

there exists a family of stochastic processes(
Z̄β,n
t

)
t∈R+

with càdlàg paths (and one with càglàd paths), such that for all t ∈ R+

there is a Px0- null set Nt ∈ σ

( ⋃
t∈R+

Ft

)
for which

Zβ,n
t = Z̄β,n

t on ER+ \ Nt
for all n ∈ N and all β > ω, β ∈ N.

(ii) Let ρ be Baire measurable and let ν ∈ Mρ(E) be the initial
distribution. If additionally to the assumptions in (i) M = 1 holds
true, then

(exp (−ωt) ρ(λt))t∈R+

is a supermartingale and if t → P (t)ρ(x) is continuous for ν-almost
any x ∈ E, then the supermartingale has a version such that the paths
are càdlàg or càglàd. In this case, there exists a family of stochastic
processes with càdlàg paths (and one with càglàd paths )((

fn(λt)
)
t∈R+

)
n∈N
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such that for all t ∈ R+ there is a null set N ′t ∈ B(E)R+ for which

fn(λt) = fn(λt) on ER+ \ N ′t

for all n ∈ N.
(iii) If additionally to the assumptions in (i) and (ii) there exists a

countable family (fn)n∈N ⊂ Bρ(E) of sequentially continuous functions,
i.e. for any (xm)m∈N ⊂ E with xm → x ∈ E for any n ∈ N

fn(xm)→ fn(x),

and if this family separates points, i.e for any y, z ∈ E ,y 6= z there
exists l ∈ N such that

fl(y) 6= fl(z),

then (λt)t∈R+
has a version with càdlàg paths (and one with càglàd

paths).

Proof. (i) We only treat the càdlàg case since the càglàd case
follows along the same lines. By Theorem 1.4.29 if α > ω, then α ∈
ρ(A) and for all f ∈ Bρ(E)

(α− A)−1 f := R(α,A)f =

∫ ∞
0

e−αsP (s)f ds.

In order to �nd a càdlàg version, we would like to use Proposition
2.3.94. For this purpose, we �x f ∈ Bρ(E), f ≥ 0 and α > ω we de�ne
the stochastic process

(
Y α,f
t

)
t∈R+

by

Y α,f
t := exp (−αt)R(α,A)f(λt).

We show that
(
Y α,f
t

)
t∈R+

is a supermartingale with respect to (Ft)t∈R+
.

Let 0 ≤ s ≤ t and calculate

Ex0

[
Y α,f
t

∣∣∣Fs] = exp (−αt)Ex0

[∫ ∞
0

exp (−αu)P (u)f(λt)du

∣∣∣∣Fs] .
By the de�nition of the Riemann integral (see De�nition 1.3.5), positiv-
ity of the semigroup (P (t))t∈R+

, and monotone convergence for condi-
tional expectations (Proposition A.3.65) and thanks to (λt)t∈R+

being
a generalized Feller process
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Ex0
[∫ ∞

0

exp (−αu)P (u)f(λt)du

∣∣∣∣Fs]
= Ex0

[
lim
n→∞

lim
m→∞

(n/m) ·
m−1∑
i=0

exp (−αin/m)P (in/m)f(λt)

∣∣∣∣∣Fs
]

= lim
n→∞

lim
m→∞

(n/m) ·
m−1∑
i=0

exp (−αin/m)Ex0 [P (in/m)f(λt)| Fs]

= lim
n→∞

lim
m→∞

(n/m) ·
m−1∑
i=0

exp (−αin/m)P (in/m+ t− s)f(λs)

= exp (α (t− s)) lim
n→∞

lim
m→∞

(n/m) ·
m−1∑
i=0

exp (−α (in/m+ t− s))P (in/m+ t− s)f(λs).

Thus,

Ex0

[
Y α,f
t

∣∣∣Fs] = exp (−αs)
∫ ∞
t−s

(exp (−αr)P (r)f(λs)) dr

≤ Y α,f
s .

The last inequality followed from f ≥ 0 and positivity of the semigroup
(P (t))t∈R+

. Furthermore,

Ex0

[
Y α,f
t

]
= exp (−αs)

∫ ∞
t−s

(exp (−αr)Ex0 [P (r)f(λs)]) dr,

and due to absolute continuity of the integral (Theorem A.3.43)

t→
∫ ∞
t−s

(exp (−αr)Ex0 [P (r)f(λs)]) dr,

and therefore
t→ Ex0

[
Y α,f
t

]
is continuous.

We can apply Proposition 2.3.94 to
(
−Y α,f

t

)
t∈R+

and obtain that

there is a set Ω
′

α,f ∈ B(E)R+ with Px0

(
Ω
′

α,f

)
= 1 on which

lim
r↘t, r∈Q

− Y α,f
s

exists and there is a set Ω̃α,f ⊂ Ω
′

α,f in F with Px0

(
Ω̃α,f

)
= 1 such

that
(
−Ȳ α,f

t

)
t∈R+

de�ned as

−Ȳ α,f
t :=

{
lim

r↘t, r∈Q
− Y α,f

s on Ω
′

α,f

0 elsewhere,
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has càdlàg paths on Ω̃α,f . Moreover,(
−Ȳ α,f

t

)
t∈R+

is a version of (
−Y α,f

t

)
t∈R+

.

Therefore, for any β > ω β, n ∈ N and fn ∈ Bρ(E), fn ≥ 0 for the
stochastic process

(
Zβ,n
t

)
t∈R+

de�ned as

Zβ,nt := βR(β,A)fn(λt)

the limit

lim
r↘t, r∈Q

Zβ,n
t

exists on a set Ω
′

β,n ⊂ Ω in F with Px0

(
Ω
′

β,n

)
= 1.

(
Zβ,n
t

)
t∈R+

has a

version
(
Z̄β,n
t

)
t∈R+

de�ned as

Z̄β,n
t :=

{
lim

r↘t, r∈Q
Zβ,n
t where it exists

0 elsewhere,

with càdlàg paths on Ω̃β,n in F with Px0

(
Ω̃β,n

)
= 1. Since the count-

able union of null sets is a null set, for any t ∈ R+ there exists a null
set Nt ∈ B(E)R+ such that Zβ,n

t = Z̄β,n
t on ER+ \Nt for any β, n ∈ N ,

β > ω . In particular, for any β > ω β ∈ N and any g ∈ Bρ(E), clearly
g+, g− ∈ Bρ(E), and g+, g− ≥ 0 and the process

(
Zβ,g
t

)
t∈R+

de�ned as

βR(β,A)g(λt) = βR(β,A)g+(λt)− βR(β,A)g−(λt)

has a version with càdlàg paths.
(ii) As before, we only show the càdlàg case, as the càglàd case

follows along the same lines.
If P (t)ρ ≤ exp (ωt) ρ holds for some ω ∈ R, then

Eν [exp (−ωt) ρ(λt)| Fs] = exp (−ωt)P (t− s)ρ(λs)

≤ exp (−ωs) ρ(λs)

and (exp (−ωt) ρ(λt))t∈R+
is a non-negative supermartingale. By Propo-

sition 2.3.94 there exists a set Ω
′
ρ ⊂ Ω in F with Pν(Ω

′
ρ) = 1 such that

lim
r↘t, r∈Q

ρ(λr)
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exist and a stochastic process
(
ρ(λt)

)
t∈R+

with càdlàg paths that is a

version of (ρ(λt))t∈R+
.

Furthermore, by Yosida approximation (Proposition 1.4.34)

(2.3.28) lim
β→∞

‖βR(β,A)fn − fn‖ρ = 0.

Hence uniformly in t ∈ R+

lim
β→∞

∣∣∣∣lim sup
r↘t, r∈Q

βR(β,A)fn(λr)

ρ(λr)
− lim sup

r↘t, r∈Q

fn(λr)

ρ(λr)

∣∣∣∣ = 0,

and

lim
β→∞

∣∣∣∣ lim inf
r↘t, r∈Q

βR(β,A)fn(λr)

ρ(λr)
− lim inf

r↘t, r∈Q

fn(λr)

ρ(λr)

∣∣∣∣ = 0.

Thus, when

lim
r↘t, r∈Q

Zβ,n
r

ρ(λr)

exists for any large β ∈ N, then does

lim
r↘t, r∈Q

fn(λr)

ρ(λr)
.

As seen in (i) for any β > ω, β ∈ N there is a set Ω
′

β,n ⊂ Ω in F with
Pν
(
Ω
′

β,n

)
= 1 on which

lim
r↘t, r∈Q

Zβ,n
r

exists for any t ∈ R+ . Since ρ > 0 attains its minimum on E (see
Corollary 2.3.17) on Ω

′

β,n ∩ Ω
′
ρ also

lim
r↘t, r∈Q

Zβ,n
r

ρ(λr)

exists and for any t ∈ R+ we de�ne

fn
ρ

(λt) :=

 lim
r↘t, r∈Q

fn(λr)
ρ(λr)

on
⋂

β∈N, β>ω
Ω
′

β,n ∩ Ω
′
ρ

0 elsewhere.
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fn
ρ

(λt)
)
t∈R+

is a version of
(
fn(λt)
ρ(λt)

)
t∈R+

since for any δ > 0 and β

large enough on
⋂

β∈N, β>ω
Ω
′

β,n ∩ Ω
′
ρ

∣∣∣∣fnρ (λt)−
fn(λt)

ρ(λt)

∣∣∣∣ ≤
∣∣∣∣∣ lim
r↘t, r∈Q

fn(λr)

ρ(λr)
− lim
r↘t, r∈Q

Zβ,nr
ρ(λr)

∣∣∣∣∣
+

∣∣∣∣∣ lim
r↘t, r∈Q

Zβ,nr
ρ(λr)

− Zβ,nt
ρ(λt)

∣∣∣∣∣+

∣∣∣∣∣ Zβ,ntρ(λt)
− fn(λt)

ρ(λt)

∣∣∣∣∣
≤

∣∣∣∣∣ lim
r↘t, r∈Q

Zβ,nr
ρ(λr)

− Zβ,nt
ρ(λt)

∣∣∣∣∣+ 2δ

=

∣∣∣∣∣ Z̄β,ntρ(λt)
− Zβ,nt
ρ(λt)

∣∣∣∣∣+ 2δ,

and we know that for all β, n ∈ N , β > ω(
Z̄β,n
t

ρ(λt)

)
t∈R+

and (
Zβ,n
t

ρ(λt)

)
t∈R+

are versions of each other. We obtain for any ε > 0 and for β large
enough and any s, t ∈ R+ on

⋂
β∈N, β>ω

Ω
′

β,n ∩ Ω
′
ρ

∣∣∣∣fnρ (λt)−
fn
ρ

(λs)

∣∣∣∣ ≤ 2ε+

∣∣∣∣∣ Z̄β,ntρ(λt)
− Z̄β,ns

ρ(λs)

∣∣∣∣∣ .
Therefore, also

(
fn
ρ

(λt)
)
t∈R+

has càdlàg paths.

Thus, for any n ∈ N (
fn
ρ

(λt) · ρ(λt)

)
t∈R+

has càdlàg paths and is a version of

(fn(λt))t∈R+
.

The statement of the theorem then follows from the fact that the count-
able union of null sets is a null set.

(iii) follows directly. �
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Example 2.3.97. Unlike stated in [14], Theorem 2.13 it is in gen-
eral not true that for f ⊂ Bρ(E) and generalized Feller process (λt)t∈R+

the stochastic process (
f(λt)

ρ(λt)

)
t∈R+

has a version with left-continuous paths. As a counterexample take
E = R,

ρ(x) :=


−x if x < −1

x+ 2 if − 1 ≤ x < 0

x+ 1 if x ≥ 0,

and f(x) := 1 for x ∈ R with λt(x) = x+ t. According to Proposition
2.3.54

P (t)(f) := f ◦ λt
is a generalized Feller semigroup of transport type and as shown in
Example 2.3.82 (λt)t∈R+

is a generalized Feller process. But for x < 0
and Px as in Example 2.3.82 clearly

f(λt)

ρ(λt)
=

1

ρ(x+ t)

is Px-almost surely not left-continuous at t = −x.

Corollary 2.3.98. Let E be separable and locally compact and let
ν ∈ Mρ(E) be a probability measure . If (P (t))t∈R+

is a generalized
Feller semigroup on Bρ(E) such that for any t ∈ R+

P (t)1 = 1

and P (t)ρ ≤ exp (ωt) ρ holds true for some ω ∈ R, and

t→ P (t)ρ(x)

is continuous for ν-almost any x ∈ E, then the generalized Feller pro-
cess (λt)t∈R+

associated to (P (t))t∈R+
via Theorem 2.3.65 has a càdlàg

or càglàd version. In particular, this is the case for a generalized Feller
semigroup on Bρ(E) of transport type with an appropriately chosen
weight function (see Lemma 2.3.62).

Proof. One can easily �nd a countable sequence (fn)n∈N ⊂ Cb(E)
that separates points and apply Theorem 2.3.96 (iii). �

For the generalized Feller semigroup (P (t))t∈R+
on Bρ(E) let the

conditions of Theorem 2.3.73 be satis�ed and let (γt)t∈R+
be the corre-

sponding stochastic process. Then according to Proposition 2.3.87 the
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semigroup (Q(t))t∈R+
on `ρ(E) (see De�nition 2.3.85) de�ned by

Q(t)f =
P (t) (f · ρ)

ρ

is strongly continuous, contractive and positive. In order to show regu-
larity of the paths of f(γt) for any f ∈ `ρ(E) one can proceed as in the
proof of Theorem 2.3.96 but for the Yosida approximation in Equation
2.3.28 one obtains an approximation with respect to the norm ‖·‖∞.
This yields the following result:

Theorem 2.3.99. Let (P (t))t∈R+
be a generalized Feller semigroup

on Bρ(E), let the conditions of Theorem 2.3.73 be satis�ed and let
(γt)t∈R+

be the corresponding stochastic process on(
(E ∪ {4})R+ ,B(E ∪ {∆})R+

)
.

(i) For every countable family (fn)n∈N ⊂ `ρ(E ∪ {4}) there exists
a family of stochastic processes with càdlàg or càglàd paths((

fn(γt)
)
t∈R+

)
n∈N

such that for all t ∈ R+ there is a null set N t ∈ B(E ∪ {∆})R+ for
which

fn(γt) = fn(γt) on (E ∪ {4})R+ \N t

for all n ∈ N.
(ii) If additionally to the assumption in (i) there exists a countable

family (fn)n∈N ⊂ `ρ(E∪{4}) of sequentially continuous functions that
separates points, then (γt)t∈R+

has a version with càdlàg or càglàd paths.





CHAPTER 3

A�ne and Polynomial Processes

A�ne processes and polynomial processes are a special classes of
Markov processes.

Let V be a d-dimensional vector space with scalar product 〈·, ·〉.
On V + iV the scalar product is de�ned as

〈a+ ib, c+ id〉 = 〈a, c〉+ i 〈b, c〉+ i 〈a, d〉 − 〈b, d〉 .

Let ‖·‖ denote the norm induced by scalar product. Let E ⊂ V be
a subset and let B(E) and B(V ) be the respective Borel σ-algebras.
S(V ) (S+(V ) ) denotes the set of (positive semide�nite) symmetric
matrices on V . We recall the de�nition of semigroups of transition
probabilities (De�nition 2.1.3) and Markov processes (De�nition 2.1.8)
and will use Notation 2.1.14. Moreover, we remind the reader of the
de�nition of the cemetery state ∆ in Remark 2.1.2 and the convention
f(∆) = 0 for any map f and add the convention ‖∆‖ =∞. We write
E∆ := E ∪ {∆} and as in Remark 2.1.5 for simplicity of notation the
statements on Markov processes will be made only for the state space
E. They are valid also for the augmented state space E∆.

Let (p(t))t∈R+
be a semigroup of transition probabilities on (E,B(E)),

x ∈ E and let Px be the probability measure on(
ER+ ,B(E)R+

)
given by 2.1.13 such that the coordinate process (λt)t∈R+

is a Markov
process with respect to the �ltration (Ft)t∈R+

starting at x with semi-
group of transition probabilities (p(t))t∈R+

. Let(P (t))t∈R+
be its Markov

semigroup (see De�nition 2.1.6). The natural �ltration of (λt)t∈R+
is

called (F0
t )t∈R+

. We set

F0 := σ

 ⋃
t∈R+

F0
t

 ⊂ B(E)R+ .

Definition 3.0.1. A family of Markov processes(
(λt)t∈R+

, (Px)x∈E
)

233
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is called stochastically continuous if for any t ∈ R+ and any x ∈ E

lim
s→t

p(s) (x, ·) = p(t) (x, ·)

weakly (see De�nition A.3.74) on E.

One can show that a�ne processes are semimartingales with char-
acteristics that are of a special a�ne form. The precise statement is
made in Theorem 3.1.12. In order to be able to state this result, we
next de�ne semimartingales. For a complete introduction into semi-
martingales and their characteristics, the reader is referred to [24] on
which the brief introduction in this thesis is based. In order to be
as self contained as possible, all necessary de�nitions can be found in
Appendix A.6.

Definition 3.0.2. Let
(

Ω,F , (Ft)t∈R+
,P
)
be a �ltered probability

space. A stochastic process (λt)t∈R+
adapted to (Ft)t∈R+

is called local

martingale if there exists a sequence (τn)n∈N of stopping times (see
De�nition A.3.101) such that P- almost surely τn < τn+1 and lim

n→∞
τn →

∞ hold true and such that the stopped process(
λmin(t,τn)

)
t∈R+

is a martingale (see De�nition A.3.91) for any n ∈ N.

Definition 3.0.3. A continuous function f : R+ → R is called of
finite variation if for all t ≥ 0

Vt(f) = sup

{
n−1∑
i=0

|f(ti+1)− f(ti)|

∣∣∣∣∣ 0 = t0 ≤ t1 ≤ ... ≤ tn ≤ t, n ∈ N

}
is �nite.
A real-valued stochastic process (λt)t∈R+

is said to be of �nite variation
if all paths are of �nite variation.

Definition 3.0.4. Let(
Ω,F , (Ft)t∈R+

,P
)

be a �ltered probability space. A real-valued stochastic process (Yt)t∈R+

is called semimartingale if it can be written P-almost surely as

Yt = Y0 +Mt + At for all t ∈ R+,
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where Y0 is F0-measurable, (Mt)t∈R+
is a local martingale starting

at M0 = 0 P-almost surely and (At)t∈R+
is a càdlàg, adapted pro-

cess of �nite variation starting at A0 = 0 P-almost surely. An Rd-
valued stochastic process

(
Y 1
t , ..., Y

d
t

)
t∈R+

is called d − dimensional

semimartingale if all components are real-valued semimartingales.

We recall, that on a setK whose closure is compact the generator of
a Feller process on Rd can be written as the sum of four summands that
depend on drift, di�usion matrix, killing rate and a Radon measure,
respectively (see Theorem 2.2.10). Semimartingales can similarly be
characterized by so-called semimartingale characteristics (for a precise
de�nition see De�nition A.6.21). For a given truncation function (see
De�nition A.6.11), this is a triple consisting of generalizations of drift,
covariance matrix (see Theorem 2.2.10 and De�nition 2.1.23) and the
compensator of a jump measure (see Theorem A.6.16). In particular,
the semimartingale characteristics lead to the canonical decomposition
of a semimartingale (see Theorem A.6.25). This is the decomposition
of a semimartingale as the sum of four summands: generalized drift, a
continuous local martingale, characterized by its covariance matrices,
compensated small jumps, and large jumps.

3.1. A�ne Processes

A�ne processes have been introduced in 1971 by Kawazu andWatan-
abe [28], and in 2003 were characterized on the canonical state space
Rn

+×Rm by Du�e, Filipovic, Schachermayer [16] who have also shown
that on Rn

+×Rm a�ne processes are Feller processes. Regarding more
general state spaces, in 2013, Cuchiero and Teichmann [13] showed
regularity and path properties if the state space is a certain non-empty
subset of a �nite dimensional real vector space.

3.1.1. A�ne processes on general state spaces. For the def-
inition of a�ne processes on general state spaces E ⊂ V we follow
[13].We de�ne

U :=
{
u ∈ V + iV |x→ e〈u,x〉 is bounded on E

}
,

and for any p ≥ 1

Up :=
{
u ∈ V + iV |x→ e〈u,x〉 ≤ p on E

}
.

Furthermore, we assume that E contains d + 1 elements x1, ..., xd+1

such that for every j ∈ {1, ..., d+ 1} the set
(x1 − xj, ..., xj−1 − xj, xj+1 − xj, ..., xd+1 − xj)

is linearly independent.
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Definition 3.1.1. The Markov process (λt)t∈R+
together with the

family of probability measures (Px)x∈E on the �ltered measurable space(
ER+ ,F , (Ft)t∈R+

)
and its semigroup of transition probabilities (p(t))t∈R+

are called affine

if for every (t, u) ∈ R+×U there exist Φ (t, u) ∈ C and Ψ (t, u) ∈ V +iV
such that for all x ∈ E and p ≥ 1 on the subset of R+×Up where Φ 6= 0
the map (t, u)→ 〈Ψ (t, u) , x〉 is locally continuous and

(3.1.1)
∫
E

e〈u,ξ〉p(t)(x, dξ) = Φ (t, u) e〈Ψ(t,u),x〉,

and if
(

(λt)t∈R+
, (Px)x∈E

)
is stochastically continuous (see De�nition

3.0.3).

In Theorem 3.6 in [13], it it proved that there exists a càdlàg mo-
di�cation of an a�ne process:

Theorem 3.1.2. Let
(

(λt)t∈R+
, (Px)x∈E

)
be an a�ne process on(

ER+ ,F0,
(
F0
t

)
t∈R+

)
.

Then for each x ∈ E there exists a Px-version
(
λ̃t

)
t∈R+

of (λt)t∈R+

such that
(
λ̃t

)
t∈R+

has càdlàg paths and is adapted with respect to the

completion (Fxt )t∈R+
of (Ft)t∈R+

with respect to the probability measure
Px (see De�nition A.3.77).

In the following, when we talk about an a�ne process, we always
mean the version with càdlàg paths.

The a�ne process (
(λt)t∈R+

, (Px)x∈E
)

may take the value ∆ /∈ Rd. Thus, De�nition 3.0.4 cannot be applied
directly. Therefore, if V \ Ē is nonempty, then we identify ∆ as one
point in V \ Ē . If V = Ē we extend V to V × R, set E1 := E × {0},
and choose ∆ as one point in (V × R) \E1. We introduce the stopping
times

T∆(ω) := inf {t ∈ R+|λt(ω) = ∆}
and

Texpl :=

{
T∆, if T

′

k < T∆ for all k
∞, if T

′

k = T∆ for some k
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with

T
′

k := inf

{
t ∈ R+| lim

s↗t
‖λt(ω)‖ ≥ k or ‖λt(ω)‖ ≥ k

}
.

A�ne processes are semimartingales as was shown in Theorem 5.8
in [13]:

Theorem 3.1.3. Let
(

(λt)t∈R+
, (Px)x∈E

)
be an a�ne process on(

ER+ ,F0,
(
F0
t

)
t∈R+

)
and let τ be a stopping time such that τ < Texpl. Then

(
λt1[0,T∆)

)
t∈R+

is a semimartingale with state space E ∪ {0} and
(
λmin(t,τ)

)
t∈R+

is a
semimartingale with state space E ∪∆. There is a version (B,C, ν) of
the characteristics of

(
λmin(t,τ)

)
t∈R+

relative to a truncation function χ
(see De�nition A.6.11) such that

Bt,i =

∫ min(t,τ)

0

bi(λs−)ds,

Ct,ij =

∫ min(t,τ)

0

cij(λs−)ds,

ν(ω, dt, dξ) = K (λt(ω), dξ) 1[0,τ ]dt,

with measurable functions b : E → V and c : E → S+(V ). Fur-
thermore, K (x, dξ) is a transition kernel (see De�nition 2.1.1) from
(E,B (E)) into (V,B (V )) and for all x ∈ E∫

V

min
(
‖ξ‖2 , 1

)
K (x, dξ) <∞,

K (x, {0}) = 0,

and x+ supp (K (x, ·)) ⊂ E ∪ {∆}.

Furthermore, the di�erential characteristics of a�ne processes de-
pend in an a�ne way on the process itself (see Theorem3.1.5). One
can also show that a�ne processes are regular:

Definition 3.1.4. The a�ne process
(

(λt)t∈R+
, (Px)x∈E

)
is called

regular if
F (u) := ∂+

t (Φ (t, u))
∣∣
t=0

and
R(u) := ∂+

t (Ψ (t, u))
∣∣
t=0

exist for all (x, u) ∈ E ×U and are continuous functions on Up for any
p ≥ 1.
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The following statement was proofed in [13] (Theorem 6.4). Among
other things, it states that the Fourier-Laplace transform of an a�ne
process is given by the solution of an ordinary di�erential equation.

Theorem 3.1.5. Every a�ne process in regular. Furthermore, for
u ∈ U

(3.1.2)

F (u) =
1

2
〈au, u〉+ 〈b, u〉 − c

+

∫
V

(
e〈u,ξ〉 − 1− 〈u, χ (ξ)〉

)
m(dξ)

〈R(u), x〉 =
1

2
〈α(x)u, u〉+ 〈β(x), u〉 − 〈γ, x〉

+

∫
V

(
e〈u,ξ〉 − 1− 〈u, χ (ξ)〉

)
µ(x, dξ)

where χ : V → V is a truncation function (see De�nition A.6.11) such
that χ (∆− x) = 0 for all x ∈ E , b ∈ V , a ∈ S(V ) , m is a signed
measure, c ∈ R, γ ∈ V and

x→ β(x),

x→ α(x),

x→ µ(x, dξ),

are restrictions of linear maps on V such that

b(x) = b+ β(x)

c(x) = a+ α(x)

K(x, dξ) = m(dξ) + µ(x, dξ) + (c+ 〈γ, x〉)δ{∆−x}(dξ),

where the expressions on the left hand side are known from Theorem
3.1.3.

Moreover, on the set Q := {(t, u) ∈ R+ × U|Φ (s, u) 6= 0 for all s ∈ [0, t]}

∂tΨ (t, u) = R (Ψ (t, u)) Ψ (0, u) = u

∂tΦ (t, u) = Φ (t, u)F (Ψ (s, u)) ds Φ (0, u) = 1.(3.1.3)

3.1.2. A�ne processes on the canonical state space. On the
canonical state space E = Rm

+ ×Rn a�ne processes were characterized
in [16]. We mostly follow their notation.

We set d = m+n and V = Rd and for x ∈ E we use the convention
x = (y, z) with y ∈ Rm

+ and z ∈ Rn. The �rst m indices are collected
in the index set ` := {1, ...,m} and the following ones in the index set
J := {m+ 1, ..., d} . We observe that for any p ≥ 1
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U =
{
u ∈ V + iV |x→ e〈u,x〉 is bounded on E

}
= Cm

− × iRn

=
{
u ∈ V + iV |x→ e〈u,x〉 ≤ p on E

}
= Up.

On the canonical state space the de�nition of a�ne processes can be
simpli�ed in the following way:

Definition 3.1.6. The Markov process (λt)t∈R+
together with the

family of probability measures (Px)x∈E on the �ltered measurable space(
ER+ ,F0,

(
F0
t

)
t∈R+

)
and its semigroup of transition probabilities (p(t))t∈R+

is called affine

if for every (t, u) ∈ R+ × iRd there exist Φ (t, u) ∈ C and Ψ (t, u) ∈ Cd

such that for all x ∈ E∫
E

e〈u,ξ〉p(t)(x, dξ) = eϕ(t,u)+〈Ψ(t,u),x〉

and if
(

(λt)t∈R+
, (Px)x∈E

)
is stochastically continuous (see De�nition

3.0.3).

We will see in Theorem 3.1.8 that an a�ne process is a Feller process
with (see Theorem 2.2.10 and De�nition 2.1.23) drift b+ βx , di�usion
matrix

(akl + 〈α`,kl, y〉)k,l∈{1,...,d} ,
Radon measure

N(x, dξ) = m(dξ) + y1µ1(dξ) + ...+ ymµm(dξ),

and killing rate c+ 〈γ, y〉. Since the a�ne process may not exit the set
E, this implies that the parameters

(a, α, b, β, c, γ,m, µ)

must be of a particular form. This is formulated in the de�nition of
admissible parameters in De�nition 3.1.7.

In order to introduce admissible parameters, we �rst introduce more
notation. For a d-tuple β = (β1, ..., βd) we de�ne βI := (βi)i∈I and for
a d × d matrix α = (αij) we set αIJ := (αij)i∈I, j∈J . Also ΨY := Ψ`

and ΨZ := ΨJ . We write 1 := (1, ..., 1) for the dimension that makes
sense in a given situation. For i ∈ ` we de�ne `(i) := ` \ {i} and for
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i ∈ ` we set J (i) := J ∪ {i}. For i ∈ ` we de�ne the m×m-matrix
Id(i) by

Id(i)kl :=

{
1 if i = k = l

0 else.

The continuous truncation function χ (see also De�nition A.6.11) is
de�ned by

χ = (χ1, ..., χd) :Rd → [−1, 1]d

χk (ξ) :=

{
0 if ξk = 0,

(1 ∧ |ξk|) ξk
|ξk|
, otherwise.(3.1.4)

It is an important tool in dissecting small jumps of which there may be
in�nitely many from large jumps of which there are only �nitely many
(see Lemma A.6.5). We can now de�ne:

Definition 3.1.7. (admissible parameters)
The parameters

(a, α, b, β, c, γ,m, µ)

are called admissible if

(3.1.5) a ∈ S+(V ) with a`` = 0,

(3.1.6)
α = (α1, ..., αm) with αi ∈ S+(V ) and ai,`` = αi,iiId(i) for all i ∈ `,

(3.1.7) b ∈ E,

(3.1.8) β ∈ Rd×d such that β`J = 0 and βi`(i) ∈ Rm−1
+ for all i ∈ `,

(3.1.9) c ∈ R+,

(3.1.10) γ ∈ Rm
+ ,

m is a Borel measure on E \ {0} satisfying(3.1.11)

M :=

∫
E\{0}

(
〈χ` (ξ) ,1〉+

∥∥χJ (ξ)
∥∥2
)
m (dξ) <∞,(3.1.12)
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µ = (µ1, ..., µm) ; (µi)i∈1,..,m are Borel measure on E \ {0} satisfying

(3.1.13)

Mi :=

∫
E\{0}

(〈
χ`(i) (ξ) ,1

〉
+
∥∥χJ (i) (ξ)

∥∥2
)
µi (dξ) <∞.

(3.1.14)

The following theorem was proved by Du�e, Filipovic and Schacher-
mayer ([16], Theorem 2.7). It shows that a�ne processes are Feller
processes and characterizes them by means of their admissible param-
eters. Furthermore, it shows that the functions Ψ and Φ are given as
the solution of an ordinary di�erential equation.

Theorem 3.1.8. Let
(

(λt)t∈R+
, (Px)x∈E

)
be an a�ne process on(

ER+ ,F0,
(
F0
t

)
t∈R+

)
.

Then (λt)t∈R+
is a Feller process on(

ER+ ,F0,
(
F0
t

)
t∈R+

,Px
)

for any x ∈ E. Let A be the generator of (λt)t∈R+
(see De�nition 2.2.9)

Then C∞c (E) is a core of A (see De�nition 1.4.20) and C2
c (E) ⊂ D(A).

Furthermore, there exist admissible parameters

(a, α, b, β, c, γ,m, µ)

such that for f ∈ C2
c (E)

Af(x) =
1

2

d∑
k,l=1

(akl + 〈α`,kl, y〉)
∂2f(x)

∂xk∂xl

+ 〈b+ βx,∇f(x)〉 − (c+ 〈γ, y〉) f(x)

+

∫
E\{0}

(f(x+ ξ)− f(x)− 〈∇J f(x), χJ (ξ)〉m(dξ)(3.1.15)

+

m∑
i=1

∫
E\{0}

(f(x+ ξ)− f(x)−
〈
∇J (i)f(x), χJ (i) (ξ)

〉
yiµi(dξ).

Additionally, ∫
E

e〈u,ξ〉p(t)(x, dξ) = eϕ(t,u)+〈Ψ(t,u),x〉

holds for (t, u) ∈ R+ × U and ϕ (t, u) and Ψ (t, u) are given by

(3.1.16) ϕ (t, u) =

∫ t

0

F (Ψ (s, u)) ds
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and

∂tΨ
Y (t, u) = RY

(
ΨY (t, u) , et·β

Z
w
)

ΨZ (t, u) = et·β
Z
w(3.1.17)

with Ψ (0, u) = u. The vector �elds RY and F are given by
(3.1.18)

F (u) =
1

2
〈au, u〉+ 〈b, u〉 − c

+

∫
E\{0}

e〈u,ξ〉 − 1− 〈uJ , χJ (ξ)〉m(dξ)

RYi (u) =
1

2
〈αiu, u〉+

〈
βYi , u

〉
− γi

+

∫
E\{0}

e〈u,ξ〉 − 1−
〈
uJ (i), χJ (i) (ξ)

〉
µi(dξ) for i ∈ {1, ...m}

with βYi =
(
βT
)
i{1,...,d} ∈ Rd for i ∈ {1, ...,m}

and βZ =
(
βT
)
JJ .

On the other hand, for admissible parameters (a, α, b, β, c, γ,m, µ)
there exists a unique a�ne semigroup (P (t))t∈R+

on (E,B(E)) with
generator given by Equation 3.1.15 such that∫

E

e〈u,ξ〉p(t)(x, dξ) = eϕ(t,u)+〈Ψ(t,u),x〉

holds for all (t, u) ∈ R+×U with ϕ (t, u) and Ψ (t, u) given by Equations
3.1.16 and 3.1.17.

Remark 3.1.9. A�ne processes with the convex cone of symmetric
positive semide�nite matrices as state space are Feller processes as well.
See [11] for details.

Remark 3.1.10. The fact that a regular a�ne process on E is a
Feller process implies in particular by Theorem 2.2.6 that there exists
a modi�cation of the a�ne process, that is càdlàg.

Remark 3.1.11. The di�erential equation

∂tΨ
Y (t, u) = RY

(
ΨY (t, u) , et·β

Z
w
)

is called generalized Riccati equation.
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The following theorem was proved in [16]. It shows that regular
a�ne processes are semimartingales with characteristics that depend
in an a�ne way on the process itself. Furthermore, it shows, that by
assuming a semimartingale with certain characteristics one obtains a
process which is distributed like an a�ne process.

Theorem 3.1.12. An a�ne process(
(λt)t∈R+

, (Px)x∈E
)

=
((

(Yt)t∈R+
, (Zt)t∈R+

)
, (Px)x∈E

)
with admissible parameters

(a, α, b, β, c, γ,m, µ)

is a semimartingale. If p(t)(x,E) = 1 for all (t, x) ∈ R+ × E then for
any x ∈ E (

λt1{t<T∆}
)
t∈R+

is a semimartingale on (
Ω,F , (Ft)t∈R+

,Px
)

and has the characteristics (B,C, ν) associated to truncation function
χ from Equation 3.1.4 given by

(3.1.19) Bt =

∫ t

0

(
b̃+ β̃λs

)
ds,

(3.1.20) Ct =

∫ t

0

(
a+

m∑
i=1

αiY
i
s

)
ds,

and

(3.1.21) v(dt, dξ) =

(
m(dξ)+

m∑
i=1

Y i
t µi(dξ)

)
dt

with the de�nitions

E 3 b̃ := b+

∫
E\{0}

(χ`(ξ), 0)m(dξ),

Rd×d 3 β̃kl :=

{
βkl + (1− δkl)

∫
E\{0} χk(ξ)µ`(dξ), if l ∈ `,

βkl if l ∈J , for 1 ≤ k ≤ d.

If λ
′
= (Y

′
, Z
′
) is such that(

λ
′

t1{t<T∆}

)
t∈R+
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is an E-valued semimartingale on some �ltered probability space(
Ω
′
,F ′ ,

(
F ′ t
)
t∈R+

,P′
)

with P′
(
λ
′
0 = x

)
= 1 and its characteristics

(
B
′
, C
′
, ν
′)

are given by
Formulas 3.1.19, 3.1.20, and 3.1.21 where (λt)t∈R+

is replaced by
(
λ
′
t

)
t∈R+

then

P′ ◦
(
λ
′
)−1

= Px.

Corollary 3.1.13. Let f ∈ Bρ(U) and ρ : U → R+ given by

ρ(u) := ‖u‖2 + 1.

Assume that for any t ∈ R+

sup
u∈U

ρ ◦Ψ(t, u)

ρ(u)
=: Ct <∞,

where Ψ(t, u) is given by 3.1.17 and for some δ > 0 there is C > 0 such
that for all 0 ≤ t < δ

Ct < C.

Then (f ◦Ψ(t, ·))t∈R+
is a generalized Feller semigroup on Bρ(U).

Proof. (Ψ(t, ·))t∈R+
ful�lls the conditions of Proposition 2.3.54.

Proposition 7.4 (ii) in [16] states thatΨ(s, ·) ◦ Ψ(t, ·) = Ψ(s + t, ·)
and from [16] Proposition 6.1 and Proposition 6.4 it follows that

(t, u)→ Ψ(t, u)

is continuous on R+ × U which implies that Property (iii) and (iv) in
Proposition 2.3.54 hold true. �

Corollary 3.1.14. Let n = 0 and let f ∈ Bρ(U) and ρ : U → R+

given by
ρ(u) := ‖u‖2 + 1.

Then (f ◦Ψ(t, ·))t∈R+
is a generalized Feller semigroup on Bρ(U).

C1
c (U) ⊂ D(A) and for f ∈ C1

c (U) the generator is given by

Af(u) = (Df) (u) ·R(u).

Let µ ∈Mρ(U) be given by

µ(B) =

∫
B

gµ(u)dλ(u) for any B ∈ B(U)
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for the Lebesgue measure λ and gµ ∈ C1(U) and let∫
U

(
‖u‖2 + 1

)( d

dx1

gµ + ...
d

dxn
gµ

)
(u)dλ(u)

≤ C

∫
U

(
‖u‖2 + 1

)
gµ(u)dλ(u)

for some C > 0. Then, µ ∈ D(A′) and

A′(µ)(B) = −
∫
B

div (R · gµ) (u)dλ(u) for any B ∈ B(U).

(Q(t))t∈R+
de�ned on D(A′) ⊂Mρ(U) as

Q(t)(µ) := µ ◦ ψ−1
t

is a strongly continuous semigroup. De�ne

D(A†) :=
{
µ ∈ D(A′) : A′µ ∈ D(A′)

}
.

If div (R · gµ) ∈ C1(U) and∫
U

(
‖u‖2 + 1

)( d

dx1

(R · gµ) + ...
d

dxn
(R · gµ)

)
(u)dλ(u)

≤ C ′
∫
U

(
‖u‖2 + 1

)
(R · gµ) (u)dλ(u)

for some C ′ > 0, then µ ∈ D(A†) and the generator A† of (Q(t))t∈R+

is given by the restriction of A′ to D(A†).

Proof. By [16], Inequality 6.16 for all t ∈ R+

‖Ψ(t, u)‖2 ≤ ‖u‖2 ,

which implies that the conditions of Corollary 3.1.13 are satis�ed. The
results for the generator follow from Proposition 2.3.58 and Corollary
2.3.57 and Proposition 2.3.59 yields the results for the adjoint semi-
group and its generator. �

3.2. Polynomial Processes

Polynomial processes were introduced in [12]. This section mainly
follows their presentation.

Throughout this section, let E be a closed subspace of V = Rd for
some d ∈ N and let the �ltration (Ft)t∈R+

be right continuous.
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Definition 3.2.1. Let

Pm :=

E 3 x→ ∑
j,|j|≤m

αjx
j , ∆→ 0

∣∣∣∣∣∣αj ∈ Rd


be the �nite dimensional vector space of polynomials on E ∪ {∆} of
degree m. Here, j = (j1, ..., jd) ∈ Nd

0, |j| = j1 + ... + jd and xj :=
xj11 · ... · x

,jd
d for x = (x1, ..., xd) ∈ E.

Definition 3.2.2. Let m ∈ N. If for any k ∈ {0, ...,m} and any
t ∈ R+

Pt(Pk) ⊂ Pk
holds true, and if for any x ∈ E and any f ∈ Pm

lim
t↘0

Ptf(x)→ f(x),

then (λt)t∈R+
is called m − polynomial process. If (λt)t∈R+

is an m-
polynomial process for anym ∈ N, then it is called polynomial process.

We recall the de�nition of the extended generator (De�nition 2.1.20).
Using semigroup theory, the following theorem is proved in [12]:

Theorem 3.2.3. The following three statements are equivalent:
(i) (λt)t∈R+

is an m-polynomial process for some m ∈ N.
(ii) For every k ∈ {0, 1, ...m} there is a bounded linear map Ak on Pk
such that for any t ∈ R+

P (t)|Pk = etAk .

(iii) For any x ∈ E, t ∈ R+ and f ∈ Pm
Pt |f | (x) <∞,

Pm is in the domain of the extended generator G, and

M f
t := f(λt)− f(x)−

∫ t

0

Gf(λs)ds

is a martingale with respect to (Ft)t∈R+
and the probability measure Px.

Furthermore, for any k ∈ {0, ...,m}

G(Pk) ⊂ Pk.
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Remark 3.2.4. For an m-polynomial process (λt)t∈R+
, by Theo-

rem 3.2.3 and Proposition 2.3.94 for any f ∈ Pm there is a version of
the stochastic process

(
M f

t

)
t∈R+

that has càdlàg paths (see De�nition

2.2.5) and is a martingale with respect to (Ft)t∈R+
and the probability

measure Px. Since Pm is �nite dimensional this implies that for any
t ∈ R+ Px-almost surely

M f
t = lim

s↘t, s∈Q
M f

s

holds true for any f ∈ Pm. Hence, for any t ∈ R+ Px-almost surely

(3.2.1) f(λt) = lim
s↘t, s∈Q

f(λs)

for any f ∈ Pm. Since Pm separates points, also Px-almost surely for
any t ∈ R+

λt = lim
s↘t, s∈Q

λs

(if not, then on some set with non-zero probability there would be some
i ∈ {1, ..., d}and t ∈ R+ such that

λit 6= lim sup
s↘t, s∈Q

λis

or
λit 6= lim inf

s↘t, s∈Q
λis

where λit is the i-th component of λt . But then some point-separating
g ∈ Pm would yield a contradiction to Equation 3.2.1). One obtains
such a result also for the existence of left limits. Therefore, an m-
polynomial process (λt)t∈R+

has a càdlàg modi�cation and in the fol-
lowing when talking aboutm-polynomial processes we will always mean
one whose paths are càdlàg.

Writing
µ(x, dξ) = x1µ1(dξ) + ...+ xdµd(dξ)

from Theorem 3.1.5 one can show as in Example 3.1 in [12]:

Proposition 3.2.5. On a state space E ⊂ Rd , d ≥ 2 that contains
d+ 1 elements x1, ..., xd+1 such that for every j ∈ {1, ..., d+ 1} the set

(x1 − xj, ..., xj−1 − xj, xj+1 − xj, ..., xd+1 − xj)
is linearly independent an a�ne process (λt)t∈R+

is r -polynomial if
γ = 0, ∫

‖ξ‖>1

‖ξ‖rm (dξ) <∞,



248 3. AFFINE AND POLYNOMIAL PROCESSES

and for any i ∈ {1, ...,m}∫
‖ξ‖>1

‖ξ‖r µi (dξ) <∞.

Proof. From Theorem 3.1.5 it follows that there is C > 0 such
that ∫

Rd
‖ξ‖rK (λt, dξ) ≤ C

(
1 +

∥∥λt1{t<T∆}
∥∥r) .

The Proposition follows then from Theorem 2.15 in [12]. �

Lemma 3.2.6. If (λt)t∈R+
is an m-polynomial process and ρ ∈ Pk

k ∈ {0, ...,m} then there is a bounded linear map Ak on Pk such that
for all x ∈ E and t ∈ R+

P (t)ρ(x) = Ex [ρ(λt)] =
(
etAmρ

)
(x) ≤ et‖Am‖ρ(x)

holds true and Ex [ρ(λt)] <∞ for all t ∈ R+ and for all x ∈ E.

Proof. Follows directly from Theorem 3.2.3 (ii). �

Proposition 3.2.7. Let (λt)t∈R+
be a polynomial process and for

some m ∈ N let ρ ∈ Pm be an admissible weight function on E. For
any f ∈ Cb(E) and any t ∈ R+ let P (t)f |KR be continuous for any
R > 0. Then (λt)t∈R+

is a generalized Feller process on (E, ρ) .

Proof. We have to show that (λt)t∈R+
is the stochastic process in

Theorem 2.3.65. By de�nition of the Markov process (λt)t∈R+
for any

t ≥ s ≥ 0 and any measurable map f : E → R+

(3.2.2) EPν [f(λt)| Fs] = P (t− s) f(λs)

holds true Pν -almost surely and

Pν ◦ λ−1
0 = ν.

By Lemma 3.2.6

EPν [f(λt)| Fs] = P (t− s) f(λs)

holds true Pν -almost surely for all f ∈ Bρ(E) as well. In order to
show that (λt)t∈R+

is a generalized Feller process we still have to prove
that (P (t))t∈R+

is a generalized Feller semigroup. We �x some t ∈ R+

and �rst show that f ∈ Bρ(E) implies P (t) f ∈ Bρ(E). By Lemma
3.2.6 for any

f ∈ B̃ρ(E) :=

{
f : E → R : sup

x∈E
ρ(x)−1 ‖f(x)‖ <∞, f measurable

}
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the map

x→
∫
E

f(y)p(t)(x, dy)

is well de�ned and

P (t) f(x) =

∫
E

f(y)p(t)(x, dy)

≤ et‖Am‖ ‖f‖ρ ρ(x).

Hence, P (t) is a linear bounded map from B̃ρ(E) to B̃ρ(E). In order
to show P (t) f ∈ Bρ(E) for any f ∈ Bρ(E), by continuity of P (t)
with respect to ‖·‖ρ and density of Cb(E) in Bρ(E) it is su�cient to
show that P (t) f ∈ Bρ(E) holds true for any f ∈ Cb(E). By Theorem
2.3.42 this is the case since P (t)f is clearly bounded and by assumption
P (t)f |KR is continuous for any R > 0.

Regarding the properties of generalized Feller semigroups in De�ni-
tion 2.3.49, the properties P1 and P2 and positivity (P5) are clearly
satis�ed for (P (t))t∈R+

. P4 holds true due to Lemma 3.2.6. Finally,
P3 is ful�lled since the paths of (λt)t∈R+

are càdlàg for all f ∈ Bρ(E)
hence for all x ∈ E we obtain by dominated convergence

lim
t↘0

P (t)f(x) = lim
t↘0

Ex [f(λt)] = f(x).

Thus (P (t))t∈R+
is a generalized Feller semigroup and (λt)t∈R+

is a
generalized Feller process on (E, ρ) . �

Corollary 3.2.8. On a state space E ⊂ Rd , d ≥ 2 that contains
d + 1 elements x1, ..., xd+1 such that for every j ∈ {1, ..., d+ 1} let
(λt)t∈R+

be an a�ne process with such that γ = 0,∫
‖ξ‖>1

‖ξ‖rm (dξ) <∞,

and for any i ∈ {1, ...,m}∫
‖ξ‖>1

‖ξ‖r µi (dξ) <∞.

Let ρ ∈ Pr be an admissible weight function on E. If for any f ∈ Cb(E)
and any t ∈ R+ P (t)f |KR is continuous for any R > 0, then (λt)t∈R+

is a generalized Feller process on (E, ρ) .

Proof. Combine Proposition 3.2.7 and Proposition 3.2.5. �
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3.3. Stochastic Representation of ODEs

We have seen in Theorem 3.1.8 and in Theorem 3.1.5 that for an
a�ne process (

(λt)t∈R+
, (Px)x∈E

)
with state space E the Fourier-Laplace transform is given by a solution
of the ordinary di�erential equation

∂tΨ
Y (t, u) = RY

(
ΨY (t, u) , et·β

Z
w
)
, Ψ (0, u) = u,

ΨZ (t, u) = et·β
Z
w.

In the following we turn this idea around and ask for which ordinary
di�erential equations we obtain a stochastic representation via a�ne
processes.

Definition 3.3.1. Let
(i) E ⊂ Rd, d ∈ N contain d+1 elements x1, ..., xd+1 such that for every
j ∈ {1, ..., d+ 1} the set

(x1 − xj, ..., xj−1 − xj, xj+1 − xj, ..., xd+1 − xj)
is linearly independent,
(ii) µ be a signed d-dimensional vector valued measure on E such that
for all i ∈ {1, ..., d}∫

E

min (‖(x, y)‖ , 1)
(
µ+
i (dx, dy) + µ−i (dx, dy)

)
<∞,

(iii) λ be the a�ne process on E with respect to the characteristics
(B, 0, ν) with truncation function χ and with

K (x, dξ) = x1µ1(dξ) + ...+ xdµd(dξ)

and
b(x) =

∫
V

χ (ξ) (x1µ1(dξ) + ...+ xdµd(dξ))

as in Theorem 3.1.3,
(iv) Û ⊂ R+ × Cd be such that for (t, u) ⊂ Û for any x ∈ E

Ex
[
e〈u,λt〉

]
= Φ (t, u) e〈Ψ(t,u),x〉,

and such that on Û
∂tΨ (t, u) = R (Ψ (t, u)) Ψ (0, u) = u

∂tΦ (t, u) = Φ (t, u)F (Ψ (s, u)) ds Φ (0, u) = 1,

where Φ,Ψ, R, F are given by Equation 3.1.1 and Equation 3.1.2.
Then we call

(
E, Û , λ, µ

)
admissible setting .
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Theorem 3.3.2. Let E1 ⊂ Rd and let νre+ be an Rd
+-valued σ-�nite

measure on E1 and let νre− , νim+ and νim− be Rd
+-valued �nite measures

on E1. Let

µ := νre+ − νre− + iνim+ − iνim− .

and

ν := νre+ + νre− + νim+ + νim− .

On E := E1 × Z× Z de�ne the measures

ν̃re+ := νre+ ◦
(
jre+
)−1

,

ν̃re− := νre− ◦
(
jre−
)−1

,

ν̃im+ := νim+ ◦
(
jim+
)−1

,

ν̃im− := νim− ◦
(
jim−
)−1

,

and

ν̃ := ν̃re+ + ν̃re− + ν̃im+ + ν̃im− ,

via the maps

jre+ : E1 3 x→ (x, 0, 0) ∈ E,
jre− : E1 3 x→ (x, 1, 0) ∈ E,
jim+ : E1 3 x→ (x, 0, 1) ∈ E,
jim− : E1 3 x→ (x, 1, 1) ∈ E.

Assume that
(
E, Û , Ñ , (ν̃, 0, 0)

)
is an admissible setting. Let(

0, log f, iπ,
i

2
π

)
∈ Û .

If eh ∈ E1 for some h ∈ {1, ..., d}, then on exp
(
Û
)

the ordinary
di�erential equation

∂tuh(t) = uh(t)

∫
Rd

(u(t)n − 1)µh(dn)(3.3.1)

u(0) = f,

with un = un1
1 · ... · u

nd
d permits the stochastic representation

(3.3.2) uh(t) = E(eh,0,0)

[
e〈log(f),Nt〉+〈iπ1,Z1,t〉+ i

2
π〈1,Z2,t〉

]
.



252 3. AFFINE AND POLYNOMIAL PROCESSES

Proof. By Theorem 3.1.5 for the a�ne process Ñ = (N,Z1, Z2)

E(eh,0,0)

[
e〈log(f),Nt〉+iπ,Z1,t+

i
2
πZ2,t

]
= Φ̃

(
t, (log(f), iπ,

i

2
π)

)
e〈Ψ̃(t,(log(f),iπ, i

2
π)),(eh,0,0)〉

where Φ̃ and Ψ̃ =
(

Ψ̃Y , Ψ̃Z
)
, are given by Equation 3.1.3 and Ψ̃Y :=(

Ψ̃1, ..., Ψ̃d

)
and Ψ̃Z :=

(
Ψ̃d+1, Ψ̃d+2

)
. This yields Φ̃ ≡ 1 and

Ψ̃Z
(
t, (log(f), iπ,

i

2
π)

)
=

(
iπ,

i

2
π

)
.

Moreover, with ν̃ = (ν̃1, ..., ν̃d, 0, 0), µ = (µ1, ..., µd) andR = (R1, .., Rd+2)
for any h ∈ {1, ..., d}

∂tΨ̃h

(
t, (log(f), iπ,

i

2
π)

)
= Rh

(
Ψ̃Y
(
t,

(
log(f), iπ,

i

2
π

)
, iπ,

i

2
π

))
=

∫
Rd+2

(
e〈Ψ̃Y ,n〉+〈iπ,z1〉+〈

i
2
π,z2〉 − 1

)
ν̃h(dn, dz1, dz2)

=

∫
Rd

(
e〈Ψ̃Y ,n〉 − 1

)
µh(dn).

We substitute,

uh(t) := exp
(

Ψ̃h (t, (log(f), 1, iπ))
)
.

and conclude. �

Remark 3.3.3. The vector �eld on the right hand side in Equation
3.3.1 is in general not locally Lipschitz continuous. Therefore, standard
theory involving the Picard-Lindelöf theorem can in general not be
applied. Furthermore, the right hand side in Equation 3.3.2 can easily
be simulated numerically.

Corollary 3.3.4. On the state space E = Zd × R× R with(
Ñ
)
t∈R+

= (Nt, Z1,t, 0)t∈R+
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let
(
E, Û , Ñ , (µ, 0, 0)

)
be an admissible setting, where with multi index

k = (k1, ..., kd) for any h ∈ {1, ..., d}
∞∑
|k|=0

∣∣ahk∣∣ <∞,
and

µh (dn, dz1, dz2) =
∞∑
|k|=0

∣∣ahk∣∣ δ{
k−eh,1{ahk<0},0

} (dn, dz1, dz2) .

Let (
0, log f, iπ,

i

2
π

)
∈ Û .

Then for any h ∈ {1, ..., d} on exp
(
Û
)

uh(t) = E(eh,0,0)

[
d∏
j=1

g
Nj,t
j eiπZ1,t

]
is a stochastic representation of

∂tuh(t) =

 ∞∑
|k|=0

ahku
k(t)− 1

 ,(3.3.3)

uh(0) = gh.(3.3.4)

with uk = uk1
1 · ... · u

kd
d .

Proof. Choose

νre+ (dn) =
∞∑
|k|=0

ahk1{ahk>0}δ{k−eh} (dn)

and

νre− (dn) =
∞∑
|k|=0

ahk1{ahk<0}δ{k−eh} (dn)

in Theorem 3.3.2. �





APPENDIX A

Appendix

A.1. Topology

Definition A.1.1. Let X be a set and τ a set of subsets of X.
Then τ is called topology if
(i) ∅, X ∈ τ ,
(ii) an intersection of �nitely many elements of τ is in τ ,
(iii) any union of elements of τ is in τ .

A topological space is a pair (X, τ). For x ∈ X a set Ux ⊂ X
that contains x is called neighborhood of x if there is O ∈ τ such that
x ∈ O ⊂ Ux.

Definition A.1.2. A base B ⊂ τ of a topological space (X, τ) is
a family of subsets of X such that any element in τ can be written as
the union of some elements in B . A local base of x ∈ X is a family of
neighborhoods Ux of x such that for any neighborhood V of x there is
some U ∈ Ux such that U ⊂ V .

Example A.1.3. If X is a vector space with norm ‖·‖ (or a metric
space with metric d) then de�ne for r > 0 the open balls

Br(x) := {y ∈ X : ‖y − x‖ < r} (Br(x) := {y ∈ X : d(x, y) < r})

and

O : =
{
O ⊂ X : for any x ∈ O there is r(x) > 0 such that Br(x)(x) ⊂ O

}
ThenO is a topology.

Definition A.1.4. A topological space (X, τ) is called metrizable
if there is a metric d on X such that the topology generated by d (see
Example A.1.3) coincides with τ .

The proof of the following Lemma roughly follows [40], Chapter 8.

Lemma A.1.5. In a Hausdor� topological space compact sets are
closed.

255
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Proof. Let X be a Hausdor� topological space and K ⊂ X be
compact. Without loss of generality assume X \ K 6= ∅. We have to
show that X \K is open. Since X is Hausdor� for any x ∈ X \K and
any y ∈ K there exist disjoint neighborhoods Ux,y 3 x and Uy,x 3 y.
Moreover, ⋃

y∈K

Uy,x

is an open cover of the compact set K hence a �nite number of neigh-
borhoods su�ces to coverK. Calling these points whose neighborhoods
su�ce yi for i ∈ {1, ..., n} we obtain that the sets⋃

i∈{1,...,n}

Uyi,x ⊃ K

and ⋂
i∈{1,...,n}

Ux,yi 3 x

are open and disjoint. Therefore⋂
i∈{1,...,n}

Ux,yi

is an open neighborhood of x in X \K. As x ∈ X \K was arbitrary
such a neighborhood exists for all x ∈ X \K and it follows that X \K
is open. �

Definition A.1.6. Let I be an index set and (Ωi)i∈I be a family
of sets. For J ⊂ J ′ ⊂ I the map

ΠJ ′

J : ×
i∈J ′

Ωi → ×
i∈J

Ωi

ω′ → ω′|J
is called projection. For i ∈ I the map ΠJ ′

{i} is written as ΠJ ′
i and for

J ′ = I it is called coordinate map and simply written as Πi.

Definition A.1.7. (product topology)
Let (Xi, τ i)i∈I be topological spaces,

X :=
∏
i∈I

Xi,

and let (Πi)i∈I be coordinate maps from De�nition A.1.6. Then the
basis

B :=

{⋂
j∈J

Π−1
j (Oj) ⊂ X : Oj ∈ τ j, J ⊂ I �nite

}



A.1. TOPOLOGY 257

de�nes the product topology τ on X. By de�nition it is the coarsest
topology (the one with least open sets) such that all coordinate maps
are continuous.

Lemma A.1.8. If (X, τ) is a topological space and U ⊂ X then
(U, τU) is a topological space as well where τU is de�ned as

τU := {O ∩ U : O ∈ τ} .
τU is called subspace topology.

Proof. This is shown by a simple veri�cation of the three proper-
ties of a topology. �

Lemma A.1.9. Let (X, τ) be a topological space and let S ⊂ X be
equipped with the subspace topology τS. Then a set K ⊂ S is compact
in(S, τS) if and only in it is compact in (X, τ).

Proof. Let K ⊂ S be compact in (X, τ) and let⋃
i∈I

OS
i

be a cover of K of sets that are open in (X, τS). Then for each OS
i

there is a set Oi ∈ τ such that OS
i = Oi ∩ S and by assumption there

is a �nite cover
K ⊂

⋃
j∈{1,...,n}

Oij

of sets open in (X, τ) . Hence,

K ⊂
⋃

j∈{1,...,n}

OS
ij

is a �nite cover of sets open in τS and K is compact in (X, τS).
Let K ⊂ S be compact in (X, τS) . Then for any cover⋃

i∈I

Oi

of sets open in (X, τ) the cover⋃
i∈I

Oi ∩ S

of sets open in (X, τS) has a �nite subcover, say

K ⊂
⋃

j∈{1,...,n}

Oij ∩ S.
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Hence
K ⊂

⋃
j∈{1,...,n}

Oij

is a �nite cover of K of sets open in (X, τ) and K is compact in (X, τ).
�

Proposition A.1.10. ([7], Chapter IX, �1, Proposition 3 and Corol-
lary)

A topological space X is completely regular if and only if it is home-
omorphic to a subspace of a compact Hausdor� space K. This means,
there exists a map i : X → K called embedding that is continuous and
that possesses an inverse on i(X) that is continuous when we equip
i(X) ⊂ K with the subspace topology form Lemma A.1.8 .

Proposition A.1.11. A compact Hausdor� space is normal.

Proof. Let X be a compact Hausdor� space and A,B ⊂ X be
closed, disjoint sets. Fix some x ∈ A. Since X is Hausdor� for any
y ∈ B there exist disjoint neighborhoods Ux,y of x and Uy,x of y.⋃

y∈B

Uy,x ⊃ B

is an open cover of B hence by compactness of B �nitely many neigh-
borhoods su�ce to cover B. Thus, there are yi ∈ B, i ∈ {1, ..., n}such
that:

Vx :=
⋃

i∈{1,...n}

Uyi,x ⊃ B.

The intersection
Ũx :=

⋂
i∈{1,...n}

Ux,yi

is a neighborhood of x and by construction Vx and Ũx are disjoint.⋃
x∈A

Ũx ⊃ A

is an open cover of A and by compactness �nitely many neighborhoods
su�ce to cover A. Thus, there are xj ∈ A, j ∈ {1, ...,m} such that:

UA,B :=
⋃

j∈{1,...m}

Ũxj ⊃ A.

By construction, UA,B and

UB,A :=
⋂

j∈{1,...m}

Vxj
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are disjoint open neighborhoods. �

Definition A.1.12. A topological space (X, τ) is called locally
compact if each point x ∈ X has a compact neighbourhood.

Proposition A.1.13. ([40], Proposition 10.15) A topological space
that is locally compact and Hausdor� and possesses a base with just
countably many elements is metrizable.

Definition A.1.14. A separable, topological space whose topology
is generated by a complete metric is called polish space.

Proposition A.1.15. A topological space that is locally compact
and Hausdor� and possesses a base with just countably many elements
is polish.

Proof. Combine [40], Proposition 13.17 and [40], Proposition 10.15.
�

Definition A.1.16. (one-point-compacti�cation) Let (X, τ) be a
topological space and ∞ /∈ X. Then X∗ := X ∪ {∞} equipped with
the topology

τ ∗ := τ ∪ {X∗ \ A|A is closed and compact in (X, τ)}
is compact.

Proposition A.1.17. ([40], Proposition 8.12) (Tychono�)
A non-empty product space

X =
∏
i∈I

Xi

is compact if and only if all Xi are compact.

A.2. Analysis

Lemma A.2.1. Let Y be a topological space. The following proper-
ties hold true:

(i) A continuous function f : Y → R is upper and lower semicon-
tinuous.

(ii) If f : Y → (0,∞) is lower (upper) semicontinuous then g := 1
f

is upper (lower) semicontinuous.
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(iii) If f : Y → (0,∞) and g : Y → (0,∞) are lower (upper)
semicontinuous then also h := f · g is lower (upper) semicontinuous.

Proof.

(i) Clear.
(ii) Let f : Y → (0,∞) be lower semicontinuous and x ∈ Y and ε > 0
arbitrary. Then for

f(x) > δ :=
ε (f(x))2

1 + εf(x)
> 0

there exists a neighborhood Ux of x such that f(y) > f(x)− δ > 0 for
all y ∈ Ux. Therefore,

1

f(y)
<

1

f(x)− δ

=

(
1 +

δ

f(x)− δ

)
1

f(x)

=
1

f(x)
+ ε

for all y ∈ Ux. For f being upper semicontinuous, the assertion is
proved in the same way.
(iii) Let f : Y → (0,∞) and g : Y → (0,∞) be lower semicontinuous
and let x ∈ Y and ε > 0 be arbitrary. Then for δ = ε

f(x)+g(x)
> 0 there

exist neighborhoods Ux and Vx of x such that

f(y) > f(x)− δ

for all y ∈ Ux and
g(y) > g(x)− δ

for all y ∈ Vx. Then for y ∈ Ux ∩ Vx
h(y) = f(y) · g(y)

> (f(x)− δ) (g(x)− δ)

= h(x)− ε

f(x) + g(x)
(f(x) + g(x)) + δ2

> h(x)− ε.

For f and g being upper semicontinuous, the assertion is proved in the
same way. �

Definition A.2.2. Let X, Y be normed vector spaces and

f : X → Y.
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For x ∈ X, f is said to be Fréchet differentiable at x if there is a
linear bounded map

Df(x) : X → Y

such that

lim
‖h‖X↘0

‖f(x+ h)− f(x)−Df(x)h‖Y
‖h‖X

= 0.

If f is Fréchet di�erentiable at x for any x ∈ X f it is simply called
Fréchet differentiable.

Theorem A.2.3. ([2], Theorem 7.6) Let E be a �nite dimensional
Banach space, J ⊂ R and D ⊂ E open. Assume that

f : J ×D → E

is continuous and that for any x ∈ D there is a neighbourhood in J×D
such that f is Lipschitz continuous on this neighbourhood. Then for
every (t0, x0) ∈ J ×D there exists a unique solution

u(·, t0, x0) : J(t0, x0)→ D

of
dx

dt
= f(t, x) and x(t0) = x0,

for which J(t0, x0) is the maximal interval of existence. J(t0, x0) is
open:

J(t0, x0) =
(
t−(t0, x0), t+(t0, x0)

)
,

and we either have
t− := t−(t0, x0) = inf J,

and
t+ := t+(t0, x0) = inf J,

or

lim
t→t±

min

{
dist (u(t, t0, x0), ∂D) ,

1

‖u(t, t0, x0)‖

}
= 0.

Theorem A.2.4. ([21]Theorem 3.1) Let t ∈ R, y, y0 ∈ Rd, d ∈ N
and f, η be Rd-valued. Let f(t, y, z) be continuous on an open (t, y, z)-
set E and possess continuous �rst order partials ∂f

∂yk
, ∂f
∂zi

with respect
to the components y and z.Then the unique solution

y = η(t, t0, y0, z)

of
y′ = f(t, y, z) and y(t0) = y0,

where z = (z1, ..., ze) is a set of parameters, is of C1-class on its open
domain of de�nition.
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Definition A.2.5. Let A be a K-vector space with a bilinear map

· : A× A→ A

such that for any a, b, c ∈ A and any µ, λ ∈ K
a · (b+ c) = a · b+ a · c,
(b+ c) · a = b · a+ c · a

and
(λa) · (µb) = (λµ) (b · a) .

Then A is called algebra.

Theorem A.2.6. (Stone-Weierstrass on R, [30], VIII.4.7)
Let K be compact and A ⊂ C(K) be an algebra with respect to pointwise
multiplication . If
(i)1K ∈ A, and
(ii)A separates points (which means that for any x, y ∈ K, x 6= y there
is f ∈ A such that f(x) 6= f(y) ),
then A is dense in C(K) with respect to ‖·‖∞.

Proposition A.2.7. ([4], De�nition 1.1) Let U, V be K- vector
spaces. There exists a K- vector space U⊗V denoted as tensor product
space and a map

φ : U × V → U ⊗ V,
denoted as canonical bilinear map such that for any K- vector space
W and any bilinear map

b : U × V → W

there is a linear map L : U ⊗ V → W such that

L ◦ φ = b.

U × V
φ
��

b // W

U ⊗ V

L

;;

U⊗V and φ are unique up to a bijective linear map and u⊗v := φ(u, v)
for any u ∈ U , v ∈ V .

Lemma A.2.8. ([4], Remark 1.2 (5))Let U, V be K- vector spaces.
Every x ∈ U ⊗ V is given by x =

n∑
i=1

ui ⊗ vi for some n ∈ N and linear

independent (ui)i∈{1,...,n} ⊂ U and (vi)i∈{1,...,n} ⊂ V .
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Lemma A.2.9. ([4], Remark 1.2 (6))Let U, V,W be K- vector spaces.
Then

U ⊗ V ⊗W := (U ⊗ V )⊗W = U ⊗ (V ⊗W ) .

A.3. Probability Theory

A.3.1. σ-Algebras and Measures.

Definition A.3.1. Let Ω be some set and 2Ω its power set which is
the set of all subsets of Ω. A family of sets Σ ⊂ 2Ω is called σ- algebra
on Ω if

(i) Ω ∈ Σ,
(ii) if E ∈ Σ then Ω \ E ∈ Σ, and
(iii) if Ei ∈ Σ for any i ∈ N then

⋃
i∈N
Ei ∈ Σ.

If Σ is a σ-algebra on Ω, then the pair (Ω,Σ) is called measurable
space.

Definition A.3.2. Let Ω be some set and 2Ω its power set and
G ⊂ 2Ω a family of subsets of Ω. σ(G) is denotes the smallest σ-algebra
such that G ⊂ σ(Ω) and G is called generator of σ(G).

Lemma A.3.3. For g : (Ω1,Σ1) → (Ω2,Σ2) and a generator G of
Σ2 g is measurable if and only if g−1(A) ∈ Σ1 for all A ∈ G.

Proof. De�ne

M :=
{
A ∈ Σ2 : g−1(A) ∈ Σ1

}
.

One shows easily that this is a σ-algebra. Since G ⊂ M this implies
Σ2 ⊂M ⊂ Σ2. �

Definition A.3.4. Let T be a topological space and O the set
of all open sets. Then B(T ) := σ(O) is called Borel σ- algebra. If
not explicitly stated otherwise, on a topological space the σ-algebra
considered is the Borel σ-algebra.
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Definition A.3.5. Let I be an index set, let (Ωi)i∈I be a family
of sets and let J ⊂ J ′ ⊂ I. The family (Πi)i∈I of coordinate maps (see
De�nition A.1.6) is called coordinate process if Ωi = Ω for all i ∈ I and
if (Ω,F) is a measurable space.

Definition A.3.6. Let Σ1 be a σ-algebra on Ω1 and Σ2 be a σ-
algebra on Ω2. A function

f : Ω1 → Ω2

is called Σ1-Σ2- measurable if for all E ∈ Ω2 also f−1(E) ∈ Ω1. If it
is unambiguous which σ-algebra is meant, the map is often just called
measurable . The smallest σ-algebra on Ω1 with respect to which f is
measurable is denoted σ(f). If I is a non-empty index and fi : Ω1 → Ω2

for alli ∈ I then σ (fi : i ∈ I) is the smallest σ-algebra on Ω1 with
respect to which all fi, i ∈ I are measurable.

Definition A.3.7. Let I be an index set and (Ωi,Fi) be measurable
spaces for all i ∈ I. Then⊗

i∈I

Fi := σ
(
ΠI
j : j ∈ I

)
is de�ned as the smallest σ-algebra on ×

i∈I
Ωi such that the coordinate

maps ΠI
j : ×

i∈I
Ωi → Ωj are measurable for all j ∈ I. Written di�erently,⊗
i∈I

Fi = σ
((

ΠI
i

)−1
(Ei) : Ei ∈ Fi, i ∈ I

)
.

Corollary A.3.8. For any i ∈ I let Gi ⊂ Fi be a generator of Fi.
Then

G :=
((

ΠI
i

)−1
(Ei) : Ei ∈ Gi, i ∈ I

)
is a generator of

⊗
i∈I
Fi.

Proof. For any i ∈ I by Lemma A.3.3 the projection

ΠI
i :

(
×
i∈I

Ωi, σ(G)

)
→ (Ωi,Fi)

is measurable. Hence ⊗
i∈I

Fi ⊂ σ(G) ⊂
⊗
i∈I

Fi.

�
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Lemma A.3.9. ([30],Corollary 1.97) (Doob-Dynkin lemma) Let X :
Ω1 → Ω2 be a map between some non-empty set Ω1 and a measurable
space (Ω2,F). Then f : Ω1 → R∪{−∞,∞} is measurable with respect
to σ(X) if and only if there is a F-measurable function

g : Ω2 → R ∪ {−∞,∞}
such that f = g(X).

Lemma A.3.10. ([30], Corollary 1.82) Let I be a non-empty index
set and (E1, E1), (E2, E2) and for all i ∈ I also (Ωi,Fi) be measurable
spaces. For each i ∈ I let Zi be a map from E2 to Ωi such that E2 =
σ (Zi : i ∈ I). Then a map Y : E1 → E2 is E1- E2 measurable if and
only if Zi ◦ Y is E1 −Fi measurable for all i ∈ I.

Proposition A.3.11. ([30], Proposition 1.23) B(R) is identical to
the σ-algebra generated by the intervals (−∞, a) , a ∈ Q, or by the
intervals (−∞, a] , a ∈ Q, or by the intervals (a,∞) , a ∈ Q or by the
intervals [a,∞) , a ∈ Q.

Definition A.3.12. Let Ω be some set and 2Ω its power set which
is the set of all subsets of Ω. A family of sets D ⊂ 2Ω is called Dynkin-
system on Ω if

(i) Ω ∈ D,
(ii) if A,B ∈ D and A ⊃ B, then A \B ∈ D, and
(iii) if Ei ∈ D for any i ∈ N and if the sets (Ei)i∈N are pairwise

disjoint, then
⋃
i∈N
Ei ∈ D.

Remark A.3.13. For G ⊂ 2Ω the smallest Dynkin system D on Ω
such that G ⊂ D is denoted δ(G).

Definition A.3.14. Let Ω be some set. P ⊂ 2Ω is called intersection
stable if A, B ∈ P implies A ∩B ∈ P .

Lemma A.3.15. ([30], Proposition 1.19) (Dynkin's π-λ theorem) If
E ⊂ 2Ω is intersection stable, then

δ(E) = σ(E).
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Lemma A.3.16. Let (Ω1,F1), (Ω2,F2), (E, E) be measurable spaces.
Let f : Ω1 × Ω2 → E be F1 ⊗F2-E-measurable. For ω1 ∈ Ω1 �xed

Ω2 → E

ω2 → f(ω1, ω2)

is F2-measurable.

Proof. For the map

iω1 : Ω2 → Ω1 × Ω2

ω2 → (ω1, ω2)

i−1
ω1

(A1 × A2) ∈ F2 holds for any A1 ∈ F1, A2 ∈ F2, hence by Lemma
A.3.3 iω1 is measurable, thus f ◦ iω1 . �

Lemma A.3.17. Let (Ω,Σ) be a measurable space and let

fn : (Ω,Σ)→ (R ∪ {−∞,∞} ,B(R ∪ {−∞,∞})) , n ∈ N
be a sequence of measurable functions. Then

inf
n∈N

fn, sup
n∈N

fn, lim inf
n→∞

fn, lim sup
n→∞

fn,

and , if it exists, lim
n→∞

fn are measurable.

Proof. We apply Lemma A.3.3 and obtain for any a ∈ R(
inf
n∈N

fn

)−1

(−∞, a) =
⋃
n∈N

f−1
n (−∞, a) ∈ Σ1,

hence, by Proposition A.3.11 indeed B(R ∪ {−∞,∞}) ⊂M and

inf
n∈N

fn

is measurable. The same holds true for

sup
n∈N

fn.

By writing

lim inf
n→∞

fn = sup
N∈N

 inf
n ∈ N
n > N

fn


we obtain measurability of

lim inf
n→∞

fn
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and analogously of
lim sup
n→∞

fn.

Finally, we observe, that if it exists,

lim
n→∞

fn = lim sup
n→∞

fn = lim inf
n→∞

fn.

�

Definition A.3.18. Let (Ω,Σ) be a measurable space. A function

f : Ω→ R
is called simple function , if it can be written as

f =
n∑
i=1

αi1Ai

for some n ∈ N, where α1, ..., αn ∈ R and A1, ..., An ∈ Σ are pairwise
disjoint.

Proposition A.3.19. Let (Ω,Σ) be a measurable space and

f : Ω→ [0,∞]

measurable. Then there exists a sequence of non-negative simple func-
tions (fn)n∈N such that

fn ↗ f.

Proof. For n ∈ N de�ne

fn = min
(
2−n b2nfc , n

)
.

�

Definition A.3.20. Let (Ω,Σ) be a measurable space . A map
µ : Σ → R+ ∪ {∞} is called measure if it is σ-additive which means,
that for all pairwise disjoint sets E1, E2, ... ∈ Σ

µ

(
∞⋃
i=1

Ei

)
=
∞∑
i=1

µ (Ei) .

If additionally µ(Ω) = 1 then µ is called probability measure. If
µ(Ω) < ∞ then µ is called finite. If there is a sequence (Ei)i∈N ⊂
ΣNsuch that Ω =

⋃
i∈N
Ei and µ(Ei) <∞ the map is called σ- finite. The

set of all probability measures on (Ω,Σ) is denoted byM1 (Ω,Σ). The
set of all σ-�nite measures on (Ω,Σ) is calledMσ (Ω,Σ).
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Example A.3.21. On a measurable space (Ω,Σ) for ω ∈ Ω the map

δω : Σ→ [0, 1]

A→

{
1 if ω ∈ A
0 else

is a probability measure and called Dirac measure in ω.

Definition A.3.22. For a set Ω, a σ-algebra Σ ⊂ 2Ω and a measure
µ : Σ→ R+ ∪ {∞} we call the triple (Ω,Σ, µ) measure space. If µ is a
probability measure, then (Ω,Σ, µ) is called probability space.

Definition A.3.23. Two measurable spaces (Ω,Σ) and (Ω′,Σ′) are
called isomorphic if there is a measurable bijective map ϕ : Ω → Ω′,
called isomorphism, such that ϕ−1 is measurable. Two measure spaces
(Ω,Σ, µ) and (Ω′,Σ′, µ′) are called if (Ω,Σ) and (Ω′,Σ′) are isomorphic
and for their isomorphism ϕ the equation µ′ = µ ◦ ϕ−1 holds true.

Definition A.3.24. Ameasurable map between a probability space
(Ω,Σ,P) and a measurable space (E, E) is called random variable. If
we speak of random variables on (Ω,Σ,P) without specifying the space
E, then E = R is meant.

Definition A.3.25. For a probability space (Ω,Σ,P) and a real-
valued random variable X the probability measure PX := P ◦ X−1 is
called distribution. For µ = P ◦X−1 we write

X ∼ µ.

Example A.3.26. If µ ∈ R , σ2 > 0 and X is a real-valued random
variable such that for any x ∈ R

P (X ≤ x) =
1√

2πσ2

x∫
−∞

e−
(t−µ)2

2σ2 dt,

then Nµ,σ2 := P ◦X−1 is called normal distribution with parameters µ
and σ2.
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If X is Rd-valued, µ ∈ Rd , Σ is a positive de�nite d×d matrix and
for any x = (x1, ..., xd) ∈ Rd

P (X ≤ x) = det (2πΣ)
−1/2

xd∫
−∞

...

 x1∫
−∞

exp

(
−1

2

〈
t− µ,Σ−1 (t− µ)

〉)
dt1

 dtd,

with t = (t1, ..., td) ∈ Rd, then Nµ,Σ := P ◦X−1 is called d-dimensional
normal distribution with parameters µ and Σ.

Definition A.3.27. On Ω a semiring is a system of sets S ⊂
2Ωsuch that

(i)∅ ∈ S
(ii) if A,B ∈ S, then A \ B is the �nite union of pairwise disjoint

sets in S
(iii) if A,B ∈ S, then A ∩B ∈ S

Definition A.3.28. Let S be a semiring on Ω and µ : S → [0,∞].

µ is called σ-subadditive if for any A,A1, ..., An ∈ S such that A ⊂
n⋃
i=1

Ai

µ (A) ≤
n∑
i=1

µ (Ai) .

Theorem A.3.29. ([30], Proposition 1.53) (Caratheodory exten-
sion theorem)

Let S be a semiring on Ω and µ : S → [0,∞] be an additive, σ-
subadditive, σ-�nite map with µ(∅) = 0. Then there exists a unique
extension of µ to a measure µ̄ on σ (S) and µ̄ is σ-�nite.

Definition A.3.30. A measure on (Rn,B (Rn)), n ∈ N obtained
by extending the map

µ( ×
i∈{1,...,n}

[ai, bi]) = (b1 − a1) · ... · (bn − an)

for ai ≤ bi, i ∈ {1, ..., n} by Theorem A.3.29 (and Proposition A.3.11
and De�nition A.3.7) is called Lebesgue measure. If not stated oth-
erwise, as a measure on (Rn,B (Rn)) we always choose the Lebesgue
measure.
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Proposition A.3.31. Let µ1 and µ2 be two (signed) measures on
the measurable space (Ω,Σ) that coincide on an intersection stable gen-
erator E of Σ for which there are sets E1,E2,... ∈ E, En ⊂ En+1 for all
n ∈ N, such that

Ω =
⋃
n∈N

En

and µ1(En) = µ2(En) <∞. Then µ1 and µ2 coincide everywhere.

Proof. For E ∈ E such that µ1(E) = µ2(E) <∞ de�ne

DE := {A ∈ Σ : µ1(E ∩ A) = µ2(E ∩ A)} .

One can easily show that this is a Dynkin system and clearly E ⊂
DE, hence δ(E) ⊂ DE. Therefore, by Proposition A.3.15

δ(E) = σ(E) = Σ.

Thus, DE = Σ and for any A ∈ Σ and any E ∈ E such that µ1(E) =
µ2(E) <∞ we obtain:

µ1(E ∩ A) = µ2(E ∩ A).

In particular, for any A ∈ Σ

µ1(A) = lim
n→∞

µ1(En ∩ A) = lim
n→∞

µ2(En ∩ A) = µ2(A).

�

Definition A.3.32. Let (Ω,Σ, µ) be a measure space. A set N ∈ Σ
such that µ(N) = 0 is called null set. If for a second measure ν on
(Ω,Σ) any null set with respect to µ is also a null set with respect to
ν then ν is said to be absolutely continuous with respect to µ which is
denoted as ν � µ. If both ν � µ and ν � µ then µ and ν are called
equivalent . If for any null set N also A ∈ Σ for any A ⊂ N then the
measure space (Ω,Σ, µ) is called complete. If Σ′ ⊃ Σ is the smallest
σ-algebra such that for a measure µ′ on Σ′ with µ′|Σ = µ the measure
space (Ω,Σ′, µ′) is complete then (Ω,Σ′, µ′) is called completion of
(Ω,Σ, µ). If a property holds on the set Ω \ N where N is a null set,
it is said to hold almost everywhere or almost surely in case if µ is a
probability measure.

Lemma A.3.33. The sum of two signed Radon measures is a signed
Radon measure.
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Proof. Let µ1, µ2 be signed Radon measures on (Ω,Σ). Then
µ1 +µ2 is clearly a signed measure on (Ω,Σ) and |µ1 + µ2| ≤ |µ1|+ |µ2|
is locally �nite. For any open set O ⊂ Ωand ε > 0 there exists a
compact set Kε ⊂ O such that

ε ≥ |µ1| (O \Kε) = µ+
1 (O \Kε) + µ−1 (O \Kε)

and
ε ≥ |µ2| (O \Kε) = µ+

2 (O \Kε) + µ−2 (O \Kε) .

Thus,
2ε ≥

(
µ+

1 + µ+
2

)
(O \Kε) +

(
µ−1 + µ−2

)
(O \Kε) ,

and the inequalities(
µ+

1 + µ+
2

)
(O \Kε) ≥ (µ1 + µ2)+ (O \Kε) ,

and (
µ−1 + µ−2

)
(O \Kε) ≥ (µ1 + µ2)− (O \Kε) ,

imply

|µ1 + µ2| (O \Kε) = (µ1 + µ2)+ (O \Kε) + (µ1 + µ2)− (O \Kε)

≤ 2ε.

Therefore, |µ1 + µ2| is inner regular and µ1 + µ2 is a signed Radon
measure. �

Proposition A.3.34. ([17], Chapter VIII, �1, Proposition 1.5) Let
(X, τ) be a topological space . A �nite measure on the measurable space
(X,B(X)) is a Radon measure if for all open sets O ⊂ X

µ (O) = sup {µ (K) : K ⊂ O, K compact} .

Definition A.3.35. Let (Ω,Σ,P) be a probability space and I an
index set. A family of sets (Ai)i∈I ⊂ Σ is called independent if for any
�nite J ⊂ I

P

(⋂
i∈J

Ai

)
=
∏
i∈J

P (Ai) .

A family (Bi)i∈I such that Bi ⊂ Σ for any i ∈ I is called independent
if for any �nite J ⊂ I and any family of sets (Bi)i∈J ⊂ Σ such that
Bi ∈ Bi for any i ∈ J

P

(⋂
i∈J

Bi

)
=
∏
i∈J

P (Bi)

holds true.
A family of random variables (Xi)i∈I on (Ω,Σ,P) is called independent

if the family (σ (Xi))i∈I is independent.
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Definition A.3.36. Let Ω 6= ∅. A set O ⊂ Ω is called Cb(Ω)-open,
if there exists a sequence (fn)n∈N ⊂ Cb(Ω) such that pointwise fn ↗ 1O.
The system of sets that are Cb(Ω)- open is called G (Cb(Ω)) .

In M.Schweizer's lecture notes �Measure and Integration� (version
July 22, 2017) it is shown in Lemma IV.1.11:

Lemma A.3.37. Let Ω 6= ∅ and let G (Cb(Ω)) be the system of sets
that are Cb(Ω)- open. Then

σ (G (Cb(Ω))) = σ (f | f ∈ Cb(Ω)) ,

the smallest σ-algebra such that all maps in Cb(Ω) are measurable.

Definition A.3.38. The smallest σ-algebra such that all maps in
C(Ω) are measurable i.e. σ (C(Ω)) is called Baire σ-algebra and is
written B0(Ω).

Remark A.3.39. Clearly, B0(Ω) = σ (Cb(Ω)).

A.3.2. Integration and Conditional Expectation.

Definition A.3.40. Let (Ω,Σ, µ) be a measure space. For a mea-
surable function f : Ω→ [0,∞] the integral∫

Ω

fdµ

is de�ned as the supremum of
n∑
i=1

αiµ (Ai)

over all positive simple functions

g =
n∑
i=1

αi1Ai ≤ f.

Definition A.3.41. Let (Ω,Σ, µ) be a measure space. For a mea-
surable function f : Ω→ R and f+ := max (f, 0) and f− := max (−f, 0)
the integral is de�ned as∫

Ω

fdµ :=

∫
Ω

f+dµ−
∫

Ω

f−dµ,

provided not both
∫

Ω
f+dµ and

∫
Ω
f−dµ are in�nity.
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For a signed measure µ on (Ω,Σ) and a measurable function f :
Ω→ R such that

∫
Ω
fd |µ| <∞ the integral is de�ned as∫
Ω

fdµ :=

∫
Ω

fdµ+ −
∫

Ω

fdµ−

If µ is a probability measure, then

E [f ] :=

∫
Ω

fdµ

is called expected value.

Definition A.3.42. Let (Ω,Σ, µ) be a measure space. The set of
all measurable functions f : Ω→ R ∪ {−∞,∞} such that∫

Ω

|f | dµ <∞

is called L1 (Ω,Σ, µ) . Any element f ∈ L1 (Ω,Σ, µ) is called integrable.
If f 2 ∈ L1 (Ω,Σ, µ), then f is called square− integrable.

Theorem A.3.43. ([23], Theorem 12.34) Let (Ω,Σ, µ) be a measure
space and f ∈ L1(Ω,Σ, µ). Then for every ε > 0 there exists δ > 0
such that for any A ∈ Σ with µ(A) < δ∫

A

|f | dµ < ε.

Lemma A.3.44. Let (Ω,Σ,P) be a probability space and (E1, E1),
(E2, E2) measurable. Let X, Y ∈ L1 (Ω,Σ,P) be independent random
variable that take values in (E1, E1) and (E2, E2). If f : (E1, E2)→ R+

is measurable then

E [f(X, Y )] =

∫
E1

∫
E2

f(x, y)PX(dx)PY (dy).
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Proof. For F1 ∈ E1 and F2 ∈ E2 by Proposition A.3.45

E [1F1×F2(X, Y )] = E [1F1(X)1F2(Y )]

= E [1F1(X)]E [1F2(Y )]

=

∫
E2

(∫
E1

1F1(x)PX(dx)

)
1F2(y)PY (dy)

=

∫
E1

∫
E2

1F1×F2(x, y)PX(dx)PY (dy).

holds true. Hence the family D of sets{B ∈ E1 ⊗ E2} such that

E [1B(X, Y )] =

∫
E1

∫
E2

1B(x, y)PX(dx)PY (dy)

holds true contains the (intersection stable) generator of E1 ⊗ E2 (see
Corollary A.3.8) and is a Dynkin system as one can easily show. Thus,
by Lemma A.3.15 D = E1 ⊗ E2. Linearity of the integral and the ex-
pected value and Proposition A.3.19 and monotone convergence (The-
orem A.3.57) yield the statement of the Lemma. �

Proposition A.3.45. ([30],Proposition 5.4) Let (Ω,Σ,P) be a prob-
ability space. If X, Y ∈ L1 (Ω,Σ,P) are independent then X · Y ∈
L1 (Ω,Σ,P) and

E [XY ] = E [X]E [Y ] .

Definition A.3.46. If a measure µ on the measurable space (Ω,Σ)
is given by the measure ν and the measurable map f : Ω→ R+ by the
relation

µ(A) =

∫
Ω

f(x)ν(dx) for any A ∈ Σ

then f is called density of µ with respect to ν.

Theorem A.3.47. (Radon-Nikodym, [30],Corollary 7.34)
For σ-�nite measures µ and ν on the measurable space (Ω,Σ) ν has

a density with respect to µ if and only if v is absolutely continuous with
respect to µ.

Definition A.3.48. Let (Ω,Σ, µ) be a σ -�nite measure space and
E a topological space with Borel σ- algebra B (E). Let f1, f2, ... : Ω→
E be a sequence of measurable maps. We say that

fn → f
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converges µ-almost everywhere if there is a null set N ∈ Σ such that
for any ω ∈ Ω \N

fn(ω)→ f(ω).

Definition A.3.49. Let (Ω,Σ, µ) be a σ -�nite measure space and
(E, d) a metric space with Borel σ- algebra B (E). Let f1, f2, ... : Ω→
E be a sequence of measurable maps. We say that

fn → f

converges in µ-probability if for any ε > 0 and A ∈ Σ such that µ(A) <
∞

lim
n→∞

µ ({d (fn, f) > ε} ∩ A) = 0.

Remark A.3.50. Let (Ω,Σ, µ) be a σ -�nite measure space and
(E, d) a metric space with Borel σ- algebra B (E). Let f1, f2, ... : Ω→
E be a sequence of measurable maps and let f, g : Ω → E be mea-
surable. If fn → f and fn → g converge in µ-probability then for any
A ∈ Σ such that µ(A) <∞ and any n ∈ N and any ε > 0

µ ({d (g, f) > ε} ∩A) ≤ µ ({d (g, fn) > ε/2} ∩A) + µ ({d (fn, f) > ε/2} ∩A) .

The right hand side converges to 0. Choosing a sequence (An)n∈N ⊂ Σ
of sets of �nite mass such that An → Ω we conclude that the limit with
respect to convergence in µ-probability is µ-almost everywhere unique.

Definition A.3.51. Let E be a metric space and B(E) its Borel σ-
algebra. Let X,X1, X2, ... be random variables on the probability space
(Ω,F ,P) that take values in (E,B(E)) . Then Xn → X converges in
law if for all h ∈ Cb(E)

E [h(Xn)]→ E [h(X)] .

Proposition A.3.52. ([26], Lemma 3.7)
Let E be a metric space and B(E) its Borel σ-algebra. Let X,X1, X2, ...

be random variables on the probability space (Ω,F ,P) that take values
in (E,B(E)). Then

Xn → X

in P-probability implies
Xn → X

in law. If X is P-almost surely constant, then also the converse is true.
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Proposition A.3.53. ([30], Corollary 6.13) Let (Ω,Σ, µ) be a mea-
sure space and (E, d) a separable metric space with Borel σ- algebra
B (E). Let f1, f2, ... : Ω→ E be a sequence of measurable maps. Then

fn → f

convergences in µ-probability if and only if there exists a subsequence
fn1 , fn2 , ... : Ω→ E that converges µ-almost everywhere to f .

Definition A.3.54. ([30], De�nition 6.16) Let (Ω,Σ, µ) be a mea-
sure space. The family F ⊂ L1 (Ω,Σ, µ) is called uniformly integrable
if

inf
0≤g≤L1(Ω,Σ,µ)

sup
f∈F

∫
Ω

(|f | − g)+ dµ = 0

Proposition A.3.55. ([30], Proposition 6.17) Let (Ω,Σ, µ) be a
measure space and let µ be �nite. Then the family F ⊂ L1 (Ω,Σ, µ) is
uniformly integrable
(i) if

inf
0≤a<∞

sup
f∈F

∫
Ω

(|f | − a)+ dµ = 0,

(ii) or if

inf
0≤a<∞

sup
f∈F

∫
{|f |>a}

|f | dµ = 0.

Proposition A.3.56. ([30], Proposition 6.25) Let (Ω,Σ, µ) be a
measure space and (fn)n∈N ⊂ L1 (Ω,Σ, µ). Then the following state-
ments are equivalent:

(i) There is f ∈ L1 (Ω,Σ, µ) such that

lim
n−→∞

‖fn − f‖L1(Ω,Σ,µ) = 0

.
(ii) (fn)n∈N is uniformly integrable and there is a measurable map

f such that
lim
n−→∞

fn = f

in µ-probability.
The limits in (i) and (ii) coincide.

Theorem A.3.57. (Monotone Convergence Theorem, [30], Propo-
sition 4.20)
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Let (Ω,Σ, µ) be a measure space, and

(fn)n∈N ⊂ L
1 (Ω,Σ, µ)

and
f : Ω→ [−∞,∞]

be measurable. Let fn ↗ f almost everywhere for n→∞. Then

lim
n→∞

∫
fndµ =

∫
fdµ.

Theorem A.3.58. (Dominated Convergence Theorem, [30], Corol-
lary 6.26)

Let (Ω,Σ, µ) be a measure space, f measurable and

(fn)n∈N ⊂ L
1 (Ω,Σ, µ)

such that almost everywhere fn → f. If there exists 0 ≤ g ∈ L1 (Ω,Σ, µ)
such that |fn| ≤ g almost everywhere for all n ∈ N then

lim
n→∞

∫
Ω

|fn − f | dµ = 0

and f ∈ L1 (Ω,Σ, µ).

The proof of the next Lemma follows [30], Lemma 14.20.

Lemma A.3.59. Let κ be a transition kernel on (E, E) and

f : E × E → [0,∞]

be measurable with respect to E ⊗ E. Then

x→
∫
E

f(x, y)κ(x, dy)

is E-measurable .

Proof. The integral is de�ned because by Lemma A.3.16 for all
x ∈ E the map y → f(x, y) is measurable. For A ∈ E and B ∈ E and
f = 1A×B we obtain measurability for

x→
∫
E

f(x, y)κ(x, dy) = 1Aκ(x,B).

De�ning D as the set of sets A ∈ E ⊗ E such that x →
∫
E

1Aκ(x, dy) is

measurable we show easily that D is a Dynkin system. Since D contains
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the intersection stable generator of E ⊗ E we obtain by Lemma A.3.15
that D = E ⊗ E . Therefore

x→
∫
E

f(x, y)κ(x, dy)

is measurable for all simple functions ( see De�nition A.3.18). Since
any jointly measurable function

f : E × E → [0,∞]

can be written as the limit of simple functions (Proposition A.3.19),
the statement of the lemma follows from the fact, that the limit of
measurable functions is measurable (Lemma A.3.17). �

Lemma A.3.60. If

κ1 : E × E → [0,∞]

and
κ2 : E × E → [0,∞]

are transition kernels on (E, E), then

κ3(x,A) :=

∫
E

κ2(y, A) · κ1(x, dy)

is a transition kernel on (E, E).

Proof. By Lemma A.3.59 for every A ∈ E the map

x→
∫
E

κ2(y, A) · κ1(x, dy)

is measurable and by monotone convergence (Theorem A.3.57)

A→
∫
E

κ2(y, A) · κ1(x, dy)

is a measure on (E, E). �

Definition A.3.61. Let (Ω,Σ,P) be a probability space, let X, Y
be two random variables and let F ⊂ ±be a sub σ-algebra. Let X ∈
L1 (Ω,Σ,P) or X ≥ 0. Then Y is called conditional expectation of X
with respect to F if Y is F - measurable and for each A ∈ F

E [X · 1A] = E [Y · 1A] .

In this case, it is written

Y = E [X| F ] .
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If X = 1E for some E ∈ Σ, then Y ,the conditional expectation of X
with respect to F , is called conditional probability of E with respect
to F and is written

Y = P [E| F ] .

Proposition A.3.62. ([30], Proposition 8.12) On a measure space
(Ω,Σ,P), where X ∈ L1 (Ω,Σ,P) or X ≥ 0. and F ⊂ ±is a sub σ-
algebra Y := E [X| F ] exists and if Y ′ = E [X| F ] holds as well then
Y = Y ′P-almost surely.

Proposition A.3.63. ([30], Proposition 8.14) Let (Ω,Σ,P) be a
probability space, let X, Y ∈ L1 (Ω,Σ,P) or X ≥ 0 and let G ⊂ F ⊂ Σ
be σ-algebras. Then
(i)

E [E [X| F ]| G] = E [X| G] ,

(ii) for σ(X) independent of F
E [X| F ] = E [X] ,

(iii) for Y measurable with respect to F and E [|XY |] <∞
E [XY | F ] = Y E [X| F ] ,

Proof. (i) Let A ∈ G. Then A ∈ F and by de�nition

E [1A · E [X| F ]] = E [1A ·X] = E [1A · E [X| G]] .

(ii) Clearly E [X] is measurable with respect to F and X and 1A
are independent. Thus, by Proposition A.3.45 for any A ∈ F

E [X1A] = E [X]E [1A] = E [E [X] 1A] .

(iii) (sketch) Assume Y,X ≥ 0 and approximate Y by

Yn = 2−n b2nY c .
Then by monotone convergence (Theorem A.3.57) for any A ∈ F

lim
n→∞

E [1AYnE [X| F ]] = E [1AY E [X| F ]]

and
lim
n→∞

E [1AYnE [X| F ]] = E [1AXY ] .
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For the general case set Y := Y + − Y − and X := X+ −X−. �

Lemma A.3.64. Let (Ω,F ,P) be a probability space and let X, Y
be random variables with measurable state space (E, E). Let X be in-
dependent of F and Y be measurable with respect to F . Then for the
measurable positive or bounded map g : E × E → R

E [g(X, Y )| F ] = E [g(X, Y )|σ (Y )] .

Proof. For A,B ∈ E clearly

E [1A(X)1B(Y )| F ] = E [1A(X)] 1B(Y )

= E [1A(X)1B(Y )|σ(Y )] .

Furthermore, the set D ⊂ E ⊗ E such that for D ∈ D the equation

E [1D(X, Y )| F ] = E [1D(X, Y )|σ(Y )]

holds true is a Dynkin system. Since by the �rst step, it contains
the generator of the σ-algebra E ⊗ E , by Lemma A.3.15 it contains
all of E ⊗ E . Then the assertion of this Lemma follows from Propo-
sition A.3.19 and monotone convergence for conditional expectations
(see Proposition A.3.65). �

Proposition A.3.65. (monotone convergence) On a probability
space (Ω,Σ,P) let (Xn)n∈N be a monotonically increasing sequence of
non-negative random variables such that

lim
n→∞

Xn = X

converges P-almost surely. Then
lim
n→∞

E [Xn| F ] = E [X| F ]

P-almost surely.

Proof. For any A ∈ F by monotonically of the conditional expec-
tation and monotone convergence (see Theorem A.3.57)

E
[

lim
n→∞

E [Xn| F ] 1A

]
= lim

n→∞
E [E [Xn| F ] 1A]

= lim
n→∞

E [Xn1A]

= E [X1A] .

�



A.3. PROBABILITY THEORY 281

Proposition A.3.66. (dominated convergence, [30], Proposition
8.14) On a probability space (Ω,Σ,P) let Y ∈ L1 (Ω,Σ,P) be a positive
random variable and (Xn)n∈N a sequence of random variables such that
|Xn| < Y for all n ∈ N . If

lim
n→∞

Xn = X,

P-almost surely then for sub σ-algebra F ⊂ Σ

lim
n→∞

E [Xn| F ] = E [X| F ]

holds true almost surely and in L1 (Ω,Σ,P) .

Definition A.3.67. (Regular conditional probability) Let (E, E)
be a measurable space, (Ω,A,P) a probability space, and F ⊂ A a sub-
σ-algebra. Let X, Y be a random variables on (Ω,A,P) with values in
(E, E). If κX,F is a transition probability (see 2.1.1) from (Ω,F) to
(E, E) such that for any F ∈ F and any B ∈ E

E [1B(X)1F ] =

∫
Ω

κX,F(ω,B)1F (ω)P(dω),

then κX,F is called regular conditional probability . Furthermore, with
Lemma A.3.9 for any B ∈ E de�ne the σ(Y )- measurable map

y → κX,Y (y,B)

such that
κX,Y (Y (ω), B) = κX,σ(Y )(ω,B)

for any ω ∈ Ω.

Proposition A.3.68. ([30], Proposition 8.36) Let B ∈ B(R) be
a Borel set and let (E, E) be a measurable space that is isomorphic
to (B,B(B)) (see De�nition A.3.23). Furthermore, let (Ω,A,P) be a
probability space, and F ⊂ A a sub-σ-algebra and let X be a random
variable on (Ω,A,P) with values in (E, E).Then the Regular conditional
probability κX,F exists.

Proposition A.3.69. ([30], Proposition 8.37) Let B ∈ B(R) be
a Borel set, let (E, E) be a polish space, let (Ω,A,P) be a probability
space, and F ⊂ A a sub-σ-algebra and let X be a random variable on
(Ω,A,P) with values in (E, E). Let f : E → R be measurable and
E [|f(X)|] <∞. Then, for P-almost all ω ∈ Ω

E [f(X)| F ] (ω) =

∫
f(x)κX,F(ω, dx).
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Lemma A.3.70. Let (Ω,A,P) be a probability space, (E, E) be a
measurable space and X, Y be independent (E, E)-valued random vari-
ables on (Ω,A,P). Then for Z := X + Y and any B ∈ E

κZ,X(x,B) = PY (B − x) = PY+x(B).

Proof. Due to independence of X and Y , by Lemma A.3.44 for
any F ∈ E and any B ∈ E

E [1B(X + Y )1F (X)] =

∫
E

(∫
E

1B(x+ y)1F (x)PX(dx)

)
PY (dy)

=

∫
E

(∫
E

1B−x(y)PY (dy)

)
1F (x)PX(dx))

=

∫
E

(PY (B − x)) 1F (x)PX(dx))

�

Definition A.3.71. (convex set)
In a K-vector space V a subset C ⊂ V is called convex if for any

λ ∈ [0, 1] and any c1, c2 ∈ C
λc1 + (1− λ) c2 ∈ C.

Definition A.3.72. (convex map)
Let C be a convex set. Then a map f : C → R is called convex

map if for any λ ∈ [0, 1] and any c1, c2 ∈ C
f (λc1 + (1− λ) c2) ≤ λf (c1) + (1− λ) f (c2) .

A map f : C → R is called concave if −f is convex.

Theorem A.3.73. (Jensen's Inequality) ([30], Proposition 7.9)
Let I ⊂ R be an interval let X be a random variable that takes

values in I and let E [|X|] < ∞. If ϕ is convex, then E [ϕ(X)−] < ∞
and

ϕ (E [X]) ≤ E [ϕ(X)] .

Definition A.3.74. Let E be a metric space, E its Borel σ-algebra
and µ, µ1, µ2, ... �nite measures on (E, E). The sequence (µn)n∈N is
said to converge weakly to µ if for all continuous bounded functions
f ∈ Cb(E)

lim
n→∞

∫
E

f(x)dµn(x) =

∫
E

f(x)dµ(x).
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A.3.3. Stochastic Processes.

Definition A.3.75. Let (Ω,F) be a measurable space and let I ⊂
R. Let (Ft)t∈I be a family of σ-algebras such that for all s, t ∈ I with
s ≤ t

Fs ⊂ Ft ⊂ F .
Then (Ft)t∈I is called filtration. If (Ω,F , µ) is a measure (probability)
space, then

(
Ω,F , (Ft)t∈I , µ

)
is called filtered measure (probability)

space. If
Fs =

⋂
t>s, t∈I

Ft

for all s ∈ I then the �ltration is called right continuous . If

Ft = σ

( ⋃
s<t, s∈I

Fs

)
for all t ∈ I then the �ltration is called left continuous .

Definition A.3.76. Given a �ltration (Ft)t∈R+
on a measurable

space (Ω,F) by setting Ft+ :=
⋂
s>t

Fs one can de�ne the right continuous

enlargement (Ft+)t∈R+
of (Ft)t∈R+

.

Definition A.3.77. (Completion of a �ltration with respect to a
family of measures)

Let
(

Ω, (Gt)t∈R+

)
be a �ltered measurable space and

G∞ = σ

 ⋃
t∈R+

Gt

 .

Let (µν)ν∈M be a family of measures on (Ω,G∞) . For every ν ∈M de-
�ne (Ω,Fν∞, µ′ν) as the completion (see De�nition A.3.32) of (Ω,G∞, µν)
and set

F∞ :=
⋂
ν∈M

Fν∞.

Furthermore, call N ν the set of all µ′ν-null sets on Fν∞ and set

Fνt := σ (N ν ∪ Gt)

Ft :=
⋂
ν∈M

Fνt .
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Then we call (Fνt )t∈R+
the completion of the filtration (Gt)t∈R+

with

respect to the measure µν and (Ft)t∈R+
the completion of the filtration

(Gt)t∈R+
with respect to the family of measures (µν)ν∈M.

Lemma A.3.78. ([26], Lemma 6.8) Let
(

Ω,F , (Ft)t∈R+
, µ
)
be a

�ltered measure space. Then for (Fµt )t∈R+
, the completion of (Ft)t∈R+

with respect to µ, and for ((Ft+)µ)t∈R+
, the completion of (Ft+)t∈R+

with respect to µ, for any t ∈ R+

(Ft+)µ =
⋂
s>t

(Fµs ) .

Definition A.3.79. Let (Ω,F ,P) be a probability space, I ⊂ R
and X = (Xt)t∈I a family of random variables that take values in a
measure space (E, E) called state space. Then X is called stochastic
process . For each �xed ω ∈ Ω the map

I → E

t→ Xt(ω)

is called path.

Definition A.3.80. Let I ⊂ R and let (Xt)t∈I be a stochastic
process on a probability space (Ω,F ,P). Then the �ltration (Ft)t∈I
de�ned as

Ft := σ
(

(Xs)s≤t, s∈I

)
is called natural filtration.

Definition A.3.81.
A stochastic process X = (Xt)t∈I is said to have independent

increments if for any n ∈ N and 0 < t1 < t2 < ... < tn the family(
Xti −Xti−1

)
i∈{1,...,n}

is independent (see De�nition A.3.35).

Definition A.3.82. A real-valued stochastic process X = (Xt)t∈I
is said to have stationary increments if for any r, s1, s2 ∈ I

Xs2+r −Xs2 ∼ Xs1+r −Xs1 .
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Definition A.3.83. (Brownian motion, [30], De�nition 21.8)
Let

(
Ω,F , (Ft)t∈R+

,P
)

be a �ltered probability space. A real-
valued, adapted stochastic process W = (Wt)t∈R+

is called Brownian
motion if
(i) W0 = 0,
(ii)W has stationary and independent increments (See De�nition A.3.82
and A.3.81 ),
(iii) for any t > 0 Wt ∼ N0,t (see Example A.3.26),
(iv) the paths are continuous P- almost surely.

An Rd-valued adapted stochastic process W = (Wt)t∈R+
is called

d-dimensional Browninan motion with initial distribution µ if for any
B ∈ B(Rd)

P(W0 ∈ B) = µ(B),

for any t > s > 0 Wt −Ws ∼ N0,t−s , and the other properties of the
one-dimensional case hold accordingly.

Theorem A.3.84. (existence Brownian motion, [30], Proposition
21.9)

There exists a probability space (Ω,F ,P) and a Brownian motion
W = (Wt)t∈R+

on it.

Lemma A.3.85. For Z ∼ N (a, b)

E [exp (Z)] = eb
2/2−a

Proof.

E [exp (Z)] =

∫ ∞
−∞

exe−
(x−a)2

2b2 dx

=

∫ ∞
−∞

e−
(x+b2−a)

2
−(b2−a)

2
+a2

2b2 dx

= eb
2/2−a.

�

Definition A.3.86. Let (Ω,F ,P) be a probability space and X =
(Xt)t∈R+

and Y = (Yt)t∈R+
be stochastic processes. X and Y are called

modifications if P (Xt = Yt) = 1 for any t ∈ R+ and X and Y are called
indistinguishable if on a set Ω′ ⊂ Ω with P(Ω′) = 1 the paths t→ Xt(ω)
and t→ Yt(ω) are equal.
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Definition A.3.87. Let
(

Ω,F , (Ft)t∈R+
,P
)
be a �ltered proba-

bility space. A stochastic process X is called adapted with respect to
(Ft)t∈R+

if Xt is Ft-measurable for any t ∈ R+.

Definition A.3.88. A stochastic process (Xt)t∈R+
on (Ω,F ,P) is

called measurable if the map

R+ × Ω→ E

(t, ω)→ Xt(ω)

is measurable with respect to the product σ-algebra B (R+)⊗F .

Definition A.3.89. A stochastic process (Xt)t∈R+
on the �ltered

probability space
(

Ω,F , (Ft)t∈R+
,P
)
is called progressively measurable

with respect to (Ft)t∈R+
if for any t ≥ 0

[0, t]× Ω→ E

(s, ω)→ Xs(ω)

is B ([0, t])⊗Ft-measurable.

Clearly, any progressively measurable stochastic process is measur-
able.

Proposition A.3.90. ([27]Proposition 1.13) If a stochastic process

X on the �ltered probability space
(

Ω,F , (Ft)t∈R+
,P
)
is adapted and

every path is left continuous or every path is right continuous, then X
is progressively measurable with respect to (Ft)t∈R+

.

Definition A.3.91. Let I ⊂ R and let
(
Ω,F , (Ft)t∈I ,P

)
be a

�ltered probability space. A stochastic process (Xt)t∈I on (Ω,F) is
called submartingale with respect to (Ft)t∈I if it is adapted to (Ft)t∈I ,
if Xt ∈ L1 (Ω,F ,P) for all t ∈ I and if for any s, t ∈ I such that s > t

E [Xs| Ft] ≥ Xt.

It is called supermartingale with respect to (Ft)t∈I if instead the in-
equality

E [Xs| Ft] ≤ Xt,

holds and martingale with respect to (Ft)t∈I if it is both supermartin-
gale and submartingale with respect to (Ft)t∈I .
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Proposition A.3.92. Let (Wt)t∈R+
be the Brownian motion on the

probability space (Ω,F ,P) and (Ft)t∈R+
be its natural �ltration de�ned

as Ft := σ
(
(Ws)0≤s≤t

)
. Then

(i)

(Wt)t∈R+

is a martingale with respect to (Ft)t∈R+
.

(ii) (
exp

((
−σ

2

2

)
t+ σWt

))
t∈R+

is a martingale with respect to (Ft)t∈R+
.

Proof. (i) By construction (Wt)t∈R+
is adapted, (Wt)

2 ∈ L1 (P)

implies Wt ∈ L1 (P) and for any 0 ≤ s ≤ t independent increments
of the Brownian motion imply that σ (Wt −Ws) is independent of Fs.
Hence by Proposition A.3.63

E [Wt| Fs] = E [Wt −Ws +Ws| Fs]
= E [Wt −Ws] +Ws

= Ws.

(ii) By Lemma A.3.85 for any t ∈ R+

E
[∣∣∣∣exp

((
−σ

2

2

)
t+ σWt

)∣∣∣∣] <∞.
As argued in (i) for any 0 ≤ s ≤ t σ (Wt −Ws) is independent of Fs
and by Proposition A.3.63

E
[

exp

((
−σ

2

2

)
t+ σWt

)∣∣∣∣Fs] = E [exp (σ (Wt −Ws))] exp

((
−σ

2

2

)
t+ σWs

)
.

Thus, by Lemma A.3.85

E [exp (σ (Wt −Ws))] = eσ
2(t−s)/2

and (
exp

((
−σ

2

2

)
t+ σWt

))
t∈R+

is a martingale with respect to (Ft)t∈R+
. �
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Theorem A.3.93. ([35],Theorem II.2.3) Let I = {0,−1,−2, ...}
and let

(
Ω,F , (Fn)n∈I ,P

)
be a �ltered probability space. Let (Xn)n∈I

be a submartingale with respect to (Fn)n∈I . Then

lim
n↘−∞

Xn

converges P-almost surely. If additionally sup
n∈I

E [|Xn|] <∞, then (Xn)n∈I

is uniformly integrable,
lim

n↘−∞
Xn

converges in L1 (Ω,F ,P) and for every m ∈ I
lim

n↘−∞
Xn ≤ E [Xm| F−∞]

with
F−∞ :=

⋂
n∈I

Fn.

Proposition A.3.94. ([30],Proposition 11.7) Let(
Ω,F , (Fn)n∈N ,P

)
be a �ltered probability space and let (Xn)n∈N be a uniformly integrable
(see De�nition A.3.54) submartingale with respect to (Fn)n∈N. Then
there exists a random variable X∞ that is measurable with respect to

F∞ := σ

( ⋃
n∈N
Fn
)

and

Xn → X∞
P-almost surely and with respect to L1 (Ω,F ,P). Furthermore,

Xn ≤ E [X∞| Fn]

for any n ∈ N.

Proposition A.3.95. ([35],Corollary II.2.4) Let (Xn)n∈N be a se-
quence of random variables on the probability space (Ω,F ,P) such that
lim
t→∞

Xn converges P-almost surely to the random variable X. Let Y be

a random variable such that E [|Y |] < ∞ and |Xn| ≤ Y for all n ∈ N.
Let (Fn)n∈N be a decreasing sequence of σ-algebras such that Fn ⊂ F
for any n ∈ N. Then

E

[
X

∣∣∣∣∣⋂
n∈N

Fn

]
= lim

n→∞
[Xn| Fn]

P-almost surely.
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Theorem A.3.96. ([35],Theorem II.2.5) Let
(

Ω,F , (Ft)t∈R+
,P
)

be a �ltered probability space and let (Xt)t∈R+
be a submartingale with

respect to (Ft)t∈R+
. Then P-almost everywhere for any t ∈ R+

lim
r↘t, r∈Q

Xr

exists and for any t > 0

lim
r↗t, r∈Q

Xr

exists.

Definition A.3.97. Let (Ω,F) be a measurable space and let
(Xt)t∈R+

be a stochastic process. For any t ∈ R+ set

Xt+ := lim sup
r↘t, r∈Q

Xr,

and for any t > 0 set
Xt− := lim

r↗t, r∈Q
Xr.

Proposition A.3.98. ([35],Proposition II.2.6) Let(
Ω,F , (Ft)t∈R+

,P
)

be a �ltered probability space and let (Xt)t∈R+
be a submartingale with

respect to (Ft)t∈R+
. If E [|Xt|] <∞ for any t ∈ R+, then E [|Xt+|] <∞

for any t ∈ R+, and almost surely

Xt ≤ E [Xt+| Ft] .

Moreover, (Xt+)t∈R+
is a submartingale with respect to (Ft+)t∈R+

(see
De�nition A.3.76).

If additionally, the map

t→ E [Xt]

is right continuous, then

Xt = E [Xt+| Ft] .

If (Xt)t∈R+
is a martingale with respect to (Ft)t∈R+

, then (Xt+)t∈R+
is

a martingale with respect to (Ft+)t∈R+
.
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Proposition A.3.99. ([35],Proposition II.2.7) Let(
Ω,F , (Ft)t∈R+

,P
)

be a �ltered probability space and let (Xt)t∈R+
be a submartingale with

respect to (Ft)t∈R+
. If E [|Xt|] <∞ for any t ∈ R+, then E [|Xt−|] <∞

for any t ∈ R+, and almost surely

Xt− ≤ E [Xt| Ft−] .

(Xt−)t∈R+
is a submartingale with respect to (Ft−)t∈R+

(see De�nition
A.3.76).

If additionally, the map

t→ E [Xt]

is left continuous, then

Xt− = E [Xt| Ft−] .

If (Xt)t∈R+
is a martingale with respect to (Ft)t∈R+

, then (Xt−)t∈R+
is

a martingale with respect to (Ft−)t∈R+
.

Proposition A.3.100. ([35],Theorem II.2.9) Let (Ω,F ,P) be a �l-
tered probability space and let (Ft)t∈R+

be a right continuous and com-
plete �ltration on it. Let (Xt)t∈R be a submartingale with respect to
(Ft)t∈R+

. If
t→ E [Xt]

is right-continuous, then (Xt)t∈R has a càdlàg version that is a sub-
martingale with respect to (Ft)t∈R+

.

Definition A.3.101. Let
(

Ω,F , (Ft)t∈R+
,P
)
be a �ltered proba-

bility space. A random variable τ : Ω→ R+ is called stopping time if
for any t ∈ R+

{τ ≤ t} ∈ Ft.
The σ-algebra

Fτ := {A ∈ F : A ∩ {τ ≤ t} ∈ Ft for all t ∈ R+}
is called the σ-algebra of events determined prior to the stopping time
τ .
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Definition. Let T be an index set, and (Ωt,Ft) be measurable
spaces for all t ∈ T . A family of probability measures (PF )F⊂T, �nite
such that any PF for F ⊂ T �nite is de�ned on the measurable space(

×
t∈F

Ωt,
⊗
t∈F

Ft

)
is called projective family if for all �nite K ⊂ L ⊂ T

PL ◦
(
ΠL
K

)−1
= PK ,

where

ΠL
K :

(
×
t∈L

Ωt,
⊗
t∈L

Ft

)
→

(
×
t∈K

Ωt,
⊗
t∈K

Ft

)
is the projection from De�nition A.3.5.

Theorem A.3.102. (Kolmogorov extension theorem, [34], Theorem
2.19)

Let T 6= ∅ be an index set, for any t ∈ T let Ωt be a polish space,
and let (PF )F⊂T, �nite be a projective family of probability measures on(

×
t∈F

Ωt,
⊗
t∈F

B (Ωt)

)
.

Then there exists a unique probability measure Pon(
×
t∈T

Ωi,
⊗
t∈T

B (Ωt)

)
such that for all F ⊂ T, �nite and

A ∈
⊗
t∈F

B (Ωt)

P
((

ΠT
F

)−1
(A)
)

= PF (A),

where ΠT
F is the projection from De�nition A.3.5.

Theorem A.3.102 can be generalized using compact classes.
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Definition A.3.103. A family C of subsets of a space X is called
compact class if for any sequence (Cn)n∈N ⊂ C such that the inter-
section

⋂
n∈N

Cn is empty, already some �nite intersection
⋂

i∈I, �nite
Ci is

empty.

Theorem A.3.104. (Generalized Kolmogorov Extension Theorem,
[1], Theorem 15.26)

Let T 6= ∅ be an index set and let

(Ωt,Σt)t∈T

be a family of measurable spaces and for each �nite subset F ⊂ T let
PF be a probability measure on

ΩF = ×
t∈F

Ωt

equipped with the product σ-algebra

ΣF = ⊗
t∈F

Σt.

If {PF}F⊂T is a projective family of probability measures and if for each
t ∈ T there is a compact class (see De�nition A.3.103) Ct ∈ Σt such
that for each A∈Σt

Pt(A) = sup {Pt(C) : C ⊂ A and C ∈ Ct} ,
then there is a unique probability measure P on

ΩT = ×
t∈T

Ωt

and
ΣT = ⊗

t∈T
Σt.

such that for all F ⊂ T, �nite and A ∈ ΣT

P
((

ΠT
F

)−1
(A)
)

= PF (A),

where ΠT
J is the projection from De�nition A.3.5.

A.3.4. Stochastic integration. Let
(

Ω,F , (Ft)t∈R+
,P
)
be a �l-

tered probability space.

Definition A.3.105. The space of (Ft)t∈R+
-martingales (Mt)t∈R+

at M0 = 0 such that Mt ∈ L2 for any t ∈ R+ is denoted by M.
If additionally all paths are continuous the set is denoted byM . For

M ∈M2 we set ‖M‖M2
:=
∞∑
n=1

2−n (‖Mn‖L2 ∧ 1) and de�ne the metric

(when identifying indistinguishable processes) d(M,N) := ‖M −N‖M2

on M.
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Theorem A.3.106. ([27],Chapter I, Theorem 5.23)M is a complete
metric space with respect to ‖·‖M2

when identifying indistinguishable
processes and M is a closed subspace of M.

Definition A.3.107. A stochastic process X = (Xt)t∈R+
is called

simple if there is a sequence of real numbers (tn)n∈N, t0 = 0 such that
lim
n→∞

tn and a sequence (ξn)n∈N of random variables such that for any
n ∈ N ξn is Ftn-measurable and such that there is a constant C > 0
and for any ω ∈ Ω

sup
n∈N
|ξn(ω)| ≤ C.

The set of simple process is denoted by L0.

Definition A.3.108. For M ∈ M and X ∈ L0 and 0 ≤ t < ∞
de�ne ∫ t

0

XsdMs :=
∞∑
i=0

Xti

(
Mti+1∧t −Mti∧t

)
.

Theorem A.3.109. ([27], Chapter IV, Theorem 1.8) If M is a
local martingale (see De�nition 3.0.2) there is a continuous adapted,
increasing process〈M〉 starting at 〈M〉0 = 0 such that M2 − 〈M〉 is a
martingale. It is unique up to indistinguishability.

Definition A.3.110. Let M ∈ M . L denotes the set of all Ft
-adapted measurable stochastic processes such that for all t > 0

E
[∫ t

0

X2
sd 〈M〉s

]
<∞.

The set of all elements of L that are progressively measurable (see
De�nition A.3.89) is denoted by L ∗. On L

d(X, Y ) :=
∞∑
n=1

2−n
(
E
[∫ n

0

(Xs − Ys)2 d 〈M〉s
]
∧ 1

)
de�nes a metric.

Theorem A.3.111. ([27], Chapter IV, Proposition 1.22) Denote
by L ∗

∞ the set of elements of L ∗ such that

E
[∫ ∞

0

X2
sd 〈M〉s

]
<∞.

Then L ∗
∞ is a Hilbert space with respect to the scalar product 〈X, Y 〉 :=

E
[∫∞

0
XsYsd 〈M〉s

]
.



294 A. APPENDIX

Proposition A.3.112. ([27], Chapter IV, Proposition 2.8) L0 is
dense in L ∗ with respect to the metric from De�nition A.3.110.

Proposition A.3.113. ([27], Chapter IV, Equation 2.14) (Ito isom-
etry) For X ∈ L0 and M ∈M(∫ t

0

XsdMs

)2

= E
[∫ t

0

X2
sd 〈M〉s

]
.

Using density of L0 in L ∗ and Ito isometry, we can de�ne the
stochastic integral for all elements in L ∗:

Definition A.3.114. ([27],Chapter IV, De�nition 2.9)
For X ∈ L ∗ the stochastic integral of X with respect to M ∈M is

the unique square integrable martingale N such that for every sequence
(Xn)n∈N ⊂ L0 such that

lim
n→∞

d(Xn, X) = 0

also

lim
n→∞

∥∥∥∥∥
(∫ t

0

(Xn)s dMs

)
t∈R+

−N

∥∥∥∥∥
M

= 0.

Such N ∈M c
2 is denoted by

(∫ t
0
XsdMs

)
t∈R+

.

Theorem A.3.115. ([27],Chapter IV, De�nition 3.6) (Ito formula)
Let X be a real-valued stochastic process such that it has P-almost

surely the decomposition

Xt = X0 +Mt +Bt,

where M = (Mt)t∈R+
∈ M , and B = (Bt)t∈R+

is the di�erence of
continuous non decreasing adapted processes starting at 0. Let f :
[0,∞) × R → R be continuously di�erentiable in the �rst, and twice
continuously di�erentiable in the second variable. Then P-almost surely

f(t,Xt) = f(0, X0) +

∫ t

0

∂f

∂t
(s,Xs)ds+

∫ t

0

∂f

∂xi
(s,Xs)dBs

+

∫ t

0

∂f

∂xi
(s,Xs)dMs

+
1

2

∫ t

0

∂2f

(∂x)2 (s,Xs)d 〈M〉s .
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Definition A.3.116. Let
(

Ω,F , (Ft)t∈R+
,P
)
be a �ltered proba-

bility space. LetW =
(
W 1
t , ..,W

d
t

)
t∈R+

be the d-dimensional Brownian
motion (see De�nition A.3.83) and µ =

(
µ1, ..., µd

)
: R+ × Rd → Rd

and σ = (σi,j)i,j∈{1,...,d} : R+ × Rd → Rd×d be measurable maps such
that stochastic integrals below exist. A Rd-valued stochastic process
X =

(
X1
t , ..., X

d
t

)
t∈R+

that satis�es the integral equations

X1
t = X1

0 +

∫ t

0

µ1(s,Xs)ds+

∫ t

0

σ1,1(s,Xs)dW
1
s + ...+

∫ t

0

σ1,d(s,Xs)dW
d
s

...
...

Xd
t = Xd

0 +

∫ t

0

µd(s,Xs)ds+

∫ t

0

σd,1(s,Xs)dW
1
s + ...+

∫ t

0

σd,d(s,Xs)dW
d
s

for any t ∈ R+ is said to satisfy the stochastic differential equation

dXt = µ(t,Xt)dt+ σ(t,Xt)dWt.

Proposition A.3.117. ([5], Proposition 5.12) (Kolmogorov for-
ward equation/ Fokker-Planck equation)

LetX = (Xt)t∈R+
be the solution of the stochastic di�erential equa-

tion

dXt = µ(t,Xt)dt+ σ(t,Xt)dWt

Xs = y,

and let µ : R+ × R → R and σ : R+ × R → R be su�ciently smooth.
If for any t ∈ R+ the distribution of P (Xt ≤ x) is given by a density
f(s, y; t, x) then

∂

∂t
f(s, y; t, x) = (A∗f) (s, y; t, x) for all (t, x) ∈ (s, T )× R

f(s, y; t, x)→ δy as t↘ s.

A∗ is de�ned by

(A∗f) (t, x) = − ∂

∂x
(µ(t, x)f(t, x)) +

1

2

∂2

(∂x)2

(
(σ(t, x))2 f(t, x)

)
.

Theorem A.3.118. (Girsanov, [27], Theorem 5.1)

Let
(

Ω,F , (Ft)t∈R+
,P
)
be a �ltered probability space and let (Ft)t∈R+

be right continuous (see De�nition A.3.75) and let F0 be complete (see
De�nition A.3.32). Let W =

(
W 1
t , ..,W

d
t

)
t∈R+

be the d-dimensional

Brownian motion such that P (W0 = 0) = 1. Let a =
(
a1
t , .., a

d
t

)
t∈R+

be
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a vector of adapted stochastic processes such that for any 1 ≤ i ≤ d
and any 0 ≤ T <∞

P
(∫ T

0

(
ait
)2
dt <∞

)
= 1.

If (Zt)t∈R+
de�ned by

Zt := exp

(
d∑
i=1

∫ t

0

aisdW
i
s −

1

2

∫ t

0

∥∥ais∥∥2
ds

)
is a martingale, then for each 0 ≤ T <∞ the d-dimensional stochastic
process W̃ =

(
W̃ 1
t , .., W̃

d
t ,
)
t∈[0,T ]

de�ned for any 1 ≤ i ≤ d by

W̃ i
t = W i

t −
∫ t

0

aitds

is a d-dimensional Brownian motion on
(

Ω,FT , (Ft)t∈[0,T ] , P̃T
)
where

P̃T is de�ned by
P̃T (A) := E [1AZT ]

for any A ∈ FT .

A.4. Functional Analysis

Example A.4.1. Let (Ω,Σ, µ) be a measure space. For 1 ≤ p <∞
we de�ne the space

Lp (Ω,Σ, µ) :=

{
f : Ω→ C :

measureable,∫
Ω
|f(x)|p dµ <∞.

}
It can be shown (see for example [39], Chapter 3 or [41], Chapter I)
that Lp (Ω,Σ, µ) is a vector space and that the map

‖·‖∗Lp(Ω,Σ,µ) : f →
(∫

Ω

|f(s)|p dµ
)1/p

is a seminorm on Lp (see 1.4.46). For any f ∈ Lp(R) we de�ne the sets

[f ] :=
{
g ∈ Lp(Ω,Σ, µ) : ‖g − f‖∗Lp(Ω,Σ,µ) = 0

}
and the set of these sets

Lp (Ω,Σ, µ) := {[f ] : f ∈ Lp(Ω,Σ, µ)} .
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Then the map ‖·‖Lp(R) de�ned as

‖[f ]‖Lp(R) := ‖f‖∗Lp(R)

is a norm on the space Lp (Ω,Σ, µ) which is a vector space. It can be
shown (see [38], Chapter 3 or [41], Chapter I) that with respect to this
norm Lp (Ω,Σ, µ) is also complete, thus a Banach space.

Example A.4.2. Let (Ω,Σ, µ) be a measure space. De�ne

L∞(Ω,Σ, µ) :=

f : Ω→ C :
f is measurable,

there is C <∞ such that
|f | < C almost surely.


(for the de�nition of almost surely see De�nition A.3.32). On L∞(Ω,Σ, µ)
we de�ne the map ‖·‖∗L∞(Ω,Σ,µ) via

‖f‖∗L∞(Ω,Σ,µ)) = inf {C ∈ R+ : |f | < C almost surely} .

It can be shown (see for example [41], Chapter I ) that L∞(Ω,Σ, µ)
is a vector space and that the map ‖·‖∗L∞(Ω,Σ,µ) is a seminorm on this
vector space. If we introduce the sets

[f ] :=
{
g ∈ L∞(Ω,Σ, µ) : ‖g − f‖∗L∞(Ω,Σ,µ) = 0

}
and de�ne

L∞ (Ω,Σ, µ) := {[f ] : f ∈ L∞(Ω,Σ, µ)}
then it can be proved that the map ‖·‖L∞(Ω,Σ,µ) de�ned as

‖[f ]‖L∞(Ω,Σ,µ) := ‖f‖∗L∞(Ω,Σ,µ)

is a norm on L∞ (Ω,Σ, µ) and that L∞ (Ω,Σ, µ) is complete, hence a
Banach space.

Proposition A.4.3. ([41], Proposition II.2.4) Let 1 ≤ p <∞ and
let q be de�ned by 1

p
+ 1

q
= 1. Let (Ω,Σ, µ) be a σ-�nite measure space

(see De�nition A.3.20). Then the map

Lq → (Lp)′

f → Tf,

de�ned by

Tf(g) =

∫
Ω

gfdµ

is an isometric isomorphism.
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Following Chapter I in [41], and recalling that for a Banach space
Z and some set T

`∞(T ;Z) :=

{
f : T → Z : sup

x∈T
‖f(x)‖ <∞

}
we can show:

Proposition A.4.4. `∞(T ;Z) is a vector space, the map

‖·‖∞ : f → sup
x∈T
‖f(x)‖

is a norm on `∞(T ;Z), and with respect to this norm `∞(T ;Z) is a
Banach space.

Proof. That `∞(T ;Z) is a vector space follows easily because for
f, g ∈ `∞(T ;Z)

sup
x∈X
‖f(x) + g(x)‖∞ ≤ sup

x∈X
‖f(x)‖∞ + sup

x∈X
‖g(x)‖∞ <∞

and for λ ∈ K
sup
x∈X
‖λf(x)‖∞ = λ sup

x∈X
‖f(x)‖∞ .

These expressions imply also that ‖·‖∞ is a norm since ‖0‖∞ = 0
and ‖f‖∞ = 0 clearly yields that f = 0.

In order to show that `∞(T ;Z) is a Banach space we need to show
that any Cauchy sequence (fn)n∈N ⊂ `∞(T ;Z) converges to some f ∈
`∞(T ;Z) as n tends to in�nity. In the proof we will use that pointwise
each Cauchy sequence (fn(x))n∈N ⊂ Z converges.

Let ε > 0 be arbitrary. For ε/2 there is Nε/2 such that for all
m,n > Nε/2

‖fn − fm‖∞ < ε/2.

Hence for any x ∈ T and for m,n > Nε/2

‖fn(x)− fm(x)‖ < ε/2.

Thus (fn(x))n∈N ⊂ Z is a Cauchy sequence for all x ∈ Z and by
assumption of Z being a Banach space there exists f(x) ∈ Z such that
lim
n→∞

fn(x) = f(x) in Z. Having shown pointwise convergence we still

need to show that fn → f in `∞(T ;Z). Since for all m,n > Nε/2

‖fn(x)− fm(x)‖ < ε/2.

and for any x there is Nx,ε/2 such that for all m > Nx,ε/2

‖fm(x)− f(x)‖ < ε/2
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we conclude that

‖fn(x)− f(x)‖ ≤ ‖fm(x)− f(x)‖+ ‖fn(x)− fm(x)‖
< ε/2 + ε/2

for all x ∈ X. Hence `∞(T ;Z) is a Banach space. �

Lemma A.4.5. Let X be a topological space and K = R or K = C.
The space C0(X,K) equipped with the norm

‖·‖∞ : f → sup
x∈X
|f(x)| .

is a Banach space.

Proof. For the sequence (fn)n∈N ⊂ C0(X,K) its limit

lim
n→∞

fn

is continuous as the uniform limit of continuous functions and for any
ε > 0 there is n0 ∈ N such that{

x ∈ X :
∣∣∣ lim
n→∞

fn(x)
∣∣∣ ≥ ε

}
⊂ {x ∈ X : |fn0(x)| ≥ ε/2} .

Therefore, for any ε > 0{
x ∈ X :

∣∣∣ lim
n→∞

fn(x)
∣∣∣ ≥ ε

}
is a closed subset of a compact set, hence compact and C0(X,K) is a
closed subspace of

`∞(X;K) :=

{
f : X → K : sup

x∈X
|f(x)| <∞

}
which is a Banach space by Proposition A.4.4. Thus, C0(X,K) is a
Banach space as well (by Lemma 2.3.26). �

Theorem A.4.6. (Hahn-Banach) ([41], Theorem III.1.5) Let X be
a normed vector space and U ⊂ X a vector subspace. To any continuous
linear map u′ : U → K there is a continuous linear map x′ : X → K
such that

x′|U = u′

and
‖x′‖ = ‖u′‖ .

Corollary A.4.7. Let X be a normed vector space and x ∈ X,
x 6= 0. Then there is x′ ∈ X ′ such that ‖x′‖ = 1 and x′(x) = ‖x‖.
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Proof. The linear span

lin {x} := {λx| λ ∈ K}

is vector subspace of X and u′ : lin {x} → K de�ned as

u′(λx) := λ ‖x‖ for λ ∈ K

is a continuous linear map and ‖u′‖ = 1. By the Hahn-Banach theorem
there is a continuous linear extension x′ : X → K of u′ such that
‖x′‖ = 1 and x′(x) = ‖x‖. �

Corollary A.4.8. Let X be a normed vector space. Then for all
x ∈ X

‖x‖ = sup
x′ ∈ X ′
‖x′‖ ≤ 1

|x′(x)|

Proof. By Corollary A.4.7

‖x‖ ≤ sup
x′ ∈ X ′
‖x′‖ ≤ 1

|x′(x)| .

On the other hand, by the de�nition of the norm of linear maps

sup
x′ ∈ X ′
‖x′‖ ≤ 1

|x′(x)| ≤ ‖x′‖ ‖x‖ = ‖x‖ .

�

Theorem A.4.9. (Open mapping theorem) ([41], Theorem IV.3.3)
Let X and Y be Banach spaces and L : X → Y be a linear bounded
surjective operator. Then L maps open sets to open sets.

Proposition A.4.10. ([41], Proposition III.3.8) Let X be a Ba-
nach space. For convex sets in X the weak and the norm closure coin-
cide.

Theorem A.4.11. ([38] Theorem 3.27 ) Let X be a Banach space,
K be a compact Hausdor� space and µ be a probability measure on the
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Borel σ-algebra of K. If f : K → X is continuous and cof(K) is
compact in X then ∫

K

fdµ = y

exists in the sense of De�nition 1.4.67 and y ∈ cof(K).

Theorem A.4.12. (Krein-�mulian weak compactness theorem, [31]
Theorem 2.8.14) The closed convex hull of a weakly compact subset of
a Banach space is itself weakly compact.

Theorem A.4.13. (Riesz representation theorem, [39], Theorem
6.19 ) Let X be a locally compact Hausdor� space and let Φ be a complex
valued bounded linear operator on C0(X,C). Then there is a unique
regular (De�nition 2.3.35) complex measure µ on (X,B (X)) such that

Φf =

∫
X

fdµ.

Additionally, for the total variation |µ| (see De�nition 2.3.31) of the
complex measure µ

‖Φ‖ = |µ| (X).

Proposition A.4.14. ([6], �5, Proposition 5) Let X be a com-
pletely regular space and ` : Cb (X,C) → C be a continuous linear
map . There exists a complex Radon measure µ on X such that for all
f ∈ Cb (X,C)

`(f) =

∫
X

f(x)µ(dx),

if and only if for each ε > 0 there exists a compact set Kε ⊂ X such
that for any function f ∈ Cb (X,C) with |f | ≤ 1 and f |Kε = 0

|`(f)| < ε

holds. The complex Radon measure is unique.

Making slight adjustments in the proof in ([6], �5, Proposition 5)
one obtains also a version of the above proposition, that holds on
Cb (X,R):
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Proposition A.4.15. Let X be a completely regular space and
` : Cb (X,R) → R be a continuous linear map . There exists a signed
Radon measure µ on X such that for all f ∈ Cb (X,R)

`(f) =

∫
X

f(x)µ(dx),

if and only if for each ε > 0 there exists a compact set Kε ⊂ X such
that for any function f ∈ Cb (X,R) with |f | ≤ 1 and f |Kε = 0

|`(f)| < ε

holds. The signed Radon measure is unique.

Proposition A.4.16. ([6], �5, Proposition 1b) Let X be a com-
pletely regular Hausdor� space. Let µ be a complex Radon measure on
X and f : X → R+ a lower semicontinuous map. Then∫

X

f(x) |µ| (dx) = sup
g

∣∣∣∣∫
X

g(x)µ(dx)

∣∣∣∣ ,
where the supremum is taken over all functions g ∈ Cb(X,C) such that
|g| ≤ f, and g is |µ|-integrable.

Noting that for a signed measure µ, a compact set K and f ∈
C(K,R+) the identity∫

K

f(x) |µ| (dx) = sup
|g| ≤ f,

g ∈ C(K,R)

∫
K

g(x)µ(dx)

holds (see[8], Chapter III, �1, n.6, Equation 9), making slight adjust-
ments in the proof of [6], �5, Proposition 1b one obtains the real version
of the preceding proposition:

Proposition A.4.17. Let X be a completely regular Hausdor�
space. Let µ be a signed Radon measure on X and f : X → R+ a
lower semicontinuous map. Then∫

X

f(x) |µ| (dx) = sup
g

∫
X

g(x)µ(dx),

where the supremum is taken over all functions g ∈ Cb(X,R) such that
|g| ≤ f, and g is |µ|-integrable.
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Definition A.4.18. A Banach algebra A is a Banach space that is
an algebra (see De�nition A.2.5) such that for any x, y ∈ A

‖x · y‖ ≤ ‖x‖ · ‖y‖ .
If there is e ∈ A such that for any x ∈ A

ex = xe = x

and ‖e‖ = 1, then e is called unity .

Theorem A.4.19. ([10], Theorem VII.2.2) For a Banach algebra
with unity the set of invertible elements G is open and the map

G→ G

x→ x−1

is continuous.

A.5. More Semigroups

Theorem A.5.1. (Post-Widder Inversion Formula)([18], Corol-
lary III.5.5)

For every strongly continuous semigroup (T (t))t∈R+
on X with gen-

erator (A,D(A)) one has for all x ∈ X

T (t)x = lim
n→∞

[n
t
R
(n
t
, A
)]n

x = lim
n→∞

[
I − t

n
A

]−n
x

uniformly for t in compact intervals.

A.6. Semimartingales

This subsection of the appendix is entirely taken from [24].

Definition A.6.1. Let
(

Ω,F , (Ft)t∈R+
,P
)
be a �ltered probabil-

ity space with right continuous �ltration and let d ∈ N. The σ-algebra
P on Ω × R+ that is generated by all Rd-valued adapted stochastic
processes (as mappings on Ω×R+) with left continuous paths is called
predictableσ-algebra. A Rd-valued stochastic process (Xt)t∈R+

is also
called predictable if the map

Ω× R+ :→ Rd

(ω, t)→ Xt(ω)

is measurable with respect to P.
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Definition A.6.2. Let
(

Ω,F , (Ft)t∈R+
,P
)
be a �ltered proba-

bility space with right continuous �ltration . The σ-algebra O on
Ω × R+ that is generated by all Rd-valued adapted càdlàg (see Def-
inition 2.2.5) stochastic processes (as mappings on Ω × R+) is called
optionalσ-algebra. A Rd-valued stochastic process (Xt)t∈R+

is called
optional if the map

Ω× R+ :→ Rd

(ω, t)→ Xt(ω)

is measurable with respect to O.

Proposition A.6.3. ([24], Proposition I.1.24 )

P ⊂ O.

Corollary A.6.4. Due to Proposition A.3.90

O ⊂ F ⊗ B (R+) .

Lemma A.6.5. ([33], Lemma 13.12) Let E be a Polish space and
for T > 0

f : [0, T ] :→ E

be a càdlàg function. Then, for n ∈ N

#

{
t ∈ (0, T ]| ‖∆f(t)‖ > 1

n

}
<∞.

Hence, a càdlàg function

g : R+ :→ E

has at most countably many jumps.

Proof. By contradiction, if there were in�nitely many jumps of
f greater than 1

n
one would �nd a strictly increasing sequence

(tk)k∈N ⊂ (0, T ]

where these jumps occur and by compactness of the interval there would
be a subsequence converging to some t ∈ (0, T ] in contradiction to left
continuity of f at t. �

Definition A.6.6. Two local martingalesM , N are called orthogonal
if M ·N is a local martingale.
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Definition A.6.7. A local martingaleM is called purely discontinuous
local martingale ifM0 = 0 and ifM is orthogonal to all continuous local
martingales.

Theorem A.6.8. ([24],Theorem I.4.18) Any local martingale M
admits a unique (up to indistinguishability) decomposition

M = M0 +M c +Md,

where M c
0 = Md

0 = 0, and M cis a continuous local martingale, and
Mdis a purely discontinuous local martingale. M c is called the continuous
part of M , Md is called purely discontinuous part of M.

Theorem A.6.9. ( [24],Theorem I.4.2)
To each pair (M,N) of square integrable local martingales there

is a predictable unique (up to indistinguishability) process with �nite
variation 〈M,N〉 such that

MN − 〈M,N〉

is a local martingale.

Proposition A.6.10. ([24], Proposition I.4.27)

Let
(

Ω,F , (Ft)t∈R+
,P
)

be a �ltered probability space with right
continuous �ltration. Let X be a semimartingale. There is a unique
(up to indistinguishability) continuous local martingale Xc starting at
0 such that for any decomposition of X according to De�nition 3.0.4
given by

X = X0 +M + A

up to indistinguishability Xc = M c holds (where M c is the continu-
ous local martingale from Theorem A.6.8). Xc is called continuous
martingale part of X.

Definition A.6.11. A truncation function on Rd is a bounded
function

h : Rd → Rd

such that h(x) = x in a neighborhood of 0.



306 A. APPENDIX

Definition A.6.12. Let
(

Ω,F , (Ft)t∈R+
,P
)
be a �ltered proba-

bility space with right continuous �ltration. Let E be a polish space
and E its Borel σ-algebra. A random measure on R+ × E is a family

(µ(ω, dt, dx))ω∈Ω

of measures on
(R+ × E, B (R+)⊗ E)

satisfying µ(ω, {0} × E) = 0 for all ω ∈ Ω.

Definition A.6.13. Let
(

Ω,F , (Ft)t∈R+
,P
)
be a �ltered proba-

bility space with right continuous �ltration, let E ⊂ Rd, and let

(µ(ω, dt, dx))ω∈Ω

be a random measure on R+×E. Let W : Ω×R+×E → E be a map
that is measurable with respect to O⊗E . Then due to Corollary A.6.4
and Lemma A.3.16 for any ω ∈ Ω the map

(t, x)→ W (ω, t, x)

is B(R+)⊗ E-measurable and we can de�ne

W ∗ µt(ω) :=

∫
[0,t]×E

W (ω, s, x)µ(ω, ds, dx)

if
∫

[0,t]×E
|W (ω, s, x)|µ(ω, ds, dx) <∞ and W ∗ µt(ω) :=∞ otherwise.

Definition A.6.14. Let
(

Ω,F , (Ft)t∈R+
,P
)
be a �ltered proba-

bility space with right continuous �ltration, let E ⊂ Rd, and let

(µ(ω, dt, dx))ω∈Ω

be a random measure on R+ × E. We call a random measure

(µ(ω, dt, dx))ω∈Ω

optional if
(t, ω)→ W ∗ µt(ω)

is optional for any optional map W : Ω× R+ × E → E
We call a random measure

(µ(ω, dt, dx))ω∈Ω

predictable if
(t, ω)→ W ∗ µt(ω)
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is predictable for any predictable map W : Ω× R+ × E → E
We call an random measure

(µ(ω, dt, dx))ω∈Ω

that is optional P̃-σ finite if there exists a strictly positive map V on
Ω× R+ × E, measurable with respect to P̃ := P ⊗ E such that

ω →
∫

R+×E

V (ω, s, x)µ(ω, ds, dx)

is integrable.

Definition A.6.15. Let
(

Ω,F , (Ft)t∈R+
,P
)
be a �ltered proba-

bility space with right continuous �ltration, let E ⊂ Rd and let E be
its Borel σ-algebra. An integer − valued random measure

(µ(ω, dt, dx))ω∈Ω

on R+ × E is a random measure on R+ × E such that
(i)µ (ω, {t} × E) ≤ 1 for all ω ∈ Ω and all t ∈ R+

(ii) for all A ∈ B (R+)⊗ E and for all ω ∈ Ω:µ (ω,A) ∈ N ∪ {∞}
(iii) (µ(ω, dt, dx))ω∈Ω is P̃-σ-�nite.

Theorem A.6.16. ([24] Theorem II.1.8)

Let
(

Ω,F , (Ft)t∈R+
,P
)

be a �ltered probability space with right

continuous �ltration , let E ⊂ Rd and let E be its Borel σ-algebra. Let

(µ(ω, dt, dx))ω∈Ω

be an P̃-σ �nite random measure on R+ × E. Then there exists a
random measure

(µp(ω, dt, dx))ω∈Ω

on R+×E called compensator of µ which is unique up to a P-null set
and which is characterized as being a predictable random measure on
R+ × E such that either :

(i) For each non-negative P ⊗ E-measurable function W on Ω ×
R+ × E ∫

Ω

|W ∗ µ∞(ω)| dP(ω) =

∫
Ω

|W ∗ µp∞(ω)| dP(ω).

or
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(ii) Let W be a non-negative P ⊕ E-measurable function on Ω ×
R+ × E. Let (τn)n∈N be an increasing sequence of (Ft)t∈R+

-stopping
times with lim

n→∞
τn →∞ P- almost surely. Let

(t, ω)→ W ∗ µmin(τn,t)(ω)

be càdlàg, adapted, starting at 0, with non-decreasing paths for any
n ∈ N and ∫

Ω

∣∣W ∗ µmin(τn,∞)(ω)
∣∣ dP(ω) <∞,

for any n ∈ N. Then for any n ∈ N also

(t, ω)→ W ∗ µpmin(τn,t)
(ω)

is càdlàg, adapted, starting at 0, with non-decreasing paths and∫
Ω

∣∣∣W ∗ µpmin (τn,∞)(ω)
∣∣∣ dP(ω) <∞.

for any n ∈ N. Additionally,
(W ∗ µt −W ∗ µpt )t∈R+

is a local martingale.

Definition A.6.17. Let
(

Ω,F , (Ft)t∈R+
,P
)
be a �ltered proba-

bility space with right continuous �ltration. A subset A of Ω × R+ is
called thin if it can be written as

A =
⋃
n∈N

{(ω, Tn(ω))}

for a sequence (Tn)n∈N of stopping times.

Proposition A.6.18. ([24], Proposition II.1.14)
Let (

Ω,F , (Ft)t∈R+
,P
)

be a �ltered probability space with right continuous �ltration. Let E ⊂
Rd and let E be its Borel σ-algebra and let (µ(ω, dt, dx))ω∈Ω be an
integer-valued random measure on R+×E. Let δx be the Dirac measure
in x (see Example A.3.21). Then there exists a thin set D ⊂ Ω × R+

and an optional E-valued optional process β such that

µ(ω, dt, dx) =
∑
s≥0

1D(ω, s)δ(s,βs(ω))(dt, dx).
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Proposition A.6.19. ([24], Proposition II.1.16)
Let (

Ω,F , (Ft)t∈R+
,P
)

be a �ltered probability space with right continuous �ltration. Let X be
a Rd-valued càdlàg process. Then

µX (ω, dt, dx) =
∑
s≥0

1{∆Xs(ω)6=0}δ(s,∆Xs(ω))(dt, dx)

is an integer-valued measure on R+ × Rd.

Lemma A.6.20. ([24], Equation II .2.5) Let
(

Ω,F , (Ft)t∈R+
,P
)

be a �ltered probability space with right continuous �ltration. Let X be
a semimartingale and h a truncation function. Then with

X̃(h)t :=
∑
s≤t

∆Xs − h (∆Xs)

the process
X(h) := X − X̃(h)

admits the decomposition

X(h) = X0 +M(h) +B(h)

with F0- measurable random variableX0, a d-dimensional local martin-
gale M(h) starting at 0 and B(h) a predictable d-dimensional process
with �nite variation.

Definition A.6.21. Let
(

Ω,F , (Ft)t∈R+
,P
)
be a �ltered prob-

ability space with right continuous �ltration. Let (Xt)t∈R+
be a d-

dimensional semimartingale. For a �xed truncation function h, the
triple (B,C, ν) is called semimartingale characteristics associated with
h where

(i) B = B(h) is the predictable d-dimensional process with �nite
variation appearing in Lemma A.6.20,

(ii) C = (Cij)1≤i,j≤d for C
ij =

〈
(Xc)i , (Xc)j

〉
is a continuous pro-

cess with �nite variation (for the covariation process see TheoremA.6.9)
for the continuous martingale part Xc(see Proposition A.6.10)

(iii) ν = (ν(ω, dt, dx))ω∈Ω is the compensator (see Theorem A.6.16)
of the random measure µX =

(
µX(ω, dt, dx)

)
ω∈Ω

on R+ × Rd from



310 A. APPENDIX

Proposition A.6.19 and as such ν is a predictable random measure on
R+ × Rd.

Definition A.6.22. Let(
Ω,F , (Ft)t∈R+

,P
)

be a �ltered probability space with right continuous �ltration. Let
E ⊂ Rd and let µ be an integer-valued random measure on R+ × E.
Let

W : Ω× R+ × E → R
be a process that is measurable with respect to P ⊗ E . Let ν be the
compensator of µ and de�ne

Ŵt(ω) :=


∫
E

W (ω, t, x)ν(ω; {t} × dx) if
∫
E

|W (ω, t, x)| ν(ω; {t} × dx) <∞

∞ else.

Furthermore, let D and βt be the thin set and optional process from
Proposition A.6.18 and de�ne

W̃ := W (ω, t, βt(ω))1D(ω, t)− Ŵt(ω).

Then W is said to belong to Gloc(µ) if for the process (Qt)t∈R+
de�ned

by

Qt :=

(∑
s≤t

(
W̃s

)2
)1/2

there is a increasing sequence (τn)n∈N of (Ft)t∈R+
-stopping times with

lim
n→∞

τn →∞

P- almost surely such that for any n ∈ N the stopped process(
Qmin(t,τn)

)
t∈R+

has càdlàg, adapted, non-decreasing paths starting at 0 and

E [Qτn ] <∞
for any n ∈ N.

Definition A.6.23. If W ∈ Gloc(µ) then W ∗ (µ − ν) is de�ned
as any purely discontinuous local martingale M such that ∆M and W̃
are indistinguishable.

In [24] below De�nition I.1.27 it is shown that:
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Proposition A.6.24. If W ∈ Gloc(µ) then W ∗ (µ− ν) exists and
is unique up to indistinguishability.

Theorem A.6.25. ([24], Theorem II.2.34) (Canonical representa-
tion of a semimartingale) Let (Xt)t∈R+

be a d-dimensional semimartin-
gale and let (B,C, ν) be its characteristics relative to a truncation func-
tion (see De�nition A.6.11) h. Furthermore, let µX be the random mea-
sure associated to X via Proposition A.6.19 and Xc its continuous mar-
tingale part (see Proposition A.6.10). Then for W i (ω, t, x) := hi(x)
W ∈ Gloc(µ

X) for 1 ≤ i ≤ d and

X = X0 +Xc + h ∗
(
µX − ν

)
+ (x− h(x)) ∗ µX +B,

where the d-dimensional integral h∗
(
µX − ν

)
is de�ned componen-

twise.
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