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1
Introduction

“The discussion is suggestive
throughout, rather than
mathematical, and it is not always
clear that the author’s mathematical
intentions are honorable.”

Joseph L. Doob, speaking about one of the
most influential intellectual productions in human

history.

When in 1948 Claude Shannon published “A Mathematical Theory of Communica-
tion” [Sha48] he little could know and probably little could expect about how the notion
of information would have been central and pervasive in our days. Apparently, also some
of his reviewers could know pretty little, they were more focused on the honorability of
the mathematical intentions1 [Doo49, Pie73]. However, maybe luckily for us, the impact
of Shannon’s findings in the theory of communication wasn’t shadowed by his contempo-
raries’ mathematical taste and the consequences of his work now permeate almost every
facet of our daily life. All the information needed to produce this thesis throughout
these four years has been accessible thanks to the technology stemmed from Shannon’s
production. The scientific papers encoded as data stored in servers, the communication
protocols to transfer them reliably from node to node over the internet network, the
software needed to compress, decompress and convert the digital data to user-enjoyable
form (including this PDF file) are all a consequence of his seminal work. As the reader
may have guessed, also the conceptual content of this thesis is a consequence of Shannon
findings (clearly with a different pretense of impact but with an at least comparable lack
of honorability), we’ll see later on how.

1When asked for an opinion about this review he declared [SSW93]: “I didn’t like his review. He
hadn’t read the paper carefully”. Sounds familiar?
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2 Introduction

Roughly during the same years in which Shannon set the foundations of Communica-
tion Theory, physics was living an extremely active and flourishing time. Relativity and
Quantum Mechanics were formalized and elementary aspects of nature were brought to
the light with the foundation of Quantum Field Theory. These new theories offered new
grounds for technological revolutions such as, relevantly, the ability to exploit nuclear en-
ergy and information technologies. It’s not the goal of this thesis to deliver an exhaustive
depiction of how nuclear and electronic technologies are pivotal in contemporary society.
This appears self-evident from the geopolitical picture to the most basic facets of our daily
life. What may come as a surprise is that, despite being now more than a century old and
the deep technological exploitation that it triggered, Quantum Mechanics still has proven
to be able to provide new windows to observe our reality under a different point of view.
In 1982 Richard Feynman, that curiously also took part in the other revolution (the nu-
clear one), gave a now famous conference seminar about the relation between computers
and the quantumness of reality [Fey82]. Trying to be concise here, in that talk he stated
that, given the structure and capabilities of modern computers, the faithful simulation
of natural systems must have been quantum. In consequence, only “quantum behaving”
systems could achieve that with constrained resources. While this claim in this form
today may be debated, Feynman’s observation is considered the first milestone on the
journey of Quantum Information. The peculiar features of quantum mechanics started
then to attract interest not only for their “non-classicality” per se, but also because they
shed a different light over the concepts of information and its processing. Three years
later David Deutsch conceived the Quantum Turing Machine and the first instance of a
quantum algorithm as we know them [Deu85], providing an advantageous application of
quantum computers. Around those same years, thanks to the work of Wiesner, Bennett,
Brassard and Ekert it was shown that Quantum mechanics could ensure intrinsic safety
resources for quantum cryptography [Wie83, BB14, Eke91]. The early 90’s witnessed the
birth of new quantum algorithms [DJ92, Kit95, Gro96, BV97, Sim97], with culminating
point the 1994 Peter Shor’s algorithm, where he proved that a quantum computer could
break RSA encryption system efficiently [Sho94]. This last event marked a turning point
in the field. Quantum Information switched rapidly from a relatively small speculative
topic to a strategic research field in the realm of information science and technologies.
So, in the background of this picture, the advent of quantum mechanics in the landscape
of Information Theory stimulated a revisitation of Shannon’s theory of communication
by equipping it with the new resources that quantum theory could provide. Also in this
regard the additional quantum features were crucial to exhibit increased communication
performances and to enlarge the variety of protocols that could be imagined in the frame-
work of communication. This thesis will focus on a small corner of this new formulations
of Communication Theory (Quantum Communication) and Shannon Theory (Quantum
Shannon Theory). Specifically we’ll deal with noise models in specific systems, spin
networks and qudits, and characterize some of their information capacities.
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Motivations and outlook

As we hinted above, in recent years the field of Quantum Information has witnessed a fast
growth in both its theoretical and experimental manifestations. This is due to its claims
that promise to revolutionize the realms of information and communication. In this per-
spective, this thesis aims to contribute to the efforts dedicated to the exploration of the
features of Quantum Communication and its applications, specifically the quantification
of limits in information transfer expressed in terms of information capacities. This issue
has attracted the efforts of our community since, as the reader may know, Quantum Me-
chanics allows the existence of communication protocols that are inaccessible classically.
The characterization of these protocols though is typically provably harder, analytically
and computationally, to be tackled. A corpus of literature has therefore been built up
in order to approach this challenging endeavor: the pieces of work that we’ll present in
the following can be considered as incremental steps in this direction. We’ll discuss how
(some of the known) capacities can be bounded in quantum networks and then we’ll deal
with new classes of noise models in higher dimensional systems for which we’ll exhibit
an extensive analysis with focus on quantum and private classical capacities.
We sketch below the structure of the thesis.

The thesis is structured in two main groups of chapters.

In the first group, that comprises Chapter 2 and 3, we’ll give a very self contained in-
troduction to the most basic concepts in Quantum Communication. Our goal is far from
trying to give a comprehensive review, we’ll present only the strictly necessary notions
useful to give a reasonable but synthetic contextualization to the pieces of work that will
be discussed in the results in Chapters 4, 5, 6 and 7. The interested readers will be able
to deepen each topic by referring to the references that will be provided along the road.
This brief introduction is structured as follows.

• Chapter 2

Quantum communications: models for implementations

In Sec. 2.1 we’ll introduce DiVincenzo’s criteria while discussing what properties a
quantum computing device will be required to display in order to reliably perform
the desired tasks. Some of these criteria will affect also quantum communication
features. In Sec. 2.2 we’ll start the analysis of possible ways, in terms of physical
implementations, of effectively transferring quantum states from one point in the
spacetime to another one. We’ll see that one can conceive two kind of models:

– Flying qubit model, Sec. 2.2.1: the means of communication (carrier) physi-
cally moves from the sender to the receiver.

– Static model, Sec. 2.2.2: the means of communication is a static infrastructure
connecting sender and receiver.



4 Introduction

• Chapter 3

Quantum Shannon Theory
In Sec. 3.1 we’ll sketch some of the most relevant results in noisy classical commu-
nication and Shannon theory, specifically we’ll introduce the concept of capacity of
a communication channel.

In Sec. 3.2 we’ll enumerate the basic definitions of quantum states, channels and
von Neumann entropy that we’ll need in the following.

In Sec. 3.3 we’ll examine how the communication settings and the definitions of
information rates are built in presence of quantum mechanical systems and effects.
Functionally to the discussions that will take place in the results in Chapters 4, 5,
6 and 7, we’ll introduce the following communication protocols:

– In Sec. 3.3.1: classical communication via quantum channels with the associ-
ated classical capacity C.

– In Sec. 3.3.2: private classical communication via quantum channels with the
associated private classical capacity Cp.

– In Sec. 3.3.3: quantum communication via quantum channels with the associ-
ated quantum capacity Q.

– In Sec. 3.3.4: entanglement assisted classical and quantum communication via
quantum channels with the associated entanglement-assisted classical capacity
Cea and Qea.

In the second group of chapters of the thesis, that comprises Chapters 4, 5, 6 and 7,
we’ll discuss some of the results that we obtained in the last (almost) four years of my
PhD. As discussed in the introduction and in Chapters 2 and 3, they refer to topics in the
Quantum Communications landscape, in particular estimates of information capacities
in quantum networks employed as means of communication and models of quantum noise
for higher dimensional (qudit) systems. Considering the non complete homogeneity of
the topics and reasons of practicality I decided to present them in separate chapters, each
one corresponding to one of the publications that stemmed from our work. I substantially
preserved the original structure of each paper in order for each chapter to be self contained
and to be more easily accessible, independently one from the other, for those who’ll be
required to read this piece of work. In light of this, the results chapters are structured
as follows:

• Chapter 4

Bounding capacities in quantum networks
This chapter is based on [CFG19] : S. Chessa, M. Fanizza, and V. Giovannetti,
Quantum-capacity bounds in spin-network communication channels, Phys. Rev. A
100, 032311 (2019).

We present the issue of communication protocols in quantum spin networks equipped
with short range interaction. We show that by exploiting a well known result in
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mathematical physics, the Lieb-Robinson bound, one can characterize several infor-
mation capacities associated to the information transmission between two regions
of the network.

• Chapter 5
Multi-level amplitude damping channels, a capacity analysis
This chapter is based on [CG21b] : S. Chessa, V. Giovannetti, Quantum capacity
analysis of multi-level amplitude damping channels, Comm. Phys. 4, 22 (2021).
We introduce a new class of quantum channels, Multi-level amplitude damping
channels, as a construction arising from the generalization of the well known qubit
amplitude damping channel. We give a characterization of this class in terms of
Kraus operators. We proceed then at the analysis of quantum capacity, private
classical capacity with a study of degradability and antidegradability conditions,
and of entanglement assisted quantum and classical capacities.

• Chapter 6
Resonant multi-level amplitude damping channels channels, a quantum
capacity analysis
This chapter is based on: S. Chessa, V. Giovannetti, Resonant multi-level amplitude
damping channels, a quantum capacity analysis, in preparation, 2022.
We show how in the context of higher dimensional systems, by directly looking
at the interaction with the environment through the Stinespring representation
one can evade the class of multilevel amplitude damping channels, seeing that an
unusual action on the off diagonal coherences is present. This despite having an
identical behaviour on the state populations. We recognize then a new class of
channels and study degradability and antidegradability in order to approach their
quantum capacity and private classical capacity, we compute entanglement assisted
quantum and classical capacities.

• Chapter 7
Partially Coherent Direct Sum channels
This chapter is based on [CG21a] : S. Chessa, V. Giovannetti, Partially Coherent
Direct Sum channels, Quantum 5, 504 (2021).
We introduce the class of Partially Coherent Direct Sum channels, generalizing a
construction from Fukuda and Wolf. In brief, this is done by a coherent composition
of channels in direct sum. We characterize their structure and show necessary an
sufficient conditions for degradability. We exhibit some applications by computing
the quantum capacity of composition of physical low dimensional channels shaping
higher dimensional channels.

In Chapter 8 we’ll draw our conclusions.
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2
Quantum communications: models for

implementations

2.1 Quantum in practice: DiVincenzo’s criteria
As we discussed in the introduction, the unexplored capabilities that Quantum Infor-
mation promises to express in the realm of information technologies have triggered an
ever growing effort from the scientific community aimed to harness them. Unfortunately
theoretical results often are not easily translated into immediately achievable and scal-
able practical solutions. This meant that at the early stages of Quantum Computation
it wasn’t clear what kind of device would have been able to deliver the expectations.
In 2000 David DiVincenzo tried then to summarize some of the necessary features that
such devices needed to exhibit and drew up what are now known as DiVincenzo’s criteria
[DiV00]:

• A scalable physical system with well characterized qubits.

• The ability to initialize the state of the qubits to a simple fiducial state.

• Long relevant decoherence times, much longer than the gate operation time.

• A “universal” set of quantum gates.

• A qubit-specific measurement capability.

These five features were discussed by DiVincenzo as minimal requirements to be held
by actual devices in order to achieve reliable quantum computation. Each one of them
implies deep consequences in technological terms and the last two decades have seen
an extended variety of efforts to close the gaps between the reality of today accessible
systems and the standards set by the criteria. Obviously we will not be able to talk
through these aspects here. What we are interested in though is that he also recognized

7



8 Quantum communications: models for implementations

how the ability to connect separate devices and transfer quantum states would prove
crucial in the perspective of a distributed network of “quantum nodes”. In consequence
of this he added to the list 2 more criteria:

• The ability to interconvert stationary and flying qubits.

• The ability to faithfully transmit flying qubits between specified locations.

These two additional requirements identify almost completely those that will be the sci-
entific context and (hopefully) contribution to the existing literature of this thesis. As
we’ll see later, our results are concerned with quantifying the amount of information that
quantum communication channels can transmit from a point in space to the another one
and understanding how noise processes interfere with this transmission.

In the next section we’ll go a little bit deeper in the details, introducing a first basic
distinction between the possible structures that quantum communication facilities can
display to perform actual quantum state transfer.
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2.2 Moving quantum states

As it was superficially hinted in the introduction, the production, storage and transfer
of quantum states are, at the current state of the art of the technologies involved, highly
nontrivial tasks. The issues that may get in the way of such tasks are inherently device
dependent and of a multitude of originating natures. From a more abstract perspective
though, the failures associated with quantum state manipulation can be fit in two large
classes that encompass these phenomena. The first one is given by the presence of
environmental noise: microscopic systems, as much as isolated, can interact with degrees
of freedom that are not accessible or controllable by the experimenter. This interaction
will induce an evolution on the system and produce a shift on the original quantum state.
In general that shift may not be reversed and the uncertainty on the state will translate
to a noisy effect. The second one is given by the intrinsic non deterministic nature of
quantum operations: even in optimal experimental settings there may be fundamental
uncertainties concerning state preparation, processing and measurements. In many cases
also these uncertainties can be modeled as the effect of noise processes.

It’s clear then that the overall enterprise of quantum communication will incur in
technical limitations. These limitations, as stated before, will depend on the physical
implementation of the communication protocol. Therefore, depending on the selected
platform, there always will be a trade-off involving performance, complexity and costs.
Because of these trade offs, depending on the context, one implementation may be more
advantageous than other ones. The literature then evolved by proposing a variety of
different (conceptually and practically) possible approaches that promise at least the
potential to achieve a faithful quantum communication. In the following we discuss
the two macro areas to which quantum communication systems can ascribe: the “flying
qubit” model and the static model.

2.2.1 Flying qubit model

The flying qubit model refers to the possibility, from the sending party A, of encoding
their quantum state on a physical systems that will travel from one point of the spacetime
to a different point of the spacetime where the receiver B will collect it1. This picture
is fairly simple and does not require specific assumptions about the local structures at
disposal of the two communicating parties A and B. Without loss of generality we can
imagine them to possess a quantum register each that possibly will be an ensemble of
quantum systems in a definite quantum state. The goal will be then to transfer the
register state, or maybe of one of its subsystems state, to the moving carrier. To do
this we’ll assume A to be able to perform coherent operations between the register and
the carrier. Once the carrier will be in proximity of B the same will happen with the
associated quantum register. See Fig. 2.1 for a depiction of the process.

This setting is quite intuitive and finds its realization for instance in those applications
involving electro-magnetic waves employed as carriers [WPGP+12], that comprise already
diffused optical fibers quantum communication, where the information (quantum state)

1The term flying qubit is a little bit misleading here since the state carrier needs not to be generally
a 2 levels system, but for the sake of simplicity we’ll keep this denomination in the following
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Figure 2.1: Flying qubit model. A quantum system is encoded on a carrier through
the interaction with a register A. The carrier moves to the register B and interacting
with it transfers the quantum state.

is encoded in photons or wave packets and which has been proven to be effective up
to 600 km for quantum key distribution purposes [PML+21]. Photons are also used in
satellite quantum communication, hence in a free space setting [VBD+15, Pir21, SJG+],
atmospheric setting [HPK+14] and even in the sea water settings [JGY+17]. Proof of
principle implementations of flying qubit quantum communication have also been realized
with electrons in solid state devices [HTY+11, MKF+11], ions in traps [PDF+21] and
phonons [DJP+21].

2.2.2 Static model

If we try to picture how a future quantum computer will look like, we may find ourselves
projecting the current computers typical architectural structure onto the new coming
breed of devices. We’ll likely imagine a number of processors that must be able to com-
municate more or less rapidly with layers of memory, depending on the necessities of the
computation in place. Now, leaving aside the technical issues related to the effective real-
ization of such components, what is reasonable to expect is that all these components will
be as much as possible miniaturized in order to reduce latency times and noise exposure.
This is true in conventional computers and likely will be in quantum computers, think for
instance to superconducting-circuit based quantum devices: the volume inside a cryostat
that can be functionally cooled to the requisite working temperatures is limited, hence
the whole machine needs to be compressed in few cubic centimeters. The miniaturization
predicament, in the quantum as in the classical setting, finds a solution in the integration
of the communication lines between processing units and memory cells directly into the
computational apparatus. So, as an integrated bus connects a CPU to another CPU or
to a memory, a quantum bus formed by an array of static (i.e. not flying) interacting
qubits may be able to connect two quantum processing units or quantum memories.

Compared to the flying qubit scenario, the static setting will then witness similar
protocols for the communicating parties (granted the possible difference in underlying
technology) but a stark difference in the transmission. Specifically, we can still imagine
without loss of generality a quantum register A in possess of the sender party with a
definite quantum state encoded in it. Something similar holds for the receiver that has
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access to a quantum register B. Both sender and receiver will be able to operate on their
own registers and to perform operations also on a limited portion of the bus. The bus
will be a static structure composed by a number of quantum systems, we can presume a
chain or a network, and will be spatially located and distributed in order for its ends to
be sufficiently close to A and B. In this case there is no spatial displacement of a carrier,
the quantum state will need to “jump” from a site of the bus to the neighbours. See Fig.
2.2 for a depiction of the setting.

Figure 2.2: Static model. The registers of the two communicating parties registers A
and B are put in contact with an intermediary infrastructure. The state is encoded on
one end of the “quantum bus” by A and the internal interaction transfers the state to B
that retrieves the state with suitable operations.

It’s clear that this configuration will require an interaction between the sites. This
interaction may be artificially induced in the case of a quantum bus made of a very lim-
ited number of quantum systems, otherwise we’d expect a fixed interaction that needs
not external management. The latter case, the autonomous quantum bus, results partic-
ularly appealing with respect to the flying qubit model and the controlled bus because
reduces the amount of resources that are directed towards the state propagation and that
consequently can be employed elsewhere. As we said above though advantages come of-
ten with trade-offs, in this case the decrease of needed resources translates trivially into
a decrease of control in the transfer: depending on the morphology of the system and
the interaction considered the faithful state transfer may get more difficult. What can
be said in general terms is that the quantum bath and the associated interaction will be
modeled via the expression of an Hamiltonian Ĥ, that in typical practical settings will
be written as a sum of local terms:

Ĥ =
∑
X

ĤX , (2.1)

where the subscripts X refer to possible local subsets of the quantum bus composing
systems, with locality defined with a suitable notion of distance on the bus network. A
large range of well known models that can be described in this fashion. Among the 1-D
models we count for instance the exchange interaction Hamiltonian Ĥex :

Ĥex =
∑
i,j

Jij Ŝi · Ŝj , (2.2)

being Jij the coupling between the spins Ŝi = (SXi , SYi , SZi ) and Ŝj = (SXj , SYj , SZj )
on the sites i and j. These models can of course be generalized to higher dimensions
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(say 2D or 3D structures) and arbitrary geometries where the linear quantum bus of
Fig. 2.2 gets replaced by a networks of interconnected elements (see Chapter 4). Also in
this context however the overall picture remains the same: two communicating parties
with local accessible registers, produce signals that travel on the network, propagated
by the network Hamiltonian. We stress that at this level we don’t need though to focus
too much on the underlying physics of these kind of models, which represents per se a
vast area of research in condensed matter. This is because the only feature that will be
relevant to the results that we’ll present later is for our quantum bus to be equipped with
a local or equivalently finite range interaction, so that sufficiently distant sites will not
influence directly each others.

As discussed above, the static model for quantum communication is more suited for
quantum state transfer in miniaturized and compact architectures. Considering current
candidates for quantum computation, the static model finds its natural application in
solid state devices. Among the proposals and demonstrations in this sense we saw quan-
tum communication with Josephson junctions arrays [RFB05], with nuclei controlled by
NMR pulses [FXBJ07], chains of nitrogen-vacancy centers in diamonds [PLBG13], chains
of cold atoms [MVV+16], see [Bos07] and references therein for other examples.

Recap
Trying to summarize briefly this introductory section, we’ll say here that our interest will
concentrate on information theoretic aspects of quantum communication. As displayed
above, being able to transfer quantum states is of paramount importance if we realistically
aim to achieve an advantageous use-case for quantum technologies. This transfer can in
principle be realized via several implementations or strategies, but can be reduced to two
main typologies: flying qubit and static. Our work will address both, we’ll try to give a
characterization of the amount of information that can be transmitted in these settings,
possibly in presence of noise.
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Quantum Shannon Theory

In this chapter we’ll introduce the basic definitions in Shannon Theory and Quantum
Shannon Theory that will come useful in the derivation and discussion of the results of
our work in the second part of this thesis. For reasons of space and time the exposition
needs to be as self-contained as possible. Therefore we refer the reader to the standard
textbooks of Classical Shannon Theory, e.g. [CT05], and Quantum Shannon Theory, e.g.
[Wil17, Hay17, Wat18, Hol19], by which substantially this introduction will be inspired.

3.1 Shannon theory and noisy classical communication

When we talk about communication we refer to an operative process in which messages,
composed by symbols {si}i extracted from a set Σ (that here we’ll consider finite), need
to be transferred from a party A to a party B that is spatio-temporally separated from A.
The probability distribution p ≡ {pi}i ≡ {p(si)} of occurrences of the symbols, together
with the symbols {si}i, identify what is called an information source. Here and in the
following we’ll assume that each sampling of the source will be independent from the
others: the information source behaves as a memoryless, independent and identically
distributed (i.i.d.) random variable. It’s possible to associated to any information source
a “measure” of its information content, so to speak, and this measure is given by the
Shannon entropy H(p):

H(p) = −
∑
i

pi log2 pi, (3.1)

where the intuition is given by the fact that one can define the “surprise” relative to the
outcome i as − log pi and in consequence the Shannon entropy is the average surprise
of the source. The Shannon entropy has also an additional operational meaning. In his
source coding theorem Shannon showed that messages extracted from n instances of a
source X with entropy H(X), in the asymptotic limit can be compressed without infor-
mation loss in at least nH(X) bits [Sha48].

13
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In the physical world the communication procedure will necessarily be carried out
by physical systems undergoing physical processes. In the typical reasonable scenarios
these processes will not be fully controlled by the communicating parties and some of
the messages will be corrupted, introducing uncertainty to the end of the receiver. They
can’t assess with certainty whether the message received is the original one or a corrupted
one: the communication is noisy. If the noise model is known though, the two parties
may agree on an engineered a protocol that optimizes the chances that the message
passes untouched. This is translated in the realization of an encoding procedure E and a
decoding procedure D tailored in order to store messages into agreed “codewords” that
are resilient to the noise Φ and that the receiver will be able to faithfully map back to
the original message X, see Fig. 3.1 for a schematic representation of the process.

Figure 3.1: Representation of an error correcting communication scheme: a message
X is encoded by A in a suitable state that undergoes through the noise, the output is
then reconverted to the original message by the decoding procedure.

These codewords will correspond to physical states that will remain somewhat distin-
guishable after the application of the noise. The question that naturally arises is: given
n noisy channel uses how much information will we be able to transmit without errors?
Shannon answered also this question. We can define the rate R of our code for a message
space M and n uses of the channel as

R = log2 |M |
n

, (3.2)

being |M | the dimension of our message space. The Shannon’s noisy channel theorem
states that for each noise model Φ will exist a capacity C such that if we choose R < C
then messages will be decoded with arbitrary small probability of error, while for R > C
the transfer will happen with non vanishing errors. The capacity of a channel is the
supremum of all the achievable rates and it can be expressed as

C(Φ) = sup
pA

I(A : B) , (3.3)

being pA a probability distribution of the generating source of the code for A and
I(A : B) = H(A) + H(B) − H(AB) the mutual information between A and B after
the application of the channel.
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The results that here we synthetically portrayed constitute the milestones of informa-
tion theory. They hold for communication of classical information through classical chan-
nels. Our contribution will deal with communication carried out by quantum channels
but, with distinctions that will be made clear in the following, the underlying framework
over which Quantum Shannon Theory is built overlaps with the one we laid above.
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3.2 Quantum states, channels and measurement

Quantum states

We’ll set here some of the basics of the notation that we’ll need to define quantum infor-
mation capacities and in general in the rest of the thesis.

We’ll denote as HS the Hilbert space associated with the quantum system S, which
is a complex vector space equipped with an inner product ⟨ · , · ⟩ : HS × HS → C. In
this thesis we’ll only deal with finite dimensional Hilbert spaces.

We can denote as L(HS) the algebra of linear operators acting over HS. In gen-
eral we’ll express such operators with a hat symbol in order to facilitate the distinction
between scalars, operators, channels. We’ll add a subscript to specify the underlying
Hilbert space when needed or we’ll drop it if the context will be unambiguous. For in-
stance we’ll write ÔS to identify the operator Ô belonging to L(HS). We’ll denote with
Ô† the conjugate-transpose of the operator Ô, call Hermitian those operators for which
Ô† = Ô holds, call positive definite those operators for which ⟨v, ÔSv⟩ > 0 ∀v ∈ HS and
positive semidefinite those operators for which ⟨v, ÔSv⟩ ≥ 0 ∀v ∈ HS.

When dealing with a set of systems Si, each one equipped with its own Hilbert space
HSi , the overall composed system St Hilbert space will be given by the tensor product
of the individual subsystems Hilbert spaces like HSt =

⊗
i HSi . The construction of

linear operators over composite systems goes the same way: if we have a collection of
local operators ÔSi ∈ L(HSi) acting on HSi the overall action will be described by the
operator ÔSt =

⊗
i ÔSi .

Among all the linear operators we’ll be particularly interested in positive semidefinite
operators such that their trace is 1 and, in consequence of positive semidefiniteness, that
are Hermitian. In quantum theory they identify quantum states and are called density
matrices, in the text will be typically expressed as ρ̂. Once specified an Hilbert space HS,
density matrices over said Hilbert space form a convex set that we’ll denote as S(HS).
Density matrices of rank 1 are called pure states and, exploiting Dirac’s bra-ket notation,
can be expressed as |ψ⟩⟨ψ|. Here |ψ⟩ represents a vector in the Hilbert space such that
⟨ψ,ψ⟩ ≡ ⟨ψ|ψ⟩ = 1. If states are not rank 1 then they are called mixed states and, fixed
a suitable orthonormal basis {|i⟩}d−1

i=0 , they can be expressed as

ρ̂ =
d−1∑
i=0

pi |i⟩⟨i| , (3.4)

where the real and positive coefficients pi can be interpreted as probabilities and they
sum up to 1. This is an immediate consequence of the Hermiticity of density matrices
and the fact that their trace is 1.

It is possible to give a notion of distance in the set of density operators S(HS). This
can be done for instance introducing the trace distance T (ρ̂, σ̂):

T (ρ̂, σ̂) = 1
2∥ρ̂− σ̂∥1 , (3.5)
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that exploits the definition of trace norm of an operator Ô that goes as

∥Ô∥1 = tr
[√

Ô†Ô

]
. (3.6)

As linear operators, density matrices representing states of multipartite systems be-
have following the tensorization as explained above. In quantum information is also
relevant though the typology of structure that quantum states display in these multipar-
tite. Specifically quantum states can be distinguished in separable states and entangled
states. Separable states are those states that can be expressed as a convex combination
of product states, i.e.

ρ̂S1,S2, · · · ,SN
=
∑
i

pi σ̂
i
S1 ⊗ σ̂iS2 ⊗ · · · ⊗ σ̂iSN

with σ̂iSj
∈ S(HSj ) . (3.7)

Entangled states are those states that are not separable and hence that cannot be ex-
pressed as in Eq. (3.7).

The issue of discriminating between entangled states and separable states has proved
to be a really tough challenge to address. Criteria to establish separability or en-
tanglement have been proposed but an universal characterization is not available yet
for the generic multipartite scenario. The problem was showed to be NP-complete
[Gur03, Gur04]. Luckily in the following we won’t need to worry about the intrica-
cies of the separability problem and we refer the interested reader for instance to [BŻ17]
to get a broader perspective on the issue. What we’ll need to keep in mind is that these
two categories of states express a deep separation between the classical and quantum
descriptions of nature. Entangled states are an exclusive feature of quantum theory and
entanglement is, as we’ll see later, one of the resources that mark the departure between
classical and quantum communication.

von Neumann entropy

The statistical nature of quantum states, and in particular of density matrices in the form
of Eq. (eq: density matrix), allows us to associate to them a “measure of uncertainty” as
Shannon did with sources. The generalization of Shannon entropy to quantum states is
attributed to John von Neumann [vN27, vN18] and referred to as von Neumann entropy.
The von Neumann entropy of a density matrix ρ̂ is expressed as

S(ρ̂) = − tr[ρ̂ log2 ρ̂] , (3.8)

being here log2 the operator logarithm. It can be shown that von Neumann entropy is
invariant under unitary transformations, so, taking dim(HS) = d and Û ∈ SU(d) follows
that S(ρ̂) = S(Û ρ̂Û †). This is equivalent to saying that S(ρ̂) is invariant under a change
of basis. The same can be generalized to linear isometries V̂ : HA → HB such that
V̂ †V̂ = 1̂A, with in general dim(A) ̸= dim(B). From this fact follows that von Neumann
entropy can be reduced to Shannon entropy when the state is expressed in the basis that
diagonalizes it. S(ρ̂) = 0 if and only if ρ̂ is a pure state and has its maximum value log2 d
on the completely mixed state ρ̂ = 1̂d/d. As we’ll see in the following, von Neumann
entropy plays a central role in the definition of other information quantities, we report
here some of the simplest and most useful properties it displays:
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• Positivity: 0 ≤ S(ρ̂) ≤ log2 d, with ρ̂ ∈ S(HS) and dim(HS) = d.

• Concavity in the input state: S(
∑
i
piρ̂i) ≥

∑
i
piS(ρ̂i), with pi ≥ 0 and

∑
i
pi = 1.

• Additivity under tensorization: S(ρ̂A ⊗ ρ̂B) = S(ρ̂A) + S(ρ̂B).

• Subadditivity: S(ρ̂AB) ≤ S(ρ̂A) + S(ρ̂A), with ρ̂A = TrB ρ̂AB and ρ̂B = TrA ρ̂AB.

• Strong subadditivity: S(ρ̂ABC) + S(ρ̂C) ≤ S(ρ̂AC) + S(ρ̂BC).

Quantum Channels

Physical processes involving quantum systems can be expressed as transformations over
quantum states and, consequently, as transformations over the associated density ma-
trices. We’ll denote them as Φ : L(HA) → L(HB). Not all mathematically admissible
transformations though have a corresponding physical equivalent. In particular all phys-
ical transformations need to map physical states into physical states. In non relativistic
quantum mechanics this translates to: first requiring the final state to be trace 1 as the
initial state, in general then we’ll require that

tr[Φ(ρ̂)] = tr[ρ̂] , (3.9)

the channel is said then to be trace preserving; second also to requiring the final state to
be positive, for any input state. This second condition needs to be made stronger: what
is necessary to ask is:

(1n ⊗ Φ)(ρ̂) > 0 ∀ρ̂, ∀n , (3.10)

where 1n is the identity map over a generic n-dimensional auxiliary Hilbert space. The
requirement expressed by Eq. (3.10) is called complete positivity. The physical inter-
pretation of complete positivity can be put in these terms: a local physical operation
must preserve its “physicality” also on the rest of the universe which is unaffected by
the action of the operation. This set of requirements defines a class of operations, that
since they are defined over linear operators are called superoperators, and this class is
the set of Completely Positive and Trace Preserving (CPTP) linear superoperators (or
alternatively CPTP maps). In general allowed quantum operations and channels must
satisfy Eq. (3.9) and Eq. (3.10) and therefore are CPTP maps, these terms will be in-
terchangeable in the text. CPTP maps are closed under convex combinations. Unitary
evolutions induced by a Hamiltonian are a subclass of CPTP maps.

There are more than one way to represent the action of a CPTP map over a density
matrix, e.g. Stinespring representation and Kraus representation. We’ll discuss Kraus
representation in the Results section where it will be employed extensively . Similarly only
later we’ll talk about how we may find a map to be CPTP, in particular that Eq. (3.10)
is satisfied: we’ll see how the Choi representation of a channel allows us to establish the
complete positivity. Here we will briefly present the Stinespring representation which will
be needed in the next section while introducing information capacities. As we have seen
any physical process can be represented by a quantum channel, also dissipative and non
unitary ones. It can be shown that the action of any CPTP map ΦA→B can be realized
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by a unitary interaction ÛAE→BE′ between the input system A and an environment E
in a fixed pure state |ψ⟩ [Sti55], so that

ΦA→B(ρ̂A) = trE′

[
ÛAE→BE′(ρ̂A ⊗ |ψ⟩⟨ψ|E)Û †

AE→BE′

]
. (3.11)

This representation highlights the fact that in general evolutions on local systems may
be induced by interaction with an external environment. It follows that the unitary
interaction ÛAE→BE′ will affect also environmental degrees of freedom, producing an
effective channel Φ̃A→E′ , called complementary channel of Φ, expressed as

Φ̃A→E′(ρ̂A) = trB
[
ÛAE→BE′(ρ̂A ⊗ |ψ⟩⟨ψ|E)Û †

AE→BE′

]
. (3.12)

Figure 3.2: Representation of the Stinespring representation for quantum channels Φ
and associated complementary channels Φ̃.

Measurements

Measurements are those procedures that allow us to extract information from a quantum
state about the system that it represents. Intuitively it can be modeled as a quantum
process that drives the system into a state that we associate with a specific outcome. In
the so called “noiseless measurement” setting the outcomes {j}j are linked to projectors
{Π̂j}j such that:

Π̂j > 0 , Π̂†
j = Π̂j , Π̂iΠ̂j = δijΠ̂j ,

∑
j

Π̂j = 1̂ . (3.13)

The action on a generic quantum state of these projective measurements defines the
evolution:

ρ̂ →
Π̂j ρ̂Π̂†

j

pj
with pj = tr

[
Π̂j ρ̂

]
= tr

[
Π̂j ρ̂Π̂†

j

]
, (3.14)
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where the parameters pj , accordingly with the Born rule, correspond to the probabilities
of getting the outcome j. From the equation above we can see that the measurement
process can be seen as a quantum channel that allows us to store information about the
exact projective subspace in which the system lives after the measurement.

This condition can be relaxed in order to obtain a more general definition of measure-
ments where we just know the probability of the specific outcomes and not necessarily
also a specific projective subspace. In this case we associate to the outcomes {j}j a set
of positive valued operators {Λ̂j}j such that:

Λ̂j ≥ 0 ,
∑
j

Λ̂j = 1̂ . (3.15)

The measurement procedures exhibiting these features are called positive operator-valued
measures (POVM). By writing Λ̂j = M̂ †

j M̂j , as for projective measurements we can
express the post measurement quantum state and the associated probability:

ρ̂ →
M̂j ρ̂M̂

†
j

pj
with pj = tr

[
Λ̂j ρ̂

]
= tr

[
M̂j ρ̂M̂

†
j

]
. (3.16)
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3.3 Communicating with quantum channels

In the following we’ll introduce the information capacities that we’ll approach in the
results section. The list that follows is far from being comprehensive of the state of the
art in the field and it is just instrumental in our purposes. The interested reader will be
able to find more comprehensive treatises in specialized reviews and books, such as for
instance [HG12, Hay17, Wil17, GIN18, Hol19, KW20].

The presentation will be again as synthetic and as schematic as possible: we’ll intro-
duce the communication setting and the relevant resources, define the significant entropic
quantities and express the associated capacity.

3.3.1 Classical communication with quantum channels

Recalling what we said about the capacity of a noisy classical channel, one could think
that it would suffice encode a codeword x into a quantum state ρ̂x to transmit classical
information through a noisy quantum channel. This can be done but as was shown
by Holevo it does not represent the best achievable strategy. As it turns out, in the
quantum picture also entanglement plays a role and entangled input blocks or entangled
measurements can provide better performances.

More in detail, the “classical-quantum” strategy could for instance consist, mimicking
the classical case, in the production from A of a classical random code of size n where
symbols from {si}i ∈ Σ are extracted with probability piX and associated with quantum
states ρ̂si

A to produce separable codewords of the form ρ̂s
n

An = ρ̂s1
A ⊗ ρ̂s2

A ⊗ · · · ⊗ ρ̂sn
A .

The codewords are transmitted through n uses of the channel Φ and measured with a
separable POVM ΛSEP at the output. The output conditional probability allows us to
extract the mutual information I(X : B) and then apply the noisy channel theorem, with
maximum achievable rate Rmax given by:

Rmax(Φ) = max
{pX ,ρ̂

sn

An ,ΛSEP}
I(X : B) . (3.17)

It’s clear though that in principle the same exact scheme could be employed but without
restricting ourselves to separable codewords and separable POVMs, see Fig. 3.3 for a
pictorial depiction of a generic classical-communication-with-quantum-channels scheme.
The issue arising here is that allowing entangled POVMs prevents the naive application
of Shannon theorem as above. In general we’ll need to repeat the computation for any
block-size n, take the maximum and regularize dividing by n for a functional that can’t be
easily expressed: we need a different figure of merit. This was provided by Holevo [Hol73]
who firstly showed that χ, called Holevo information, is an upper bound for Rmax(Φ) and
is defined on an ensemble {{pi}, {ρ̂i}} such that the probabilities {pi} = pX of Eq. (3.17)
and writes [Hol73]

χ({{pi}, {ρ̂i}}) = S

(∑
i

piρ̂
i

)
−
∑
i

piS(ρ̂i) . (3.18)
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Figure 3.3: Representation of the communication setting for classical communication
with quantum channels.

Later Holevo [Hol79, Hol98], Schumacher and Westmoreland [SW97] showed that χ(Φ),
defined as :

χ(Φ) = sup
{{pi},{ρ̂i}}

χ({{pi}, {Φ(ρ̂i)}}) (3.19)

is also an achievable rate and therefore the regularized formula

C(Φ) = lim
n→∞

χ(Φ⊗n)
n

(3.20)

correctly expresses the value of the classical capacity for the quantum channel Φ.

Despite χ(Φ) having a simple expression as the one in Eq. (3.19), the expression
for C(Φ) in Eq. (3.20) is of little practical utility because of the unbounded sequence of
optimizations that it is implied with n → ∞. One could hope though the χ(Φ) functional
to be well behaved and exhibit additivity, that is to say:

χ(Φ⊗n) = nχ(Φ) , (3.21)

that would trivialize the regularized formula into C(Φ) = χ(Φ). Unfortunately it has
been explicitly shown that there exist channels for which χ(Φ ⊗ Φ̄) > χ(Φ) + χ(Φ̄):
the Holevo information can be superadditive [HW08, Has09]. There are examples in the
literature though of channels that display the additivity as in Eq. (3.21). Among finite di-
mensional quantum channels it was proved for entanglement breaking channels [Sho02a],
for unital qubit channels [Kin02], for depolarizing channels [Kin03] and Hadamard chan-
nels [KMNR05, Kin]. Techniques to find “approximately additive” channels, i.e. close to
additive channels in the suitable norm, were discussed in [LKDW18].

3.3.2 Classical private communication with quantum channels

In the introduction we briefly mentioned how applications in cryptography were among
the first ones to be recognized as potential candidates to the exploitation of quantum ef-
fects to improve existing communication protocols, such as secret key distribution. These
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tasks require a reliable estimation of the amount of information that can be transferred
without an eavesdropper being able to intercept it. Intuitively this boils down to ask
how many secret bits can be sent using once the channel.

The communication setting is then equivalent to the setting analyzed in the previous
section, with the addition here that the state that the eavesdropper has access to, i.e.
the environmental state Φ̃⊗n

A→E′(ρ̂An) after n applications of the quantum channel ΦA→B

to the input message encoding ρ̂An , must be arbitrarily close to a fixed state π̂E′n , see
Fig. 3.4. The explicit requirement will be:

∥Φ̃⊗n
A→E′(ρ̂An) − π̂E′n∥1 < ϵ , (3.22)

with ϵ positive constant and arbitrarily small.

Figure 3.4: Representation of a private classical communication setting involving a
quantum channel Φ.

Without deepening the details of the proof, it was shown [Dev05] that it is always
possible to express an achievable rate, attainable enforcing the privacy requirement in
Eq. (3.22). This is done by what is called the private information Ip(Φ) of a channel Φ:

Ip(Φ) = max
{{pi},{ρ̂i}}

χ ({{pi}, {Φ(ρ̂i)}}) − χ({{pi}, {Φ̃(ρ̂i)}}) , (3.23)

being χ the Holevo information defined in Eq. (3.18). The statement generalizes to n
uses of the channels: Ip(Φ⊗n) is an achievable rate too. As one could have guessed
taking the parallel with the case of the classical capacity, the private information is also
instrumental in expressing an upper bound on the achievable rates and consequently the
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private classical capacity Cp(Φ) of a quantum channel Φ. Specifically, independently
Devetak [Dev05] and Cai, Winter, Yeung [CWY04] proved that

Cp(Φ) = lim
n→∞

Ip(Φ⊗n)
n

. (3.24)

This expression suffers again of the regularization predicament: in order to have an
exact characterization of the private classical capacity we would need to perform an
optimization over an infinite number of block-sizes n. Again, we could hope Ip(Φ⊗n)
to scale trivially with n and being additive. Unfortunately, also in this case explicit
examples of superadditivity of the private classical capacity in various settings have been
provided, see e.g. [LWZG09, SRS08, ES15]. In general then the task of computing Cp(Φ)
is a highly nontrivial endeavour. There are classes of channels though for which useful
properties can be leveraged and the problem simplified. It is the case for instance of
degradable and antidegradable channels that display additive private capacity. We’ll
discuss more in detail degradable channels in the Results section.

3.3.3 Quantum communication with quantum channels

Until now we have dealt only with protocols involving the transmission of classical mes-
sages through quantum channels, mediated by an encoding over quantum states. In
a quantum communication and computation oriented scenario it is plausible though to
think that the goal of the sender A may be delivering quantum states to a receiver B.
The desiderata in this setting will be then the received state to be very close to the state
that was sent and the possible correlations (entanglement) with a separate reference sys-
tem R to be preserved. The overall setting can then be laid out as the other protocols
we saw, see Fig. 3.5 for a depiction. A will own a quantum state ρ̂A which is a share
of a multipartite state ρ̂AR ∈ S(HA ⊗ HR) so that trR[ρ̂AR] = ρ̂A. In order to protect
the state from the noise ΦA′→B′ they’ll encode it into a block A′n of n systems A′ via an
encoding operation EA→A′n and send the block through n uses of the channels. At the
output of the channel B will try to retrieve the quantum state by applying a decoding
operation DB′n→B. In order for our protocol to succeed, in the sense we talked about
above, we’ll ask:

∥DB′n→B ◦ Φ⊗n
A′→B′ ◦ EA→A′n(ρ̂AR) − ρ̂AR∥1 < ϵ , (3.25)

with ϵ positive and arbitrarily small.
Similarly to the classical case, we’ll define a rate Rq that depends on the size of the

messages space that can be transferred reliably from A to B. In this case, being quantum
states our messages, we’ll have

Rq = log2 dim(HA)
n

. (3.26)

Again, as for the classical and private classical scenarios, we are interested in under-
standing whether it’s possible to express a superior limit for the rates in Eq. (3.26) to
define a quantum capacity Q. The answer is affirmative and requires the introduction
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Figure 3.5: Depiction of a quantum communication setting involving a quantum chan-
nel Φ.

of an additional entropic quantity called coherent information. The coherent informa-
tion Icoh was firstly defined by Nielsen and Schumacher in [SN96] and exploiting the
Stinespring representation can be written as

Icoh(ρ̂A,Φ) = S(Φ(ρ̂A)) − S(Φ̃(ρ̂A)) , (3.27)

from which immediately follows the channel-related definition:

Icoh(Φ) = max
ρ̂A∈S(HA)

Icoh(ρ̂A,Φ) . (3.28)

The coherent information was proved to be an upper bound for the quantum capacity
[Sch96, SN96, BNS98, BKN00] and later Icoh(Φ) and the n uses version Icoh(Φ⊗n)/n were
proved to be also achievable rates. This allowed to define the quantum capacity Q(Φ)
for a channel Φ [Llo97, Sho02b, Dev05]:

Q(Φ) = lim
n→∞

Icoh(Φ⊗n)
n

. (3.29)

This formula, as the other ones found for communication capacities with quantum
channels, involves an infinite regularization that makes it impractical to be actually used
for estimating exactly the quantum capacity. The coherent information, in general, is not
additive. It has indeed been showed to be superadditive, for finite dimensional channels
see e.g. [SS96, DSS98, SS07, FW08, CEM+15, LLS18a, BL21, SG21a, Sid21, LLS+22b]
and it has also been experimentally observed [YMP+20]. The quantum capacity can also
exhibit superactivation [SY08], i.e. quantum channels with null quantum capacity, if used
together, allow a nonzero quantum capacity. As for the private classical capacity though,
there are classes of quantum channels for which the capacity can be computed exactly.
Among these we find degradable channels, antidegradable channels, that we’ll discuss
later, and some other instances such as [GJL18a, GJL18b, CG21b, CG21a, LLS+22c]
among which we find also MAD channels and PCDS channels that we’ll introduce in the
Results section.
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3.3.4 Entanglement assisted communication

We mentioned in the introduction how the presence of entanglement shared between
sender and receiver allows the realizations of communication protocols, such as quantum
teleportation [BBC+93] and superdense coding [BW92], that prove advantageous with
respect to a purely classical setting. The existence of such protocols opens the question
related to the possible enhancement of communication capabilities in terms of rates. Does
the presence of shared entanglement, despite the impossibility of information transfer
through it, improve classical and quantum communication? The answer, as you can
guess, is yes.

The description of the communication setting is similar to those already encountered,
with the addition of an arbitrarily large amount of shared entanglement between A and
B, see Fig. 3.6 for a representation of the entanglement assisted classical communication
setting.

Figure 3.6: Depiction of an entanglement assisted communication setting involving a
quantum channel Φ.

Maybe surprisingly though, in this case the formulas defining the entanglement as-
sisted classical capacity Cea(Φ) and the entanglement assisted quantum capacity Qea(Φ)
of a quantum channel Φ do not require a regularized formula. This is because the en-
tropic quantity involved in their definitions is the quantum mutual information I(ρ̂,Φ)
associated with an input state and a channel ΦA→B that writes:

I(ρ̂,Φ) = S(ρ̂) + S(Φ(ρ̂)) − S(Φ̃(ρ̂)) . (3.30)

The expressions for Cea(Φ) and Qea(Φ) are then:
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Entanglement assisted classical capacity

Cea(Φ) = max
ρ̂A∈S(HA)

I(ρ̂A,Φ) . (3.31)

The coding theorem bringing to Eq. (3.31) was provided by Bennett, Shor, Smolin and
Thapliyal [BSST99, BSST02]. The single-letter formula is achieved thanks to the prop-
erty of subadditivity that quantum mutual information displays [AC97], so we have
Cea(Φ⊗n) = nCea(Φ). It’s also evident by construction that Cea(Φ) ≥ C(Φ).

Entanglement assisted quantum capacity

Qea(Φ) = max
ρ̂A∈S(HA)

1
2I(ρ̂A,Φ) . (3.32)

As it can be immediately observed by inspection, the entanglement assisted quantum
capacity Qea(Φ) of a quantum channel is just half of the classical counterpart. This
can be intuitively explained as follows [BSST99]. Since the quantum capacity is a rate
that relates to the maximum input space dimension that can be transmitted noiselessly,
taking for instance the case of qubits, we already know from quantum teleportation that
we can transfer perfectly any quantum state by sending 2 classical bits. But we also
know from superdense coding that 2 bits can be transferred with only a single use of the
channel, hence the factor 2. Being defined through the quantum mutual information,
Qea(Φ) shares the additivity property of Cea(Φ), so Qea(Φ⊗n) = nQea(Φ).
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4
Bounding capacities in quantum networks

Preface
What follows is based on the published paper [CFG19]:

• S. Chessa, M. Fanizza, and V. Giovannetti, Quantum-capacity bounds in spin-
network communication channels, Phys. Rev. A 100, 032311 (2019).

This chapter is focused on communication properties of quantum spin networks. In
the framework that we consider, spin networks are imagined as static quantum commu-
nication infrastructures, in the sense discussed in Chapter 2, Sec. 2.2 where we compared
the static model to the flying qubit model. The communication will be modeled in a
simplified fashion, assuming the communicating parties to be able to communicate by
local operations on separated portions of the network. The signals will be propagated by
the interaction with which the network is equipped. To estimate our bounds we’ll exploit
the so called Lieb-Robinson bound, a well established result in mathematical physics that
allows us to give an upper bound to the correlations between two portions of a quantum
spin network. Lieb-Robinson bounds are an important result with a number of relevant
consequences and we gave a contribution also on that topic in [CG19], that we report as
an appendix. We decided though to not include it in the main text of the thesis since it
is not directly related to the issue of information capacities. The interested reader may
check [CG19] (Appendix A) and the references therein for a deeper dive in the topic of
Lieb-Robinson bounds.
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4.1 Introduction

As we have seen in Chapter 2, Sec. 2.2, in the flying qubit model of quantum commu-
nication messages are conveyed from the sender (Alice) to the intended receiver (Bob)
after being encoded into some degree of freedom which actually “moves” from the loca-
tion of the first party to the location of the second party [Hol19, Wil17, Wat18]. This
scenario is the most widely studied in the literature as it finds application in many real-
istic scenarios which, for instance, employ electro-magnetic pulses as quantum carriers.
An intriguing alternative is provided by the spin-network communication (SNC) model,
that belongs to the static models of quantum communication discussed in in Chapter 2,
Sec. 2.2.2, where instead Alice and Bob are assumed to have access to different portions
of an extended many-body quantum infrastructure. This infrastructure is formed by
interacting particles which occupy fixed locations but which are mutually coupled via an
assigned, fixed Hamiltonian that, as in a solid, allows the spread of local perturbations
along the medium, see e.g. Ref. [Bos07] and references therein. While being intrinsically
limited to short distance applications, SNC schemes have been suggested as an effective
way to avoid interfacing issues in the engineering of connections between clusters of oth-
erwise independent quantum processors [Bos03, CDEL04, CVDC03, BGB07, EPBH04,
PHE04, HRP06, GB06]. The study of these models is also motivated by the need of
better understanding how the many-body system reacts to the spreading of local pertur-
bations. The main result in this context is the well known bound by Lieb and Robinson
(LR) [LR72, NSY19] on the maximum group velocity for two-points correlation functions
of the network, see also [NS06, Has04b, HK06, NOS06]. For sufficiently regular models,
it basically identifies the presence of an effective light cone with exponentially decaying
tails implying that information that leaks out to space-like separated regions is negligible,
so that for large enough distances non-signaling is preserved. Several applications of the
LR inequality in a quantum information theoretical treatment of SNC models have been
presented in the literature. For instance in Ref. [EO06] the LR bound was used to set a
limit on the entanglement that can develop across the boundary of a distinguished region
for short times. In Ref. [Osb06] instead the bound was used to show that dynamics
of 1D quantum spin systems can be approximated efficiently. In Ref. [BHV06] finally,
making use of the Fannes inequality [Fan73], Bravyi et al. succeeded in linking the LR
inequality to the Holevo information capacity χ [Hol98, SW97] attainable for a special
example of SNC model where Alice tries to communicate classical messages to Bob by
“overwriting" them into the initial state of the spin-network she controls. A generaliza-
tion of this result was presented in Ref. [EW17] where the LR bound was employed to
set the limits within which high-fidelity quantum state transfer and entanglement gener-
ation can be performed in general spin-network systems. The aim of the present Chapter
is to go beyond these findings, by generalizing the inequality derived in Ref. [BHV06]
to the whole plethora of quantum channel capacities [HG12] that one can associate to
the underlying SNC model and to the arbitrary encoding strategies Alice may adopt to
upload her messages into the network. For this purpose we shall make explicit use of the
continuity argument of Refs. [LS09, Shi17] which allows one to connect the capacities
values of two channels via their relative distance measured in terms of the diamond norm
metric [Kit97, KSVV02]. While our derivation in many respects mimics the one presented
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Figure 4.1: (Color online) Schematic representation of a spin-network model for quan-
tum communication. The network N is divided into three components: the sector A
(controlled by the sender of the message Alice), the sector B (controlled by the receiver
Bob), and the sector C on which neither Alice nor Bob can operate. The element Q
represents an external ancillary memory element Alice uses to store the information she
wants to transmit. At time t = 0 Alice couples A with Q via an arbitrary encoding
mapping EQA which fully characterizes the adopted communication strategy; Bob, on his
side, will try to pick up the message at some later time t from B.

by Bravyi et al., we stress that in order to account for all possible encoding strategies, we
have explicitly to deal with the dimension of the ancillary memory element Q Alice can
use in the process. The presence of such element, which does not enter in the definition
of the spin-network (and hence in the associated LR inequality), introduces a divergent
contribution which, if not properly tamed, tends to spoil the connection between the LR
bound and the diamond norm distance, compromising the possibility of using the results
of Refs. [LS09, Shi17] to constrain the capacities values of the underlying SNC model (a
problem which, due to the intrinsic sub-additivity of the Holevo information χ, needed
not to be addressed in Ref. [BHV06]).

The Chapter is organized as follows: we start in Sec. 4.2 by introducing the SNC
scheme and reviewing some basic facts about the LR bound. The main results of the
Chapter are presented in Sec. 4.3. Here, in Sec. 4.3.1, first we exploited the LR inequality
to put an upper limit on the induced trace-norm distance [Wat18] between the map as-
sociated with the SNC scheme and a (zero-capacity) replacement channel [Kin03, NC10].
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From this, in Sec. 4.3.2 we hence derive an analogous bound for the diamond dis-
tance [Kit97, KSVV02] from which ultimately the bounds on the SNC communication
capacities follow. The Chapter ends with the conclusions in Sec. 4.4. Technical material
is presented in the Appendix.

4.2 The model
In the scenario we are interested in, two distant parties (Alice the sender and Bob the
receiver) try to exchange (classical or quantum) messages by locally manipulating por-
tions of a many-body quantum system N that, as schematically shown in Fig. 4.1, acts
as the mediator of the information exchange [Bos03, Bos07, CDEL04, CVDC03, BGB07,
EPBH04, PHE04, HRP06, BHV06]. An exhaustive characterization of N is provided by
the spin network formalism [NS06] where the (fixed) locations of the quantum subsys-
tems are specified by a graph G := (V,E) defined by a set of vertices V and by a set E
of edges. The model is equipped with a metric d(x, y) defined as the shortest path (least
number of edges) connecting x, y ∈ V (d(x, y) being set equal to infinity in the absence
of a connecting path), which induces a measure for the diameter D(X) of a given subset
X ⊂ V , and a distance d(X,Y ) between the subsets X,Y ⊂ V ,

D(X) := max
x,y

{d(x, y)|x, y ∈ X} ,

d(X,Y ) := min{d(x, y)|x ∈ X, y ∈ Y } . (4.1)

Indicating with Hx the Hilbert space associated with the spin that occupies the vertex x
of the graph, the Hamiltonian of N , which ultimately is responsible for the information
propagation in the medium, can be expressed as

Ĥ :=
∑
X⊂V

ĤX , (4.2)

where the summation runs over the subsets X of V with ĤX being a self-adjoint operator
that is local on the Hilbert space HX := ⊗x∈XHx , i.e. it acts non-trivially on the spins
of X while being the identity everywhere else.

Assume then that Alice and Bob control respectively two non-overlapping sections
A and B of the network N , their distance being d(A,B) > 0. The model includes also
a domain C of N that represents the spins which are neither under Bob’s nor Alice’s
control. The two parties agree about a protocol according to which Alice signals to Bob
by locally perturbing the input state of the chain τ̂ABC via a set of local operations acting
on the spins belonging to her domain A. Such actions will hence propagate according
to the natural Hamiltonian (4.2) of the network for some transferring time t after which
Bob will try to recover them via some proper local operations on the domain B. The
question we want to address is how much Bob will be able to discern about Alice’s
encoding action by performing arbitrary (local) operations on the output state (4.12). In
the next section we shall approach this problem by generalizing the work of Ref. [BHV06]
where, using the Lieb-Robinson (LR) inequality [LR72, NSY19] an upper limit was set
for the Holevo capacity χ [HG12] attainable using a specific spin-network communication
strategy (explicitly the model defined in Eq. (4.16) below). We remind that the LR is a
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universal bound on the correlations that can be established between distant portions of
the network due to the dynamics induced by the system Hamiltonian Ĥ under minimal
assumptions about the structure of involved couplings. In particular, given any two
operators Â and B̂ that are local on Alice’s and Bob’s subsets A and B respectively, the
LR inequality imposes the constraint

∥[Â(t), B̂]∥
∥Â∥∥B̂∥

≤ ϵAB(t) , (4.3)

where

∥Θ̂∥ := max
|ψ⟩

∥Θ̂|ψ⟩∥ , (4.4)

represents the standard operator norm, and where given

Û(t) := exp
[
−iĤt

]
, (4.5)

the unitary operator associated with the network Hamiltonian (4.2) (ℏ = 1),

Â(t) := Û †(t)ÂÛ(t) , (4.6)

is the evolved counterpart of Â in the Heisenberg representation. According to the
LR analysis, the quantity ϵAB(t) appearing on the r.h.s. of (4.3) exhibits an explicit
dependence upon the coupling strengths but is independent of the actual state of the
network τ̂ABC . Most importantly it depends upon t via its absolute value |t|, and tends
to zero when this parameter is small and/or d(A,B) is large enough, pointing out that
modifications on A sites require a certain time to affect the sector B when the two are
disjoint. In particular, as shown in Ref. [CG19], for finite range Hamiltonians admitting
D̄ such that ĤX = 0 whenever D(X) > D̄, we can express the LR quantity ϵAB(t) in the
following compact form

ϵAB(t) = 2|A||B|
(

2 e ζ D̄ |t|
d(A,B)

)d(A,B)
D̄

, (4.7)

where |X| is the total number of sites in the domain X ⊂ V , and where ζ is a finite,
positive constant characterizing the graph topology and the intensity of the couplings
(but not on the size of the graph). If instead the Hamiltonian is explicitly of long-range
couplings but sufficiently well behaved so that there exist µ, s positive constants such
that supx∈V

∑
X∋x

|X| ∥ĤX∥eµ2D(X) ≤ s (exponential decay), or supx∈V
∑
X∋x

|X| ∥ĤX∥[1 +

D(X)]µ ≤ s (power-law decay), then Eq. (4.7) gets replaced by

ϵAB(t) = C|A||B|(ev|t| − 1)e−µd(A,B) , (4.8)

in the first case, and by

ϵAB(t) = C|A||B| ev|t| − 1
(1 + d(A,B))µ , (4.9)

in the second case, v and C being positive constants that again depend upon the metric of
the network and on the Hamiltonian, but do not scale with the size of the model [HK06,
NS06].
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4.2.1 SNC channels

Without loss of generality we can describe the perturbation induced by Alice on the
network in an effort to communicate with Bob as a Linear, Completely Positive, Trace
preserving (LCPT) [Cho75, Hol19, Wil17, NC10] encoding map EQA which at time t = 0
locally couples the portion A of N with an external memory element Q that stores the
information she wants Bob to receive, see Fig. 4.1. Specifically, indicating with τ̂ABC the
initial state of the network we have

ρ̂Q → EQA[ρ̂Q ⊗ τ̂ABC ] := (EQA ⊗ IBC)[ρ̂Q ⊗ τ̂ABC ] , (4.10)

where IBC represents the identity superoperator on the BC domains. Once introduced
into the system, the perturbation (4.10) propagates freely for a transferring time t along
the spin-network, i.e.

EQA[ρ̂Q ⊗ τ̂ABC ] −→ Û(t)EQA[ρ̂Q ⊗ τ̂ABC ]Û †(t) , (4.11)

with Û(t) being the unitary transformation (4.5) defining the dynamics of N . Bob on
his sites will have hence the possibility of perceiving it as a modification of the reduced
density matrix of the portion of spin-network he controls, i.e.

ρ̂B(t) = Φ[ρ̂Q] := TrQAC
(
Û(t)EQA[ρ̂Q ⊗ τ̂ABC ]Û †(t)

)
= TrAC

(
Û(t)EA[τ̂ABC ]Û †(t)

)
, (4.12)

where in the second line we used the fact that Û(t) does not operate on Q, to introduce
the LCPT mapping locally acting on A

τ̂ABC → EA[τ̂ABC ] := TrQ
(
EQA[ρ̂Q ⊗ τ̂ABC ]

)
, (4.13)

that depends on the selected message ρ̂Q and encoding operation EQA.
Equation (4.12) defines the SNC channel Φ connecting Alice’s quantum memory Q

to Bob’s location. By construction it is explicitly LCPT and besides the properties of
the network (namely its Hamiltonian Ĥ and its input state τ̂ABC) and the propagation
time t, it explicitly depends upon Alice’s choice of the encoding transformation EQA. A
trivial option is represented for instance by the case where EQA is the identity mapping
IQA: under this assumption no information is transferred from Q either to the A or to
the B portion of the network, leading (4.12) to coincide with the replacement map Φ(0)

RP

defined by the identity

Φ(0)
RP [ρ̂Q] := ρ̂

(0)
B (t) Tr[ρ̂Q] , (4.14)

where

ρ̂
(0)
B (t) := TrAC [Û(t)τ̂ABCÛ †(t)] , (4.15)

is the state Bob would have received if Alice decided not to perturb her spins at time
t = 0. Identifying instead EQA with a control gate activated by different choices of ρ̂Q,
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we can force EA to belong to a generic list {E(α)
A }α of possible operations, each associated

with a classical symbol labeled by the index α. With this choice the scheme (4.12) induces
the mapping

α −→ ρ̂
(α)
B (t) := TrAC

(
Û(t)E(α)

A [τ̂ABC ]Û †(t)
)
, (4.16)

that corresponds to the signaling strategy analysed in Ref. [BHV06] to allow the trans-
ferring of classical messages from A to B. On the contrary, by identifying Q with a
memory element QA that is isomorphic with A and taking EQA to be a unitary swap
gate, Eq. (4.13) reduces to

τ̂ABC → ρ̂A ⊗ τ̂BC , (4.17)

with ρ̂A being the isomorphic copy of ρ̂QA
on A and τ̂BC := TrA[τ̂ABC ] being the reduced

state of the BC domains obtained by tracing away A from the input τ̂ABC . Accordingly,
under this construction the SNC channel (4.12) becomes

ΦSW [ρ̂QA
] = TrAC

(
Û(t)[ρ̂A ⊗ τ̂BC ]Û †(t)

)
, (4.18)

which represents the swap-in/swap-out spin-network communication strategy extensively
studied in the literature (see e.g. Refs. [Bos03, Bos07, CDEL04, CVDC03, BGB07,
EPBH04, PHE04, HRP06, GB06]) that, at least in principle, is capable to convey both
classical and quantum messages.

Of course, Eqs. (4.14), (4.16), and (4.18) are just three examples out of a large
(possibly infinite) set of possible maps (4.12) that we can realize for fixed τ̂ , Ĥ and t, by
using different choices of the mapping EQA. Determining what is the optimal option in
terms of communication efficiency is a rather complex problem which arguably depends
upon the property of the network, the value of transferring time t, the relative distance of
the locations A and B, as well as upon the kind of messages (classical, private classical,
quantum, etc.) one wishes to transfer. Our aim is to show that however, irrespectively
of the freedom to select the encoding EQA, the LR inequality (4.3) poses a fundamental
limitation on the resulting communication efficiency.

4.3 Distance of the received message from the non-signaling
state

To determine the amount of information that can be effectively retrieved by Bob at the
end of the transmission (4.12) associated with an arbitrary coding strategy EQA, we have
to compute the distance between the SNC channel Φ and the replacement channel Φ(0)

RP

of Eq. (4.14) associated with the non-signaling protocol. Specifically in Sec. 4.3.1 we
first analyze the induced trace-norm distance [Wat18] between Φ and Φ(0)

RP showing that
irrespectively of the choice of EQA we get the inequality

∥Φ − Φ(0)
RP ∥1 ≤ M2

A ϵAB(t) , (4.19)

where MA is the dimension of the Hilbert space associated with the spins of the domain
A under Alice’s control and where ϵAB(t) is the LR quantity appearing on the r.h.s. of
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Eq. (4.3). Equation (4.19) is a clear indication that for small enough values of t and/or
large enough values of d(A,B), the spin-network channel performances are close to the
non-signaling regime, irrespectively of the initial state τ̂ABC of the network and from the
encoding procedure EQA selected by Alice. In particular from Eq. (75) of Ref. [Shi17] it is
possible to use Eq. (4.19) to bound the value of the Holevo information χ [Hol98, SW97],
defined in Eq. 3.19 in Sec. 3.3.1, associated with Φ as

χ(Φ) ≤ M2
A ϵAB(t)

2 log2MB + g(M
2
A ϵAB(t)

2 ) , (4.20)

where we exploited the fact that χ(Φ(0)
RP ) is trivially null (no information being transferred

via the replacement map) and where g(x) is a function that tends to zero as x → 0, defined
by the identities

g(x) := (1 + x)H2(x/(1 + x)) , (4.21)
H2(y) := −y log2 y − (1 − y) log2(1 − y) . (4.22)

Equation (4.20) generalizes an analogous result obtained in Ref. [BHV06] in the special
case of the classical-to-quantum encoding strategy (4.16). Extending this to all pos-
sible encodings and to the full set of communication capacities [HG12, Hol19, Wil17]
(i.e. the classical capacity C(Φ) [Hol98, SW97], the private capacity Cp(Φ) [Dev05],
the quantum capacity Q(Φ) [Dev05, Llo97, Sho02b], and the entanglement assisted ca-
pacity Cea(Φ) [BSST02, BSST99] of the map Φ), all defined in Sec. 3.3 requires how-
ever a little more effort. For this purpose in Sec. 4.3.2 we focus on the diamond dis-
tance [Kit97, KSVV02] between Φ and a slightly different version of the replacement
channel Φ(0)

RP , namely the channel

Φ(1)
DP [ρ̂Q] := ρ̂

(1)
B (t) Tr[ρ̂Q] , (4.23)

obtained by replacing in Eq. (4.14) the state ρ̂(0)
B (t) of (4.15) with the density matrix

ρ̂
(1)
B (t) := TrAC [Û(t)(τ̂A ⊗ τ̂BC)Û †(t)] , (4.24)

with τ̂A := TrBC [τ̂ABC ] and τ̂BC := TrA[τ̂ABC ] the reduced density matrices of the
sectors (A and BC respectively) of the input state of the network τ̂ABC . According to
our analysis we shall see that the following inequality holds

∥Φ − Φ(1)
DP ∥♢ ≤ M ϵAB(t) , (4.25)

where again ϵAB(t) is the LR quantity and where M is upper bounded by 2M4
A, specifi-

cally

M := 2 min{M4
A,M

3
AMBMC} . (4.26)

Notice that as for Eq. (4.19), the r.h.s. of this inequality involves only quantities that
ultimately just depend upon properties of the spin-network: specifically the distance
of the sectors A and B, the number of spins they contain, the transferring time t, the
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dimension of the Hilbert space of A. From the results of Leung and Smith [LS09] and the
subsequent improvement by Shirokov [Shi17] we can now turn Eq. (4.25) into a bound
for the communication capacities [HG12, Hol19, Wil17] of the map Φ in terms of the
corresponding ones associated with the replacement map Φ(1)

DP . Explicitly, observing
that by definition we have

χ(Φ(1)
DP ) = C(Φ(1)

DP ) = 0 ,

Cp(Φ(1)
DP ) = Q(Φ(1)

DP ) = 0 ,

Cea(Φ(1)
DP ) = 0 , (4.27)

equations (81) and (82) of Ref. [Shi17] lead us to

Q(Φ), C(Φ) ≤ M ϵAB(t) log2MB + g(M ϵAB(t)
2 ) , (4.28)

while Eq. (76) of Ref. [Shi17] to

Cea(Φ) ≤ M ϵAB(t) log2M
′ + g(M ϵAB(t)

2 ) , (4.29)

where M ′ is the minimum between the dimensions of A and B, i.e.

M ′ := min{MA,MB} . (4.30)

As a matter of fact the last of the inequalities presented above happens to be the strongest
of all: indeed due to the natural ordering among the capacities [BDSS06]

Cp(Φ) ≤ C(Φ) ≤ Cea(Φ) , Q(Φ) ≤ Cea(Φ)/2 , (4.31)

our final bounds read

Cp(Φ), C(Φ), Cea(Φ) ≤ M ϵAB(t) log2M
′ + g(M ϵAB(t)

2 ) , (4.32)

Q(Φ) ≤ M ϵAB(t)
2 log2M

′ + 1
2g(M ϵAB(t)

2 ) . (4.33)

4.3.1 Induced trace-norm distance

The induced trace distance between Φ of Eq. (4.12) and the replacement channel Φ(0)
RP of

Eq. (4.14) related to the non-signaling protocol is defined as

∥Φ − Φ(0)
RP ∥1 := 2 max

ρ̂Q

D(Φ(ρ̂Q),Φ(0)
RP (ρ̂Q)) , (4.34)

where the maximum is taken over the whole set of possible input states ρ̂Q of the mem-
ory Q, and D(Φ(ρ̂Q),Φ(0)

RP (ρ̂Q)) is the trace-distance [NC10] between the corresponding
output configurations ρ̂B(t) and ρ̂

(0)
B (t) of Φ and Φ(0)

RP . According to the Helstrom theo-
rem [Hol19, Wil17], D(Φ(ρ̂Q),Φ(0)

RP (ρ̂Q)) gauges the minimum error probability that one
can get trying to discriminate Φ(ρ̂Q) from Φ(0)

RP (ρ̂Q)), in particular it writes

D(Φ(ρ̂Q),Φ(0)
RP (ρ̂Q)) = D(ρ̂B(t), ρ̂(0)

B (t))

:= 1
2∥ρ̂B(t) − ρ̂

(0)
B (t)∥1 , (4.35)
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with ∥X̂∥1 := Tr[
√
X̂†X̂] being the trace-norm of the operator X̂, not to be confused

with the operator norm introduced in Eq. (4.4). A useful way to express (4.35) is

D(ρ̂B(t), ρ̂(0)
B (t)) = max

Θ̂B

∣∣∣TrB
[
Θ̂B(ρ̂B(t) − ρ̂

(0)
B (t))

]∣∣∣ , (4.36)

where the maximum can be taken either over the set of positive operators 1̂B ≥ Θ̂B ≥ 0,
or, equivalently, on the set of operators Θ̂B = V̂B/2 with V̂B being a unitary operator
acting locally on the spins of the domain B (in what follows we’ll find more convenient the
latter option). Introducing the operator Θ̂B(t) := Û †(t)Θ̂BÛ(t) and using Eqs. (4.11),
(4.12), and (4.15) we can then write

D(ρ̂B(t), ρ̂(0)
B (t)) = max

Θ̂B

∣∣∣Tr
[
Θ̂B(t) (EA[τ̂ABC ] − τ̂ABC)

]∣∣∣
= max

Θ̂B

∣∣∣∣∣
K∑
k=1

Tr
[
M̂ †
kΘ̂B(t)M̂kτ̂ABC − Θ̂B(t)M̂ †

kM̂kτ̂ABC
]∣∣∣∣∣

= max
Θ̂B

∣∣∣∣∣
K∑
k=1

Tr
[
[M̂ †

k , Θ̂B(t)] M̂k τ̂ABC
]∣∣∣∣∣ ,

where {M̂k; k = 1, · · · ,K} are a Kraus set of local operators on A which represents the
action of the LCPT map EA, i.e.

EA[· · · ] =
K∑
k=1

M̂k[· · · ]M̂ †
k ,

K∑
k=1

M̂ †
kM̂k = 1̂ . (4.37)

Now bounding the expectation value of [M̂ †
k , Θ̂B(t)]M̂k over τ̂ABC with the associated

operator norm (4.4), exploiting the triangular inequality we obtain

D(ρ̂B(t), ρ̂(0)
B (t)) ≤ max

Θ̂B

K∑
k

∥[M̂ †
k , Θ̂B(t)]∥∥M̂k∥ , (4.38)

Observe that by unitary equivalence of the norm we have ∥[M̂ †
k , Θ̂B(t)]∥ = ∥[M̂ †

k(−t), Θ̂B]∥
where now M̂ †

k(t) = Û †(t)M̂ †
kÛ(t) is the time evolved version of the local operator M̂ †

k of
A under the action of the network Hamiltonian. Accordingly we can use (4.3) and (4.7)
to write

∥[M̂ †
k , Θ̂B(t)]∥ ≤ ∥M̂ †

k∥∥Θ̂B∥ϵAB(t) ≤ ϵAB(t)/2 , (4.39)

where we used the fact that

∥M̂ †
k∥ = ∥M̂k∥ =

√
∥M̂ †

kM̂k∥ ≤ 1 , (4.40)

due to the normalization condition of the Kraus elements, and ∥Θ̂B∥ = ∥V̂B/2∥ ≤ 1/2.
Replacing this into the bound on D(ρ̂B(t), ρ̂(0)

B (t)) we hence can write

D(ρ̂B(t), ρ̂(0)
B (t)) ≤ (K/2) ϵAB(t) , (4.41)
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with the r.h.s. that depends upon the specific choice of the encoding channel EA only
via the total number K of Kraus elements that enter the decomposition (4.37). In case
we restrict Alice to adopt only unitary encodings, this yields K = 1. Alternatively, if we
allow for arbitrary LCPT operations EA on A, i.e. arbitrary LCPT operations EQA on
Q and A, an universal bound can be established by reminding that, irrespectively of the
choice of EA it is always possible to have a Kraus set with at most K = M2

A [Cho75].
This leads to

D(ρ̂B(t), ρ̂(0)
B (t)) ≤ (M2

A/2) ϵAB(t) , (4.42)

and hence to Eq. (4.19) via Eq. (4.34) exploiting the fact that the r.h.s. of Eq. (4.42)
holds true for all possible choices of the input ρ̂Q.

4.3.2 Diamond norm distance

The diamond-distance [Kit97, KSVV02] between two channels Φ and Φ′ connecting Q to
B is defined as

∥Φ − Φ′∥♢ = max
|ψ⟩QQ′

∥(Φ ⊗ I − Φ′ ⊗ I)(|ψ⟩QQ′⟨ψ|)∥1 , (4.43)

where the maximization now is performed for extensions Φ ⊗ I and Φ′ ⊗ I of the orig-
inal channels involving purifications |ψ⟩QQ′ of the possible inputs of Q constructed on
an ancillary system Q′ that is isomorphic to Q. A naive way to bound this quantity
would be given by using the natural ordering with the induced trace-norm distance (see
Appendix 4.5), according to which one has

∥Φ − Φ′∥1 ≤ ∥Φ − Φ′∥♢ ≤ 2MQ∥Φ − Φ′∥1 , (4.44)

with MQ being the dimension of Alice’s memory Q. Applying this to the maps Φ,
associated with a generic encoding EQA, and to the replacement channel Φ(0)

RP of Eq. (4.14)
yields

∥Φ − Φ(0)
RP ∥♢ ≤ 2MQ∥Φ − Φ(0)

RP ∥1 ≤ 2MQM
2
AϵAB(t) , (4.45)

where in writing the last term we invoked the bound (4.19). In many cases of physical
interest where MQ is directly linked to the dimensionality of A, Eq. (4.45) is sufficiently
strong for our purposes. For instance this happens for the swap-in/swap-out coding map
ΦSW of Eq. (4.18), where by construction the memory element is isomorphic to A, i.e.
MQA

= MA. Accordingly, in this case Eq. (4.45) leads to

∥ΦSW − Φ(0)
RP ∥♢ ≤ 2M3

AϵAB(t) , (4.46)

which can be used to replace (4.25) in our study of the channel capacities reported at
the beginning of Sec. 4.3. For a generic choice of EQA however, the presence of MQ on
the r.h.s. of Eq. (4.45) poses a severe limitation to this inequality as the dimension of
Q is not a property of the spin-network model and can in principle assume unbounded
values. To deal with this problem we now consider the diamond norm

∥Φ − Φ(1)
RP ∥♢ = max

|ψ⟩QQ′
∥(Φ ⊗ I − Φ(1)

RP ⊗ I)(|ψ⟩QQ′⟨ψ|)∥1 , (4.47)
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between the map Φ associated with the encoding operation EQA and the replacement
map Φ(1)

DP defined in Eq. (4.23). Notice that the actions of Φ and Φ(1)
DP can be expressed

as a concatenation of two processes, i.e.

Φ[· · · ] = Ψ ◦ E [· · · ] , (4.48)
Φ(1)
DP [· · · ] = Ψ(1)

DP ◦ E [· · · ] , (4.49)

where

E [· · · ] := TrQ[EQA[· · · ⊗ τ̂ABC ]] , (4.50)

is a LCPT channel from Q to ABC and where

Ψ[· · · ] := TrAC
[
Û(t)[· · · ]Û †(t)

]
, (4.51)

Ψ(1)
DP [· · · ] := TrAC

[
Û(t) (τ̂A ⊗ TrA[· · · ]) Û †(t)

]
,

(4.52)

are instead LCPT transformations operating from ABC to B which do not depend upon
the special choice of EQA.

Consider first the case where the input state τ̂ABC of the network N is a pure vector
|τ⟩ABC . For a generic choice of the pure states |ψ⟩QQ′ of QQ′ entering the maximiza-
tion (4.47), we have that globally the QQ′ABC system is described by the product
vector |ψ, τ⟩QQ′ABC := |ψ⟩QQ′ |τ⟩ABC , which, after a Schmidt decomposition of |ψ⟩QQ′

and |τ⟩ABC along the partitions Q,Q′ and A,BC respectively, can be written as

|ψ, τ⟩QQ′ABC =
r∑
i=1

s∑
j=1

√
αiβj |ψi, ψi, τj , τj⟩Q′QABC ,

|ψi, ψi, τj , τj⟩Q′QABC := |ψi⟩Q′ |ψi⟩Q |τj⟩A |τj⟩BC ,
(4.53)

with r ≤ MQ and s ≤ min{MA,MBMC} with |ψi⟩Q/Q′ and |τj⟩A/BC forming an orthog-
onal set of pure states of their respective systems. Completing hence |ψi⟩Q to a basis of
Q, we then define the vectors

∣∣∣λ̃ℓ,q〉
Q′ABC

:=
r∑
i=1

s∑
j=1

√
αiβj |ψi⟩Q′ |χℓ,q,i,j⟩A |τj⟩BC , (4.54)

where

|χℓ,q,i,j⟩A := Q ⟨ψq|N̂ℓ |ψi, τj⟩QA , (4.55)

and where N̂ℓ are the Kraus operators associated with the channel EQA

EQA[· · · ] =
L∑
ℓ=1

N̂ℓ[· · · ]N̂ †
ℓ ,

L∑
ℓ=1

N̂ †
ℓ N̂ℓ = 1̂ , (4.56)
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with L which can be always chosen to be smaller than M2
QM

2
A. Upon normalization

Eq. (4.54) gives the pure states

|λℓ,q⟩Q′ABC := |λ̃ℓ,q⟩Q′ABC/gℓ,q , (4.57)

the norms gℓ,q := ∥|λ̃ℓ,q⟩Q′ABC∥ satisfying the constraint

L∑
ℓ=1

MQ∑
q=1

g2
ℓ,q = 1. (4.58)

Notice that since terms (4.55) are elements of the Hilbert space of HA, it follows that
for each given q and ℓ, when varying indexes i, j, vectors |χℓ,q,i,j⟩A |τj⟩BC span a space
of dimension not larger than

M∗ := MA × min{MA,MBMC}
= min{M2

A,MAMBMC} . (4.59)

Accordingly this number also bounds the maximum number of non-zero terms entering
the Schmidt decomposition of |λℓ,q⟩Q′ABC along the partition Q′, ABC, i.e.

|λℓ,q⟩ =
M∗∑
m=1

√
γm|m⟩Q′ |m⟩ABC , (4.60)

for a proper choice of orthogonal sets of vectors |m⟩Q′ and |m⟩ABC . Exploiting the above
identities the state of Q′BC after the encoding stage through the mapping Eq. (4.50)
can be casted in the following form

E ⊗ I
[

|ψ, τ⟩ ⟨ψ, τ |
]

=
L∑
ℓ=1

MQ∑
q=1

g2
ℓ,q |λℓ,q⟩ ⟨λℓ,q| , (4.61)

where for ease of notation we set |ψ, τ⟩ := |ψ, τ⟩QQ′ABC and |λℓ,q⟩ := |λℓ,q⟩Q′ABC . From
(4.48) and (4.49) we hence get

∥(Φ ⊗ I − Φ(1)
DP ⊗ I)[|ψ⟩QQ′ ⟨ψ|]∥1 (4.62)

= ∥
L∑
ℓ=1

MQ∑
q=1

g2
ℓ,q(Ψ ⊗ I − Ψ(1)

DP ⊗ I)[|λℓ,q⟩ ⟨λℓ,q|]∥1

≤
L∑
ℓ=1

MQ∑
q=1

g2
ℓ,q∥(Ψ ⊗ I − Ψ(1)

DP ⊗ I)[|λℓ,q⟩ ⟨λℓ,q|]∥1,

the last inequality deriving from Eq. (4.58) by convexity of the trace-norm. Remember
now that each one of the vectors |λℓ,q⟩ has Schmidt rank smaller than M∗ as indicated
in Eq. (4.60). Therefore, being the following steps identical to those in Appendix 4.5 we
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get

∥(Ψ ⊗ I − Ψ(1)
DP ⊗ I)[|λℓ,q⟩ ⟨λℓ,q|]∥1 (4.63)

≤
M∗∑

m,m′=1

√
γmγm′

∥∥∥(Ψ − Ψ(1)
DP )[|m⟩

〈
m′∣∣] ⊗ |m⟩

〈
m′∣∣ ∥∥∥

1

=
M∗∑

m,m′=1

√
γmγm′∥(Ψ − Ψ(1)

DP )[|m⟩
〈
m′∣∣]∥1

≤ 2M∗∥Ψ − Ψ(1)
DP ∥1 , (4.64)

with ∥Ψ−Ψ(1)
DP ∥1 being the induced trace-distance between Ψ and Ψ(1)

DP , i.e. the quantity

∥Ψ − Ψ(1)
DP ∥1 := max

τ̂ ′
ABC

∥(Ψ − Ψ(1)
DP )[τ̂ ′

ABC ]∥1 . (4.65)

A crucial observation now is that, indicating with QA Alice’s memory which is isometric
to A, for all τ̂ ′

ABC we can write

Ψ[τ̂ ′
ABC ] = TrAC [Û(t)τ̂ ′

ABCÛ
†(t)] = Φ′

DP [τ̂QA
] ,

Ψ(1)
DP [τ̂ ′

ABC ] = Φ′
SW [τ̂QA

] , (4.66)

where τ̂QA
represents the copy of τ̂A on QA, while Φ′

DP and Φ′
SW are respectively the

non-signaling and the swap-in/swap-out channels associated with the input state τ̂ ′
ABC

of the network. Hence invoking (4.19) we can write

∥(Ψ − Ψ(1)
DP )[τ̂ ′

ABC ]∥1 = ∥(Φ′
DP − Φ′)[τ̂QA

]∥1 (4.67)
≤ ∥Φ′

DP − Φ′∥1 ≤ M2
A ϵAB(t) ,

which, by reminding that ϵAB(t) does not depend upon the initial state of the spin-
network, gives

∥Ψ − Ψ(1)
DP ∥1 ≤ M2

A ϵAB(t) . (4.68)

Accordingly from Eq. (4.65) and (4.62) we have

∥(Φ ⊗ I − Φ(1)
DP ⊗ I)[|ψ⟩QQ′ ⟨ψ|]∥1 ≤ 2M∗M

2
A ϵAB(t) , (4.69)

for all |ψ⟩QQ′ , which replaced into Eq. (4.47) leads to

∥Φ − Φ(1)
DP ∥♢ ≤ 2M∗M

2
A ϵAB(t) , (4.70)

hence proving Eq. (4.25).
The above argument can be also used to deal with the case where the initial state of

the network τ̂ABC is not pure. Indeed, by writing it as a convex sum over a set of pure
states

τ̂ABC =
∑
i

pi |τi⟩ABC ⟨τi| , (4.71)
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equation (4.61) gets replaced by

E ⊗ I
[

|ψ⟩ ⟨ψ| ⊗ τ̂ABC
]

=
∑
i

L∑
ℓ=1

MQ∑
q=1

pi
(
g

(i)
ℓ,q

)2 ∣∣∣λ(i)
ℓ,q

〉〈
λ

(i)
ℓ,q

∣∣∣ , (4.72)

with g(i)
ℓ,q and

∣∣∣λ(i)
ℓ,q

〉
being associated with the i-th pure vector |τi⟩ABC entering Eq. (4.71)

via the construction detailed in Eqs. (4.53-4.57). Consequently we can still invoke con-
vexity to arrive at

∥(Φ ⊗ I − Φ(1)
DP ⊗ I)[|ψ⟩QQ′ ⟨ψ|]∥1 (4.73)

≤
∑
i

L∑
ℓ=1

MQ∑
q=1

pi
(
g

(i)
ℓ,q

)2
∥(Ψ ⊗ I − Ψ(1)

DP ⊗ I)[|λ(i)
ℓ,q⟩⟨λ

(i)
ℓ,q|]∥1,

that formally replaces (4.62). From here we can exploit the same steps reported in
Eqs. (4.63-4.70).

4.4 Conclusions

We propose a study of a broad set of information capacities associated with spin-networks
employed as means of communication. In our analysis we considered as a quantum chan-
nel Φ a generic spin-network in a generic initial state equipped with an encoding repre-
sented by a local LCTP map, which results to be more general with respect to specific
solutions adopted previously in the literature. Here we made use of the tools offered
by the diamond norm and we exploited established results such as the Lieb-Robinson
bound [LR72], which describes how correlations spread in spin systems, and Fannes in-
equality [Fan73], which states continuity properties of the Von Neumann entropy. We
were able in such a way to upper bound the whole set of quantum capacities of the map Φ.
Possible extensions of our work should include the presence of memory effects [CGLM14]
in the information transferring which may arise when allowing Alice to perform sequences
of encoding operations during the time it takes for one of them to reach Bob’s location.

4.5 Appendix: Bounds on the diamond norm

The lower bound in Eq. (4.44) is a direct consequence of the definition of the diamond
norm [Kit97, KSVV02, Wat18]. To prove the upper bound of (4.44) let us observe that
introducing the Schmidt decomposition of the state |ψ⟩ of Q and Q′, |ψ⟩ :=

∑MQ

j=1 λj |j⟩⊗
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|j⟩, we can write

2D
(
(Φ ⊗ I)(|ψ⟩⟨ψ|), (Φ(0)

RP ⊗ I)(|ψ⟩⟨ψ|)
)

= ∥
MA∑
j,j′=1

λjλj′(Φ − Φ(0)
RP )[|j⟩⟨j′|] ⊗ |j⟩⟨j′|∥1

≤
MA∑
j,j′=1

λjλj′∥(Φ − Φ(0)
RP )[|j⟩⟨j′|] ⊗ |j⟩⟨j′|∥1

≤
MA∑
j,j′=1

λjλj′∥(Φ − Φ(0)
RP )[|j⟩⟨j′|]∥1

≤ 2∥Φ − Φ(0)
RP ∥1

(MA∑
j=1

λj
)2 ≤ 2MA∥Φ − Φ(0)

RP ∥1 ,

(4.74)

where first we used the convexity of the trace-distance, then the fact that for all |j⟩, |j′⟩
we have

∥(Φ − Φ(0)
RP )[|j⟩⟨j′|]∥1 ≤ 2∥Φ − Φ(0)

RP ∥1 , (4.75)

and finally the Chauchy-Schwarz inequality and the normalization condition for the
Schmidt coefficients. Replacing hence (4.74) into (4.43), Eq. (4.44) finally follows.
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Multi-level amplitude damping channels, a

capacity analysis

Preface
What follows is based on the published paper [CG21b]:

• S. Chessa, V. Giovannetti, Quantum capacity analysis of multi-level amplitude
damping channels, Comm. Phys. 4, 22 (2021).

In this chapter we’ll introduce Multi-level amplitude damping (MAD) channels. Con-
cerning qubits, the analysis of noise models was carried out relatively quickly at the early
stages of Quantum Information. This is no surprise, firstly since qubits are simpler and
more accessible with respect to systems with more degrees of freedom, secondly because
from a practical point of view they represented the only realistic experimental testbed
for actual physical implementations. Nowadays though the thought of controlling qutrits
or ququarts (and other dimensionalities) it’s not anymore unrealistic. With our work we
filled then a gap in the characterization of noise models in non-qubit systems with an
immediate and intuitive generalization of the qubit amplitude damping channel. This
kind of noise model may be more suited for the flying qubit (qudit in this case) scenario
described in Chapter 2, Sec. 2.2 but as was shown in [GF05] the amplitude damping
channel can emerge also in spin-chains, so it can model phenomena also in the static
model of quantum communication infrastructures.

45
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5.1 Introduction

In this Chapter we will focus on the specific and well known model for quantum noise
given by the amplitude damping channel (ADC). While the ADC has been thoroughly
studied and characterized, in terms of capacities in various settings, for the qubit frame-
work [GF05, DBFM13, JAT15, DBFM15], a general treatise for qudit (d-dimensional)
systems is still missing and likely not possible to attain. Because of these reasons ADC
for d > 2 has to be approached case by case, and the literature regarding capaci-
ties of fixed finite dimensions ADC is still remarkably short [DBFM15, Ouy14, MS19].
Our interest in the topic is due to the fact that higher dimensional systems have at-
tracted the attention of a growing number of researchers in recent years, since they
have been shown to provide potential advantages both in terms of computation (see
e.g. [MS00, LBA+09, RRG07, ITV12, GSÇ+15, KNX+20]) and communication or error
correction (see e.g. [CDLBO19, LYGG08, GBDG+14, MZL+17]) together with the fact
that more experimental implementations have been progressively made available (see e.g.
[LNG+11, NJDH+13, MMP+15, BEW+17, KRR+17, MPGB+18, GPE+19, SBG+20]).
Among non-qubit systems, three-dimensional systems (qutrit) have received particular
consideration because of their relative accessibility both theoretically and experimen-
tally (see e.g. [BM02, KGRS03, KOC+03, BČF+06, LWL+08, BRS17, SZS+18, LZE+19,
BKL+19, LYF13]). In addition to that, new results on the quantum capacity of finite
dimensional channels can also be applied to higher dimensional maps via the Partially
Coherent Direct Sum (PCDS) channels approach [CG21a], placing in a wider context the
efforts dedicated to the analysis of non-qubit channels. Considering this, we will start
a first systematic analysis of the ADC on the qutrit space: while we will not approach
the issue of the classical capacity of the channel, we will focus on the quantum capacity,
private classical capacity and entanglement assisted capacities, trying to understand in
which conditions these quantities can be known.

The Chapter is structured as follows. In Sec. 5.2 we introduce the model and notations
we used for the qutrit MAD. In Sec. 5.3 we proceed to the study of the quantum capacity
and private classical capacity of the qutrit MAD in various configurations. In Sec. 5.4 we
repeat the same analysis for the entanglement assisted quantum and classical capacities.

5.2 Settings

The transformations we focus on in the present work are special instances of the multi-
level versions of the qubit ADC [GF05], hereafter indicated as MAD channels in brief,
which effectively describe the decaying of energy levels of a d-dimensional quantum system
A. In its most general form, given {|i⟩}i=0,··· ,d−1 an orthonormal basis of the Hilbert space
HA associated with A (hereafter dubbed the computational basis of the problem), a MAD
channel D is a Completely Positive Trace Preserving (CPTP) mapping [Hol19, Wil17,
Wat18, HG12, NC10, GIN18] acting on the set L(HA) of linear operators of the system,
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defined by the following set of d(d− 1)/2 + 1 Kraus operators

K̂ij ≡ √
γji |i⟩⟨j| , ∀ i, j s.t. 0 ≤ i < j ≤ d− 1,

K̂0 ≡ |0⟩⟨0| +
∑

1≤j≤d−1

√
1 − ξj |j⟩⟨j| , (5.1)

with γji real quantities describing the decay rate from the j-th to the i-th level that fulfill
the conditions 

0 ≤ γji ≤ 1 , ∀ i, j s.t. 0 ≤ i < j ≤ d− 1,

ξj ≡
∑

0≤i<j
γji ≤ 1 , ∀j = 1, · · · , d− 1 .

(5.2)

Accordingly, given ρ̂ ∈ S(HA) a generic density matrix of the system A, the MAD

A

BC

D

EF
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a)

b)

Figure 5.1: Top panel: schematic representation of the action of the MAD channel
Dγ⃗ on a 3-level system. Bottom panel: the admitted region of the damping parameters
space: the transformation is CPTP if and only if the rate vector γ⃗ belongs to the yellow
region defined in Eq. (5.6).
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channel D will transform it into the output state defined as

D(ρ̂) = K̂0ρ̂K̂
†
0 +

∑
0≤i<j≤d−1

K̂ij ρ̂K̂
†
ij ,

= K̂0ρ̂K̂
†
0 +

∑
0≤i<j≤d−1

γji|i⟩⟨i| ⟨j|ρ̂|j⟩ . (5.3)

By construction D always admits the ground state |0⟩ as a fixed point, i.e. D(|0⟩⟨0|) =
|0⟩⟨0|, even though, depending on the specific values of the coefficients γji, other input
states may fulfill the same property as well. Limit cases are γji = 0 ∀ i, j, where all
levels are untouched and D reduces to the noiseless identity channel Id which preserves
all the input states of A. On the opposite extreme are those examples in which for some
j we have ξj = 1, corresponding to the scenario where the j-th level becomes totally
depopulated at the end of the transformation. The maps (5.3) provide also a natural
playground to describe Partially Coherent Direct Sum (PCDS) channels [CG21a]. Last
but not the least, an important and easy to verify property of the maps (5.3) is that
they are covariant under the group formed by the unitary transformations Û which are
diagonal in the computational basis {|i⟩}i=0,··· ,d−1, i.e.

D(Û ρ̂Û †) = ÛD(ρ̂)Û † , (5.4)

for all inputs ρ̂.
For what concerns the present work, we shall restrict our analysis to the special set

of MAD channels (5.3) associated with a qutrit system (d = 3) whose decay processes,
pictured in the top panel of Fig. 5.1, are fully characterized by only three rate parameters
γji that for the ease of notation we rename with the cartesian components of a 3D vector
γ⃗ ≡ (γ1, γ2, γ3). Accordingly, expressed in terms of the matrix representation induced by
the computational basis {|0⟩, |1⟩, |2⟩}, the Kraus operators (5.1) write explicitly as

K̂0 =

1 0 0
0

√
1 − γ1 0

0 0
√

1 − γ2 − γ3

 , K̂01 =

0 √
γ1 0

0 0 0
0 0 0

,
K̂12 =

0 0 0
0 0 √

γ2
0 0 0

 , K̂03 =

0 0 √
γ3

0 0 0
0 0 0

,
(5.5)

with CPTP conditions (5.2) given by
0 ≤ γj ≤ 1 , ∀j = 1, 2, 3 ,

γ2 + γ3 ≤ 1 ,
(5.6)

which produce the volume visualized in the bottom panel of Fig. 5.1.
The resulting mapping (5.3) for the channel D(γ1,γ2,γ3) reduces hence to the following

expression

Dγ⃗(ρ̂) =

ρ00 + γ1ρ11 + γ3ρ22
√

1 − γ1ρ01
√

1 − γ2 − γ3ρ02√
1 − γ1ρ

∗
01 (1 − γ1)ρ11 + γ2ρ22

√
1 − γ1

√
1 − γ2 − γ3ρ12√

1 − γ2 − γ3ρ
∗
02

√
1 − γ1

√
1 − γ2 − γ3ρ

∗
12 (1 − γ2 − γ3)ρ22

 ,
(5.7)
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while the associated complementary CPTP transformation [Hol19, Wil17, Wat18,
HG12] computed as in Eq. (B.5) of Appendix B.1, for generic choices of the system
parameters, transforms A into a 4-dimensional state via the mapping

D̃γ⃗(ρ̂) =


ρ00 + (1 − γ1)ρ11 + (1 − γ2 − γ3)ρ22

√
γ1ρ01

√
1 − γ1

√
γ2ρ12

√
γ3ρ02√

γ1ρ
∗
01 γ1ρ11 0 √

γ1
√
γ3ρ12√

1 − γ1
√
γ2ρ

∗
12 0 γ2ρ22 0√

γ3ρ
∗
02

√
γ1

√
γ3ρ

∗
12 0 γ3ρ22

 ,

(5.8)
where for i, j ∈ 0, 1, 2, ρij ≡ ⟨i|ρ̂|j⟩ are the matrix entries of the input density operator

ρ̂ ∈ S(HA).

5.2.1 Composition rules

It is relatively easy to verify that the set of qutrit MAD channels (5.7) is close under
concatenation. Specifically we notice that given Dγ⃗′ and Dγ⃗′′ with γ⃗′′ = (γ′′

1 , γ
′′
2 , γ

′′
3 ) and

γ⃗′ = (γ′
1, γ

′
2, γ

′
3) two rate vectors fulfilling the conditions (5.6), we have

Dγ⃗′ ◦ Dγ⃗′′ = Dγ⃗ , (5.9)

with γ⃗ = (γ1, γ2, γ3) a new rate vector of components
γ1 = γ′′

1 + γ′
1 − γ′

1γ
′′
1 ,

γ2 = γ′′
2 (1 − γ′

1 − γ′
2) + γ′

2(1 − γ′′
3 ) ,

γ3 = γ′′
3 + γ′′

2 (γ′
1 − γ′

3) + γ′
3(1 − γ′′

3 ) .
(5.10)

which also satisfies (5.6) (hereafter we shall use the symbol “◦" to represent super-operator
composition). The importance of Eq. (5.9) for the problem we are facing stems from
channel data-processing inequalities (or bottleneck) inequalities [Key02, KSW20, NC10],
according to which, any information capacity functional Γ [HG12] such as the quantum
capacity Q, the classical capacity C, the private classical capacity Cp, the entanglement
assisted classical capacity Cea etc., computed for a CPTP map Φ = Φ′ ◦ Φ′′ obtained by
concatenating channel Φ′ with channel Φ′′, must fulfill the following relation

Γ(Φ) ≤ min{Γ(Φ′),Γ(Φ′′)} . (5.11)

Applied to Eq. (5.9), the above inequality can be used to predict monotonic behaviors
for the capacity Γ(Dγ⃗) as a function of the rate vector γ⃗, that allows us to provide useful
lower and upper bounds which in some case permit to extend the capacity formula to
domain where other techniques (e.g. degradability analysis) fail. In particular we notice
that for single-decay MAD channels where only one component of the rate vector is
different from zero (say γ1) we get

D(γ′
1,0,0) ◦ D(γ′′

1 ,0,0) = D(γ′′
1 ,0,0) ◦ D(γ′

1,0,0) = D(γ1,0,0) , (5.12)

with γ1 as in the first identity of Eq. (5.10). Accordingly we can conclude that all the
capacities Γ(D(γ1,0,0)) should be non increasing functionals of the parameter γ1, i.e.

Γ(D(γ1,0,0)) ≥ Γ(D(γ′
1,0,0)), ∀γ1 ≤ γ′

1 , (5.13)
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(the same expressions and conclusions apply also for D(0,γ2,0) and D(0,0,γ3)). Composing
single-decay MAD channels characterized by rate vectors pointing along different carte-
sian axis, in general creates maps with higher rank of the resulting vector rate. Specifically
from Eq. (5.9) it follows that, for an arbitrary choice of the rate vector γ⃗ = (γ1, γ2, γ3)
in the allowed CPTP domain the MAD channel D(γ1,γ2,γ3) can be expressed as

D(γ1,γ2,γ3) = D(0,0,γ̄3) ◦ D(0,γ2,0) ◦ D(γ1,0,0) (5.14)
= D(0,γ̄2,0) ◦ D(0,0,γ3) ◦ D(γ1,0,0) , (5.15)

with

γ̄3 ≡ γ3
1 − γ2

, γ̄2 ≡ γ2
1 − γ3

, (5.16)

which because of the constraint (5.6) are properly defined rates. As a direct consequence
of Eqs. (5.11) and (5.12) it then follows that the capacities Γ(D(γ1,γ2,γ3)) must be non-
increasing functionals of all the cartesian components of rate vector γ⃗, i.e.

Γ(D(γ1,γ2,γ3)) ≥ Γ(D(γ′
1,γ

′
2,γ

′
3)), ∀γ′

i ≥ γi . (5.17)

and must be restricted by the upper bound

Γ(D(γ1,γ2,γ3)) ≤ min{Γ(D(γ1,0,0)),D(0,γ̄2,0)),D(0,0,γ̄3))} . (5.18)

As a further refinement notice that, setting γ2 = 0 in Eqs. (5.14) and (5.15) we get

D(γ1,0,γ3) = D(γ1,0,0) ◦ D(0,0,γ3) = D(0,0,γ3) ◦ D(γ1,0,0) , (5.19)

which replaced back into Eq. (5.15) gives us

D(γ1,γ2,γ3) = D(0,γ̄2,0) ◦ D(γ1,0,γ3) , (5.20)

which allows us to replace (5.18) with the stronger requirement

Γ(D(γ1,γ2,γ3)) ≤ min{Γ(D(0,γ̄2,0)),Γ(D(γ1,0,γ3))} . (5.21)

Similarly by setting γ1 = 0 we get

D(0,γ2,γ3) = D(0,0,γ̄3) ◦ D(0,γ2,0) = D(0,γ̄2,0) ◦ D(0,0,γ3) , (5.22)

that yields

D(γ1,γ2,γ3) = D(0,γ2,γ3) ◦ D(γ1,0,0) , (5.23)

and
Γ(D(γ1,γ2,γ3)) ≤ min{Γ(D(0,γ2,γ3)),Γ(D(γ1,0,0))} . (5.24)

Finally setting γ3 = 0 in Eqs. (5.14) we get

D(γ1,γ2,0) = D(0,γ2,0) ◦ D(γ1,0,0) , (5.25)

that leads to

D(γ1,γ2,γ3) = D(0,0,γ̄3) ◦ D(γ1,γ2,0) , (5.26)

and
Γ(D(γ1,γ2,γ3)) ≤ min{Γ(D(γ1,γ2,0)),D(0,0,γ̄3)} . (5.27)
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5.3 Quantum and private classical capacities for qutrit MAD
The quantum capacity Q of a quantum channel is a measure of how faithfully quantum
states can be transmitted from the input to the output of the associated CPTP map
by exploiting proper encoding and decoding procedures that act on multiple transmis-
sion stages [Hol19, Wil17, Wat18, HG12, NC10, GIN18]. The private classical capacity
Cp instead quantifies the amount of classical information transmittable per channel use
under the extra requirement that the entire signaling process allows the communicat-
ing parties to be protected by eavesdropping by an adversary agent that is control-
ling the communication line. The explicit evaluation of these important functionals is
one of the most elusive task of quantum information theory, as testified by the limited
number of examples which allow for an explicit solution. For a comprehensive, self-
consistent introduction to the technical problems involved in this calculation we refer the
reader to the Appendix B.1, where we present the notions of complementary channel,
coherent information, and degradability and where we introduce the explicit function-
als [Llo97, Sho02b, Dev05] we need to optimize. Building up from these premises here
we present a thoughtful characterization of the quantum capacity Q(Dγ⃗) and the private
classical capacity Cp(Dγ⃗) of the qutrit MAD channel Dγ⃗ defined in Eq. (5.7). We stress
that while failing to provide the explicit solution for all rate vectors γ⃗ in the allowed do-
main defined by Eq. (5.6), in what follows we manage to deliver the exact values of Q(Dγ⃗)
and Cp(Dγ⃗) for a quite a large class of qutrit MAD channels by making use of degrad-
ability properties [DS05], data-processing (or bottleneck) inequalities [Key02, KSW20],
and channel isomorphism. In particular we anticipate here that, for those Dγ⃗ which
are provably degradable [DS05], we shall exploit the covariance property (5.4) to further
simplify the single-letter formula (B.17) as

Q(Dγ⃗) = Cp(Dγ⃗) = max
ρ̂diag

{
S(Dγ⃗(ρ̂diag)) − S(D̃γ⃗(ρ̂diag))

}
, (5.28)

where S(· · · ) is the von Neumann entropy, and where the maximization is performed
on input states of A which are diagonal in the computational basis of the problem, i.e.
the density matrices of the form ρ̂diag =

∑2
i=0 pi|i⟩⟨i| with p0, p1, p2 ∈ [0, 1] fulfilling the

normalization constraint p0 + p1 + p2 = 1 – see discussion at the end of Appendix B.1.2
for details. Notably, when applicable, Eq. (5.28) relies on an optimization of a functional
of only two real variables (namely the populations p0 and p1) which can be easily carried
on (at least numerically).

To begin with, observe that, as anticipated in Eq. (5.8), the complementary map D̃γ⃗

of a generic qutrit MAD channel Dγ⃗ sends the input states of A into a 4-dimensional
“environment state”. In the end this is a consequence of the fact that the (minimal)
number of Kraus operators we need to express (5.7) is 4. Unfortunately this number also
ensures us that the channel is not degradable: it has been indeed shown [CRS08] that
a necessary condition for any CPTP map with output dimension 3 to be degradable is
that its associated Choi rank, and consequently the minimal number of Kraus operators
we need to express such transformation, is at most 3. This brings us to consider some
simplification in the problem, e.g. by fixing some of the values of the damping parameters.
One approach is represented by the selective suppression of one (or two) of the decaying
channels, i.e. imposing one (or two) of the parameters γi equal to 0, which we will
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do in Secs. 5.3.1, 5.3.3, and 5.3.4. For each of these subclasses of channels we’ll give a
characterization, when possible, in terms of degradability, antidegradability and quantum
capacity. A second approach that we adopt in Secs. 5.3.2 and 5.3.5, consists instead to fix
one of the damping parameters to its maximum allowed value, a choice that as we shall
see, will effectively allow us to reduce the number of degrees of freedom of the problem.

5.3.1 Single-decay qutrit MAD channels

We consider here instances of the qutrit MAD channel in which only one of the three
damping parameters γi is explicitly different from zero, i.e. the maps D(γ1,0,0), D(0,γ2,0),
and D(0,0,γ3) associated respectively with the edges DA, DF and DE of Fig. 5.1. It is
easy to verify that these three sets of transformations can be mapped into each other via
unitary conjugations that simply permute the energy levels of the system: for instance
D(0,0,γ3=γ) can be transformed into D(γ1=γ,0,0) by simply swapping levels |1⟩ and |2⟩.
Accordingly, as a consequence of (5.11), the capacities of these three sets must coincide,
i.e.

Q(D(γ,0,0)) = Q(D(0,γ,0)) = Q(D(0,0γ)) , ∀γ ∈ [0, 1] , (5.29)

(similarly for Cp). By virtue of this fact, without loss of generality, in the following
we report the analysis only for D(γ1,0,0), being the results trivially extendable to the
remaining two.

It turns out that the channel D(γ1,0,0) is a special instance of the PCDS maps analyzed
in Ref. [CG21a] where an explicit formula for Q has been already derived. Still, for the
sake of completeness, we find it useful to present here an alternative derivation of those
results which does not make explicit reference to the PCDS structure. For this purpose
we observe that from Eq. (5.5) it follows that D(γ1,0,0) possesses only two non zero Kraus
operators, i.e.

K̂0 =

1 0 0
0

√
1 − γ1 0

0 0 1

 K̂01 =

0 √
γ1 0

0 0 0
0 0 0

 . (5.30)

Transformation (5.7) is then given by

D(γ1,0,0)(ρ̂) =

ρ00 + γ1ρ11
√

1 − γ1ρ01 ρ02√
1 − γ1ρ

∗
01 (1 − γ1)ρ11

√
1 − γ1ρ12

ρ∗
02

√
1 − γ1ρ

∗
12 ρ22

 , (5.31)

and the complementary channel D̃(γ1,0,0) that can be expressed as a mapping that con-
nects the system A to a 2-dimensional environmental system E, i.e.

D̃(γ1,0,0)(ρ̂) =
(

1 − γ1ρ11
√
γ1ρ01√

γ1ρ
∗
01 γ1ρ11

)
. (5.32)

From Eq. (5.31) it follows that, irrespectively of the value of γ, the model always owns
a 2-dim noiseless subspace spanned by the vectors |0⟩ and |2⟩ ensuring a non zero lower
bound for both the quantum and the private classical capacity

Q(D(γ1,0,0)), Cp(D(γ1,0,0)) ≥ log2(2) = 1, (5.33)
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which incidentally implies that the channel D(γ1,0,0) is never anti-degradable. By methods
discussed in Appendix B.1.1 we can also show that D(γ1,0,0) is always mathematically
invertible for all γ1 < 1, with D̃(γ1,0,0) ◦ D−1

(γ1,0,0) CPTP for all γ1 ≤ 1
2 . Accordingly,

invoking (B.10) we can ensure the channel to be degradable if and only if γ1 ≤ 1
2 and

use Eq. (5.28) to compute its capacity value (notice that in principle the above argument
leaves open the possibility that the channel would be degradable also for γ1 = 1, this
however can be excluded by direct calculation or invoking the analysis of [CG21a]).
Consequently for γ1 ≤ 1

2 we can write

Q(D(γ1,0,0)) = Cp(D(γ1,0,0))

= max
p0,p1

{
− (1 − p0 − p1) log2(1 − p0 − p1)

− (p0 + γ1p1) log2(p0 + γ1p1) − (1 − γ1)p1 log2((1 − γ1)p1)

+ (1 − γ1p1) log2(1 − γ1p1) + γ1p1 log2(γ1p1)
}
,

which can be solved numerically (the maximization being performed over all possible
values p0, p1 ∈ [0, 1] under the constraint that p0 + p1 ≤ 1).

Despite the fact that the channel is degradable only for 0 ≤ γ1 ≤ 1
2 and that we know

that it’s not anti-degradable, we can still compute the value of the capacity of D(γ1,0,0)
showing that

Q(D(γ1,0,0)) = Cp(D(γ1,0,0)) = 1 , ∀γ1 ≥ 1/2. (5.34)

This indeed is a direct consequence of the lower bound (5.33), the fact that Q(D(γ1,0,0))
and Cp(D(γ1,0,0)) are non-increasing functions of γ1 as explicitly shown in Eq. (5.13), and
of the fact that from Eq. (5.34) we get Q(D(γ1=1/2,0,0)) = Cp(D(γ1=1/2,0,0)) = 1 by direct
evaluation. Putting all this together we obtain

1 = Q(D(γ1=1/2,0,0)) ≥ Q(D(γ1,0,0)) ≥ 1 , ∀γ1 ≥ 1/2, (5.35)

that implies (5.34), the same conclusion of course holding true for Cp(D(γ1,0,0)). The
results discussed above are summarized in the plot in Fig. 5.2.

5.3.2 Complete damping of the first excited state (γ1 = 1)

Assume next that our qutrit MAD channel of Eq. (5.7) is characterized by the maximum
value of γ1 allowed by CPTP constraint of Eq. (5.6), i.e. γ1 = 1, region represented
by the ABC triangle of Fig. 5.1. This map corresponds to the case where the initial
population of the first excited level |1⟩, gets completely lost in favor of the ground state
|0⟩ of the model so that Eqs. (5.7), (5.8) rewrite as
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b)

Figure 5.2: Upper panel: profile of the quantum and the private classical capacity
for the channel D(γ1,0,0) w.r.t. the damping parameter γ1. For γ1 ≤ 1/2 the channel is
degradable and the reported value follows from the numerical solution of Eq. (5.34). For
γ > 1/2 instead the channel is neither degradable nor antidegradable: here the associated
capacity value is equal to 1 (see main text). Notice that the reported values respect the
monotonicity property (5.13). Lower panel: populations p0, p1 and p2 of those states
that maximize the quantum capacity formula (5.34) for the channel D(γ1,0,0) w.r.t. the
damping parameter γ1.

D(1,γ2,γ3)(ρ̂) =

 1 − (1 − γ3)ρ22 0
√

1 − γ2 − γ3ρ02
0 γ2ρ22 0√

1 − γ2 − γ3ρ
∗
02 0 (1 − γ2 − γ3)ρ22

 , (5.36)

D̃(1,γ2,γ3)(ρ̂) =


ρ00 + (1 − γ2 − γ3)ρ22 ρ01 0 √

γ3ρ02
ρ∗

01 ρ11 0 √
γ3ρ12

0 0 γ2ρ22 0√
γ3ρ

∗
02

√
γ3ρ

∗
12 0 γ3ρ22

 , (5.37)
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for γ2, γ3 ∈ [0, 1] such that γ2 + γ3 ≤ 1. The above expressions make it explicit
that, at variance with the case discussed in the previous section and in agreement with
the conclusions of Ref. [CRS08], the map D(1,γ2,γ3) is not degradable. Indeed we notice
that while D̃(1,γ2,γ3)(ρ̂) preserves information about the components ρ11, ρ01, ρ10, ρ12,
ρ21 of the input state ρ̂, no trace of those terms is left in D(1,γ2,γ3)(ρ̂): accordingly it is
technically impossible to identify a linear (not mentioning CPTP) map N which applied
to D(1,γ2,γ3)(ρ̂) would reproduce D̃(1,γ2,γ3)(ρ̂) for all ρ̂. Despite this fact it turns out that
also for D(1,γ2,γ3), the capacity can still be expressed as the single letter expression (5.28).
Specifically, as we shall see in the following, in this case we can write

Q(D(1,γ2,γ3)) = Cp(D(1,γ2,γ3))
= Q(1)(D(1,γ2,γ3)) = Q(γ2, γ3) , (5.38)

with the function Q(γ2, γ3) being formally defined as

Q(γ2, γ3) ≡ max
τ̂diag

{
S(D(1,γ2,γ3)(τ̂diag)) − S(D̃(1,γ2,γ3)(τ̂diag))

}
= max

p∈[0,1]

{
− (1 − (1 − γ3)p) log2(1 − (1 − γ3)p) − (1 − γ2 − γ3)p log2(1 − γ2 − γ3)p)

+(1 − (γ2 + γ3)p) log2(1 − (γ2 + γ3)p) + γ3p log2 γ3p)
}
, (5.39)

where the maximization is restricted to the diagonal density matrices τ̂diag = (1 −
p)|0⟩⟨0| + p|2⟩⟨2| of A′, associated with the linear subspace HA′ ≡ Span{|0⟩ , |2⟩}. The
explicit value of Q(γ2, γ3) has been numerically plotted in Fig. 5.3: we remark here that
for γ3 ≥ 1−γ2

2 this function assumes zero value, i.e. Q(γ2, γ3) = 0, in agreement with the
fact that in such regime the channel D(1,γ2,γ3) has zero capacity, i.e.

Q(D(1,γ2,γ3)) = Cp(D(1,γ2,γ3)) = 0 ,
∀ 1 − γ2 ≥ γ3 ≥ 1−γ2

2 . (5.40)

To prove Eq. (5.38) let us start by observing that Q(γ2, γ3) provides a natural lower
bound forQ(D(1,γ2,γ3)) and hence for Cp(D(1,γ2,γ3)): this is a simple consequence of (B.16),
which allows us to write

Q(D(1,γ2,γ3)) ≥ max
ρ̂

Icoh(D(1,γ2,γ3), ρ̂)

≥ max
τ̂diag

Icoh(D(1,γ2,γ3), τ̂diag) = Q(γ2, γ3) ,

with Icoh being the coherent information functional (B.15). Next step is now to show
that the function Q(γ2, γ3) provides also an upper bound for Q(D(1,γ2,γ3)): we do this by
constructing a new channel D′

(γ2,γ3) whose capacity is provably larger than the capacity
of D(1,γ2,γ3), i.e.

Q(D(1,γ2,γ3)) ≤ Q(D′
(γ2,γ3)) , (5.41)

Cp(D(1,γ2,γ3)) ≤ Cp(D′
(γ2,γ3)) , (5.42)
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and for which we can explicitly show that

Q(D′
(γ2,γ3)) = Cp(D′

(γ2,γ3)) = Q(γ2, γ3) . (5.43)

For this purpose notice that since the population of level |1⟩ is washed away, the output
produced by D(1,γ2,γ3) can be simulated by the CPTP map D′

(γ2,γ3) : L(HA′) → L(HA)
operating on the two levels quantum system associated with the Hilbert space HA′ ≡
Span{|0⟩ , |2⟩}, and producing qutrit states of A as outputs. In particular defining τ̂ a
generic density matrix on HA′ we have

D′
(γ2,γ3)(τ̂) =

 1 − (1 − γ3)τ22 0
√

1 − γ2 − γ3τ02
0 γ2τ22 0√

1 − γ2 − γ3τ
∗
02 0 (1 − γ2 − γ3)τ22

 (5.44)

with the corresponding complementary channel (B.5) given by

D̃′
(γ2,γ3)(τ̂) =

 1 − (γ2 + γ3)τ22 0 √
γ3τ02

0 γ2τ22 0√
γ3τ

∗
02 0 γ3τ22

 , (5.45)

where for i, j = 0, 2 we set τij ≡ ⟨i|τ̂ |j⟩.
The reason why D′

(γ2,γ3) fulfills the inequality (5.41) is a direct consequence of the fact
that D(1,γ2,γ3), while yielding the same outcomes of D′

(γ2,γ3), is also “wasting" resources
in the useless level |1⟩. To formalize this, notice that we can write

D(1,γ2,γ3) = D′
(γ2,γ3) ◦ A , (5.46)

where A : L(HA) → L(HA′) is the CPTP transformation which maps the input state of
the qutrit A to the qubit system A′ by completely erasing the level |1⟩ and moving its
population to |0⟩, i.e.

A(ρ̂) =
(
ρ00 + ρ11 ρ02
ρ20 ρ22

)
, (5.47)

where ρij = ⟨i|ρ̂|j⟩ with ρ̂ ∈ S(HA). Equation (5.41) can hence be derived as a direct
consequence of the bottleneck inequality (5.11) applied to the case in which Γ is indeed
the quantum capacity Q. The second part of the argument, i.e. Eq. (5.43), can instead
be derived by noticing that at variance with the original mapping D(1,γ2,γ3) which is never
degradable, it turns out that D′

(γ2,γ3) is degradable for

0 ≤ γ3 ≤ (1 − γ2)/2 , (5.48)

and antidegradable otherwise, i.e. for (1 − γ2)/2 ≤ γ3 ≤ 1 − γ2. This can be shown for
instance by observing that in the region identified by the inequality (5.48) the quantity

γ̄3 ≡ 1 − γ2 − 2γ3
1 − γ2 − γ3

, (5.49)
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Figure 5.3: Quantum and private classical capacity of the MAD channel D(1,γ2,γ3)
w.r.t. γ2 and γ3, computed according to Eq. (5.38) – the associated parameter region
corresponds to the ABC triangle of Fig. 5.1. The grey region represent points where
D(1,γ2,γ3) is not CPTP; the points above the red line (γ3 = (1−γ2)/2) have zero capacity,
Q(D(1,γ2,γ3)) = 0. The equivalent channel D′

(γ2,γ3) of Eq. (5.44) is anti-degradable for
points above the red line and degradable below. For γ2 = 0 the value of Q(D(1,γ2,γ3))
and Cp(D(1,γ2,γ3)) coincides with the quantum capacity [GF05] of a qubit ADC channel
of transmissivity γ3 (see inset): this should be compared with the value of Q(D(1,γ2,γ3))
and Cp(D(1,γ2,γ3)) on the other border (i.e. γ3 = 0), which we report in Fig. 5.4. Notice
finally that the reported values respect the monotonicity requirement of Eq. (5.17).

belongs to the interval [0, 1] and can be used to build up a proper CPTP single-decay
qutrit MAD channel D(0,0,γ̄3) – see Sec. 5.3.1. Furthermore by direct calculation we also
get

D(0,0,γ̄3) ◦ D′
(γ2,γ3) = D̃′

(γ2,γ3) , (5.50)

which shows that D(0,0,γ̄3) acts as the connecting channel N entering the degradability
condition (B.8) of D′

(γ2,γ3). From Eqs. (5.44) and (5.45) it is also immediately visible that
D′

(γ2,γ3) can be obtained from D̃′
(γ2,γ3) by the substitution γ3 → 1−γ2 −γ3. Consequently

using the same construction (5.50) we can conclude that D′
(γ2,γ3) is antidegradable for

(1 − γ2)/2 ≤ γ3 ≤ 1 − γ2.
To derive Eq. (5.43) we finally observe that as the original mapping D(1,γ2,γ3), also

D′
(γ2,γ3) is covariant under the group of unitary transformations which are diagonal in

the computational basis of the model: accordingly, following the same argument that led
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Figure 5.4: Quantum (and private classical) capacity of the channel D(1,γ2,0) w.r.t. γ2.
Region corresponding to the edge AC of Fig. 5.1.

us to (5.28), we can express its capacity as

Q(D′
(γ2,γ3)) = Cp(D′

(γ2,γ3)) = max
τ̂diag

{
S(D′

(γ2,γ3)(τ̂diag))

− S(D̃′
(γ2,γ3)(τ̂diag))

}
= Q(γ2, γ3), (5.51)

the last identity following from the fact that D′
(γ2,γ3)(τ̂diag)) coincides with D(1,γ2,γ3)(τ̂diag)

and by the fact that the positive component of the spectrum of D̃′
(γ2,γ3)(τ̂diag) coincides

with the one of D̃(1,γ2,γ3)(τ̂diag) (strictly speaking the above derivation holds true only in
the degradable region (5.48) of D′

(γ2,γ3)(τ̂diag)): still since Q(γ2, γ3) nullifies for 1 − γ2 ≥
γ3 ≥ (1 − γ2)/2, we can apply (5.51) also in the antidegradability region of the channel
where Q(D′

(γ2,γ3)) = 0).
As a concluding remark we comment on a special limit of the above construction

obtained by setting γ2 = 0: in this case we notice that the effective map (5.44) can be
replaced with the quantum channel

D′
γ3(τ̂) =

(
1 − (1 − γ3)τ22

√
1 − γ3τ02√

1 − γ3τ
∗
02 (1 − γ3)τ22

)
, (5.52)

which now maps the two-level system A′ into itself via a standard qubit ADC map with
rate γ3. Accordingly, following the same analysis we did before we can conclude that
Q(D(1,0,γ3)) coincides with the capacity value of the latter, computed in Ref. [GF05].
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5.3.3 Double-decay qutrit MAD channel with γ2 = 0
Here we consider the value of the capacity for γ⃗ belonging to the square surface ABED
of Fig. 5.1, identified by the condition γ2 = 0. From Eq. (5.5) we have that the Kraus
operators for the MAD channel D(γ1,0,γ3) are three:

K̂0 =

1 0 0
0

√
1 − γ1 0

0 0
√

1 − γ3

 , K̂01 =

0 √
γ1 0

0 0 0
0 0 0

 ,
K̂03 =

0 0 √
γ3

0 0 0
0 0 0

 (5.53)

while Eqs. (5.7) and (5.8) become

D(γ1,0,γ3)(ρ̂) =

ρ00 + γ1ρ11 + γ3ρ22
√

1 − γ1ρ01
√

1 − γ3ρ02√
1 − γ1ρ

∗
01 (1 − γ1)ρ11

√
1 − γ1

√
1 − γ3ρ12√

1 − γ3ρ
∗
02

√
1 − γ1

√
1 − γ3ρ

∗
12 (1 − γ3)ρ22

 ,(5.54)

D̃(γ1,0,γ3)(ρ̂) =

 1 − γ1ρ11 − γ3ρ22
√
γ1ρ01

√
γ3ρ02√

γ1ρ
∗
01 γ1ρ11

√
γ1

√
γ3ρ12√

γ3ρ
∗
02

√
γ1

√
γ3ρ

∗
12 γ3ρ22

 . (5.55)

As evident from Fig. 5.2 and from the formal structure of Eq. (5.54), for γ2 = 0 the
model exhibits a symmetry under the exchange of γ1 and γ3. Indeed, indicating with V̂
the unitary gate that swaps levels |2⟩ and |3⟩ we have that

D(γ3,0,γ1)(ρ̂) = V̂D(γ1,0,γ3)(V̂ ρ̂V̂ †)V̂ † , (5.56)

which by data-processing inequality implies

Q(D(γ1,0,γ3)) = Q(D(γ3,0,γ1)) , (5.57)

with an analogous identity applying in the case of the private classical capacity. Following
the procedure in Appendix B.1.1 we now observe that D(γ1,0,γ3) is invertible for γ1, γ3 < 1,
while D̃(γ1,0,γ3)◦D−1

(γ1,0,γ3) is CPTP for γ1, γ3 ≤ 1
2 , implying that in this range of parameters

the channel is degradable (region DEG of Fig. 5.5). Comparing Eqs. (5.54) with (5.55)
we also realize that

D̃(γ1,0,γ3) = D(1−γ1,0,1−γ3) . (5.58)

Therefore, by the same argument above, we can conclude that the channel is antidegrad-
able for γ1, γ3 ≥ 1

2 (region ANTI-DEG of Fig. 5.5) so that Q(D(γ1,0,γ3)) is null for that
range of values. Notice that resulting from Eq. (5.21) this translates to the following
stronger statement:

Q(D(γ1,γ2,γ3)) = Cp(D(γ1,γ2,γ3)) = 0 , ∀γ1, γ3 ≥ 1
2 , (5.59)
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Figure 5.5: Quantum (and private classical) capacity for the channel D(γ1,0,γ3) w.r.t.
the damping parameters γ1 and γ3 – square surface ABED of Fig. 5.1. For γ1, γ3 ≤ 1/2
(region DEG), the channel is degradable and its capacity Q is computed by solving
numerically the maximization (5.60); for γ1, γ3 ≥ 1/2 (region ANTI-DEG) instead it is
explicitly antidegradable and its capacity is zero. Values in the SE and NW quadrants
of the picture follow from the monotonicity behaviors Eq. (5.17) and by the symmetry
(5.57): in particular in the SE sector the capacity is constant w.r.t. γ1 (see Eq. (5.61)),
while the NW is constant w.r.t. to γ3.

(see green region of Fig. 5.6).
To evaluate Q(D(γ1,0,γ3)) and Cp(D(γ1,0,γ3)) in the region DEG of Fig. 5.5, where the

map D(γ1,0,γ3) is provably degradable, we exploit Eq. (5.28) obtaining

Q(D(γ1,0,γ3)) = Cp(D(γ1,0,γ3))

= max
p1,p2

{
− [1 − (1 − γ1)p1 + (1 − γ3)p2] log2[1 − (1 − γ1)p1 + (1 − γ3)p2]

− (1 − γ1)p1 log2((1 − γ1)p1) − (1 − γ3)p2 log2((1 − γ3)p2)

+ (1 − γ1p1 − γ3p2) log2(1 − γ1p1 − γ3p2) + γ1p1 log2(γ1p1) + γ3p2 log2(γ3p2)
}
,

(5.60)

the maximization running over all possible values p1, p2 ∈ [0, 1] under the constraint
that p1 + p2 ≤ 1.

Notice that the capacities are known also on the borders of the parameters space, since
when one of the rates is 0 we reduce to the single-decay MAD we solved in Sec. 5.3.1.
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Figure 5.6: According to Eq. (5.59) all points included in the green region of the plot
have zero quantum (and private classical) capacity.

When one of the rates is instead 1 we reduce to the MAD channel discussed in Sec. 5.3.2,
for which Q is already available. More precisely in Sec. 5.3.2 we computed Q(D(1,0,γ3)),
verifying that it coincides with the capacity of the qubit ADC: the value of Q(D(γ1,0,1))
follows from the latter via the symmetry (5.57). Since the value of Q is available also on
the borders of the DEG region, we can now compare Q(D(γ1,0,γ3)) at γ3 = 1

2 and γ3 = 1,
for all γ1 ≤ 1/2. We find that the two are the same, i.e. Q(D(γ1,0,1)) = Q(D(γ1,0,1/2),
Accordingly, invoking the monotonicity constraint (5.17), we can finally conclude that

Q(D(γ1,0,1)) = Q(D(γ1,0,γ3) ∀γ3 ≥ 1
2 , (5.61)

which invoking the symmetry (5.57) allows us to evaluate the quantum capacity on the
entire parameters region, see Fig. 5.5.
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5.3.4 Double-decay qutrit MAD channel with γ1 = 0

Here we consider the triangular surface DEF of Fig. 5.1. From Eq. (5.1) we have that
the Kraus operators for the MAD channel D(0,γ2,γ3) are three:

K̂0 =

1 0 0
0 1 0
0 0

√
1 − γ2 − γ3

 K̂12 =

0 0 0
0 0 √

γ2
0 0 0


K̂03 =

0 0 √
γ3

0 0 0
0 0 0

 . (5.62)

The actions of D(0,γ2,γ3) and its complementary counterpart D̃(0,γ2,γ3) on a generic density
matrix ρ̂ can hence be described as

D(0,γ2,γ3)(ρ̂) =

 ρ00 + γ3ρ22 ρ01
√

1 − γ2 − γ3ρ02
ρ∗

01 ρ11 + γ2ρ22
√

1 − γ2 − γ3ρ12√
1 − γ2 − γ3ρ

∗
02

√
1 − γ2 − γ3ρ

∗
12 (1 − γ2 − γ3)ρ22

 , (5.63)

D̃(0,γ2,γ3)(ρ̂) =

 1 − (γ2 + γ3)ρ22
√
γ2ρ12

√
γ3ρ02√

γ2ρ
∗
12 γ2ρ22 0√

γ3ρ
∗
02 0 γ3ρ22

 , (5.64)

(notice that in this case, differently of what happens with D(γ1,0,γ3), the complemen-
tary channel is not an element of the MAD set). By close inspection of Eq. (5.63), and
as intuitively suggested by Fig. 5.1, also these channels exhibit a symmetry analogous to
the one reported in Eq. (5.56), but this time with V̂ being the swap operation exchanging
levels |0⟩ and |1⟩, which gives us

Q(D(0,γ2,γ3)) = Q(D(0,γ3,γ2)) , (5.65)

and an analogous identity for the private classical capacity. Furthermore, as in the case
of the single-decay qutrit MAD channel D(0,γ2,0), we notice that D(0,γ2,γ3) has a noiseless
subspace, given here by {|0⟩ , |1⟩}, and we can establish the following lower bound:

Cp(D(0,γ2,γ3)) ≥ Q(D(0,γ2,γ3)) ≥ log2(2) = 1 . (5.66)

In particular this tells us that D(0,γ2,γ3) cannot be antidegradable (the same conclusion
can be obtained by noticing that [CRS08] the map D̃(γ2,0,γ3) has a kernel that cannot be
included into the kernel set of D(γ2,0,γ3) – e.g. the former contains |0⟩⟨1| while the latter
does not).

Following the usual approach we find that D(0,γ2,γ3) is invertible for γ2 + γ3 < 1, and
that D̃(0,γ2,γ3) ◦ D−1

(0,γ2,γ3) is CPTP for γ2 + γ3 ≤ 1
2 , which defines hence the degradabil-

ity region for the map. So, invoking (5.28) we compute the quantum capacity in the
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Figure 5.7: Quantum (and private classical) capacity of the channel D(0,γ2,γ3) w.r.t.
γ2 and γ3 – triangular surface DEF of Fig. 5.1. The DEG zone below the red curve,
γ2 + γ3 = 1

2 , is the degradability region for the channel: here we compute Q(D(0,γ2,γ3))
solving numerically the maximization of Eq. (5.67). Above the red curve the channel
capacity assumes constant value (5.66). Notice that the reported function exhibits the
symmetry (5.65) and the monotonicity conditions (5.17). The grey zone indicates the
non-accessible region (5.6).

degradability region as

Q(D(0,γ2,γ3)) = Cp(D(0,γ2,γ3))

= max
p0,p1

{
− (p1 + γ2p2) log2(p1 + γ2p2)

− [1 − p1 − (1 − γ3)p2] log2[1 − p1 − (1 − γ3)p2]
− (1 − γ2 − γ3)p2 log2((1 − γ2 − γ3)p2)
+ (1 − (γ2 + γ3)p2) log2(1 − (γ2 + γ3)p2)

+ γ2p2 log2(γ2p2) + γ3p2 log2(γ3p2)
}
.

(5.67)

Via numerical inspection we are also able to evaluate the magnitude of Q on the
border of the degradability region, designated by γ2 + γ3 = 1

2 , showing that here it
equals the lower bound (5.66). This, in addition to the monotonicity (5.17), allows us to
conclude that D(0,γ2,γ3) assumes the value 1 over all the region above the degradability
borderline (red curve of Fig. 5.7), i.e.

Q(D(0,γ2,γ3)) = Cp(D(0,γ2,γ3)) = 1 ,
∀γ2 + γ3 ≥ 1/2 . (5.68)
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5.3.5 The qutrit MAD channel on the γ2 + γ3 = 1 plane

Let us now consider the regime with γ2 + γ3 = 1 where rate vectors γ⃗ belong to the
rectangular area BEFC of Fig. 5.1.

Under this condition the map (5.7) still admits four Kraus operators and becomes

D(γ1,γ2,1−γ2)(ρ̂) =
(

ρ00 + γ1ρ11 + (1 − γ2)ρ22
√

1 − γ1ρ01 0√
1 − γ1ρ∗

01 (1 − γ1)ρ11 + γ2ρ22 0
0 0 0

)
. (5.69)

We notice that the level |2⟩ gets completely depopulated and that the channel can be
expressed as

D(γ1,γ2,1−γ2) = C ◦ Dγ1 , (5.70)

where Dγ1 is a standard qubit ADC channel connecting level |1⟩ to level |0⟩ with damping
rate γ1, while now C is a CPTP transformation sending the qutrit A to the qubit system
spanned by vectors |0⟩, |1⟩ and completely erasing the level |2⟩ , moving its population
in part to |1⟩ and in part to |0⟩, i.e.

C(ρ̂) =
(
ρ00 + (1 − γ2)ρ22 ρ01

ρ10 ρ11 + γ2ρ22

)
. (5.71)

Accordingly the quantum capacity of Dγ1 computed in Ref. [GF05] is an explicit upper
bound for Q(D(γ1,γ2,1−γ2)) and Cp(D(γ1,γ2,1−γ2)) (remember that for the qubit ADC Q
and Cp coincide). On the other hand, Q(Dγ1) is also a lower bound for Q(D(γ1,γ2,1−γ2))
and Cp(D(γ1,γ2,1−γ2)) as its rate can be achieved by simply using input states of A that
live on the subspace {|0⟩, |1⟩}. Consequently we can conclude that the following identity
holds true

Q(D(γ1,γ2,1−γ2)) = Cp(D(γ1,γ2,1−γ2)) = Q(Dγ1) , (5.72)

as shown in Fig. 5.8.

5.3.6 Double-decay qutrit MAD channel with γ3 = 0

Here we consider the square region CADF of Fig. 5.1 identified by γ3 = 0. From Eq. (5.1)
we have that the Kraus operators for D(γ1,γ2,0) are three:

K̂0 =

1 0 0
0

√
1 − γ1 0

0 0
√

1 − γ2

 K̂01 =

0 √
γ1 0

0 0 0
0 0 0


K̂02 =

0 0 0
0 0 √

γ2
0 0 0

 , (5.73)

while the actions of D(γ1,γ2,0) and D̃(γ1,γ2,0) on a generic density matrix ρ̂ are:
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Figure 5.8: Evaluation of Q(D(γ1,γ2,1−γ2)) w.r.t. γ1, equivalent to the qubit ADC
quantum capacity (i.e. the rectangular region BEFC of Fig. 5.1): as shown in Eq. (5.72)
the capacity exhibits no dependence upon γ2 in this case.

D(γ1,γ2,0)(ρ̂) =

ρ00 + γ1ρ11
√

1 − γ1ρ01
√

1 − γ2ρ02√
1 − γ1ρ

∗
01 (1 − γ1)ρ11 + γ2ρ22

√
1 − γ1

√
1 − γ2ρ12√

1 − γ2ρ
∗
02

√
1 − γ1

√
1 − γ2ρ

∗
12 (1 − γ2)ρ22

 , (5.74)

D̃(γ1,γ2,0)(ρ̂) =

 1 − γ1ρ11 − γ2ρ22
√
γ1ρ01

√
1 − γ1

√
γ2ρ02√

γ1ρ
∗
01 γ1ρ11 0√

1 − γ1
√
γ2ρ

∗
02 0 γ2ρ22

 . (5.75)

At variance with the previous sections, we have that while D(γ1,γ2,0) is invertible for
γ1, γ2 < 1, for no range of these values the application D̃(γ1,γ2,0) ◦ D−1

(γ1,γ2,0) produces
a CPTP map. We can hence conclude that the map is never degradable. About an-
tidegradability, here also we have that ker{D̃(γ1,γ2,0)} ̸⊆ ker{D(γ1,γ2,0)}, so D(γ1,γ2,0) is
also not antidegradable [CRS08]. As a matter of fact the only cases for which we can
produce explicit values of Q(D(γ1,γ2,0)) are the limiting cases where either γ1 or γ2 equals
0 (in these cases the map is a single-rate MAD channel discussed in Sec. 5.3.1), or 1
where instead the results of Sec. 5.3.2 or Sec. 5.3.5 can be applied. For the remaining
cases we resort in presenting a lower bound for Q(D(γ1,γ2,0)) and Cp(D(γ1,γ2,0)).

A straightforward approach is to exploit the right-hand-side of Eq. (5.28) and run
them also outside the degradability region, in synthesis evaluating the maximum of the
coherent information of D(γ1,γ2,0) on the diagonal sources. Notice that since the map is
not degradable, the coherent information is not necessarily concave and the restriction
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Figure 5.9: Numerical evaluation of a lower bound for Q(D(γ1,γ2,0)) (and Cp(D(γ1,γ2,0)))
obtained by maximizing the single use coherent information of the channel over all possi-
ble diagonal inputs – the parameters region corresponds to the CADF square of Fig. 5.1.
Notice that reported plot does not fulfill the monotonicity constraint (5.17), hence explic-
itly proving that the function we present is certainly not the real capacity of the system.

to diagonal sources does not even guarantee that the computed expression corresponds
to the true Q(1)(D(γ1,γ2,0)) functional. Clearly the task can be refined as much as needed,
e.g. by choosing less specific families of states or by computing Q(i)(D(γ1,γ2,0)) for i > 1,
but these aspects are beyond the focus of this work and will be considered in future
research. The results we obtain are reported in Fig. (5.9).

5.4 Entanglement Assisted Quantum Capacity of qutrit MAD
channels

For the sake of completeness the present section is devoted to studying the entanglement
assisted quantum capacity Qea(D) of MAD CPTP maps which quantifies the amount of
quantum information transmittable per channel use assuming the communicating parties
to share an arbitrary amount of entanglement. A general introduction to the subject
is presented in Appendix B.1.4 where we review some basic properties and derive a
simplified expression which in the case of MAD channels of arbitrary dimension translates
into

QE(D) = 1
2 max
ρ̂diag

{
S(ρ̂diag) + S(D(ρ̂diag)) − S(D̃(ρ̂diag))

}
, (5.76)



5.4 Entanglement Assisted Quantum Capacity of qutrit MAD channels 67

where ρ̂diag are input density matrices which are diagonal in the computational basis of
the system. In the case of the single-rate qutrit MAD transformations this translates to
solving the following maximization:

Qea(D(γ1,0,0)) = 1
2 max
p0,p1

{
− p0 log2 p0 − p1 log2 p1

−2(p0 + γ1p1) log2(p0 + γ1p1)
−(1 − γ1)p1 log2((1 − γ1)p1)

+(1 − γ1p1) log2(1 − γ1p1) + γ1p1 log2(γ1p1)
}
, (5.77)

the result being reported in Fig. 5.10 a). In a similar fashion we also numerically compute
Qea for all the two-rate qutrit MAD channels scenarios we analyzed in the previous
sections, reporting the associated results in Fig. 5.10 b), c), d). Notice that also the
three-rate qutrit MAD channels Qea can be computed but not easily visualized, hence
it’s not reported.
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Figure 5.10: a) Profile of the entanglement assisted quantum capacity Qea(D(γ1,0,0))
w.r.t. the damping parameter γ1 (results should be compared with those of Fig. 5.2 where
we present Q(D(γ1,0,0)) and Cp(D(γ1,0,0))). Notice that also in this case the expression
fulfills the monotonicity constraint (5.13). In b), c), d) Entanglement assisted quantum
capacity for the CADF square region of Fig. 5.1, for the ABED region, and for the DEF
region, respectively.

5.5 Conclusions

We introduce a finite dimensional generalization of the qubit ADC model which repre-
sents one of the most studied examples of quantum noise in quantum information theory.
In this context the quantum (and private classical) capacity of a large class of quantum
channels (namely the qutrit MAD channels) has been explicitly computed, vastly ex-
tending the set of models whose capacity is known: : this effort in particular includes
some non-trivial examples of quantum maps which are explicitly non-degradable (neither
antidegradable) – see e.g. the results of Sec. 5.3.3. Besides allowing generalizations to
higher dimensional systems (see e.g. Ref. [CG21a]), the analysis here presented naturally
spawns further research, e.g. extending it to include other capacity measures, such as
the classical capacity or the two-way quantum capacity [KSW20, PLOB17]. We finally
conclude by noticing that the MAD channel scheme discussed in the present Chapter
can be also easily adapted to include generalizations of the (qubit) generalized amplitude
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damping channel scheme [KSW20], by allowing reverse damping processes which promote
excitations from lower to higher levels that could mimic, e.g., thermalization events.
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6
Resonant multi-level amplitude damping channels,

a capacity analysis

Preface
What follows is based on the yet unpublished paper:

• S. Chessa, V. Giovannetti, Resonant multi-level amplitude damping channels, in
preparation, 2022.

The work that constitute this chapter saw the light as an evolution and a follow-up
of the topic encountered in Chapter 5. The underlying motivations are the same: higher
dimensional quantum channels have been overlooked in the early stages of Quantum In-
formation, but now they are becoming increasingly relevant. With respect to the previous
chapter though we approach in a different way the construction of the channel, postulat-
ing (reasonably) the action of the Stinespring unitary representation on our system and
the associated environment. What we show is that in higher dimensional systems, due to
the increased margin for action allowed by the larger number of degrees of freedom, the
physically plausible processes that can affect quantum systems are more than expected.
We show that amplitude damping in qudits don’t reduce to those channels identified
by the Kraus structure laid out in Chapter 5. We characterize this additional damping
channels that we call Resonant multi-level amplitude (ReMAD) damping channels.

71
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6.1 Intro

As discussed in Chapter 3 and in the previous Chapter, the literature has evolved to
find capacities bounds and to find channel properties to be leveraged in order to over-
come the difficulties of the direct computation or at least provide meaningful upper
bounds. Among others, concerning the unassisted quantum and private classical capaci-
ties, we find: degradability [DS05], antidegradability [CG06], weak degradability [CG06],
existence of additive extensions [SS08], conjugate degradability [BDHM10], being less
noisy or more capable [Wat12], partial degradability [Gyo14], approximate degradability
[SSWR17], allowing teleportation-stretching [PLOB17], being unital [Ans17], existence
of low noise approximations [LLS18b]. In this sense a corpus of literature is being built
with the aim to produce efficiently computable bounds and approximations of these ca-
pacities, see e.g. [TWW17, WTB17, CMH17, WFD19, HRF20, FF21, HL22, FST22].
Coherently with this perspective, the main results of this work are related to the study
of degradability and the estimation of the quantum capacity Q and the private classical
capacity Cp of a new class of qudit channels that we introduce in the following.

Qudit systems have captured increasing interest in the community of Quantum In-
formation science. This is because they have been proven to provide advantages in terms
of communication and cryptography (see e.g. [CDLBO19] and references therein) and
of computation (see e.g. [WHSK20] and references therein), with qutrits that recently
made their first appearance on commercial quantum devices [Hil21]. Despite this fact,
except for a small number of very fundamental channels, the landscape of higher di-
mensional channels describing physical noise and the computation of their information
capacities is still relatively unexplored. Concerning the unassisted quantum and pri-
vate classical capacities, significant results have been obtained in: bounds for the qudit
depolarizing channel [FKG20] bounds for qudit Pauli channels [KFG22], degradability
conditions for qudit dephasing channels [DS05] and qudit dephasing with memory ef-
fects [DBF07], degradability and antidegradability conditions for multi-level amplitude
damping (MAD) channels [CG21b], degradability and antidegradability conditions for
combinations of MAD and dephasing channels and in general direct-sum compositions of
quantum channels [CG21a], channels hybridizations in higher dimensions that allow the
exact computation of capacities [LLS+22a], more general results regarding the degradabil-
ity of channels with specific input/output dimensions [CRS08], results on the positivity
of the quantum capacity (or complementary quantum capacity) of MAD channels, qudit
Pauli channels, qudit depolarizing channels [SD22]. It’s clear then that the number of
noise models exactly characterized in terms of quantum (and private classical) capacity
is still limited, often restricted to specific input dimensions. What we are here to argue is
that, other than this lack of knowledge, in the context of higher dimensional systems also
realistic noise models are still ignored when not directly derived from the qubit setting.
We provide here an instance of this kind of models by describing what we called Resonant
multi-level amplitude damping (ReMAD) channels. This class of channels behaves as an
usual amplitude damping channel on the populations but exhibits a nontrivial effect on
the coherences that is not present in other known damping channels. It describes an ex-
change of excitations mediated by an interaction of the type σ−

S ⊗ σ+
E between a system
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S and an environment E, both d dimensional. As we’ll see, the “mixing” action on the
coherences is such that there is no qubit counterpart for such channels.
We show that these channels can be degradable or antidegradable in large portions of the
allowed parameter space and, taking the case of d = 3 as an example, there we compute
exactly Q and Cp.

The Chapter is structured as follows: in Sec. 6.2 we define ReMAD channels, their
complementary channels and their composition rules; in Sec. 6.3 we address the issue of
degradability, antidegradability and the computation of Q and Cp; conclusions are drawn
in Sec. 6.4.

6.2 Definitions

6.2.1 Channel

Let HS be the Hilbert space associated with a system S and S(HS) the related convex
hull of density operators. We can specify the action of a completely positive and trace
preserving (CPTP) linear map [Cho75] (quantum channel) Φ : L(HS) → L(HS′) over a
density matrix ρ̂ ∈ S(HS) by: explicitly giving Φ(ρ̂), expressing the Kraus operators set
[Kra71] or expressing its Stinespring representation [Sti55].
If we wanted to generalize the action of the qubit amplitude damping channel to qudits
the most immediate procedure would be, as done in [CG21b], to enlarge the set of Kraus
operators in order to include each desired damping process between levels. This procedure
generates MAD channels. Assuming to deal with a minimal Kraus set, fixing the number
of Kraus operators also fixes the Stinespring representation and the environment size.
So for a generic d dimensional MAD channel we’d have d(d − 1)/2 damping processes,
d(d−1)/2+1 Kraus operators and d(d−1)/2+1 dimensional environment. In this scenario
each damping transition in the system S induces an excitation on the environment E from
the ground state to one of the excited levels. Each transition in S excites a different level
in E.
We could think instead of going the other way around and derive the channel by directly
imposing its damping effects on the levels of S and E. This is equivalent to fixing first
the Stinespring dilation of the channel. To do so we need to assume the environment to
be in a pure state. Without loss of generality we choose the pure state to be |0⟩E. For a
generic qudit system, the transitions we consider are

|0⟩S |0⟩E → |0⟩S |0⟩E , |j⟩S |0⟩E →
√

1 −
∑
k<j

γjk |j⟩S |0⟩E +
j∑

k=1

√
γj,j−k |j − k⟩S |k⟩E .

(6.1)

where the coefficients γji represent the transition probabilities from level j to i, with
j > i. They are real coefficients and are constrained as:

0 ≤ γji ≤ 1 ,
∑
k<j

γjk ≤ 1 . (6.2)
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In the case of a qutrit Eqs. (6.1) reduce to

|0⟩S |0⟩E → |0⟩S |0⟩E

|1⟩S |0⟩E →
√

1 − γ10 |1⟩S |0⟩E + √
γ10 |0⟩S |1⟩E

|2⟩S |0⟩E →
√

1 − γ21 − γ20 |2⟩S |0⟩E + √
γ20 |0⟩S |2⟩E + √

γ21 |1⟩S |1⟩E . (6.3)

These transitions capture the interaction between two d-dimensional systems for
which energy spacing between levels is uniform, transferring excitations from the sys-
tem S to the environment E. Notice how here we have a d-dimensional environment,
while in the case of MAD channels we had a d(d− 1)/2 + 1 dimensional environment, see
Fig. 6.1. The two processes are not physically equivalent.

Figure 6.1: Left: depiction of the MAD excitations exchange between the system S
and the environment E. Right: depiction of the ReMAD excitations exchange between
the system S and the environment E, notice the environment size.

What makes this noise model interesting is its simplicity and the fact that it can emerge
in a variety of scenarios. To enumerate some of the ones relevant in quantum information
processing and quantum communications we can mention: atomic systems in quantum
memories and quantum repeaters [HSP10, SSdRG11, RR15], optical qudits transmitted
through lines such as optical fibers with polarization dependent losses [Dam05], opti-
cal qudits interacting with beam splitters and qudits encoded in harmonic oscillators
[GKP01, BdGS02], see [TCV20, CMW+21] and references therein for applications and
implementations of bosonic codes.

As already discussed, once we specify the Stinespring representation of our channel
we can retrieve also the Kraus set. So, from Eq. (6.1) we can infer the Stinespring dilation
for the channel and, from that, the Kraus operators. In general, at dimension d we have
a diagonal Kraus operator K̂d

0 and d − 1 non diagonal operators K̂d
i (see Appendix C.1

for details), expressed as

K̂d
0 =

d−1∑
l=0

√
1 −

∑
m<l

γlm |l⟩⟨l| , K̂d
i =

d−i−1∑
l=0

√
γi+l,l |l⟩⟨i+ l| . (6.4)
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For the qutrit setting we will have then

K̂0 =

1 0 0
0

√
1 − γ10 0

0 0
√

1 − γ21 − γ20

 , K̂1 =

0 √
γ10 0

0 0 √
γ21

0 0 0

 , K̂2 =

0 0 √
γ20

0 0 0
0 0 0

 .
(6.5)

We can see how, unlike MAD channels, some of the non diagonal Kraus operators
can allow more than one decay rate γij .
Now, by applying Kraus operators to a generic density matrix ρ̂ we retrieve the overall
action of the channel:

Φγ⃗(ρ̂) =
d−1∑
i=0

K̂iρ̂K̂
†
i , (6.6)

we denoted by γ⃗ the set of all decay rates γij . By exploiting the expressions for the Kraus
operators in Eq. (6.4), in arbitrary dimensions d we can compactly state the components
of the channel output Φγ⃗(ρ̂) as:

[Φγ⃗(ρ̂)]00 = ρ00 +
d−1∑
l=0

γl0ρll ,

[Φγ⃗(ρ̂)]jj = (1 −
∑
l<j

γjl)ρjj +
d−j−1∑
l=1

γl+j,jρl+j,l+j ,

[Φγ⃗(ρ̂)]0j =
√

1 −
∑
l<j

γjlρ0j +
d−j−1∑
l=1

√
γl0

√
γl+j,jρl,l+j ,

[Φγ⃗(ρ̂)]ij =
√

1 −
∑
l<i

γil

√
1 −

∑
l<j

γjlρij +
d−j−1∑
l=1

√
γl+i,i

√
γl+j,jρl+i,l+j , (6.7)

where in the last line we assumed i < j.
To give an intuition of the action of this kind of channels we explicitly show how the
qutrit version behaves on a generic density matrix:

Φγ⃗(ρ̂) =

 ρ00 + γ10ρ11 + γ20ρ22
√

1 − γ10ρ01 + √
γ10γ21ρ12

√
1 − γ21 − γ20ρ02√

1 − γ10ρ
∗
01 + √

γ10γ21ρ
∗
12 (1 − γ10)ρ11 + γ21ρ22

√
(1 − γ10)(1 − γ21 − γ20)ρ12√

1 − γ21 − γ20ρ
∗
02

√
(1 − γ10)(1 − γ21 − γ20)ρ∗

12 (1 − γ21 − γ20)ρ22

 .

(6.8)
As you can observe, on the diagonal elements we have the usual decay of populations

from higher to lower levels typical of amplitude damping channels. On off-diagonal ele-
ments though we can see that there is a coherence mixing which is not contemplated in
qubit (you have only one coherence term) or MAD channels. This phenomenon repre-
sents another signature of the fact that we are dealing with a different underlying physical
process.

To this class of channels belongs a simple group of amplitude damping channels
that was already discussed in the literature but that was not recognized as a member
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of a more general class. In [Ouy14] were introduced the so called beam splitter type
amplitude damping channels. This kind of amplitude damping channels describes the
evolution of a qudit encoded in the first d states in the Fock basis of an harmonic oscillator
passing through a beam splitter of transmittance γ. It’s straightforward to verify that
the j-th level (Fock state with j photons) will decay into the i-th level with probability
pji =

(j
i

)
γn−i(1 − γ)i and consequently γji = √

pji. At variance with the parameter γ
these channels constitute a subclass of the ReMAD channels. We show in Fig. 6.2 their
configuration in the parameters space for the qutrit case. These channels were shown to
be degradable for γ ≥ 1/2 and antidegradable for γ ≤ 1/2 (see Sec. 6.3 and Appendix C.2
for definitions and discussion of these properties), we’ll show how these properties can
be extended to channels with unconstrained values of γji.

γ21

γ10

γ20

Figure 6.2: Set of beam splitter type amplitude damping channels in the parameters
space for a qutrit (blue line).
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6.2.2 Complementary channel

From the Kraus operators we can also retrieve the complementary channel Φ̃γ⃗ (see Ap-
pendix C.1), resulting in

[Φ̃γ⃗(ρ̂)]00 = ρ00 +
d−1∑
l=0

(1 −
∑
m<l

γlm)ρll ,

[Φ̃γ⃗(ρ̂)]jj = γj0ρjj +
d−j−1∑
l=1

γl+j,lρl+j,l+j ,

[Φ̃γ⃗(ρ̂)]0j = √
γj0ρ0j +

d−j−1∑
l=1

√
1 −

∑
m<l

γlm
√
γl+j,lρl,l+j ,

[Φ̃γ⃗(ρ̂)]ij = √
γi0

√
γj0ρij +

d−j−1∑
l=1

√
γl+i,l

√
γl+j,lρl+i,l+j , (6.9)

with i < j in the last line. By inspection we can see that the complementary chan-
nel of a ReMAD channel is itself a ReMAD channel. In particular Φ̃γ⃗ can be put in
correspondence with Φγ⃗ by transforming the decay rates a s follows:

γl0 → 1 −
∑
m<l

γlm , γl+j,j → γl+j,l . (6.10)

Again, we can check an instance of this behaviour in the qutrit setting by comparing
Eq. (6.8) and Eq. (6.11):

Φ̃γ⃗(ρ̂) =

 ρ00 + (1 − γ10)ρ11 + (1 − γ21 − γ20)ρ22
√
γ10ρ01 +

√
(1 − γ10)γ21ρ12

√
γ20ρ02√

γ10ρ
∗
01 +

√
(1 − γ10)γ21ρ

∗
12 γ10ρ11 + γ21ρ22

√
γ10γ20ρ12√

γ20ρ
∗
02

√
γ10γ20ρ

∗
12 γ20ρ22

 .

(6.11)

6.2.3 Composition rules

Since MAD channels are closed under composition we could ask ourselves whether Re-
MAD channels behave similarly. Given two ReMAD channels Φη⃗ and Φγ⃗ , is the composed
channel Φη⃗ ◦ Φγ⃗ still a ReMAD channel? Maybe surprisingly, it turns out that it’s not
always the case.
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The shape of a generic Φη⃗ ◦ Φγ⃗ can be obtained by applying Eqs. (6.7) that yield:

[Φη⃗ ◦ Φγ⃗(ρ̂)]00 = ρ00 +
d−1∑
l=0

ηl0(1 −
∑
m<l

γlm)ρll +
d−1∑
l=1

d−l−1∑
m=1

ηl0γl+m,lρl+m,l+m ,

[Φη⃗ ◦ Φγ⃗(ρ̂)]jj = (1 −
∑
l<j

ηjl)

(1 −
∑
l<j

γjl)ρjj +
d−j−1∑
l=1

γl+j,jρl+j,l+j

+

+
d−j−1∑
l=1

ηl+j,j

(1 −
∑

m<l+j
γl+j,m)ρl+j,l+j +

d−(l+j)−1∑
m=1

γm+l+j,l+jρm+l+j,m+l+j

 ,

[Φη⃗ ◦ Φγ⃗(ρ̂)]0j =
√

1 −
∑
l<j

ηjl

√1 −
∑
l<j

γjlρ0j +
d−j−1∑
l=1

√
γl0

√
γl+j,jρl,l+j

+

+
d−j−1∑
l=1

√
ηl0

√
ηl+j,j

[√
1 −

∑
m<l

γlm

√
1 −

∑
m<l+j

γl+j,mρl,l+j+

+
d−(l+j)−1∑

m=1

√
γm+l,l

√
γm+l+j,l+jρm+l,m+l+j

]
,

[Φη⃗ ◦ Φγ⃗(ρ̂)]ij =
√

1 −
∑
l<i

ηil

√
1 −

∑
l<j

ηjl

√1 −
∑
l<i

γil

√
1 −

∑
l<j

γjlρij +
d−j−1∑
l=1

√
γl+i,i

√
γl+j,jρl+i,l+j

+

+
d−j−1∑
l=1

√
ηl+i,i

√
ηl+j,j

√1 −
∑

m<l+i
γl+i,m

√
1 −

∑
m<l+j

γl+j,mρl+i,l+j +

+
d−(l+j)−1∑

m=1

√
γm+l+i,l+i

√
γm+l+j,l+jρm+l+i,m+l+j

 . (6.12)

We can see that these expressions are a little bit too much convoluted to be addressed
generally in a meaningful way. To prove our point though we just need to show that for
a specific instance of Eqs. (6.12) composition rules are nontrivial. To do so we analyze
the simplest non qubit case of d = 3. Applying Eqs. (6.12) on the composition of two
qutrit channels as the on in Eq. (6.8) we get

[Φη⃗ ◦ Φγ⃗(ρ̂)]00 = ρ00 + (η10γ10 + 1 − γ10)ρ11 + (η10γ21 + η20γ20 + 1 − γ21 − γ20)ρ22 ,

[Φη⃗ ◦ Φγ⃗(ρ̂)]01 =
√

1 − η10
√

1 − γ10ρ01 + (
√
η10η21(1 − γ10)(1 − γ21 − γ20) +

√
γ10γ21(1 − η10))ρ12 ,

[Φη⃗ ◦ Φγ⃗(ρ̂)]02 =
√

1 − η21 − η20
√

1 − γ21 − γ20ρ02 ,

[Φη⃗ ◦ Φγ⃗(ρ̂)]11 = (1 − η10)(1 − γ10)ρ11 + [η21(1 − γ21 − γ20) + (1 − η10)γ21]ρ22 ,

[Φη⃗ ◦ Φγ⃗(ρ̂)]12 =
√

(1 − η10)(1 − η21 − η20)
√

(1 − γ10)(1 − γ21 − γ20)ρ12 ,

[Φη⃗ ◦ Φγ⃗(ρ̂)]22 = (1 − η21 − η20)(1 − γ21 − γ20)ρ22 , (6.13)

plus the Hermitian conjugate of off-diagonal elements.
We are interested in understanding whether a set of parameters δ⃗ exists or not such that
we are able to construct a ReMAD channel Φ

δ⃗
= Φη⃗ ◦Φγ⃗ . Among equations above, those
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referring to elements 00, 02, 11, 12, 22 are all consistent with:

δ10 = γ10 + η10(1 − γ10) ,
δ20 = γ20 + η10γ21 + η20(1 − γ21 − γ20) ,
δ21 = (1 − η10)γ21 + η21(1 − γ21 − γ20) . (6.14)

Element 01 instead forces an additional constraint, i.e.√
δ21δ10 =

√
η10η21(1 − γ10)(1 − γ21 − γ20) +

√
γ10γ21(1 − η10) . (6.15)

By substituting in this constraint the values for δ21 and δ10 obtained in Eq. (6.14) we get
that in order to satisfy it we need

γ10η21(1 − γ21 − γ20) = γ21η10(1 − γ10)(1 − η10) . (6.16)

This, together with the usual constraints for the decay parameters 0 ≤ δij ≤ 1, defines
a specific region for the parameters γ⃗ and η⃗ outside of which the resulting Φ

δ⃗
is not a

ReMAD channel.

6.3 Degradability, Quantum Capacity and Private Classi-
cal Capacity

The evaluation of those functionals describing maximum achievable communication rates,
whether analytically or numerically, has been proven to be one of the most challenging
tasks in Quantum Information Theory. Indeed the number of examples that allow for
explicit solutions is quite limited. In the following, after introducing basic definitions,
we show how ReMAD channels are in identifiable regions fully characterized in terms of
quantum and private classical capacities.

6.3.1 Quantum Capacity and Private Classical Capacity

The quantum capacity Q(Φ) of a quantum channel Φ defines the maximum rate of trans-
mitted quantum information achievable per channel use, assuming Φ to act in the regime
of i.i.d. noise [Hol19, Wil17, Wat18, Hay17, HG12, NC10, IG12, GIN18]. Intuitively it
tells you how faithfully a quantum state, possibly correlated with an external system,
can be sent and received by two communication parties if the communication line is
noisy. Recently Q has also been showed to provide a lower bound to the space overhead
necessary for fault tolerant quantum computation in presence of noise [FMHS22].

The formal definition of the quantum capacity Q relies on the coherent information Icoh
[SN96]. Assuming n uses of the channel Φ and a generic state ρ̂(n) ∈ S(H⊗n

S ) we have

Icoh
(
Φ⊗n, ρ̂(n)

)
≡ S

(
Φ⊗n(ρ̂(n))

)
− S

(
Φ̃⊗n(ρ̂(n))

)
. (6.17)

with S(ρ̂) ≡ −Tr[ρ̂ log2 ρ̂] the von Neumann entropy of the state ρ̂, and Φ̃ the complemen-
tary channel of Φ. Maximizing over S(H⊗n

S ) we get the maximized coherent information
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Q(n) for n instances of the channel

Q(n)(Φ) ≡ max
ρ̂(n)∈S(H⊗n

S )
Icoh

(
Φ⊗n, ρ̂(n)

)
, (6.18)

and by regularization of this expression we get the maximized coherent information per
channel use, that is the quantum capacity Q(Φ) [Llo97, Sho02b, Dev05]

Q(Φ) = lim
n→∞

Q(n)(Φ)
n

. (6.19)

The private classical capacity Cp(Φ) instead quantifies the maximum rate of classical
information achievable per channel use assuming also the privacy of communication.
Privacy is intended as limiting to arbitrarily small the amount of information that an
eavesdropper can extract from the environment during the communication.
To define the private classical capacity we have to introduce the Holevo information
functional χ [Hol73]. Being En ≡ {pi, ρ̂(n)

i } an ensemble of quantum states ρ̂(n)
i ∈ S(H⊗n

S ),
we have

χ(Φ⊗n, En) ≡ S

(
Φ⊗n

(∑
i

piρ̂
(n)
i

))
−
∑
i

piS
(
Φ⊗n

(
ρ̂

(n)
i

))
. (6.20)

Through the Holevo information we define the private information for n uses C(n)
p (Φ),

that involves a maximization over all ensembles En

C(n)
p (Φ) ≡ max

En

(
χ
(
Φ⊗n, En

)
− χ

(
Φ̃⊗n, En

))
. (6.21)

As for the quantum capacity, we regularize this formula to get the maximum achievable
private classical rate per channel use, i.e. the private classical capacity Cp(Φ): [Dev05,
CWY04]:

Cp(Φ) = lim
n→∞

C
(n)
p (Φ)
n

. (6.22)

The difficulties related to the evaluation of the above formulas are well known and
ultimately the reason underlying our efforts here. An exception to this predicament
is given by degradable [DS05] and antidegradable [CG06] channels, see Sec. 6.3.2 for
definitions. For degradable channels Q and Cp result to be additive, so the regularization
over n in Eq. (6.19) isn’t needed, leading to the following single-letter formula [Smi08]

Cp(Φ) = Q(Φ) = Q(1)(Φ). (6.23)

For antidegradable channels instead, due to a no-cloning argument [BDS97], Q = 0. Sim-
ilarly, Cp = 0: the environment can reconstruct the channel output simply by applying
the antidegrading channel, so no private information can be transmitted. Therefore for
channels exhibiting antidegradability no maximizations are needed.



6.3 Degradability, Quantum Capacity and Private Classical Capacity 81

6.3.2 Degradability and antidegradability

As discussed in deeper details in Appendix C.2, degradable channels are those for which
exists a CPTP map N s.t. Φ̃ = N ◦ Φ, while antidegradable channels are those for which
exists a CPTP map M s.t. Φ = M ◦ Φ̃.
To assess these two properties for ReMAD channels we can always make use of the ma-
trix inversion technique described in Appendix C.2, since system and environment have
always the same size.

Alternatively, mimicking the approach used for other amplitude damping channels,
we can try to exploit the “almost” closure under composition of ReMAD channels and
check whether the degrading (or antidegrading) channel is itself a ReMAD channel. With
a procedure similar to the one employed in Sec. 6.2.3 for the composition rules, we need
to find a set of decay parameters η⃗ that define a Φη⃗ s.t. Φ̃γ⃗ = Φη⃗◦Φγ⃗ . This constraint will
yield equations delimiting the parameters region in which this composition is allowed, as
it happens in Eq. (6.15) for the qutrit ReMAD channel composition. Again, in this case
a self contained treatise for arbitrary dimension d cannot be obtained, therefore we take
the qutrit case as a pedagogic instance. So, with d = 3, asking Φ̃γ⃗ = Φη⃗ ◦ Φγ⃗ leads to

γ10 + η10(1 − γ10) = 1 − γ10 ,

(1 − η10)γ21 + η21(1 − γ21 − γ20) = γ20 ,

γ20 + η10γ21 + η20(1 − γ21 − γ20) = 1 − γ21 − γ20 . (6.24)

This implies

η10 = 1 − 2γ10
1 − γ10

,

η21 = 1 − 2γ10
1 − γ10

γ21
1 − γ21 − γ20

,

η20 = 1 − γ21 − 2γ20
1 − γ21 − γ20

− γ21
1 − γ21 − γ20

1 − 2γ10
1 − γ10

. (6.25)

Imposing now that 0 ≤ ηij ≤ 1 and η21 + η20 ≤ 1 we get the degradability region. We
report the depiction of the degradable region in the parameters space in Fig. 6.3 (yellow).

To check antidegradability we follow the same path, by looking for a set of parameter
η⃗ s.t. there exists Φγ⃗ = Φη⃗ ◦ Φ̃γ⃗ , that implies:

1 − γ10(1 − η10) = γ10 ,

1 − γ21(1 − η10) − γ20(1 − η20) = γ20 ,

(1 − η10)γ21 + η21γ20 = γ21 , (6.26)
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from which we get

η10 = 2γ10 − 1
γ10

,

η21 = γ21
γ20

2γ10 − 1
γ10

,

η21 = 2 + γ21(1 − γ10) − γ10
γ10γ20

. (6.27)

Again, imposing 0 ≤ ηij ≤ 1 and η21 + η20 ≤ 1 gives us antidegradability region. We re-
port the depiction of the antidegradable region in the parameters space in Fig. 6.3 (blue).

γ21γ10

γ20

γ21

γ10

γ20

Figure 6.3: Degradability region (yellow) and antidegradability region (blue) from
different perspectives.

Interestingly, the degradability and antidegradability regions found with the compo-
sition method turn out to be the same that we obtain via the matrix inversion method.
This resembles the behaviour of the other classes of amplitude damping channels known:
heuristically we can say that an amplitude damping channel is (anti)degradable if exists
another amplitude damping channel that acts as (anti)degrading channel.
In the degradable region we are then able to compute exactly the quantum capacity Q
and the private classical capacity Cp by maximizing over a single use Hilbert space. The
maximization is further simplified by the fact hat ReMAD channels exhibit a covariance
property, see Appendix C.3 for definitions and details, which allows us to maximize only
over diagonal states. We report in Fig. 6.4 the evaluation of Q and Cp (in the degradable
region they are equivalent) for a qutrit ReMAD channel at variance with the values of
the parameters γ10, γ21 and γ20. In the cases of γ21 = 0 and γ10 = 0 Q and Cp were
already known in the whole parameter space, since there ReMAD channels reduce to
double-decay MAD channels, already studied in [CG21b].
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Figure 6.4: Quantum (and private classical) capacity for different γ10, γ21 and γ20 in
the degradable region.
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6.3.3 Capacities in non-degradable and non-antidegradable regions

In those regions of parameters for which degradability or antidegradability are not achieved
an expression for Q and Cp is lacking. It is still possible to exploit some information the-
oretic properties and known results in the literature to obtain computationally efficient
upper bounds. An immediately available upper bound is given by noticing that the quan-
tum capacity Q is always smaller than the entanglement-assisted quantum capacity Qea.
This latter quantity doesn’t need a regularized expression and, as showed in App. C.4,
can be efficiently computed. The tightness of the bound given by Qea is not guaranteed
though: in the following we sketch some of the more immediate strategies, given the
properties of our channel, that may provide an improvement.

• Data processing and composition rules. Consider a degradable ReMAD
channel Φγ⃗ on the border of the degradable region and another ReMAD chan-
nel Φη3 s.t. η10 = η21 = 0 and η20 = η3. From composition rules and con-
straints in Eq. (6.14) and Eq. (6.16), we have that Φη3 ◦ Φγ⃗ is an ReMAD chan-
nel Φ

δ⃗
s.t. δ20 = γ20 + η3(1 − γ21 − γ20) > γ20. Hence by the composition

with Φη3 we get a ReMAD channel outside of the degradability region. We can
then apply the data processing inequality for the coherent information and get
Q(Φ

δ⃗
) ≤ min{Q(Φγ⃗), Q(Φη3)}. The same holds for Cp.

• Data processing and inversion. If our non degradable channel Φ
δ⃗

has param-
eters δ10, δ21 not compatible with a degradable ReMAD channel we may still ask
ourselves whether channels Γ and Γ′ exist s.t. Φ

δ⃗
= Γ ◦ Φγ⃗ or Φ

δ⃗
= Φγ⃗ ◦ Γ′, being

Φγ⃗ a degradable ReMAD channel. In the matrix representation of the channels
discussed in App. C.2 this is equivalent to computing matrices M̂Γ = M̂Φδ

M̂−1
Φγ

and M̂Γ′ = M̂−1
Φγ

M̂Φδ
and check whether the associated Choi matrices are positive

definite. If this is verified (it can easily be done numerically for fixed δ⃗ and γ⃗) then
due to data processing we have Q(Φ

δ⃗
) ≤ min{Q(Φγ⃗), Q(Γ), Q(Γ′)} ≤ Q(Φγ⃗). The

same holds for Cp.

• ϵ-(anti)degradability and ϵ-close-(anti)degradability. If our channel Φ
δ⃗

is
not (anti)degradable we can ask how distant it is from a (anti)degradable channel
Φγ⃗ and exploit then results on the continuity of the quantum capacity to bound
Q(Φ

δ⃗
) (ϵ-close-degradability). In our case we already have some ‘reference’ chan-

nels given by those contained in the (anti)degradable region. Alternatively we
could try to find the best approximate-degrading channel Dϵ that brings Φ

δ⃗
close

to Φ̃
δ⃗

and again exploit continuity results to bound Q(Φ
δ⃗
) (ϵ-degradability). These

approaches were firstly introduced in [SSWR17] and rely respectively on the com-
putation of ||Φ

δ⃗
− Φγ⃗ ||⋄ and ||Φ̃

δ⃗
− Dϵ ◦ Φ

δ⃗
||⋄, that can be done efficiently via

semi-definite programming. The upper bound needs though also the computation
of Q(1)(Φ

δ⃗
), which is a non-convex maximization problem and presents nontrivial

aspects in terms of convergence.
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6.4 Conclusions
We introduced the class of ReMAD channels. We showed that this class differs from the
other known classes of amplitude damping channels studied in the literature. In par-
ticular, the existence of this new type of channel highlights the fact, often disregarded,
that in higher dimensions the richness of degrees of freedom can allow the emergence of
effects that are absent in the qubit setting. In the context of Quantum Computation
and Quantum Communication this issue is of paramount importance: the fragility of
quantum information in practical scenarios demands a detailed knowledge of the possible
error models affecting quantum devices. In this sense what we provided is a descrip-
tion of a noise channel that can reproduce e.g. the energy exchange between qudits
encoded in harmonic oscillators and a bosonic environment. As a first step we gave a
characterization of the unassisted quantum capacity Q and private classical capacity Cp
exploiting degradability and antidegradability and computed the entanglement-assisted
quantum capacity Qea and entanglement-assisted classical capacity Cea. The full charac-
terization in terms of information capacities, such as for instance classical capacity and
two-way capacities, is then still missing for ReMAD channels and will require further
investigations. As well, we hope that this work will motivate a comprehensive analysis of
higher dimensional quantum channels deriving from possible realistic environment and
interaction models.
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PCDS channels

Preface
What follows is based on the published paper [CG21a]:

• S. Chessa, V. Giovannetti, Partially Coherent Direct Sum channels, Quantum 5,
504 (2021).

In the following chapter we present what is probably the most abstract among the
results discussed until now. It fits though the general picture delineated by Chapter 5
and Chapter 6. As a “bibliographic note” it was conceived while producing [CG21b], over
which Chapter 6 is based, while trying to simplify the procedure of computation of MAD
channels quantum capacities. What we observed is that the action of some channels can
be decomposed in blocks by looking at the underlying Hilbert space as a direct sum.
Fukuda and Wolfe provided a similar approach even though without coherences among
subspaces. Our construction generalizes theirs and allows us to state new theorems
about the degradability of composed channels starting from knowledge of subchannels
and viceversa. In turn, this provide tools to compute exactly the quantum capacity and
private classical capacity of high dimensional channels that otherwise would be hardly
approachable.
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7.1 Introduction

As mentioned in Chapter 3, even for few uses of the channel considered, in absence of use-
ful properties or further symmetries, maximizations over Hilbert spaces to find capacities
can reveal themselves computationally hard. Especially in higher dimensions. This makes
the study, in terms of information capacities, of a wide realm of channels unattractive and
unexplored, despite quantum information in higher dimensions being a well established
field of research. For this family of systems and channels potential advantages are showed
either from the quantum computation (see e.g. [MS00, RRG07, LBA+09, GSÇ+15]) and
quantum communication (see e.g. [CDLBO19, LYGG08, GBDG+14, MZL+17]) per-
spectives, and are now also increasingly experimentally accessible [LNG+11, NJDH+13,
MMP+15, BEW+17, KRR+17, MPGB+18, GPE+19, SBG+20, LZE+19]. All this con-
sidered, methods to overcome these kind of obstacles are still researched and this Chapter
aims to contribute to this corpus of literature. Specifically, we present compact expres-
sions for the quantum capacity and entanglement assisted quantum capacity of a new
class of channels that we called Partially Coherent Direct Sum (PCDS) channels, a gener-
alization of the direct sum (DS) channels described in [FW07]. This formalism appears in
a variety of contexts [GJL18a, GJL18b, BHP09, BDHM10, BHTW10, Brá11, BJOJ11],
among which recently the “gluing” procedure in [SG21b] derived as a generalization of the
construction in [LLS18a]. DS channels were initially introduced in [FW07] in the context
of the additivity conjecture for the classical capacity, later proven wrong [Has09]. There,
the direct-sum structure was proposed in order to simplify the expressions of those func-
tionals, e.g. output entropy and Holevo information, whose additivity was conjectured.
Among these results also an expression for the coherent information for DS channels was
found. In the subsequent literature the direct-sum structure has been mainly exploited
to show superadditivity features of quantum channels.

We draw attention to PCDS because, other than encompassing the already known DS
channels, they provide a framework for the efficient description of wide classes of physical
noise models and their capacities. An instance is given by damping processes in multi-
level systems, denominated multi-level amplitude damping (MAD) channels [CG21b]. In
addition to that, PCDS appear to be interesting because their capacity is in principle
exactly computable with reduced complexity also for high dimensional systems. In this
sense, the knowledge already acquired about low dimensional quantum channels can
be exploited to compose new PCDS channels. At the same time the introduction of
the PCDS can push the study of all accessible zoology of low dimensional channels.
In addition to that, through the techniques here developed, in some cases we are able
to evaluate exactly the quantum capacity even if the channel can be proven not to
be degradable [DS05]. Finally we also see that PCDS channels, despite the similar
construction, have higher capacities w.r.t. DS channels. This enhancement is associated
with the direct sum structure of the Hilbert space and the introduction of coherences.

The Chapter is organized as follows: in Sec. 7.2 we introduce the model for the
channels we consider; in Sec 7.3 we analyze complementary channels and degradability
properties; in Sec. 7.4 we study the quantum capacity and entanglement assisted quan-
tum capacity; in Sec 7.5 we apply results to instances of quantum channels that include
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dephasing channels, amplitude damping channels and combinations of the two. Conclu-
sions and perspectives are presented in Sec. 7.6 while technical material is presented in
the Appendix.

7.2 The model
Let us start fixing some notation: given HX and HY two Hilbert spaces associated with
two (possibly unrelated) quantum systems X and Y, we shall use the symbol

LX→Y := {Θ̂YX : HX −→ HY} , (7.1)

to represent the set of linear operators Θ̂YX mapping the input vectors of X into the
output vectors of Y. The symbol SX = S(HX) will describe the special subset of LX→X
formed by the density operators ρ̂XX of the system X. We also define

MX→Y := {ΦYX : LX→X −→ LY→Y} , (7.2)

to be the set of super-operators ΦYX which transform operators Θ̂XX ∈ LX→X into
elements of LY→Y. We’ll indicate with M(cpt)

X→Y the special subset formed by the quantum
channels of MX→Y, i.e. by the super-operators ΦYX which are Completely Positive and
Trace preserving (CPT) [Cho75]. Finally, for X ̸=Y we shall use the special symbol

M(off)
X→Y := {Φ(off)

YX : LX→Y −→ LX→Y} , (7.3)

to describe linear mappings Φ(off)
YX which connect operators LX→Y into themselves.

Consider next C, a quantum system described by a Hilbert space HC admitting the
following direct sum decomposition

HC = HA ⊕ HB , (7.4)

with HA and HB two nontrivial subspaces of dimensions dA, dB = dC−dA. We’ll associate
with them the projectors P̂AA and P̂BB that fulfill the orthonormalization conditions

P̂AAP̂BB = P̂BBP̂AA = 0 , P̂AA + P̂BB = ÎCC , (7.5)

ÎCC being the identity operator on HC. Accordingly, any operator Θ̂CC ∈ LC→C mapping
the space of C into itself can then be written as a sum of diagonal and off-diagonal block
terms, i.e.

Θ̂CC =
⊕

X,Y=A,B
Θ̂YX ≡

[
Θ̂AA Θ̂AB
Θ̂BA Θ̂BB

]
, (7.6)

with X,Y = A,B and Θ̂XY is an element of LY→X defined by the identity

Θ̂XY ≡ P̂XXΘ̂CCP̂YY . (7.7)

Let now ΦCC ∈ M(cpt)
C→C be a CPT channel mapping C into itself. We say that it

is a Partially Coherent Direct Sum (PCDS) map if it preserves the block structure in
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Eq. (7.6). Or equivalently if we can identify super-operators ΦAA ∈ MA→A, ΦBB ∈
MB→B, Φ(off)

AB ∈ M(off)
B→A, and Φ(off)

BA ∈ M(off)
A→B such that

ΦCC

[
Θ̂AA Θ̂AB
Θ̂BA Θ̂BB

]
=
[

ΦAA[Θ̂AA] Φ(off)
AB [Θ̂AB]

Φ(off)
BA [Θ̂BA] ΦBB[Θ̂BB]

]
,

(7.8)

for all input Θ̂CC ∈ LC→C. In brief, simplifying the notation

ΦCC = ΦAA + ΦBB + Φ(off)
AB + Φ(off)

BA , (7.9)

where each channel ΦXX implicitly assumes the projection on the suitable subspace as
in Eq. (7.7). Quantum channels that can be cast in form of Eq. (7.9) arise whenever the
quantum system C is affected by a (possibly noisy) evolution that preserves the relative
populations associated with the subsystems HA and HB, but (possibly) deteriorates the
quantum coherence among them. In Appendix D.1 it is shown a necessary and sufficient
condition for this to happen. This condition is that, given {M̂ (j)

CC}j a Kraus set [Kra71]
for ΦCC, its elements must only involve diagonal terms when cast into the block form as
in Eq. (7.6), i.e.

Theorem 1. A quantum channel ΦCC described by a Kraus set {M̂ (j)
CC}j admits the

PCDS structure (7.9) if and only if

M̂
(j)
CC = M̂

(j)
AA + M̂

(j)
BB , (7.10)

or equivalently that M̂ (j)
AB = M̂

(j)
BA = 0, for all j.

The explicit proof of this result is given in Appendix D.1. There we also show that
the maps on the right-hand-side of Eq. (7.9) can be expressed in terms of the operators
M̂

(j)
AA and M̂

(j)
BB of Eq. (7.10) as

ΦXX[· · · ] =
∑
j

M̂
(j)
XX · · · M̂ (j)†

XX , (7.11)

for all X=A,B and

Φ(off)
XY [· · · ] =

∑
j

M̂
(j)
XX · · · M̂ (j)†

YY , (7.12)

for all X ̸=Y=A,B. Notice that in particular Eq. (7.11) implies that the diagonal terms
define proper CPT channels on A and B respectively, i.e. ΦAA ∈ M(cpt)

A→A and ΦBB ∈
M(cpt)

B→B, with Kraus sets provided by {M̂ (j)
AA}j and {M̂ (j)

BB}j .
One can easily check that given Φ′

CC,Φ′′
CC ∈ M(cpt)

C→C fulfilling the constraint of
Eq. (7.9), then the same holds true for both the channel pΦ′

CC +(1−p)Φ′′
CC with p ∈ [0, 1]

and for the channel Φ′
CC ◦ Φ′′

CC, with “ ◦ ” representing super-operator composition. The
first property implies that the set of PCDS quantum evolutions is closed under convex
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combination. The second property instead, together with the observation that the iden-
tity channel IdCC is also trivially PCDS, tells us that the set forms a semi-group under
channel concatenation. Observe also that a special instance of PCDS transformations is
provided by the purely dephasing channels ∆(κ)

CC, which induce the mapping

∆(κ)
CC

[
Θ̂AA Θ̂AB
Θ̂BA Θ̂BB

]
=
[

Θ̂AA κΘ̂AB
κ∗Θ̂BA Θ̂BB

]
,

(7.13)

with κ being a complex parameter of norm |κ| ≤ 1. The semi-group property mentioned
above also allows us to state the following. Starting from any PCDS channel ΦCC,
described as in Eq. (7.9) for some proper choice of the maps ΦAA, ΦBB, Φ(off)

AB , and Φ(off)
BA ,

we can construct an entire family of new PCDS elements

Φ(κ)
CC ≡ ∆(κ)

CC ◦ ΦCC = ΦCC ◦ ∆(κ)
CC , (7.14)

whose off-diagonal components are rescaled versions of Φ(off)
AB , and Φ(off)

BA , i.e.

Φ(κ)
CC = ΦAA + ΦBB + κΦ(off)

AB + κ∗Φ(off)
BA . (7.15)

(Here the commutativity property exhibited in Eq. (7.14) follows from the linearity of the
super-operators Φ(off)

AB and Φ(off)
BA ). In particular by setting κ = 0, Eq. (7.15) describes the

Direct Sum (DS) channels discussed in Ref. [FW07] which completely suppress coherence
among HA and HB. This special condition is met whenever the Kraus elements in
Eq. (7.10) of a PCDS map are given by operators that have support exclusively either
on HA or on HB. We can summarize this constraint in terms of the following simple
relation

M̂
(j)
AA ̸= 0 =⇒ M

(j)
BB = 0 , ∀j . (7.16)

It is worth stressing that the properties discussed above, as well as the results we are going
to present in the following sections, admit a simple generalization in case of multi-block
decompositions of the map PCDS – see Appendix D.3.

7.3 Complementary channels and degradability for PCDS
maps

We remind that, via the Stinespring dilation theorem [Sti55], given ΦXX ∈ M(cpt)
X→X a

generic CPT transformation on an arbitrary system X, its complementary channel can
be identified with a CPT map Φ̃EX ∈ M(cpt)

X→E coupling X with the (sufficiently large)
auxiliary quantum system E that plays the role of the system environment. Let {M (j)

XX}j
be a Kraus set for ΦXX and {|jE⟩}j be a fixed set of orthonormal vectors on the Hilbert
space HE of E. Then the action of Φ̃EX on a generic operator Θ̂XX ∈ LX→X can be
expressed as

Φ̃EX[Θ̂XX] =
∑
j,j′

|jE⟩⟨j′
E| Tr

[
M

(j′)†
XX M

(j)
XXΘ̂XX

]
,

(7.17)
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(notice that due to the arbitrariness of the choice of {|jE⟩}j , Φ̃EX can always be rede-
fined up to a unitary rotation on E). We also remind that the map ΦXX is said to be
degradable [DS05] if we can identify a degrading CPT quantum channel ΛEX ∈ M(cpt)

X→E
which allows us to reconstruct the action of Φ̃EX by acting on the corresponding output
of ΦXX, i.e.

Φ̃EX = ΛEX ◦ ΦXX . (7.18)

Similarly we say that ΦXX is antidegradable [CG06] if exists ΛXE ∈ M(cpt)
E→X such that

ΦXX = ΛXE ◦ Φ̃EX . (7.19)

In the case of DS channel ΦCC, using Eq. (7.16) and the orthogonality between M̂ (j)
AA

and M̂ (j)
BB, from Eq. (7.17) one can then easily verify that for all input operators Θ̂CC the

following identity holds

Φ̃EC[Θ̂CC] = Φ̃EA[Θ̂AA] + Φ̃EB[Θ̂BB] . (7.20)

Here Φ̃EA and Φ̃EB are, respectively, the complementary channels associated with the
diagonal components ΦAA and ΦBB entering in the decomposition of Eq. (7.9), while
Θ̂AA and Θ̂BB are the diagonal terms of Eq. (7.6). We refer the reader to Appendix D.2
for a physical insight on this identity. As we’ll see next, Eq. (7.20) holds also for PCDS.
Notice though that, while for generic PCDS channels ΦCC the operators Φ̃EA[Θ̂AA] and
Φ̃EB[Θ̂BB] may have nontrivial commutation relations, in the special case of the DS
channels Φ(0)

CC [FW07] they have always zero overlap, i.e.

Φ̃(0)
EA[Θ̂AA]Φ̃(0)

EB[Θ̂BB] = Φ̃(0)
EB[Θ̂BB]Φ̃(0)

EA[Θ̂AA] = 0 .
(7.21)

In this scenario this implies that the sum appearing in Eq. (7.20) is indeed a direct sum.
We can now prove a necessary and sufficient condition for the degradability of a

generic PCDS channel ΦCC. This condition establishes that such property only depends
upon the diagonal blocks entering in the decomposition of Eq. (7.9):
Theorem 2. A PCDS quantum channel ΦCC is degradable if and only if all of its diagonal
block terms ΦAA, ΦBB are degradable too.

Proof: First of all let us show that the degradability of ΦAA and ΦBB implies the
degradability of ΦCC. Indeed for X = A,B, let ΛXE be the CPT degrading map from X
to E, which allows us to express Φ̃XX in terms of ΦXX as in Eq. (7.18). Consider then
the super-operator ΛEC from C to E defined as

ΛEC[Θ̂CC] ≡ ΛEA[Θ̂AA] + ΛEB[Θ̂BB] , (7.22)

which is CPT thanks to the fact that both ΛEA and ΛEB fulfill the same constraint by
hypothesis – see Appendix D.2.1 for details. Furthermore for all Θ̂CC we have

ΛEC ◦ ΦCC[Θ̂CC] = ΛEC

[
ΦAA[Θ̂AA] Φ(off)

AB [Θ̂AB]
Φ(off)

BA [Θ̂BA] ΦBB[Θ̂BB]

]
= ΛEA ◦ ΦAA[Θ̂AA] + ΛEB ◦ ΦBB[Θ̂BB

]
= Φ̃EA[Θ̂AA] + Φ̃EB[Θ̂BB] = Φ̃EC[Θ̂BB] ,
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that proves that ΦCC is degradable with degrading channel as in Eq. (7.22).
Let’s now show next that if ΦCC is degradable then also ΦAA and ΦBB must be

degradable. For this purpose, given ΛEC the CPT transformation from C to E which
allows us to reconstruct Φ̃EC from ΦCC, from Eqs. (7.9) and (7.20) we get

Φ̃EA[Θ̂AA] + Φ̃EB[Θ̂BB] =
∑

X,Y=A,B
(ΛEC ◦ ΦYX)[Θ̂YX] , (7.23)

which must hold true for all Θ̂YX ∈ LX→Y. In the particular case Θ̂BB = Θ̂AB = Θ̂BA = 0,
this implies that for all Θ̂AA ∈ LA→A we have

Φ̃EA[Θ̂AA] = (ΛEC ◦ ΦAA)[Θ̂AA] = (ΛEA ◦ ΦAA)[Θ̂AA] , (7.24)

where in the last identity we introduced

ΛEA[· · · ] ≡ ΛEC[P̂AA · · · P̂AA] , (7.25)

by exploiting the fact that ΦAA maps operators of A into A, i.e. that P̂BBΦAA[Θ̂AA] =
ΦAA[Θ̂AA]P̂BB = 0. Since the map in Eq. (7.25) is CPT – see Appendix D.2.1, we can
finally conclude that ΦAA is degradable. The degradability of ΦBB can be proved in the
same way.

7.4 Computing the quantum capacity of PCDS channels

As firstly shown in [Llo97, Sho02b, Dev05], the quantum capacity Q(ΦXX) of a channel
ΦXX is expressed as:

Q(ΦXX) = lim
n→∞

1
n

max
ρ̂

(n)
XX∈S(H⊗n

X )
Icoh(Φ⊗n

XX; ρ̂(n)
XX), (7.26)

where Icoh(ΦXX; ρ̂XX) is the coherent information and is defined as

Icoh(ΦXX; ρ̂XX) ≡ S(ΦXX(ρ̂XX)) − S(Φ̃EX(ρ̂XX)) , (7.27)

being S(ρ̂XX) ≡ −TrX [ρ̂XX log2 ρ̂XX] the von Neumann entropy and Φ̃EX the complemen-
tary channel of ΦXX as defined in Eq. (7.17). As already mentioned in the introduction,
the challenging aspect of the computation of the quantum capacity is given by the reg-
ularization over the number n of channel uses. This since the behavior for many uses
doesn’t scale linearly w.r.t. the single shot formula, due to the well known property
of non additivity of quantum channels. The issue can be bypassed when the channel
is degradable (see Sec. 7.4.1) for which the single letter formula is sufficient [DS05], or
antidegradable (the complementary channel is degradable) for which, due to no-cloning
argument, we have Q(ΦXX) = 0. Since we’ll make use of this feature, it is finally worth
noticing that from the invariance of the von Neumann entropy under unitary transforma-
tions it follows that the capacity formula reported above does not depend on the specific
form of the complementary channel. Indeed as already mentioned, the complementary
channel can be chosen freely up to a unitary rotation acting on the environment E – see
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more about this in App. D.2.

Moving now towards DS and PCDS channels, in Ref. [FW07] it was shown that the
quantum capacity of DS channels is given by the maximum of the quantum capacity of
their diagonal contributions. Expressed in our notation

Q(Φ(0)
CC) = max{Q(ΦAA), Q(ΦBB)} , (7.28)

with ΦAA and ΦBB being the diagonal block terms. The presence of non-zero off-
diagonal contributions in Eq. (7.9) is clearly bound to challenge the above result. To
begin with, invoking the channel data-processing inequality (DPI) [Hol19, Wat18, Wil17,
Key02, KSW20, NC10] from Eq. (7.14), it follows that the right-hand-side of Eq. (7.28)
is an explicit lower bound for the quantum capacity of an arbitrary PCDS channel ΦCC
having the same diagonal block terms of Φ(0)

CC , i.e.

Q(ΦCC) ≥ Q(Φ(0)
CC) = max{Q(ΦAA), Q(ΦBB)} .

(7.29)

This fact alone paves the way to higher communication performances. The easiest way
to see this is by comparing the case of the identity map IdCC, which has capacity

Q(IdCC) = log2 dC = log2(dA + dB) , (7.30)

with the case of the completely dephasing channel ∆(κ=0)
CC of Eq. (7.13). ∆(κ=0)

CC shares
the same diagonal terms of IdCC (i.e. ΦAA = IdAA and ΦBB = IdBB) but, according to
Eq. (7.28), has instead quantum capacity equal to

Q(∆(κ=0)
CC ) = max{log2 dA, log2 dB} . (7.31)

Exploiting the results of the previous section we are going to set this observation on
a broader context, computing the explicit value of the quantum capacity of large class
of PCDS channels. Interestingly enough this will allow us to determine the quantum
capacity of channels which are not degradable.

7.4.1 The quantum capacity of degradable PCDS channels

Consider the case of a PCDS channel ΦCC which is degradable. According to [DS05] we
can hence express it in terms of the following single-letter expression

Q(ΦCC) = max
ρ̂CC∈SC

Icoh(ΦCC; ρ̂CC) , (7.32)

with Icoh(ΦCC; ρ̂CC) the single-use coherent information functional introduced in Eq. (7.27).
Observe next that from Eq. (7.8) and the monotonicity of S under block diagonalization,
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it follows that

S(ΦCC(ρ̂CC)) = S

([
pΦAA[τ̂AA] Φ(off)

AB [ρ̂AB]
Φ(off)

BA [ρ̂BA] (1 − p)ΦBB[τ̂BB]

])

≤ S

([
pΦAA[τ̂AA] 0

0 (1 − p)ΦBB[τ̂BB]

])
= S (pΦAA[τ̂AA]) + S ((1 − p)ΦBB[τ̂BB])
= pS (ΦAA[τ̂AA]) + (1 − p)S (ΦBB[τ̂BB]) +H2(p) .

(7.33)

Here we fixed p ≡ Tr[ρ̂AA], we introduced the density matrices of A and B defined as
τ̂AA = ρ̂AA/p and τ̂BB = ρ̂BB/(1−p), and called H2(p) ≡ −p log2 p−(1−p) log2(1−p) the
binary entropy function. Considering then that Eq. (7.33) can be saturated by focusing
on density matrices ρ̂CC with zero off-diagonal blocks (i.e. ρ̂AB = ρ̂BA = 0), and using the
fact that according to Eq. (7.20) Φ̃EC(ρ̂CC) does not depend upon such terms, Eq. (7.32)
reduces to

Q(ΦCC) = max
p∈[0,1]

{
H2(p) (7.34)

+ max
τ̂AA∈SA

max
τ̂BB∈SB

Jp(ΦAA; τ̂AA,ΦBB; τ̂BB)
}
.

We can see that this expression involves an optimization only on the diagonal components
of ρ̂CC. The functional Jp appearing in the above expression can be expressed as a
rescaled convex combination of the coherent information terms of the channels ΦAA and
ΦBB. Explicitly

Jp ≡ pIcoh(ΦAA; τ̂AA) + (1 − p)Icoh(ΦBB; τ̂BB)
−∆Sp(Φ̃EA[τ̂AA], Φ̃EB[τ̂BB]) , (7.35)

where for generic density matrices ρ̂′
EE and ρ̂′′

EE of E, we introduced

∆Sp(ρ̂′
EE, ρ̂

′′
EE) ≡ S

(
pρ̂′

EE + (1 − p)ρ̂′′
EE

)
−pS

(
ρ̂′

EE
)

− (1 − p)S
(
ρ̂′′

EE
)
,

(7.36)

which is non-negative due to the concavity of the von Neumann entropy. Notice that by
simply specifying the above expression for the extreme cases p = 1 and p = 0 one can
easily verify that Eq. (7.34) correctly complies with the bound in Eq. (7.29). On the
contrary, an upper bound for Q(ΦCC) can be obtained by dropping ∆Sp(ρ̂′

EE, ρ̂
′′
EE) in the

right-hand-side of Eq. (7.35), leading to the following inequality

Q(ΦCC) ≤ max
p∈[0,1]

{
H2(p) + pQ(ΦAA) + (1 − p)Q(ΦBB)

}
= log2(2Q(ΦAA) + 2Q(ΦBB)) , (7.37)
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where we introduced Q(ΦAA) and Q(ΦBB) using the optimization over τ̂AA and τ̂BB, and
where in the second line we carried out the maximization over p. This bound makes
physical sense as it implies that the dimension of the optimal noiseless subspace of ΦCC
cannot be larger than the direct sum of the noise-free subspace associated with the
channels ΦAA and ΦBB when used independently. Notice also that the inequality (7.37)
is saturated by taking ΦCC to be the identity channel.

7.4.2 Entanglement-assisted quantum capacity formula for PCDS chan-
nels

For the sake of completeness we report here the value of the entanglement assisted
quantum capacity Qea(ΦXX) [BSST02, BSST02, BDSS06] for the case of arbitrary (non-
necessarily degradable) PCDS channels. We remind that if we allow shared entanglement
between sender and receiver the reliable transferring of quantum messages through the
map ΦXX can be improved via teleportation. The associated improvement is captured
by the following expression

Qea(ΦXX) = 1
2 max
ρXX∈SX

I(ΦXX; ρ̂XX) , (7.38)

where now

I(ΦXX; ρ̂XX) ≡ S(ρ̂XX) + Icoh(ΦXX; ρ̂XX) , (7.39)

is the quantum mutual information, which being sub-additive needs no regularization
even if the map ΦXX is not degradable.

In this case, besides Eq. (7.33) we also invoke the inequality

S(ρ̂CC) ≤ pS (τ̂AA) + (1 − p)S (τ̂BB) +H2(p) ,
(7.40)

that can be derived along the same line of reasoning. Replacing all this into Eq. (7.38)
we get

Qea(ΦCC) = max
p∈[0,1]

{
H2(p)

+1
2 max
τ̂AA∈SA

max
τ̂BB∈SB

Ip(ΦAA; τ̂AA,ΦBB; τ̂BB)
}
,

(7.41)

where now

Ip ≡ pI (ΦAA; τ̂AA) + (1 − p)I (ΦBB; τ̂BB)
−∆Sp(Φ̃EA[τ̂AA], Φ̃EB[τ̂BB]) , (7.42)

with I (ΦAA; τ̂AA) and I (ΦBB; τ̂BB) the quantum mutual information functional of Eq. (7.39)
of ΦAA and ΦBB respectively. As in the case of the formula in Eq. (7.34) we can get
a lower bound for it by taking p = 0, 1 and an upper bound by dropping the term
∆Sp(Φ̃EA[τ̂AA], Φ̃EB[τ̂BB]) in Eq. (7.42). This leads to the inequality

Qea(Φ(0)
CC) ≤ Qea(ΦCC) ≤ log2(2Qea(ΦAA) + 2Qea(ΦBB)) , (7.43)

with Qea(Φ(0)
CC) = min{Qea(Φ(0)

AA), Qea(Φ(0)
BB)} as in Ref. [FW07].
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7.4.3 The special case of ΦBB = IdBB

We now focus on the special case where the diagonal block ΦBB of the PCDS channel
ΦCC defined in Eq. (7.9) corresponds to the identity map IdBB. Under this condition HB
is a decoherence-free subspace for the communication model. This implies that the value
of Q(ΦCC) can always be lower bounded by log2 dB, a condition that is automatically
granted by the inequality (7.29), noticing that in this case Q(ΦBB) = log2 dB. Deeper
insight on the model arises by observing that from Eq. (7.17) we get

Φ̃EB[Θ̂BB] = |0E⟩⟨0E| TrB[Θ̂BB] , (7.44)

with |0E⟩ being an element of the orthonormal set {|jE⟩}j of HE. Accordingly from
Eq. (7.35) we have

Jp = pS (ΦAA[τ̂AA]) + (1 − p)S (τ̂BB)

−S
(
pΦ̃EA(τ̂AA) + (1 − p)|0E⟩⟨0E|

)
≤ pS (ΦAA[τ̂AA]) + (1 − p) log2 dB

−S
(
pΦ̃EA(τ̂AA) + (1 − p)|0E⟩⟨0E|

)
, (7.45)

the upper bound being achieved by taking as input τ̂BB for B the completely mixed state
P̂BB/dB. Hence the capacity formulas in Eqs. (7.34) and (7.41) now write respectively

Q(ΦCC) = max
p∈[0,1]

{
H2(p) + (1 − p) log2 dB

+ max
τ̂AA∈SA

{
pS (ΦAA[τ̂AA])

−S(pΦ̃EA[τ̂AA] + (1 − p)|0E⟩⟨0E|)
}}

,

(7.46)

which holds true for all choices of CPT maps ΦAA that are degradable, and

Qea(ΦCC) = max
p∈[0,1]

{
H2(p) + (1 − p) log2 dB

+1
2 max
τ̂AA∈SA

{
pS (τ̂AA) + pS (ΦAA[τ̂AA])

−S(pΦ̃EA[τ̂AA] + (1 − p)|0E⟩⟨0E|)
}}

,

(7.47)

that instead applies also for non degradable CPT maps ΦAA – both expressions now
involving only an optimization with respect to τ̂AA and p.

Notice that the relatively simple expression reported in Eq. (7.46) paves the way to
refine a little the lower bound discussed in Sec. 7.4 for general PCDS channels. In par-
ticular, assume that there exists a density matrix ρ̂∗

AA of A such that the complementary
channel Φ̃EA of Φ̃AA fulfills the following identity

Φ̃EA[ρ̂∗
AA] = |0E⟩⟨0E| , (7.48)
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with |0E⟩ being the pure vector that via Eq. (7.44) defines the action of Φ̃EB. Interestingly
enough, in Appendix D.2.2 we show that this special requirement can always be met if
the channel ΦAA admits a fixed point state that is pure (examples of those maps are
provided by the cases studied in Sec. 7.5.2 and Sec. 7.5.3). Under the hypothesis in
Eq. (7.48), setting τ̂AA = ρ̂∗

AA in the right-end-side of Eqs. (7.46) and dropping a positive
term we can then arrive to the inequality

Q(ΦCC) ≥ max
p∈[0,1]

{
H2(p) + (1 − p) log2 dB

}
= log2(dB + 1) . (7.49)

For log2(dB + 1) > Q(ΦAA) represents an improvement with respect to the general lower
bound given in Eq. (7.29). At the physical level Eq. (7.49) implies that under the con-
dition in Eq. (7.48) the model admits the presence of a decoherence-free subspace. The
dimension of this subspace is dB + 1 and is slightly larger than the value dB that is
granted for free by having the block B preserved during the evolution. An interesting
consequence of Eq. (7.49) can finally be drawn by comparing it with Eq. (7.37). Indeed
in the present case, due to the fact that Q(ΦBB = IdBB) = log2 dB, such an upper bound
reduces to

Q(ΦCC) ≤ log2(2Q(ΦAA) + dB) , (7.50)

whose right-hand-side term exactly matches that of the lower bound of Eq. (7.49) when-
everQ(ΦAA) = 0. Putting all this together we can then arrive to the following observation

Lemma 3. Let ΦCC be a PCDS quantum channel (7.9) with ΦBB = IdBB. If ΦAA is a
zero-capacity (i.e. Q(ΦAA) = 0), degradable map admitting a pure fixed point state then
we have

Q(ΦCC) = log2(dB + 1) . (7.51)

Explicit examples of ΦCC obeying the structural constraints imposed by the Lemma
will be presented in Secs. 7.5.2 and 7.5.3, together with a rather important consequence
of the identity in Eq. (7.51).

7.5 Applications

Here we report few applications of the identity in Eq. (7.46) that allows us to fully
characterize the quantum capacity of a large class of nontrivial PCDS quantum channels,
including some specific examples of CPT maps which are not degradable.

7.5.1 Purely Dephasing channels

As a first example of PCDS channels ΦCC described in Sec. 7.4.3 we focus on the purely
dephasing maps [DBF07, TWW17] ∆(κ)

CC of Eq. (7.13). Accordingly in this case both ΦBB
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and ΦAA are the identity transformation and we can assign the Kraus set of the model
by taking the following operators

M̂
(0)
CC = κP̂AA + P̂BB , M̂

(1)
CC =

√
1 − |κ|2P̂AA .

(7.52)

Via Eq. (7.17) this leads us to Eq. (7.44) for the complementary channel Φ̃EB and to

Φ̃EA[Θ̂AA] = |v(κ)
E ⟩⟨v(κ)

E | TrA[Θ̂AA] , (7.53)

where now |vE⟩ is the pure state vector

|v(κ)
E ⟩ ≡ κ|0E⟩ +

√
1 − |κ|2|1E⟩ . (7.54)

Since in the present case ΦAA is the identity channel, hence degradable, we can compute
the quantum capacity of ∆(κ)

CC via the single letter formula in Eq. (7.46) which, by trivially
upper-bounding S (ΦAA[τ̂AA]) with log2 dA, rewrites as

Q(∆(κ)
CC) = max

p∈[0,1]

{
H2(p) + p log2 dA + (1 − p) log2 dB

−S(p|v(κ)
E ⟩⟨v(κ)

E | + (1 − p)|0E⟩⟨0E|)
}

= log2 dB + max
p∈[0,1]

{
H2(p) + p log2(dA/dB)

−H2

(
1+

√
1−4p(1−p)(1−|κ|2)

2

)}
. (7.55)

In the limiting cases |κ| = 1 (no noise) and κ = 0 (full dephasing) the maximization
can be explicitly performed leading to the expected results of Eqs. (7.30) and (7.31),
respectively. For all the other choices of κ we resort to numerical evaluation and report the
obtained results in Fig. 7.1 a). Partial analytical information can however be recovered
by noticing that the function we have to optimize with respect to p depends, apart from
the noise coefficient |κ|, only upon the ratio dA/dB. From this fact, by simple analytical
considerations it follows that functions Q(∆(κ)

CC) associated with models with same value
of ratio dA/dB will only differ by an additive constant. Furthermore, in the special case
where dA/dB = 1 the maximization can be again carried out analytically, e.g. by noticing
that the associated functional is symmetric for exchange of p and 1 − p: accordingly we
can conclude that in this case the optimal value for p is 1/2, implying

Q(∆(κ)
CC) = 1 −H2((1 − |κ|2)/2) + log2(dA) , (7.56)

For dA = 1 this expression correctly reproduces the capacity formula of Ref. [DS05] for
the qubit (dC = 2) dephasing channel. It’s worth noticing from Fig. 7.1 a) that depending
on the combination of (dA, dB) a structure among the channels emerges. The noiseless
subspace associated with dB defines a “multiplet” of curves that converge to log2(dB) at
κ ∼ 0 and spread with increasing κ toward the values log2(dA + dB), never intersecting
each other. Intersections can take place between elements of different multiplets, as
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happens e.g. for the curves (3,3) and (1,4). In this case we can see that when κ >∼ 0.75,
having 3 decohering levels and 3 noiseless performs better than having only 1 decohering
level and 4 noiseless.

Similar conclusions can be drawn for the entanglement assisted capacity of ∆(κ)
CC,

which from Eq. (7.47) we express as

Qea(∆(κ)
CC) = max

p∈[0,1]

{
H2(p) + p log2 dA + (1 − p) log2 dB

−1
2S(p|v(κ)

E ⟩⟨v(κ)
E | + (1 − p)|0E⟩⟨0E|)

}
= log2 dB + max

p∈[0,1]

{
H2(p) + p log2(dA/dB)

−1
2H2

(
1+

√
1−4p(1−p)(1−|κ|2)

2

)}
, (7.57)

whose values are plotted in Fig. 7.1 b) (notice again that for dA = dB the optimization
can be performed analytically resulting in Qea(∆(κ)

CC) = 1− 1
2H2((1−|κ|2)/2)+log2(dA)).

7.5.2 Multi-level Amplitude Damping channels

As a second example we now focus on a multi-level version of the qubit Amplitude
Damping channel [GF05], hereafter indicated as MAD channels in brief, which describes
the probability for levels of a dC-dimensional system to decay into each other [CG21b]. In
their most general form, given {|iC⟩}i=0,··· ,dC−1 an orthornormal basis for HC, these maps
can be assigned by introducing the set of Kraus operators {M̂ (0)

CC}
⋃

{M̂ (ij)
CC }i<j formed

by the dC(dC − 1)/2 matrices

M̂
(ij)
CC ≡ √

γji |iC⟩⟨jC| , ∀i < j , (7.58)

with γji real quantities on the interval [0, 1] describing the decay rate from the j-th to
the i-th level (see Fig. 7.2). The damping parameters fulfill the conditions

ξj ≡
∑

0≤i<j
γji ≤ 1 , ∀j = 1, · · · , dC − 1 . (7.59)

The Kraus set is completed by

M̂
(0)
CC ≡ |0C⟩⟨0C| +

∑
1≤j≤dC−1

√
1 − ξj |jC⟩⟨jC| . (7.60)

Besides providing effective description of the noisy evolution of energy dissipation of
atomic models, MAD channels have a rather rich structure. Limit cases are those where
all the γji are zero, corresponding to the identity channel IdCC, and the cases where
equality holds in Eq. (7.59) leaving the level j totally depopulated. Most importantly for
us, by properly tailoring the values of the parameters γji, MAD channels can be used to
construct nontrivial examples of PCDS channels. This happens, for instance, whenever



7.5 Applications 101

0.0 0.2 0.4 0.6 0.8 1.0

|κ|2
0.0

0.5

1.0

1.5

2.0

2.5

3.0

Q

(1,1)

(1,2)

(2,2)

(1,3)
(2,3)

(3,3)

(1,4
)(2,4

)(3,4
)(4,4

)

a)

0.0 0.2 0.4 0.6 0.8 1.0

|κ|2
0.0

0.5

1.0

1.5

2.0

2.5

3.0

QE

(1,1)

(1,2)

(2,2)

(1,3)

(2,3
)

(1,4)(3,3)
(2,4)(3,4)

(4,4)
b)

Figure 7.1: a) Quantum capacity Q of the purely dephasing channel ∆(κ)
CC of Eq. (7.13)

for some values of the couple (dA, dB) w.r.t. the dephasing parameter |κ|2. For dA =
dB = 1 we recover the quantum capacity of the qubit dephasing channel of [DS05].
b) Entanglement assisted quantum capacity Qea of ∆(κ)

CC for some values of the couple
(dA, dB) w.r.t. the dephasing parameter |κ|2. It is worth observing that the curves
associated with the same value of the ratio dA/dB differs only by an additive constant as
predicted in the main text, and that the presence of the entanglement resource removes
the degeneracy of the Q(∆(κ)

CC) capacity for κ = 0. The monotonic behavior of the plotted
curves follows from the channel DPI and from the trivial composition rules obeyed by
the maps ∆(κ)

CC.
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Figure 7.2: Schematic representation of a MAD channel acting on a system C of
dimension dC = 4: each arrow represents a decaying process where given j > i, the
upper level |jC⟩ tends to relax toward the lower level |iC⟩ at rate γji. Notice that by
construction the ground state |0C⟩ is a fixed point of the evolution. An example of a
PCDS map can be obtained for instance by imposing γ30 = γ31 = γ31 = γ21 = 0 (in this
case A and B are both bi-dimensional subsets spanned by the vectors |0C⟩, |1C⟩ and |2C⟩,
|3C⟩, respectively. The single non-zero decay rate MAD channel Ω[γ]

CC is finally obtained
by taking γ10 = γ and setting all the other rates equal to zero: notice that in this case
restricting the input states to the 3-dimensional subspace spanned by |0C⟩, |2C⟩, and
|3C⟩, they will be preserved by the action of the noise.

the set of rates which are explicitly non zero can be split into two distinct groups of
γji characterized by values of the indexes j, i which span disjoint sets – see caption of
Fig. 7.2. For the purpose of the present analysis we shall focus on the special class of
these channels characterized by a single non-zero decay rate [CG21b]. Without loss of
generality we choose the not null decaying parameter γ ∈ [0, 1] to be the one connecting
levels |0C⟩ and |1C⟩. We’ll indicate then this channel as Ω[γ]

CC. Under this condition the
Kraus set contains only two terms

M̂
(01)
CC ≡ √

γ |0C⟩⟨1C| ,

M̂
(0)
CC ≡ |0C⟩⟨0C| +

√
1 − γ |1C⟩⟨1C| +

∑
2≤j≤dC−1

|jC⟩⟨jC| ,

(7.61)



7.5 Applications 103

which can be easily cast in the PCDS canonical form of Theorem 1. This is done by
identifying HA with the bi-dimensional (dA = 2) subset spanned by the vectors |0A⟩ ≡
|0C⟩, |1A⟩ ≡ |1C⟩, and HB with the Hilbert space of dimension dB = dC − 2 spanned
by the vectors {|iB⟩ ≡ |(i + 2)C⟩}i=0,··· ,dB−1. Accordingly Ω[γ]

CC can be expressed as in
Eq. (7.9) with the diagonal terms given respectively by the identity map IdBB on B, and
by the standard qubit Amplitude Damping Channel (ADC) Ω[γ]

AA, described by the Kraus
elements M̂ (01)

AA ≡ √
γ |0A⟩⟨1A| M̂ (0)

AA ≡ |0A⟩⟨0A| + (1 − γ) |1A⟩⟨1A|. Notice also that any
even value of dC can be seen as the dimension of a tensor Hilbert space HC1 ⊗ HC2 s.t.
dC1dC2 = dC. We can then see the MAD channel Ω[γ]

CC as a fully correlated ADC on
HC1 ⊗ HC2 analogous to those studied by D’Arrigo et al. in Ref. [DBFM13]. There they
studied the case for which dC1 = dC2 = 2, that damps the 2-qubits state |11⟩ in |00⟩ and
leaves the subspace spanned by |01⟩ and |10⟩ untouched.

We now proceed with the explicit evaluation of the quantum capacity of Ω[γ]
CC. As a

preliminary observation we establish two facts that hold true for the entire spectrum of
the values of the parameter γ. First of all, as in the case of their qubit counterpart ΩAA,
the set of MAD channel ΩCC is closed under channel composition. In particular given
γ1, γ2 ∈ [0, 1], we have Ω[γ1]

CC ◦ Ω[γ2]
CC = Ω[γ3]

CC with γ3 ≡ γ1 + γ2 − γ1γ2. Noticing that γ3
is larger than γ1 and γ2, we can hence invoke the coherent information DPI to establish
that Q(Ω[γ]

CC) must be monotonically decreasing w.r.t. γ, i.e.

Q(Ω[γ]
CC) ≥ Q(Ω[γ′]

CC) ∀γ ≤ γ′ . (7.62)

Second we notice that for all γ values we have that the dC − 1 dimensional subspace H′
C,

spanned by all the vectors of the basis {|iC⟩}i=0,··· ,dC−1 but |1C⟩, is fully preserved by
the action of Ω[γ]

CC, i.e. Ω[γ]
CC[ρ̂CC] = ρ̂CC ∀ ρ̂CC ∈ S(H′

C). Accordingly the model allows
for the reliable transfer of at least log2(dC − 1) qubits, leading to the following inequality

Q(Ω[γ]
CC) ≥ log2(dC − 1) = log2(dB + 1) , (7.63)

which subsides the lower bound Q(Ω[γ]
CC) ≥ log2 dB that follows from Eq. (7.28).

Let’s then proceed with the explicit evaluation of the capacity. To begin with, we
remind that the qubit ADC Ω[γ]

AA is known to be degradable for 0 ≤ γ ≤ 1/2 and
antidegradable for 1/2 ≤ γ ≤ 1 [GF05]. Invoking hence Theorem 2 we can conclude that
the MAD channel Ω[γ]

CC is degradable if and only if 0 ≤ γ ≤ 1/2. For this values (and
only for those values) we can hence compute Q(Ω[γ]

CC) with the single letter formula in
Eq. (7.46). Specifically, remembering that the complementary channel of the qubit ADC
Ω[γ]

AA for given γ is unitarily equivalent to the qubit ADC Ω[1−γ]
AA [GF05], we can write

Q(Ω[γ]
CC) = max

p∈[0,1]

{
H2(p) + (1 − p) log2 dB

+ max
τ̂AA∈SA

{
pS
(
Ω[γ]

AA[τ̂AA]
)

−S(pΩ[1−γ]
AA [τ̂AA] + (1 − p)|0A⟩⟨0A|)

}}
,

(7.64)



104 PCDS channels

where without loss of generality we identified the vector |0E⟩ of the environment E with
the ground state |0A⟩ of A. A numerical evaluation of this function is reported in Fig. 7.3
a) for different choices of dB. Notice in particular that for γ = 1/2 we get

Q(Ω[1/2]
CC ) = log2(dB + 1), (7.65)

something that can be analytically proven as a direct consequence of Lemma 3. This is
due to the fact that in this case Q(Ω[γ=1/2]

AA ) = 0 (the channel Ω[γ=1/2]
AA being both degrad-

able and antidegradable), and Ω[γ=1/2]
AA admits the pure state |0A⟩ as fixed point [GF05],

i.e. Ω[γ=1/2]
AA [|0A⟩⟨0A|] = |0A⟩⟨0A|.

What about the capacity of Ω[γ]
CC for γ > 1/2? In this case Eq. (7.64) does not

necessarily apply due to the fact that Ω[γ]
CC is provably not degradable. Observe that

in this regime, at variance with its qubit counterpart Ω[γ]
AA, Ω[γ]

CC is also certainly non
antidegradable as a trivial consequence of the bound in Eq. (7.63) which prevents the
quantum capacity from being zero. Accordingly the explicit evaluation of Q(Ω[γ]

CC) for
γ > 1/2 would require in principle to pass through the cumbersome regularization of
Eq. (7.26). It turns out however that in this case we can explicitly compute Q(Ω[γ]

CC)
showing that it must keep the constant value it achieved for γ = 1/2, i.e.

Q(Ω[γ]
CC) = log2(dB + 1), ∀γ ∈ [1/2, 1] . (7.66)

This indeed follows from Eq. (7.65), the monotonicity condition in Eq. (7.62), and the
lower bound in Eq. (7.63) which together imply

Q(Ω[1/2]
CC ) ≥ Q(Ω[γ]

CC) ≥ log2(dB + 1) . (7.67)

It follows then, even if the channel is not degradable for 1/2 < γ ≤ 1, that Q(Ω[γ]
CC) =

Q(1)(Ω[γ]
CC) ∀γ.

All these results have been summarized in Fig. 7.3 a). In Fig. 7.3 b) instead we report
the value of Qea(Ω[γ]

CC) as a function of γ which can be easily computed as in Eq. (7.47)
that, following the same reasoning that led us to Eq. (7.64), rewrites now as

Qea(Ω[γ]
CC) = max

p∈[0,1]

{
H2(p) + (1 − p) log2 dB

+1
2 max
τ̂AA∈SA

{
pS (τ̂AA) + pS

(
Ω[γ]

AA[τ̂AA]
)

−S(pΩ[1−γ]
AA [τ̂AA] + (1 − p)|0A⟩⟨0A|)

}}
.

(7.68)

Again, it is worth mentioning that in the region 1/2 ≤ γ ≤ 1, for d > 2, the channels
are not degradable nor antidegradable but still we are able to compute exactly Q by
exploitation of coinciding upper and lower bounds.
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Figure 7.3: Normalized quantum capacities a) and entanglement assisted quantum
capacities b) of single decay MAD channel Ω[γ]

CC for various dimensions dC. Notice that
the dC = 2 case corresponds to the qubit ADC [GF05] and the dC = 4 case to the
fully correlated ADC of [DBFM13]. The channel is degradable only for γ ≤ 1/2; for
higher values of the rate the quantum capacity is constant and equal to log2(dB + 1), see
Eq. (7.67). The non increasing functional dependence of Q(Ω[γ]

CC) and Qea(Ω[γ]
CC) upon γ

is a consequence of the composition rule of the MAP channels and by the channel DPI.

7.5.3 MAD channel plus block dephasing

As a final example we now consider the capacity of channels obtained by composing the
MAD transformations introduced in the previous section with the dephasing channels
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∆(κ)
CC that acts over the non diagonal blocks, as shown in Eq. (7.14), i.e. the maps

Ω[γ](κ)
CC ≡ ∆(κ)

CC ◦ Ω[γ]
CC = Ω[γ]

CC ◦ ∆(κ)
CC . (7.69)

As usual let us start with some preliminary observations. We can invoke the DPI for the
quantum capacity and the internal composition rules of the sets Ω[γ]

CC and ∆(κ)
CC. With

those we can establish the quantum capacities of Ω[γ](κ)
CC to be monotonically decreasing

in γ and monotonically increasing in |κ|, i.e.

Q(Ω[γ](κ)
CC ) ≥ max{Q(Ω[γ′](κ)

CC ), Q(Ω[γ](κ′)
CC )} , (7.70)

for all γ ≤ γ′ and for all |κ| ≥ |κ′|. Furthermore, again from DPI, it follows that the
quantum capacity of Ω[γ](κ)

CC is always smaller than or equal to the corresponding value
associated with the MAD channel Ω[γ]

CC, as well as the quantum capacity of ∆(κ)
CC we

computed in Sec. 7.5.1, i.e.

Q(Ω[γ](κ)
CC ) ≤ min{Q(Ω[γ]

CC), Q(∆(κ)
CC)} . (7.71)

In particular for κ = 0 (full dephasing), from Eq. (7.28) we get

Q(Ω[γ](0)
CC ) = max{Q(Ω[γ]

AA), log2 dB} , (7.72)

which, considering that the capacity Q(Ω[γ]
AA) of the qubit ADC channel Ω[γ]

AA is always
upper bounded by 1. It is clearly also always smaller than or equal to the lower bound
in Eq. (7.63) of Q(Ω[γ]

CC) as well as smaller than or equal to the value of Q(∆(0)
CC) given in

Eq. (7.31).
To compute the exact value of Q(Ω[γ](κ)

CC ) for κ ̸= 0, observe that as Ω[γ](κ)
CC shares the

same diagonal block terms of Ω[γ]
CC. It will enjoy the same degradability properties of the

latter – see Theorem 2. In particular this implies that, irrespectively of the value of κ,
Ω[γ](κ)

CC is again degradable if and only if γ ≤ 1/2. Accordingly we can express Q(Ω[γ](κ)
CC )

using the single letter formula in Eq. (7.46). In Fig. 7.4 a) we report the solution for the
case dC = 3 obtained by solving numerically the optimization over the input state τ̂AA –
see Appendix D.4 for details.

To obtain the value of Q(Ω[γ](κ)
CC ) also for 1/2 ≤ γ ≤ 1, where the channel is explicitly

not degradable, we resort to produce coinciding upper and lower bounds for such a
quantity. Specifically we notice that, irrespectively of the value of γ, if we restrict the
possible input states to the subspace spanned by |0⟩C, |2⟩C we see that Ω[γ](κ)

CC acts just
like the qubit dephasing channel. Its quantum capacity corresponds to the value given
in Eq. (7.56) computed at dA = 1 [DS05] and which gives our lower bound, i.e.

Q(Ω[γ](κ)
CC ) ≥ 1 −H2((1 − |κ|)/2) . (7.73)

An upper bound for Q(Ω[γ](κ)
CC ) for γ > 1/2 instead directly follows from Eq. (7.70) in the

form

Q(Ω[γ](κ)
CC ) ≤ Q(Ω[1/2](κ)

CC ) . (7.74)
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Now we compute Q(Ω[γ](κ)
CC ) ∀κ at γ = 1/2 and numerically we verify that it coincides

with Eq. (7.73). Accordingly we can conclude that

Q(Ω[γ](κ)
CC ) = 1 − H2(1 − |κ|)

2 , ∀γ ≥ 1/2 ,

(7.75)

as reported in Fig. 7.4 a). As before, it is worth mentioning that in the region 1/2 ≤ γ ≤ 1
the channels are not degradable nor antidegradable but still we are able to compute ex-
actly Q by exploitation of coinciding upper and lower bounds.

Finally we perform the maximization in Eq. (7.47), which gives us Qea(Ω[γ](κ)
CC ), re-

ported in Fig. 7.4 b).
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Figure 7.4: a) Quantum capacity of the channel Ω[γ](κ)
CC w.r.t. the damping parameter

γ and the dephasing parameter |κ|. Notice that the map is degradable if and only
if γ ≤ 1/2. For γ ≥ 1/2 the capacity no longer depends upon γ and it is given by
Eq. (7.75). b) Entanglement assisted quantum capacity of the channel Ω[γ](κ)

CC w.r.t. the
damping parameter γ and the dephasing parameter |κ|.

7.6 Conclusions

We firstly introduced the new class of Partially Coherent Direct Sum channels. We
showed that an explicit and compact formula for the quantum capacity and entanglement
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assisted quantum capacity is attainable, given suitable degradability conditions of the
sub-blocks channels. Since for degradable channels quantum capacity Q and private
classical capacity Cp are equivalent [Smi08], the degradability provides us also the latter.
Since the expression of Qea differs from the entanglement assisted classical capacity Cea
just by a factor 1/2 [BSST02, BSST02], given the former we have immediately the latter.
We are also able to exhibit upper and lower bounds which, in some occasions, also allow us
to state exactly the quantum capacity of non degradable channels. We applied the results
to instances of the purely dephasing channels, qubit ADC and combinations of the two.
The choice of a qubit ADC made here though was just adopted for the sake of simplicity.
The same approach can be straightforwardly applied to higher dimensions ADC when
known to be degradable [CG21b] or in general to “extend” any other finite dimensional
degradable channel. The new approach is immediately generalizable to PCDS composed
by n > 2 block channels. Moreover, since the maximization is reduced to sub-blocks,
the overall problem complexity is considerably lower, making a large class of higher
dimensional noisy channels capacities accessible.
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8
Conclusions

This thesis goal was to summarize, for how little it could be, our contribution to the
literature pertaining Quantum Communication, particularly Quantum Shannon Theory.
Our a special interest was primarily devoted towards bounds over some of the known
capacities in Chapter 4 and towards quantum capacity and private classical capacity of
quantum channels in Chapters 5, 6, 7.

We approached this problem with a perspective over the possible physical realizations
of quantum communication schemes. We described the ‘flying qubit’ model, in which car-
riers move between communicating parties, and the static model, in which quantum states
are transferred through a fixed infrastructure between communicating parties. Our work
dealt with both of these two models. We studied information transfer through quantum
networks in Chapter 4, where information and states are supposed to travel over a fixed
network exploiting local interactions among sites: this is a immediate application of the
static model. We then studied in Chapters 5, 6 instances of amplitude damping channels
in higher dimensional systems: those kind of noise models can describe discrete encodings
in bosonic systems such as photons, that are the paradigmatic example of flying qubit.

As a final synthetic wrap of this thesis we’ll recap the main points of each chapter
presented and we’ll discuss some of the work that can still be done on each subject:

• Chapter 4
Bounding capacities in quantum networks
We discussed a very generic communication protocol in which communicating par-
ties operate on localized regions of a quantum network equipped with an interaction
among sites. By means of the Lieb-Robinson bound we showed that the classical
capacity C, entanglement assisted capacity Cea, the quantum capacity Q and the
private classical capacity Cp of these networks can be bounded from above. This
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bounds, with suitable assumptions over the nature of the network interaction, goes
to 0 for propagation times that go to 0, recovering the locality of information trans-
mission.
Prospects:

– The number of protocols, and consequently capacities, that are studied in the
literature is wider than those approached by our work. A natural follow up
would be to extend the analysis, in particular two-way protocols.

– We did not approach the issue of the optimality of our bounds: can we make
them tighter?

• Chapter 5
Multi-level amplitude damping channels, a capacity analysis
We introduced the new class of quantum channels: Multi-level amplitude damping
(MAD) channels. These channels emerge as generalization of the qubit amplitude
damping channel by mimicking the Kraus operators set structure. We proceeded
then at the analysis of quantum capacity, private classical capacity with a study of
degradability and antidegradability conditions, and of entanglement assisted quan-
tum and classical capacities.
Prospects:

– The analysis of the capacities was only provided for d = 3. We think it’s
implausible to give a dimension-independent solution, but we don’t have a
proof for that. Further study is needed to understand whether such general
analysis can be done or not.

– If the general analysis can’t be done, studying more fixed dimensional cases
may help in understanding how the behaviour of such channels scales with the
input dimension.

– Exploring similar channels with different Kraus structure.

• Chapter 6
Resonant multi-level amplitude damping channels channels, a quantum
capacity analysis
We introduced the new class of quantum channels: Resonant multi-level amplitude
damping (ReMAD) channels. Different from MAD channels, we constructed them
by engineering their Stinespring representation , specifying the transitions between
system and environment. We showed that they resemble MAD channels but express
a different underlying physics. We studied then degradability and antidegradability
in order to approach their quantum capacity and private classical capacity, we
computed entanglement assisted quantum and classical capacities.
Prospects:

– As for MAD channels, the analysis of the capacities was only provided for d =
3. Also in this case we think it’s implausible to give a dimension-independent
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solution, but again we don’t have a proof for that. Therefore similarly as
the MAD case, further study is needed to understand whether such general
analysis can be done or not.

– As for MAD channels, if the general analysis can’t be done, studying more fixed
dimensional cases may help in understanding how the behaviour of ReMAD
channels scales with the input dimension.

– Exploring similar channels with different Stinespring structure.

• Chapter 7
Partially Coherent Direct Sum channels
We introduced the class of Partially Coherent Direct Sum channels, generalizing
a construction from Fukuda and Wolf. We characterized their structure and show
necessary an sufficient conditions for degradability. We exhibited some applications
by computing the quantum capacity of composition of physical low dimensional
channels shaping higher dimensional channels.
Prospects:

– We only approached the issue of quantum and private classical capacities by
looking at degradability conditions. The behaviour of other capacities for
PCDS channels is still unexplored.

– We provided some physical examples as applications. A deeper quest over
possible emergence of PCDS channels in realistic noise processes is missing.
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A
Time-Polynomial Lieb-Robinson bounds for

finite-range spin-network models

Preface
What follows is based on the published paper [CG19]:

• S. Chessa, and V. Giovannetti, Time-polynomial Lieb-Robinson bounds for finite-
range spin-network models, Phys. Rev. A 100, 052309 (2019).

The Lieb-Robinson bound sets a theoretical upper limit on the speed at which infor-
mation can propagate in non-relativistic quantum spin networks. In its original version,
it results in an exponentially exploding function of the evolution time, which is partially
mitigated by an exponentially decreasing term that instead depends upon the distance
covered by the signal (the ratio between the two exponents effectively defining an upper
bound on the propagation speed). In the present Appendix, by properly accounting for
the free parameters of the model, we show how to turn this construction into a stronger
inequality where the upper limit only scales polynomially with respect to the evolution
time. Our analysis applies to any chosen topology of the network, as long as the range of
the associated interaction is explicitly finite. For the special case of linear spin networks
we present also an alternative derivation based on a perturbative expansion approach
which improves the previous inequality. In the same context we also establish a lower
bound to the speed of the information spread which yields a non trivial result at least in
the limit of small propagation times.
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Time-Polynomial Lieb-Robinson bounds for finite-range spin-network

models

A.1 Introduction
When dealing with communication activities, information transfer speed is one of the
most relevant parameters in order to characterise the communication line performances.
This statement applies both to Quantum Communication, obviously, and Quantum Com-
putation, where the effective ability to carry information, for instance from a gate to
another one, can determine the number of calculations executable per unit of time. It
appears therefore to be useful being able to estimate such speed or, whenever not pos-
sible, bound it with an upper value. In the context of communication via quantum spin
networks [Bos07] a result of this kind can be obtained exploiting the so called Lieb-
Robinson (L-R) bound [LR72, NSY19]: defining a suitable correlation function involving
two local spatially separated operators Â and B̂, a maximum group velocity for cor-
relations and consequently for signals can be extrapolated. In more recent years this
bound has been generalised and applied to attain results in a wider set of circumstances.
Specifically, among others, stick out proofs for the Lieb-Schultz-Mattis theorem in higher
dimensions [Has04b], for the exponential clustering theorem [NS06], to link spectral gap
and exponential decay of correlations for short-range interacting systems [HK06], for
the existence of the dynamics for interactions with polynomial decay [NOS06], for area
law in 1-D systems [Has07], for the stability of topological quantum order [BHM10],
for information and entanglement spreading [BHV06, EG09, EvdWMK13, EW17], for
black holes physics and information scrambling [LSH+13, RS16]. Bounds on correlation
spreading, remaining in the framework set by L-R bounds, have been then generalized
to different scenarios such as, for instance, long-range interactions [HT13, EvdWMK13,
GFFMG14, FFGCG15, MKN17], disordered systems [BO07, BEO09], finite temperature
[Has04a, HSGCA17, HG18]. After the original work by Lieb and Robinson the typical
shape found to describe the bound has been the exponentially growing in time t and
depressed with the spatial distance between the supports of the two operators d(A,B),
namely:

∥[Â(t), B̂]∥ <∼ ev|t| f(d(A,B)) , (A.1)

with v positive constant, and f( · ) being a suitable decreasing function, both depending
upon the interaction considered, the size of the supports of Â and B̂ and the dimen-
sions of the system [Has04b, NS06, NOS06, HK06]. More recently instances have been
proposed [HG18, The14] in which such behaviour can be improved to a polynomial one

∥[Â(t), B̂]∥ <∼
(

t

d(A,B)

)d(A,B)
, (A.2)

at least for Hamiltonian couplings which have an explicitly finite range, and for short
enough times. Aim of the present work is to set these results on a firm ground providing
an alternative derivation of the polynomial version (A.2) of the L-R inequality which, as
long as the range of the interactions involved is finite, holds true for arbitrary topology of
the spin network and which does not suffer from the short time limitations that instead
affects previous approaches. Our analysis yields a simple way to estimate the maximum
speed at which signals can propagate along the network. In the second part of the
Appendix we focus instead on the special case of single sites located at the extremal
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points of a 1-D linear spin chain model. In this context we give an alternative derivation
of the t-polynomial L-R bound and discuss how the same technique can also be used to
provide a lower bound on ∥[Â(t), B̂]∥, which at least for small t is non trivial.

The Appendix is organized as follows. We start in Sec. A.2 presenting the model
and recalling the original version of the L-R bound. The main result of the Appendix is
hence presented in Sec. A.3 where by using simple analytical argument we derive our t-
polynomial version of the L-R inequality. In Sec. A.4 we present instead the perturbative
expansion approach for 1-D linear spin chain models. In Sec. A.5 we test results achieved
in previous sections by comparing them to the numerical simulation of a spin chain.
Conclusions are presented finally in Sec. A.6.

A.2 The model and some preliminary observations
Adopting the usual framework for the derivation of the L-B bound [NS06] let us consider
a network N of quantum systems (spins) distributed on a graph G := (V,E) characterized
by a set of vertices V and by a set E of edges. The model is equipped with a metric
d(x, y) defined as the shortest path (least number of edges) connecting x, y ∈ V (d(x, y)
being set equal to infinity in the absence of a connecting path), which induces a measure
for the diameter D(X) of a given subset X ⊂ V , and a distance d(X,Y ) among the
elements X,Y ⊂ V ,

D(X) := max
x,y

min{d(x, y)|x, y ∈ X} ,

d(X,Y ) := min{d(x, y)|x ∈ X, y ∈ Y } . (A.3)

Indicating with Hx the Hilbert space associated with spin that occupies the vertex x
of the graph, the Hamiltonian of N can be formally written as

Ĥ :=
∑
X⊂V

ĤX , (A.4)

where the summation runs over the subsets X of V with ĤX being a self-adjoint operator
that is local on the Hilbert space HX := ⊗x∈XHx , i.e. it acts non-trivially on the spins
of X while being the identity everywhere else. Consider then two subsets A,B ⊂ V
which are disjoint, d(A,B) > 0. Any two operators Â := ÂA and B̂ := B̂B that are
local on such subsets clearly commute, i.e. [Â, B̂] = 0. Yet as we let the system evolve
under the action of the Hamiltonian Ĥ, this condition will not necessarily hold due to
the building up of correlations along the graph. More precisely, given Û(t) := e−iĤt the
unitary evolution induced by (A.4), and indicating with

Â(t) := Û †(t)ÂÛ(t) , (A.5)

the evolved counterpart of Â in the Heisenberg representation, we expect the commutator
[Â(t), B̂] to become explicitly non-zero for large enough t, the faster this happens, the
strongest being the correlations that are dynamically induced by Ĥ (hereafter we set
ℏ = 1 for simplicity). The Lieb-Robinson bound puts a limit on such behaviour that
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applies for all Ĥ which are characterized by couplings that have a finite range character
(at least approximately). Specifically, indicating with |X| the total number of sites in
the domain X ⊂ V , and with

MX := max
x∈X

dim[Hx] , (A.6)

the maximum value of its spins Hilbert space dimension, we say that Ĥ is well behaved
in terms of long range interactions, if there exists a positive constant λ such that the
functional

∥Ĥ∥λ := sup
x∈V

∑
X∋x

|X|M2|X|
X eλD(X) ∥ĤX∥ , (A.7)

is finite. In this expression the symbol

∥Θ̂∥ := max
|ψ⟩

∥Θ̂|ψ⟩∥ , (A.8)

represents the standard operator norm, while the summation runs over all the subset
X ⊂ V that contains x as an element. Variant versions [BR12, NS06, HK06] or gener-
alizations [NSY19, NS09] of Eq. (A.7) can be found in the literature, however as they
express the same behaviour and substantially differ only by constants, in the following
we shall gloss over these differences. The L-R bound can now be expressed in the form
of the following inequality [NS06]

∥[Â(t), B̂]∥ ≤ 2|A||B|∥Â∥∥B̂∥(e2|t|∥Ĥ∥λ − 1)e−λ d(A,B) , (A.9)

which holds non trivially for well behaved Hamiltonian Ĥ admitting finite values of the
quantity ∥Ĥ∥λ. It is worth stressing that Eq. (A.9) is valid irrespectively from the initial
state of the network and that, due to the dependence upon |t| on the r.h.s. term, exactly
the same bound can be derived for ∥[Â, B̂(t)]∥, obtained by exchanging the roles of Â
and B̂. Finally we also point out that in many cases of physical interest the pre-factor
|A||B| on the r.h.s. can be simplified: for instance it can be omitted for one-dimensional
models, while for nearest neighbor interactions one can replace this by the smaller of the
boundary sizes of Â and B̂ supports [NS09].

For models characterized by interactions which are explicitly not finite, refinements
of Eq. (A.9) have been obtained under special constraints on the decaying of the long-
range Hamiltonian coupling contributions [HK06, NS06]. For instance assuming that
there exist (finite) positive quantities s1 and µ1 (s1 being independent from total number
of sites of the graph G), such that

sup
x∈V

∑
X∋x

|X| ∥ĤX∥[1 +D(X)]µ1 ≤ s1 , (A.10)

one gets

∥[Â(t), B̂]∥ ≤ C1|A||B|∥Â∥∥B̂∥ ev1|t| − 1
(1 + d(A,B))µ1

, (A.11)

with C1 and v1 positive quantities that only depend upon the metric of the network and
on the Hamiltonian. On the contrary if there exist (finite) positive quantities µ2 and s2
(the latter being again independent from total number of sites of G), such that

sup
x∈V

∑
X∋x

|X| ∥ĤX∥eµ2D(X) ≤ s2 , (A.12)
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we get instead

∥[Â(t), B̂]∥ ≤ C2|A||B|∥Â∥∥B̂∥(ev2|t| − 1)e−µ2d(A,B) , (A.13)

where once more C2 and v2 are positive quantities that only depend upon the metric of
the network and on the Hamiltonian. The common trait of these results is the fact that
their associated upper bounds maintain the exponential dependence with respect to the
transferring t enlightened in Eq. (A.1).

A.3 Casting the Lieb-Robinson bound into a t-polynomial
form for finite range couplings

The inequality (A.9) is the starting point of our analysis: it is indicative of the fact that
the model admits a finite speed v ≃ 2∥Ĥ∥λ/λ at which correlations can spread out in the
spin network. As |t| increases, however, the bound becomes less and less informative due
to the exponential dependence of the r.h.s.: in particular it becomes irrelevant as soon
as the multiplicative factor of ∥Â∥∥B̂∥ gets larger than 2. In this limit in fact Eq. (A.9)
is trivially subsided by the inequality

∥[Â(t), B̂]∥ ≤ 2∥Â(t)∥∥B̂∥ = 2∥Â∥∥B̂∥ , (A.14)

that follows by simple algebraic considerations. One way to strengthen the conclusions
one can draw from (A.9) is to consider λ as a free parameter and to optimize with respect
to all the values it can assume. As the functional dependence of ∥Ĥ∥λ upon λ is strongly
influenced by the specific properties of the spin model, we restrict the analysis to the
special (yet realistic and interesting) scenario of Hamiltonians Ĥ (A.4) which are strictly
short-ranged. Accordingly we now impose ĤX = 0 to all the subsets X ⊂ V which have
a diameter D(X) that is larger than a fixed finite value D̄, i.e.

D(X) > D̄ =⇒ ĤX = 0 , (A.15)

which is clearly more stringent than both those presented in Eqs. (A.10) and (A.12).
Under this condition Ĥ is well behaved for all λ ≥ 0 and one can write

∥Ĥ∥λ ≤ ζ eλD̄, ∀λ ≥ 0 , (A.16)

with ζ being a finite positive constant that for sufficiently regular graphs does not scale
with the total number of spins of the system. For instance for regular arrays of first-
neighbours-coupled spins we get ζ = 2CM4∥ĥ∥, where C is the maximum coordination
number of the graph (i.e. the number of edges associated with a given site),

∥ĥ∥ := sup
X⊂V

∥ĤX∥ , (A.17)

is the maximum strength of the interactions, and where M := maxx∈V dim[Hx] is the
maximum dimension of the local spins Hilbert space of the model. More generally for
graphs G characterized by finite values of C it is easy to show that ζ can not be greater
than CD̄MCD̄ ∥ĥ∥.
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Using (A.16) we can now turn (A.9) into a more treatable expression

∥[Â(t), B̂]∥ ≤ 2|A||B|∥Â∥∥B̂∥(e2|t|ζeλD̄ − 1)e−λ d(A,B) , (A.18)

whose r.h.s. can now be explicitly minimized in terms of λ for any fixed t and d(A,B).
As shown in Sec. A.3.1 the final result is given by

∥[Â(t), B̂]∥ ≤ 2|A||B|∥Â∥∥B̂∥
(

2 e ζ D̄ |t|
d(A,B)

)d(A,B)
D̄
F(d(A,B)

D̄
)

≤ 2|A||B|∥Â∥∥B̂∥
(

2 e ζ D̄ |t|
d(A,B)

)d(A,B)
D̄
, (A.19)

where in the second inequality we used the fact that the function F(x) defined in the
Eq. (A.31) below and plotted in Fig. A.1 is monotonically increasing and bounded from
above by its asymptotic value 1. At variance with Eq. (A.9), the inequality (A.19) con-
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Figure A.1: Plot of the function F(x) entering into the derivation of Eq. (A.19): for
x = d(A,B)

D̄
≥ 1 it is monotonically increasing reaching the value 1/e ≃ 0.37 for x = 1

and quickly approaching the asymptotic value 1 for large enough x.

tains only terms which are explicit functions of the spin network parameters. Furthermore
the new bound is polynomial in t with a scaling that is definitely better than the linear
behaviour one could infer from the Taylor expansion of the r.h.s. of Eq. (A.9). Looking
at the spatial component of (A.19) we notice that correlations still decrease with distance
as well as in bounds (A.9), (A.11) and (A.13) but with a scaling (1/x)x = e−x log x that
is more than exponentially depressed. Also, fixing a (positive) target threshold value
R∗ < 1 for the ratio

R(t) := ∥[Â(t), B̂]∥/(2|A||B|∥Â∥∥B̂∥) , (A.20)
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equation (A.19) predicts that it will be reached not before a time interval

t∗ = d(A,B)RD̄/d(A,B)
∗

2eζD̄
, (A.21)

has elapsed from the beginning of the dynamical evolution. Exploiting the fact that
limz→∞R

1/z
∗ = 1, in the asymptotic limit of very distant sites (i.e. d(A,B) ≫ D̄), this

can be simplified to

t∗ ≃ d(A,B)
2eζD̄

, (A.22)

that is independent from the actual value of the target R∗ ̸= 0, leading us to identify the
quantity

vmax := 2eζD̄ , (A.23)

as an upper bound for the maximum speed allowed for the propagation of signals in the
system.

A.3.1 Explicit derivation of Eq. (A.19)

We start by noticing that by neglecting the negative contribution −e−λ d(A,B), we can
bound the r.h.s. Eq. (A.18) by a form which is much easier to handle, i.e.

∥[Â(t), B̂]∥ ≤ 2|A||B|∥Â∥∥B̂∥e2|t|ζeλD̄−λ d(A,B). (A.24)

One can observe that for t > d(A,B)/(2ζD̄) the approach yields an inequality that is
always less stringent than (A.14). On the contrary for |t| ≤ d(A,B)/(2ζD̄), imposing the
stationary condition on the exponent term, i.e. ∂λ(e2 ζ eλD(X)|t|−λ d(A,B)) = 0, we found
that for the optimal value for λ is provided by

λopt := 1
D̄

ln
(
d(A,B)
2 |t| ζ D̄

)
, (A.25)

which replaced in Eq. (A.24) yields directly (A.19). More generally, we can avoid to pass
through Eq. (A.24) by looking for minima of the r.h.s. of Eq. (A.9) obtaining the first
inequality given in Eq. (A.19), i.e.

∥[Â(t), B̂]∥ ≤ 2|A||B|∥Â∥∥B̂∥
(

2 e ζ D̄ |t|
d(A,B)

)d(A,B)
D̄ F(d(A,B)

D̄
) . (A.26)

For this purpose we consider a parametrization of the coefficient λ in terms of the
positive variable z as indicated here

λ := 1
D̄

ln
(
zd(A,B)
2 |t| ζ D̄

)
. (A.27)
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With this choice the quantity we are interested in becomes

2|A||B|∥Â∥∥B̂∥(e2|t|ζeλD̄ − 1)e−λ d(A,B) (A.28)
= 2|A||B|∥Â∥∥B̂∥

(
2etζ
x

)x
fx(z) ,

where in the r.h.s. term for easy of notation we introduced x = d(A,B)/D̄ and the
function

fx(z) := exz − 1
zxex

. (A.29)

For fixed value of x ≥ 1 the minimum of the Eq. (A.29) is attained for z = zopt fulfilling
the constraint

x = − ln(1 − zopt)
zopt

. (A.30)

By formally inverting this expression and by inserting it into Eq. (A.28) we hence get
(A.26) with

F(x) := zopt(x)
1 − zopt(x)

(
1

ezopt(x)

)x
, (A.31)

being the monotonically increasing function reported in Fig. A.1.

A.4 Perturbative expansion approach
An alternative derivation of a t-polynomial bound similar to the one reported in Eq. (A.19)
can be obtained by adopting a perturbative expansion of the unitary evolution of the op-
erator Â(t) that allows one to express the commutator [Â(t), B̂] as a sum over a collections
of “paths” connecting the locations A and B, see e.g. Eq. (A.41) below. This derivation
is somehow analogous to the one used in Refs. [HG18, The14]. Yet in these papers the
number of relevant terms entering in the calculation of the norm of [Â(t), B̂] could be
underestimated by just considering those paths which are obtained by concatenating ad-
jacent contributions and resulting in corrections that are negligible only for small times
t. In what follows we shall overcome these limitations by focusing on the special case of
linear spin chains which allows for a proper account of the relevant paths. Finally we
shall see how it is possible to exploit the perturbative expansion approach to also derive
a lower bound for ∥[Â(t), B̂]∥.

While in principle the perturbative expansion approach can be adopted to discuss
arbitrary topologies of the network, in order to get a closed formula for the final expression
we shall restrict the analysis to the case of two single sites (i.e. |A| = |B| = 1) located at
the end of a N -long, 1-D spin chain with next-neighbour interactions (i.e. d = N − 1).
Accordingly we shall write the Hamiltonian (A.4) as

Ĥ :=
N−1∑
i=1

ĥi , (A.32)
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with ĥi operators acting non trivially only on the i-th and (i+1)-th spins, hence fulfilling
the condition

[ĥi, ĥj ] = 0 , ∀|i− j| > 1 . (A.33)

A.4.1 Upper bound

Adopting the Baker-Campbell-Hausdorff formula we write

[Â(t), B̂] = [Â, B̂] +
∞∑
k=1

(it)k

k!
[
[Ĥ, Â]k, B̂

]
, (A.34)

where for k ≥ 1,

[Ĥ, Â]k := [

k times︷ ︸︸ ︷
Ĥ, [Ĥ, [· · · , [Ĥ, [Ĥ, Â]] · · · ]] , (A.35)

indicates the k-th order, nested commutator between Ĥ and Â. Exploiting the structural
properties of Eqs. (A.32) and (A.33) it is easy to check that the only terms which may give
us a non-zero contribution to the r.h.s. of Eq. (A.34) are those with k ≥ d. Accordingly
we get

[Â(t), B̂] =
∞∑
k=d

(it)k

k!
[
[Ĥ, Â]k, B̂

]
, (A.36)

which leads to

∥[Â(t), B̂]∥ ≤
∞∑
k=d

|t|k

k! ∥[[Ĥ, Â]k, B̂]∥ , (A.37)

via sub-additivity of the norm. To proceed further we observe that

∥[[Ĥ, Â]k, B̂]∥ ≤ 2∥Â∥∥B̂∥∥2Ĥ∥k , (A.38)

which for sufficiently small times t yields

∥[Â(t), B̂]∥ ≃ |t|d

d! ∥[[Ĥ, Â]d, B̂]∥

≤ 2∥Â∥∥B̂∥

(
2∥Ĥ∥|t|

)d
d!

≤ 2∥Â∥∥B̂∥√
2πd

(
2 e∥Ĥ∥ |t|

d

)d
, (A.39)

where in the last passage we adopted the lower bound on d! that follows from the Stirling’s
inequalities

(d/e)d
√
e2d ≥ d! ≥ (d/e)d

√
2πd , (A.40)

Equation (A.39) exhibits a polynomial behaviour similar to the one observed in Eq. (A.19)
(notice that if instead of next-neighbour we had next-D̄-neighbours interaction the first
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not null order will be the ⌈ d
D̄

⌉-th one and accordingly, assuming d/D̄ to be integer, the
above derivation will still hold with d replaced by d/D̄). Yet the derivation reported
above suffers from two main limitations: first of all it only holds for sufficiently small t
due to the fact that we have neglected all the terms of (A.37) but the first one; second the
r.h.s of Eq. (A.39) has a direct dependence on the total size N of the system carried by
∥Ĥ∥, i.e. on the distance d connecting the two sites. Both these problems can be avoided
by carefully considering each “nested” commutator [[Ĥ, Â]k, B̂] entering (A.37). Indeed
given the structure of the Hamiltonian and the linearity of commutators, it follows that
we can write

[[Ĥ, Â]k, B̂] =
N−1∑

i1,i2,··· ,ik=1
[Ĉ(k)
i1,i2,··· ,ik(Â), B̂] , (A.41)

where for i1, i2, · · · , ik ∈ {1, 2, · · · , N − 1} we have

Ĉ
(k)
i1,i2,··· ,ik(Â) := [ĥik , [ĥik−1 , · · · , [ĥi2 , [ĥi1 , Â]] · · · ]] . (A.42)

Now taking into account the commutation rule (A.33) and of the fact that Â and B̂ are
located at the two opposite ends of the chain, it turns out that only a limited number

nk ≤
(
k

d

)
dk−d = k! dk−d

d!(k − d)! , (A.43)

of the Nk terms entering (A.41) will have a chance of being non zero. For the sake of
readability we postpose the explicit derivation of this inequality (as well as the comment
on alternative approaches presented in Refs. [HG18, The14]) in Sec. A.4.3: here instead
we observe that using

∥[Ĉ(k)
i1,i2,··· ,ik(Â), B̂]∥ ≤ 2∥Â∥∥B̂∥(2∥ĥ∥)k , (A.44)

where now ∥ĥ∥ := max
i

∥ĥi∥, it allows us to transform Eq. (A.37) into

∥[Â(t), B̂]∥ ≤ 2∥Â∥∥B̂∥
∞∑
k=d

nk
(2|t|∥ĥ∥)k

k!

≤ 2∥Â∥∥B̂∥

(
2|t|∥ĥ∥

)d
d!

∞∑
k=0

(
2|t|∥ĥ∥d

)k
k!

= 2∥Â∥∥B̂∥

(
2|t|∥ĥ∥

)d
d! e2|t|∥ĥ∥d ,

which presents a scaling that closely resemble to one obtained in Ref. [CSE08] for finite-
range quadratic Hamiltonians for harmonic systems on a lattice. Invoking hence the
lower bound for d! that follows from (A.40) we finally get

∥[Â(t), B̂]∥ ≤ 2∥Â∥∥B̂∥√
2πd

(
2 e∥ĥ∥ |t|

d

)d
e2|t|∥ĥ∥d , (A.45)
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which explicitly shows that the dependence from the system size present in (A.39) is lost
in favour of a dependence on the interaction strength ∥ĥ∥ similar to what we observed
in Sec. A.3. In particular for small times the new inequality mimics the polynomial
behaviour of (A.19): as a matter of fact, in this regime, due to the presence of the
multiplicative term 1/

√
d, Eq. (A.45) tends to be more strict than our previous bound (a

result which is not surprising as the derivation of the present section takes full advantage
of the linear topology of the network, while the analysis of Sec. A.3 holds true for a larger,
less regular, class of possible scenarios). At large times on the contrary the new inequality
is dominated by the exponential trend e2|t|∥ĥ∥d which however tends to be overruled by
the trivial bound (A.14).

A.4.2 A lower bound

By properly handling the identity (A.36) it is also possible to derive a lower bound for
∥[Â(t), B̂]∥. Indeed using the inequality ∥Ô1 + Ô2∥ ≥ ∥Ô1∥ − ∥Ô2∥ we can write

∥[Â(t), B̂]∥ =
∥∥∥ ∞∑
k=d

(it)k

k! [[Ĥ, Â]k, B̂]
∥∥∥ (A.46)

≥ |t|d

d! ∥[[Ĥ, Â]d, B̂]∥ −
∥∥∥ ∞∑
k=d+1

(it)k

k! [[Ĥ, Â]k, B̂]
∥∥∥ ,

(notice that the above bound is clearly trivial if [[Ĥ, Â]d, B̂] is the null operator: when
this happens however we can replace it by substituting d on it with the smallest k > d
for which [[Ĥ, Â]k, B̂] ̸= 0). Now we observe that the last term appearing on the r.h.s.
of the above expression can be bounded by following the same derivation of the previous
paragraphs, i.e.

∥∥∥ ∞∑
k=d+1

(it)k

k! [[Ĥ, Â]k, B̂]
∥∥∥

≤ 2∥Â∥∥B̂∥
∞∑

k=d+1
nk

(2|t|∥ĥ∥)k

k!

≤ 2∥Â∥∥B̂∥

(
2|t|∥ĥ∥

)d
d!

∞∑
k=1

(
2|t|∥ĥ∥d

)k
k!

= 2∥Â∥∥B̂∥

(
2|t|∥ĥ∥

)d
d! (e2|t|∥ĥ∥d − 1)

≤ 2∥Â∥∥B̂∥
(

2e|t|∥ĥ∥
d

)d
e2|t|∥ĥ∥d − 1√

2πd
.
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Hence by replacing this into Eq. (A.46) we obtain

∥[Â(t), B̂]∥ ≥ |t|d

d! ∥[[Ĥ, Â]d, B̂]∥

−2∥Â∥∥B̂∥
(

2e|t|∥ĥ∥
d

)d
e2|t|∥ĥ∥d − 1√

2πd

≥ 2∥Â∥∥B̂∥√
2πd

(
2e|t|∥ĥ∥

d

)d (
Γd − (e2|t|∥ĥ∥d − 1)

)
,

(A.47)

where in the last passage we used the upper bound for d! that comes from Eq. (A.40)
and introduced the dimensionless quantity

Γd :=
√

π

2e2
∥[[Ĥ, Â]d, B̂]∥

∥Â∥∥B̂∥(2∥ĥ∥)d
, (A.48)

which can be shown to be strictly smaller than 1 (see Sec. A.4.3).
It’s easy to verify that as long as Γd is non-zero (i.e. as long as [[Ĥ, Â]d, B̂] ̸= 0), there

exists always a sufficiently small time t̄ such that ∀ 0 < t < t̄ the r.h.s. of Eq. (A.47)
is explicitly positive, implying that we could have a finite amount of correlation at a
time shorter than that required to light pulse to travel from A to B at speed c. This
apparent violation of causality is clearly a consequence of the approximations that lead
to the effective spin Hamiltonian we are working on (the predictive power of the model
being always restricted to time scales t which are larger than d(A,B)

c ). More precisely,
for sufficiently small value of t (i.e. for 2|t|∥ĥ∥d ≪ 1) the negative contribution on the
r.h.s. of Eq. (A.47) can be neglected and the bound predicts the norm of [Â(t), B̂] to
grow polynomially as td, i.e.

∥[Â(t), B̂]∥ >∼
2∥Â∥∥B̂∥√

2πd

(
2e|t|∥ĥ∥

d

)d
Γd , (A.49)

which should be compared with

∥[Â(t), B̂]∥ <∼
2∥Â∥∥B̂∥√

2πd

(
2e|t|∥ĥ∥

d

)d
, (A.50)

that, for the same temporal regimes is instead predicted from the upper bound (A.45).

A.4.3 Counting commutators

Here we report the explicit derivation of the inequality (A.43). The starting point of the
analysis is the recursive identity

Ĉ
(k)
i1,i2,··· ,ik(Â) = [ĥik , Ĉ

(k−1)
i1,i2,··· ,ik−1

(Â)] , (A.51)
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which links the expression for nested commutators (A.42) of order k to those of order
k − 1. Remember now that the operator Â is located on the first site of the chain.
Accordingly, from Eq. (A.33) it follows that

Ĉ
(1)
i (Â) = [ĥi, Â] = 0 , ∀i ≥ 2 , (A.52)

i.e. the only possibly non-zero nested commutator of order 1 will be the operator
Ĉ

(1)
1 (Â) = [ĥ1, Â] which acts non trivially on the first and second spin. From this and

the recursive identity (A.51) we can then derive the following identity for the nested
commutator of order k = 2, i.e.

Ĉ
(2)
1,i2(Â) = 0 , ∀i2 ≥ 3 , (A.53)

Ĉ
(2)
i1,i2

(Â) = 0 , ∀i1 ≥ 2 and ∀i2 ≥ 1 , (A.54)

the only terms which can be possibly non-zero being now Ĉ
(2)
1,1 (Â) and Ĉ(2)

1,2 (Â) = [ĥ2, [ĥ1, Â]],
the first having support on the first and second spin of the chain, the second instead being
supported on the first, second, and third spin. Iterating the procedure it turns out that
for generic value of k, the operators Ĉ(k)

i1,i2,··· ,ik(Â) which may be explicitly not null are
those for which we have{

i1 = 1 ,
ij ≤ max{i1, i2, · · · , ij−1} + 1 , ∀j ∈ {2, · · · , k} , (A.55)

the rule being that passing from Ĉ
(k−1)
i1,i2,··· ,ik−1

(Â) to Ĉ(k)
i1,i2,··· ,ik(Â), the new Hamiltonian

element ĥik entering (A.51) has to be one of those already touched (except the first one
[ĥ1, A]) or one at distance at most 1 to the maximum position reached until there. We
also observe that among the element Ĉ(k)

i1,i2,··· ,ik(Â) which are not null, the one which
have the largest support are those that have the largest value of the indexes: indeed
from (A.51) it follows that the extra commutator with ĥik will create an operator whose
support either coincides with the one of Ĉ(k−1)

i1,i2,··· ,ik−1
(Â) (this happens whenever ik belongs

to {i1, i2, · · · , ik−1}), or it is larger than the latter by one (this happens instead for
ik = max{i1, i2, · · · , ik−1} + 1). Accordingly among the nested commutators of order k
the one with the largest support is

Ĉ
(k)
1,2,··· ,k(Â) = [ĥk, [ĥk−1, · · · , [ĥ2, [ĥ1, Â]] · · · ]] , (A.56)

that in principle operates non trivially on all the first k+1 elements of the chain. Observe
then that in order to get a non-zero contribution in (A.41) we also need the succession ĥi
entering Ĉ(k)

i1,i2,··· ,ik(Â) to touch at least once the support of B̂. This, together with the
prescription just discussed, implies that at least once every element ĥi between A and B
has to appear, and the first appearance of each ĥi has to happen after the first appearance
of ĥi−1. In summary we can think each nested commutator of order k as a numbered set
of k boxes fillable with elements ĥi (see Fig. A.2 (a)) and, keeping in mind the rules just
discussed, we want to count how many fillings give us non zero commutators. Starting
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Ĉ
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(Â)

Figure A.2: Panel (a): Pictorial representation of the nested commutator Ĉ(k)
1,2,··· ,k(Â)

as a set of boxes, each one fillable with a ĥi; Panel (b): representation of the only nested
commutator which for the case k = d admits a non-zero value for the commutation with
B̂; Panel (c): case k = d+ n with n ≥ 1. Here the boxes indicated with the asterisk can
be filled depending on their position, for instance here the box before ĥ1 could contain
only ĥ1 while the one after ĥd could contain any.

from k = d, we have only one possibility, i.e. the element Ĉ(d)
1,2,··· ,d(Â), see Fig. A.2 (b).

This implies

[[Ĥ, Â]d, B̂] = [Ĉ(d)
1,2,··· ,d(Â), B̂] (A.57)

= [[ĥd, [ĥd−1, · · · , [ĥ2, [ĥ1, Â]] · · · ]], B̂] ,

and hence by sub-additivity of the norm, to

∥[[Ĥ, Â]d, B̂]∥ ≤ 2∥Â∥∥B̂∥(2∥ĥ∥)d , (A.58)

which leads to Γd ≤
√

2π/e2 ≃ 0.923 as anticipated in the paragraph below Eq. (A.48).
Consider next the case k = d+n with n ≥ 1. In this event we must have at least d boxes
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filled with each ĥi between Â and B̂. Once we fix them, the content of the remaining
k = n − d boxes (indicated by an asterisk in panel (c) of Fig. A.2) depends on their
position in the sequence: if one of those is before the first ĥ1 it will be forced to be ĥ1, if
it’s before the first ĥ2 it will be ĥ1 or ĥ2 and so on until the one before the first ĥd, which
will be anyone among the ĥi. So in order to compute the number nk of non-zero terms
entering (A.41) we need to know in how many ways we can dispose the empty boxes in the
sequence: since empty boxes (as well as the ones necessarily filled) are indistinguishable
there are

(k
n

)
=
(k
d

)
ways. For each way we’d have to count possible fillings, but there’s

not a straightforward method to do it so we settle for an upper bound. The worst case
is the one in which all empty boxes come after the first ĥd, so that we have dn fillings,
accordingly we can bound nk with

(k
n

)
dn =

(k
d

)
dk−d leading to Eq. (A.43).

As mentioned at the beginning of the section a technique similar to the one reported
here has been presented in the recent literature expressed in [HG18, The14]. These
works also results in a polynomial upper bound for the commutator, yet it appears that
the number of contributions entering in the parameter nk could be underestimated, and
this underestimation is negligible only at orders k ≃ d or, equivalently, at small times.
Specifically in [The14], which exploits intermediate results from [NRSS09, NOS06], the
bound is obtained from the iteration of the inequality:

CB(t,X) ≤ CB(0, X) + 2
∑
Z∈∂X

∫ |t|

0
ds CB(s, Z)∥ĤZ∥, (A.59)

where CB(t,X) = ∥[A(t), B̂]∥, X is the support of A and ∂X is the surface of the
set X. The iteration adopted in [The14] produces an object that involve a summation
of the form

∑
Z∈∂X

∑
Z1∈∂Z

∑
Z2∈∂Z1

· · · . This selection however underestimates the actual

number of contributing terms. Indeed in the first order of iteration Z ∈ ∂X takes
account of all Hamiltonian elements non commutating with Â, but the next iteration
needs to count all non commuting elements, given by Z1 ∈ ∂Z and Z ∈ ∂X. So the
generally correct statement, as in Ref. [NOS06], would be

∑
Z∩X ̸=∅

∑
Z1∩Z ̸=∅

∑
Z2∩Z1 ̸=∅

· · · .

The above discrepancy is particularly evident when focusing on the linear spin chain case
we consider here. Taking account only of surface terms in the nested commutators in
Eq. (A.37), among all the contributions which can be non-zero according to Eq. (A.55),
we would have included only those with ij+1 = ij + 1. This corrections are irrelevant at
the first order in time in Eq. (A.37) but lead to underestimations in successive orders. In
[The14] the discrepancy is mitigated at first orders by the fact that the number of paths
of length L considered is upper bounded by N1(L) := (2(2δ − 1))L with δ dimensions of
the graph. But again at higher orders this quantity is overcome by the actual numbers
of potentially not null commutators (interestingly in the case of 2-D square lattice N1(L)
could be found exactly, shrinking at the minimum the bound, see [GKS92]). Similarly
is done in [HG18], where, in the specific case of a 2-D square lattice, to estimate the
number of paths of length L a coordination number C is used, which gives an upper
bound N2(L) := (2C − 1)L that for higher orders is again an underestimation. To better
visualize why this is the case, let’s consider once more the chain configuration. Following
rules of Eq. (A.55) we understood that nested commutators Ĉ(k)

i1,i2,··· ,ik(Â) with repetitions
of indexes. So with growing k the number of possibilities for successive terms in the
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commutator grows itself: this is equivalent to a growing dimension δ(k) or coordination
number C(k). For instance we can study the multiplicity of the extensions of the first
not null order Ĉ(d)

1,2,··· ,d(Â). Since the support of this commutator has covered all links
between A and B we can choose among d possibilities (not taking into account possible
sites beyond B and before A, depending on the geometry of the chain we choose), we’ll
have then dL−d possibilities at the L-th order: for suitable d and n we shall have dL−d >
N1(L), N2(L). This multiplicity is relative to a single initial path, so we do not even need
to count also the different possible initial paths one can construct with d + l steps s.t.
d+ l < L.

In summary, the polynomial behaviour found previously in the literature is solid at
the first order but could not be at higher orders.

A.5 Simulation for a Heisenberg XY chain
Here we test the validity of our results presented in the previous section for a reason-
ably simple system such as a uniformly coupled, next-neighbour Heisenberg XY chain
composed by L spin-1/2, described by the following Hamiltonian:

Ĥ = J
L−1∑
i=0

σ̂xi σ̂
x
i+1 + σ̂yi σ̂

y
i+1 . (A.60)

As local operators Â and B̂ we adopt two σ̂z operators, acting respectively on the first
and last spin of the chain, so that ∥Â∥ = ∥B̂∥ = 1. Employing QuTiP [JNN12, JNN13]
we perform the numerical evaluation for ∥[Â(t), B̂]∥ varying the length of the chain L.
(Fig. A.3).
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Figure A.3: (Color online): Simulation of ∥[Â(t), B̂]∥ for different chain lengths L for
the Heisenberg XY linear spin-chain.
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Figure A.4: (Color online): Plot of the value of Γd defined in Eq. (A.48) for different
values of the chain length L, d being fixed equal to L−1. Notice that all values are below√

2π/e2 (dashed line) which is provably the largest value this parameter can achieve.

We are interested in the comparison between these results with the expressions ob-
tained for the upper bound (A.45), the lower bound (A.47), and the simplified lower
bound at short times (A.49). The time domain in which the simplified lower bound
stands depends also on the value of the parameter Γd specified in Eq. (A.48), which we
understood to be ≤

√
2π/e2 but which we need reasonably large in order to produce a

detectable bound in the numerical evaluation. In Fig. A.4 values of Γd for different chain
lengths L (s.t. d = L − 1) are reported. The magnitude of Γd exhibits an exponential
decrease with the size of the chain L. The results of our simulations are presented in
Fig. A.5 for the cases L = 4 and L = 10. The upper bound (A.45), as well as the lower
bound (A.47) should result to be universal, i.e. to hold for every t, although being the
latter trivial at large times. This condition is satisfied for every L at every t analysed
(we performed the simulation for 2 ≤ L ≤ 12). For what concerns the simplified lower
bound (A.49), we would expect its validity to be guaranteed only for sufficiently small
t and as a matter of fact we find the time domain of validity to be limited at relatively
small times (see e.g. the histograms in Fig. A.5).
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Figure A.5: (Color online): Simulation and bounds of the function ∥[Â(t), B̂]∥ for
a L = 4 spin-chain (upper panel) and for a L = 10 spin-chain (lower panel). The plot
shows upper bound (A.45) (blue curve) lower bound (A.47) (green curve), simplified lower
bound (A.49) (red) and numerical simulation (black). The coloured bars above the plots
outline the time domain in which the each bound (identified by the same colors) results
to be valid. As expected the simplified bound stands only for sufficiently small times. In
all cases the simulation and the simplified lower bound are comparable in magnitude so
that their curves are hardly distinguishable. In the case of L = 10 the complete lower
bound (A.47) (green) is considerably small, hence not visible.
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A.6 Conclusions
The study of the L-R inequality we have presented here shows that for a large class of
spin-network models characterized by couplings that are of finite range, the correlation
function ∥[Â(t), B̂]∥ can be more tightly bounded by a new constraining function that
exhibits a polynomial dependence with respect to time, and which, for sufficiently large
distances, allows for a precise definition of a maximum speed of the signal propagation, see
Eq. (A.23). Our approach does not rely on often complicated graph-counting arguments,
instead is based on an analytical optimization of the original inequality [LR72] with
respect to all free parameters of the model (specifically the λ parameter defining via
Eq. (A.7) the convergence of the Hamiltonian couplings at large distances). Yet, in the
special case of linear spin-chain, we do adopt a graph-counting argument to present an
alternative derivation of our result and to show that a similar reasoning can be used to
also construct non-trivial lower bounds for ∥[Â(t), B̂]∥ when the two sites are located at
the opposite ends of the chain. Possible generalizations of the present approach can be
foreseen by including a refined evaluation of the dependence upon λ of Eq. (A.7), that
goes beyond the one we adopted in Eq. (A.16).

We point out that during the preparation of the manuscript on which this Chapter
is based a similar result as the one presented in Eq. (A.50) for a chain appeared in
Ref. [CL21].
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B
Appendices to Multi-level amplitude damping

channels, a capacity analysis

B.1 MAD channels: Mathematical prerequisites

Here we review some basic notions on quantum channels and quantum capacities that
are extensively used in the main text.

B.1.1 Complementary channels and degradability

A CPTP map Φ : L(HA) → L(HB) can be seen as the evolution induced by an isometry
V̂ : HA → HB ⊗ HE involving an environment E, called Stinespring dilation [Cho75,
Sti55]. Specifically for all input states ρA ∈ SA we can write

Φ(ρ̂A) = TrE[V̂ ρ̂AV̂ †]. (B.1)

If instead we trace out the degrees of freedom in B we obtain the complementary (or
conjugate) channel Φ̃ : L(HA) → L(HE), i.e.

Φ̃(ρ̂A) = TrB[V̂ ρ̂AV̂
†] . (B.2)

Being M̂k the Kraus operators generating Φ and |k⟩E a basis for the environment, the
operator V̂ can be written as:

V̂ =
∑
k

M̂k ⊗ |k⟩E , (B.3)

and being
V̂ ρ̂AV̂

† =
∑
i,j

M̂iρ̂AM̂j
† ⊗ |i⟩E⟨j| , (B.4)

135
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it’s straightforward to verify that Eq. (B.2) can be equivalently expressed as

Φ̃(ρ̂A) =
∑
i,j

TrB[M̂iρ̂AM̂j
†] |i⟩E⟨j| . (B.5)

A fact that it is worth mentioning, as it will play a fundamental role in our analysis,
is that [Hol07] for a channel Φ that is covariant under a unitary representation of some
group G, i.e.

Φ(ÛA
g ρ̂Û

A†
g ) = ÛB

g Φ(ρ̂)ÛB†
g , ∀ρ̂ ∈ S(H),∀g ∈ G , (B.6)

then also the complementary channel Φ̃ is covariant under the same transformations, i.e.

Φ̃(ÛA
g ρ̂Û

A†
g ) = ÛE

g Φ̃(ρ̂)ÛE†
g , ∀ρ̂ ∈ S(H), ∀g ∈ G , (B.7)

where for X=A,B,E, ÛX
g is the unitary operator that represents the element g of the

group G in the output space X.
We finally recall the definition of degradable and anti-degradable channels [DS05]. A

quantum channel Φ is said degradable if a CPTP map N : L(HB) → L(HE) exists s.t.

Φ̃ = N ◦ Φ, (B.8)

while it’s said antidegradable if it exists a CPTP map M : L(HE) → L(HB) s.t.

Φ = M ◦ Φ̃, (B.9)

(the symbol “◦" representing channel concatenation). Notice that in case Φ is mathe-
matically invertible, a simple direct way to determine whether it is degradable or not is
to formally invert (B.8) constructing the super-operator Φ̃ ◦ Φ−1 and check whether such
object is CPTP (e.g. by studying the positivity of its Choi matrix) [WPG07, SS07], i.e.
explicitly

Φ invertible =⇒ Φ degradable iff Φ̃ ◦ Φ−1 is CPTP . (B.10)
Concretely this can be done by using the fact that since quantum channels are linear
maps connecting vector spaces of linear operators, they can in turn being represented as
matrices acting on vector spaces. This through the following vectorization isomorphism:

ρ̂A =
∑
ij

ρij |i⟩A⟨j| −→ |ρ⟩⟩ =
∑
ij

ρij |i⟩A ⊗ |j⟩A ∈ H⊗2
A

(B.11)
Φ(ρ̂A) −→ M̂Φ |ρ⟩⟩ ,

where now M̂Φ is a d2
B×d2

A matrix connecting H⊗2
A and H⊗2

B (dA and dB being respectively
the dimensions of HA and HB), which given a Kraus set {M̂k}k for Φ it can be explicitly
expressed as

M̂Φ =
∑
k

M̂k ⊗ M̂k
∗
. (B.12)

Following Eq. (B.8) we have hence that for a degradable channel the following identity
must apply

M̂Φ̃ = M̂N M̂Φ, (B.13)

with M̂N the matrix representation of the CPTP connecting channel N , implying that
the super-operator Φ̃ ◦ Φ−1 is now represented by matrix M̂Φ̃M̂

−1
Φ .
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B.1.2 The quantum capacity of a quantum channel

The quantum capacity Q(Φ) is a measure of how faithfully quantum states can transit
from the input to the output of the quantum channel Φ by exploiting proper encoding
and decoding procedures that act on multiple transmission stages [Hol19, Wil17, Wat18,
HG12], see Sec. 3.3.3 in Chapter 3. A close, yet cumbersome, expression for Q(Φ) can
be obtained in the form [Llo97, Sho02b, Dev05]

Q(Φ) = lim
n→∞

max
ρ̂(n)∈S(H⊗n)

1
n
Icoh(Φ⊗n, ρ̂(n)), (B.14)

where ρ̂(n) is a generic joint density matrix belonging to the input Hilbert space H⊗n on
which the tensor extension Φ⊗n of Φ acts. The quantity appearing in the right-hand-side
of Eq. (B.14) is the coherent information functional

Icoh(Φ⊗n, ρ̂(n)) ≡ S(Φ⊗n(ρ̂(n))) − S(Φ̃⊗n(ρ̂(n))), (B.15)

with S(· · · ) ≡ −Tr[· · · log2 · · · ] the von Neumann entropy [Hol19] and with Φ̃ the com-
plementary channel of Φ introduced in the previous section.

The expression in Eq. (B.14) isn’t in general easily computable due to the fact that
the coherent information functional is typically non sub-additive, making hard to take
care of the regularization limit on n: removing it will in general produce just a lower
bound to Q(Φ), i.e.

Q(Φ) ≥ Q(1)(Φ) ≡ max
ρ̂∈S(H)

Icoh(Φ, ρ̂) , (B.16)

where now the maximization is performed on all possible input states ρ̂ of a single appli-
cation of Φ. Things however simplify a lot if Φ is antidegradable [CG06] or degradable
[DS05]. Indeed in the first case one can invoke a no cloning argument to directly conclude
that Q(Φ) = 0. In the second case instead, the gap in Eq. (B.16) closes allowing us to
compute Q(Φ) as

Q(Φ) = Q(1)(Φ) ≡ max
ρ̂∈S(H)

Icoh(Φ, ρ̂). (B.17)

Besides allowing for the single-letter simplification (B.17), another important consequence
of the degradability property (B.8) is the fact that, for channels fulfilling such condition,
the coherent information (B.15) is known to be concave [YHD08, WPG07] with respect
to the input state ρ̂, i.e.

Icoh(Φ,
∑
k

pkρ̂k) ≥
∑
k

pkIcoh(Φ, ρ̂k) , (B.18)

for all statistical ensemble of input states {pk; ρ̂k}. This last inequality allows for some
further drastic simplification in particular when the channel Φ is covariant under a group
of unitary transformations as in Eq. (B.6). Indeed thanks to results in Ref. [Hol07] and
the invariance of the von Neumann entropy under unitary operations we can now observe
that

Icoh(Φ, ÛA
g ρ̂Û

A†
g ) = S(Φ(ÛA

g ρ̂Û
A†
g ) − S(Φ̃(ÛA

g ρ̂Û
A†
g ))

= S(ÛB
g Φ(ρ̂)ÛB†

g ) − S(ÛE
g Φ̃(ρ̂)ÛE†

g )
= Icoh(Φ, ρ̂) , (B.19)
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for all input states and for all elements g of the group. Given then a generic input
state ρ̂ of the system, construct the following ensemble of density matrices {dµ(g); ρ̂g}
with dµ(g) some properly defined probability distribution on G and with ρ̂g ≡ ÛA

g ρ̂Û
A†
g .

Defining then

ΛG[ρ̂] ≡
∫
dµgρ̂g =

∫
dµgÛ

A
g ρ̂Û

A†
g , (B.20)

the average state of {dµ(g); ρ̂g} we notice that if Φ is degradable the following inequality
holds true:

Icoh(Φ,ΛG[ρ̂]) ≥
∫
dµgIcoh(Φ, ÛA

g ρ̂Û
A†
g ) = Icoh(Φ, ρ̂) , (B.21)

where in the last passage we used the invariance (B.19). Accordingly we can now restrict
the maximization in Eq. (B.17) to only those input states ρ̂G which result from the
averaging operation (B.20), i.e.

Q(Φ) = Q(1)(Φ) = max
ρ̂G

Icoh(Φ, ρ̂G). (B.22)

For the special case of the MAD channels D introduced in Sec. 5.2, thanks to Eq. (5.4)
we can identify the group G with the set of unitary operations which are diagonal in the
computational basis {|i⟩}i=0,··· ,d−1. Taking dµg a flat measure, Eq. (B.20) allows us to
identify ΛG[ρ̂] with the density matrices of A which are diagonal as well, i.e.

ΛG[ρ̂] = diag[ρ̂] , (B.23)

and therefore to derive from (B.22) the following compact expression:

Q(D) = Q(1)(D) = max
ρ̂diag

Icoh(D, ρ̂diag), (B.24)

which for dC = 3 reduces to Eq. (5.28) of the main text. For completeness we report also
an alternative, possibly more explicit way to derive (B.24). This is obtained by observing
that a special instance of the unitaries which are diagonal in the computational basis of
a MAD channel and hence fulfill the identity (5.4), is provided by the subgroup OD(d)
formed by the operators represented by the diagonal d × d matrices for which all the
non-zero (and diagonal) elements are ±1. Clearly the identity operator 1̂ is an element
of OD(d) and the group is finite with 2d elements. Given then an arbitrary input state ρ̂
of A, construct then the ensemble {pk; ρ̂k} formed by the density matrices ρ̂k ≡ Ôkρ̂Ô

†
k,

with Ôk being the k-th element of OD(d), and by a flat probability set pk = 1/2d. It
can be shown [STA18] that the average state of {pk; ρ̂k} is diagonal in the computational
basis, i.e.

1
2d

2d−1∑
k=0

Ôkρ̂Ô
†
k = diag(ρ̂) , (B.25)

from which (B.24) can once more be derived as a consequence of (B.22) for all degradable
D.
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B.1.3 Private Classical Capacity

The private classical capacity Cp(Φ) of a quantum channel Φ quantifies the amount of
information that the sender and the receiver of the messages can exchange privately, i.e.
without a third party able to extract information from the communication line. This
quantity provides a natural upper bound for Q(Φ), i.e.

Q(Φ) ≤ Cp(Φ) , (B.26)

and a closed formula for it is given in [Dev05, CWY04]:

Cp(Φ) = lim
n→∞

1
n
C(1)

p (Φ⊗n). (B.27)

where now, given a generic quantum ensemble E := {pi, ρ̂i} at the input of the channel
Φ, the one-shot expression C

(1)
p (Φ) is computed as

C(1)
p (Φ) = max

E

(
χ(Φ, E) − χ(Φ̃, E)

)
, (B.28)

with

χ(Φ, E) ≡ S(Φ(
∑
i

piρ̂i)) −
∑
i

piS(Φ(ρ̂i) , (B.29)

the Holevo information [Hol19, Wil17, Wat18] of the ensemble E computed at the out-
put of the channel Φ. Since χ(Φ, E) is not additive [LWZG09], the relation between
the one-shot formula and the asymptotic formula is not trivial, making the computation
of the latter difficult in general. Nonetheless if the channel considered is degradable
or antidegradable the task of finding the regularized private classical capacity simpli-
fies [Smi08]: indeed for degradable maps Φ we have

Cp(Φ) = Q(Φ) = Q(1)(Φ). (B.30)

while for anti-degradable maps one has Cp(Φ) = Q(Φ) = Q(1)(Φ) = 0.

B.1.4 Entanglement assisted quantum capacity

The entanglement assisted quantum capacity Qea(Φ) of the quantum channel Φ quan-
tifies the amount of quantum information transmittable per channel use assuming the
communicating parties to share an arbitrary amount of entanglement. A closed expres-
sion for it has been provided in Ref. [BSST99, BSST02] and results in an expression
which, in contrast to the quantum capacity formula, doesn’t need a regularization w.r.t.
to the number of channel uses, i.e.

QE(Φ) = 1
2 max
ρ̂∈S(H)

I(Φ, ρ̂), (B.31)

where now

I(Φ, ρ̂) ≡ S(ρ̂) + Icoh(Φ, ρ̂)
= S(ρ̂) + S(Φ(ρ̂)) − S(Φ̃(ρ̂)) , (B.32)
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is the quantum mutual information functional. As in the case of Cp(Φ), QE(Φ) provides
a natural upper bound for Q(Φ).

We remind that I(Φ, ρ̂) is concave in the input state [Wil17], i.e.

I(Φ,
∑
k

pkρ̂k) ≥
∑
k

pkI(Φ, ρ̂k) , (B.33)

for all ensembles {pk, ρ̂k}. Exploiting this fact, in case the channel Φ is covariant under
the action of some group of unitary transformations as in Eq. (B.6), we can hence follow
the same derivation detailed at the end of the previous section to claim that

Qea(Φ) = 1
2 max

ρ̂G

I(Φ, ρ̂G), (B.34)

where now we can restrict the maximization in Eq. (B.31) to only those input states ρ̂G
which result from the averaging operation (B.20). Applying this to the covariance (5.4)
of MAD channels with respect to the unitary transformations which are diagonal in the
computational basis finally yields to Eq. (5.76) of the main text.
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C.1 Stinespring representation, Kraus operators and com-
plementary channels

A completely positive and trace preserving (CPTP) [Cho75] map Φ : L(HS) → L(HS′)
can be thought as the evolution induced by an isometry V̂ : HS → HS′ ⊗ HE from the
input system S to the output system S’ and the environment E. This isometry is called
Stinespring dilation [Sti55]. Specifically for all input states ρS ∈ SS we can write the
action of Φ as

Φ(ρ̂S) = TrE[V̂ ρ̂SV̂
†]. (C.1)

Tracing out the degrees of freedom in S’ we obtain instead the complementary (or con-
jugate) channel Φ̃ : L(HS) → L(HE), i.e.

Φ̃(ρ̂S) = TrS′ [V̂ ρ̂SV̂
†] . (C.2)

In general the isometry V can be extended to a unitary matrix Û : HS ⊗HE → HS′ ⊗HE′

s.t. Eqs (C.1) and (C.2) become

Φ(ρ̂S) = TrE[Û ρ̂SÛ
†] , Φ̃(ρ̂S) = TrS′ [Û ρ̂SÛ

†] . (C.3)

Now, assuming the set of Kraus operators M̂k generating Φ to be known, and being
|k⟩E a basis for the environment, the operator V̂ can be written as:

V̂ =
∑
k

M̂k ⊗ |k⟩E , (C.4)

and being
V̂ ρ̂SV̂

† =
∑
i,j

M̂iρ̂SM̂j
† ⊗ |i⟩⟨j|E , (C.5)
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it’s straightforward to verify that Eq. (C.2) can be equivalently expressed as

Φ̃(ρ̂S) =
∑
i,j

TrS′ [M̂iρ̂SM̂j
†] |i⟩⟨j|E . (C.6)

If instead, as in our case, we want do characterize our channel starting from its action
on the levels of S and the environment E like we do in Eq. (6.1) (that is equivalent to
specifying V̂ ) we can retrieve Kraus operators. This is done by noticing that

V̂ =
∑
s,s′,e

Vs,s′e

∣∣s′〉
S′ |e⟩E⟨s|S ,

M̂k =
∑
s,s′

Mk s,s′
∣∣s′〉

S′⟨s|S , (C.7)

then by Eq. (C.4) follows
Mk s,s′ = Vs,s′e . (C.8)

The isometry V̂ for our class of channels is specified by Eqs. (6.1) that give

V̂ = |0⟩S′ |0⟩E⟨0|S +
d−1∑
j=1

√
1 −

∑
l<j

γjl |j⟩S′ |0⟩E⟨j|S +
d−1∑
j=1

j∑
k=1

√
γj,j−k |j − k⟩S′ |k⟩E⟨j|S .

(C.9)

From Eq. (C.8) wee have that if the dimension of S is d

K̂0 =
d−1∑
l=0

√
1 −

∑
l<j

γjl |j⟩⟨j| ,

K̂k =
d−k−1∑
l=0

√
γk+l,l |l⟩⟨k + l| . (C.10)

C.2 Degradability and antidegradability
We recall here the definitions of degradable and anti-degradable channels [DS05, CG06].
A quantum channel Φ : L(HS) → L(H′

S) is said degradable if a CPTP map D : L(HS′) →
L(HE) exists s.t.

Φ̃ = D ◦ Φ , (C.11)
while it’s said antidegradable if it exists a CPTP map A : L(HE) → L(HS′) s.t.

Φ = A ◦ Φ̃ , (C.12)

(the symbol “◦" representing channel concatenation). In case Φ is mathematically in-
vertible, a simple direct way to determine whether it is degradable or not is to formally
invert the composition in Eq. (C.11) constructing the super-operator D = Φ̃ ◦ Φ−1 and
check whether such object is CPTP [WPG07, SS07]. This check can be performed by
studying the positivity of the Choi matrix CD of D, that is

CD = (IR ⊗ DS) |Γ⟩⟨Γ|RS , with |Γ⟩RS =
d−1∑
i=0

|i⟩R |i⟩S . (C.13)
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Summarizing we have

Φ invertible =⇒ Φ degradable iff D = Φ̃ ◦ Φ−1 is CPTP . (C.14)

Concretely this inversion can be done by exploiting the fact that quantum channels are
linear maps connecting vector spaces of linear operators. They can in turn be repre-
sented as matrices acting on vector spaces. This through the following “vectorization”
isomorphism:

ρ̂S =
∑
ij

ρij |i⟩⟨j|S −→ |ρ⟩⟩ =
∑
ij

ρij |i⟩S ⊗ |j⟩S ∈ H⊗2
S ,

(C.15)
Φ(ρ̂S) −→ M̂Φ |ρ⟩⟩ ,

where now M̂Φ is a d2
S′ ×d2

S matrix connecting H⊗2
S and H⊗2

S′ (dS and dS′ being respectively
the dimensions of HS and HS′), which given a Kraus set {K̂i}i for Φ it can be explicitly
expressed as

M̂Φ =
∑
i

K̂i ⊗ K̂∗
i . (C.16)

Following Eq. (C.11) we have hence that for a degradable channel the following identity
must apply

M̂Φ̃ = M̂DM̂Φ , (C.17)
with M̂D the matrix representation of the CPTP connecting channel D, implying that
the super-operator Φ̃ ◦ Φ−1 is now represented by matrix M̂Φ̃M̂−1

Φ .

A completely similar argument can be made for the antidegrading channel A.

C.3 Covariance and coherent information
A feature that’s typical of amplitude damping channels is covariance. In brief, we have
that [Hol07] for a channel Φ that is covariant under a unitary representation of some
group G, i.e.

Φ(ÛS
g ρ̂Û

S†
g ) = ÛS′

g Φ(ρ̂)ÛS′†
g , ∀ρ̂ ∈ S(H), ∀g ∈ G , (C.18)

then also the complementary channel Φ̃ is covariant under the same transformations, i.e.

Φ̃(ÛS
g ρ̂Û

S†
g ) = ÛE

g Φ̃(ρ̂)ÛE†
g , ∀ρ̂ ∈ S(H), ∀g ∈ G , (C.19)

where for X=S,S’,E, ÛX
g is the unitary operator that represents the element g of the

group G in the output space X.

ReMAD channels exhibit a covariance property under the unitary group composed
by the following transformations:

ÛS(θ) =
d−1∑
j=0

e−ijθ |j⟩⟨j|S , (C.20)

ÛE(θ) =
d−1∑
j=0

e−ijθ |j⟩⟨j|E , (C.21)
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with θ real. Specifically:

Φγ⃗(ÛS(θ)ρ̂Û †
S(θ)) =

d−1∑
k=0

d−1∑
j,j′=k

ρj,j′ e−i(j−j′)θ√γj,kγj′,k |j − k⟩
〈
j′ − k

∣∣
S = ÛS(θ)Φγ⃗(ρ̂)Û †

S(θ) ,

(C.22)
and similarly for the complementary channel Φ̃γ⃗ we get

Φ̃γ⃗(ÛS(θ)ρ̂Û †
S(θ)) =

d−1∑
k=0

d−1∑
j,j′=k

ρj,j′ e−i(j−j′)θ
√
γ̃j,kγ̃j′,k |j − k⟩

〈
j′ − k

∣∣
E = ÛE(θ)Φ̃γ⃗(ρ̂)Û †

E(θ) .

(C.23)

C.3.1 Application to the maximization of coherent information and
mutual information

Covariance proves very useful in the computation of the quantum capacity.
As a matter of fact, since for degradable channels the coherent information is concave
w.r.t. the input state [YHD08], the covariance of Φγ⃗ and Φ̃γ⃗ implies that

Icoh

(
Φγ⃗ ,

∫
dθ

2π ÛS(θ)ρ̂Û †
S(θ)

)
≥

∫
dθ

2πIcoh
(
Φγ⃗ , ÛS(θ)ρ̂Û †

S(θ)
)

=
∫
dθ

2πS(Φγ⃗(ÛS(θ)ρ̂Û †
S(θ)) − S(Φ̃γ⃗(ÛS(θ)ρ̂Û †

S(θ))

= Icoh
(
Φγ⃗ , ρ̂

)
, (C.24)

where in the last equality we made use of the invariance of von Neumann entropy under
unitary transformations. Observing then that

∫
dθ

2π ÛS(θ)ρ̂Û †
S(θ) = ρ̂(diag) :=

d−1∑
j=0

ρj,j |j⟩S⟨j| , (C.25)

we can conclude that for degradable ReMAD channels the maximization over of (6.23)
can be restricted on the set of states ρ̂(diag) which are diagonal in the canonical basis, i.e.

Cp(Φγ⃗) = Q(Φγ⃗) = Q(1)(Φγ⃗) = max
ρ̂(diag)∈S(HS)

Icoh
(
Φγ⃗ , ρ̂

(diag)
)
. (C.26)

Something similar can be applied to the quantum mutual information I(Φ, ρ̂), that
can be defined as

I(Φ, ρ̂) = S(ρ̂) + Icoh(Φ, ρ̂) . (C.27)

Now, the Shannon entropy is always concave w.r.t. the input state but, as we saw
before, the coherent information can proved concave only when the channel is degradable.
Nevertheless the quantum mutual information is always concave in the input state [Wil17,
chapter 13.4.2] and therefore also I(Φ) can be maximized just over diagonal states if Φ
is a ReMAD channel.
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C.4 Entanglement assisted quantum and classical capaci-
ties

The discovery of protocols such as quantum teleportation [BBC+93] and superdense
coding [BW92] showed how entanglement could be leveraged as an additional resource
in order to boost the communication performance between two communicating parties.
The formalization of these entanglement-assisted protocols in Shannon-theoretic terms
was given in [BSST99, BSST02], where the entanglement-assisted classical capacity Cea
and entanglement-assisted quantum capacity Qea were introduced. The peculiarity and
the advantage with the definition of these capacities is that they are additive quantities
and don’t need a regularization. Specifically, recalling the definition of the quantum
mutual information I(Φ, ρ̂) in Eq. (C.27), we have:

Cea(Φ) = max
ρ̂∈S(HS)

I(Φ, ρ̂) , Qea(Φ) = 1
2Cea(Φ) , (C.28)

where the definition of Qea(Φ) is justified by the fact that in presence of entanglement
a qudit quantum state can be teleported ‘spending’ two classical dits (quantum telepor-
tation) and viceversa two classical dits can be communicated by sending a single qudit
(superdense coding).

As discussed in App. C.3.1, the quantum mutual information for ReMAD channels
can be computed by maximizing just over diagonal states. We report then in Fig. C.1
the evaluation of Cea(Φγ⃗) for a qutrit ReMAD channel at varying γ20 and γ21 for some
instances of γ10 values.
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Figure C.1: Entanglement assisted classical capacity Cea(Φγ⃗) for different γ10, γ21
and γ20. The grey area represents values of γ20 and γ21 s.t. γ20 + γ21 > 0 for which the
channel is not defined.
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D.1 Necessary and sufficient conditions for PCDS quantum
channels

Here we discuss necessary and sufficient conditions for a quantum channel ΦCC ∈ M(cpt)
C→C

to admit the PCDS block-structure defined in Eq. (7.8). We start by observing that when
introducing this special decomposition we did not explicitly require the diagonal blocks
ΦAA and ΦBB to be CPT (indeed we merely asked them to be elements of the super-
operators sets MA→A and MB→B). This property however is automatically imposed by
the CPT constraint on ΦCC – see the derivation that follows.

We now give an explicit proof of Theorem 1. First of all, assume that the element
M̂

(j)
CC of the Kraus set {M̂ (j)

CC}j of ΦCC fulfills the identity in Eq. (7.10). Accordingly for
all Θ̂CC ∈ LC→C we can write

ΦCC[Θ̂CC] =
∑
j

M̂
(j)
CCΘ̂CCM̂

(j)†
CC

=
∑
j

 ∑
Y=A,B

M̂
(j)
YY

 Θ̂CC

 ∑
X=A,B

M̂
(j)†
XX


=

∑
j

∑
X,Y=A,B

M̂
(j)
YYΘ̂YXM̂

(j)†
XX , (D.1)

which can be cast into the form of Eq. (7.9) with the super-operators ΦAA, ΦAA, Φ(off)
AB ,

Φ(off)
BA defined as in Eqs. (7.11) and (7.12). Notice in particular that with this choice, for

X = A,B the diagonal component writes

ΦXX[· · · ] =
∑
j

M̂
(j)
XX · · · M̂ (j)†

XX , (D.2)
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with the operators M̂ (j)
XX fulfilling the constraints∑
j

M̂
(j)†
XX M̂

(j)
XX = P̂XX

∑
j

M̂
(j)†
CC M̂

(j)
CCP̂XX

= P̂XXÎCCP̂XX = P̂XX . (D.3)

This implies that {M̂ (j)
XX}j is a proper Kraus set for a map action on X, i.e. that ΦXX

is indeed a CPT element of MX→X, as anticipated in the introduction of the present
section.

Consider now the reverse property, i.e. assume that exist ΦAA ∈ MA→A, ΦBB ∈
MB→B, Φ(off)

AB ∈ M(off)
B→A, and Φ(off)

BA ∈ M(off)
A→B such that Eq. (7.8) holds true for all

possible choices of Θ̂CC ∈ LC→C. Observe then that this in particular implies

0 = P̂BBΦCC[P̂AA]P̂BB =
∑
j

P̂BBM
(j)
CCP̂AAM

(j)†
CC P̂BB

=
∑
j

(
P̂BBM

(j)
CCP̂AA

) (
P̂BBM

(j)
CCP̂AA

)†
=
∑
j

|M (j)
BA|2 .

Which is verified if and only if

M̂
(j)
BA = M̂

(j)
AB = 0 ∀j , (D.4)

or equivalently if and only if Eq. (7.10) holds true.

D.2 Complementary maps via Stinespring dilation

Given ΦXX ∈ M(cpt)
X→X a generic CPT transformation acting on an arbitrary system X, we

can always express it as

ΦXX[· · · ] = TrE[ÛXEXE(· · · ⊗ |0E⟩⟨0E|)Û †
XEXE] ,

(D.5)

where E is an auxiliary (environmental) quantum system, TrE[· · · ] is the partial trace over
E, |0E⟩ a pure state vector of the Hilbert space HE of E, and finally ÛXEXE is a unitary
transformation on HX ⊗ HE. For future purposes it is worth stressing that, by taking
the dimensionality of HE to be sufficiently large, we can make sure that the dependence
of the representation in Eq. (D.5) upon the specific choice of ΦXX is completely carried
on by just ÛXEXE. We have then the freedom of fixing |0E⟩ irrespectively of the map we
want to represent. In the above setting a Kraus set for ΦXX is e.g. obtained in terms of
the operators

M̂
(j)
XX = ⟨jE|ÛXEXE|0E⟩ , (D.6)

with {|jE⟩}j an orthonormal basis of HE. The complementary channel of ΦXX instead
can be defined as the CPT transformation Φ̃EX ∈ M(cpt)

X→E that transforms input from X
into output of E via the mapping

Φ̃EX[· · · ] = V̂EETrX[ÛXEXE(· · · ⊗ |0E⟩⟨0E|)Û †
XEXE]V̂ †

EE , (D.7)
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where now the partial trace is performed over X. In the above expression V̂EE is a unitary
operator on E that can be chosen freely. We inserted it to explicitly stress that, as already
mentioned in the main text, the complementary channel of a CPT map is defined up to
a unitary rotation on the environmental system of the model. Anyway, unless explicitly
stated, hereafter we shall assume V̂EE to be the identity operator – notice that under this
assumption, thanks to Eq. (D.6), Eq. (D.7) reduces exactly to Eq. (7.17) reported in the
main text.

An alternative way to derive Eq. (7.20) can now be obtained by first introducing the
unitary operators ÛAEAE ∈ LAE→AE and ÛBEBE ∈ LBE→BE which provide, respectively,
the Stinespring representations of Eq. (D.5) of the diagonal components ΦAA and ΦBB of
the PCDS channel ΦCC. Observe now that while the unitary operator ÛAEAE (ÛBEBE)
is formally defined on HA ⊗ HE (HB ⊗ HE) only, we are allowed to extend it to the full
space HC ⊗ HE by imposing the condition P̂BÛAEAE = ÛAEAEP̂B = 0 (resp. P̂AÛBEBE =
ÛBEBEP̂A = 0). With this choice hence we can write the normalization condition for
ÛAEAE and ÛBEBE as

Û †
AEAEÛAEAE = P̂AA ⊗ ÎEE ,

Û †
BEBEÛBEBE = P̂BB ⊗ ÎEE , (D.8)

with the projectors P̂AA and P̂AA playing the role of the identity transformations on
HA and HB respectively. In view of these observations a Stinespring representation as
in Eq. (D.5) for the PCDS channel ΦCC can now be assigned by adopting the following
coupling

ÛCECE = ÛAEAE + ÛBEBE , (D.9)

which is a unitary transformation on HC ⊗ HE thanks to Eq. (D.8) and Eq. (7.5). Fur-
thermore, thanks to Eq. (D.6) automatically fulfills the necessary and sufficient PCDS
condition in Eq. (7.10). To verify Eq. (7.20) now observe that for an arbitrary vector
|ΨC⟩ ∈ HC we can write

ÛCECE(|ΨC⟩ ⊗ |0E⟩) = ÛAEAE(|ΨA⟩ ⊗ |0E⟩)
+ ÛBEBE(|ΨB⟩ ⊗ |0E⟩) ,

(D.10)

where for X = A,B, |ΨX⟩ ≡ P̂XX|ΨC⟩. Tracing over C from the above expression we get
that the action of Φ̃EC on |ΨC⟩ can be expressed as

Φ̃EC[|ΨC⟩⟨ΨC|] = Φ̃EA[|ΨA⟩⟨ΨA|] + Φ̃EB[|ΨB⟩⟨ΨB|] , (D.11)

where for X = A,B, Φ̃EX is the complementary map of ΦXX, and where we used the fact
that ÛAEAE(|ΨA⟩ ⊗ |0E⟩) lives on HA ⊗ HE and therefore has zero overlap with the C
components of ÛBEBE(|ΨB⟩ ⊗ |0E⟩), which instead is on HB ⊗ HE.

D.2.1 Structure of the connecting channels

Here we show that if ΛEA and ΛEB entering in Eq. (7.22) are both CPT then also ΛEC
is CPT. To see this remember that given ΦYX ∈ MX→Y a super-operator mapping the
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system X into Y, it is CPT if and only if it admits a Kraus set formed by operators M̂ (j)
YX

that fulfill the normalization condition∑
j

M̂
(j)†
YX M̂

(j)
YX = ÎXX , (D.12)

with ÎXX the identity on HX, or alternatively the associated projector in case HX is a
sub-space on a larger space. Consequently, since we assumed by hypothesis that this is
the case for ΛEA and ΛEB appearing in Eq. (7.22), it follows that a Kraus set for ΛEC is
given by the set {M̂ (j1)

EA , M̂
(j1)
EB }j1,j2 . As indeed we have∑

j1

M̂
(j1)†
EA M̂

(j1)
EA +

∑
j2

M̂
(j2)†
EB M̂

(j2)
EB = P̂AA + P̂BB

= ÎCC . (D.13)

D.2.2 Pure fixed point channels

Here we show that if the quantum channel ΦAA ∈ M(cpt)
A→A admits as fixed point a pure

state |Ψ∗
A⟩ ∈ HA, then condition in Eq. (7.48) can be fulfilled by setting ρ̂∗

AA = |Ψ∗
A⟩⟨Ψ∗

A|.
To show this, let us consider the unitary operator ÛAEAE that allows us to express ΦAA
and its associated complementary channel ΦEA in the Stinespring representation given
by Eqs. (D.5) and (D.7). The fixed point condition of |Ψ∗

A⟩ imposes us to have

ΦAA[|Ψ∗
A⟩⟨Ψ∗

A|] = |Ψ∗
A⟩⟨Ψ∗

A| , (D.14)

which can be satisfied if and only if the following identity holds true:

ÛAEAE|Ψ∗
A⟩ ⊗ |0E⟩ = |Ψ∗

A⟩ ⊗ |0′
E⟩ , (D.15)

with |0′
E⟩ being some pure state of E. Accordingly from Eq. (D.7) it follows that

Φ̃EA[|Ψ∗
A⟩⟨Ψ∗

A|] = V̂EE|0′
E⟩⟨0′

E|V̂ †
EE , (D.16)

where now we make explicit use of the freedom of redefining Φ̃EA up to an arbitrary
unitary transformation V̂EE. The condition in Eq. (7.48) can finally be enforced by
simply selecting V̂EE so that

V̂EE|0′
E⟩ = |0E⟩ . (D.17)

D.3 Generalization to the multi-block decomposition
Consider the case in which the Hilbert space of C decomposes in a direct sum of n
different subspaces

HC = HA1 ⊕ HA2 ⊕ · · · ⊕ HAn , (D.18)

where for ℓ = 1, · · · , n, HAℓ
represents a Hilbert space of dimension dAℓ

, with

dC =
n∑
ℓ=1

dAℓ
. (D.19)
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A PCDS CPT channel ΦCC ∈ M(cpt)
C→C is now defined by the following structural constraint

which generalizes the one we presented in Eq. (7.9):

ΦCC =
n∑
ℓ=1

ΦAℓAℓ
+

n∑
ℓ ̸=ℓ′=1

Φ(off)
AℓAℓ′ , (D.20)

with ΦAℓAℓ
∈ MAℓ→Aℓ

and Φ(off)
AℓAℓ′ ∈ M(off)

Aℓ→Aℓ
. Following the same derivation we pre-

sented for the n = 2 one can verify that the CPT constraint on ΦCC imposes all the
diagonal terms ΦAℓAℓ

to be CPT as well. Furthermore Theorem 1 still holds true in the
following form

Theorem 4. A quantum channel ΦCC described by a Kraus set {M̂ (j)
CC}j admits the

PCDS structure as in Eq. (7.9) if and only if

M̂
(j)
CC =

n⊕
ℓ=1

M̂
(j)
AℓAℓ

, (D.21)

or equivalently that M̂ (j)
AℓAℓ′ = 0, for all j and for all ℓ ̸= ℓ′.

In the above expression for all Θ̂CC ∈ LC→C we defined

Θ̂AℓAℓ′ ≡ P̂AℓAℓ
Θ̂CCP̂Aℓ′ Aℓ′ , (D.22)

with P̂AℓAℓ
being the orthogonal projector on HAℓ

. Accordingly Eqs. (7.11) and (7.12)
get replaced by

ΦAℓAℓ
[· · · ] =

∑
j

M̂
(j)
AℓAℓ

· · · M̂ (j)†
AℓAℓ

,

Φ(off)
AℓAℓ′ [· · · ] =

∑
j

M̂
(j)
AℓAℓ

· · · M̂ (j)†
Aℓ′ Aℓ′ . (D.23)

Similarly Eq. (7.20) becomes now

Φ̃EC =
n∑
ℓ=1

Φ̃EAℓ
, (D.24)

with Φ̃EAℓ
being the complementary channel of ΦAℓ,Aℓ

. Theorem 2 instead is replaced
by the more general statement

Theorem 5. A PCDS quantum channel ΦCC as in Eq. (D.20) is degradable if and only
if all its diagonal block terms ΦAℓAℓ

are degradable too.

It then follows that for ΦCC degradable we can express the quantum capacity as

Q(ΦCC) = max
P

max
τ̂AℓAℓ

{
H(P ) +

n∑
ℓ=1

pℓS (ΦAℓAℓ
[τ̂AℓAℓ

])

−S
(

n∑
ℓ=1

pℓΦ̃EAℓ
[τ̂AℓAℓ

]
)}

, (D.25)

with P a generic probability set {p}ℓ, H(P ) = −
∑
ℓ pℓ log pℓ its Shannon entropy, and

τ̂AℓAℓ
density matrices of HAℓ

.
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D.4 The channel Ω[γ](κ)
CC for dC = 3

When dC = 3 a Kraus set of Ω[γ](κ)
CC expressed w.r.t. the canonical base elements

{|0C⟩ , |1C⟩ , |2C⟩}, can be written as

M̂
(0)
CC =

1 0 0
0

√
1 − γ 0

0 0 κ∗

 , M̂
(1)
CC =

0 √
γ 0

0 0 0
0 0 0

 ,

M̂
(2)
CC =

0 0 0
0 0 0
0 0

√
1 − |κ|2

 .
(D.26)

This leads to

Ω[γ](κ)
CC [ρ̂CC] =

ρ00 + γρ11
√

1 − γρ01 κρ02√
1 − γρ∗

01 (1 − γ)ρ11 κ
√

1 − γρ12
κ∗ρ∗

02 κ∗√
1 − γρ∗

12 ρ22

, (D.27)

where for i, j = 0, 1, 2 we set ρij = ⟨iC|ρ̂CC|jC⟩, and

Ω̃[γ](κ)
EC [ρ̂CC] =

1 − γρ11 + |κ|2ρ22
√
γρ01 κ∗√(1 − |κ|2)ρ22√

γρ∗
01 γρ11 0

κ
√

(1 − |κ|2)ρ∗
22 0 (1 − |κ|2)ρ22

, (D.28)

for the complementary map defined on a Hilbert space spanned by the vectors {|0E⟩ , |1E⟩ , |2E⟩}.
Notice that we can express the input states ρ̂CC in terms of the τ̂AA and τ̂BB density

matrices as in Eq. (7.33). Eq. (D.28) then can be equivalently written as

Ω̃[γ](κ)
EC [ρ̂CC] = pΩ̃[γ]

EA[τ̂AA] + (1 − p)|v(κ)
E ⟩⟨v(κ)

E | ,
(D.29)

with Ω̃[γ]
EA, the complementary channel of the MAD channel Ω[γ]

AA. Ω̃[γ]
EA is defined by the

2 × 2 matrix

Ω̃[γ]
EA[τ̂AA] =

(
1 − γ1τ11

√
γ1τ01√

γ1τ
∗
01 γ1τ11

)
, (D.30)

on the Hilbert space spanned by the vectors |0E⟩ and |1E⟩. |v(κ)
E ⟩ in Eq. D.29 is defined

as

|v(κ)
E ⟩ ≡ κ|0E⟩ +

√
1 − |κ|2|2E⟩ , (D.31)

which has the same structure of the state in Eq. (7.54) but involves different basis vectors
in order to account for the presence of the MAD contribution to Ω[γ](κ)

CC .
Now, considering the fact that both ADC and dephasing are covariant w.r.t. the

action of the group of diagonal orthogonal matrices [CG21b, DBF07], the maximization
of the coherent information is attained by exploring only diagonal states. Consequently,
from Eq. (7.46) and Eq. (D.29) the quantum capacity is obtained by:



D.4 The channel Ω[γ](κ)
CC for dC = 3 153

Q(Ω[γ](κ)
CC ) = max

p∈[0,1]

{
H2(p) + max

τ11∈[0,1]
{pH2(γτ11)

+ l0 log2 l0 + l+ log2 l+ + l− log2 l−}
} (D.32)

where 

l0 = pτ11γ

l+ = 1
2(1 − pγτ11+√

4(1 − p)p(|κ|2 − 1)(1 − γτ11) + (1 − pγτ11)2)
l− = 1

2(1 − pγτ11−√
4(1 − p)p(|κ|2 − 1)(1 − γτ11) + (1 − pγτ11)2).

(D.33)

Notice how this method allows us to reduce to just 2 the number of parameters involved
in the maximization, compared to the at least 8 needed for a generic qutrit state.
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