

Classe di Scienze

Corso di perfezionamento in

Data Science

XXXV ciclo

Data-Driven Methods for

Data Center Operations Support

Settore Scientifico Disciplinare ING-INF/05

Candidato
Dr. Giacomo Lanciano

Relatori

Prof. Tommaso Cucinotta

Prof. Davide Bacciu

Dr. Andrea Passarella

Anno accademico 2022/2023

Giacomo Lanciano: Data-driven Methods for Data Center Operations
Support, © March 2023

supervisors:
Prof. Tommaso Cucinotta, Scuola Superiore Sant’Anna, Italy
Prof. Davide Bacciu, University of Pisa, Italy
Dr. Andrea Passarella, National Research Council, Italy

location:
Pisa, Italy

A B S T R A C T

During the last decade, cloud technologies have been evolving at
an impressive pace, such that we are now living in a cloud-native
era where developers can leverage on an unprecedented landscape
of (possibly managed) services for orchestration, compute, storage,
load-balancing, monitoring, etc. The possibility to have on-demand
access to a diverse set of configurable virtualized resources allows
for building more elastic, flexible and highly-resilient distributed
applications. Behind the scenes, cloud providers sustain the heavy
burden of maintaining the underlying infrastructures, consisting in
large-scale distributed systems, partitioned and replicated among
many geographically dislocated data centers to guarantee scalability,
robustness to failures, high availability and low latency. The larger the
scale, the more cloud providers have to deal with complex interactions
among the various components, such that monitoring, diagnosing and
troubleshooting issues become incredibly daunting tasks.

To keep up with these challenges, development and operations
practices have undergone significant transformations, especially in
terms of improving the automations that make releasing new software,
and responding to unforeseen issues, faster and sustainable at scale.
The resulting paradigm is nowadays referred to as DevOps. However,
while such automations can be very sophisticated, traditional DevOps
practices fundamentally rely on reactive mechanisms, that typically
require careful manual tuning and supervision from human experts.
To minimize the risk of outages—and the related costs—it is crucial to
provide DevOps teams with suitable tools that can enable a proactive
approach to data center operations.

This work presents a comprehensive data-driven framework to ad-
dress the most relevant problems that can be experienced in large-scale
distributed cloud infrastructures. These environments are indeed char-
acterized by a very large availability of diverse data, collected at each
level of the stack, such as: time-series (e.g., physical host measure-
ments, virtual machine or container metrics, networking components
logs, application KPIs); graphs (e.g., network topologies, fault graphs
reporting dependencies among hardware and software components,
performance issues propagation networks); and text (e.g., source code,
system logs, version control system history, code review feedbacks).
Such data are also typically updated with relatively high frequency,
and subject to distribution drifts caused by continuous configuration
changes to the underlying infrastructure. In such a highly dynamic sce-
nario, traditional model-driven approaches alone may be inadequate
at capturing the complexity of the interactions among system com-

iii

ponents. DevOps teams would certainly benefit from having robust
data-driven methods to support their decisions based on historical
information. For instance, effective anomaly detection capabilities may
also help in conducting more precise and efficient root-cause analy-
sis. Also, leveraging on accurate forecasting and intelligent control
strategies would improve resource management.

Given their ability to deal with high-dimensional, complex data,
Deep Learning-based methods are the most straightforward option for
the realization of the aforementioned support tools. On the other hand,
because of their complexity, this kind of models often requires huge
processing power, and suitable hardware, to be operated effectively
at scale. These aspects must be carefully addressed when applying
such methods in the context of data center operations. Automated
operations approaches must be dependable and cost-efficient, not to
degrade the services they are built to improve.

iv

P U B L I C AT I O N S A N D O T H E R
C O N T R I B U T I O N S

Some ideas and figures included in this thesis have appeared previ-
ously in the following publications:

[1] Giacomo Lanciano, Manuel Stein, Volker Hilt, and Tommaso
Cucinotta. “Analyzing Declarative Deployment Code with
Large Language Models.” In: Proceedings of the 13th International
Conference on Cloud Computing and Services Science. SCITEPRESS
- Science and Technology Publications, 2023.

[2] Tommaso Cucinotta, Giacomo Lanciano, Antonio Ritacco, Fabio
Brau, Filippo Galli, Vincenzo Iannino, Marco Vannucci, An-
tonino Artale, Joao Barata, and Enrica Sposato. “Forecasting
Operation Metrics for Virtualized Network Functions.” In: 2021
IEEE/ACM 21st International Symposium on Cluster, Cloud and
Internet Computing (CCGrid). 2021, pp. 596–605.

[3] Giacomo Lanciano, Filippo Galli, Tommaso Cucinotta, Davide
Bacciu, and Andrea Passarella. “Predictive auto-scaling with
OpenStack Monasca.” In: Proceedings of the 14th IEEE/ACM Inter-
national Conference on Utility and Cloud Computing. Association
for Computing Machinery, 2021, pp. 1–10. isbn: 978-1-4503-
8564-0.

[4] Giacomo Lanciano, Antonio Ritacco, Fabio Brau, Tommaso Cu-
cinotta, Marco Vannucci, Antonino Artale, Joao Barata, and
Enrica Sposato. “Using Self-Organizing Maps for the Behav-
ioral Analysis of Virtualized Network Functions.” In: Cloud
Computing and Services Science. Ed. by Donald Ferguson, Claus
Pahl, and Markus Helfert. Springer International Publishing,
2021, pp. 153–177. isbn: 978-3-030-72369-9.

[5] Tommaso Cucinotta, Giacomo Lanciano, Antonio Ritacco,
Marco Vannucci, Antonino Artale, Joao Barata, Enrica Sposato,
and Luca Basili. “Behavioral Analysis for Virtualized Network
Functions: A SOM-based Approach.” In: Proceedings of the 10th
International Conference on Cloud Computing and Services Sci-
ence. SCITEPRESS - Science and Technology Publications, 2020,
pp. 150–160. isbn: 978-989-758-424-4.

[6] Giacomo Lanciano, Antonio Ritacco, Tommaso Cucinotta,
Marco Vannucci, Antonino Artale, Luca Basili, Enrica Sposato,
and Joao Barata. “SOM-based behavioral analysis for virtual-
ized network functions.” In: Proceedings of the 35th Annual ACM

v

Symposium on Applied Computing. ACM, 2020, pp. 1204–1206.
isbn: 978-1-4503-6866-7.

[7] Riccardo Mancini, Antonio Ritacco, Giacomo Lanciano,
and Tommaso Cucinotta. “XPySom: High-Performance Self-
Organizing Maps.” In: 2020 IEEE 32nd International Symposium
on Computer Architecture and High Performance Computing (SBAC-
PAD). IEEE, 2020, pp. 209–216. isbn: 978-1-72819-924-5.

Furthermore, some ideas are also related to the following patent
applications:

[1] Enrica Sposato, Antonino Artale, Tommaso Cucinotta, Marco
Vannucci, Giacomo Lanciano, Luisa Neves Pires Jorge, Filippo
Galli, and Fabio Brau. “Method of managing resources of an in-
frastructure for network function virtualization.” EP4016963A1

(Filed), IT102020000031034A (Granted). 2022.

[2] Tommaso Cucinotta, Marco Vannucci, Antonio Ritacco, Gi-
acomo Lanciano, Antonino Artale, Joao Barata, and Enrica
Sposato. “A method of identifying and classifying the behavior
modes of a plurality of data relative to a telephony infrastruc-
ture for network function virtualization.” EP3772833A1 (Filed),
IT102019000014241A (Filed). 2021.

[3] Tommaso Cucinotta, Marco Vannucci, Antonio Ritacco, Gi-
acomo Lanciano, Antonino Artale, Joao Barata, and Enrica
Sposato. “A method of predicting the time course of a plurality
of data relative to a telephony infrastructure for network func-
tion virtualization.” EP3772834A1 (Filed), IT102019000014262A
(Filed). 2021.

The work done for this thesis also led to the development of the
following software artifacts:

• An open-source extension to the Monasca [170] monitoring
framework, called monasca-predictor [122], that enables Open-
Stack operations based on predictive analytics, with a particular
focus on auto-scaling.

• Several data-driven tools to support Vodafone NVI teams in their
daily activities, such as monitoring the health status of the NFV

infrastructure and forecasting resource utilization for capacity
planning. Such tools are currently used in production.

• A tool that leverages on LLMs to support Nokia Bell Labs re-
search teams in ensuring the quality of declarative Kubernetes
deployment code, by providing QA-related recommendations
based on established best practices and design patterns.

• A few small contributions to open-source projects like OpenStack
Kolla-Ansible [169] and Somoclu [253].

vi

C O N T E N T S

i Why Data-Driven Operations?
1 Introduction 3

1.1 Motivations . 3

1.2 The Case for Data-Driven Operations 5

1.3 Research Goals . 6

1.3.1 G1 - Data-driven Operations Support Framework 6

1.3.2 G2 - Autonomy vs Learning from Human Inter-
action . 7

1.3.3 G3 - Performance & Efficiency 8

1.4 Contributions . 8

1.5 Thesis Structure . 10

2 Background 13

2.1 Cloud Computing Technologies 13

2.1.1 OpenStack . 13

2.1.2 Kubernetes . 15

2.1.3 VMWare vRealize Operations Manager 16

2.1.4 Network Functions Virtualization 17

2.2 Machine Learning Methodologies for Operations Support 18

2.2.1 Self-Organizing Maps 18

2.2.2 ARMA, ARIMA, and SARIMA 20

2.2.3 Holt-Winters . 21

2.2.4 Non-linear Auto-Regressive Neural Networks . 22

2.2.5 Recurrent Neural Networks 23

2.2.6 Long Short-Term Memory 24

2.2.7 Gradient-Boosted Trees 25

2.2.8 Large Language Models 26

ii High-performance Anomaly Detection
3 SOM-based Anomalous VNF Behavior Detection 31

3.1 Introduction . 31

3.1.1 Contributions . 32

3.1.2 Chapter Organization 33

3.2 Related Work . 33

3.3 Proposed Approach . 35

3.3.1 Workflow . 36

3.3.2 SOM Implementation 38

3.3.3 Hierarchical Grouping 38

3.3.4 Alerting . 42

3.4 Experiments . 44

3.4.1 Multi-metric Analysis 44

3.4.2 Hyperparameters Grid Search 46

vii

viii contents

3.4.3 Per-VNF Analysis 49

3.4.4 Hierarchical Grouping 51

3.4.5 Alerting . 53

3.5 Conclusions . 55

4 XPySom: High-Performance SOMs 59

4.1 Introduction . 59

4.1.1 Contributions . 60

4.1.2 Chapter Organization 60

4.2 Related Work . 61

4.3 Proposed Approach . 64

4.3.1 Matrix-based batch SOM 64

4.3.2 XPySom . 65

4.4 Experiments . 66

4.4.1 Quantization error vs training epochs 67

4.4.2 Training time vs SOM grid sizes 68

4.4.3 Training time vs training epochs 70

4.4.4 Training time vs training samples 70

4.4.5 Training time vs input features 72

4.5 Conclusions . 72

iii Predictive Resource Management
5 VNF Metrics Forecasting 75

5.1 Introduction . 75

5.1.1 Chapter Organization 76

5.2 Related Work . 76

5.3 Compared Approaches 78

5.3.1 Neural Architectures 79

5.4 Experiments . 83

5.4.1 Experimental Set-up 84

5.4.2 Presentation of Results 85

5.4.3 Neural Architectures 87

5.4.4 Classical Forecasting Techniques 90

5.4.5 Comparative Analysis 90

5.5 Conclusions . 93

6 Predictive Auto-scaling 95

6.1 Introduction . 95

6.1.1 Problem Presentation 96

6.1.2 Contributions . 97

6.1.3 Chapter Organization 98

6.2 Related Work . 98

6.2.1 Predictive elasticity control in cloud computing 98

6.2.2 Elasticity control with Reinforcement Learning 101

6.2.3 Summary . 103

6.3 Proposed Approach . 103

6.3.1 Implementation Details 105

6.4 Experiments . 107

contents ix

6.4.1 Synthetic Elastic Application 107

6.4.2 Experimental Set-up 108

6.4.3 Predictors Configuration 109

6.4.4 Validation on synthetic workload 111

6.4.5 Validation on real workload traces 119

6.4.6 Reproducibility 120

6.5 Conclusions . 120

7 Intelligent Cloud Operations 123

7.1 Introduction . 123

7.1.1 Contributions . 124

7.1.2 Chapter Organization 125

7.2 Related Work . 125

7.3 Proposed Approach . 126

7.3.1 General Architecture 126

7.3.2 Implementation Details 128

7.4 Experiments . 130

7.4.1 Experimental Set-up 130

7.4.2 Synthetic Workload Generator 131

7.4.3 Apache Cassandra 131

7.4.4 Anomaly Injection 132

7.4.5 Results . 139

7.5 Conclusions . 143

iv Quality-aware DevOps
8 Large Language Models for Declarative Deployment Code

Analysis 147

8.1 Introduction . 147

8.1.1 Chapter Organization 148

8.2 Related Work . 148

8.3 Proposed Approach . 150

8.3.1 ML Pipeline . 151

8.4 Preliminary Experiments 153

8.5 Conclusions . 156

v Concluding Remarks
9 Conclusions 159

9.1 Future Research Directions 163

9.1.1 Anomaly Detection 163

9.1.2 Intelligent Auto-Scaling & Resource Allocation 164

9.1.3 Root-Cause Analysis 165

a Few-shot Learning Examples 169

Bibliography 175

L I S T O F F I G U R E S

Figure 2.1 Overview of OpenStack key components. . . . 14

Figure 2.2 NAR neural network for time-series forecasting. 22

Figure 2.3 LSTM cell processing a time-series together with
the additional internal signals ct and ht. 24

Figure 3.1 Overview of the SOM-based clustering workflow. 36

Figure 3.2 Example of grouping steps: (a) initialization;
(b) first split; (c) second split; (d) final split.
Neurons with same border color belong to the
same group. 40

Figure 3.3 Examples of grouping using different p values.
Grouping with p = 2 (a) makes no distinction
between spiky and smooth neurons, whereas
grouping with p = 4 (b) clusters the spiky
neuron on the top-left corner in a dedicated
group. 41

Figure 3.4 (a) INFRA resource consumption clusters iden-
tified with the multi-metric analysis. The dark
blue, green and light blue curves in each plot
correspond to the cpu|usage_average, net|usage_-
average and cpu|capacity_contentionPct vROps

metrics, respectively. (b) SOM grid showing the
percentage of training samples captured by
each neuron. 45

Figure 3.5 (a) The most recurrent VM cluster of Figure 3.4a
and (b) a singular VM pattern captured by the
bottom-right neuron of Figure 3.4a. 46

Figure 3.6 SOMs with low σ values: (a) 8 × 8, σ: 0.1, lr: 0.2;
(b) 12 × 12, σ: 0.1, lr: 0.2; (c) 16 × 16, σ: 0.1, lr:
0.9; (d) 32× 32, σ: 0.1, lr: 0.8. For confidentiality
reasons, the scale has been omitted. 47

Figure 3.7 SOMs with high σ values: (a) 8 × 8, σ: 0.6, lr:
0.2; (b) 12× 12, σ: 0.6, lr: 0.2; (c) 8× 8, σ: 0.6, lr:
0.9; (d) 12× 12, σ: 0.6, lr: 0.9. For confidentiality
reasons, the scale has been omitted. 48

Figure 3.8 SOM clusters and corresponding per-VNF hitmaps.
For confidentiality reasons, the total number of
hits in the hitmap cells has been rescaled to 1. 50

Figure 3.9 Distance-based grouping applied to a square
SOM grid, 4 neurons per side. 51

Figure 3.10 VMs exhibiting common behaviors. 52

x

list of figures xi

Figure 3.11 Distance-based grouping applied to a square
SOM grid, 3 neurons per side. 53

Figure 3.12 VMs exhibiting anomalous behaviors. 54

Figure 3.13 A SOM grid with neurons grouped in 5 behav-
iors. 55

Figure 3.14 Calendar view of the set of VMs involved in the
analysis. 56

Figure 3.15 (a) Strong Alerting System. (b) Weak Alerting
System. (c) Fuzzy Alert System. 57

Figure 4.1 Visualization of the data flow for SOM training
in XPySom. 66

Figure 4.2 Evolution of the QE for a 10x10 SOM through-
out training epochs (EMNIST, 240k samples, 784

features). 67

Figure 4.3 Training time as a function of the number of
neurons (EMNIST, 240k samples, 784 features). 69

Figure 4.4 Training time as a function of the number of
training epochs (EMNIST, 240k samples, 784 fea-
tures). 70

Figure 4.5 Training time as a function of the number of
training samples (EMNIST, max 240k samples,
784 features). 71

Figure 4.6 Training time as a function of the number of
training features (EMNIST, 240k samples, 784

features) . 71

Figure 5.1 Integration of the realized analytics engine within
Vodafone NFV infrastructure operations. . . . 78

Figure 5.2 Performance measures for neural architectures
applied to the CSCF hourly dataset. 88

Figure 5.3 Performance measures for neural architectures
applied to the DRAh hourly dataset. 89

Figure 5.4 Performance measures for neural architectures
applied to the DRAd daily dataset. 91

Figure 5.5 Performance measures for classical forecasting
techniques. 92

Figure 6.1 Example of load profile. 96

Figure 6.2 Architectural diagram of the proposed predic-
tive auto-scaling approach. 103

Figure 6.3 Experimental results for the traditional (static)
scaling policy. 112

Figure 6.4 Experimental results for the LR-based scaling
policy (left: CPU usage; right: client-side re-
sponse times). 113

Figure 6.5 Experimental results for the ARIMA-based scal-
ing policy (left: CPU usage; right: client-side
response times). 114

Figure 6.6 Experimental results for the MLP-based scal-
ing policy (left: CPU usage; right: client-side
response times). 115

Figure 6.7 Experimental results for the RNN-based scal-
ing policy (left: CPU usage; right: client-side
response times). 116

Figure 6.8 Experimental validation on real workload traces
(left: CPU usage; right: client-side response times).
119

Figure 7.1 Architectural diagram of the proposed intelli-
gent operations approach. 127

Figure 7.2 Interferences generated by stress-ng on distwalk. 134

Figure 7.3 Faults generated by killing an instance of distwalk.136

Figure 7.4 Saturation of the disk bandwidth for distwalk. . 137

Figure 7.5 Interferences generated by stress-ng on Cassandra.138

Figure 7.6 AD performance, computed on the distwalk test
set (0 = anomalous; 1 = normal). 139

Figure 7.7 Classifier performance, computed on the dist-
walk test set (0 = normal; 1 = stress; 2 = fault; 3

= saturation). 141

Figure 7.8 AD performance, computed on the Cassandra
test set (0 = anomalous; 1 = normal). 142

Figure 7.9 Classifier performance, computed on the Cas-
sandra test set (0 = normal; 1 = stress; 2 = fault). 143

Figure 8.1 The proposed ML pipeline. 151

Figure 8.2 Results of the clustering process, before and
after filtering out the uninteresting manifest
files. The clustered manifests are projected onto
a 2D space by using t-SNE (i.e., the axes do not
directly refer to any specific feature). 154

L I S T O F TA B L E S

Table 1.1 Summary of the research contributions included
in this thesis. 9

Table 3.1 The hyperparameters values used for the grid
search. 49

Table 5.1 Neural architecture configurations for each dataset.
85

Table 5.2 HW configurations space for each dataset. . . . 85

Table 5.3 SARIMA configurations space for each dataset. 86

xii

Table 5.4 Average KPIs (± standard deviation) for the
configuration with the best average MAPE (CSCF
dataset, 10 repetitions). 88

Table 5.5 Average KPIs (± standard deviation) for the
configuration with the best average MAPE (DRAh
dataset, 10 repetitions). 89

Table 5.6 Average KPIs (± standard deviation) for the
configuration with the best average MAPE (DRAd
dataset, 10 repetitions). 91

Table 5.7 KPIs for the configuration with the best MAPE. 92

Table 6.1 Related works comparison (legend: G.A. = gen-
erally applicable; S.O. = spawning overhead; E.
= elasticity; O.S. = open-source). 102

Table 6.2 Prediction errors (MAPE) observed for the con-
sidered runs. 117

Table 6.3 Descriptive statistics of the client-side response
times (ms) observed during the experimental
runs, when the cluster was facing the first peak
(minutes 0-120). 117

Table 6.4 Descriptive statistics of the client-side response
times (ms) observed during the experimental
runs, when the cluster was facing the second
peak (minutes 121-220). 118

Table 6.5 Average overhead (ms) imposed by the pro-
posed forecasting component, for the consid-
ered predictors. 118

Table 6.6 Descriptive statistics of the client-side response
times (ms) observed during the experimental
validation on real workload traces (focus on the
peak, minutes 45-90). 119

Table 7.1 Performance metrics of the AD model, for each
class of samples, computed on the distwalk test
set (0 = anomalous; 1 = normal). 140

Table 7.2 Performance metrics of the classifier, for each
class of samples, computed on the distwalk test
set (0 = normal; 1 = stress; 2 = fault; 3 = satura-
tion). 140

Table 7.3 Performance metrics of the AD model, for each
class of samples, computed on the Cassandra
test set (0 = anomalous; 1 = normal). 142

Table 7.4 Performance metrics of the classifier, for each
class of samples, computed on the Cassandra
test set (0 = normal; 1 = stress; 2 = fault). . . . 143

xiii

xiv acronyms

A C R O N Y M S

AD Anomaly Detection

ANN Artificial Neural Network

API Application Programming Interface

AR Auto-Regressive

ARIMA Auto-Regressive Integrated Moving Average

ARMA Auto-Regressive Moving Average

AST Abstract Syntax Tree

AUC Area Under Curve

AVX Advanced Vector eXtensions (by Intel)

AWS Amazon Web Services

BLAS Basic Linear Algebra Subprograms

BMU Best-Matching Unit

BN Bayesian Network

CAPEX Capital Expenditure

CART Classification And Regression Trees

CBMG Customer Behavior Modeling Graph

CI Continuous Integration

CD Continuous Deployment

CDN Content-Delivery Network

CLI Command-Line Interface

CNCF Cloud Native Computing Foundation

CPS Cyber-Physical System

CPU Central Processing Unit

DB Database

DT Decision Tree

DHCP Dynamic Host Configuration Protocol

DL Deep Learning

DNN Deep Neural Network

DNS Domain Name System

DQN Deep Q-Network

EMNIST Extended Modified National Institute of Standards and
Technology (dataset)

acronyms xv

FFNN Feed-Forward Neural Network

FFT Fast Fourier Transform

FL Fuzzy Logic

FPGA Field Programmable Gate Array

FPR False-Positive Rate

GBT Gradient-Boosted Tree

GCP Google Cloud Platform

GNN Graph Neural Network

GP Gaussian Process

GP-GPU General-Purpose Graphics Processing Unit

GPU Graphics Processing Unit

GRU Gated Recurrent Unit

HMM Midden Markov Model

HOT Heat Orchestration Template

HTM Hierarchical Temporal Memory

HW Holt-Winters

HPC High-Performance Computing

IaaS Infrastructure-as-a-Service

IaC Infrastructure-as-Code

ICT Information and Communications Technology

IMS IP Multimedia Subsystem

IP Internet Protocol

IR Information Retrieval

IT Information Technology

KPI Key Performance Indicator

LB Load-Balancer/Load-Balancing

LM Language Model

LLM Large Language Model

LR Linear Regression

LSTM Long Short-Term Memory

LTE Long Term Evolution

MA Moving Average

MAPE Mean Average Percentage Error

MSE Mean Squared Error

MKL Math Kernel Library (by Intel)

ML Machine Learning

xvi acronyms

MLP Multi-Layer Perceptron

MPI Message Passing Interface

MSA Micro-Services Architecture

NBL Nokia Bell Labs

NAR Non-linear Auto-Regressive

NLP Natural Language Processing

NFV Network Function Virtualization

NSP Network Service Provider

NSRF Negative Sampling Random Forest

NVI Network Virtual Infrastructure

OPEX Operating Expenditure

OS Operating System

PaaS Platform-as-a-Service

PCA Principal Components Analysis

PR Polynomial Regression

QA Quality Assurance

QE Quantization Error

QoS Quality of Service

RCA Root-Cause Analysis

RDF Random Decision Forest

RL Reinforcement Learning

RMSE Root Mean Squared Error

RNN Recurrent Neural Network

ROC Receiver Operating Characteristic

RPC Remote Procedure Call

SARIMA Seasonal Auto-Regressive Integrated Moving Average

SDL self-Directed Learning

SDN Software-Defined Network/Networking

SGD Stochastic Gradient Descent

SSE Streaming SIMD Extensions (by Intel)

SIMD Single Instruction, Multiple Data

SLA Service Level Agreement

SLO Service Level Objective

SOM Self-Organizing Map

SVM Support Vector Machine

TPR True-Positive Rate

acronyms xvii

ToR Top-of-Rack

VM Virtual Machine

VNF Virtualized Network Function

VPN Virtual Private Network

vROps vRealize Operations Manager (by VMWare)

WAN Wide Area Network

XaaS Anything-as-a-Service

Part I

W H Y D ATA - D R I V E N O P E R AT I O N S ?

1
I N T R O D U C T I O N

1.1 motivations

Cloud computing is nowadays an established paradigm for effec-
tively developing and managing enterprise applications and assets.
The most evident benefit of using such technology is the possibility
to have on-demand access to a diverse set of virtualized resources
(e.g., computing, storage, networking, etc.) that can be configured
to fit the specific needs, allowing for more elastic, flexible and re-
silient applications. Indeed, companies like Google, Amazon and
Microsoft have been able to build successful business models lever-
aging this technology, such that many organizations heavily depend
on their—public—cloud services (e.g., it is well known that Netflix’s
video streaming platform is largely built upon AWS technology). On
the other hand, other organizations do not want to, or cannot, rely on
external cloud providers, e.g., due to regulations, strict performance
requirements, security concerns and so on. In such cases, they can still
benefit of the advantages of such paradigm by investing in a private
cloud, upon which they can build their IT systems. For instance, in re-
cent years, Network Service Providers (NSP) have started to adopt this
strategy to enable NFV [39, 194]. In similar cases, the choice of private
cloud infrastructures is also corroborated by latency-related concerns.
Indeed, since their service-chains are highly delay-sensitive (e.g. LTE,
4G, 5G, etc.), it is unpractical to rely on public cloud infrastructures,
that are typically shared among multiple tenants and not necessarily
deployed according to the needs of NSPs.

Either it is public or private cloud, on-premise or off-premise, even-
tually someone has to sustain the heavy burden of managing and
maintaining the underlying infrastructure that makes cloud comput-
ing possible. In order to guarantee scalability, robustness to failure,
high availability, and low latency, such systems are typically designed
as large-scale distributed systems [175], often partitioned and/or repli-
cated among many geographically dislocated data centers. The larger
the scale, the more operations teams have to deal with complex interac-
tions among the various components, such that monitoring, diagnosis
and troubleshooting of possible issues become incredibly difficult
tasks [82]. If such issues are not promptly handled, then the customers

3

4 introduction

may be impacted, and start experiencing degradation of the offered
service availability and performance.

Sometimes, we can see some major incidents hitting the news. Given
the large success that cloud computing has been having during the
recent years, a system outage occurring in a data center of a major
provider can propagate rather quickly and cripple a huge number
of services, websites or applications that depend on it. Events like
this can potentially start a series of undesirable chain-reactions, that
typically result in diverse issues experienced by the customers [9]. As
an example, some applications could be managing vital aspects of
the daily business of an organization, like granting access to email
inboxes, enabling communication and interactions among co-workers,
or serving important documents and spreadsheets that are required to
advance critical processes and whose unavailability can severely slow
down all activities company-wide. Or, for instance, imagine coming
back home after work and not being able to stream your favorite TV
series and films, at the point that you quit your subscription with
your entertainment services provider and activate a new one with
its competitor [218]. Or again, given that IoT devices are becoming
more and more part of everyone’s life, imagine not being able to enter
your home at all, because the smart lock of your door is blocked by a
service component not responding, as it happened in 2019 with Nest
devices [80]. Of course, the latter are somewhat trivial examples of the
effects that data center incidents may have on the end users. However,
more and more organizations are adopting cloud computing, either
private or public, as their main paradigm to develop applications with
varying levels of criticality. Therefore, it is of the utmost importance for
service providers to continuously enhance their capabilities of reacting
promptly when such disruptions happen, or even to prevent them alto-
gether, if possible. Even though in cloud environments we can usually
find very advanced automations to solve really complex tasks, current
approaches to data center operations are still heavily human-centric
and depend on the expertise and skills of the on-call engineers. This
ensures that highly specialized operators apply mitigation procedures
that are usually timely and effective. However, they may still be sus-
ceptible to human errors, with non-trivial consequences. Sometimes,
all it takes for crashing a very critical service is a typo, as it was the
case for the AWS engineer that started a 4-hours downtime of the S3

storage service [234]. In this specific case, since AWS internal services
themselves heavily depend on S3 storage, they were not even able to
correctly display the status of the operations on their customer-facing
dashboards, such that they had to rely on external services like Twitter
to dispatch news about the status of the operations [66].

Making sure the provided services are up to the agreed level of
performance is of the utmost importance for cloud providers, since
such violations may result in penalties, damages to their reputation

1.2 the case for data-driven operations 5

and, thus, consistent financial losses. For instance, the typical strate-
gies employed to ensure Service Level Agreements (SLA) are static
over-provisioning of virtual resources, to make a service more robust
to workload fluctuations, and redundant hardware components, to
tolerate individual components failures. However, these strategies are
clearly cost- and energy-inefficient, and may not be sufficient to handle
unforeseen events like error propagations, malicious behaviors or soft-
ware bugs [209]. In addition, operational activities themselves can be
the origin of a large share of system outages. Indeed, in a typical cloud
environment, many maintenance tasks are executed simultaneously
by multiple operators, possibly relying on separate sets of tools that
are not aware of interferences generated by other operations involving
the same resources. Due to the complex interactions existing in this
type of environments, it is not uncommon that such errors quickly
propagate and affect other parts of the system [67].

For all the aforementioned reasons, in order to minimize the risk
of outages, and all the related costs, it is crucial to support system
administrators introducing novel techniques that can enable a more
proactive, data-driven, approach to data center operations.

1.2 the case for data-driven operations

The large availability of data collected at different levels of a cloud
infrastructure—like physical machines metrics, virtual machines (VM)
metrics, application key performance indicators (KPI), event logs,
etc.—allows for employing effective data-driven methods, such as
those coming from the machine learning (ML) research field. In a
highly dynamic scenario like data center operations, traditional model-
driven approaches alone may be inadequate at capturing the complex-
ity of the interactions among system components. Operations teams
would certainly benefit from the introduction of robust data-driven
methods to support their decisions based on historical information.
For instance, outages are typically preceded by failures, performance
degradation and similar anomalous behaviors that, if detected on time,
can be exploited to raise alerts and/or autonomously trigger suitable
procedures before other components, or the end users, have the time
to experience any issues [16, 67, 82, 209, 245]. On a similar note, also
the problems related to virtual resources allocation and management,
well-known complex multi-objective optimizations problems, can be ef-
ficiently addressed with similar approaches, typically trading optimal
solutions for fast—good-enough—solutions [54, 81, 155, 179, 194, 216,
260]. Furthermore, data-driven methods can also facilitate root-cause
analysis and enable a fine-grained localization of faults, performance
[85, 181], energy efficiency and power management issues [60, 96, 267,
269] at scale.

6 introduction

A huge portion of the data available in this context comes in the
form of sequences. Each physical component of the infrastructure—like
physical hosts, top-of-rack (ToR) switches, routers, etc.—continuously
generates system logs and readings. On top of that, one can also con-
sider similar information generated by the tons of VMs and containers
running on such hardware, as well as the application-level indicators
of the services they implement. Cloud environments also generate
data that can be intended as graphs. A straightforward example could
be the topology according to which compute, storage and networking
nodes of a data centers are connected to each other and to the public
Internet. Furthermore, one could derive graphs from the specific de-
ployments of the various services onto the data center infrastructure,
such as fault graphs stating the dependencies among hardware/soft-
ware components, very useful to highlight single point of failures and
address correlated failures. Note that the aforementioned graphs can
also be dynamic, such that their structure changes in time. This type
of data is usually referred to as spatio-temporal graphs (or temporal
networks). Finally, another important form of data largely available in
cloud environments is text. The biggest share of such data obviously
consists of the zillions of lines of code that implement the various
systems and applications. However, to have a more comprehensive
picture, it is important to also consider the other sources of textual
data in the DevOps cycle, like: deployment scripts, configuration files,
version control system history, code review discussions, post-mortem
analysis documents, etc.

It is important to consider that the aforementioned data sources
are refreshed with very high frequency. On the one hand, this aspect
allows for very fine-grained analysis. On the other hand, it poses some
computational challenges and requires ML approaches to be robust to
distribution drifts, caused by frequent changes to the infrastructure
and its configurations made by the operations teams. In this scenario,
data are abundant and, in some cases, even too abundant for human
operators, or simple automations, to directly consume them. Therefore,
advanced data processing techniques are required to extract funda-
mental knowledge, that may allow operators to really understand
the possible insurgence of faults and critical conditions. The overall
objective of this thesis is to explore the possibilities to apply ML in
this context, developing a structured methodological approach, and
providing evidence of the advantages they can bring.

1.3 research goals

1.3.1 G1 - Data-driven Operations Support Framework

The primary goal of this thesis is to devise a comprehensive framework
to support data center operations, to allow for a holistic approach to

1.3 research goals 7

the major problems that can be experienced by service providers. To
this aim, data-driven techniques, such as those coming from the ML

research field, are expected to be among the most effective ways to
address the related research challenges. The motivation is two-fold.
First, large-scale distributed cloud environments produce a humon-
gous amount of diverse data, at each level of the technology stack.
Second, given the scale of the typical underlying infrastructures that
host cloud computing systems, traditional model-driven approaches
alone can be inadequate at capturing the complexity of the dynamic
interactions and relations among individual components. In this way,
data center operators could be provided with a comprehensive set
of tools to improve their analysis and to develop more intelligent
automations, leveraging on the knowledge acquired from experience,
so that they can better focus on those tasks that still heavily require
human intervention. Therefore, the first objective of this thesis is to
design reliable ML techniques to optimize and support data center
operations, and to evaulate their potential benefits by implementing
and evaluating them on real cloud platforms.

1.3.2 G2 - Autonomy vs Learning from Human Interaction

The target data-driven framework described in Section 1.3.1 is not
to be interpreted as a drop-in replacement for human experts. It
should be seen as an autonomous system they could safely depend
on for critical maintenance tasks, while still having the possibility
to provide feedback and place safeguards, filling possible gaps by
leveraging on their domain knowledge. Indeed, data centers can be
regarded as complex cyber-physical systems (CPS) [192], consisting
of a large ensemble of multi-faceted virtual and physical resources,
in which human operators play key roles. Given the scale and the
performance levels at which such systems are required to operate, it is
nearly impossible for humans to handle the workloads and apply the
necessary corrective actions entirely manually, without any kind of
automation to support them. However, on the other hand, it is still not
feasible to automate all the aspects involved in data center operations,
since many problems require engineering creative and dependable solu-
tions leveraging on knowledge coming from many diverse domains,
a process that it is currently hard to reproduce artificially. We expect
ML-based methodologies to be among the principal and most effective
enabling technologies for the realization of such cooperative approaches
to data center operations. Indeed, they allow for dynamic acquisition
of knowledge from historical data, coming from several sources and
in different forms. Such capability can be used to anticipate the effect
of actions, plans and interactions within the CPS and with the other
systems that interface and depend on the provided services. Therefore,
the second objective of this thesis is to realize data-driven methods

8 introduction

that allow human operators to focus on those activities that inherently
require expertise and creativity, by automating resource-demanding
tasks and possibly learning from human experts’ feedback.

1.3.3 G3 - Performance & Efficiency

Even though, in a typical data center scenario, there is certainly no
lack of processing power, it is of the utmost importance to take into
account also performance and resource-efficiency aspects in the de-
sign of the proposed data-driven support system. In particular, we
need to make sure it can be operated at a data center-scale without
interfering with the production workloads and the other critical ser-
vices that a data center provides, that are usually regulated by SLAs.
Applying state-of-the-art techniques to maximize the control of tem-
poral interferences among the different workloads, such as the ones
proposed in [48, 51], is required to deliver automated, dependable
and cost-efficient approaches to support data center operations. In
these regards, virtual resources allocation policies play a fundamental
role. Multiple virtual components, such as VMs or containers, that
are co-located on the same physical host might interfere with each
other executions (i.e., so-called problem of noisy neighbors), compro-
mising each other’s performance stability and predictability, such
that it is impossible to guarantee the completion of the tasks within
the required time constraints. To address this challenge, traditional
approaches employ physical resources partitioning and scheduling
policies, that could be augmented by providing effective workload
estimation models. This kind of issues are particularly relevant in a
private cloud scenario, a model that is being progressively adopted by
those organizations that do not want to, or cannot, rely on external
cloud providers due to strict performance requirements. For instance,
this is the case of modern NSPs that have started to adopt the Network
Function Virtualization (NFV) paradigm to deliver network services.
Therefore, the third objective of this thesis is to realize performant
and efficient data-driven support tools, that can be plugged into the
existing data center infrastructures without negatively affecting the
overall performance.

1.4 contributions

In view of the research goals presented in Section 1.3, my main con-
tributions generally fulfill all the three principal requisites deemed
necessary for a comprehensive, and effective, data-driven approach to
data center operations. Furthermore, some of these works have been
developed in collaboration with industrial partners, namely Vodafone
and Nokia Bell Labs, that allowed me to work on real data exported
from their respective production environments. Table 1.1 offers an

1.4 contributions 9

Table 1.1: Summary of the research contributions included in this thesis.

Contribution G1 G2 G3 Chapters Publications

High-performance AD NSPs pain-point decision-support GPU acceleration 3, 4 [50, 125, 126, 148]

VNF metrics forecasting NSPs pain-point capacity planning training efficiency 5 [49]

Predictive auto-scaling elasticity-control high configurability low end-to-end latency 6 [123], under review

Intelligent cloud operations self-healing recommendations low overhead 7 under review

Deployment code analysis quality assurance knowledge transfer – 8 [127]

overview of the contributions, and illustrates how they relate to the
research goals:

• My work on detecting anomalous Virtual Network Functions
(VNF) behaviors [50, 52, 125, 126] offers a data-driven solution to
a very important problem that NSPs face in their daily operations
(G1). However, it aims at complementing human experts assess-
ments, rather than autonomously enacting potentially costly
decisions (G2). Furthermore, I used self-organising maps (SOM)
to implement the proposed approach, a very low-footprint unsu-
pervised learning method, that I made even more efficient by
leveraging on hardware acceleration [148] (G3).

• In my work on VNF metrics forecasting [49, 53], I provide a com-
prehensive overview of time-series forecasting methods that can
be used by NSPs to support their capacity planning activities (G1,
G2). In the experimental validation, I also assess the proposed
architectures both in terms of accuracy and training efficiency
(G3).

• My work on predictive auto-scaling [123] tackles a fundamental
open problem in cloud computing (G1). I designed the proposed
architecture such that human operators retain full-control over
what underlying ML models are used and how the monitoring
data are ingested, to realize a robust elasticity-control policy
that can be refined over time (G2). In addition, I show that the
approach introduces a very limited latency to the overall control
mechanism (G3).

• My approach to intelligent operations, presented in Chapter 7

(unpublished work, currently under review), offers to human
operators a way to embed their experience into a model able to
recommend (G2) the most suitable corrective actions, when facing
important issues that were already observed in the past (G1). This
is possible, for instance, by correlating the information stored
in issue tracking systems and post-mortem analysis documents
to system measurements. Remarkably, I used gradient-boosted
trees (GBT) to implement the proposed approach, a simple, yet
very powerful, method for supervised learning, that exhibits a
generally short training time and low inference overhead (G3).

10 introduction

• My work on the application of large language models (LLM)
to declarative deployment code analysis [127], presented in
Chapter 8, aims at providing an effective method to automate
quality-assurance (QA) activities (G1). In this way, human ex-
perts can mitigate the impact of time-consuming activities like
code-reviews and knowledge transfers, while still enforcing best
practices and recommended design patterns (G2).

1.5 thesis structure

This thesis is organized as follows. Part I introduces the reader to the
motivations and the scope of our work. In particular, in Chapter 2,
we provide an overview of the most relevant background concepts
required to understand the rest of the thesis. Our work is at the
intersection of several, very broad, fields like Cloud Computing, NFV

and ML. Therefore, for each field, we limit our overview to the key
principles and technologies that inspired and enabled our research
contributions.

Part II includes our work on high-performance SOM-based anomaly
detection (AD). In Chapter 3, we describe our approach based on SOMs
for detecting anomalous behaviors in VNFs. Our approach consists in a
joint analysis of system-level resource consumption metrics, collected
either from the physical hosts or the computational units (e.g., VMs,
containers), and application-level metrics related to the performance
of the individual VNF. We present the results of our validation on
real data coming from a subset of the Vodafone NFV infrastructure,
where it is currently employed to support the data center operators.
Our technique is capable of identifying specific components of the
infrastructure that are worth to be investigated by human operators,
in order to keep the system running under expected conditions. The
contents of Chapter 3 appeared previously in [50, 52, 125, 126]. In
Chapter 4, we describe XPySom, our open-source implementation
of the SOM technique, written in Python. This work was inspired
by our previous experience with open-source SOM implementations,
depicted in Chapter 3. Our implementation is designed to achieve
high single-node performance, leveraging on the wide landscape of
libraries for vector processing on multi-core CPUs and general purpose
GPUs. We present the results of an extensive experimental evaluation,
where we benchmarked our approach against widely used open-
source SOM implementations, using the EMNIST dataset. Our results
shows that XPySom outperforms the other available alternatives, in the
single-node scenario. Indeed, under the same conditions in terms of
quantization error, our implementation exhibits a speed-up of about
7x and 100x, with respect to the considered alternative open-source
implementations, when multi-core and GPU acceleration are enabled,
respectively. The contents of Chapter 4 appeared previously in [148].

1.5 thesis structure 11

Part III includes our work on cloud resource management ap-
proaches based on time-series analysis techniques. In Chapter 5, we
present our work on time-series forecasting techniques for predicting
VNF operation metrics. We investigate the performance of a number of
ML-based approaches, and provide insights on how they can support
the decisions of NFV operation teams. Our analysis considers both
infrastructure-level and service-level metrics. To benchmark the se-
lected forecasting techniques, in terms of forecasting accuracy and
training cost, we used real data exported from a production envi-
ronment deployed within the Vodafone NFV infrastructure. Vodafone
Network Virtual Infrastructure (NVI) team currently employs these
techniques to support its capacity planning activities. The contents of
Chapter 5 appeared previously in [49, 53]. In Chapter 6, we describe
monasca-predictor [122], our open-source extension to the Monasca [170]
monitoring framework that enables OpenStack operations based on
predictive analytics, with a particular focus on auto-scaling. Indeed,
our architecture allows orchestrators to apply time-series forecasting
techniques to estimate the evolution of relevant metrics, and take
decisions based on the predicted state of the system, instead of sim-
ply reacting when thresholds on resource consumption metrics are
breached. In this way, e.g., they can anticipate load peaks, and trig-
ger appropriate scaling actions in advance, such that new resources
are available when needed. We used our architecture to implement
predictive scaling policies leveraging on linear regression (LR), auto-
regressive integrate moving average (ARIMA), feed-forward neural
networks (FFNN) and recurrent neural networks RNN. Then, we eval-
uated their performance on a synthetic workload, comparing them
to those of a traditional policy. Furthermore, to assess the ability of
the different models to generalize to unseen patterns, we also eval-
uated them on traces from a real content delivery network (CDN)
workload. The implementation of our architecture is open-source. The
contents of Chapter 6 appeared previously in [123], and also refer
to an unpublished journal paper, currently under review. In Chap-
ter 7, we present our work on a 2-phase strategy to enable intelligent
cloud operations. Our approach leverages on monitoring data and
the information regarding the occurred anomalies, correlating them
with the corresponding corrective actions. The approach consists in a
ML pipeline, composed by two models in sequence, to automatically
detect anomalous patterns, based on past observations of normal be-
havior, and recommend specific corrective actions, based on historical
operational data reporting the strategies applied to heal the faulty
components. We validate our approach on an OpenStack deployment,
generating workloads on both a synthetic application and a Cassan-
dra cluster, while injecting different types of faults. The contents of
Chapter 7 refer to unpublished work, currently under review.

12 introduction

Part IV includes our work on QA-aware DevOps methodologies.
In Chapter 8, we present our approach based on LLMs for analyz-
ing declarative deployment code, to support DevOps activities. This
work was conducted during an internship at Nokia Bell Labs (NBL) in
Stuttgart, Germany. Our goal was to create a tool to support DevOps
teams in their QA activities, with a focus on declarative infrastructure-
as-code (IaC) specifications, like Kubernetes manifest files. Indeed,
producing robust deployment specifications is not an easy feat, and
for the domain experts it is time-consuming to conduct code-reviews
and transfer the appropriate knowledge to other members of the team.
This is particularly challenging in a context like NBL, where projects
are typically developed by multidisciplinary research teams with a
very diverse expertise. We propose an approach based on LLMs to
automatically provide QA-related recommendations to developers,
such that they can benefit of established best practices and design
patterns. We developed a prototype of our proposed ML pipeline, and
empirically evaluated our approach on a collection of Kubernetes
manifest files exported from a repository of internal projects at NBL.
The contents of Chapter 8 appeared previously in [127].

Part V concludes the thesis. In particular, in Chapter 9, we sum-
marize our main research contributions and outline remaining open
problems and possible future research directions.

2
B A C K G R O U N D

In this chapter, we limit our presentation of the background concepts
to only those key principles and technologies, in the space of Cloud
Computing, NFV, and ML, that inspired and enabled the research
contributions of this thesis.

2.1 cloud computing technologies

In this section, we briefly recall basic concepts about the most popular
cloud management and orchestration frameworks, both in open-source
and industry.

2.1.1 OpenStack

OpenStack is a widely used open-source cloud computing platform
that offers a wide range of diverse services. Many of the research
contributions of this thesis have been implemented and validated
using a local OpenStack cluster. Therefore, in this section, we provide
details on a number of key OpenStack components, with reference to
Figure 2.1.

2.1.1.1 Nova, Cinder and Glance

Nova [172] is the OpenStack component that provides compute re-
sources (e.g., VMs, bare metal servers, containers) management func-
tionalities. It leverages on Cinder [166] for block storage management,
and Glance [167] for image provisioning. The core of Nova’s architec-
ture is the compute process, that manages the underlying hypervisor
(using libvirt). Such process communicates with the shared central
database through the conductor process. Finally, the scheduler process
is the interface between the compute process and the instance placement
service. All processes exchange requests via remote procedure call
(RPC).

13

14 background

 Horizon Dashboard

Keystone

Identity

Service

Octavia

Load

Balancing

Senlin

Clustering

Monasca

Monitoring

Heat

Orchestration

Neutron

Networking

Cinder

Block

Storage

Glance

Image

Server

Nova

Compute

Figure 2.1: Overview of OpenStack key components.

2.1.1.2 Neutron

Neutron [171] is the OpenStack component that provides networking
functionalities. It offers the possibility to manage per-tenant virtual
networks (e.g., having their own IP numbering and DHCP settings)
and can be equipped with security-related features, like firewalls and
VPNs.

2.1.1.3 Monasca

Monasca [170] is an advanced multi-tenant, highly scalable, and fault-
tolerant monitoring solution. It is designed as a collection of microser-
vices, including: an efficient time-series DB, a streaming alarm engine,
a notification engine, a message queue, etc. Monasca also provides an
agent module that is to be deployed on the physical machines hosting
the compute services, such that it can collect metrics and forward them
to the DB through the message queue. Monasca is also compatible
with Kubernetes.

2.1.1.4 Heat

Heat [168] is the OpenStack component that provides orchestration
and automation capabilities. Indeed, it includes an IaC solution, namely
the Heat Orchestration Templates (HOT), through which users can de-
fine declarative deployment specifications, and automate the creation
and configuration of OpenStack resources in a repeatable and consis-
tent way. HOTs are based on the AWS CloudFormation template format,
that can be written either in YAML or plain JSON. Heat is designed
to be highly scalable and can be used to deploy complex multi-tier
applications.

2.1.1.5 Senlin

Senlin [174] is the OpenStack component that offers tools to effectively
operate clusters of homogeneous OpenStack resources (e.g., Nova in-
stances). In particular, it is possible to define and attach policies to
such clusters, specifying how their resources must be treated under
specific conditions. For instance, one can use scaling policies to auto-
matically resize the cluster, load-balancing (LB) policies to distribute

2.1 cloud computing technologies 15

the workloads, or health policies to handle faulty instances. Compared
to Heat [168], Senlin offers more effective operation support tools, and
a finer-grained control over the underlying resources. Indeed, Senlin
is being successfully used to operate large-scale deployments, like the
on-line gaming use-case reported by [233].

2.1.1.6 Octavia

Octavia [173] is the former Neutron LBaaS and, as the name suggests,
offers scalable LB functionalities. LB is crucial to enable fundamental
cloud properties like elasticity and high-availability. An Octavia LB con-
sists of a horizontally-scalable pool of Nova instances (i.e., amphorae),
leveraging on HAProxy. The controller is the core of Octavia’s architec-
ture, consisting in a number of sub-components whose jobs include
handling API requests and orchestrating the amphorae.

2.1.2 Kubernetes

Kubernetes [118] is an open-source orchestration platform that au-
tomates the deployment, scaling, and management of containerized
services. Originally developed by Google, building on top of the
experience made with its famous internal platform Borg [241], it is
now among the graduated projects maintained by the Cloud Native
Computing Foundation (CNCF). Kubernetes leverages on containers
as virtualization technology to package and run software applications
and their dependencies. Containers belong to the class of OS-level vir-
tualization solutions, offering an efficient way to develop and operate
portable software. With respect to traditional alternatives like VMs (i.e.,
hardware-level virtualization), containers trade strong isolation guaran-
tees for significantly faster boot times and less demanding resource
requirements. The primary goal of Kubernetes is to facilitate operating
and deploying resilient containerized applications across distributed
infrastructures. Indeed, managing a large-scale production environ-
ment, composed of a huge number of containers, distributed across
multiple physical nodes, is quite the challenge. Kubernetes offers a
set of very effective tools, and a growing ecosystem, to easily handle
large compute clusters through sophisticated control-plane automa-
tions and configuration management. For instance, once containers
are deployed, the orchestrator (specifically, the kube-scheduler compo-
nent) automatically takes care of scheduling them to the appropriate
physical nodes, based on resource availability and the specified work-
load requirements. Furthermore, Kubernetes provides built-in scaling
capabilities like, e.g., the HorizontalPodAutoscaler (HPA) component,
that automatically adjusts the number of pods (i.e., the abstraction
used to group related containers) in order to meet current demand.
On a related note, Kubernetes also offers automatic service discovery
and LB, that allows for seamlessly distributing the load among repli-

16 background

cated instances of a given service. Applications running on Kubernetes
can also be easily configured through declarative specifications, the
so-called manifest files, to implement self-healing features, such that
the underlying containers are automatically restarted, or failed-over,
when their performance is degraded. Similarly, an operator can easily
specify, through the same manifests, the preferred update rollout and
rollback strategies. The possibility to specify, in a declarative way, vir-
tually any aspect of an application life-cycle is the feature that mostly
reflects the philosophy that Kubernetes was built with. Its approach
to cloud orchestration completely eliminates the need for developers
and operators to explicitly codify any kind of workflow, letting them
focus on only specifying the desired state of the system. Kubernetes’
composable control processes (specifically, the kube-controller-manager
component) automatically take care of making the system continu-
ously converge towards such state. In this way, there is no need for
centralized control processes, and the resulting distributed systems
are generally more robust. Being open-source software, Kubernetes is
designed to be highly flexible and extensible, and can be successfully
used to create private cloud deployments in on-premise data cen-
ters. However, nowadays, any major cloud provider, like AWS, Google
Cloud Platform (GCP), or Microsoft Azure, offers a managed Kuber-
netes distribution that can be leveraged on to reduce the operational
overhead.

2.1.3 VMWare vRealize Operations Manager

VMWare vROps [243] is an enterprise-grade software used to operate
cloud infrastructures. Such framework can be deployed either on-
premise or in the cloud and its main purpose is to support operations
teams in automating and continuously improving their fundamental
activities, also leveraging on data-driven methodologies. Indeed, the
core of vROps consists of a pervasive monitoring infrastructure that
collects system data at every level of the stack (e.g., physical hosts,
virtual machines, networking components, etc.) and feed them to
a powerful analytical engine that is able to provide useful insights
and actionable feedback to the human operators, such that possible
issues or anomalies can be early spotted and corrected. More than 300

system metrics, being them classical raw counters (e.g., CPU utilization,
memory contention, network traffic, etc.) or more convoluted analytics
computed by the engine, can be exported from the system, allowing
also for the integration with third-party tools. Besides monitoring
and alerting functionalities, vROps enables automated management
of the VMs (or containers) that compose the deployed applications
such that, for instance, the corresponding workloads can be balanced
according to the optimization of specified indicators (e.g., application
KPIs, licensing costs, etc.).

2.1 cloud computing technologies 17

2.1.4 Network Functions Virtualization

NFV [39] is an architectural paradigm that emerged in response to
the increasingly demanding performance, flexibility and resiliency
requirements that modern telecommunication systems have to adhere
to. Among the typical network functions managed by a NSP, we have:
firewalls; intrusion detection systems; application LBs; DNS services;
IP multimedia subsystems; wide-area network (WAN) accelerators; etc.
NFV basically consists in virtualizing such network functions and con-
solidating them on commodity physical servers. Indeed, traditional
approaches that rely on proprietary dedicated physical appliances,
sized for the peak-hour, are nowadays too costly to maintain, and do
not allow NSPs to conduct a business that is sustainable at scale. The
adoption of NFV has been undoubtedly enabled by the tremendous
evolution of cloud computing, that makes having on-demand access to
virtualized resources unprecedentedly easy and convenient. In the NFV

context, the private cloud model is the most widespread, given that
NSPs typically already own many on-premise computing, networking
and storage resources, and that they have to meet quite stringent SLAs,
in terms of performance and security. In this way, NFV offers several
benefits over traditional approaches. For instance, by decoupling the
network functions from dedicated hardware, it allows for network ser-
vices to be delivered more flexibly, and to be updated more rapidly in
response to changing business needs, drastically shortening the time-
to-market. Also, by consolidating functions on commodity hardware,
NFV enables more efficient resource utilization strategies, including
auto-scaling capabilities. The NFV framework is made of three funda-
mental components. First, the VNFs, i.e., the software-defined network
functions, that are typically packaged and deployed onto the physical
infrastructures as VMs. However, given the widespread adoption of
container-based virtualization in the IT industry, we are observing
that also NSP are increasingly transitioning to cloud-native approaches
for VNFs development. Second, the NFV Infrastructure (NFVI), that is
the collection of hardware and software components that NSPs have
to maintain in order to provide the required resources to VNFs. An
NFVI is typically a very large-scale system, whose components are dis-
tributed among many geographically dislocated data centers managed
by the NSP. Such system generally consists of physical compute and
storage nodes, and virtualization-aware network equipment. Third,
the NFV management and orchestration (MANO) architecture, that is
collection of all functions that jointly manages the lifecycle of VNFs
and the underlying NFVI. Indeed, MANO functions typically include:
provisioning and managing NFVI resources to be allocated to specific
VNFs; instantiate, scale, and terminate individual VNFs; orchestrating
all the deployed VNFs to make sure the implemented services are
effectively, and efficiently, delivered.

18 background

2.2 machine learning methodologies for operations

support

In this section, we focus on a selected number of ML techniques that
have been used to realize the research contributions presented in this
thesis.

2.2.1 Self-Organizing Maps

A SOM [115] is an unsupervised vector quantization technique, used
to produce a topology-preserving map using a competitive learning
algorithm. The aim of the SOM training algorithm is to encode a
data manifold (e.g., a sub-manifold V ⊆ RN) into a finite set W =

{w1, · · · , wM} of reference vectors where wi ∈ RN is called codebook.
Formally, a SOM is defined by a pair of maps (w, b). w : L → RN is a
discrete map from a 2D lattice into a finite vector space, also known as
features space. Recall that a 2D lattice of dimensions H × K is a discrete
set

L = {hA + kB | h < H, k < K, h, k ∈ N} ⊆ R2 (2.1)

where A, B ∈ R2 determine its shape (e.g., A = (1, 0) and B =

(0, 1) produce a rectangular grid, whereas A = (1
2 ,

√
3

2) and B = (1, 0)
produce an hexagonal grid). For the sake of simplicity, L is indexed
with a lexicographical order (from 1 to H ×K), its elements ri ∈ R2 are
called units or also neurons and the images wi = w(ri) of the neurons
in the features space are called weights. Given a sample vector x ∈ V,
b : RN → L returns the BMU i.e., the unit whose weight is closest to
the input sample (or any such units, if multiple ones exist) depending
on a distance d in the feature space:

b(x) ∈ arg min
r∈L

d(x, w(r)) (2.2)

A common choice for the distance d is the Euclidean distance, albeit al-
ternative choices are possible (e.g., see the discussion in Section 3.3.3).

For each training epoch t, an update to the SOM weights is per-
formed, for each input sample, as follows. At each iteration iter, an
input data x is fetched (using either a random or a sequential schedul-
ing) and its associated best matching neuron b(x) is computed. Then,
the weights of all neurons are updated according to Equation (2.3),
where h is called neighborhood function and is defined as Equation (2.4)
(assumed to be a Gaussian in what follows).

w(iter+1)
k = w(iter)

k + α(t)h(b(x), rk, t)(x − w(iter)
k) ∀k (2.3)

h(r, s, t) = − exp
(
∥r − s∥2

δ(t)

)
∀r, s ∈ L (2.4)

2.2 machine learning methodologies for operations support 19

Here, α(t) and δ(t) are respectively the learning rate and the radius of
the neighborhood function, which depend on the current epoch t (α, δ :
N → R), and decrease across epochs either linearly or exponentially,
to make the algorithm converge. It is important to notice that, for
each training sample x, not only the winning reference is modified,
but the adaptation to x affects all the weights wj depending on the
proximity of rj to b(x) with a step size that decreases with the distance
between the units rj and b(x) in the lattice. This way neighboring units
respond to similar input patterns and each data point close in the
input space is mapped to same or nearby map neurons (inducing a
topology-preserving property on the codebook). The weights of the
neurons wi are typically initialized either by randomly sampling the
V data set or using the well-known PCA.

A key difference between the SOM training algorithm and other vec-
tor quantization or clustering techniques is that, in the neighborhood
function definition (see Equation (2.4)), the topological distance be-
tween a pair of units is declined as the Euclidean distance on the map
and not in the data space. The formulation in Equation (2.3) is called
the online update rule, that is not suitable for a parallel implementation
since each iteration directly depends on the one immediately before
and only processes a single data sample at a time. Therefore, a batch
parallel implementation has been proposed: instead of updating the
neuron weights for each data sample, they are updated after a batch
B ⊆ V of N′ data samples (in the following we will assume N′ = N,
for the sake of simplicity). Essentially, the term of Equation (2.3) that
depends for each rk ∈ L on the input sample by h(b(x), rk, t)(x − wk)

is replaced by a weighted sum of the same terms computed in parallel
for all samples in the batch, using the formula:

∑x∈B h(b(x), rk, t) (x − wk)

∑x∈B h(b(x), rk, t)
∀k (2.5)

This way, one can compute in parallel all numerator and denominator
parts (i.e., h(b(x), rk, t)(x − wk) and h(b(x), rk, t), respectively) for each
sample in each batch and then sum up all numerator and denominator
parts and finally compute the weight update.

After training is complete, the result is that the manifold data V is
divided into a finite number of subregions:

Vi =
{

x ∈ V| ∥x − wi∥2 ≤
∥∥x − wj

∥∥
2 ∀j ̸= i

}
(2.6)

called Voronoi tessellation, in which each sample vector x is described
by the corresponding weight of the BMU w(b(x)). It is important to
point out that the update rule is fundamental to the formation of the
topographically ordered map. In fact, the weights are not modified
independently of each other but as topologically related subsets. For
each step a subset of neurons is selected on the basis of the neigh-
borhood of the current winning unit. Hence, topological information

20 background

is supplied to the map because both the winning unit and its lattice
neighbors receive similar weights updates that allow them, after learn-
ing, to respond to similar inputs. After the training phase, the map
can be used to visualize different features of the codebook and of
the represented data, such as (i) the density of the reference vectors
(e.g., with a color scale proportional to neuron hits); (ii) likewise, the
distances among reference vectors, where a dark color indicates a
large distance between adjacent units, and a light color indicates a
small distance (i.e., the so-called U-matrix); (iii) a plot of the reference
vectors for each neuron, to see at a glance all the different behaviors
detected in the training dataset.

A careful choice of the SOM hyperparameters should be made in
order to have a suitable trade-off in terms of quality of the clustering
and computational performance (see, e.g., Section 3.4). Also, in order
to mitigate the problem of having different neurons specializing on
almost the same data samples (e.g., when the number of SOM neurons
is large with respect to the data sample variability), it is possible
to apply multi-stage clustering techniques over the SOM reference
codebook (see, e.g., Section 3.4.4).

2.2.2 ARMA, ARIMA, and SARIMA

The auto-regressive moving average (ARMA) model provides a flexible
tool for forecasting. Given the samples1 {xt} up to time t − 1, the
forecasted sample x̂t is computed as:

x̂t = ϕ0 +
p

∑
i=1

ϕixt−i +
q

∑
j=1

θjϵt−j (2.7)

where: ϕ0 is a constant; {ϕi}
p
i=1 are the model parameters controlling

the linear dependency of x̂t from the p last samples of the signal;
{θj}

q
j=1 are the parameters defining the linear dependency of the

output from the q errors {ϵt−j ≜ x̂t−j − xt−j}
q
j=1 performed by the

model on the last q predictions.
From ARMA, it is possible to derive another technique, known as

auto-regressive integrated moving average (ARIMA), that can be used
for non-stationary time-series. ARIMA is actually an ARMA model ap-
plied to the d−order differenced signal (defined as x(1)t ≜ xt − xt−1,
for d = 1, and x(d)t ≜ x(d−1)

t − x(d−1)
t−1 , for d > 1), for some d ∈ N+, to

obtain d−order differenced forecasts x(d)t , that need to be integrated
to reconstruct the final forecast x̂t:

x̂(d)t = ϕ0 +
p

∑
i=1

ϕix
(d)
t−i +

q

∑
j=1

θjϵ
(d)
t−j (2.8)

1 In what follows, {xt}t∈Z with xt ∈ Rn denotes a generic discrete, possibly multi-
variate, time-series whose historical evolution is known up to the current time. Its
future evolution {x̂t} is to be predicted with one of the mentioned techniques.

2.2 machine learning methodologies for operations support 21

Equation (2.8) is referred to as an ARIMA(p, d, q) model. From such a
general definition, it is possible to derive simpler models by tuning
the meta-parameters (p, d, q). For instance:

• When d = q = 0, an AR model AR(p) ≡ ARIMA(p, 0, 0) is
obtained, where xt is a linear combination of its lagged values
up to t − p.

• When p = d = 0, an MA model MA(q) ≡ ARIMA(0, 0, q) is ob-
tained, where xt is a linear combination of the errors at previous
timestamps up to t − q, not to be confused with moving average
filtering.

The meta-parameter d is typically chosen to obtain a d−order differ-
enced time-series x(d)t that is stationary, i.e., whose mean, variance and
auto-correlation are independent of t.

ARIMA can be further extended to deal with seasonal patterns by
introducing additional terms in Equation (2.8). Such a variant is known
as seasonal auto-regressive integrated moving average (SARIMA). Given
a seasonality period of m samples and meta-parameters (P, D, Q), that
are seasonal equivalents of (p, d, q), we get an additional component
that corresponds to an ARIMA model, where the signal values (and
errors) at t − m, t − 2m, t − 3m, . . . are used to compute the output at
t. The parameters of the model are usually optimized via least-square
optimization or likelihood maximization with Kalman filters [104].

2.2.3 Holt-Winters

Holt-Winters (HW), often referred to as triple exponential smoothing [33],
is a commonly adopted method for forecasting and signal processing.
Its peculiarity consists in explicitly separating predictive components
into level (or expected value, lt), trend (bt) and seasonality (st). In its
additive form, given knowledge of the samples {xt} up to the current
time t, HW forecasts future samples x̂t+h for h ∈ N+ as

x̂t+h = lt + (ϕ + ϕ2 + · · ·+ ϕh)bt + st+h−m

lt = α(xt − st−m) + (1 − α)(lt−1 + ϕbt−1)

bt = β(lt − lt−1) + (1 − β)ϕbt−1

st = γ(xt − lt−1 − ϕbt−1) + (1 − γ)st−m

(2.9)

where: m is the seasonality period; 0 < α, β, γ < 1 are the smoothing
factors for the level, trend and seasonality forecasts; 0 < ϕ ≤ 1 is

22 background

Figure 2.2: NAR neural network for time-series forecasting.

the damping factor. Alternatively, HW can be also formalized in a
multiplicative form as

x̂t+h = [lt + (ϕ + ϕ2 + · · ·+ ϕh)bt] · st+h−m

lt = α
xt

st−m
+ (1 − α)(lt−1 + ϕbt−1)

bt = β(lt − lt−1) + (1 − β)ϕbt−1

st = γ
xt

lt−1 + ϕbt−1
+ (1 − γ)st−m

(2.10)

HW parameters are optimized via sequential least-squares program-
ming, a classical optimization technique for constrained minimization
problems.

2.2.4 Non-linear Auto-Regressive Neural Networks

A non-linear auto-regressive (NAR) neural network is an auto-regressive
model where the forecast x̂t at time t is a non-linear combination of
the last p observations of the input signal. In the case of the so-called
tunable-basis, the estimated sample is obtained as a linear combination

2.2 machine learning methodologies for operations support 23

of r non-linear functions, where each function fi processes the same
input using a set of qi specialized parameters βi,1, . . . , βi,qi ∈ R:

x̂t =
r

∑
i=1

αi fi(xt−1, . . . , xt−p, βi,1, . . . , βi,qi) (2.11)

The one-hidden layer sigmoidal neural network is a notable instance
of this type of functions. In this case, the parameters are optimized
via back-propagation [136, 203], using input-target pairs consisting of
past and current observations. Figure 2.2 represents a NAR forecasting
model with a single hidden layer in the case of p = 4 and r = 6.

2.2.5 Recurrent Neural Networks

Among artificial neural networks (ANN), recurrent neural networks
(RNN) are commonly used for multi-variate time-series analysis (see [78],
Chapter 10), and forecasting in particular. RNNs predict the one-
step (or k-step) ahead value of a time-series based on the current
I-dimensional input xt ∈ RI and a compressed history of the inputs,
stored in an H-dimensional state vector s ∈ RH computed recurrently
by the hidden neurons. The model evolution is described by

st = fs(st−1, xt) (2.12)

ot = fo(st, xt) (2.13)

where: (i) fs : RH+I → RH operates on the concatenation c of s
and x, and is defined, e.g., as fs = tanh(Wsc + bs), where Ws are
the weights, bs are the biases; (ii) fo : RH+I → RO is the output
function, similarly defined, e.g., as fo = ReLU(Woc + bo), where ReLU
denotes the Rectified Linear Unit function. The learnable parameters
θ = {θj} = {Ws, Wo, bs, bo} are typically trained through gradient
descent on the loss function. In this work, we consider a stochastic
update rule with momentum, so that the j-th parameter is updated at
the k-th optimization step as follows:

µj,k = βµj,k−1 +∇Jθj,k(D) (2.14)

θj,k+1 = θj,k − λµj,k (2.15)

where D is a dataset of input-output pairs, and ∇Jθj,k(D) is the gradi-
ent of the loss function Jθj,k(D) with respect to parameter θj computed
at instant k. The term β determines in which proportion the momen-
tum µj,k is applied during the gradient descent step, and λ is the
learning rate. The training process continues until the validation loss,
computed over the validation dataset every K optimization steps, stops
decreasing. The model corresponding to the minimum achieved on
the validation loss is taken as output.

24 background

ft

ot

σ,	Wxf,	
Whf,	bxf,

bhf

it

xt

ht-1

ct-1

tanh

ht

ct

σ,	Wxi,	
Whi,	bxi,

bhi

⊙

⊙

gt

+

⊙
σ,	Wxo,	
Who,	bxo,

bho

tanh,	Wxg,	
Whg,	bxg,

bhg

ot

Figure 2.3: LSTM cell processing a time-series together with the additional
internal signals ct and ht.

2.2.6 Long Short-Term Memory

As to more advanced ML techniques, long short-term memory (LSTM)
networks [211] represent a common architecture for time-series classi-
fication and forecasting [11, 226], and consist of an improved version
of RNNs. Let {xt}, for xt ∈ Rn and t ∈ [0, τ], be a discrete multi-variate
input sequence. We can formalize how an LSTM cell with d units
processes its inputs at time t as

it = σ (Wxixt + bxi + Whiht−1 + bhi)

ft = σ
(
Wx f xt + bx f + Wh f ht−1 + bh f

)
gt = tanh

(
Wxgxt + bxg + Whght−1 + bhg

)
ot = σ (Wxoxt + bxo + Whoht−1 + bho)

ct = ft ⊙ ct−1 + it ⊙ gt

ht = ot ⊙ tanh (ct)

(2.16)

where each W is a (learnable) weight matrix, ⊙ is the element-wise
(or Hadamard) product and σ(y) = 1/(1 + e−y) is the (element-wise)
sigmoidal function. We refer to h̃t = (ht, ct) ∈ R2d as the latent state at
time t.

Figure 2.3 visualizes how the gates that compose an LSTM cell are
connected with each other. In practical terms, LSTM leverages on the
interactions between the cell state ct, the hidden state ht and the cur-
rent value of the signal xt to formulate an internal representation of
the input variables, that captures long- and short-term dependencies
among them. The main reason why LSTMs show an advantage when
compared to standard RNNs is that the cell state can traverse the cell
freely without being altered, other than linear interactions as summa-
tion and element-wise product, in backward and forward passes of

2.2 machine learning methodologies for operations support 25

the learning algorithm, thus reducing the risk of numerical problems
affecting regular RNNs, such as the vanishing gradient [116]. The exact
way x̂t is computed depends on the architecture where the LSTM cell
is plugged into.

2.2.7 Gradient-Boosted Trees

A gradient-boosted tree (GBT) is an ensemble method for supervised
learning that combines the simplicity of decision trees (DT) [88] with
the power of the gradient boosting algorithm [73]. GBTs are nowadays
widely used to solve diverse types of learning tasks (e.g., classification,
regression, ranking, etc.). In particular, due their proven capability
to handle complex non-linear relationships, they exhibit remarkable
performance when dealing with tabular data, often outperforming
even more sophisticated models like ANNs. A GBT consists in a set of
classification and regression trees (CART). However, unlike standard
DTs, where leaves only contain decision values, each leaf of a CART

is associated with a real-valued prediction score. This allows for a
more sophisticated optimization approach, able to solve more complex
learning tasks than simple classification. The final output ŷi of a CART

is typically computed by summing up the prediction scores of each
individual tree in the ensemble:

ŷi =
K

∑
k=1

fk(xi), fk ∈ F (2.17)

where K is the number of trees in the ensemble, and fk is the function
representing a specific tree in F , the set of all possible CARTs. Looking
at Equation (2.17), one may argue that GBTs are not so different from
random decision forests (RDF) [88]. Indeed, both types of statistical
models consist in tree ensembles. However, there exists a fundamental
difference in the procedures used to train such models. For GBTs, the
objective function to be optimized is usually defined as

obj =
n

∑
i=1

l(yi, ŷ(t)i) +
t

∑
i=1

ω(fi) (2.18)

where l is an arbitrary loss function, and ω(fi) is the so-called complex-
ity of the tree fi. GBTs work by iteratively learning, at each time-step, a
new DT to be added to the ensemble, with each subsequent tree being
optimized for correcting the errors made by the previous one. The
final output of the model at time t is defined as

ŷ(t)i =
t

∑
k=1

fk(xi) = ŷ(t−1)
i + ft(xi) (2.19)

The gradient boosting algorithm typically uses gradient descent to
minimize the loss function—like mean squared error (MSE)—by itera-
tively fitting new trees to the residual errors. This process continues

26 background

until the loss function is minimized, or a specified stopping criterion
is met. The aforementioned complexity acts as a regularization term
that, for instance, can be defined as follows:

ft(x) = wq(x), w ∈ RT, q : Rd → {1, 2, . . . , T}

ω(f) = γT +
1
2

λ
T

∑
j=1

w2
j

(2.20)

where the tree ft is defined in terms of w, that is the vector of pre-
diction scores on its leaves, and q, that is a function assigning each
d-dimensional data point to the corresponding leaf. T is the number of
leaves of ft, while γ and λ are parameters that control the effect of the
regularization. Beside being able to handle complex non-linear rela-
tionships, and particularly robust to noisy and missing data, GBTs are
also generally sufficiently easy to interpret and visualize. Furthermore,
they have a quite low barrier to adoption, as there already exist several
established, and highly performing, open-source implementations,
like XGBoost [38] and LightGBM [108].

2.2.8 Large Language Models

Large language models (LLM) are a type of deep neural networks
(DNN), consisting of millions, or even billions, of learnable parameters,
designed for solving very complex natural language processing (NLP)
tasks. The training process typically starts by pre-training an LLM for
language modeling, on massive amounts of textual data. In general,
the input data consists of a sequence of words (or tokens), that is
often referred to as the context, and the model is trained to predict
related words, by outputting a probability distribution over the con-
sidered vocabulary. However, there exist two main different language
modeling approaches: masked and causal. Masked language modeling
consists in training a LLM to predict missing tokens in the input. In
fact, during training, some input tokens are randomly masked, and
the model is then trained to recover them by only relying on the
other tokens in the sequence. The result is that the model generally
learns to understand the context and relationships between words.
On the other hand, causal language modeling consists in training a
LLM to predict the next token in the input sequence. The result of this
process is that the model learns to generate coherent and realistic
text. Once pre-training is complete, the model can be specialized (i.e.,
fine-tuned) for specific NLP tasks like machine translation, summariza-
tion, question-answering, sentiment analysis, etc. In general, this is
accomplished by re-training the model on a smaller dataset, specific
to the task at hand, using the pre-trained weights as a starting point.
LLMs are generally based on the famous transformer architecture [240],
that marked a pivotal point in NLP research. The architecture consists

2.2 machine learning methodologies for operations support 27

of two main components: the encoder, that is responsible for process-
ing the input sequence, and the decoder, that generates the output.
The fundamental building block of the transformer is the so-called
attention function [12], that allows the model to intelligently weigh the
importance of the different tokens when processing input sequences.
There are several ways to implement the attention function, but the
most used in practice is the scaled dot-product attention, that is typically
faster and more space-efficient than the available alternatives, and is
defined as

attention(Q, K, V) = softmax
(

QKT
√

dk

)
V (2.21)

where Q, K, and V are the so-called queries, keys and values matrices
respectively, and dk is the dimension of the individual query and key
vectors. The function softmax : RK → (0, 1)K is defined as

softmax(x)i =
exi

∑K
j=1 exj

, x ∈ RK (2.22)

In other words, softmax normalizes the input vector, such that the
components of the resulting vector are real values included in (0, 1),
and their sum is equal to 1. Given a sequence of input tokens, an
embedding is computed for each of them, by projecting them onto
the input space of the model. For each token embedding, applying
the attention function basically consists in mapping a query and a
set of key-value pairs, where each of these is a separate vector of
learnable parameters, to an output. This terminology comes from the
analogy between the attention function and an information retrieval
(IR) process. Indeed, the query is just an alternative (learned) represen-
tation of the currently processed token. This representation is matched
against the keys, one for each of the other tokens in the processed
sequence, to compute compatibility scores, similarly to how an IR query
is (approximately) matched against an index. The values associated
to the keys are learned token representations as well. Finally, the
output of the attention function corresponds to a weighted sum of
these values, where the weight assigned to each value depends on the
compatibility between the corresponding key and the query. Note that
in Equation (2.21) the query, key, and value are defined as matrices.
Indeed, in practice, the individual vectors, each one corresponding
to an individual token in the input sequence, are typically batched
for faster processing. The time complexity of the attention function
is O(n2 · d), where n is the sequence length and d is the dimension
of the representation of a single token. While computing the atten-
tion values is theoretically expensive, such computation can be highly
parallelized, resulting in an end-to-and training process that is typi-
cally significantly faster than other neural models for sequential data,
like RNNs (and similar). Note that, in general, only the encoder part

28 background

of the transformer architecture can benefit from the parallelization.
Instead, the decoder inherently suffers from the same drawbacks of
recurrent models, where the output of a computation step has to
be fed to the next. In the research works that followed [240], many
variations of the original transformer architecture have been proposed
to improve its performance from different viewpoints, paving the way
for the development of new kinds of LLMs. These variations can be
broadly divided in two macro-categories: encoder-only and decoder-only
architectures. In general, encoder-only models, like BERT [63] and
T5 [187], exhibit remarkable performance in many diverse NLP tasks,
both in terms of accuracy and efficiency, due to the aforementioned
possibility to highly parallelize their computations. However, this type
of models typically requires a greater amount of task-specific data
to be properly fine-tuned on downstream tasks, and it is not partic-
ularly good at solving natural-language generation tasks. The latter
is the main reason why decoder-only models, like the one described
in [137], have been developed. Such models are indeed optimized for
text generation, but they also exhibit remarkable unsupervised multitask
learning and few-shot learning capabilities, that make fine-tuning them
on downstream tasks generally easier and less demanding in terms
of data. In fact, the architectures underlying the famous GPT models
family [22, 185, 186] belongs to the decoder-only category.

Part II

H I G H - P E R F O R M A N C E A N O M A LY
D E T E C T I O N

In this part, we address the AD problem, that represents a
critical pain-point for NSPs. We present our proposals for
anomalous VNF behavior detection using SOMs, aiming at
supporting human operators in their activities, by offering
a comprehensive view of the changes in the status of the
monitored systems. We also provide a high-performance,
open-source, implementation of SOMs, leveraging on GPU-
acceleration.

3
S O M - B A S E D A N O M A L O U S V N F
B E H AV I O R D E T E C T I O N

3.1 introduction

The NFV paradigm [39] has been progressively adopted by all the
major NSPs in response to the increasingly demanding requirements
they have to meet, in particular, in terms of performance, flexibility
and resiliency. Indeed, traditional approaches that rely on the deploy-
ment of network functions on top of proprietary specialized physical
appliances, typically sized for the peak-hour and very costly to main-
tain, are no more sustainable in the complex, fast-paced scenarios that
can be found in modern telecommunication systems. Thanks to the
amazing advances in the cloud computing space, having on-demand
access to a diverse set of virtualized resources (computing, storage,
networking, etc.), running on commodity hardware, has never been so
easy and convenient. In the context of NFV, this kind of virtualization
technologies is leveraged according to the private cloud computing
model, where general-purpose computing, networking and storage re-
sources owned by the operator can be dynamically and automatically
managed and orchestrated, to fit the needs of time-varying workloads.
This allows for cutting costs and energy consumption, as well as short-
ening development cycles and time-to-market [89]. For example, a
virtualized network infrastructure can be easily adapted to adequately
support new products of an organization or, if customers request new
network functions, all it takes to handle such requests is to spin up
new VMs that can be rapidly decommissioned when the functions are
no longer needed. In this way, network functions can be completely
decoupled from the underlying physical appliances they are deployed
onto and can be effectively developed as distributed, elastic, resilient
software applications. For NFV data centers, the choice of private cloud
infrastructures, as opposed to the use of public cloud services, is also
corroborated by latency-related concerns. Indeed, since such service-
chains are highly delay-sensitive (e.g., LTE, 4G), it is unpractical to rely
on public cloud infrastructures, that are usually shared among mul-
tiple tenants and non-necessarily deployed according to the network
operator needs.

31

32 som-based anomalous vnf behavior detection

In order to guarantee scalability, robustness to failure, high availabil-
ity, low latency, VNFs are typically designed as large-scale distributed
systems [175], often partitioned and replicated among many geo-
graphically dislocated data centers. The larger the scale, the more
operations teams have to deal with complex interactions among the
various components, such that diagnosis and troubleshooting of possi-
ble issues become incredibly difficult tasks [82]. Also, the capacity of
such systems is designed according to some technical and economical
considerations, in order to support the standard load conditions under
which the VNFs perform well, ensuring a number of diverse kinds of
SLAs between network operators and their customers. However, when
extraordinary events or cascade failures occur, the network is typically
overloaded, and the allocated resources are not sufficient anymore to
process all the incoming flows. Therefore, it is necessary to monitor
the status of the data center through an efficient distributed infras-
tructure that continuously gathers system-level metrics from all the
different levels of the architecture (e.g., physical hosts metrics, virtual
machines metrics, application-level key performance indicators, event
logs), in order to build a proactive system capable of detecting signals
of system overload in advance. Such data usually drives the decisions
of human operators, for instance, in terms of which actions must be
taken to restore the expected conditions of the system after an outage
has occurred, or how the available components should be reconfigured
to prevent possible SLA violations in case of an unexpected increase in
the workload.

One of the major problems of data center operators is AD, i.e., pin-
pointing unexpected and/or suspect behaviors of the system whenever
it significantly deviates from the normal conditions. Indeed, recogniz-
ing characteristic patterns of resource consumption in early stages can
be crucial to avoid resource exhaustion and to redirect critical traffic
peaks so to minimize the risk of SLA violations (i.e., such that human
experts can focus their efforts on the most critical activities), or at least
to alert the staff to prepare the remediation/mitigation procedures in
advance. Even though the amount of data usually produced by NFV

infrastructures is huge, most of it is not explicitly labeled by special-
ized personnel, so that unsupervised ML algorithms (e.g., clustering or
vector quantization techniques) are the easiest ones to use, especially
for anomaly detection purposes. The objective of these algorithms
is to group data with a similar trend in macro-categories and allow
operators to keep tens or hundreds of VMs under control at the same
time.

3.1.1 Contributions

We propose to use SOMs to perform a behavioral pattern analysis of
VM metrics aiming at providing a comprehensive overview of the

3.2 related work 33

major behavioral patterns and detecting possible anomalies in a data
center for NFV. The technique can be used to perform a joint analysis
of system-level metrics available from the infrastructure monitoring
system and application-level metrics available from the individual VNFs.
It aims at supporting data center operations and specifically capacity
and performance monitoring, by providing insightful information
on the behavioral patterns, in terms of resource consumption and
exhibited performance, of the analyzed VNFs. In our approach, the
SOM-based behavioral analysis is leveraged to deliver a sophisticated
alerting subsystem, whose output can be directly consumed by human
operators or could be used as a trigger for automated remediation
procedures.

3.1.2 Chapter Organization

This chapter is organized as follows. After discussing the related
literature in Section 3.2, we present our approach in Section 3.3, along
with the data processing workflow we designed for the massive data
set available in the Vodafone infrastructure. In Section 3.4, we discuss
some obtained experimental results that validate the approach and
highlight its practical relevance. Section 3.5 concludes the chapter with
our final remarks and ideas for future research in the area.

3.2 related work

In this section, we briefly review some of the most related works
that can be found in the research literature on using ML, and SOMs in
particular, for classification and AD in cloud and NFV data centers.

AD can be framed as the problem of pinpointing unexpected and/or
suspect behaviors of a system whenever it significantly deviates
from the normal conditions. Similar problems can be found in other
fields and applications such as, for instance: intrusion detection in
cyber-security, machinery fault [205] and product quality issues detec-
tion [238] in industrial contexts, or fraud detection in finance [146]. It
is important to stress that AD is, in general, an inherently imbalanced
problem due to the scarcity of anomalous observations with respect
to the ones related to the normal conditions of a system. In order to
tackle this kind of challenges, a huge amount of solutions has been
proposed that, depending on the scenario and the nature of the data
to be processed, pose their foundations on well-established techniques
coming, for instance, from the research fields of information theory
and statistics.

In the recent years, ML techniques have been gaining more and more
traction in the context of AD applications because of their proven effec-
tiveness in many of the aforementioned scenarios. This is mainly due
to the versatility of this kind of methods and the increasing availability

34 som-based anomalous vnf behavior detection

of data from which they can learn from, in a continuous manner [24].
Most of the approaches to AD address the associated challenges by
feeding ML models with counters like CPU utilization, memory con-
tention and network-related metrics [77, 82, 156, 209, 245]. Others
include also system-level and/or application-level event logs in the
analysis to increase the amount of features and facilitate the extraction
of relevant patterns [67, 251]. Embedding textual information has been
in fact made easier by the advancements in NLP research [16]. Few
existing works also consider the need of assisting human operators
in conducting RCA to be a highly desirable feature of AD systems [85,
181].

One of the major roadblocks that can be encountered when applying
ML for solving a task is the scarcity, or the complete absence, of labelled
data, a very common scenario in many practical applications. Such
issues can be overcome by employing so-called unsupervised learning
techniques that, as the definition suggests, are designed to operate
without a ground truth (i.e., annotated data). It is worth noticing that
this characteristic of such class of learning algorithms has the side
effect of increasing the amount of data that can be used for training
an ML model. The principal application of unsupervised techniques
is clustering that consists in the formation of groups of data samples
that are similar, where similarity is defined according to the employed
distance function.

In the context of AD, such approaches usually operate by build-
ing, starting from training data, a set of clusters of samples that are
representative of the expected (normal) conditions of a system. After
training, such model can be exploited to compare new patterns to
known behaviors according to a predefined distance metric, in order
to infer whether the observations are anomalous or not. In these ap-
plications, the aforementioned properties of retention of the original
data topology and distribution give the SOM the capability of creating
a suitable number of clusters for the most representative situations:
this distribution of clusters allows for a more reliable characterization
of anomalous patterns due to the higher granularity reserved to more
common situations.

SOMs have achieved remarkable results at processing industrial
data [87] in different fields. In [64], a SOM-based system for the visual-
ization of complex process dynamics is proposed. In this application,
topology conservation enables a smooth visualization of non-linear
process transitions in a 2D map and favors the understanding of
the influence of process parameters on process behavior. Similar ap-
proaches that exploit dimensional reduction and visualization on an
easy-to-interpret 2D map are used also in [72] for process monitoring
purposes and in [74] where the aspects of visualization of the evo-
lution of process conditions are handled. In [29], SOMs are used for
the grouping of electrical components based on a wide set of features

3.3 proposed approach 35

that are efficiently mapped in a low dimensional space. The capability
of SOMs of managing high-dimensional data and mapping them into
a lower dimensional one have been exploited in medicine as well.
In [34], sonographic signals are processed and grouped in order to
characterize those associated to breast cancer diagnosis. Another SOM-
based approach was used in [239] to allow the analysis of complex
cytometry data that is hard from a point of view of human experts
due to the huge amount of variables to be taken simultaneously into
consideration.

For what concerns NFV applications, the existing literature reports
that ML techniques have been effectively used to solve different prob-
lems. In particular, in [83] a set of ML techniques are tested for an AD

application. However, only supervised methods are considered, and
their performance is compared on data sets containing NFV features
associated to different types of faults. Similarly, in [158], a supervised
SOM-based method is proposed for fault detection. Here, a SOM is used
to cluster labelled data, annotated by human experts to state which
clusters correspond to faulty conditions, related to NFV performance
indicators. In [164], SOM-based and other general clustering techniques
are used for the same purpose in a small test-bed in the context of
NFV. Likewise, in [129], the popular K-means algorithm is used to
cluster cells traffic data in order group cells with similar through-time
behavior and enable optimizations in the use of resources.

3.3 proposed approach

We propose the use of SOMs in order to perform a behavioral analysis
of the VMs that implement VNFs within an NFV data center infras-
tructure. Our approach consists of the joint analysis of two classes
of metrics that are usually collected and analyzed independently of
one another: system-level metrics, reporting information related to the
utilization of the underlying infrastructure, hereafter also referred to
as INFRA metrics, which are usually available through the NFV infras-
tructure manager (e.g., the well-known VMWare vROps or others); and
application-level metrics, i.e., KPIs of the individual virtualized services,
collected through their own monitoring subsystems, which will be re-
ferred to as VNF metrics. Considering both types of metrics allows for
gathering a comprehensive overview of the major behavioral patterns
that characterize VMs and possibly identifying suspect (anomalous)
behaviors.

The proposed technique relies on the capability of SOMs to preserve
the topology in the projection from the input space to the SOM refer-
ence vector space. In other words, using SOMs similar input patterns
are captured by same or nearby neurons (see Section 2.2.1 for details).
A VM behavior can be monitored by considering the shift of its BMU,

36 som-based anomalous vnf behavior detection

VM1

VMn

PREPROCESSING

filtering
normalization
missing values
imputation

SOM

training
inference

CLUSTER1

CLUSTERk

HIERARCHICAL
GROUPING

GROUP1

GROUPj

Figure 3.1: Overview of the SOM-based clustering workflow.

during the time horizon under analysis, so that any changes in a
suspect BMU could be used to trigger an alarm.

3.3.1 Workflow

We realized a SOM-based clustering tool that is capable of detecting
anomalies by clustering using a number of input metrics. In our
experimentation, we have been applying this technique over individual
monthly data available with a 5-minutes granularity (288 samples per
day, per metric, per monitored VM or physical host), amounting to
several GBs of data per month, for a specific region of the Vodafone
network operator. Figure 3.1 summarizes the overall workflow that
we applied to process the available input metrics. First, the raw data
are preprocessed to address possible data-quality issues (e.g., missing
values imputation and time-series detrendization) and to filter out
the additional information that is not relevant for the analysis. The
input samples to the SOM are constructed, for each VM, by dividing
the time horizon under analysis according to a predefined period (i.e.,
24 hours) and merging the contributions of the individual metrics
into a single vector. Then, such data are fed to the SOM that, after
a training phase, infers for each VM the neuron capturing the most
similar behavior and, thus, clusters on the various behavioral patterns
of all the various VMs under analysis.

The input data are filtered on the k specified metrics, and parti-
tioned to have a sample (i.e., a time-series) for each metric, VM and
period (usually a day) of the time horizon under analysis. Before
being fed as input to the SOM training phase, samples are subject to a
preprocessing phase, addressing possible issues such as (i) missing
values and (ii) significant differences in the magnitude among the
different metrics. On the one hand, to address (i), a data imputation
strategy (i.e., a simple linear interpolation) is performed to mitigate

3.3 proposed approach 37

the absence of data points within a sample and to retain as much
data as possible for the analysis. However, in order to preserve the
quality of the data set, the interpolation step has been designed not
to be aggressive, such that a time-series can be discarded if it contains
too much consecutive missing values. On the other hand, it is rec-
ommended to address (ii) when using SOM for multi-metric analysis
since, due to the Euclidean distance being used as samples distance
evaluation mechanism, metrics with significantly larger values (e.g.,
number of transmitted/received packets or bytes) tend to hide the con-
tribution of other metrics which take on smaller values, for instance,
being bounded by a predefined range that is much smaller (e.g., CPU

utilization percentage). We have designed two possible strategies to
tackle such problem. The first strategy, referred to as normalized, con-
sists of computing the so-called z-score, i.e., scaling each time-series
by subtracting its mean and dividing by its standard deviation. Using
such a strategy hides any information regarding the magnitude of
the original values and emphasizes differences in shapes. The sec-
ond strategy, referred to as non-normalized, consists of scaling each
time-series to the [0, 1] range of values considering, for each metric,
the historically observed minima and maxima values. Such a strategy
retains information regarding the magnitude of the original values
while keeping the data bounded in the same interval. However, this
technique causes different metric patterns with very similar shape,
but differing merely in their magnitude, to be grouped into differ-
ent SOM neurons at a certain distance from each other (in the SOM

grid topology). Depending on the chosen strategy, we obtain either
an analysis focused on the shapes of the behavioral patterns, or we
can also distinguish among the absolute values of the average levels
of the metrics. In general, in the latter case one should expect more
clusters to be outputted with respect to the former case, due to the
possibility that the system could have experienced very diverse levels
of load during its operation. Hence, one should take this possibility
into account and increase the size of the SOM grid when performing
a non-normalized analysis in order to avoid neurons over-population
(i.e., too many patterns crowding within the same BMU), despite them
being significantly distant from each other.

Each input sample to the SOM is constructed by concatenating k
vectors (one for each of the k metrics under analysis), for each VM and
period. Notice that, since INFRA metrics have been provided with a
5-minutes collection granularity, if a period of a day is considered,
we typically have for each day 288 data points of each metric and
for each VM. After the training phase, the SOM is used to infer the
BMU for each input sample, i.e., the neuron that exhibits the least
quantization error when compared with the considered input sample.
Multiple VMs are expected to be associated to the same BMU and, thus,
a number of different VM clusters can be derived from such process.

38 som-based anomalous vnf behavior detection

Such an output can be used by a data center operator to visually
inspect the behaviors assumed by the different VMs during the time
horizon under analysis, in order to spot possible suspect/anomalous
ones. Furthermore, since the individual input samples are related to
the behavior of a specific VM at specific point in time, it is also possible
to visualize the evolution of the VMs throughout the time horizon, to
possibly detect interesting patterns in their behavioral changes. In this
way, an operator is able to focus the analysis on a restrained set of VMs
(or their hosts) and to possibly trigger further, more specific, analysis
that could be too time-consuming, or even unfeasible, to conduct on
the whole infrastructure.

On top of the clustering mechanism described above, we have
devised an approach capable of detecting possible suspect behaviors
without the need for a human operator to daily inspect the status
of the SOM (these aspects are described in details in Section 3.3.4).
Such additional feature consists of an alerting system that is triggered
whenever an input sample is firstly associated to a group of similar
neurons but in the following days a sudden group change takes place.
Because of the considerable distance from the BMU (i.e., the closest
neuron) of the neurons in the two different groups, such samples are
likely to depict an uncommon behavior and, thus, an alert is raised to
the operator. Besides the aforementioned support that such a tool can
give to data center operators in their manual operations, this feature
in particular enables the possibility to deploy a fully automated AD

system.

3.3.2 SOM Implementation

To implement our AD tool, we leveraged on an efficient open-source
SOM implementation, namely Somoclu[253], which has been designed
around the batch parallel SOM variant (see Section 2.2.1) to employ
multi-core acceleration, as well as GPU hardware acceleration, to per-
form massively parallel computations [253]. Such accelerations have
been proved to be necessary in order to reach a satisfactory perfor-
mance when tackling the massive data set provided by Vodafone. Such
performance requirements have also led us to realize a new SOM im-
plementation that outperforms Somoclu in single-node scenarios [148]
(see Chapter 4).

3.3.3 Hierarchical Grouping

An interesting aspect that came to our attention during the develop-
ment of the aforementioned SOM-based approach is that, whenever
using relatively big SOM networks, the training phase ends up with
many close-by SOM neurons catching behaviors that were very similar
to each other. This is in line with the topology-preservation property of

3.3 proposed approach 39

the SOMs, i.e., close-by input vectors in the input space are mapped to
close-by neurons in the SOM grid. This phenomenon can be controlled
to some extent by acting on the neighborhood radius. However, from
the viewpoint of data center operators, a set of close-by neurons with
relatively similar weight vectors needs to be considered as a single
behavioral cluster/group. For this reason, after the SOM processing
stage, we added a step consisting of a top-down clustering strategy,
based on recursively separating weight-vector’s sets whose diameter
is higher than a given threshold. The principal aim of this technique
is to offer the possibility of collapsing similar SOM neurons, accord-
ing to the distances among their representative vectors, in order to
decrease the possibility to raise an alarm when it is not needed (e.g.,
consider very frequent movements of a VM between two similar neu-
rons over time) and to facilitate the human operators in interpreting
the results and spotting anomalous behaviors. Indeed, as shown in
Section 3.4.4, this led to the overall technique outputting a reduced
and more comprehensible number of behavioral clusters.

Specifically, the aforementioned technique, known as hierarchical clus-
tering, can be described as follows. Let ε be a fixed threshold which
provides a bound for the maximum diameter of a group. The algo-
rithm consists of the following steps:

1. Initialization: The set of the groups to process is initialized with
a single group G0 containing all the neurons G0 = {n1, · · · , nH×K},
and the set of the final groups is initialized to be an empty set.

2. Distance Measure: A group G is removed from the set of groups
to process and its diameter D is computed by finding the two
farthest away neurons:

(nS, nN) ∈ arg max
(n,m)∈G

d(w(n), w(m)), D = d(w(nS), w(nN))

where w(n) is the weight of neuron n. In the case that G contains
just one neuron, its diameter D is defined as zero.

3. Splitting: If D ≤ ε (i.e., the diameter is within the specified
threshold), then G is moved to the set of final groups. Otherwise,
the group is split into two smaller (non-empty by construction)
groups G1 and G2 defined as:

G1 := {n ∈ G : d(w(n), w(nS)) ≤ d(w(n), w(nN))}
G2 := {n ∈ G : d(w(n), w(nS)) > d(w(n), w(nN))}

that are added to the set of groups to process.

4. Loop: Steps 2,3 are repeatedly applied to all the elements in the
set of groups to process, until it becomes empty, and the set of
final groups contains only groups with a diameter lower than or
equal to ε.

40 som-based anomalous vnf behavior detection

0.0

0.2

0.0

0.2

0.0

0.2

(a)

0.0

0.2

0.0

0.2

0.0

0.2

(b)

0.0

0.2

0.0

0.2

0.0

0.2

(c)

0.0

0.2

0.0

0.2

0.0

0.2

(d)

Figure 3.2: Example of grouping steps: (a) initialization; (b) first split; (c)
second split; (d) final split. Neurons with same border color
belong to the same group.

Figure 3.2 reports a graphical representation of how the algorithm
works on a real example. From left to right, we can see all the four
steps of the algorithm that bring to the final result in which each
group contains only neurons with a pair-wise distance smaller than
the provided threshold.

As explained above, the kernel of the hierarchical clustering tech-
nique is the measure of the diameter of a set. This implies that the
definition of the distance impacts on the final result.

Definition 3.3.1. For each p ∈ N, the function dp : Rn × Rn → R+

defined as

dp(v, w) :=

(
∑

i
|vi − wi|p

) 1
p

is the Minkowski distance of order p.

Note that, according to Definition 3.3.1, the Minkowski distance
with p = 2 is the Euclidean distance, and that d∞ degenerates into the
Chebychev distance (maximum among the coordinates). Figure 3.3
shows that using p = 4, or in general a value higher than 2, allows
for increasing the distance between neurons exhibiting a spike (i.e.,
neurons that are almost flat, except for an isolated huge value), so that
we are able to isolate in a dedicated group such spiky neurons.

3.3 proposed approach 41

0

1

0

1

0

1

0

1

0

1

0

1

(a)

0

1

0

1

0

1

0

1

0

1

0

1

(b)

Figure 3.3: Examples of grouping using different p values. Grouping with
p = 2 (a) makes no distinction between spiky and smooth neu-
rons, whereas grouping with p = 4 (b) clusters the spiky neuron
on the top-left corner in a dedicated group.

42 som-based anomalous vnf behavior detection

3.3.4 Alerting

A grouped SOM grid combined with a calendar representation of the
VM behaviors can be used by an operator to spot possible anomalies. A
calendar representation is a table containing for each couple (VM, day)
a reference to the corresponding group. In addition, we designed
a set of alerting systems based on heuristic methods, that can be
used to simplify the inspection of such behaviors. We propose two
main categories of alerting systems: the calendar-view alerting system,
consisting of techniques that give a global view of the alerts over
the entire period of interest, and the dashboard-like alerting system,
consisting of techniques that give a detailed view of the behaviors
that raise the alerts. In what follows, V = {v1, v2, . . . , vi, . . .} is the
set of virtual machines under analysis, D = {d1, d2, . . . , di, . . .} is the
set of days that compose the time period under analysis and grp :
V × D → G is the function that associates to each couple (VM, day)
the corresponding group.

3.3.4.1 Calendar-View Alerting System

This category contains those alerts that generate a calendar table in
which each couple (VM, day) is associated with a value between 0 and
1, providing a level of alerting. In what follows, we denote with p the
period and with m the memory, both expressed in days (i.e., p = 7 days,
m = 2 weeks).

Definition 3.3.2 (Strong). Given p, m, the Alert takes one VM v and one
day d and returns a boolean value raising an alert if the v is classified
into a different group in at least one day among the ones at most m
periods apart:

Alerts(v, d) : ”∃j ∈ {±1, · · · ,±m}, grp(v, d) ̸= grp(v, d − jp)”

(SAS)

This alerting system is the most peaky (i.e., often producing false-
positives) and, thus, performs the best when used in contexts where a
few changes occur.

Definition 3.3.3 (Weak). Given p, m, the Alert takes one VM v and one
day d and returns a boolean value raising an alert if the v is classified
into a different neuron in all the days among the ones at most m
periods apart:

Alertw(v, d) : “∀j ∈ {±1, · · · ,±m}, grp(v, d) ̸= grp(v, d − jp)“

(WAS)

This alerting system is more loose than the previous (sometimes
producing false-negatives) and, thus, performs the best in chaotic
contexts, where many random changes occur.

3.3 proposed approach 43

Definition 3.3.4 (Fuzzy). Given p, the Alert takes one VM v and one
day d and returns a real number, between 0 and 1, defined as follows:

Alertz(v, d) := #{j ∈ Z : grp(v, d) ̸= grp(v, d − jp)}/#D(v, d)

(ZAS)

where D(v, d) = {j ∈ Z : ∃grp(v, d − jp)} is the set of all the compa-
rable days.

This alerting system, producing real values, can be used in a wide
range of situations and could be useful to understand if a change in
the behavior of a VM is common or infrequent.

3.3.4.2 Dashboard-Like Alerting System

The aim of a dashboard-like alerting system is to provide a detailed
view of the behaviors which raise the alert, providing also further
information on the geometrical distance between the actual and the
expected behavior in terms of weight of the SOM or also a count of the
frequency of VMs/days which are clustered into rare groups.

Definition 3.3.5 (Expected Behavior). Let v be a VM for which an
alert is raised at day d, i.e., Alert(v, d) = 1. Let d̃ be the nearest day,
corresponding to the same weekday, for which the most common
group is taken from v and for which grp(v, d) ̸= grp(d̃) holds. Then,
we define

• GRP:= grp(v, d)

• NEU:= neu(v, d)

• E_GRP:= grp(v, d̃)

• E_NEU:= neu(v, d̃)

• DIST:= ∥w(E_NEU)− w(NEU)∥2

where the function neu : V × D → L returns the coordinates of the
BMU associated to the behavior of a VM v during a day d and the
function w, defined in Section 2.2.1, returns the weight of a neuron.

Such alerting system depends on the output of the calendar-like
alerting system. Usually, we apply this method to the weak alerting
system table (see Definition 3.3.3) in order to avoid false-positives
alerts.

Definition 3.3.6 (Suspicious-Day). Given a parameter K, let occd : G →
N be the function that counts the occurrences of a group in the days.

occd(g) := #{d ∈ D : ∃v ∈ V, grp(v, d) = g}. (3.1)

If a group g is such that occd(g) ≤ K, then those VMs whose take the
group g are stored in a table whose columns are DAY, VM, NEU, GRP,

OCC_DAY, where OCC_DAY= occd(g)

44 som-based anomalous vnf behavior detection

Such alerting system helps in catching days in which an infrequent
group appears.

Definition 3.3.7 (Suspicious-VM). Given a parameter K, let occv : G →
N be the function that counts the occurrences of a group in the VMs.

occv(g) := #{v ∈ V : ∃d ∈ D, grp(v, d) = g}. (3.2)

If a group g is such that occv(g) ≤ K, then those VMs whose take the
group g are stored in a table whose columns are VM, DAY, NEU, GRP,

OCC_VM, where OCC_VM= occv(g)

Such alerting system helps to catch VMs that are clustered into an
infrequent group.

3.4 experiments

In this section, we provide an overview of the results that can be
obtained using the approach proposed in Section 3.3. For the analy-
sis, we relied on the experience of domain experts and focused our
attention over a limited set of metrics that are considered the most
relevant in this context: the ones related to the computational, net-
working and storage activity of VMs and VNFs of interest. Specifically,
in the following, we highlight results obtained analyzing the follow-
ing vROps metrics: cpu|capacity_contentionPct, cpu|usage_average,
net|usage_average.

3.4.1 Multi-metric Analysis

The plots reported in Figure 3.4 are examples of the results that can
be obtained through the multi-metric SOM-based analysis presented in
Section 3.3, applied over a month worth of INFRA metrics, using the
normalized strategy. The trained SOM network is visually represented
in terms of the weights of its neurons. Indeed, each subplot reports the
VMs daily behavior that the specific neuron specialized into. In order
to simplify the representation, the weight vectors, jointly computed
over the three metrics cpu|usage_average, net|usage_average and
cpu|capacity_contentionPct, are overlapped but in different colors.
For instance, one of the most recurrent patterns, occurring in 17.46%
of the observations and depicted in Figure 3.5a, is the one identified
by the top-right neuron. Because of the standard data normalization
performed during the preprocessing phase to discard the magnitude
information in favor of enhancing the behavioral information of the
input samples, the values on the Y-axis can be negative. This means
that VMs have been clustered based on the joint shape of their daily
resource consumption patterns, not their absolute values. Notice that
in this example we can observe a quite suspect output, since the
cpu|capacity_contentionPct figure follows closely the daily traffic

3.4 experiments 45

2

0

2

0

2

0

2

0

(a)

0 1 2 3

0

1

2

3

6.29% 0.88% 8.59% 17.46%

5.35% 1.54% 4.27% 4.06%

7.8% 2.18% 5.16% 5.28%

7.95% 13.11% 1.81% 8.27%

(b)

Figure 3.4: (a) INFRA resource consumption clusters identified with the
multi-metric analysis. The dark blue, green and light blue curves
in each plot correspond to the cpu|usage_average, net|usage_-
average and cpu|capacity_contentionPct vROps metrics, respec-
tively. (b) SOM grid showing the percentage of training samples
captured by each neuron.

46 som-based anomalous vnf behavior detection

(a)

(b)

Figure 3.5: (a) The most recurrent VM cluster of Figure 3.4a and (b) a singular
VM pattern captured by the bottom-right neuron of Figure 3.4a.

pattern on the involved VMs. In a normal condition of a healthy system,
i.e., when VMs are provided with appropriate computational resources,
we would have expected this metric to stay close to zero, or at least
experience a slight increase only during the peak hours. A significantly
different pattern is the one reported in Figure 3.5b, corresponding to
the bottom-right neuron in Figure 3.4a. Such behavior represents the
8.27% of the observed daily patterns in the time period under analysis.
As evident from the picture, there is a higher CPU contention during
night, when the VM has lower traffic, than during the day.

An additional remark regarding the possible presence of anomalies
can be done considering the fact that the VMs included in the analysis
are guaranteed to have the same role in the corresponding VNFs, i.e.,
they manage traffic in load-sharing mode. While it was expected to
obtain an identical output for all of them, the SOM-based analysis has
pointed out that a subset of such VMs exhibits daily patterns very
different to the expected ones instead. This could be interpreted by
human operators as a warning, that requires further monitoring and
analysis of the involved components of the infrastructure. In addition,
it is worth noticing that asynchronous changes among the metrics
included in such analysis could be indications of anomalous behavior
of the NFV environment, and not necessarily of the VNF itself.

3.4.2 Hyperparameters Grid Search

As mentioned in Section 3.3.1, different hyperparameters lead to very
different clusters after training. An extensive grid search has been
conducted over the search space summarized in Table 3.1. A total of

3.4 experiments 47

(a) (b)

(c) (d)

Figure 3.6: SOMs with low σ values: (a) 8 × 8, σ: 0.1, lr: 0.2; (b) 12 × 12, σ:
0.1, lr: 0.2; (c) 16 × 16, σ: 0.1, lr: 0.9; (d) 32 × 32, σ: 0.1, lr: 0.8. For
confidentiality reasons, the scale has been omitted.

48 som-based anomalous vnf behavior detection

(a) (b)

(c) (d)

Figure 3.7: SOMs with high σ values: (a) 8 × 8, σ: 0.6, lr: 0.2; (b) 12 × 12, σ:
0.6, lr: 0.2; (c) 8 × 8, σ: 0.6, lr: 0.9; (d) 12 × 12, σ: 0.6, lr: 0.9. For
confidentiality reasons, the scale has been omitted.

3.4 experiments 49

Table 3.1: The hyperparameters values used for the grid search.

Hyperparameter Space

dimensions 8 × 8, 12 × 12, 16 × 16, 24 × 24, 32 × 32, 48 × 48

learning rate 0.1, 0.2, . . . , 0.9, 1.0

radius (σ) 0.1, 0.2, . . . , 0.9, 1.0

epochs 5, 10, 20

1600 different configurations has been tested monitoring quantization
error and readability of results. Figure 3.6 shows the effect of using
a low σ value (0.1) in different map sizes. Using a low σ with a low
learning rate gives the worst results with very few BMUs that capture
more than 95% of data, resulting in higher quantization errors.

SOM maps greater than 12 × 12 require very high σ (> 0.8) and very
low learning rate (< 0.3) in order to have low quantization errors, but
in these cases the results tend to become unreadable due to the fact
that too many neurons specialize on similar patterns. In Figure 3.7, the
SOM maps reported in Figures 3.7a and 3.7b are trained using high σ

and low learning rate, while the ones reported in Figures 3.7c and 3.7d
are trained using high σ and high learning rate. Therefore, for our
analysis the best combination of hyperparameters are high values of
σ (> 0.6) and low values of learning rate (< 0.6) with results that are
better both in terms of quantization error and readability.

3.4.3 Per-VNF Analysis

Another interesting characterization we could perform applying the
SOM-based analysis, is a study of how different VNFs behave in terms
of their daily resource consumption patterns. In this case, we produced
hitmaps highlighting how many daily patterns of VMs of each given
VNF map onto each SOM neuron. The result can be visualized as in
Figure 3.8. For example, by comparing such plots with the correspond-
ing map reporting the captured behaviors (like the one in Figure 3.4a,
even though, in this case, the two figures are derived from different
subsets of the available data), one can discover that both the SBC and
the TAS VNFs have mostly the usual “nightly/daily” pattern, charac-
terized by a low workload over nightly hours and a high workload
over daily hours, with peaks around noon and 6pm. On the other
hand, the DRA VNF exhibits the classical nightly/daily pattern for
the cpu|capacity_contentionPct metric, and periodic peaks every 30

minutes for the other two metrics. Moreover, a consistent number of
VTAP VMs are characterized by hourly periodic peaks.

50 som-based anomalous vnf behavior detection

0 1 2 3

0

1

2

3

0.0 0.0 0.0 0.29

0.0 0.0 0.0 0.0

0.09 0.45 0.0 0.0

0.86 1.0 0.05 0.11

DRA

(a)

0 1 2 3

0

1

2

3

0.63 0.04 0.0 0.0

0.68 1.0 0.04 0.0

0.0 0.27 0.0 0.0

0.0 0.0 0.0 0.0

MME

(b)

0 1 2 3

0

1

2

3

0.58 0.14 0.0 0.57

0.49 0.73 0.0 0.0

0.36 0.39 0.00 0.0

0.45 0.22 1.0 0.0

SBC

(c)

0 1 2 3

0

1

2

3

1.0 0.0 0.0 0.0

0.96 0.34 0.0 0.01

0.0 0.43 0.0 0.0

0.0 0.0 0.0 0.18

TAS

(d)

0 1 2 3

0

1

2

3

0.0 0.0 1.0 1.0

0.0 0.0 0.0 0.66

0.0 0.0 0.0 0.33

0.0 0.0 0.0 0.0

U2000

(e)

0 1 2 3

0

1

2

3

0.0 0.0 0.84 1.0

0.0 0.41 0.01 0.68

0.0 0.45 0.00 0.99

0.0 0.0 0.05 0.33

VTAP

(f)

Figure 3.8: SOM clusters and corresponding per-VNF hitmaps. For confiden-
tiality reasons, the total number of hits in the hitmap cells has
been rescaled to 1.

3.4 experiments 51

0

1

0

1

0

1

0

1

Figure 3.9: Distance-based grouping applied to a square SOM grid, 4 neurons
per side.

3.4.4 Hierarchical Grouping

In this section, we report two examples of grouping/clustering tech-
nique described in Section 3.3.3, starting from another month of data,
with respect to the experiments shown above. In the first example, we
obtained the trained SOM whose weights are presented in Figure 3.9. By
applying the distance-based grouping, with a group-distance thresh-
old of 0.007, we obtained the clustering shown in the same figure,
where neurons belonging to the same group have the same border
color. Moreover, to facilitate a visual inspection of the behavior of
each VM during the month, we produced a calendar view of the VMs,
as shown in Figure 3.10, by associating to each couple (VM, day) the
group of the BMU in the SOM grid. For instance, in this case we can
notice a very common behavior: the majority of group changes take
place during the weekend. The second example shows how the two
outputs could be jointly used by a system operator to visually detect
anomalies in the behavior of VMs. The grouped SOM grid in Figure 3.11

highlights three main (i.e, more frequent) groups. In particular, the
yellow group contains all the neurons within an almost flat VM metric.
By inspecting the calendar in Figure 3.12, it is evident that these be-
haviors are associated to those VMs that have an anomalous constant
course, without any variations during the weekend.

52 som-based anomalous vnf behavior detection

Sat 01
Sun 02

M
on 03

Tue 04
W

ed 05
Thu 06

Fri 07
Sat 08

Sun 09
M

on 10
Tue 11

W
ed 12

Thu 13
Fri 14

Sat 15
Sun 16

M
on 17

Tue 18
W

ed 19
Thu 20

Fri 21
Sat 22

Sun 23
M

on 24
Tue 25

W
ed 26

Thu 27
Fri 28

Sat 29

VM
_0

VM
_1

VM
_10

VM
_11

VM
_12

VM
_13

VM
_14

VM
_15

VM
_16

VM
_17

VM
_18

VM
_19

VM
_2

VM
_3

VM
_4

VM
_5

VM
_6

VM
_7

VM
_8

VM
_9

VM

0
0

1
1

1
1

1
0

0
1

1
0

1
1

0
0

1
1

1
1

1
0

0
1

1
1

1
1

0

0
0

0
1

1
0

0
0

0
1

1
1

1
1

0
0

0
1

1
1

1
0

0
1

0
1

1
1

0

0
0

1
1

0
1

1
0

0
0

1
0

1
1

0
0

1
1

0
1

1
0

0
0

1
1

0
1

0

0
0

1
1

1
1

1
0

0
1

1
1

1
1

0
0

0
1

1
0

1
0

0
1

1
1

1
1

0

0
0

1
1

1
1

1
0

0
1

1
1

1
1

0
0

0
1

1
1

1
0

0
1

1
1

0
0

0

0
0

0
0

1
1

1
0

0
1

1
1

1
1

0
0

1
1

0
1

1
0

0
0

1
1

1
0

0

0
0

1
1

1
0

1
0

0
1

1
1

1
0

0
0

1
1

1
1

1
0

0
1

0
1

1
0

0

0
0

1
1

1
1

1
0

0
1

1
1

1
1

0
0

1
1

0
0

1
0

0
1

0
1

1
1

0

0
0

1
0

1
1

0
0

0
1

1
1

1
1

0
0

1
1

1
1

1
0

0
1

0
1

1
1

0

0
0

1
1

1
0

1
0

0
0

1
1

1
0

0
0

1
1

1
1

1
0

0
1

1
1

1
1

1

0
0

1
1

0
1

1
0

0
1

1
1

0
1

0
0

1
1

1
1

1
0

0
1

1
1

1
0

0

0
0

1
1

1
1

1
0

0
1

1
1

1
1

0
0

1
1

1
1

1
0

0
1

1
1

1
1

0

0
0

1
1

1
1

1
0

0
1

1
1

1
1

0
0

1
1

1
1

1
0

0
1

1
0

1
1

0

0
0

1
1

0
1

1
0

0
1

0
1

1
1

0
0

0
0

1
1

0
1

0
1

1
1

1
1

0

0
0

1
1

1
1

1
0

0
1

1
1

0
1

0
0

1
1

1
1

0
0

0
1

1
0

1
1

0

0
0

1
1

1
0

1
0

0
1

1
0

1
0

0
0

1
0

1
1

1
0

0
1

1
0

1
1

0

0
0

1
1

1
1

1
0

0
0

1
1

0
1

0
0

1
1

1
1

1
1

0
1

1
1

1
1

0

0
0

1
1

1
1

0
0

0
1

0
1

1
1

0
0

1
1

1
1

1
0

0
1

1
1

1
1

0

0
0

0
1

1
0

1
0

0
0

1
1

0
1

0
0

1
1

0
1

1
0

0
0

1
1

1
1

0

0
0

0
0

1
1

1
0

0
1

1
1

1
1

0
0

1
1

1
1

1
0

0
1

1
1

1
1

0

Figure
3.

1
0:

V
M

s
exhibiting

com
m

on
behaviors.

3.4 experiments 53

0.0

0.5

0.0

0.5

0.0

0.5

Figure 3.11: Distance-based grouping applied to a square SOM grid, 3 neurons
per side.

3.4.5 Alerting

In this section, we provide some examples of output of the two main
kind of alerting systems. All the alerting systems are applied to the
behaviors captured by the SOM grid in Figure 3.13. Notice the presence
of two groups with a high working-level (red, orange); two groups
with a low working-level (brown, green); one group with a unique
almost flat neuron (gray). Figure 3.14 reports the behavioral evolution
of the VMs whose data have been used to conduct this experiment.
The reference time period is April 2020 and, in particular, on April
13th (Easter Monday) many VMs change behavior, passing from their
usual high working-level group to a low working-level group.

3.4.5.1 Calendar-like Alerting Systems

Figure 3.15a shows the Strong Alerting System (SAS), with m = 3 and
p = 7, where dark green cells stand for a raised alert. Since the method
compares the groups in same week-days and raises an alert if at least
one change occurs, we can see that many alerts have been raised (some
of them are obviously false positives). In contrast, Figure 3.15b shows
the alerts that have been raised with the Weak Alerting System (WAS),
with p = 7 and m = 3. Since the method raises an alert if a group
appears only once in same week-days, we can see that only a few be-
haviors raise an alert. The output from the Fuzzy Alerting System (ZAS),
with p = 7, is shown in Figure 3.15c. The higher the value (i.e., the

54 som-based anomalous vnf behavior detection

Sat 01
Sun 02

M
on 03

Tue 04
W

ed 05
Thu 06

Fri 07
Sat 08

Sun 09
M

on 10
Tue 11

W
ed 12

Thu 13
Fri 14

Sat 15
Sun 16

M
on 17

Tue 18
W

ed 19
Thu 20

Fri 21
Sat 22

Sun 23
M

on 24
Tue 25

W
ed 26

Thu 27
Fri 28

Sat 29

VM
_0

VM
_1

VM
_10

VM
_11

VM
_12

VM
_13

VM
_14

VM
_15

VM
_2

VM
_3

VM
_4

VM
_5

VM
_6

VM
_7

VM
_8

VM
_9

VM

0
0

1
1

1
1

1
0

0
1

1
1

1
1

1
0

1
1

1
1

1
0

0
1

1
1

0
1

0

0
0

1
1

1
1

1
0

0
1

1
1

1
1

1
0

1
1

1
1

1
1

0
1

1
1

0
1

0

0
0

1
1

1
1

1
0

0
1

1
1

1
1

1
0

1
1

1
1

1
0

0
1

1
1

0
1

0

0
0

1
1

1
1

1
0

0
1

1
1

1
1

1
0

1
1

1
1

1
0

0
1

1
1

0
1

0

4
4

4
4

4
4

4
4

4
4

4
4

4
4

4
4

4
4

4
4

4
4

4
4

4
4

4
4

4

0
0

1
1

1
1

1
0

0
1

1
1

1
1

1
0

1
1

1
1

1
0

0
1

1
1

0
1

0

0
0

1
1

1
1

1
0

0
1

1
1

1
1

1
0

1
1

1
1

1
0

0
1

1
1

0
1

0

4
4

4
4

4
4

4
4

4
4

4
4

4
4

4
4

4
4

4
4

4
4

4
4

4
4

4
4

4

4
4

4
4

4
4

4
4

4
4

4
4

4
4

4
4

4
4

4
4

4
4

4
4

4
4

4
4

4

4
4

4
4

4
4

4
4

4
4

4
4

4
4

4
4

4
4

4
4

4
4

4
4

4
4

4
4

4

4
4

4
4

4
4

4
4

4
4

4
4

4
4

4
4

4
4

4
4

4
4

4
4

4
4

4
4

4

4
4

4
4

4
4

4
4

4
4

4
4

4
4

4
4

4
4

4
4

4
4

4
4

4
4

4
4

4

4
4

4
4

4
4

4
4

4
4

4
4

4
4

4
4

4
4

4
4

4
4

4
4

4
4

4
4

4

0
0

1
1

1
1

1
0

0
1

1
1

1
1

1
0

1
1

1
1

1
0

0
1

1
1

0
1

0

4
4

4
4

4
4

4
4

4
4

4
4

4
4

4
4

4
4

4
4

4
4

4
4

4
4

4
4

4

0
0

1
1

1
1

1
0

0
1

1
1

1
1

1
0

1
1

1
1

1
1

0
1

1
1

1
1

0

Figure
3.

1
2:

V
M

s
exhibiting

anom
alous

behaviors.

3.5 conclusions 55

0.0

0.2

0.0

0.2

0.0

0.2

Figure 3.13: A SOM grid with neurons grouped in 5 behaviors.

darker the color), the higher the probability of an alert being signifi-
cant. As expected, many of the false-positives reported by the SAS, and
not by the WAS one, are associated to a low value.

3.5 conclusions

We focused on the problem of analysis and classification of the behav-
ioral patterns of VM metrics in a NFV data center. We described the
technique we realized, based on SOMs, that is being used across the
data centers of the Vodafone network operator. Our results highlight
the capability of the proposed technique to identify interesting points
in space and time (i.e., precise VMs and hosts within the infrastructure,
and precise days within the analyzed time range) with potentially
anomalous behaviors, thus deserving further attention and investiga-
tions by data center operators. Also, we detailed a clustering technique
applied over a trained SOM codebook in order to mitigate the problem
of neuron over-representation, and an alerting system built atop the
SOM-based clustering, improving the AD pipeline effectively reducing
the number of false positives.

56 som-based anomalous vnf behavior detection

W
ed 01

Thu 02
Fri 03

Sat 04
Sun 05

M
on 06

Tue 07
W

ed 08
Thu 09

Fri 10
Sat 11

Sun 12
M

on 13
Tue 14

W
ed 15

Thu 16
Fri 17

Sat 18
Sun 19

M
on 20

Tue 21
W

ed 22
Thu 23

Fri 24
Sat 25

Sun 26
M

on 27
Tue 28

W
ed 29

Thu 30

VM
_0

VM
_1

VM
_10

VM
_11

VM
_12

VM
_13

VM
_14

VM
_15

VM
_16

VM
_17

VM
_18

VM
_19

VM
_2

VM
_20

VM
_21

VM
_22

VM
_23

VM
_24

VM
_25

VM
_26

VM
_27

VM
_28

VM
_29

VM
_3

VM
_30

VM
_31

VM
_32

VM
_33

VM
_34

VM
_35

VM
_4

VM
_5

VM
_6

VM
_7

VM
_8

VM
_9

VM

0
0

0
1

1
0

0
0

0
0

1
1

1
0

0
0

0
1

1
0

0
0

0
0

1
1

0
0

0

2
2

2
3

3
2

2
2

2
2

1
3

3
2

2
2

2
3

3
2

2
2

2
2

3
3

2
2

2

2
2

2
3

3
2

2
2

2
2

1
3

3
2

2
2

2
3

3
2

2
2

2
2

3
3

2
2

2

0
0

0
1

1
0

0
0

0
0

1
1

1
0

0
0

0
1

1
0

0
0

0
0

1
1

0
0

0

2
2

2
3

3
2

2
2

2
2

1
3

3
2

2
2

2
3

3
2

2
2

2
2

3
3

2
2

2

2
2

2
3

3
2

2
2

2
2

3
3

3
2

2
2

2
3

3
2

2
2

2
2

3
3

2
2

2

2
2

2
3

3
2

2
2

2
2

1
3

3
2

2
2

2
3

3
2

2
2

2
2

3
3

2
2

2

2
2

2
3

3
2

2
2

2
2

1
3

3
2

2
2

2
3

3
2

2
2

2
2

3
3

2
2

2

2
2

2
3

3
2

2
2

2
2

1
3

3
2

2
2

2
3

3
2

2
2

2
2

3
3

2
2

2

2
2

2
3

3
2

2
2

2
2

3
3

3
2

2
2

2
3

3
2

2
2

2
2

3
3

2
2

2

2
2

2
3

3
2

2
2

2
2

1
3

3
2

2
2

2
3

3
2

2
2

2
2

3
3

2
2

2

2
2

2
3

3
2

2
2

2
2

1
3

3
2

2
2

2
3

3
2

2
2

2
2

3
3

2
2

2

4
4

4
4

4
4

4
4

4
4

4
4

4
4

4
4

4
4

4
4

4
4

4
4

4
4

4
4

4

2
2

2
3

3
2

2
2

2
2

1
3

3
2

2
2

2
3

3
2

2
2

2
2

3
3

2
2

2

0
0

0
1

1
0

0
0

0
0

1
1

1
0

0
0

0
1

1
0

0
0

0
0

1
1

0
0

0

2
2

2
3

3
2

2
2

2
2

1
3

3
2

2
2

2
3

3
2

2
2

2
2

3
3

2
2

2

2
2

2
3

3
2

2
2

2
2

1
3

3
2

2
2

2
3

3
2

2
2

2
2

3
3

2
2

2

2
2

2
3

3
2

2
2

2
2

3
3

3
2

2
2

2
3

3
2

2
2

2
2

3
3

2
2

2

2
2

2
3

3
2

2
2

2
2

1
3

3
2

2
2

2
3

3
2

2
2

2
2

3
3

2
2

2

2
2

2
3

3
2

2
2

2
2

1
3

3
2

2
2

2
3

3
2

2
2

2
2

3
3

2
2

2

2
2

2
3

3
2

2
2

2
2

3
3

3
2

2
2

2
3

3
2

2
2

2
2

3
3

2
2

2

2
2

2
3

3
2

2
2

2
2

1
3

3
2

2
2

2
3

3
2

2
2

2
2

3
3

2
2

2

2
2

2
3

3
2

2
2

2
2

1
3

3
2

2
2

2
3

3
2

2
2

2
2

3
3

2
2

2

2
2

2
3

3
2

2
2

2
2

1
3

3
2

2
2

2
3

3
2

2
2

2
2

3
3

2
2

2

0
0

0
1

1
0

0
0

0
0

0
1

1
0

0
0

0
1

1
0

0
0

0
0

1
1

0
0

0

0
0

0
1

1
0

0
0

0
0

1
1

1
0

0
0

0
1

1
0

0
0

0
0

1
1

0
0

0

2
2

2
3

3
2

2
2

2
2

1
3

3
2

2
2

2
3

3
2

2
2

2
2

3
3

2
2

2

2
2

2
3

3
2

2
2

2
2

1
3

3
2

2
2

2
3

3
2

2
2

2
2

3
3

2
2

2

2
2

2
3

3
2

2
2

2
2

1
3

3
2

2
2

2
3

3
2

2
2

2
2

3
3

2
2

2

2
2

2
3

3
2

2
2

2
2

1
3

3
2

2
2

2
3

3
2

2
2

2
2

3
3

2
2

2

2
2

2
3

3
2

2
2

2
2

1
3

3
2

2
2

2
3

3
2

2
2

2
2

3
3

2
2

2

2
2

2
3

3
2

2
2

2
2

3
3

3
2

2
2

2
3

3
2

2
2

2
2

3
3

2
2

2

2
2

2
3

3
2

2
2

2
2

1
3

3
2

2
2

2
3

3
2

2
2

2
2

3
3

2
2

2

2
2

2
3

3
2

2
2

2
2

1
3

3
2

2
2

2
3

3
2

2
2

2
2

3
3

2
2

2

2
2

2
3

3
2

2
2

2
2

1
3

3
2

2
2

2
3

3
2

2
2

2
2

3
3

2
2

2

2
2

2
3

3
2

2
2

2
2

1
3

3
2

2
2

2
3

3
2

2
2

2
2

3
3

2
2

2

Figure
3.

1
4:C

alendar
view

of
the

set
of

V
M

s
involved

in
the

analysis.

3.5 conclusions 57

Wed 01 Thu 02 Fri 03 Sat 04 Sun 05 Mon 06 Tue 07 Wed 08 Thu 09 Fri 10 Sat 11 Sun 12 Mon 13 Tue 14 Wed 15 Thu 16 Fri 17 Sat 18 Sun 19 Mon 20 Tue 21 Wed 22 Thu 23 Fri 24 Sat 25 Sun 26 Mon 27 Tue 28 Wed 29 Thu 30

VM_0

VM_1

VM_10

VM_11

VM_12

VM_13

VM_14

VM_15

VM_16

VM_17

VM_18

VM_19

VM_2

VM_20

VM_21

VM_22

VM_23

VM_24

VM_25

VM_26

VM_27

VM_28

VM_29

VM_3

VM_30

VM_31

VM_32

VM_33

VM_34

VM_35

VM_4

VM_5

VM_6

VM_7

VM_8

VM_9

VM

0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 1 0 1 0 0 0 0 1 0 1 0 0 0 0 1 0 1 0 0 0 0 1 0 0 0 0

0 0 0 1 0 1 0 0 0 0 1 0 1 0 0 0 0 1 0 1 0 0 0 0 1 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 1 0 1 0 0 0 0 1 0 1 0 0 0 0 1 0 1 0 0 0 0 1 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 1 0 1 0 0 0 0 1 0 1 0 0 0 0 1 0 1 0 0 0 0 1 0 0 0 0

0 0 0 1 0 1 0 0 0 0 1 0 1 0 0 0 0 1 0 1 0 0 0 0 1 0 0 0 0

0 0 0 1 0 1 0 0 0 0 1 0 1 0 0 0 0 1 0 1 0 0 0 0 1 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 1 0 1 0 0 0 0 1 0 1 0 0 0 0 1 0 1 0 0 0 0 1 0 0 0 0

0 0 0 1 0 1 0 0 0 0 1 0 1 0 0 0 0 1 0 1 0 0 0 0 1 0 0 0 0

0 0

0 0 0 1 0 1 0 0 0 0 1 0 1 0 0 0 0 1 0 1 0 0 0 0 1 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 1 0 1 0 0 0 0 1 0 1 0 0 0 0 1 0 1 0 0 0 0 1 0 0 0 0

0 0 0 1 0 1 0 0 0 0 1 0 1 0 0 0 0 1 0 1 0 0 0 0 1 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 1 0 1 0 0 0 0 1 0 1 0 0 0 0 1 0 1 0 0 0 0 1 0 0 0 0

0 0 0 1 0 1 0 0 0 0 1 0 1 0 0 0 0 1 0 1 0 0 0 0 1 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 1 0 1 0 0 0 0 1 0 1 0 0 0 0 1 0 1 0 0 0 0 1 0 0 0 0

0 0 0 1 0 1 0 0 0 0 1 0 1 0 0 0 0 1 0 1 0 0 0 0 1 0 0 0 0

0 0 0 1 0 1 0 0 0 0 1 0 1 0 0 0 0 1 0 1 0 0 0 0 1 0 0 0 0

0 0 0 1 0 1 0 0 0 0 1 0 1 0 0 0 0 1 0 1 0 0 0 0 1 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 1 0 1 0 0 0 0 1 0 1 0 0 0 0 1 0 1 0 0 0 0 1 0 0 0 0

0 0 0 1 0 1 0 0 0 0 1 0 1 0 0 0 0 1 0 1 0 0 0 0 1 0 0 0 0

0 0 0 1 0 1 0 0 0 0 1 0 1 0 0 0 0 1 0 1 0 0 0 0 1 0 0 0 0

0 0 0 1 0 1 0 0 0 0 1 0 1 0 0 0 0 1 0 1 0 0 0 0 1 0 0 0 0

0 0 0 1 0 1 0 0 0 0 1 0 1 0 0 0 0 1 0 1 0 0 0 0 1 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 1 0 1 0 0 0 0 1 0 1 0 0 0 0 1 0 1 0 0 0 0 1 0 0 0 0

0 0 0 1 0 1 0 0 0 0 1 0 1 0 0 0 0 1 0 1 0 0 0 0 1 0 0 0 0

0 0 0 1 0 1 0 0 0 0 1 0 1 0 0 0 0 1 0 1 0 0 0 0 1 0 0 0 0

0 0 0 1 0 1 0 0 0 0 1 0 1 0 0 0 0 1 0 1 0 0 0 0 1 0 0 0 0

(a)
Wed 01 Thu 02 Fri 03 Sat 04 Sun 05 Mon 06 Tue 07 Wed 08 Thu 09 Fri 10 Sat 11 Sun 12 Mon 13 Tue 14 Wed 15 Thu 16 Fri 17 Sat 18 Sun 19 Mon 20 Tue 21 Wed 22 Thu 23 Fri 24 Sat 25 Sun 26 Mon 27 Tue 28 Wed 29 Thu 30

VM_0

VM_1

VM_10

VM_11

VM_12

VM_13

VM_14

VM_15

VM_16

VM_17

VM_18

VM_19

VM_2

VM_20

VM_21

VM_22

VM_23

VM_24

VM_25

VM_26

VM_27

VM_28

VM_29

VM_3

VM_30

VM_31

VM_32

VM_33

VM_34

VM_35

VM_4

VM_5

VM_6

VM_7

VM_8

VM_9

VM

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0

0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

(b)
Wed 01 Thu 02 Fri 03 Sat 04 Sun 05 Mon 06 Tue 07 Wed 08 Thu 09 Fri 10 Sat 11 Sun 12 Mon 13 Tue 14 Wed 15 Thu 16 Fri 17 Sat 18 Sun 19 Mon 20 Tue 21 Wed 22 Thu 23 Fri 24 Sat 25 Sun 26 Mon 27 Tue 28 Wed 29 Thu 30

VM_0

VM_1

VM_10

VM_11

VM_12

VM_13

VM_14

VM_15

VM_16

VM_17

VM_18

VM_19

VM_2

VM_20

VM_21

VM_22

VM_23

VM_24

VM_25

VM_26

VM_27

VM_28

VM_29

VM_3

VM_30

VM_31

VM_32

VM_33

VM_34

VM_35

VM_4

VM_5

VM_6

VM_7

VM_8

VM_9

VM

0 0 0 0 0 0.25 0 0 0 0 0 0 0.5 0 0 0 0 0 0 0.25 0 0 0 0 0 0 0 0 0

0 0 0 0.25 0 0.25 0 0 0 0 0.75 0 0.5 0 0 0 0 0.25 0 0.25 0 0 0 0 0.25 0 0 0 0

0 0 0 0.25 0 0.25 0 0 0 0 0.75 0 0.5 0 0 0 0 0.25 0 0.25 0 0 0 0 0.25 0 0 0 0

0 0 0 0 0 0.25 0 0 0 0 0 0 0.5 0 0 0 0 0 0 0.25 0 0 0 0 0 0 0 0 0

0 0 0 0.25 0 0.25 0 0 0 0 0.75 0 0.5 0 0 0 0 0.25 0 0.25 0 0 0 0 0.25 0 0 0 0

0 0 0 0 0 0.25 0 0 0 0 0 0 0.5 0 0 0 0 0 0 0.25 0 0 0 0 0 0 0 0 0

0 0 0 0.25 0 0.25 0 0 0 0 0.75 0 0.5 0 0 0 0 0.25 0 0.25 0 0 0 0 0.25 0 0 0 0

0 0 0 0.25 0 0.25 0 0 0 0 0.75 0 0.5 0 0 0 0 0.25 0 0.25 0 0 0 0 0.25 0 0 0 0

0 0 0 0.25 0 0.25 0 0 0 0 0.75 0 0.5 0 0 0 0 0.25 0 0.25 0 0 0 0 0.25 0 0 0 0

0 0 0 0 0 0.25 0 0 0 0 0 0 0.5 0 0 0 0 0 0 0.25 0 0 0 0 0 0 0 0 0

0 0 0 0.25 0 0.25 0 0 0 0 0.75 0 0.5 0 0 0 0 0.25 0 0.25 0 0 0 0 0.25 0 0 0 0

0 0 0 0.25 0 0.25 0 0 0 0 0.75 0 0.5 0 0 0 0 0.25 0 0.25 0 0 0 0 0.25 0 0 0 0

0 0

0 0 0 0.25 0 0.25 0 0 0 0 0.75 0 0.5 0 0 0 0 0.25 0 0.25 0 0 0 0 0.25 0 0 0 0

0 0 0 0 0 0.25 0 0 0 0 0 0 0.5 0 0 0 0 0 0 0.25 0 0 0 0 0 0 0 0 0

0 0 0 0.25 0 0.25 0 0 0 0 0.75 0 0.5 0 0 0 0 0.25 0 0.25 0 0 0 0 0.25 0 0 0 0

0 0 0 0.25 0 0.25 0 0 0 0 0.75 0 0.5 0 0 0 0 0.25 0 0.25 0 0 0 0 0.25 0 0 0 0

0 0 0 0 0 0.25 0 0 0 0 0 0 0.5 0 0 0 0 0 0 0.25 0 0 0 0 0 0 0 0 0

0 0 0 0.25 0 0.25 0 0 0 0 0.75 0 0.5 0 0 0 0 0.25 0 0.25 0 0 0 0 0.25 0 0 0 0

0 0 0 0.25 0 0.25 0 0 0 0 0.75 0 0.5 0 0 0 0 0.25 0 0.25 0 0 0 0 0.25 0 0 0 0

0 0 0 0 0 0.25 0 0 0 0 0 0 0.5 0 0 0 0 0 0 0.25 0 0 0 0 0 0 0 0 0

0 0 0 0.25 0 0.25 0 0 0 0 0.75 0 0.5 0 0 0 0 0.25 0 0.25 0 0 0 0 0.25 0 0 0 0

0 0 0 0.25 0 0.25 0 0 0 0 0.75 0 0.5 0 0 0 0 0.25 0 0.25 0 0 0 0 0.25 0 0 0 0

0 0 0 0.25 0 0.25 0 0 0 0 0.75 0 0.5 0 0 0 0 0.25 0 0.25 0 0 0 0 0.25 0 0 0 0

0 0 0 0.25 0 0.25 0 0 0 0 0.75 0 0.5 0 0 0 0 0.25 0 0.25 0 0 0 0 0.25 0 0 0 0

0 0 0 0 0 0.25 0 0 0 0 0 0 0.5 0 0 0 0 0 0 0.25 0 0 0 0 0 0 0 0 0

0 0 0 0.25 0 0.25 0 0 0 0 0.75 0 0.5 0 0 0 0 0.25 0 0.25 0 0 0 0 0.25 0 0 0 0

0 0 0 0.25 0 0.25 0 0 0 0 0.75 0 0.5 0 0 0 0 0.25 0 0.25 0 0 0 0 0.25 0 0 0 0

0 0 0 0.25 0 0.25 0 0 0 0 0.75 0 0.5 0 0 0 0 0.25 0 0.25 0 0 0 0 0.25 0 0 0 0

0 0 0 0.25 0 0.25 0 0 0 0 0.75 0 0.5 0 0 0 0 0.25 0 0.25 0 0 0 0 0.25 0 0 0 0

0 0 0 0.25 0 0.25 0 0 0 0 0.75 0 0.5 0 0 0 0 0.25 0 0.25 0 0 0 0 0.25 0 0 0 0

0 0 0 0 0 0.25 0 0 0 0 0 0 0.5 0 0 0 0 0 0 0.25 0 0 0 0 0 0 0 0 0

0 0 0 0.25 0 0.25 0 0 0 0 0.75 0 0.5 0 0 0 0 0.25 0 0.25 0 0 0 0 0.25 0 0 0 0

0 0 0 0.25 0 0.25 0 0 0 0 0.75 0 0.5 0 0 0 0 0.25 0 0.25 0 0 0 0 0.25 0 0 0 0

0 0 0 0.25 0 0.25 0 0 0 0 0.75 0 0.5 0 0 0 0 0.25 0 0.25 0 0 0 0 0.25 0 0 0 0

0 0 0 0.25 0 0.25 0 0 0 0 0.75 0 0.5 0 0 0 0 0.25 0 0.25 0 0 0 0 0.25 0 0 0 0

(c)

Figure 3.15: (a) Strong Alerting System. (b) Weak Alerting System. (c) Fuzzy
Alert System.

4
X P Y S O M : H I G H - P E R F O R M A N C E S O M S

4.1 introduction

During recent years, we have been witnessing an exponential growth
in the amount of data that is made available for decision-making,
and a corresponding increase of the complexity of the computations
carried out on such data, in order to squeeze the maximum “value”
out of it. This required the development of ad-hoc software tools
realizing big-data processing pipelines that make use of advanced
techniques going beyond traditional statistics, relying more and more
on complex computations employing ML. Indeed, ML has become
a fundamental component of the software development life-cycle,
allowing for building software that does not require to be explicitly
programmed in order to accomplish a task.

However, for these methods to be usable and effective in practice,
an efficient implementation of the algorithms is needed, exhibiting
good scalability when provided with massive real-world data sets. For
instance, reducing the processing time required to deliver results is
not only highly desirable to increase the efficiency of production work-
loads, but also allows data scientists to be quicker at implementing
and evaluating new ideas. GP-GPUs established as the go-to computing
platform when it comes to accelerating ML algorithms, due to their
extremely parallel and high-precision computing capabilities. It is
well known that the advances in the technology behind such hard-
ware accelerators have enabled researchers to show the disruptive
effectiveness of DL in fields like Computer Vision [41, 117].

In this work, we focus on SOMs [115], a kind of unsupervised,
shallow, ANNs, built on top of the competitive learning principle
and typically employed for clustering, dimensionality reduction and
high-dimensional data visualization. Indeed, they are designed for
mapping high-dimensional data into a lower-dimensional space (e.g.,
2D) that is better interpretable by human perception and easier to
treat computation-wise, while preserving the topology and distribution
of the original data at cluster-level. Given their ability to yield a data
distribution in the target domain that faithfully reflects the observed
relationships in the original space, SOMs have achieved remarkable
results in many application fields like: image processing [57, 102],

59

60 xpysom : high-performance soms

industrial data processing [29, 64], data visualization [44, 176, 258],
pattern recognition [133, 259], anomaly detection in NFV infrastructures
[50, 126] (see also Chapter 3).

Thanks to their simplicity, a wide variety of open-source imple-
mentations of SOMs is available. In this work, we focused on those
exposing Python APIs, due to the raising popularity of such program-
ming language in the ML community. The available implementations
differ significantly in terms of performance under various scenarios.
The differences can be caused by several factors like: their reliance
on native vector processing and linear algebra libraries, that carry
out most of the computations in C/C++, e.g., through NumPy [86];
their internal parallel architecture and exploitation of the underlying
multi-core hardware; their capability to exploit GP-GPU acceleration,
e.g., through CUDA [162]; or, the way several input samples are batch-
processed so to parallelize computations and minimize the execution
of slow Python for loops.

4.1.1 Contributions

We focus on the parallelization and acceleration architecture of SOM

implementations, performing an extensive performance comparison of
widely available open-source libraries for SOM computations, namely
MiniSom [242], Somoclu [252] and TensorFlow-SOM [79], under var-
ious configuration options, leveraging both multi-core and GP-GPU

acceleration. Also, we present for the first time XPySom, a novel open-
source SOM implementation designed to leverage existing and widely
available frameworks for accelerated processing like NumPy, partic-
ularly effective when coupled with the Intel MKL [247] or other BLAS

libraries for parallel processing on multi-core CPUs, and CuPy [165]
for GP-GPUs. We show that a proper design of the data processing
operations, arranged so to perform a relatively small number of calls
from Python to the natively accelerated libraries just mentioned, may
result in a high-performance implementation that outperforms the
others. Indeed, an experimental comparison carried out processing the
EMNIST [42] dataset, highlights that XPySom exhibits a performance
that is an order of magnitude better than the other evaluated SOM

implementations, both for multi-core and GPU-accelerated platforms.

4.1.2 Chapter Organization

This chapter is organized as follows. In Section 4.2, we provide an
overview of relevant approaches found in the research literature aim-
ing at increasing SOM performance, mostly by parallelizing the training
algorithm. In Section 4.3, we present XPySom, discussing the most
important choices in its design regarding optimized execution and
parallelization. Section 4.4 reports the results of the benchmark we

4.2 related work 61

have run to compare our implementation to other widely used open-
source ones. Section 4.5 includes our final remarks and possible ideas
for further work on the topic.

4.2 related work

Virtually all ML algorithms can benefit from an implementation that
exploits the parallelization capabilities of modern hardware archi-
tectures, being them classical statistical learning algorithms [206],
visualization methods for high-dimensional spaces [32] or clustering
techniques [224]. This work focuses on SOMs, an instance of the latter
class of ML-based approaches.

SOMs make extensive use of vector operations, which can be acceler-
ated at various levels, from leveraging the SIMD vector instructions of
high-end processors like SSE and AVX, to multi-core processing widely
available on basically all computing platforms, to the use of GP-GPUs
featuring thousands of processing units able to compute in parallel
the same kernel at high speeds exploiting the fast local memory on
the GPU.

Several works appeared in the research literature dealing with SOM

performance and optimizations. In [196], a parallel SOM implementa-
tion for interactive high-performance data analysis is proposed. In-
deed, the classical (serial) training procedure for SOMs, that consists in
determining the BMU and then updating the units weights accordingly
for each training sample, is not feasible in contexts where massive
datasets must be processed and results are expected to be returned in
near real-time (e.g., interactive web searches). The approach is based
on (i) partitioning the map over multiple processors, each one respon-
sible for solving a local (minimization) problem of finding the BMU in
its partition, (ii) aggregating the partial results to compute the global
BMU and (iii) propagating the solution to allow for weights updates.
The authors show that the introduced synchronization overhead is
negligible with respect to the floating-point operations involved in the
training process, that can be further optimized to leverage better L2

caches.
In [207, 252], attempts at distributing the SOM training algorithm

using the MapReduce [58] framework are described. While [207] relies
on a pure Spark [262] implementation to effectively scale on massive
datasets, [252] also allows for accelerating map and reduce jobs on GPUs,
by leveraging on the MapReduce-MPI [182] framework.

In [152], a thorough scalability analysis of SOMs on a GPU cluster
is reported. In particular, OpenCL- [225] and CUDA-based single-
GPU approaches, as well as a multi-GPU implementation combining
CUDA and MPI, are evaluated with respect to an MPI-only baseline,
considering also two different types of graphic cards. Results show
that the CUDA-based implementation outperforms the OpenCL-based

62 xpysom : high-performance soms

one, mainly due to the fact that the latter framework is designed
to be compatible with a heterogeneous set of devices, and that the
multi-GPU approach allows for a relatively small speed-up, because of
the synchronization requirements of the training procedure.

The authors of [256] highlight that the performance of pure CUDA
implementations of SOMs are poor when dealing with large neighbor-
hoods, since many weights update operations end up being serialized.
To address this limitation, the authors propose an approach in which
the computation of the distances between training samples and map
units is implemented as a matrix multiplication with compute shader,
and the weights updates are treated as a vertex rendering problem.

In [139], a heterogeneous parallel implementation based on MPI

and CUDA is proposed, which is highly scalable on multiple GPUs
and multiple hosts, thanks to the employed process-level and thread-
level (data) parallelism. In particular, the approach leverages on the
batch version of the SOM training algorithm that performs a single
weights update per epoch (i.e., after all training samples are consumed
by the model), whereas the original one performs a weight update
after each step of an epoch (i.e., after a single training sample is
consumed). The former training strategy requires fewer computations
and results in faster convergence. In addition, such version of the
algorithm is a perfect candidate for highly parallel implementations,
because the most computationally-intensive parts can be turned into
matrix operations that can be performed with cuBLAS, fully exploiting
the computational capacity of GPUs.

In [200], a SOM implementation that combines both data and model
parallelism is described. This implementation pushes the paralleliza-
tion capability of the batch training algorithm to the extreme, as not
only the training set is split in chunks to be processed independently
by copies of the map (data parallelism) but each copy is also parti-
tioned at unit weights-level, so that a separated GPU thread handles
the updates of a single dimension of each neuron. According to the
experiments conducted by the authors, this method performs best
when dealing with large data sets, but its effectiveness starts decreas-
ing when increasing the number of features per data point. Also, by
profiling the GPU usage, the authors discovered that, even though the
thread processor occupancy was very close to the theoretical limit,
their throughput was relatively low. This was most likely due to the
time spent waiting for a CUDA core to be available, a problem that
can be certainly mitigated by using a more powerful graphics card.

In [253], an efficient parallel SOM library, called Somoclu, is presented
as an improvement on [252]. Such implementation offers high flexibil-
ity, as it can be effectively executed on a single machine as well as on
a cluster, both on CPUs and GPUs, and exposes interfaces compatible
with widely-used data analysis ecosystems (e.g. Python, R and MAT-
LAB). The Somoclu core implementation is based on OpenMP [55] to

4.2 related work 63

achieve efficient single-node parallelism, and MPI, which replaces the
MapReduce framework employed in [252], to distribute the computa-
tion among multiple nodes. Furthermore, a GPU kernel implemented
with CUDA Thrust [14] and cuBLAS is available. Notably, due to its
remarkable performance and versatility, we decided to use Somoclu as
a reference for the evaluation of our approach.

The authors of [121] compared several SOM implementations, target-
ing many diverse computing platforms ranging from general-purpose
CPUs to FPGAs, both in terms of performance and energy efficiency.
With respect to a baseline provided by the MATLAB SOM toolbox, a
multi-threaded CPU implementation is able to achieve a speed-up of
~200x with small networks. Although, when dealing with large, high-
dimensional data, GPU and FPGA implementations performs best, with
the latter being the most energy-efficient while reaching a speed-up of
~200x with respect to the multi-threaded ~CPU implementation.

Among the approaches described above, only a few of them have
been made widely available as open-source projects exhibiting a
Python ~API, actively maintained and well documented with on-
line examples. We chose to compare our proposed XPySom with a few
projects we found with the mentioned characteristics, which include:
Somoclu [252], due to its versatility (besides multi-core parallelism, it
can also exploit GP-GPUs as well as multiple nodes in a cluster) and
promising performance (at the core, it is implemented in C/C++ and
exposes bindings for higher-level languages such as Python); Mini-
Som [242], due to the fact that, thanks to its simplicity, our code base
was realized as a modification to it; and TensorFlow-SOM [79], due
to its seemingly promising approach based on the well-known Ten-
sorFlow [151] framework. MiniSom implements the online algorithm
described in Section 2.2.1, exploiting exclusively vector-vector and
vector-matrix operations (i.e., Euclidean distance, vector additions and
scalar multiplications) which, albeit implemented efficiently in Numpy
and, if possible, leveraging on multiple cores, are invoked several
times from the Python language. Specifically, Python makes a number
of calls to Numpy vector operations for each input sample, updating
the neurons after each sample. Notice that such implementation pat-
tern, with everything explicitly coded in Python, is among the easiest
to implement and makes the code readable and easily modifiable.
Unfortunately, this also results in a very poor implementation in terms
of performance, as shown in Section 4.4. XPySom, on the other hand,
implements the batch algorithm described in Section 4.3.1, the same
used in Somoclu and the compared TensorFlow implementation, with
the improvements described in Section 4.3.1, heavily exploiting higher-
dimensional operations (e.g., matrix-matrix) to work on batches of
input samples for each native call, resulting in a number of native
calls proportional to the number of batches. Furthermore, neurons
are updated once per epoch, with just the numerator/denominator

64 xpysom : high-performance soms

accumulation required for each batch, which results in a much lower
number of overall operations. Thanks to the additional implementa-
tion details provided in Section 4.3.2, XPySom is able to exploit either
Numpy or CuPy interchangeably, leveraging on either multiple CPU

cores or GPU.

4.3 proposed approach

This section introduces our new XPySom library for Python. We show
the reformulated batch algorithm (see Section 2.2.1) that makes use of
matrix-based operations to take advantage of existing BLAS libraries
(e.g., cuBLAS and MKL).

4.3.1 Matrix-based batch SOM

To take advantage of BLAS libraries, that are highly optimized for exe-
cution on both GPU and CPU (e.g., making use of vector instructions),
the online and batch formulation can be rewritten to operate on a batch
of B data samples at a time arranged in a B × P matrix X ∈ RB×P,
where P is the dimension of the weights vectors. In the following,
the weights are assumed as arranged in an M × P matrix W ∈ RM×P,
where M is the number of neurons. Also, the M = GwGh neurons are
usually arranged as a Gw × Gh grid (in the following, assumed rectan-
gular). Therefore, each neuron Wi has also its associated coordinates
ri = (i div Gw, i mod Gw) in the 2D grid (where div and mod represent
the quotient and modulus integer operations, respectively).

The steps of the matrix-based batch algorithm can be summarized as
follows. First, the distance matrix D ∈ RB×M is computed, consisting
of all pair-wise distances between X and W (see Section 4.3.1.1). Then,
for each sample, the BMU is computed, yielding a vector BMU ∈ NB

where BMUi = arg mink Di,k (i.e., the index of the smallest value
in each row of D). The neighborhood function is then computed
for each element of BMU, yielding a matrix H ∈ RB×M (see Sec-
tion 4.3.1.2). Successively, numerator and denominator updates are
computed, yielding a matrix NUM ∈ RM×P and vector DEN ∈ RM.
Finally, after all batches of the epochs are processed, the weights of
the neurons are updated (see Section 4.3.1.3).

4.3.1.1 Distance matrix

There exists an efficient formula for computing pair-wise distances
between two matrices:

D2 = X2 − 2XWT + W2 (4.1)

D2
i,k = ∑

j
X2

i,j − ∑
j

2Xi,jWk,j + ∑
j

W2
k,j (4.2)

4.3 proposed approach 65

Note that, since we are interested only in finding the minimum over a
row (i.e. for each sample in the batch), there is no need to compute
the square root of D2. Furthermore, if we express Equation (4.1) in
terms of element-wise operations, as in Equation (4.2), we obtain that:
(i) X2 is constant row-wise (i.e., for equal values of i), hence we can
skip its computation, since we are only interested in finding the BMU;
(ii) W2 is constant over an epoch and, therefore, it can be computed
only once.

4.3.1.2 Neighborhood function

By unraveling the BMUi indices we can obtain directly the coordinates
of the BMU in the rectangular grid (see Equation (4.3)). Let U ∈ NB×2

be the matrix with the unraveled indices of the BMUs and L ∈ NM×2

the matrix with the locations ri of the M neurons. We can compute H
as follows:

Ui,1 = BMUi mod Gh Ui,2 = BMUi div Gw (4.3)

Hi,k = −exp
(
(Ui,1 − Lk,1)

2 + (Ui,2 − Lk,2)
2

δ(t)

)
(4.4)

4.3.1.3 Numerator, denominator and weights update

The updates NUM′ and DEN′ can now be computed as:

NUM′
k,j = ∑

i
Hi,kXi,j DEN′

k = ∑
i

Hi,k (4.5)

The corresponding matrix operation for the numerator in Equation (4.5)
is NUM′ = HTX where NUM′ and DEN′ are accumulated in NUM
and DEN. The new weights W(t + 1) are calculated as Wk,j(t + 1) =
NUMk,j/DENk.

4.3.2 XPySom

XPySom is our SOM implementation in Python that uses the matrix-
oriented formulation of the algorithm of Section 4.3.1. XPySom has
been obtained as a (quite disruptive) modification to MiniSom, which
has been chosen as a starting point due to its simplicity of implemen-
tation and richness of features. In XPySom, the sequential sample-
by-sample operations originally in MiniSom have been replaced with
matrix operations as detailed above. These are executed using the APIs
provided by either NumPy or CuPy, which are able to exploit CPU and
GPU processing, respectively. We exploit the interchangeability among
NumPy and CuPy, as CuPy implements the same APIs as NumPy but it
executes its operations on GPUs through cuBLAS calls or raw kernels.

The obtained data flow is exemplified in Figure 4.1, where the vari-
ous steps XPySom goes through in order to perform a SOM training

66 xpysom : high-performance soms

Numpy data
Reading,

Neuron weights
Initialization

Compute Squared
Distance between

 Neurons and Input data (eq. 6)

BMU calculation (eq.7)

Numerator and
denominator

 update (eq. 11-12)

Input
Data BatchingPre-compute Neurons

Squared Distance
 (W term in eq.6)

Neuron Weights
update (eq. 14)

INTEL MKL (or any BLAS)

CUDA

For each epoch

Figure 4.1: Visualization of the data flow for SOM training in XPySom.

operation are visualized, in connection with the corresponding equa-
tions defined in the previous subsections. Core features of the XPySom
architecture are its capability to perform SOM training operations in
batches of input samples, arranged as matrix/vector operations that
are executed very efficiently through relatively few calls to the under-
lying NumPy or CuPy libraries. XPySom is able to use either of them
interchangeably, thanks to their compatible APIs.

XPySom is an open-source project and the code is available under
GPLv3 license [147]. At the moment, XPySom does not support exe-
cution on multiple nodes nor multiple GPUs. Moreover, when in GPU

mode, XPySom cannot make use of CPU cores to accelerate further the
processing.

4.4 experiments

In this section we present the results we obtained, both in terms of
QE1 and training time, from an extensive experimental comparison
among our proposed XPySom and a few other commonly available
SOM implementations: MiniSom [242], SomoClu [253] and TensorFlow-
SOM (TF-SOM) [79]. For the experiments, we relied on a workstation
equipped with 16GB of DDR4 memory, an Intel Core i7-4790K quad-
core CPU (8 hyper-threads) with base frequency 4.00 GHz (turbo-
boosting to 4.40 GHz) and an Nvidia GeForce GTX 1080 Ti with 11

GB of on-board memory and 3584 CUDA cores, running Ubuntu
18.04 LTS. The installed libraries and packages were Python 3.6.5,
NumPy 1.18.1, MiniSom (at commit 0540834), XPySom (at commit
6103d86), Somoclu 1.7.5 (built from source at commit 7c78448), CuPy
7.4.0, CUDA 10.2, TF-SOM (at commit c0f40ed) and TensorFlow 2.1.0.

1 The QE is defined as the average distance between each input vector and the weight
vector of its associated BMU neuron.

4.4 experiments 67

20 40 60 80 100
#epochs

5.6

5.8

6.0

6.2

6.4
Av

er
ag

e
Qu

an
tiz

at
io

n
Er

ro
r

dataset=emnist-digits, #feats=784, #neurons=10x10, #samples=240000

XPySom CPU
XPySom GPU
Somoclu
SomocluGPU
MiniSom
TFSom

Figure 4.2: Evolution of the QE for a 10x10 SOM throughout training epochs
(EMNIST, 240k samples, 784 features).

We performed five different tests each comparing different training
environments. To have a fair QE evaluation, we ran each experiment
five times, and used the mean QE as the error metric and mean training
time as the performance metric. The input data used in the experiments
is the EMNIST dataset [42] that contains 240k data samples, each com-
posed of 784 features. For all the experiments, the input data values
were divided by 255 so that all the features are scaled in the [0, 1] range.
In the TF-SOM implementation, the batch size is set to 128, which
shows a nice compromise in terms of memory usage and computation
time. The learning rate starts every time with a value of 0.5 and decays
exponentially over epochs in all the tested implementations.

4.4.1 Quantization error vs training epochs

The first test aimed to exclude from further performance experiments
all the SOM implementations that did not reach an acceptable QE after
a fixed amount of training time, and SOM initialization techniques
that did not bring performance improvements. The QE is averaged
over 5 training sessions and measured after each epoch for a total
of 100 epochs. The number of neurons is fixed to 100 and arranged
in a 10 × 10 rectangular grid. Since MiniSom offers the possibility to
initialize the weights using the PCA or the random initialization, we
have chosen to run the experiment with both initialization techniques
while in the Somoclu implementation the initialization is the random
one. The training update rule is the one described in Equation (2.5)

68 xpysom : high-performance soms

used in both XPySom and Somoclu implementations, while in the
MiniSom implementation the training update rule is the online update
rule described in Equation (2.3).

Figure 4.2 shows how both Somoclu and all XPySom implementations
reach similar mean QE through all the 100 epochs. MiniSom reaches
a lower QE in fewer epochs just because of the online update rule
that updates all the SOM weights for each sample, resulting in more
updates within the same number of epochs. After 20 epochs the
MiniSom experiment is quitted since it reaches the time limit of 30

minutes. TF-SOM seems to be unable to lower the QE even after 100

epochs as it remains with a QE between the 15% and 20% higher than
the other SOM implementations. PCA initialization of both MiniSom
and XPySom seems to not help to lower the QE with respect to the
random initialization, and the only difference seems to be in the
slightly higher initialization time due to the initial PCA decomposition.
For this reason, since the following experiments will focus only on the
time performance, the faster random initialization will be used in all
SOM implementations.

4.4.2 Training time vs SOM grid sizes

The results obtained in Section 4.4.1 suggest that the batch update rule
used in all SOM implementations tested except the original MiniSom
implementation does not worsen the QE compared to the online one.
In this section, we focus on how the training time is affected when
increasing the number of SOM neurons instead. Figure 4.3 shows that,
increasing the number of SOM neurons (on the X-axis), the training
time increases (in seconds on the Y-axis, averaged on 5 different
training sessions, in linear and logarithmic scale in Figure 4.3a and
Figure 4.3b, respectively). The number of epochs is fixed to 10, the
number of training samples is fixed to 240k and the number of features
is fixed to 784.

The XPySom implementation outperforms the Somoclu implemen-
tation in both OpenMP (CPU, just labelled as “Somoclu” in the figure)
and CUDA (“SomocluGPU” label in the figure) compiled versions by
two and three orders of magnitude. It is worth noticing how XPySom
effectively leverages the GPU parallelization while Somoclu seems to
perform worse when using the GPU. A quick investigation revealed
that in this case Somoclu makes a non-intensive use of the GPU, while
still keeping a significant amount of computations on the CPU (on
a related note, the GPU and CPU kernels are kept in different files,
in the source code). The MiniSom original implementation is not us-
ing any sort of explicit parallelization and the training time grows
uncontrolled when increasing the number of neurons. The Somoclu
GPU compiled version starts to become unusable when the number of
neurons approaches the size of 500, while TF-SOM starts to be faster

4.4 experiments 69

0 500 1000 1500 2000 2500
#neurons

0

200

400

600

800

1000

1200

Ti
m

e
(s

)
dataset=emnist-digits, #feats=784, #epochs=10, #samples=240000

XPySom CPU
XPySom GPU
Somoclu
SomocluGPU
TFSom
MiniSom

(a)

0 500 1000 1500 2000 2500
#neurons

100

101

102

103

Ti
m

e
(s

)

dataset=emnist-digits, #feats=784, #epochs=10, #samples=240000

XPySom CPU
XPySom GPU
Somoclu
SomocluGPU
TFSom
MiniSom

(b)

Figure 4.3: Training time as a function of the number of neurons (EMNIST,
240k samples, 784 features).

70 xpysom : high-performance soms

20 40 60 80 100
#epochs

101

102

103

Ti
m

e
(s

)

dataset=emnist-digits, #feats=784, #neurons=10x10, #samples=240000

XPySom CPU
XPySom GPU
Somoclu
SomocluGPU
TFSom
MiniSom

Figure 4.4: Training time as a function of the number of training epochs
(EMNIST, 240k samples, 784 features).

than the Somoclu one when the number of neurons approaches the
size of 500, but if remains two orders of magnitude slower than the
XPySom GPU implementation.

4.4.3 Training time vs training epochs

Figure 4.2 shows how increasing the number of training epochs leads
to a decrease in the quantization error. Figure 4.4 shows how the
training time increases linearly with the number of epochs. It is worth
to notice that even after 100 epochs the XPySom GPU implementation
ends the training session in less than 10 seconds, more than two orders
of magnitude faster than the second faster GPU SOM implementation
(TF-SOM).

4.4.4 Training time vs training samples

The training time increases linearly with the data set size and the log-
plot in Figure 4.5 follows the expected behavior in all the six tested SOM

implementations. Again, the XPySom implementation shows the best
performance with both the NumPy (CPU) and CuPy (GPU) backends.

4.4 experiments 71

50000 100000 150000 200000 250000
#samples

100

101

102

103
Ti

m
e

(s
)

dataset=emnist-digits, #feats=784, #neurons=10x10, #epochs=10
XPySom CPU
XPySom GPU
Somoclu
SomocluGPU
TFSom
MiniSom

Figure 4.5: Training time as a function of the number of training samples
(EMNIST, max 240k samples, 784 features).

0 500 1000 1500 2000 2500 3000
#features

100

101

102

103

Ti
m

e
(s

)

dataset=emnist-digits, #epochs=10, #neurons=10x10, #samples=240000

XPySom CPU
XPySom GPU
Somoclu
SomocluGPU
TFSom
MiniSom

Figure 4.6: Training time as a function of the number of training features
(EMNIST, 240k samples, 784 features)

72 xpysom : high-performance soms

4.4.5 Training time vs input features

To check how the training time is impacted when using more input
features, we have scaled the original input samples to the following
sizes using a bilinear interpolation over the pixel neighborhood:

• 7 × 7, resulting in a input dataset of size 240k × 49

• 14 × 14, resulting in a input dataset of size 240k × 196

• 28 × 28, resulting in a input dataset of size 240k × 784

• 56 × 56, resulting in a input dataset of size 240k × 3136

The log-plot in Figure 4.6 shows that the XPySom implementation
outperforms the other SOM implementations by two or three orders
of magnitude. The number of epochs is fixed to 10 while the number
of training samples is fixed to 240k. TF-SOM cannot start the training
session with 3136 features due to a memory error (exceeded available
11Gbyte GPU memory) using a batch size of 128. On the other hand,
the MiniSom implementation cannot reach the training session ends
since it exceeded the maximum conceded training time (30 minutes)
for our experiments.

4.5 conclusions

We presented XPySom, a variant of the popular MiniSom package for
Python that effectively leverages the parallelization of the batch update
rule for training SOMs, recurring to a massive use of matrix/vector
operations optimized through the use of the well-known NumPy
and CuPy libraries. We have tested our implementation on a single
GP-GPU, multi-core CPU machine using different training settings. Ex-
tensive experimental results demonstrate that, even when increasing
the number of neurons, the number of training samples or the number
of training features, our implementation outperforms other popular
open-source implementations for Python (including Somoclu that has
a native C/C++ implementation), with a training time two or three
orders of magnitude lower and a practically identical accuracy (in
terms of QE). Our proposed XPySom implementation is certainly an in-
teresting choice when the SOM training can be run on a single machine,
being probably among the fastest SOM implementations available for
Python. Moreover, the algorithm is extremely easy to be adapted to
custom implementations since most of the functions are inherited
from the MiniSom minimalistic package.

Part III

P R E D I C T I V E R E S O U R C E
M A N A G E M E N T

In this part, we investigate on data-driven approaches for
cloud resource management. In particular, we focus on
time-series analysis techniques, applied to system- and
application-level monitoring metrics. We analyze existing
solutions, and propose novel methods, to address a num-
ber of very common problems faced by operations teams
during their daily activities, like capacity planning, elastic-
ity control and fault management.

5
V N F M E T R I C S F O R E C A S T I N G

5.1 introduction

In recent years, the landscape of information and communication tech-
nologies has been facing an unprecedented turn into distributed com-
puting. The wide-spread availability of high transmission bandwidths,
at affordable rates, enabled multiple scenarios where computing can
effectively and efficiently be distributed. Coupled with the relentless
development of virtualization technologies, this led to the realiza-
tion of nowadays cloud computing. Cloud technologies enabled the
flexible management of pools of shared general-purpose processing,
storage and communication resources. Consumers can remotely access
them in an on-demand, rapid, completely automated and dynamically
adaptable fashion.

At the same time, communication technologies have been evolving
towards more sophisticated services, higher capacity and lower latency
in both landline and mobile access networks, as well as in backbone
transport segments. The new distributed computing scenarios, includ-
ing big-data processing in the cloud and on-the-fly processing at the
edge, exposed the incapability of traditional networks at managing
the complex and fast-evolving requirements of new and emerging
services.

Thanks to the increasing convergence of networking technologies
towards IP-based networks (e.g., LTE), telecommunications are benefit-
ing of well-established principles coming from the cloud computing
space. This led to the recent paradigm of NFV [39], where general-
purpose private cloud infrastructures allows for quickly provisioning
virtualized resources (i.e., network slices) in which to instantiate flexi-
ble VNFs, seconding the instantaneous workload conditions and their
requirements. In this way, a more intelligent use of physical resources
can be pursued [40].

At the heart of automated management and orchestration oper-
ations (including capacity planning, performance monitoring and
management), there are monitoring systems continuously gathering a
plethora of metrics, for each individual element of the infrastructure.
For instance, tens of system-level metrics may be gathered from each
individual physical host, VM or networking element, with a typical

75

76 vnf metrics forecasting

time granularity of one sample every few minutes. At the same time,
individual VNFs continuously collect metrics related to the status, per-
formance and failures happening at the application level. This data is
normally aggregated and analyzed in real-time by an alerting system
that, under precise threshold-based conditions on said metrics, is able
to trigger operators’ attention (e.g., when failure rates or response
latencies exceed certain thresholds), or even activate automated fault
management and recovery actions (e.g., exclude a physical host from
the fleet and send it to data-center operators for repair and mainte-
nance).

Accurately forecasting how key metrics will evolve over time is an
increasingly important problem, both for short-term and mid/long-
term forecasts. For this reason, ML techniques have been gaining
momentum as key technologies accompanying enterprises operating
in pretty much any business domain. In networking, these techniques
have been successfully applied in NFV infrastructures for AD [158, 164],
behavioral pattern analysis [50, 126] as well as resource demand esti-
mations [100, 157]. In particular, DL methods are among the techniques
that are receiving increasing attention from both research and industry.
Therefore, it is worth investigating the applicability of DL models and
the trade-offs that can be achieved in terms of precision and training
cost of the available techniques.

5.1.1 Chapter Organization

This chapter is organized as follows. Section 5.2 offers an overview of
the related research literature. Section 5.3 presents the time-series fore-
casting approaches considered for our analysis. Section 5.4 presents
the results of our experiments. We validated the performance of the
considered models, in terms of accuracy and training cost, using real
data exported from a production environment of the Vodafone network
operator. Section 5.5 concludes the chapter and discusses possible
ideas for future works on the topic.

5.2 related work

Adoption of predictive techniques in NFV and SDN schemes is a long-
standing approach for adapting available virtualized resources to
varying loads [144, 158, 164]. In this way, service-chains deployed on
cloud infrastructures are able to offer quick proactive measures to
ensure quality of service QoS and reduction of CAPEX and OPEX costs.
However, achieving such a goal comes with several challenges like, for
instance: (i) employing effective predictive models that do not lead
to under- or over-provisioning virtual resources; (ii) assessing which
components of a service-chain should be scaled to maximize the over-
all efficiency; (iii) optimizing the placement of newly created virtual

5.2 related work 77

resources on the physical infrastructure [70, 119]. Our work focuses
on (i), in particular, by investigating effective time-series forecasting
techniques that can provide NFV operation teams with actionable feed-
backs to support their decisions (e.g., whether a VNF needs to be scaled
to accommodate traffic growth).

A standard solution for real-time forecasting and scaling of re-
sources is static thresholding [30]. Despite being a straightforward
heuristic, it can provide interesting results when dealing with sim-
ple systems. However, in general, different services require different
threshold policies, thus a generic approach will lead to over- or under-
sizing the infrastructure. On the other hand, dynamic thresholding
provides an adaptive mechanism to set thresholds, that can be imple-
mented with, e.g., RL [5, 6]. However, the burdens related to using RL

algorithms often limit their applicability to real infrastructures (e.g.,
the need for sophisticated simulation environments to train the agents).
For instance, in [227] the authors describe a Q-learning approach for
managing a real telco system. The developed agent is observed to
take several unexpected decisions, before converging to an optimal
policy. When deploying the approach in production, this is clearly not
desirable. On the other hand, in [257], the authors propose a successful
RL-based approach to deploy VNF service-chains, that works by jointly
minimizing operation costs and maximizing requests throughput, and
also takes into consideration heterogeneous QoS requirements.

In [188], an ML-based approach is proposed to realize an effective
auto-scaling mechanism. The authors evaluate several predictive mod-
els (e.g., DT, RDF, MLP, BN) on load traces exported from a real VNF

environment, also taking into account the different costs and start-
up times related to different virtualization technologies. In [263], an
approach based on LSTM networks, is adopted to forecast VNF require-
ments. However, it is not clear whether there is an actual improvement,
in terms of forecasting accuracy, when compared to other methods, as
the authors mainly focus on features selection aspects.

Nowadays, LSTM has been proven to be an extremely effective tool
for time-series analysis, both for classification [98, 145] and forecasting
[128, 193] tasks. In particular, the sequence-to-sequence architectural
pattern, when implemented with LSTM-based encoder and decoder com-
ponents [226], yields surprisingly good results. This kind of architec-
tures are also widely adopted for machine translation and NLP tasks
in general. In NFV context, they can be helpful when translating VNF

metrics sequences to infrastructure metrics sequences and vice-versa.
Since communication from the encoder to the decoder is limited to the
hidden state values, there are no real requirements on the structure
and architecture of both, thus allowing even for different types of
input and output metrics.

As described in [158, 164], forecasting accuracy can also be improved
by leveraging on information about the topology of the deployed VNFs

78 vnf metrics forecasting

INFRASTRUCTURE

Host1 Metrics

Host1

VM1

VMn

NVI
Metering
System
(vROPS)

VM Metrics

Hostm Metrics

Hostm

VM1

VMn

VM Metrics

VNFk Metrics

VNFs
Metering

System(s)

VNF1 Metrics

Analytics
Engine

Semi-
Automated
Decision
Making

Forecasts

Figure 5.1: Integration of the realized analytics engine within Vodafone NFV

infrastructure operations.

like, e.g., graphs characterizing interactions among the VMs belonging
to the same VNFs. In [157], such topology-aware time-series forecasts
were achieved through GNNs [10, 210].

5.3 compared approaches

NVI metric forecasting, both at system- and application-level, aims
at providing a snapshot of the system dynamics in the future. This
information is useful to operation teams to support their decisions,
e.g., for capacity planning purposes. Figure 5.1 shows how forecasting
capabilities enhance Vodafone NFV operations. The NVI time-series
produced by each component of the infrastructure are ingested by
vROps and the monitoring subsystems of the individual VNFs. Our
analytics engine sits in front of these monitoring components and
computes NVI forecasts. Such outputs are used in a semi-automated
decision-making process, where humans consume them to get insights
and possibly uncover early symptoms of system outages. The acquired
knowledge provides decision-makers with actionable feedbacks that
may trigger capacity planning and infrastructure management actions.

The data provided by Vodafone consists of a set of relevant indi-
cators (metrics), each one coming in the form of a time-series that
describes the evolution in time of a specific NVI metric. Dealing with
time-series, especially in multi-variate settings, is an inherently com-

5.3 compared approaches 79

plex problem. An effective model must take into account the dynamic
and sequential nature of the information. Furthermore, possible high
variance in the data poses an additional challenge. To mitigate the im-
pact of such quality issues, we applied a pre-processing pipeline that
includes scaling and normalizing the data using a min-max strategy.

We tested three classes of metric forecasting methods: (i) SARIMA,
(ii) Holt-Winters and (iii) neural architectures. In order to train the
latter on NVI metrics, we reshaped the data-set in the form of training
samples. Namely, we built a set of pairs of input and output sub-
sequences, fixing the length of input and output time periods upfront.

Note that supervised models rely on the data seen during training,
to discover patterns and correlations among the defined variables.
Although several techniques have been applied to reduce the gen-
eralization error, such models perform the best when test data and
training data distributions are similar.

5.3.1 Neural Architectures

From a general standpoint, we aim at forecasting the future dynamics
of a discrete uni-variate time-series {xt}, for xt ∈ R, leveraging on
the knowledge of its values for t ∈ [0, Ttrain]. In other words, we
want to compute {x̂t} for t ∈ [Ttrain + 1, Ttest]. If available, we can
exploit additional auxiliary metrics {yt}, for yt ∈ Rm whose historical
dynamics is known in the same time range as the prediction target
t ∈ [0, Ttrain]. In the context of NFV operations, for instance, {xt}
could represent the average cpu utilization of a given subset of hosts
in the infrastructure, while {yt} could represent a set of service-level
indicators that are particularly relevant for the VNF deployed on such
hosts.

All the models described in this section are examples of encoder-
decoder architectures, a common architectural pattern for sequential
data processing. An encoder-decoder architecture is composed of two
distinct layers connected in series: (i) the encoder Eθ , whose job is to
accept a (possibly variable-length) sequence in input and compute a
state with fixed shape, and (ii) the decoder Dθ , that maps the state to
an output sequence.

The parameters of the neural models can be trained by comparing
their outputs with the ground truth values, provided by the training
data-set, and minimizing the MSE. To this aim, in our implementation,
we used the Adam optimization algorithm, setting its hyperparameters
as recommended by the seminal paper [114].

5.3.1.1 Baseline

Our baseline architecture is rather simple and consists of an LSTM

layer followed by a fully-connected layer, jointly trained by back-
propagation. An input time-series is fed to the LSTM that is set to

80 vnf metrics forecasting

output only the last value of its recurrent process, for each internal
unit. The resulting vector is then provided to the fully-connected
layer that outputs an estimation of the target time-series in a one-shot
fashion (i.e., the entire output is generated by a single inference pass).
More formally, if φ is the desired length of the output sequence, d the
number of neurons of the LSTM, m the number of auxiliary variables,
the model is characterized by:

Eθ : Rm+1 × R2d → Rd × R2d

Dθ : Rd → R1×φ
(5.1)

Note that Eθ is designed to process each element of the input sequence
separately, not the whole sequence at once. Let (xt−λ+1, . . . , xt) be the
input sequence and (yt−λ+1, . . . , yt) be the auxiliary sequence, both
with length equal to λ. The output x̂ =

(
x̂t+1, . . . , x̂t+φ

)
is generated

as follows:

h̃t−λ = 0, h̃t−λ ∈ R2d

zs = vec (xs, ys) t − λ < s < t

(os, h̃s) = Eθ(zs, h̃s−1), t − λ < s ≤ t

x̂ = Dθ (ot)

(5.2)

where h̃s are the latent states.
Due to the way the fully-connected layer is configured, this architec-

ture requires the output length to be fixed upfront. Such requirement
entails that if we need to increase the forecasting horizon, then we
have to re-train a different model from scratch. These settings do not
allow for fully leveraging on the recurrent nature of LSTMs that, in
general, can be trained and perform inference on sequences of vari-
able length. On top of that, the complexity of the model, in terms
of learnable parameters, grows proportionally to the output length.
This aspect is crucial not only from a scalability perspective but also
for the quality of the inference. The more the parameters, the higher
the risk of over-fitting the training data-set and performing poorly on
unforeseen inputs. For these reasons, we decided to build upon this
first attempt and devise other architectures that overcome in part the
aforementioned limitations.

5.3.1.2 Sequence-to-dense and Dense-to-dense

The model described in Section 5.3.1.1 imposes the limitation of decid-
ing the length of the output sequence (i.e., the number of time steps
to forecast in a test scenario) upfront. To address such issue, we have
introduced a change to the inference process that consists of using
smaller forecasted sequences as inputs to the model. This way, it is
possible to forecast an unlimited number of time-steps while using a
model with a fixed output size. However, due to its closed-loop nature,

5.3 compared approaches 81

the revised inference process has an important drawback: it is possible
to use only the historical values of the target variable to estimate its
evolution. In other words, the architectures leveraging on this method
can only be used in uni-variate mode (i.e., without auxiliary variables).

In particular, we devised two architectures that employ this method
at their core. The first one, called sequence-to-dense (seq2den), has a
structure similar to the baseline described in Section 5.3.1.1. It consists
of an LSTM layer followed by a fully-connected layer. Since the LSTM

layer weights are shared between time-steps, the input length does not
affect the number of model parameters. The second one, called dense-
to-dense (den2den), consists of two fully-connected layers in series.
When feeding the input time-series to the input layer, each input
time-step has an associated weight that is independently optimized
during back-propagation. In this case, the length of the input sequence
contributes to the growth of the learnable parameters. Moreover, due
to the output layer being fully-connected, for both these variants the
number of learnable parameters is proportional to the output sequence
length.

5.3.1.3 Sequence-to-sequence with Time Embedding

The models described in Section 5.3.1.2 improve our baseline by intro-
ducing a closed-loop inference strategy. However, they are not able to
work in multivariate settings and, thus, we cannot leverage on contex-
tual information to get more accurate forecasts. With the aim of taking
the best from both worlds, we developed an additional model, called
sequence-to-sequence (seq2seq), that is able to accept auxiliary variables
while not being constrained in the length of the output. Additionally,
as the time-series under consideration turn out to be greatly affected
by timing information such as the hour of the day and the week day,
including non-periodic changes occurring on holidays, we added to
this model the capability to use additional time embedding metrics, as
described below.

temporal embedding . Each sample of both input and target
signals, at each time-step t, is associated with a unique date and time.
This information can be encoded using additional time-series:

1. {αt}, for αt ∈ {0, 1, . . . , 23}, encoding the hours;

2. {βt}, for βt ∈ {0, 1, . . . , 6}, encoding the week-days;

3. {γt}, for γt ∈ {0, 1, . . . , 11}, encoding the months;

4. {δt}, for δt ∈ {0, 1}, encoding whether the time-steps correspond
to holidays.

Note that such time-series are completely known a-priori. However,
{αt}, {βt} and {γt} cannot be fed directly to a neural network, because

82 vnf metrics forecasting

their values fail to encode the cyclic nature of the series (e.g., that
23:00 and 01:00 are at the same distance from 00:00). Therefore, we
need to embed them properly into a vector space. A simple one-hot
encoding (i.e., one boolean per unique value) would produce an
excessive number of variables, and it would lose again the relative
temporal distance among the values. To this aim, we propose a circular
2D embedding that can preserve such information by mapping each
original k-values sequence to the 2D coordinates πk(i) of the vertices
of a regular k-sides normalized polygon:

πk(i) =
(

sin
(

2πi
k

)
, cos

(
2πi

k

))T

(5.3)

Using such an embedding we are able to produce an additional pilot
time-series by concatenating the desired embedded temporal features.
For instance, for hourly timestamps, consider

pt = (π24(αt), π7(βt), π12(γt), δt)
T ∈ Rp (5.4)

where p = 7.

piloted sequence-to-sequence model . The neural network
model discussed in this section could be thought of as a modified
version of a sequence-to-sequence model [226] adapted to accept an
external variable, the pilot sequence, whose dynamics is known a-priori.
It can be described as

Eθ : R(m+p+1) × R2d → R2d

Dθ : Rp × R2d → Rd × R2d

Rθ : Rd → R

(5.5)

where Eθ and Dθ are two LSTM layers with d units and Rθ is a fully-
connected layer acting as a rectifier (that reshape the result to the
desired dimensions).

Let (xt−λ+1, . . . , xt) be the input sequence, (yt−λ+1, . . . , yt) the aux-
iliary sequence, and

(
pt−λ+1, . . . , pt, . . . , pt+φ

)
the pilot sequence. The

output
(

x̂t+1, . . . , x̂t+φ

)
is generated as follows:

h̃t−λ = 0, h̃t−λ ∈ R2d

zs = vec(xs, ys, ps), t − λ < s ≤ t

h̃s = Eθ(zs, h̃s−1), t − λ < s ≤ t

(os, h̃s) = Dθ(ps, h̃s−1), t < s ≤ t + φ

x̂s = Rθ(os), t < s ≤ t + φ

(5.6)

where h̃s are the latent states. Note that the number of learnable
parameters depends only on the feature dimensions, not on the length
of input and output sequences (λ and φ).

5.4 experiments 83

trend-seasonality decomposition. Time-series decompo-
sition techniques can be effectively used to improve forecasting ac-
curacy [229]. In this case, we opted for additive decomposition, by
decomposing time-series {xt} in its trend and seasonality, such that
xt = bt + st. By assuming such a decomposition, our aim is to devise a
decomposable model that produces forecasts by aggregating the con-
tributions of two different models for trend and seasonal components.
Without loss of generality, let us consider a simplified case in which
there are no auxiliary variables. The workflow to train a decomposable
model, and to ultimately forecast the target time-series, consists of:

1. Fitting the trend model. Fit a logistic function

a +
b

1 + e−ct (5.7)

over {xt}, using the Levenberg-Marquardt optimization tech-
nique [130], to obtain {bt} for t ∈ [0, Ttrain].

2. Data detrendization. Remove the trend component from the
data:

st := xt − bt (5.8)

3. Fitting seasonality model. Train the neural architecture over
{st}, for t ∈ [0, Ttrain].

4. Seasonality forecasting. Use the neural model to infer a forecast
{ŝt} for t ∈ [Ttrain + 1, Ttest].

5. Trend forecasting. Use the fitted trend function to infer the trend
b̂t for t ∈ [Ttrain + 1, Ttest].

6. Aggregate contributions. Compute

x̂t := b̂t + ŝt (5.9)

for t ∈ [Ttrain + 1, Ttest].

If needed, in steps 4 and 5, temporal embedding can be added to train
the seasonality and to forecast the target time-series.

5.4 experiments

In this section, we report experimental results from the application
of the techniques described in Sections 2.2.2 to 2.2.4, 2.2.6 and 5.3 on
data provided by Vodafone. We compared the different techniques
according to three main aspects: accuracy, training time and stability.
In particular, stability refers to the capability of a model to produce
similar results under different weights initial values and/or small
variations of the hyperparameters.

84 vnf metrics forecasting

5.4.1 Experimental Set-up

We focused our experimental evaluation on data coming from two
distinct VNFs, namely CSCF and DRA. Both datasets report samples
recorded with hourly granularity, but we also re-sampled the DRA
dataset to get a daily-aggregated (average) version. The metrics under
analysis was chosen by Vodafone due to their relevance in the monthly
monitoring and reporting activities performed by the NFV capacity
team. Due to confidentiality reasons, such datasets have not been
made available to the public.

The CSCF dataset spans a time range of 16 months, with hourly
frequency. It reports the dynamics of the cpu|usage_average system-
level metric, averaged among the VMs composing the VNF, and of four
application-level metrics:

• SCSCF_REGISTERED_USERS

• SCSCF_SUCCESSFUL_INIT_REGIST

• SCSCF_RE_REGISTRATION_ATTEMPTS

• UNREGISTERED_IMPI_ON_SCSCF

Such metrics exhibit a low Pearson correlation [15]. We used the last
30 days as test set, to evaluate the trained models. The reminder is
divided in training and validation splits, by taking the first 90% and
the last 10%, respectively. The goal is to forecast cpu|usage_average.

The DRA dataset includes hourly- (DRAh) and daily-aggregated
(DRAd) time-series spanning a time range of 16 months. The datasets
report the dynamics of the cpu|usagemhz_average system-level metric,
averaged among the VMs composing the VNF, and of two application-
level metrics:

• DRA-DIAM-MSG.0.Max_TPS

• DRA-DIAM-INT.0-S6a/S6d.Res_Sent

Such metrics exhibit a low Pearson correlation. We used the last 6

months as test set, to evaluate the trained models. The remainder
is divided in training and validation splits, by taking the first 90%
and the last 10%, respectively. The goal is to forecast cpu|usagemhz_-
average.

Experiments involving neural architectures were carried out on
a GCP VM, equipped with: an Intel Xeon processor (24 virtual CPU
cores, 2 GHz); 120 GB of RAM; an NVidia Tesla V100 GPU (16 GB of
dedicated memory, CUDA 10.0); Debian 9.9 operating system. Experi-
ments involving classical forecasting techniques were carried out on
an on-premise test-bed, equipped with: an AMD Ryzen 7 2700x pro-
cessor (16 virtual CPU cores, 3.7 GHz); 64 GB of RAM; Ubuntu 18.04

operating system. Both environments were configured with Python
3.7.7, TensorFlow 1.14.0, statsmodels 0.12.0, NumPy 1.18.5.

5.4 experiments 85

Table 5.1: Neural architecture configurations for each dataset.

CSCF DRAh DRAd

λ 24, 168, 720 24, 168, 720 7, 30

φ 24, 168, 720 24, 168, 720 7, 30, 182

d 25, 50,. . . , 150 25, 50,. . . , 150 25, 50,. . . , 150

b 32, 512 64, 512 16

T false true true

Table 5.2: HW configurations space for each dataset.

CSCF DRAh DRAd

m 24, 48,. . . , 168 24, 48,. . . , 168 3, 7, 14, 21, 28

α 0.0, 0.1,. . . , 0.5 0.0, 0.1,. . . , 0.5 0.0, 0.1,. . . , 0.5

β 0.0, 0.1,. . . , 0.5 0.0, 0.1,. . . , 0.5 0.0, 0.1,. . . , 0.5

γ 0.0, 0.1,. . . , 0.5 0.0, 0.1,. . . , 0.5 0.0, 0.1,. . . , 0.5

ϕ 0.1, 0.2, 0.3, 0.4, 1 0.1, 0.2, 0.3, 0.4, 1 0.1, 0.2, 0.3, 0.4, 1

bt add, mul add, mul add, mul

st add, mul add, mul add, mul

5.4.2 Presentation of Results

Our goal was to compare the performance of the models when pro-
vided with the same data. Therefore, we trained each model with each
of the 3 datasets described above. For our evaluation, we considered
the following KPIs:

• RMSE of the forecast {x̂t} with respect to the ground truth {xt},
for t ∈ [Ttrain + 1, Ttest]. RMSE is defined as the square root of
the MSE:√

1
Ttest − Ttrain

· ∑
t
(xt − x̂t)2 (5.10)

• MAPE of the forecast {x̂t} with respect to the ground truth {xt},
for t ∈ [Ttrain + 1, Ttest]. MAPE is defined as the percentage of
the average forecasting error:

100
Ttest − Ttrain

· ∑
t

∣∣∣∣ xt − x̂t

xt

∣∣∣∣ (5.11)

• Training time (TT), i.e., the time elapsed between the start of the
first epoch the end of the last epoch of training, expressed in
seconds.

86 vnf metrics forecasting

Table 5.3: SARIMA configurations space for each dataset.

CSCF DRAh DRAd

p 1, 2,. . . , 5 1, 2,. . . , 5 1, 2,. . . , 5

d 0 0 0, 1

q 0, 1, 2 0, 1, 2 0, 1, 2

P 0, 1,. . . , 7 0, 1,. . . , 7 0, 1,. . . , 7

D 0 0 0, 1

Q 0, 1, 2 0, 1, 2 0, 1, 2

m 24 24 7

Each model was tested under multiple different configurations of
its parameters. If the training algorithm of the model involved a
random weights initialization, each configuration was repeated for 10

independent runs. The performance indicators were then computed
by averaging the independent scores. For neural architectures, a model
configuration consists of the following hyperparameters:

• λ: the length of the input sequence

• φ: the length of the output sequence

• d: the number of units of the LSTM cell

• b: the batch size

• T : whether the trend decomposition was used.

For the baseline architecture, φ corresponds to the length of the forecast
(i.e., Ttest − Ttrain). Also, note that trend decomposition is only avail-
able for the seq2seq architecture. The configurations used for the neural
architectures are summarized in Table 5.1. Likewise, the configurations
used for HW and SARIMA are summarized in Table 5.2 and Table 5.3,
respectively.

In the remainder of this section, results will be presented by means
of tables, box-plots and line-plots. For each model, tables report the
mean scores of the most accurate configuration (i.e., the one with the
lowest average MAPE). In other words, tables show the lower-bounds, in
terms of accuracy, for each model. Box-plots allow for visualizing the
average accuracy of a model: the shorter the box, the lower the variance
in the accuracy; the lower the box is positioned along the y-axis, the
higher the average accuracy of the model. Combined with tables, box-
plots provide insights on models stability. To ease the visualization,
box-plots are grouped by λ. For each value of λ, the boxes show how
the model accuracy changes when the remaining hyperparameters
(i.e., φ, b and d) are tuned. Note that box-plot whiskers are set such

5.4 experiments 87

that no value is excluded from the visualization. While running such
a huge amount of configurations, we noticed that the choice of λ may
deeply impact on the training time of the model. Line-plots allow for
visualizing how big the impact of λ is for the proposed architectures.
For each value of λ, the solid line is an estimate of the central tendency,
computed as φ, b and d change, while the stripe width indicates the
confidence interval.

5.4.3 Neural Architectures

5.4.3.1 CSCF Dataset

The CSCF dataset contains a stationary time-series with a strong sea-
sonality component. Table 5.4 highlights that the seq2seq architecture
outperforms the others in terms of accuracy, but the den2den has
an interestingly reduced training time by an order of magnitude, at
the cost of raising the accuracy from 3% to 4.2%. Figure 5.2a also
shows that, in general, seq2seq provides more stable results, as 50%
of the observations are densely concentrated around the average and
the whiskers are relatively short (consider also the log-scale on the
Y-axis). This entails that the model is very robust with respect to the
hyperparameters variations. As expected, Figure 5.2b shows that the
training time grows as the sequence gets longer for all models but
den2den.

5.4.3.2 DRAh Dataset

Table 5.5 shows that the seq2seq architecture achieves the best per-
formance for the DRAh dataset. From Figure 5.3a, we can see that,
in general, its accuracy is more stable with respect to variations of
the hyperparameters, compared to the other models. As expected,
Figure 5.3b shows that the training time grows as the sequence gets
longer for all models but den2den. When applied on this dataset, with
such a huge forecasting range (i.e., Ttest − Ttrain = 4368), the baseline
model turns out to have a decoder (i.e., a dense layer) composed by
a 4368-rows weight matrix, as it is designed to provide the output
sequence in one-shot at the decoding stage. In this case, we were
expecting an explosion of the training time, which does not happen.
This is probably due to the nice way the computations of the decoder
can be parallelized on the underlying GPU. Indeed, the other architec-
tures do not fully exploit the GPU acceleration, either because they are
made entirely of recurrent units or because of their closed-loop nature.
However, defining the root-cause of such an unexpected performance
boost requires a deeper investigation.

88 vnf metrics forecasting

Table 5.4: Average KPIs (± standard deviation) for the configuration with the
best average MAPE (CSCF dataset, 10 repetitions).

MAPE [%] RMSE TT [s]

baseline 4.39 ±0.13 1.17 ±0.03 30.23 ±4.09

den2den 4.18 ±0.09 1.22 ±0.02 2.44 ±0.25

seq2den 4.27 ±0.05 1.30 ±0.01 98.11 ±0.87

seq2seq 3.04 ±0.06 0.95 ±0.02 23.39 ±2.38

baseline seq2seq seq2den den2den
Model

101

M
AP

E
[%

]

24
168
720

(a) MAPE distributions per input sequence length.

72016824
Input Length ()

0

20

40

60

80

100

Tr
ai

ni
ng

 T
im

e
[s

]

seq2seq
den2den
seq2den
baseline

(b) Relation between training time and input sequence length.

Figure 5.2: Performance measures for neural architectures applied to the
CSCF hourly dataset.

5.4 experiments 89

Table 5.5: Average KPIs (± standard deviation) for the configuration with the
best average MAPE (DRAh dataset, 10 repetitions).

MAPE [%] RMSE TT [s]

baseline 5.01 ±0.25 55.69 ±3.06 40.37 ±15.86

den2den 3.38 ±0.12 41.19 ±1.19 3.12 ±0.69

seq2den 3.72 ±0.19 42.37 ±1.82 4.93 ±6.14

seq2seq 2.87 ±0.05 38.43 ±0.62 35.60 ±8.14

baseline seq2seq seq2den den2den
Model

101

3 × 100

4 × 100

6 × 100

M
AP

E
[%

]

24
168
720

(a) MAPE distributions per input sequence length.

72016824
Input Length ()

0

20

40

60

80

100

Tr
ai

ni
ng

 T
im

e
[s

]

seq2seq
den2den
seq2den
baseline

(b) Relation between training time and input sequence length.

Figure 5.3: Performance measures for neural architectures applied to the
DRAh hourly dataset.

90 vnf metrics forecasting

5.4.3.3 DRAd Dataset

Table 5.6 shows that the den2den model achieves the best performance
for the DRAd dataset. However, from Figure 5.4a, we can see that the
variability of the accuracy for this architecture strongly depends on
the choice of the hyperparameters. As can be seen in Figure 5.4b, due
to the small number of timestamps, the differences in terms of training
time are not relevant for this dataset.

5.4.4 Classical Forecasting Techniques

Table 5.7 summarizes the best results achieved by the classical fore-
casting techniques, described in Sections 2.2.2 and 2.2.3. Regarding
the accuracy, Figure 5.5a shows that HW outperforms SARIMA, for all
the tested dataset. Looking at Figure 5.5b, We can draw a similar
conclusion for what concerns the training time. In particular, for the
CSCF and DRAh datasets, SARIMA generally requires more than 100

seconds per run, while HW less than a second.

5.4.5 Comparative Analysis

The presented results highlight what trade-offs can be achieved be-
tween accuracy and training time with the various techniques. Among
the neural architectures, in general, the seq2seq outperforms the others
in terms of accuracy and stability (see Figures 5.2a, 5.3a and 5.4a).
Such level of accuracy is achieved thanks to the time embedding and
the additive decomposition. In particular, the highest stability is due
to using recurrent layers in both encoding and decoding phases, that
reduces the impact of the hyperparameters λ and φ. However, in
general, seq2seq training time grows proportionally to the length of
the input and output sequences, as the recurrent layers process sam-
ples sequentially (see Figures 5.2b and 5.3b). Note that this process
cannot be improved even using GPU acceleration, as it is not possible
to parallelize the computation. On the contrary, the den2den model
makes a much better use of GPU acceleration and results to be the
fastest neural model.

For what concerns classical forecasting techniques, there are cases
such that they match neural architectures in terms of accuracy. For
instance, comparing Tables 5.4 to 5.6 with Table 5.7, we can see HW

best runs consistently scoring a—slightly—lower MAPE than seq2seq,
for CSCF (2.85% vs 3.04%), DRAh (1.34% vs 2.06%) and DRAd (2.49%
vs 2.87%) datasets. However, such level of performance is most likely
due to a particularly lucky shot, in terms of hyperparameters tuning,
rather than an evidence of its superior capacity at modeling complex
time-series.

5.4 experiments 91

Table 5.6: Average KPIs (± standard deviation) for the configuration with the
best average MAPE (DRAd dataset, 10 repetitions).

MAPE [%] RMSE TT [s]

baseline 3.54 ±0.36 38.80 ±3.18 6.12 ±0.75

den2den 1.94 ±0.03 23.29 ±0.25 1.35 ±0.07

seq2den 2.12 ±0.07 24.72 ±0.69 1.67 ±0.12

seq2seq 2.06 ±0.07 26.26 ±0.69 3.29 ±0.46

baseline seq2seq seq2den den2den
Model

101

M
AP

E
[%

]

7
30

(a) MAPE distributions per input sequence length.

307
Input Length ()

2

3

4

5

6

7

8

9

Tr
ai

ni
ng

 T
im

e
[s

]

seq2seq
den2den
seq2den
baseline

(b) Relation between training time and input sequence length.

Figure 5.4: Performance measures for neural architectures applied to the
DRAd daily dataset.

92 vnf metrics forecasting

Table 5.7: KPIs for the configuration with the best MAPE.

MAPE [%] RMSE TT [s]

Dataset Model

CSCF HW 2.85 1.00 2.14

SARIMA 4.69 1.41 832.46

DRAd HW 1.34 17.09 0.01

SARIMA 1.47 18.34 12.86

DRAh HW 2.49 35.07 0.22

SARIMA 3.69 42.08 154.43

CSCF DRAd DRAh
Dataset

101

102

M
AP

E
[%

]

HW
SARIMA

(a) MAPE distributions.

CSCF DRAd DRAh
Dataset

10 2

10 1

100

101

102

103

104

Tr
ai

ni
ng

 T
im

e
[s

]

HW
SARIMA

(b) Training time distributions.

Figure 5.5: Performance measures for classical forecasting techniques.

5.5 conclusions 93

The low stability shown by HW seems to support this hypothesis.
Without any other statistical assumption (e.g., similarity of the distri-
bution with other times-series or different time-ranges), the results
reported in Section 5.4.4 suggest that HW is less likely to achieve the
same accuracy of the seq2seq architecture for the tested datasets. Fig-
ure 5.5a shows that the choice of the hyperparameters has a strong
impact on the performance of HW. In fact, for all the datasets, the
worst HW runs score a MAPE that is very close to 100%. This is not
the case for seq2seq, whose overall worst performance is around 10%
(see Figure 5.3a). On hourly datasets (i.e., CSCF and DRAh), despite
the best HW run achieves a MAPE lower than 3%, the first quartile is
greater than 5% (see Figure 5.5a). Instead, for the seq2seq architecture,
the third quartile is lower than 4% (see Figures 5.2a and 5.3a). In other
words, 75% of HW runs score a MAPE greater than 5%, while 75% of
seq2seq runs score a MAPE lower than 4%. On the DRAd dataset, de-
spite the best HW run achieves a MAPE lower than 2%, the first quartile
is greater than 3% (see Figure 5.5a). In this case, the seq2seq architec-
ture exhibits a third quartile strictly lower than 3% (see Figure 5.4a).
In other words, 75% of HW runs score a MAPE greater than 3%, while
75% of seq2seq runs score a MAPE lower than 3%.

5.5 conclusions

We tackled the problem of forecasting the future evolution of metrics
in an NFV infrastructure, and experimentally compared a number
of techniques for time-series forecasting, using a real data-set from
the production NFV infrastructure of the Vodafone network operator.
Overall, our seq2seq neural architecture exhibited the best performance
in terms of prediction accuracy. Indeed, even though the best HW runs
scored a slightly lower MAPE, seq2seq offers a significantly greater sta-
bility than the considered classical statistical models, that are strongly
impacted by the hyperparameters choice, at the cost of longer training
times.

6
P R E D I C T I V E AU T O - S C A L I N G

6.1 introduction

Over the last decade, ICTs have been evolving non-stop, at an ex-
tremely rapid pace. The ever-growing availability of low-cost high-
bandwidth connectivity has been one of the key enablers paving the
way for the impressive growth in the adoption of distributed com-
puting paradigms. Cloud computing [25] emerged as the de-facto
standard for developing and deploying large-scale production-grade
applications. This paradigm allows for completely decoupling the
management of physical infrastructures from the services deployed
on top of them, by heavily relying on virtualization. This enabled to
make a more efficient use of physical resources, and to have a higher
resiliency degree for the hosted applications. However, cloud comput-
ing has significantly evolved, and it is not only limited anymore to the
IaaS provisioning model, according to which users can access compute
instances (e.g., VMs) deployed on top of shared physical servers, oper-
ated by the provider. Nowadays, the so-called XaaS provisioning model
enables an application developer to realize cloud-native services, by
leveraging on a wide range of orchestration, load-balancing, storage
and monitoring solutions, completely managed by the provider [23].

To operate their infrastructures 24/7, cloud providers need oper-
ation teams ready to promptly address and fix any kind of issue
that might occur, including hardware faults and software defects. In
production-grade cloud infrastructures, this is only feasible when such
systems are designed following well-established practices (e.g., fault-
independent zones; redundant powering and cooling infrastructures;
multi-path networking topologies; etc.) and operated using appro-
priate tools (e.g., monitoring systems; resource managers; effective
automation rules; etc.).

In this regard, a key enabling factor is the presence of fine-grained
monitoring services, on top of which automation rules can be built,
ensuring high reliability for the hosted services, and performance
levels that are as stable as possible, despite sudden changes in traf-
fic conditions. This refers to elasticity, that is the capability of cloud
services to automatically adapt their set of allocated resources (e.g.,
VMs, containers, or even physical nodes) as the workload changes over

95

96 predictive auto-scaling

Figure 6.1: Example of load profile.

time. Elasticity is typically implemented by means of a control loop
that decides which actions to take in order to keep the service running
smoothly (e.g., scale-out or scale-in). Such scaling decisions are usu-
ally made on the basis of system-level resource consumption metrics
(e.g., CPU utilization, network traffic, storage load), as well as KPIs at
application-level (e.g., response times, connection timeouts/errors).

6.1.1 Problem Presentation

Classical auto-scaling mechanisms are inherently based on reactive
automation rules that scale a service whenever some metric breaches
predefined thresholds. Traditionally, after a scaling action is actually
triggered, an elastic system enters a cooldown period that prevents fur-
ther scaling actions until it expires. This is done such that the elasticity
controller can take its subsequent decisions by actually considering the
effects of the previous one. In addition, to make the overall mechanism
more robust with respect to transient changes in the workload, it is
common to require the threshold to be breached for a few consecutive
observations, before triggering any action.

Developing and tuning such automation rules becomes particularly
cumbersome when dealing with large-scale production environments.
There are many challenges to be addressed, like: determining the KPIs
to accurately estimate the status of the system; setting the frequency at
which the scaling decision should be evaluated; adapting the scaling
policy to changes in the workload, to prevent unnecessary scaling
actions; estimating the amount and type of instances to add, to handle
the new conditions; taking into account non-negligible times to set
up the additional instances. For instance, in this work we put great
emphasis on the latter challenge because, in large-scale production
environment, spawning new instances might indeed take from a few
minutes to even half an hour [197]. This is not only the time needed to

6.1 introduction 97

instantiate and boot a new VM, but also the time needed to: configure
the new instance; possibly installing any missing software, in case
the same image is re-used as a base for a number of different roles
requiring customized software set-ups, or just installing some mini-
mally required security updates; sometimes copying onto the image a
minimum set of information or local database needed for the software
to operate correctly; starting the actual service and registering it into
a load-balancing group; and finally some further time is needed for
the new instance to progressively pick new traffic. Therefore, in such
settings, anticipating scale-out operations becomes critical. Despite the
mentioned precautions, traditional control loops are still inherently

“dumb”, as they do not factor the rich dynamic of the observed metrics
in their decisions. For instance, consider the CPU utilization evolution
depicted in Figure 6.1. A classical scaling policy would treat scenarios
A and B in pretty much the same way: as soon as the CPU utilization
breaches the threshold (i.e., the red line), a scaling action is triggered.
However, a human operator, based on their prior experience gained
while operating such a fictional service, could easily distinguish be-
tween scenarios A and B. While A might be safely ignored, it is clear
that B would require urgent actions to be taken.

In the context of large-scale cloud environments, given the com-
plex relationships among their components, and the abundance of
operational data they generate (e.g., event logs, application metrics,
source code, etc.), treating operations as a data science problem [244]
seems a promising approach to develop “intelligent” automations. In
particular, time-series forecasting techniques based on ML may play a
fundamental role in enhancing the capabilities of elasticity controllers
to prevent services from saturating their capacity. For instance, AWS

currently provides native support for predictive scaling with EC2 [93],
demonstrating the suitability of this type of approaches at support-
ing cloud operations [214]. On a related note, ML-based approaches
have also been shown to be beneficial for efficient and sustainable
management of resources in cloud data centers [235].

6.1.2 Contributions

In this work, we propose an open-source software architecture for
integrating predictive analytics within an OpenStack cloud platform.
Our work provides three major contributions. First, (i) a general
architecture for performing predictive operations on a cloud infras-
tructure, based on time-series forecasting techniques. Second, (ii) an
open-source implementation of the forecasting component within
OpenStack, leveraging on Monasca [170], that automatically computes
forecasts and makes them available as additional metrics. Our imple-
mentation also includes a few reference implementations of metric
predictors—i.e., LR [88], ARIMA [19], MLP and RNN—showing that the

98 predictive auto-scaling

proposed architecture is flexible, as it allows for easy customization.
Third, (iii) an extensive experimental validation of our architecture,
using both synthetic and real CDN workload traces, where we set
up a synthetic elastic application, exploiting the native capabilities
of OpenStack, and compare the performance of several predictive
elasticity controllers based on the aforementioned reference predictors.
Although there are two types of scaling (i.e., horizontal and vertical),
our experimentation focuses on horizontal scaling only. However, the
proposed architecture may easily be leveraged for vertical scaling [236]
as well, as our approach is agnostic with respect to how the actual
scaling operations are implemented.

6.1.3 Chapter Organization

This chapter is organized as follows. Section 6.2 provides a detailed
overview of the related research literature, highlighting how the pro-
posed technique is positioned in the current landscape. Section 6.3
describes the proposed approach. Section 6.4 presents its experimen-
tal validation on an OpenStack deployment. Some final remarks are
enclosed in Section 6.5, along with the discussion of possible ideas for
future works on the topic.

6.2 related work

In the research literature, a number of authors applied data-driven
techniques to automated elasticity control, both for public and private
cloud. In what follows, we start by reporting key research works
dealing with predictive elasticity based on metric forecasting for public
and private clouds. Then, we provide a brief review of elasticity-control
solutions based on RL.

6.2.1 Predictive elasticity control in cloud computing

A variety of data-driven techniques have been proposed to provide ac-
curate short-term predictions of workloads and resource consumption
patterns of elastic clusters, to achieve a more timely and fine-tuned
allocation of resources.

In [197], the authors describe a simple scaling strategy based on
predicting the aggregate sum of transmitted and received bytes of
a service cluster, considering resource setup delays and limited de-
ployment throughput. The approach leverages on a workload model
to estimate a percentile of the resource demand, and a probabilistic
function that describes the cost of over-/under-provisioning the cluster.
The authors present promising results by evaluating the technique
against data from more than 40K real services deployed as auto-scaling
groups on AWS.

6.2 related work 99

In [202], the authors propose a model-predictive control-based ap-
proach [1], combining three major techniques: a 2nd-order ARMA filter
for workload prediction; a CBMG [3], optimized on web logs, cap-
turing the behavior of users while browsing a web application; a
look-ahead optimization to trade-off between the advantages arising
from dynamic elasticity and the cost of scaling decisions and cluster
reconfiguration at each control period. They empirically evaluate their
technique against data from the 1998 world-cup web-site traffic.

In [97], the authors tackle the problem of non-instantaneous instance
provisioning when using elastic scaling in cloud environments. They
propose a predictive strategy based on a resource prediction model
using ANNs and LR. The method was applied on an e-commerce
application scenario emulated through the TPC-W [232] workload
generator and benchmarking application, deployed on AWS EC2. ANNs
improve the accuracy by reducing the MAPE by roughly 50%, compared
to LR.

In [18], an ANN with a single hidden layer is proposed for predict-
ing the resource utilization and duration of continuous integration
tasks, for several repositories from the Travis open data. However,
the evaluation focused on predicting the task duration only, using a
per-repository model using the number of files and the repository size
as inputs. Results show an accuracy at least 20% and up to 89% better
than a baseline LR.

In [95], authors propose supervised learning methods to tackle the
problem of predictive auto-scaling for multi-tier elastic applications,
considering unstable performance of individual VMs. In particular,
LR is applied to the traffic arrival rate time-series to predict short-
term arrival rates, that were in turn used to predict the evolution
of the response times, using PR. Such estimates were then fed to an
RDF, designed to learn a configurations map associating the order
of configurations—required to maintain the SLO—to the experienced
request arrival rates and system response times. The training data
for the RDF was generated by executing a few (static) system scaling
policies.

In the RScale framework [105], GP regression, was used to predict
end-to-end tail-latency of distributed microservices workflows with
generic direct acyclic graph-like topologies. RScale was evaluated on a
NSF Chamaleon test-bed, and achieved similar accuracy, but a smaller
predicted uncertainty, with respect to ANNs. However, it exhibited
reduced inference overheads and superior adaptability to dynamically
changing workload/interference conditions.

In [13], BNs are used in a predictive framework to support automatic
scaling decisions in cloud services. The method was evaluated on
synthetic applications with exponentially distributed duration and
workload inter-arrival patterns.

100 predictive auto-scaling

In [228], DTs are used to predict CPU, memory and network usage
of Hive-based MapReduce queries over a Hadoop cluster. The authors
use a 4-machines cluster to perform queries with different structures
over a number of different data sets, using a per-resource decision tree
to classify the query within the high or low resource-usage class. The
presented results give insights as to the parameters mostly affecting
the consumption level for each resource. However, as the authors used
a fixed-size cluster, the technique does not seem to be useful in the
context of elasticity control, albeit the investigation may be useful to
design effective elasticity rules.

In [103], authors propose a proactive auto-scaling mechanism for
edge computing applications on Kubernetes. The approach leverages
on ARMA and LSTM to estimate the raw number of additional compute
instances needed, given the observed resource utilization patterns.
The authors also provide a mechanism to either automatically retrain
from scratch or incrementally update the underlying model.

In [45], the authors introduce an extensive set of traces exported
from Azure’s internal infrastructure. They propose Resource Central,
an approach that collects VM utilization metrics and periodically train
prediction models on them offline. Such models can then be queried
online by resource management systems and/or human operators.
While the approach is in theory agnostic to the underlying models, the
authors considers RDF, GBT and FFT for their experiments. The authors
validate their approach by integrating it with Azure’s VM scheduler,
showing performance improvements also in over-subscription scenar-
ios.

In [120], the authors propose a framework to forecast the workload
of a cloud system, such that a resource manager can take informed
scaling decisions. Their approach is based on SDL, that consists in
including recent forecast errors in the input to the underlying model,
such that it can be used as feedback to improve the accuracy of future
predictions. The model is a feed-forward ANN, whose weights are
optimized via an improved version of the blackhole algorithm proposed
by authors. The authors validate their approach against 6 different
datasets exported from real systems.

In [27], the authors propose a proactive resource scaling approach
that leverages on a workload prediction module. The underlying fore-
casting model is based on ARIMA. The approach uses the predicted
information to resize a cloud application accordingly, e.g., anticipat-
ing peaks. The authors use real traces exported from web servers
of Wikipedia to train ARIMA to predict request patterns. They also
validate their approach, in terms of impact on the QoS of a cloud
application, by running simulations on CloudSim.

In [112], the authors propose CloudInsight, a workload prediction
framework that can be used to proactively scale cloud applications.
The authors leverage on an ensembling approach (i.e., combining the

6.2 related work 101

outputs from several models) to effectively handle irregular, dynam-
ically changing workloads. The weight of an individual model is
continuously re-evaluated by an SVM-based mechanism, such that the
system can adapt to the current shape of the workload. The authors
validate their approach against 3 different classes of workloads (ex-
ported from real systems), and compare its performance to several
baseline predictors.

In [101], the authors propose LoadDynamics. Similarly to [112], they
put the emphasis on the sensitivity to workload changes that is ob-
served in most workload prediction frameworks. Their solution is an
LSTM-based approach that is trained and evaluated on data exported
from real systems, that describe requests arrival rates in different
application scenarios (e.g., public cloud, HPC, web, etc.).

Predictive analytics have also been investigated in private cloud
scenarios, notably for NFV and SDN [144], in order to adapt and fine-
tune the allocation of virtualized resources to the conditions of the
network. In this way, operators can benefit from proactive automation
mechanisms to ensure QoS for their cloud-native service-chains. Related
works in this space are already presented in Section 5.2. There exist
other approaches that perform dynamic resource allocation based on
instantaneous monitoring, rather than on resource estimations. For
instance, the authors of [163] propose a vertical elasticity management
approach for containers, to dynamically adapt the allocated mem-
ory in Kubernetes, to support the co-location of containers having
heterogeneous QoS requirements. However, for brevity, we omit this
type of approaches from our overview, as they fall within the research
literature on classical reactive elasticity control.

6.2.2 Elasticity control with Reinforcement Learning

Straightforward heuristics like static thresholding [30] can yield amaz-
ing results, when dealing with elasticity control for simple systems.
However, thresholds require careful ad-hoc tuning, resulting in an
approach that can hardly be adopted at scale (as it will eventually
lead to over- or under-provisioning). Addressing these shortcomings,
dynamic thresholding mechanisms, like the ones based on RL, offer the
capability to automatically adapt thresholds to the current status of
the system.

In [6], the authors propose an adaptive mechanism to automatically
learn scaling policies for NFV, based on Q-learning and GP. They lever-
age on GP to iteratively improve the learned policy before taking the
final scaling decision, using the average response time of the system as
reward signal. They evaluate their approach on a simulated NFV envi-
ronment, showing that it outperforms both a standard threshold-based
policy and a Q-learning-based one (not based on GP).

102 predictive auto-scaling

Table 6.1: Related works comparison (legend: G.A. = generally applicable;
S.O. = spawning overhead; E. = elasticity; O.S. = open-source).

Work Techniques Input Validation G.A. S.O. E. O.S.

[197] heuristic network data 40K AWS auto-scaling groups Y Y Y N

[202] ARMA, CBMG utilization data ’98 world-cup N Y Y N

[97] ANN, LR utilization data e-commerce (TPC-W) Y Y Y N

[18] LR, MLP utilization data CI pipeline N N Y N

[95] PR, RDF request rate, response times e-commerce (RUBiS) N N Y N

[105] GP utilization data Robot Shop Y N Y N

[13] BN utilization data synthetic workload Y N Y N

[228] DT query type and structure DB queries (Hive) N N N N

[103] ARMA, LSTM utilization data Kubernetes edge app Y N Y N

[45] RDF, GBT, FFT utilization data real Azure VM traces Y Y Y N

[120] MLP, SDL, blackhole request rate, utilization data 6 different real datasets Y N Y N

[27] ARIMA request rate real Wikipedia traces Y Y Y N

[112] ensembling request rate 3 classes of real workloads Y N Y N

[101] LSTM request rate 3 classes of real workloads Y N Y N

[70] heuristic utilization data Skype traces N Y Y N

[188] DT, RDF, MLP, BN utilization data real VNF workload N Y Y N

[157] GNN utilization data, topology real VoIP workload N N N N

[227] Q-learning utilization data real telco system N N Y N

[6] Q-learning, GP utilization data synthetic VNF workload N N Y N

[5] FL, Q-learning, SARSA utilization data ’98 world-cup, Wikipedia Y N Y N

[110] DQN utilization data Twitter analytics app N N Y N

[212] Q-learning utilization data synthetic serverless app Y N Y N

Ours ARIMA, LR, MLP, RNN utilization data synthetic, real CDN traces Y Y Y Y

In [5], the authors propose two different novel auto-scaling strate-
gies, based on the combination of a FL-based controller with two dif-
ferent RL approaches: Q-learning (i.e., off-policy approach) and SARSA
(i.e., on-policy approach). According to the authors, employing RL algo-
rithms makes the overall mechanism self-adaptive (considering, e.g.,
the response time as reward signal), while the FL controller enables
it to work at a higher level of abstraction. Both strategies are imple-
mented and integrated with OpenStack. The evaluation is performed
on two different real web application workloads.

In [110], the authors propose a strategy based on a DQN for tuning
the scaling thresholds used by the auto-scaling rules of microservices
deployed in Kubernetes. The application-level response times are
extracted from the log files of a Twitter analytics application, and used
as reinforcement signal for the RL algorithm.

In [212], the authors investigated on using RL-based techniques to
handle resource allocations and scaling in the context of a serverless
computing framework. They focused on request-based scaling and
developed a mechanism to automatically adapt the concurrency level
of a serverless application instance (i.e., the maximum number of
requests that a single instance should handle).

6.3 proposed approach 103

Monasca PipelineSenlin Cluster

VM1 Metrics

VM1

Persistence

Component

VMn Metrics

VMn

Forecasting

Component

Cluster Data

Alerting

Component

Forecasts

Scaling Decisions

Monitored

KPIs

Figure 6.2: Architectural diagram of the proposed predictive auto-scaling
approach.

6.2.3 Summary

Table 6.1 reports a schematic comparison among the major related
works and our proposed approach (at the bottom of the table). The
comparison takes into account the following aspects: which data-
driven technique was used and which input data it was applied to;
whether the method applies to generic workloads, or it is designed
for specific applications; which data or use-case was used for valida-
tion; whether the work considered also overheads or delays related
to spawning new instances; whether the work was actually aiming
at realizing elasticity-control loops; and whether the implementation
of the proposed solution is open-source, such that other researchers
can reproduce the work, and possibly improve it. Overall, ours is
the only work providing an open-source architecture for extending
the orchestration capabilities of OpenStack with predictive analytics,
enabling forecast-driven decision-making for generic elastic cloud ser-
vices. Also, our implementation is modular, such that it can easily be
extended with custom models developed using established modeling
frameworks for the Python language, such as Scikit-learn, Statsmodels,
PyTorch and TensorFlow.

6.3 proposed approach

As mentioned in Section 6.1, conventional scaling techniques for are
reactive, as they adjust resources when certain metrics breach spe-
cific threshold values. They may be configured using a cautionary

104 predictive auto-scaling

approach, triggering on very early degradation signs. Or, they may
use an optimistic approach, by having thresholds very close to critical
values. A cautionary approach is mostly necessary when scaling oper-
ations need a significant amount of time to become effective. However,
the risk is, for instance, to waste resources (i.e., over-provisioning)
due to unnecessary scale-out decisions. On the other hand, an opti-
mistic approach limits resource waste, but can lead to affecting the
QoS perceived by users in case scaling operations do not take effect
before the system saturates its current capacity. Our approach miti-
gates the aforementioned issues by adopting a predictive auto-scaling
strategy that triggers scaling actions on the basis of forecasts of one or
more target metrics. For instance, given an imminent growth in the
flow of requests, our approach allows for triggering a scale-out suffi-
ciently ahead of time. We implemented our approach in OpenStack,
specifically extending the Monasca monitoring system. As shown in
Figure 6.2, we assume that the orchestration is performed by Senlin
leveraging on our forecasting component (plus the required Monasca
resources) to integrate predictions in the scaling operations. We con-
sider a cluster of Nova VMs as the specific compute instances to be
elastically scaled. However, notice that our approach is agnostic with
respect to such implementation details.

Our approach works as follows. VMs periodically generate system-
level metrics, which are ingested by Monasca. Such metrics are ba-
sically a set of time series that are indicators for the current load
sustained by the system, which is the input to our forecasting compo-
nent. The data are periodically fetched by the forecasting component,
whose task is to generate forecasts of the input metrics over a given
time window. The frequency and the time window of the forecasts,
as well as the amount of historical data to be provided as input, are
configurable. The generated forecasts are finally persisted, and become
available to all the components of the infrastructure management sys-
tem via Monasca APIs. In particular, they can also be visualized by
operators through dashboards (e.g., Grafana). In our case, forecasts
are fed to a threshold-based scaling policy and scale-out actions are
triggered as soon as the predicted values of the considered KPIs breach
the threshold for a given number of subsequent observations. Thresh-
old checks are performed via the Monasca alerting pipeline and the
scaling operations are actuated by Senlin.

The underlying predictors generally need to be trained before use,
and constantly updated in case of dynamic changes in the statistic
behavior of the time-series [111]. Based on the specifics of the metric
dynamics, this may require longer or shorter training histories and
periodicity of updates. In this work, for simplicity we assume that
training is performed offline, but the integration of automatic model
updates is planned to be handled in a short future. As discussed in
Section 6.4 we compare four different predictors, i.e., a linear regressor

6.3 proposed approach 105

Listing 6.1: Example of forecasting component config file.

Api:

Fill with configs similar to monasca-agent-forwarder

Main:

forwarder_url: ...

hostname: ...

inference_frequency_seconds: 60

predictions:

- tenant_id: # Fill with OpenStack project ID

dimensions:

scale_group: # Fill with scaling group ID

metrics: [cpu.utilization_perc]

group_by: ["*"]

merge_metrics: false

time_aggregation_statistics: [avg]

time_aggregation_period_seconds: 60

space_aggregation_statistics: [sum]

lookback_period_seconds: 1200

prediction_offset_seconds: 900

out_metric: pred.group.sum.cpu.utilization_perc

model_path: /path/to/model.dump

scaler_path: /path/to/scaler.dump

Logging:

enable_logrotate: true

disable_file_logging: false

predictor_log_file: /path/to/predictor.log

log_level: INFO

(see [88], Chapter 3), an ARIMA model (see Section 2.2.2), an MLP

(see [78], Chapter 6), and an RNN (see Section 2.2.5).

6.3.1 Implementation Details

Our forecasting component, also known as monasca-predictor, was
implemented in Python, the main programming language used in
the OpenStack ecosystem, and released under the Apache 2.0 open-
source license [122]. Such component was realized in compliance
with the microservice-oriented architectural pattern used by Monasca.
In particular, it was designed to be eventually integrated into the
monasca-agent (see Section 2.1.1.3).

Monasca-predictor is configured using a YAML file similar to the
one shown in Listing 6.1. The Api block contains the information
required to make authenticated calls to OpenStack APIs. As monasca-
predictor performs tasks similar to those of the monasca-agent, it must
be provided with similar permissions. The Main block contains the con-
figurations related to the actual predictive tasks of monasca-predictor.
Notice that the forwarder_url and hostname fields must be filled

106 predictive auto-scaling

with the pointers to the forwarder process of the monasca-agent. The
inference_frequency_seconds field specifies the frequency at which
forecasted values must be generated. The predictions field is a list
containing the individual configurations for the different forecasts.
For each item in the list, additional fields can be specified as follows.
The tenant_id field must be filled with ID of the OpenStack project
containing the resources to be monitored. The dimensions field is
a map that specify additional properties required to identify such
resources (e.g., the ID of the elastic group of compute instances). The
metrics field is a list of the metrics whose measurements are to be
used as input to the predictor. In Monasca, a metric is identified by its
name (e.g., cpu.utilization_perc) and the set of properties (i.e., di-
mensions) of the resource that generates measurements for said metric
(e.g., resource_id, hostname, etc.). The group_by field is a list of such
properties, to be used by Monasca API for grouping measurements in
different time-series, when fetching data by metric name. For instance,
one could simply specify resource_id (or even *, standing for "all
fields") to group measurements by resource. Depending on the boolean
value specified for the merge_metrics field, the resulting time-series
can also be merged into a single one, with measurements ordered ac-
cording to their timestamp. The time_aggregation_statistics field
is a list of operators (e.g., avg, sum, max) to be applied on the retrieved
time-series individually, binning their measurements according to the
resolution specified with the time_aggregation_period_seconds field,
such that the result is possibly a multivariate—resampled—time-series.
Similarly, the space_aggregation_statistics field is a list of oper-
ators to be applied, on top of the temporal aggregation result, in
order to aggregate the measurements of a set of monitored resources
(e.g., the compute instances belonging to the same elastic group).
The lookback_period_seconds field defines the time window that
measurements must fall into for them to be included in a Monasca
API response, as a (backward) difference with respect to the current
timestamp. The prediction_offset_seconds field defines the time
window of the forecast, as a (forward) difference with respect to the
timestamp of the most recent measurement. Notice that, when per-
sisted, a forecast is associated with the very same timestamp, such that
the forecasted metric appears backward-shifted by prediction_off-

set_seconds with respect to the input metric. The out_metric field
is the metric name to be associated with the generated forecasted
values. The model_path field is the path to the dump of the underly-
ing predictive model. Similarly, the scaler_path field is the path to
the dump of the scaler to be used for pre-processing the input data.
At the moment, monasca-predictor only supports models built using
the following frameworks: Scikit-learn [178]; Statsmodels [213]; Py-
Torch [177] and TensorFlow [151]. Finally, the Logging block allows for
configuring logs management. A thorough explanation of the available

6.4 experiments 107

tunables can also be found in the documentation within the code of
our forecasting component [122].

Monasca-predictor was developed as a prototype that users can only
configure via the YAML configuration file (see Listing 6.1). Such
limitation implies that a user needs full administrator privileges for
the OpenStack deployment, as such file contains both system-wide
(e.g., authentication credentials) and application-specific configura-
tions (e.g., the details of the resources to be monitored). We plan
to improve the usability of our component by separating such dif-
ferent types of configurations, so that multiple—possibly unprivi-
leged—users can leverage on the same forecasting capabilities (even
though the installation must still be performed by an OpenStack ad-
ministrator). Similarly to what Monasca and the other OpenStack
projects offer, our idea is to develop both a command-line interface
and a HOT integration for monasca-predictor, such that users can man-
age their (application-specific) configurations in the way they see
fit. Independently of the chosen interface, such configurations will
be eventually persisted in a database (e.g., the MySQL instance in-
cluded in any OpenStack deployment) to improve the reliability of
our component.

6.4 experiments

This section includes the results of an experimental validation of the
approach described in Section 6.3. It provides a comparison of the
performance of several predictive scaling policies with a traditional
reactive one, considering a synthetic elastic application deployed on
OpenStack.

6.4.1 Synthetic Elastic Application

We used distwalk [47] an open-source distributed processing emulation
tool developed by us, to test the proposed predictive auto-scaling
approach. The tool consists of a server module that accepts TCP/IP
connections from one or more clients. Clients can request the server
to perform computational, networking and/or I/O activities, enclos-
ing within each request the amounts of resources to be consumed.
Clients can submit requests with constant or exponentially distributed
inter-arrival times, payload sizes, or I/O transfer sizes. Also, they may
emulate ramp-up/ramp-down scenarios, or use a file trace specifying
the requests rate to be submitted over a time horizon. For instance, we
used this feature to replay traces from a real CDN workload (see Sec-
tion 6.4.5). Per-request round-trip response-times can be measured
and reported in a log file on experiment termination. Clients can
also spawn multiple threads submitting traffic in parallel, and they

108 predictive auto-scaling

can emulate the establishment of multiple sessions, by closing and
re-establishing their TCP/IP connections.

6.4.2 Experimental Set-up

Our OpenStack deployment was hosted on a Dell R630 dual-socket
test-bed, equipped with: 2 Intel Xeon E5-2640 v4 CPUs (each having
10 hyper-threaded cores, i.e., 20 hyper-threads) running at 2.40 GHz
(with a turbo-boosting frequency of 3.40 GHz); 64 GB of RAM; Ubuntu
20.04.2 LTS operating system; version 5.4.0 of the Linux kernel. We
used an all-in-one OpenStack deployment (Victoria release), installed
using the tools provided by Kolla [169], resulting in each service being
operated within Docker containers. As detailed in Section 6.3, we
deployed an elastic control loop using the following services: (i) Senlin
to orchestrate a horizontally-scalable cluster of Nova VMs; (ii) Octavia
to provide the cluster with load-balancing capabilities; (iii) Monasca to
ingest the system-level metrics and to trigger the scaling actions; (iv)
the forecasting component, developed by us, to enable the predictive
auto-scaling strategy.

The Senlin cluster had a minimum of 2 active instances and could
expand up to 5. Each instance was provided with 1 vCPU and 2 GB of
RAM available, and with an Ubuntu 20.04 cloud image including the
server module of distwalk (see Section 6.4.1). We artificially imposed a
delay of ~10 minutes before starting the distwalk server. The purpose
was to emulate a scenario with non-negligible set-up times for new
instances, as it may be needed in real cloud workloads, where it is com-
monplace that spawning new instances may take from a few minutes
to even half an hour [197]. In such a scenario, performing scale-out
operations well ahead of time becomes critical. The application server
instances were made reachable through an Octavia LB, set to distribute
the traffic according to a round-robin strategy. The distwalk client was
configured to spawn 6 threads such that, in the beginning of our runs,
each server instance had to handle the aggregated requests from 3

threads on average. Each thread followed a ~4h-long trace reporting
the operation rates (i.e., requests per second), to be maintained for an
interval of 1 minute each. Also, each thread was set to break its work in
1000 sessions, such that a new connection was opened with the LB every
~15 seconds, allowing for it to select a new target instance. Monasca
was set such that new measurements were collected each minute. The
forecasting component was set to output a new prediction with the
same interval, leveraging on the most recent measurements. The in-
put to the underlying forecasting model consisted in a time-series
reporting the sum of the CPU usage measurements of the currently
active instances. The output of the model was the estimated value of
the same time-series in 15 minutes (i.e., ~50% more than how long a
new instance takes to activate). Such output was then divided by the

6.4 experiments 109

number of currently active instances to get an estimate of the average
CPU usage expected in 15 minutes, assuming the cluster size to remain
constant, and then persisted in Monasca.

The purpose of our experimentation is to show the effectiveness of
the proposed architecture, and not to evaluate a novel ML model for
time-series forecasting that can outperform existing predictive elastic-
ity approaches. Indeed, the novelty of our work consists in proposing
an open-source scalable architecture, compatible with Monasca, that
can be easily configured by practitioners to plug virtually any type
of time-series forecasting model into their data-driven control loops.
Therefore, we decided to stick to a simple example where the elasticity
controller uses only CPU usage as input. However, our component
can be configured to predict multiple metrics per monitored instance,
and/or perform multi-variate time-series forecasting.

To implement the predictive scaling strategy, Monasca was set to trig-
ger a scale-out whenever the predicted average CPU usage of the cluster
reached 80% for 3 times in a row. On the other hand, to implement
the reactive scaling strategy, it was set to do the same but considering
the actual average CPU usage. In any case, a scale-in was triggered
whenever the actual average CPU usage reached 15% for 3 times in a row.
We chose not to use the predicted metric to decide whether to trig-
ger scale-in actions. While a cloud provider might want to anticipate
traffic peaks by spawning additional resources in advance, disposing
of superfluous resources can be much quicker [197], and is typically
done after making sure that all residual traffic was drained from them.
Otherwise, the risk is to overload the remaining instances in case they
start taking the traffic relieving the being-released instance too early.
Predicting such a condition is hard and, in practice, it is often more
convenient to minimize SLA violations, rather than costs. However,
our framework does not exclude this possibility. Waiting for 3 consec-
utive violations imposes a delay of at least 3 minutes for an action to
be triggered. However, this is a well-established practice in elasticity
control loop design, as it helps with making the mechanism more
robust to fluctuations. Each scaling action could adjust the size of the
cluster by 1 instance only, and could only take effect if it was triggered
after a cooldown period of 10 minutes since the last scaling action. The
cooldown was also useful considering the 10-minutes delay forcibly
added before new instances activate.

6.4.3 Predictors Configuration

To implement the underlying forecasting models, we used: (i) Scikit-
learn for the LR; (ii) Statsmodels for ARIMA; (iii) PyTorch for MLP and
RNN. To evaluate how the amount of past information given as input
influences the prediction, we considered 3 different settings, i.e., 5, 10,
and 20 minutes worth of measurements (see Section 6.4.4). Apart from

110 predictive auto-scaling

LR, that was fitted every time on a different input, all models were
trained offline on the same synthetic dataset (and on the same ma-
chine where OpenStack was deployed). Such data consist of sinusoidal
traffic patterns, with different frequencies and amplitudes, to provide
models with expected behaviors for a wide range of operational modes
(the dataset is open-source, see Section 6.4.6). Note that we did not
conduct an optimal hyperparameters search, as we believe such a
process goes beyond the scope of this work, whose focus is the inte-
gration of time-series forecasting techniques in the elasticity-control
loop infrastructure, rather than ML models development. However, in
what follows we provide some indications on why we took specific
design choices, aiming at conducting a fair comparison among the
implemented models.

ARIMA meta-parameters were configured such that p = {5, 10, 20},
d = 1 and q = 0. While p was somewhat constrained by the input
size, we chose d = 1 for the stationarity assumptions, and q = 0 as
we did not observe any benefit from using this feature of the model.
For ARIMA, we observed an average training time of 2.89 seconds. MLP

consists of an input layer (with units varying in {5, 10, 20}, as per
the input size constraints), two hidden layers of 10 units each (as we
wanted to keep the complexity low), and an output layer of 1 unit
(as we needed a scalar output). We also applied a leaky ReLU non-
linearity to the output of each hidden layers, as it generally speeds
up the training. MLP was trained with SGD for 1000 iterations, using a
decaying learning rate (between 0.1 and 0.001), a momentum set to
0.8, and a batch size of 500 input samples. These values are generally
considered sensible defaults and, given the observed performance, we
did not feel the need to fine-tune them. The 3 considered variants of
MLP consist of 181, 231 and 331 learnable parameters, when the input
layer size is set to 5, 10, and 20 respectively. For MLP, we observed
an average training time of 136.15 seconds. RNN consists of 3 (stacked)
recurrent layers, each one composed by 200 units and using ReLU
as activation function (i.e., PyTorch’s defaults), followed by a fully-
connected layer of 1 unit (as we needed a scalar output). Such model
was trained with SGD for 10000 iterations, using a decaying learning
rate (between 0.01 and 0.001), a momentum set to 0.5, and a batch size
of 300 input samples. With respect to MLP, we had to fine-tune the latter
parameters for the model to converge to an acceptable performance.
RNN consists of 201601 learnable parameters, independently of the size
of the input sequences. For RNN, we observed an average training time
of 436.07 seconds.

To facilitate comparison between models, we chose not to leverage
on the capability of RNN to handle variable-length sequences, and
trained it using fixed-length input sequences, like the other models.
Also, during the runs, all forecasting models were re-loaded from
disk each time they had to be queried (i.e., once per minute). In this

6.4 experiments 111

way, we did not leverage on the hidden state of RNN to be updated
after each query, that should theoretically allow the model to retain
the observed dynamics and allow for computing forecasts even when
provided with just a single new measurement as input.

6.4.4 Validation on synthetic workload

In this section we report the results obtained by applying five different
scaling strategies to a synthetic workload similar to the one depicted
in Figure 6.1. Distwalk was set such that the average CPU usage of the
cluster ramps up twice during a single run. First, with a rather soft
slope, peaking at ~70% (around minute 60) and progressively fading
out until minute 120. Then, with a much steeper slope, (theoretically)
peaking at ~120%, exceeding the cluster capacity. The first peak is
designed to expose the behavior of a scaling strategy when facing
a workload that might lead to saturation but that, instead, decreases
before reaching the threshold (80%). In that case, a classical strategy
would not react, whereas a predictive one may inaccurately forecast
the evolution of the workload and trigger unnecessary actions. This
scenario is useful to assess how sensitive to fluctuations and, thus,
how prone to yielding false alarms a strategy is.

In what follows, in the CPU usage plots (e.g., Figure 6.3a), the blue
curve represents the workload that each distwalk thread exercises on
the cluster (i.e., the ideal usage we would observe if a single thread
submitted requests to a single VM). As requests are submitted through
the LB, the result is that, eventually, each VM in the cluster handles
an equal share of the cumulative workload (see Section 6.4.2). In other
words, the resource consumption curves do not closely follow the blue
curve because, in the beginning of each run, there are 6 distwalk threads
submitting requests to a total of 2 VMs through the LB. Therefore, each
VM initially handles the aggregated requests coming (on average) from
3 threads. Instead, the red curve in, e.g., Figure 6.4a (left) refers to the
predicted average CPU usage of the cluster, assuming the size of the
cluster to remain constant. On the other hand, client-side response
times plots (e.g., Figure 6.3b) provide a view of the system perfor-
mance as observed by the distwalk client. Each plot reports curves that
show (on the Y axis) the evolution of some response-time statistics
(median, p90 and p99) over time (on the X axis), where each data point
refers to a statistic aggregated over the data of a moving window of
the previous 5 minutes.

As shown in Figure 6.3a, the static scaling strategy fails to scale-out
the cluster on time when facing the second peak. Starting from minute
155, it is possible to observe the system saturating its capacity (i.e.,
the CPU usage is 100%) and remaining in such a state for ~10 minutes.
In the meantime, the requests submitted to the cluster pile up and
the client-side response times start growing up to ~1 second, as visible

112 predictive auto-scaling

(a) CPU usage

(b) Client-side response times

Figure 6.3: Experimental results for the traditional (static) scaling policy.

in Figure 6.3b. Such a performance degradation occurs because the
static strategy waits for 3 consecutive violations of the threshold
before triggering the scale-out. Furthermore, due to the artificial set-up
delay, the new VM takes 10 minutes before starting to serve requests.
Therefore, while the scale-out decision happens approximately at
minute 152, the new VM starts responding only approximately at
minute 166, and only for new established sessions (occurring every
~15 seconds, see Section 6.4.2). Such a scenario exposes the need for
more intelligent strategies that are able to take scaling decisions ahead
of time. We used 4 different time-series forecasting algorithms to
implement different predictive scaling strategies, namely: LR, ARIMA,
MLP and RNN. For each strategy, we considered 3 different values for
the amount of past information to be fed to the underlying model
(i.e., 5, 10, and 20 measurements, with minute granularity) when
computing an estimate of the average CPU usage in 15 minutes. In
this way, we could assess how sensitive to the size of the input the
predictive capability of a given model was.

Figure 6.4 reports the results obtained using an LR-based policy, that
generally performs a better job than the static policy at scaling the
cluster before the second peak, as it correctly predicts the growth in
the CPU usage. However, this predictor also tends to be overly sensitive

6.4 experiments 113

(a) input sequence length = 5

(b) input sequence length = 10

(c) input sequence length = 20

Figure 6.4: Experimental results for the LR-based scaling policy (left: CPU

usage; right: client-side response times).

to the noise in the input, and to over-estimate. As a consequence, in
all the runs, the LR-based policy triggers an unnecessary scaling action
also before the first peak. For instance, when the input size is set to
5 minutes (see Figure 6.4a), even though the cluster scales on time
before the second peak, the policy seems to be overly sensitive to even
small variations in the input, such that the resulting prediction is very
noisy and, thus, not reliable in general. On the other end, when the
input size is set to 20 minutes (see Figure 6.4c), the cluster reaches
100% CPU usage for ~3 minutes (with client-side response times going
up to ~100 ms), before the scaling action takes effect (around minute
159). This is due to the input size being too large, such that the
LR cannot detect the growth soon enough. In other words, at the
beginning of the ramp-up, the contribution of the newer measurements
is outweighed by the older ones, generating a sort of momentum that
delays the detection of the peak. We instead observe a nice behavior
when reducing the input size to 10 minutes (see Figure 6.4b), with the
scaling action taking effect when the average CPU usage is at ~95%
(around minute 155), and client-side response times going up to ~3 ms.

114 predictive auto-scaling

(a) input sequence length = 5

(b) input sequence length = 10

(c) input sequence length = 20

Figure 6.5: Experimental results for the ARIMA-based scaling policy (left: CPU

usage; right: client-side response times).

Figure 6.5 shows the results obtained with an ARIMA-based pol-
icy. Similarly to the LR-based one, this policy seems to be generally
overly sensitive to small variations in the input. In some cases (see
Figures 6.5b and 6.5c), such behavior generates unnecessary scaling
actions before the first peak. When the input size is set to 10 and
20 minutes (see Figures 6.4b and 6.4c), the cluster is successfully scaled
before the second peak, with the scaling action taking effect around
minute 150. However, when the input size is set to 10 minutes, the
behavior of the policy appears significantly more noisy. On the other
end, when the input size is set to 5 minutes (see Figure 6.4a) the cluster
reaches 100% CPU for ~3 minutes (with client-side response times going
up to ~100 ms), before the scaling action takes effect (around minute
159).

Figures 6.6 and 6.7 report the results of applying the MLP- and
RNN-based policies, respectively. In contrast to the LR-based one, it
is straightforward that the larger the input size, the better, in terms
of overall performance. Setting the input size to 5 minutes (see Fig-
ures 6.6a and 6.7a) results in obtaining a policy that is equivalent to

6.4 experiments 115

(a) input sequence length = 5

(b) input sequence length = 10

(c) input sequence length = 20

Figure 6.6: Experimental results for the MLP-based scaling policy (left: CPU

usage; right: client-side response times).

the static one (see Figure 6.3). As it is the case for the static policy,
the inability to anticipate the second peak leads to a saturation of the
system capacity that persists for ~10 minutes, with client-side response
times growing up to ~1 second. On the other end, both MLP and RNN

behave nicely with input size set to either 10 or 20 minutes. When the
input size is set to 10 minutes (see Figures 6.6b and 6.7b), both policies
scale the cluster just in time to prevent saturation, as the actions take
effect around minute 155, when the average CPU usage is at ~99%.
However, there is no sign of performance degradation from the client
perspective, as the response times stay below ~4 ms. Also, both poli-
cies scale the cluster earlier when the input size is set to 20 minutes
(see Figures 6.6c and 6.7c), even though the predictions appears more
noisy (that could lead to unexpected behaviors in other circumstances).
In both cases, the scaling action takes effect around minute 151 and
the client-side response times stay below ~3 ms. However, while for
the MLP-based policy the scaling action takes effect when the average
CPU usage is at ~89%, for the RNN-based one the same happens at
~80%. Such difference is likely the result of random fluctuations in

116 predictive auto-scaling

(a) input sequence length = 5

(b) input sequence length = 10

(c) input sequence length = 20

Figure 6.7: Experimental results for the RNN-based scaling policy (left: CPU

usage; right: client-side response times).

the measured load. Remarkably, the RNN-based policy triggers an
unnecessary scale-out before the first peak, as the predicted average
CPU usage exceeds the threshold for the exact amount of times that
is required. The same happens when using the ARIMA-based policy.
Such behavior exposes the need for properly tuning, beside the specific
forecasting model, also the other components of the scaling strategy.
For instance, we could make the RNN-based policy more robust by
increasing the number of times the threshold must be breached before
triggering the action. Automatically adjusting a broader set of tunables
(e.g., cooldown period, scaling adjustment, alarm thresholds, etc.) is
among the engineering issues to be addressed in future extensions of
the proposed architecture. Approaches based on neural networks are,
in general, able to capture even fairly complex non-linear relations.
However, in this case, an input size of 5 minutes is clearly not enough
to provide such models with the information required to output a
15-minutes forecast.

Table 6.2 reports the MAPE made by each predictor configuration
during our runs. The MAPE was computed by considering the sum of

6.4 experiments 117

Table 6.2: Prediction errors (MAPE) observed for the considered runs.

LR ARIMA MLP RNN

5 10 20 5 10 20 5 10 20 5 10 20

MAPE 0.25 0.29 0.38 0.22 0.26 0.15 0.52 0.18 0.14 0.44 0.18 0.15

Table 6.3: Descriptive statistics of the client-side response times (ms) observed
during the experimental runs, when the cluster was facing the first
peak (minutes 0-120).

avg p50 p90 p95 p99 p99.5 p99.9

Static 2.12 1.81 3.18 3.73 3.96 4.08 8.12

LR (05) 3.30 1.79 2.76 3.56 3.92 4.03 9.41

LR (10) 2.02 1.79 2.81 3.57 3.90 3.99 6.59

LR (20) 1.95 1.75 2.72 2.95 3.82 3.90 5.89

ARIMA (05) 2.07 1.82 2.90 3.74 3.95 4.03 7.19

ARIMA (10) 2.03 1.80 2.78 3.16 3.92 4.17 7.79

ARIMA (20) 2.02 1.80 2.79 3.49 3.91 4.02 8.52

MLP (05) 2.03 1.80 2.82 3.68 3.90 3.97 6.88

MLP (10) 2.05 1.80 2.89 3.71 3.93 4.01 7.47

MLP (20) 2.04 1.80 2.81 3.69 3.91 4.00 7.65

RNN (05) 2.07 1.79 2.97 3.72 3.94 4.04 7.78

RNN (10) 2.01 1.79 2.79 3.57 3.90 4.00 7.80

RNN (20) 2.72 1.74 2.77 3.50 3.87 3.99 14.36

the CPU usage of all VMs, as ground truth, and the predicted values
multiplied by the number of active VMs at each specific point in time
(i.e., the predicted sum of the CPU usage of all VMs). Such results further
support our conclusions regarding which configuration is best for each
predictor. For instance, we can see that LR performs better when the
input is set to 5 or 10 (although, the former leads to a very sensitive
scaling policy). Conversely, in general, the bigger the input, the better
the performance of the other predictors.

Tables 6.3 and 6.4 report the average and percentiles of the response-
times observed by the client, during the peaks of our load profile. From
the client perspective, when facing the first peak, all the considered
policies basically guarantee the same performance level. Remarkably,
leveraging on an additional compute instance (e.g., as with the RNN-
based policy) does not make any difference, thus it is just a waste of
computing resources. In contrast, by looking at Table 6.4, we can ap-
preciate significant performance degradation for some specific policies.
For instance, bad p99.9 are obtained with the static policy, the LR-based
policy with too long inputs, and both the ARIMA and the neural-based

118 predictive auto-scaling

Table 6.4: Descriptive statistics of the client-side response times (ms) observed
during the experimental runs, when the cluster was facing the
second peak (minutes 121-220).

avg p50 p90 p95 p99 p99.5 p99.9

Static 47.06 1.80 58.12 394.05 824.53 924.59 1050.76

LR (05) 1.89 1.67 2.63 2.78 3.79 3.92 7.82

LR (10) 1.88 1.67 2.60 2.75 3.77 3.91 7.69

LR (20) 4.90 1.66 2.69 3.67 84.76 245.82 381.07

ARIMA (05) 3.42 1.72 2.76 3.72 39.48 63.80 298.10

ARIMA (10) 1.96 1.70 2.68 2.81 3.80 4.48 9.10

ARIMA (20) 1.97 1.70 2.66 2.78 3.81 4.51 11.71

MLP (05) 63.63 1.84 198.39 522.05 953.45 1051.49 1278.05

MLP (10) 1.99 1.69 2.66 2.84 3.84 4.56 11.00

MLP (20) 1.94 1.67 2.64 2.77 3.73 3.89 9.53

RNN (05) 38.04 1.78 23.17 319.82 755.57 862.19 1024.15

RNN (10) 4.50 1.68 2.65 2.82 3.78 4.03 103.55

RNN (20) 1.90 1.65 2.62 2.72 3.69 3.81 6.12

Table 6.5: Average overhead (ms) imposed by the proposed forecasting com-
ponent, for the considered predictors.

LR ARIMA MLP RNN

5 10 20 5 10 20 5 10 20 5 10 20

total 182.7 224.5 356.7 181.2 245.2 459.1 151.9 213.1 373.0 171.6 256.6 340.8

proc. 58.8 58.4 71.1 71.5 102.9 218.6 54.0 60.5 73.9 66.7 72.8 80.7

policies with too short inputs. On the other hand, sufficiently good
results are obtained using the LR-based policy with short inputs, and
with ARIMA and ANN-based models with sufficiently long inputs.

Table 6.5 reports the overhead imposed by the proposed forecasting
component at each activation that, in our experiments, happened once
per minute. The total time includes interacting with the Monasca APIs
to fetch the data needed as input. Predictive policies based on LR, MLP

and RNN all exhibit quite similar overheads, in the range of additional
~60 ms of processing time every minute, which seems acceptable in the
considered scenario. On the other hand, ARIMA exhibits quite heavier
overheads. Notice that RNN performance is measured in a pessimistic
setting, i.e., assuming to unfold the network on the full sequence in
order to obtain a prediction. The ability of RNN to keep a dynamic
memory of the sequence history could be leveraged on to compute
the prediction more efficiently. In that case, computing times would
be roughly equivalent to those reported in Table 6.5, divided by the
input sequence length.

6.4 experiments 119

(a) Static scaling policy

(b) RNN-based scaling policy

Figure 6.8: Experimental validation on real workload traces (left: CPU usage;
right: client-side response times).

Table 6.6: Descriptive statistics of the client-side response times (ms) observed
during the experimental validation on real workload traces (focus
on the peak, minutes 45-90).

avg p50 p90 p95 p99 p99.5 p99.9

Static 879.01 426.26 2237.84 3019.86 3827.09 3940.71 4033.82

RNN (20) 163.64 20.62 549.91 687.74 883.46 943.71 1061.97

6.4.5 Validation on real workload traces

Our approach was also validated against a dataset exported from a
real production environment. We considered the data provided by
use-case D of the RECAP [131] EU project, reporting the requests
handled by 3 nodes of a Content Delivery Network (CDN) managed by
a British service provider (from 2016 to 2017). We converted a subset
of this data to a ~2h-long trace compatible with distwalk, such that
we could generate similar traffic on our infrastructure. Similarly to
the previous runs, the client was set to spawn 6 threads, each one
maintaining the rates specified in the trace for an interval of 1 minute
each. Each thread was also forced to break its work in 1000 sessions.

The purpose of validating our approach against a real workload
is twofold: (i) we can assess the effectiveness of our approach in a
production-like scenario, and (ii) we can evaluate its ability to gener-
alize to workloads that do not quite resemble what the underlying
models observed during training. Similarly to the previous runs, we

120 predictive auto-scaling

considered the static policy as a baseline, and we compared its perfor-
mance with the predictive ones. For brevity, we only show the plots
for the RNN-based policy, that exhibited the best overall performance.
Figure 6.8a (left) shows that the static policy cannot prevent the system
from saturating for ~20 minutes (from minute 48 to 69). The scaling
decision is only triggered around minute 42, that is too late, consider-
ing the artificial ~10 minutes delay before new VMs start responding.
Conversely, Figure 6.8b shows the RNN-based policy acting just in time
before the system completely saturates (e.g., around minute 51 and
58). Also, the static policy run takes ~30 minutes more to terminate
because, during the saturation, the system was not able to respond to
distwalk requests and caused a delay for the client to start the subse-
quent sessions. By comparing the plots reporting the client-side delays,
we can see that, even though the RNN-based policy induces peaks of
~1 second, it does not lead to a consistent increase of the delays, as the
static policy does. This is also shown in Table 6.6, where, e.g., we can
see the p99.9 in the static policy case being ~4 times greater than the
RNN-based policy case. Despite the workload used for this additional
validation does not quite resemble what the RNN observed during
training, the model exhibited a reasonable generalization ability. How-
ever, to obtain a higher prediction accuracy, one should have trained
the model also on some prior segment of such new data, something
we omit here for brevity.

6.4.6 Reproducibility

For reproducibility, this work comes with a public companion reposi-
tory [124] including: the Heat templates to set up the infrastructure;
the configuration files for the different tools (e.g., the synthetic distwalk
workload); the raw results produced by our experiments; the code to
generate Figures 6.3 to 6.7 and Tables 6.3 to 6.5; the synthetic dataset
and the code to train the forecasting models (pre-trained models are
also included).

6.5 conclusions

We proposed an architecture that enables predictive operations in
cloud infrastructures. We prototyped our approach using OpenStack,
extending Monasca to ingest predictive metrics that reflect the ex-
pected evolution of the monitored system in the near future. Such
metrics can be seamlessly combined with the regular ones to build
operations policies that go beyond standard, reactive, strategies. As a
case-study, we realized a predictive elasticity controller for a cluster
of VMs (managed by Senlin), able to anticipate workload changes that
might not be easily handled by classical threshold-based rules. The
approach was validated both on synthetic and on real workload traces

6.5 conclusions 121

from a production CDN. Remarkably, it proved to be particularly useful
for services with non-negligible instance spawning times, a common-
place condition in production environments [197] (e.g., creating a new
VMs, and applying the required configurations, may require tens of
minutes).

7
I N T E L L I G E N T C L O U D O P E R AT I O N S

7.1 introduction

Cloud computing has become an essential technology in the modern
distributed computing landscape [150]. Many diverse application do-
mains [8, 106] leverage on services deployed in either public or private
clouds, like smart cities, industrial factories, healthcare, e-Commerce,
or even telecommunications, with the increasing adoption of NFV [39].
Cloud infrastructures and services have rapidly evolved [25] from the
IaaS provisioning model to the PaaS one, that is the most widespread
nowadays. PaaS enables development and deployment of modern
cloud-native applications [21], deeply integrated with a plethora of
APIs and services, such as: reliable relational and NoSQL databases,
advanced and secure networking, LB and auto-scaling, serverless com-
puting, integrated ML frameworks for training and operating large
models, etc. Correspondingly, cloud infrastructures have significantly
grown in size and complexity, having to deal with an ever-growing
software stack on top of which such a wide variety of services can be
made available. Guaranteeing high reliability and availability is only
possible thanks to effective operations teams, that work 24/7 to keep
such systems up, running and responsive.

Operating big and complex distributed infrastructures is far from
trivial. Industrial practices heavily rely on monitoring metrics col-
lected from physical and virtual elements of the infrastructure, e.g.:
physical hosts, VMs, containers, networking appliances, and others.
Metrics are persisted such that they can be visually, or analytically [26],
inspected by operators. Also, they are typically automatically checked
against a number of predefined, usually threshold-based, rules that
possibly identify problems and trigger appropriate corrective actions.
A classical example is a LB with self-healing capabilities, that adds
new instances to an elastic compute group whenever the number of
healthy instances goes below a configured amount. Other mechanisms
are instead based on predefined pattern-matching rules to be checked
against logs [67]. In a large-scale cloud operations scenario, there are
thousands of active automation rules. However, as new scenarios oc-
cur, such rules need continuous adjustments to keep on being effective.
Also, in response to an issue being identified, an operator typically

123

124 intelligent cloud operations

starts a (non-trivial) RCA [220, 250], to understand what caused it, and
ultimately what is the right fix. One of the greatest challenge for cloud
providers is to sustainably deal with the ever-increasing size of the
physical infrastructure. Ideally, without having to correspondingly
increase the number of operators that continuously watch dashboards,
and troubleshoot and fix infrastructure problems. In other words,
they should aim at that “rapid provisioning with nearly zero human
interaction”, originally predicated by NIST [153].

Therefore, cloud providers are increasingly investing in develop-
ing intelligent techniques to support humans operators in their tasks,
such as AD [270], resource allocation and capacity planning. Given the
abundance of operational data, it is natural to seek for data-driven
approaches like ML, that can augment the capabilities of operators to
“navigate” the zillions of available time-series and logs. For instance,
considering the AD problem, many works in the literature leverage on
either supervised [65, 82] or unsupervised [2, 50, 219] ML algorithms
to detect early symptoms of anomalous conditions at different levels
of a cloud infrastructure. Similarly, many recent works [103, 123, 197]
propose time-series forecasting techniques to anticipate the evolution
of workloads and scale compute resources (e.g., VMs or containers) ac-
cordingly. However, effectively using such approaches in production is
not straightforward. Indeed, there are many characteristics of the mon-
itored system to take into account, like the topology of the physical
infrastructure [157], the design patterns used to realize the individual
applications [95, 105], or the in-place QoS requirements [257].

7.1.1 Contributions

We propose a strategy for intelligent cloud operations that consists
of two phases: (i) detecting anomalous operational conditions of an
application made of an elastic group of cloud instances; (ii) identify-
ing the faulty component within the group, and proposing the best
corrective action to restore it. Both phases rely on ML models to learn
from the appropriate operational data to detect early symptoms of
anomalous conditions and to identify the proper corrective actions
to apply, without explicitly coding static rules. This work aims at
closing the cloud operations loop in a totally automated fashion, envi-
sioning a system with the ability to learn from the corrective actions
applied by operators in similar previous cases. We validated the pro-
posed approach by deploying a synthetic application and a Cassandra
NoSQL cluster on an OpenStack testbed. We trained and tested the
ML models on system-level monitoring data gathered while injecting
different types of anomalies on the mentioned applications, including
exogenous workload interferences, sudden failure of a cluster member,
and saturation of CPU capacity and disk I/O bandwidth. For (i), we
trained an AD model such that it could generalize to variable-sized

7.2 related work 125

groups of instances. On the respective test sets, for the synthetic ap-
plication, we obtained a ROC-AUC of 97% and an accuracy of 90.34%,
while, for Cassandra, we obtained a ROC-AUC of 94% and an accuracy
of 87.50%. For (ii), we trained a supervised multi-label classification
model, such that it could associate corrective actions to instances indi-
vidually. On the respective test sets, for the synthetic application, we
obtained an accuracy of 96.15%, while, for Cassandra, we obtained an
accuracy of 98.75%. See Section 7.4 for more details on the performed
experimentation.

7.1.2 Chapter Organization

This chapter is organized as follows. Section 7.2 provides a brief recall
of related research. Section 7.3 presents our architecture for intelligent
cloud operations. Section 7.4 reports the validation of our prototype on
an OpenStack test-bed. Section 7.5 concludes the chapter and outline
possible ideas for future research on the topic.

7.2 related work

Recently, ML-based approaches have been increasingly proposed as
effective solutions to a diverse set of resource management tasks [94]
for both public and private cloud infrastructures. In previous chapters,
we already provided a comprehensive overview of the related research
works on such topics. Therefore, in this section, we limit ourselves to
describing a few additional existing approaches, to highlight how our
work differentiate from such alternatives.

In [65], the authors evaluate several supervised learning approaches
for AD by injecting faults in a Kubernetes cluster. Similarly, in [82], the
authors also evaluate supervised learning techniques for off-line AD

in an NFV environment. The authors train their models on host moni-
toring data collected while injecting anomalies in a test-based running
the ClearWater IMS system on top of OpenStack. Also, the authors
of [270] provide a thorough survey where they discuss the risks, in
terms of anomalous behaviors, correlated to switching to a NFV/cloud
model. For instance, incurring in temporal interferences generated by
virtualization and resource over-commitment. In [2], the authors pro-
pose a real-time unsupervised AD technique based on HTM. In [250],
the authors describe a RCA approach for NFV anomalies, based on a
digital twin. They frame the problem as a dynamic set-covering, and
propose a scalable solution based on HMM. In [160], a variational au-
toencoder based on RNNs is proposed for AD in cloud scenarios, where
the autoencoder trained on normal/healthy conditions, is expected to
produce larger errors under anomalous/unhealthy conditions. This
is followed by a one-dimensional CNN! classifier used to identify the

126 intelligent cloud operations

anomaly as being either a case of process death, CPU stress, network
delay or packet loss.

Compared to the above research, our proposed approach tries to
bridge the gap between detecting a possible issue within a cloud
system or component, identifying the exact affected element within
the infrastructure, and deciding what corrective action to apply in
order to return the system to a normal behavior. This work aims
at closing this loop in a totally automated fashion, and with the
ability to learn from the corrective actions applied by humans in
similar previous cases. Most ML-based approaches focus on specific
operations aspects, like auto-scaling. Instead, our scope includes a
wider range of operations problems. Unlike most related works, we
framed the problem of deciding a corrective action as a multi-label
classification task. Typically, operations teams cater collections of
procedures known to be effective at recovering their systems from
(recurrent) error conditions. Also, when responding to an issue, the
same teams are required to log their actions, in a ticketing system. Such
information can be correlated with system-/app-level data, to learn
“intelligent” operations models. For instance, the approach described
in [160] brings an interesting resemblance with our approach, in that
both include an unsupervised layer for AD, followed by an anomaly
classifier. However, the previous work analyzes metrics from a single
instance at a time only, and it does not consider the common case
of horizontally-scalable elastic clusters. Furthermore, in our work we
aim at letting the system learn what corrective action to apply to the
anomaly being analyzed, imitating what was made with prior manual
interventions.

7.3 proposed approach

In this section, we present an overview of the proposed architecture,
and discuss some fundamental implementation details.

7.3.1 General Architecture

Traditional approaches to cloud operations ensure healthiness of appli-
cations through (often complex) automations that are, hopefully, able
to detect possible abnormal conditions, send appropriate alerts and
possibly trigger recovery actions. However, such mechanisms are still
typically based on static rules and thresholds, that are often very easy
to interpret, but quickly become cumbersome to maintain as the scale
of the system grows. Using ML to solve the kind of problems men-
tioned above is strongly supported by the abundance of (very diverse)
operational data that are produced in cloud environments. Either the
infrastructure components themselves, or the on-call personnel that
work around the clock to make sure that everything runs smoothly,

7.3 proposed approach 127

Data Sources IntOps SystemCluster

VM1
Monitoring

System

VMn

Action
Classifier

Cluster
Metrics

Anomaly
Detector

Corrective Actions

Operational
Data

Human
Operators

Figure 7.1: Architectural diagram of the proposed intelligent operations ap-
proach.

continuously generate useful information. Such information can be
leveraged upon to devise intelligent automations, that adapt as they
observe more diverse operational conditions. Figure 7.1 shows how
our approach enhances the control loop of a cloud infrastructure, by
ingesting the operational data coming from the aforementioned data
sources and producing recommendations. In such settings, it is possi-
ble, e.g., to anticipate the occurrence of system outages, by analyzing
the historical data describing the relevant system- and application-
level metrics during past outages. Or, e.g., to identify their likely
root-cause, and the most effective corrective actions to be applied, by
looking for similarities in logs and reports associated with past inci-
dents. At the moment, our approach allows for: detecting performance
degradation due to workload co-located on the same physical hosts,
recommending a relocation on healthier host; detecting faulty mem-
bers of load-balanced groups of instances, that stop taking their share
of the load, recommending to reboot the offending instance; detecting
the shortage of allocated resources due to dynamic workload changes
and its expected evolution in the short-term, recommending an elastic
scaling action, to prevent serious performance degradation. A number
of other anomalous scenarios are planned to be integrated into the
framework, including transient failures and hardware degradation
(i.e., not entire failures, but faults impairing seriously the performance
of disks, memory modules, network interface cards, etc.). Remarkably,
when the set of observed anomalous scenarios to consider grows,
ML-based approaches like ours scale significantly better than tradi-
tional static rules and thresholds. Indeed, such approaches require

128 intelligent cloud operations

continuous manual tuning to capture new, unforeseen, anomalous
behavior, and possibly to develop a separate criterion for each possi-
ble case. Instead, for ML models, it is often sufficient to add the new
observed behavior to the training set, and restart the training proce-
dure, without explicitly coding new rules. Furthermore, provided that
the resulting ML model exhibits a satisfactory generalization power,
re-training might not even be necessary.

7.3.2 Implementation Details

To demonstrate the effectiveness of our approach, we implemented
it to work with data exported from OpenStack, one of the most used
open-source cloud orchestration frameworks. For simplicity, in our
validation (see Section 7.4) we only considered the CPU and disk I/O
activity measurements generated by the runs of our test application.
However, our approach can handle a variable number of system- or
application-level metrics. Then, we manually labelled such raw data
to distinguish among different operational conditions, also taking into
account the related response times measurements, collected client-side,
as a general indication of the QoS. In other words, we emulated the
information that are typically produced by operations teams after a
system outage occur (e.g., post-mortem documents). Notice that, while
the test application was running on a horizontally-scalable group of
VMs, our approach is agnostic with respect to the used virtualization
technology. Also, for both steps, we preferred ML models that guaran-
tee a sufficient level of interpretability, as cloud automations should
be highly dependable and auditable. However, explainability analysis
goes beyond the scope of our work, and will be addressed in the
future.

For step (i), we trained an AD model on spatial aggregates of such
data, so that the model can generalize to elastic groups of instances.
Also, as it is continuously executed, this step acts as a low-cost filter
that prevents the system from running the (more expensive) step (ii) on
higher-resolution data when it is not necessary. In these settings, it is
impractical to assume the availability of large amounts of labelled data.
We opted for MADI [219], an unsupervised AD approach that leverages
on negative sampling to cope with labelled data shortage. MADI works
spectacularly well with high-dimensional data that capture complex
multi-modal behaviors, assuming that the presence of anomalous
behavior is scarce. It assumes all provided training data to be positive
examples, and computes a negative space to sample from, assuming
that every behavior that significantly differ from the positive examples
is to be considered anomalous. As there are now two distinct classes of
examples, it is possible to use any supervised classification algorithm.
We used the NSRF provided by MADI, setting the hyperparameters as
specified in the seminal paper. We trained NSRF on a dataset containing

7.3 proposed approach 129

multiple traces of positive-only examples of expected CPU and disk
I/O activity patterns. Such data were preprocessed by calculating
spatial aggregations, i.e., mean (µ) and standard deviation (σ), to
make the model agnostic to the actual number of instances in the
cluster. After that, we applied standard scaling (i.e., subtracting to
a signal its µ and dividing by its σ) and built the set of training
samples by applying a rolling window of 5 observations, shifted by
1 observation at a time. Each sample consisted in a 2D vector with
dimensions 5 × 4, i.e., a 5-minutes time-frame, partially overlapping
with adjacent samples, containing 2 spatial aggregations of 2 distinct
metrics. However, given that NSRF is not designed to natively work
with multi-variate time-series, we reshaped each training sample to
a 1D vector with dimension 20, such that the rows of the original 2D
vector are stacked horizontally, and the contributions of the different
signals are interleaved.

For step (ii), we developed ourselves a simple, yet effective, super-
vised multi-label classification model using XGBoost [38], a powerful
framework that offers performant implementations of GBT [73]. The
job of this model is to learn to distinguish among different classes
of anomalous conditions patterns, such that they can be associated
with the appropriate corrective actions. This model is designed to
run only when triggered by the AD model, that continuously analyze
new observations as soon as they become available, and flags them
if the corresponding application operates outside the expected condi-
tions. Therefore, as it is supposed to run infrequently, we designed
the model to work on instances’ raw data, in an attempt to enhance its
classification capabilities. Indeed, such model is designed to compare
the behavior of an individual instance with the rest of the group (i.e.,
the other instances that implement the same application), by taking as
inputs a combination of spatially-aggregated and raw data, under the
assumption that all instances in the same group behave consistently.
Given a flagged group of instances, that could even be fairly large,
the classifier is applied to each one separately, to output a (possible)
recommended corrective action for each of them. Notice that this
strategy potentially allows for identifying both the root-cause and
the appropriate counter-measure even when an anomaly is caused by
multiple instances at once. We trained the model on data collected
while injecting anomalies during runs of our test application (see Sec-
tion 7.4). We applied a preprocessing similar to the one used for AD,
such that each training sample consisted in a 2D vector representing
a 5-minutes window on the raw data. However, for each window,
we generated a number of training samples equal to the number of
instances in the group. Each sample consisted in a 5 × 6 vector, where
the columns contain the following information:

1. CPU utilization of the specific instance;

2. Disk I/O activity of the specific instance;

130 intelligent cloud operations

3. µ of the CPU utilization of the other instances;

4. µ of the disk I/O activity of the other instances;

5. σ of the CPU utilization of the other instances;

6. σ of the disk I/O activity of the other instances.

Also in this case, given that XGBoost is not designed to natively work
with multi-variate time-series, we reshaped each training sample to
a 1D vector with dimension 30, such that the rows of the original 2D
vector are stacked horizontally, and the contributions of the different
signals are interleaved. We used the metadata of our runs to label
each sample according to the corresponding type of behavior that, in
turn, is associated with a specific corrective action. If a given sample
was related to an injected instance, and at least 3 observations had
been collected during the injection, then the sample was labelled
accordingly: 1 for stress, 2 for fault, and 3 for saturation (0 otherwise).

7.4 experiments

This section presents the results of an empirical validation of the
approach described in Section 7.3, conducted by deploying both a
synthetic application and the Cassandra NoSQL data store on Open-
Stack. We used data from such deployments to train the underlying
ML models, and assess their accuracy.

7.4.1 Experimental Set-up

We carried out our experiments on an OpenStack installation (Yoga
release), that was deployed using Kolla [169] (i.e., the various services
run within several Docker containers). OpenStack was hosted on 3

physical hosts:

1. A Dell R630, equipped with: 2 Intel Xeon E5-2640 v4 CPUs (20

hyper-threads each) running at 2.40 GHz; 64 GB of RAM; a 3.3
TB Dell PERC H330 Mini hard disk; Ubuntu 22.04 LTS; Linux
kernel 5.15.0. This host was used as controller and compute node.

2. A Dell R740xd, equipped with: 2 Intel Xeon Gold 6238R CPUs
(56 hyper-threads each) running at 2.20 GHz; 126 GB of RAM;
a 2.2 TB Dell PERC H740P Mini hard disk; Ubuntu 20.04 LTS;
Linux kernel 5.4.0. This host was used as compute node.

3. A workstation, equipped with: an Intel Core i7-4790K quad-core
CPU (8 hyper-threads) running at 4.00 GHz; 16GB of RAM; a 500

GB Samsung 850 SSD; Ubuntu 22.04 LTS; Linux kernel 5.15.0.
This host was used as compute node.

7.4 experiments 131

These were all connected to the same switch using a 1 Gb link cable.
We deployed a test application leveraging on the following services: (i)
Heat [168], to orchestrate a horizontally-scalable cluster of Nova [172]
instances; (ii) Octavia [173], for load-balancing; (iii) Monasca [170], for
telemetry. The application cluster was configured to have 3 instances,
each one deployed on a different physical host, such that we could
better control the experiments that involved monitoring the disk I/O
activity, by reducing interferences. Each instance was provided with 1

vCPU and 2 GB of RAM, and with Ubuntu 20.04 server cloud image.
To better control our experiments, we disabled both the elasticity and
the self-healing capabilities of the cluster, and we made sure that each
instance was pinned to a different physical CPU core, that remained
unchanged for the entire duration of the experiments. The instances
were reachable through an Octavia LB, that was configured with a
least-connections strategy. Monasca was configured such that new CPU

and disk I/O activity measurements were collected each minute.

7.4.2 Synthetic Workload Generator

We used the open-source distwalk [47] tool, described in Section 6.4.1,
to generate traffic on our deployment. We set the client such that the
CPU and disk I/O activity of the instances followed a set of dynamic
workload profiles. The client was configured to spawn 2 threads per
instance, each one provided with a trace specifying the operation rates
(i.e., requests per second), to be maintained for 1 minute each. Each
thread was also configured to create a total of 5000 sessions over each
run, such that a new target instance could be selected by the LB at
each new session establishment.

7.4.3 Apache Cassandra

Beside the aforementioned synthetic application, we also used Apache
Cassandra, a widely known open-source NoSQL data store, to also
test our approach in more realistic application scenarios. Based on the
design principles of Dynamo [59], Cassandra is a distributed data store
characterized by a scalable and fault-tolerant peer-to-peer architecture,
able to handle large amounts of data by spreading the load across
the cluster. In practice, this is done by partitioning the key-space of
a table primary key, spreading its shares over the peers. Cassandra
offers the possibility to tune the level of write/read consistency, and
the replication strategy. Such features make it a great cloud storage
solution for critical big-data applications that require high scalability
and availability, or for high-throughput use cases with less stringent
consistency requirements. We deployed Cassandra on our OpenStack
test-bed, with each peer hosted on a different physical host, and the
keyspace replicated across the whole cluster to avoid data loss in case

132 intelligent cloud operations

of anomalies. The traffic is generated using YCSB [43], a well-known
open-source benchmarking tool for NoSQL data stores, which allows
for configuring: the probability distribution of requests across the
key-space; the number of pre-inserted records; the proportion of read,
update, scan and insert operations to issue; and other performance-
related parameters. In our case, to avoid saturating the available disk
space, YCSB was configured to load into the cluster a pre-fixed amount
of records (1 million, 1 KB each). Also, the traffic throughout each run
included update operations only (3 millions in total, at a rate of 1000

ops/sec), such that the cluster could still perform write operations
without increasing the total number of records. The cluster was also
set with a replication level equal to 3, and a consistency level varying
between 1 and 2.

7.4.4 Anomaly Injection

To train and evaluate the ML models underlying our approach, we
needed examples of anomalous conditions to associate with the typ-
ical corrective actions described in Section 7.3. For simplicity, we
considered only three of the most common anomaly types in cloud en-
vironments: (i) interferences generated by external load co-located on
the same physical hosts; (ii) faulty members of load-balanced groups
of instances that stop picking their traffic share; and (iii) saturation
of the current resource capacity. To generate data describing such
anomalous conditions, we artificially injected them during the execu-
tion of our runs. Specifically, for (i), we used stress-ng[113] to simulate
the interference of external processes that end up being scheduled
on the same physical host of an instance. For (ii), it was sufficient to
kill the application process running on a specific instance to make it
stop responding to requests. Whereas, for (iii), we just made sure to
send a workload that could not be properly handled by the currently
allocated resources. We also augmented the diversity of the anoma-
lous behaviors to be observed by our ML models by generating and
enforcing schedules of randomly distributed anomalies. However, to
better control our experiments, we made sure we had only one, ran-
domly selected, unhealthy instance at a time. Also, once an instance
was injected with an anomaly, we made sure it remained unhealthy
for an extended period (e.g., 5-10 minutes), automatically recovering
afterwards.

A few examples of the data extracted from our experimental runs
with the distwalk application are depicted in Figures 7.2 to 7.4. By
comparing such figures, one can appreciate the differences between
the considered types of anomaly, in terms of observed system resource
usage and client-side response times, during distwalk runs that fol-
low the same workload profile. The system-level metrics (specifically,
cpu.utilization_perc and io.write_ops_sec) were collected by us-

7.4 experiments 133

ing the Monasca monitoring system, while the client-side response
times were extracted from the distwalk client logs. Note that, due to
how the system components and the distwalk client are configured,
if anomalies are not injected, then the LB continues to equally dis-
tribute the load among the available instances. In such case, the disk
I/O activity level should be more or less the same for all instances.
However, due to the different processors that the available physical
hosts are equipped with, we can observe differences in terms of CPU

utilization levels, even though the workloads follow the same profile
during the run. A clear example of this scenario is depicted in Fig-
ures 7.4a and 7.4b where, during the first 10 minutes of the run, the
available resources were sufficient to handle the workload. In this case,
instance 2 was (randomly) scheduled on the physical host equipped
with the most powerful processor (see Section 7.4.1), and exhibited
a lower CPU utilization with respect to the other instances, while the
disk I/O activity was more or less equivalent. Furthermore, in such
normal cases, we can also observe particularly low client-side response
times. In Figure 7.4c (and similar) we can indeed appreciate how the
distribution of the response times evolve during a run, in terms of 50th,
90th and 99th percentiles. Each point in the plot refers to a specific
statistic calculated over a 1-minute interval. For instance, a point at 0

refers to all the response times registered during the first minute of
the run, and so on. Whenever the system did not saturate (e.g., during
the first 10 minutes of the run), we generally observed a p90 below 35

ms. Therefore, we took this value as a rough indication of a good QoS.
When using stress-ng to simulate interferences from co-located, I/O-

intensive, external workloads, we observed the CPU and disk I/O
activity of the affected instances significantly dropping and staying
around relatively low values. For instance, in Figure 7.2, when the
stress was injected around minutes 7-12 on instance 0, such instance
exhibited a CPU utilization around ~10% (see Figure 7.2a) and a disk
I/O activity around ~20 ops/sec (see Figure 7.2b), compared to the
reference values, ~28% and ~62 ops/sec, respectively, exhibited by
instance 2 during the first peak of the workload. The effect of the stress
injection is even more significant around minutes 18-24, where instance
0, randomly picked again, exhibited similar resource utilization values,
but this time with reference values being ~46% and ~108 ops/sec,
respectively, during the third peak of the workload. The stress injection
also significantly affects the response latency perceived by the client.
Indeed, in Figure 7.2c, we can observe peaks of ~600 ms in the p90

curve, corresponding to the injection intervals. Due to how distwalk
is designed, while an instance experiences interferences, but is still
barely able to send responses, the client accumulates delay by waiting
for responses, before triggering the subsequent requests. This is the
reason why, during stress-injected runs, we typically observe longer

134 intelligent cloud operations

(a) CPU usage

(b) Disk I/O activity

(c) Client-side response times

Figure 7.2: Interferences generated by stress-ng on distwalk.

7.4 experiments 135

“tails” of delayed requests that keep on being sent at the last rate
specified in the workload schedule (e.g., around minutes 30-50).

When killing the distwalk server process to simulate a fault, we
observed the disk I/O activity of the affected instance dropping to
0, and its CPU usage stabilizing around 2-3% (i.e., the standard load
generated by the OS background processes). On the other hand, the
activity on the other instances increased accordingly, due to the LB

redirecting the extra load on them. For instance, in Figure 7.3, when
the fault was injected around minutes 6-13 on instance 2, we can
see that the disk I/O activity of the other instances reached ~100

ops/sec during the first peak of the workload (Figure 7.3b). As we
know a-priori that the workload should have closely followed an ideal
sinusoidal pattern, we can definitely tell that it increased significantly
with respect to the expectations. The effect of the fault injection, this
time on instance 0, is even more significant around minutes 20-26,
with instance 1 reaching ~170 ops/sec and instance 2 reaching ~150

ops/sec. Similar behaviors can be observed for the CPU usage, although
it is less evident for the instances scheduled on the most powerful
physical processor (see Figure 7.3a). Obviously, the fault injection
also significantly affects the response latency perceived by the client.
Indeed, in Figure 7.3c, we can observe peaks of ~100 ms in the p90

curve, corresponding to the injection intervals. However, overall, the
impact on the QoS is significantly smaller than what we observed for
the stress injection. This is likely due to the fact that, eventually, the
LB detects the injected instance to be unhealthy and interrupts the
current connections to redirect the load on the others. Then, when the
connection is closed, the distwalk client ignores the remaining requests
planned for the corresponding session and moves to the next, partially
compensating the accumulated delay.

The disk bandwidth constitutes the major bottleneck in the resource
saturation scenario. When an instance receives a higher volume of
requests, the distwalk server process starts falling behind the expected
schedules, the requests remain in the queue, and the response times
start increasing. For instance, in Figure 7.4, we can see such a phe-
nomenon occurring around minutes 14-16 and 23-26, during the sec-
ond and third peaks of the workload, respectively. By looking at the
system-level metrics in Figures 7.4a and 7.4b, we can typically observe
that, in such cases, the workload profiles of the different instances do
not closely follow the expected sinusoidal pattern, and start diverging.
However, considering only such metrics, and assuming not to have
any a-priori knowledge of the expected workload, we cannot exclude
that such deviations are just noise. Furthermore, is even trickier to
infer that a saturation phenomenon is occurring when the workload
is mainly I/O-intensive, rather than CPU-intensive, since the actual
bandwidth of traditional, rotational, hard drives depends on multiple
factors, and it is not guaranteed to be always consistent. Therefore,

136 intelligent cloud operations

(a) CPU usage

(b) Disk I/O activity

(c) Client-side response times

Figure 7.3: Faults generated by killing an instance of distwalk.

7.4 experiments 137

(a) CPU usage

(b) Disk I/O activity

(c) Client-side response times

Figure 7.4: Saturation of the disk bandwidth for distwalk.

138 intelligent cloud operations

0 500 1000 1500 2000
Time (s)

0

25

50

75

100

125

150

175

200

Ut
il.

 (%
)

LOAD RUN

STRESS

CPU
VM0
VM1
VM2

0 500 1000 1500 2000
Time (s)

0

500

1000

1500

2000

2500

W
rit

e
op

s/
s

LOAD RUN

STRESS

DISK I/O
VM0
VM1
VM2

800 1000 1200 1400 1600 1800 2000
Time (s)

100

101

102

103

La
te

nc
y

(m
s)

RUN

STRESS

YCSB Latency
Avg
P99
P999

Figure 7.5: Interferences generated by stress-ng on Cassandra.

the most effective way to detect that a saturation phenomenon is
occurring is by looking at the client-side response times. Indeed, in
Figure 7.4c, we can observe peaks of ~80 ms in the p90 curve, during
the aforementioned workload peaks. Similarly to the fault injection
scenario, the impact of the disk saturation on the QoS is significantly
smaller than what we observed for the stress injection.

Similarly to the distwalk application, also the Cassandra cluster was
injected with anomalies during our experimental runs. For instance,

7.4 experiments 139

0.00 0.25 0.50 0.75 1.00
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os
iti
ve

 R
at
e

NSRF (AUC = 0.97)

(a) ROC-AUC

0 1
Predicted label

0

1

Tr
ue

 la
be

l

0.9 0.099

0.093 0.91

(b) Confusion matrix

Figure 7.6: AD performance, computed on the distwalk test set (0 = anomalous;
1 = normal).

Figure 7.5 shows the measurements recorded during one of such runs,
where we used stress-ng to generate interference, while the cluster,
with replication level set to 3 and consistency level set to 2, was
serving the load generated by YCSB, as explained in Section 7.4.3.
In the figure, we highlighted: the LOAD phase, when YCSB loads
the cluster with 1 million keys and their associated 1 KB values; the
RUN phase, when YCSB imposes a constant target update throughput
of 1000 ops/s; and the STRESS phase, when one of the Cassandra
replicas undergoes heavy disk I/O interference from stress-ng. As
in Figure 7.2, we can appreciate that, during the STRESS phase, the
disk I/O activity of the affected instance drops significantly, with
respect to the other members of the cluster. However, the effect of the
interference on the CPU utilization is less evident. During the same
phase, we can also observe the latency perceived by the YCSB client
increasing consistently.

7.4.5 Results

After conducting several runs under different conditions, both with
distwalk and Cassandra, we collected the corresponding CPU and disk
I/O activity measurements and trained our models for the AD and
classification steps. For both applications’ datasets, separately, we held
out the same portions of data to be used as training and test sets for
the models. However, the two models were trained on different views
of the same information (details in Section 7.3). In this way, the AD

step can act as a filter and let the system trigger the (more costly)
classification step only when it is deemed useful.
Synthetic Application - Anomaly Detection. As explained in Sec-
tion 7.3, we decided to implement this step with MADI [219], using
the NSRF variant. By preprocessing the collected data, we obtained a

140 intelligent cloud operations

Table 7.1: Performance metrics of the AD model, for each class of samples,
computed on the distwalk test set (0 = anomalous; 1 = normal).

Class Precision Recall F1 score

0 0.923 0.901 0.912

1 0.881 0.907 0.894

Table 7.2: Performance metrics of the classifier, for each class of samples,
computed on the distwalk test set (0 = normal; 1 = stress; 2 = fault;
3 = saturation).

Class Accuracy Precision Recall F1 score

0 0.961 0.988 0.962 0.975

1 0.989 0.904 0.945 0.924

2 0.995 0.926 1.000 0.962

3 0.977 0.816 0.939 0.873

training set of 1087 and a test set of 528 input vectors, with shape 5× 4
(as explained in Section 7.3.2). Such training and test sets contain a
fraction of positive (normal) examples equal to 42.59% and 44.70%,
respectively, while the rest is constituted by anomalous examples.
Therefore, since NSRF is an unsupervised approach that assumes the
input data to consist in mainly positive behavior, we trained it only on
the 463 positive examples from the training set. After training NSRF,
that typically takes just a few seconds on the CPU of our first physical
host (see Section 7.4.1), without any specific acceleration settings, we
ran the obtained model on the test set, this time using both positive
and negative examples. Thanks to its negative sampling strategy, NSRF

solves a binary classification task, and outputs the probability of an in-
put belonging to the positive class. Such feature allowed us to produce
the ROC curve plot [69] shown in Figure 7.6a, corresponding to an
AUC of 97%. The ROC curve is a technique to visualize the evolutions
of the TPR and FPR of the model, considering a variable classification
threshold over the output probability of the model. In this way, we
were able to select a sensible value for threshold tp, to be applied on
the output to determine the class of a given input, such that the FPR

was below 10%, and the TPR was above 85% (i.e., corresponding to the
upper-left region of Figure 7.6a). By setting tp = 0.594, we obtained
an accuracy of 90.34%, corresponding to the confusion matrix shown
in Figure 7.6b. In Table 7.1, we also report other per-class performance
measures.
Synthetic Application - Classification. As explained in Section 7.3, we
decided to address this step, consisting in a multi-label classification
task, by implemented our model using XGBoost [38]. By preprocessing

7.4 experiments 141

0.00 0.25 0.50 0.75 1.00
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

0 (AUC = 0.99)
1 (AUC = 1.00)
2 (AUC = 1.00)
3 (AUC = 0.99)

(a) “One-vs-rest” ROC-AUC

0 1 2 3
Predicted label

0

1

2

3

Tr
ue

 la
be

l

0.96 0.0089 0.0064 0.023

0.055 0.95 0 0

0 0 1 0

0.061 0 0 0.94

(b) Confusion matrix

Figure 7.7: Classifier performance, computed on the distwalk test set (0 =
normal; 1 = stress; 2 = fault; 3 = saturation).

the collected data, we obtained a training set of 3261 and a test set
of 1584 input vectors, with shape 5 × 6 (as explained in Section 7.3.2).
Note that the preprocessing employed for this model produces a
dataset 3 times bigger than the one used for the AD model. This is
due to the fact that, for each 5-minutes window on the raw data,
such preprocessing produces a number of input samples equal to the
number of active instances in the considered application (3, for our
runs). Also, such preprocessing produces an inherently imbalanced
dataset, due to the fact that, for each 5-minutes window, only one
sample is marked as anomalous, given that we made sure not to inject
multiple anomalies at once. Indeed, the training set is composed for
the 78.44% by normal, for the 8.40% by stress-injected, for the 5.24%
by fault-injected, and for the 7.91% by saturation examples. Similarly,
the test set is composed for the 78.41% by normal, for the 6.94%
by stress-injected, for the 6.31% by fault-injected, and for the 8.33%
by saturation examples. However, XGBoost offers the capability to
easily specify weights for each class, such that each one proportionally
contributes to the gradient updates. After training the classifier, that
typically takes less than 10 seconds on the CPU of our first physical
host (see Section 7.4.1), without any specific acceleration settings, we
used the test set to evaluate its performance. Given that XGBoost
can be set to output the distribution of the probability of an input
to belong to each of the available classes, also in this case we were
able to produce a ROC curve plot, shown in Figure 7.7a. However, for
the multi-label classification task, ROC curves can only be produced
in a “one-vs-rest” fashion, i.e., each time considering a specific class
against all the others (as they were a single one). Remarkably, all
the generated ROC curves correspond to AUC values very close to
100%. Then, we applied the model on the test set and obtained an
accuracy of 96.15%, corresponding to the confusion matrix shown in

142 intelligent cloud operations

0.00 0.25 0.50 0.75 1.00
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os
iti
ve

 R
at
e

NSRF (AUC = 0.94)

(a) ROC-AUC

0 1
Predicted label

0

1

Tr
ue

 la
be

l

0.94 0.062

0.17 0.83

(b) Confusion matrix

Figure 7.8: AD performance, computed on the Cassandra test set (0 = anoma-
lous; 1 = normal).

Table 7.3: Performance metrics of the AD model, for each class of samples,
computed on the Cassandra test set (0 = anomalous; 1 = normal).

Class Precision Recall F1 score

0 0.789 0.938 0.857

1 0.952 0.833 0.889

Figure 7.7b. In Table 7.2, we also report other per-class performance
measures. Note that, in this case, also the accuracy can be computed
in a “one-vs-rest” fashion.
Cassandra - Anomaly Detection. Similarly to the synthetic applica-
tion, by preprocessing the data collected during Cassandra runs, we
obtained a training set of 224 and a test set of 80 input vectors. Such
training and test sets contain a fraction of positive (normal) examples
equal to 57.14% and 60%, respectively, while the rest is constituted by
anomalous examples. After training NSRF on positive samples only,
we validated the model on the test set, and obtained the ROC curve
plot shown in Figure 7.8a, corresponding to an AUC of 94%. By setting
tp = 0.616, we obtained an accuracy of 87.50%, corresponding to the
confusion matrix shown in Figure 7.8b. In Table 7.3, we also report
other per-class performance measures.
Cassandra - Classification. Similarly to the synthetic application, by
preprocessing the data collected during Cassandra runs, we obtained
a training set of 672 and a test set of 240 input vectors. The training
set is composed for the 85.71% by normal, for the 6.25% by stress-
injected, and for the 8.04% by fault-injected examples. Instead, the
test set is composed for the 86.67% by normal, for the 5.83% by stress-
injected, and for the 6.31% by fault-injected examples. After training
the classifier, we validated it on the test set, and obtained the “one-
vs-rest” ROC curve plot shown in Figure 7.9a. We also obtained an

7.5 conclusions 143

0.00 0.25 0.50 0.75 1.00
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

0 (AUC = 1.00)
1 (AUC = 1.00)
2 (AUC = 1.00)

(a) “One-vs-rest” ROC-AUC

0 1 2
Predicted label

0

1

2

Tr
ue

 la
be

l

0.99 0.014 0

0 1 0

0 0 1

(b) Confusion matrix

Figure 7.9: Classifier performance, computed on the Cassandra test set (0 =
normal; 1 = stress; 2 = fault).

Table 7.4: Performance metrics of the classifier, for each class of samples,
computed on the Cassandra test set (0 = normal; 1 = stress; 2 =
fault).

Class Accuracy Precision Recall F1 score

0 0.988 1.000 0.986 0.993

1 0.988 0.824 1.000 0.903

2 1.000 1.000 1.000 1.000

accuracy of 98.75%, corresponding to the confusion matrix shown in
Figure 7.9b. In Table 7.4, we also report other per-class performance
measures, computed in a “one-vs-rest” fashion.

7.5 conclusions

We proposed an ML-based strategy for intelligent cloud operations that
consists of: (i) detecting anomalous conditions of a cloud application
and (ii) identifying the corrective actions to be applied to faulty compo-
nents. Both steps rely on ML models trained on operational data. Step
(i) acts as a filter that allows the system to run the more expensive step
(ii) on higher-resolution data only when needed. Our approach was
validated using data exported from an OpenStack deployment. We
used a workload generator sending traffic to a load-balanced group
of Nova instances, resulting in CPU and disk I/O activity on the in-
stances, and injected different types of anomalies that we could recover
from, by applying precise corrective actions. For (i), we trained an
AD model (specifically, MADI [219]) on aggregated cluster data, such
that it could even generalize to variable-sized groups of instances. On
the respective test sets, for the synthetic application, we obtained a

144 intelligent cloud operations

ROC-AUC of 97% and an accuracy of 90.34%, while, for Cassandra, we
obtained a ROC-AUC of 94% and an accuracy of 87.50%. For (ii), we
trained a supervised classification model, based on XGBoost [38], on
a combination of spatially-aggregated and raw instances data, such
that it could better compare the behavior of an individual instance
with respect to its group, and associate a corrective action to instances
separately. On the respective test sets, for the synthetic application, we
obtained an accuracy of 96.15%, while, for Cassandra, we obtained an
accuracy of 98.75%.

Part IV

Q UA L I T Y- AWA R E D E V O P S

In this part, we shift our focus from operations to also con-
sider the development part of the DevOps cycle. We propose
a novel approach, based on LLM, to analyze declarative
deployment code in order to automatically detect possible
architectural problems, and provide QA-related recommen-
dations.

8
L A R G E L A N G UA G E M O D E L S F O R
D E C L A R AT I V E D E P L O Y M E N T C O D E
A N A LY S I S

8.1 introduction

During the last decade, cloud technologies have been evolving at an
impressive pace, such that we are now living in a cloud-native era where
developers can leverage on an unprecedented landscape of advanced
services to build highly-resilient distributed systems, providing com-
pute, storage, networking, load-balancing, security, monitoring and
orchestration functionality, among others. To keep up with this pace,
development and operations practices have undergone very significant
transformations, especially in terms of improving the automations that
make releasing new software, and responding to unforeseen issues,
faster and sustainable at scale. The resulting paradigm is nowadays
referred to as DevOps [4].

QA is obviously a fundamental part of the DevOps cycle. How-
ever, the complexity of modern cloud frameworks and services makes
a developer’s job unprecedentedly hard. On top of that, develop-
ment teams are typically composed by persons with very diverse
backgrounds, and varying levels of expertise. As a team, this makes
adhering to best practices everything but straightforward, because
transferring knowledge from experts to novice members takes a lot of
time. Therefore, in line with the DevOps philosophy, automating this
process as much as possible seems the right approach. Indeed, there
exist a vast amount of tools that provide (static) code analysis function-
ality, and that can be seamlessly integrated in existing CI/CD pipelines
to address QA concerns. However, given the impressive abundance of
data generated throughout the DevOps cycle, applying ML techniques
in this context seems a promising path towards providing developers
with high-quality feedbacks and recommendations, automatically.

When developing a cloud-native application, the definition of its
deployment plays a fundamental role. Modern cloud management
frameworks, like Kubernetes and OpenStack (two of the most well-
known open-source and widely adopted projects), typically offer at
least an IaC solution (e.g., deployment manifests and Heat templates,
respectively). Such a mechanism allows for specifying the desired

147

148 large language models for declarative deployment code analysis

properties and the relations among the components of the deployment
via declarative code, that can then be versioned and treated in the
same way as the code that implements the actual application logic.
It is obviously very important to follow best practices when, e.g.,
specifying a Kubernetes deployment manifest, as failing to do so may
lead the applications to experience many types of issues [132, 159].
Static analysis tools for manifest files, like for instance Polaris1 or
Kubesec,2 allow for mitigating the risk that such issues may actually
occur. However, they are typically designed to run relatively simplistic
checks, that do not take into account complex design patterns.

In this work, we propose an approach to declarative deployment
code analysis based on LLMs, that can automatically provide QA-
related recommendations to developers, based on established best
practices and design patterns, building on top of standard (static)
analysis approaches. To the best of our knowledge, our approach is
novel, in the sense that we did not find in the research literature any
other proposal to specialize LLMs on deployment code to specifically
address QA-related concerns. Also, while we mainly focus on deploy-
ment code, it is interesting to consider that this information could
eventually be integrated with the other available data sources in the
DevOps cycle to consider a more comprehensive picture, like: version
control system history, code review feedbacks, tests measurements
and logs, etc.

8.1.1 Chapter Organization

This chapter is organized as follows. Section 8.2 provides an overview
of the existing related works in the space of code analysis with LLMs.
Section 8.3 presents the main features of our proposed approach and
the prototype ML pipeline we implemented. Section 8.4 presents the
results of our preliminary validation on a set of Kubernetes manifest
files exported from a Nokia Bell Labs (NBL) repository. Section 8.5
concludes the chapter and provides indications for future research
directions.

8.2 related work

In this work, we propose the use of NLP models to detect architectural
smells and issues in declarative deployment code. Indeed, LMs are
nowadays extensively used in practice to analyze and generate source
code [143, 215]. In particular, we focus on LLMs, that are models
based on the transformer architecture [240], consisting of millions, or
even billions, of learnable parameters. During the last years, in fact,
this class of models has been gaining a lot of attention from the

1 https://www.fairwinds.com/polaris

2 https://kubesec.io/

https://www.fairwinds.com/polaris
https://kubesec.io/

8.2 related work 149

research community, due to their fascinating emergent properties like
unsupervised multitask [186] and few-shot [22] learning.

In [266], the authors propose an LLM-based approach to automati-
cally fix textual and semantic merge conflicts in a version-controlled
code-base. Their approach leverages entirely on few-shot learning,
and exhibits remarkable performance without requiring fine-tuning.
In [35], the authors propose Codex, a GPT [185] model extensively
fine-tuned on open-source code retrieved from GitHub, that exhibits
remarkable performance in generating source code when prompted
with the corresponding textual description. Similarly, in [91], the au-
thors propose an LLM-based approach to code generation that takes
into account both the code already written by developers and their
intent, expressed in plain natural language. In particular, such model
is empirically validated on Python code generation for data science
applications. In [217], KerasBERT is proposed. Such model is trained
on a considerable amount of code examples, notebooks, blog posts
and forum threads regarding the Keras deep learning framework, to
provide an automatic tool to analyze and generate documentation
for related code snippets. The authors of [99] propose Jigsaw, an ap-
proach based on program synthesis techniques, to post-process the
source code generated by specialized LLMs in order to provide quality
guarantees.

The work presented in [231] demonstrates how LLMs can also be
used for detecting software vulnerabilities. Indeed, the authors pro-
vide the results of an empirical analysis, conducted on vulnerability
datasets for C/C++ source code, showing how LLMs outperform other
neural models like those based on LSTMs and GRUs. Similarly, the
authors of [61] propose a malware detection mechanism that leverages
on a combination of LSTM and LLMs to discover malicious instructions
in assembly code.

In [141], the authors investigate on the reasons behind the emergent
capability of LLMs to learn code syntax and semantic. In particular,
they rely on ASTs and static analysis to deeply understand the role
that the self-attention mechanism plays in learning the dependencies
among code tokens. On a related note, in [246], the authors approach
the problem of interpreting pre-trained LLMs for code analysis. Re-
markably, their results show that, in a transformer architecture, the
code syntax structure is typically preserved in the intermediate rep-
resentations of each layer and, as a result, that such LLMs are able to
induce ASTs.

The authors of [208] empirically demonstrated how LLMs can be
successfully used to generate, and explain, code for programming
exercises that is both novel and reasonable. On the other hand, in [223],
the authors provide evidence that the same type of models heavily
rely on contextual cues (e.g., natural-language comments, or function

150 large language models for declarative deployment code analysis

names) and that, by masking such information, their summarization
performance drops significantly.

The works referenced in this section generally use LLMs to either
provide general-purpose code generation solutions (e.g., [35, 91]), or
realize code analysis tools for specific programming languages and/or
frameworks (e.g., [217, 231]). However, none of them proposes an
approach to detect, or recommend, the usage of specific best-practices
and high-level design patterns, that are very important for QA. Further-
more, none of the aforementioned works specializes LLMs to analyze
declarative deployment code that, nowadays, is ubiquitously used
to configure modern cloud environments. Therefore, we believe our
work addresses a very relevant problem and constitutes an innovative
solution.

8.3 proposed approach

Our work focuses on the analysis of Kubernetes deployment manifest
files. In particular, our goal is to provide non-expert developers with
recommendations regarding the (mis-)usage of relevant Kubernetes
architectural patterns (e.g., the Operator pattern). We identified a set of
fundamental features that such a tool should have in order to achieve
our goal:

• F1: Classifying good- and bad-quality manifests.

• F2: Explaining which characteristics contribute the most to the
outcome of the classification.

• F3: Pinpointing design smells and issues, and possibly recom-
mending a suitable fix.

• F4: Leveraging on the relations specified among the components
to detect highly complex architectural patterns.

We assume that a (possibly small) set of annotated manifest examples
is available. This is reasonable to assume in a scenario where DevOps
teams conduct code reviews, such that useful annotations could even
be automatically extracted from the platform used for such activities.
Therefore, implementing F1 can be approached as a supervised learning
problem. In this context, the notions of good and bad can be interpreted
in many ways, also according to the nature of the available annotations.
An expert developer can generally tell “at a glance” whether a manifest
seems to be poorly written or not. Although, there are possibly many
reasons why a specific manifest is problematic. Therefore, it may not
be actually useful to treat this problem as a simple binary classification
task. Indeed, both F2 and F3 are concerned with augmenting the quality
of the recommendations. However, while F2 refers to the possibility to
apply specific techniques [7, 92, 230] to better interpret the output of

8.3 proposed approach 151

Kubernetes
Manifest
Collection

Feature
Engineering

Clustering Clustering
Assessment

Architectural
Patterns
Detection

Figure 8.1: The proposed ML pipeline.

an arbitrary model, F3 entails that such a model should be able to solve
a more complex task than a simple classification, in order to provide
the end user with fine-grained recommendations. Implementing both
F2 and F3 inherently requires a trade-off to be made between the
interpretability and the power/complexity of the underlying ML model.
Similarly, F4 is concerned with endowing the model with the capability
of detecting more convoluted design patterns, that are not easily
discoverable when looking at resources in isolation. Given the set of
desired features, and the fact that the input data mainly consist in
source code (or text, in general), we believe that LLMs are the most
suitable tools to address our problem.

8.3.1 ML Pipeline

In order to realize the tools described in Section 8.3, we propose the
ML pipeline that is synthetically described in Figure 8.1. Nowadays,
Kubernetes is one of the most used cloud orchestration framework,
and definitely among the most important projects backed by the CNCF.
Therefore, it is very easy to find large open-source collections of high-
quality deployment manifest files, like by considering those from CNCF

graduated and incubating projects. On top of that, we have access to a
vast number of (confidential) deployment manifests developed by NBL

research teams and business units for their products.
In this case, the main data quality-related problem is represented

by the scarcity of annotations that could be used to train supervised
ML models. To overcome this limitation, we propose to use an (unsu-
pervised) clustering approach to try and detect significant similarities
among the manifests. For instance, it is possible to use HDBSCAN [28],
a density-based clustering algorithm that uses a hierarchical approach
to discover clusters with non-uniform densities. Unlike the majority
of standard clustering approaches, HDBSCAN does not have to be
provided with a number of desired clusters to be discovered, and can
also automatically detect clusters with non-convex shapes and outliers.
Such features make HDBSCAN very versatile and suitable for a diverse
range of applications. However, in general, clustering approaches are
not designed to handle textual data directly, so it is crucial to es-
tablish a proper feature engineering process such that manifests are
transformed into appropriate feature vectors. For instance, this can

152 large language models for declarative deployment code analysis

be accomplished by using standard tf-idf scores [189] that, for each
document, provide an indication of the relevance of each word in the
vocabulary. Specifically, tf-idf considers both the term frequency, with
respect to the specific document, and the inverse document frequency,
with respect to the whole set of documents (i.e., the corpus). Such com-
ponents assign more relevance to terms appearing more frequently at
document-level, and to those appearing less frequently at corpus-level,
respectively. In this way, locally-meaningful terms tend to outweigh
those that are extremely frequent, and that generally carry less infor-
mation. Although there exists more sophisticated one, this technique
is still a very efficient approach to project a corpus onto a vector space,
and is often sufficient to provide an overview of how the documents
are related to each other. Given that the resulting vector representa-
tions are typically very high-dimensional, the results of the clustering
process require embedding techniques to be properly visualized. For
instance, it is possible to use t-SNE [142], a dimensionality-reduction
algorithm that is designed to project high-dimensional spaces onto 2

or 3 dimensions, while retaining pair-wise spatial relations among the
data points as much as possible. This approach works by estimating
a probability distribution over pairs of data points in the original
space, and then by generating a similar distribution in the target space,
minimizing their Kullback-Leibler divergence via gradient descent.
While this process is very computational intensive with respect to
similar approaches, the capability of t-SNE to preserve local structures
of the original data makes it a very effective tool for exploratory high-
dimensional data visualization. In this way, an expert can manually
inspect some representatives from the discovered clusters and provide
initial annotations.

Depending on the actual task to be solved, the annotated data
must then be transformed in a way that they can be consumed by
a supervised learning model. In the case of LLMs, there exist two
main strategies that can be used to solve a supervised learning task:
fine-tuning or few-shot learning. LLMs generally require a very large
amount of resources to be trained, due to their impressive size, that
directly affects their computational complexity, and the (humongous)
amount of textual training data needed to make them exhibit the
properties they are famous for. Therefore, it is typically too expensive
to train them from scratch. However, provided that a checkpoint of
the weights of such a model is publicly available, it is still possible
to benefit from them to solve specific tasks, even though the original
training process was optimized for another type of task and/or was
conducted on textual data unrelated with the application domain.
Indeed, one could choose the fine-tuning option, that is an example
of transfer learning, and use the original model as the initial part of
a bigger architecture. The remaining part is typically optimized for
solving the problem at hand (e.g., a sequence classification task), and

8.4 preliminary experiments 153

trained using domain-specific textual data. Such an approach may
generally obtain impressive performance even though the amount of
available data is small. On the other hand, LLMs trained for causal
language modeling (i.e., open-end text generation) are also capable of
few-shot learning. This property consists in such a model being able
to extrapolate how to solve a given learning task, provided that its
description and a few input-output examples can be specified as a
textual prompt (see the examples provided in Appendix A). In this
way, one does not even need to develop (and allocate resources for) a
training pipeline, as the LLM is only used in inference mode.

8.4 preliminary experiments

In order to validate the ideas presented in Section 8.3, we developed
some prototypes of the different parts of the proposed pipeline, and
conducted some preliminary experiments considering a simplified
version of our problem. Specifically, we gathered a set of ~100 mani-
fest files from internal NBL projects and ran our clustering pipeline on
them. While our initial intent was to try and see whether the clustering
output exposed interesting similarities that could be used to obtain a
tentative data labeling, this step was particularly useful to filter out
some noise from our data. Figure 8.2a shows our initial clustering
results. As described in Section 8.3.1, we obtained tf-idf -based repre-
sentations of the manifests and used PCA to get the top-10 dimensions,
to limit the amount of data to be fed to HDBSCAN. After using t-SNE
to project the clustered vectors in a 2D space, we observed that our
data included a (strangely) compact and well-delimited cluster of
manifests (in the top-right corner). Upon inspecting the corresponding
manifests, we realized that their contents were not adding valuable in-
formation to our analysis. Figure 8.2b reports the result we obtained by
re-running the clustering pipeline after filtering out the uninteresting
manifests.

Given the limited dimension of our data sample, we were not able to
use the clustering results to derive interesting annotations at this stage.
Therefore, we decided to run Polaris on our manifests and considered
the output of the (boolean) cpuLimitsMissing check, that reports
whether CPU usage limits were correctly specified for Kubernetes
resources like Deployment and Service. In this way, we were able
to quickly obtain an annotated dataset, that allowed us to reduce
our problem to a binary sequence classification task and conduct
some experiments with LLMs. Given the impressive computational
complexity of such models, we accelerated our experiments using the
following GPUs:

• NVIDIA Quadro RTX 6000 (Turing), 24 GB memory;

• NVIDIA Quadro RTX 8000 (Turing), 48 GB memory.

154 large language models for declarative deployment code analysis

(a) before

(b) after

Figure 8.2: Results of the clustering process, before and after filtering out the
uninteresting manifest files. The clustered manifests are projected
onto a 2D space by using t-SNE (i.e., the axes do not directly refer
to any specific feature).

8.4 preliminary experiments 155

In order to do that, we extensively leveraged on the HuggingFace trans-
formers library [254] and the pre-trained model checkpoints available
on the associated model hub.3 Essentially, we focused our experiments
on two LLMs: GPT-2 (medium)4 and GPT-J-6B.5

The medium-sized version of GPT-2 [186], consists of 355M pa-
rameters, and accepts a maximum of 1024 tokens as input. During
our few-shot learning tests, such an input token limit allowed us to
provide just a couple of examples, as we had to save enough space for
the actual input to be processed (see Appendix A). Furthermore, given
that the kind of outputs we obtained were not related in any way to
the labels we specified in the prompt, we concluded that this model
is not particularly suitable for declarative code analysis via few-shot
learning. This is likely due to the fact that the model was trained on
English natural language only, and probably never observed any code
example. However, as we were able to run fine-tuning jobs even on
our smaller GPU, we believe that this model could be easily fine-tuned
on a bigger declarative code training set and yield significant results,
similarly to what done in [91].

As the name suggests, GPT-J-6B is instead a 6B parameters model,
inspired by the success of GPT-2/GPT-3, developed and open-sourced
by EleutherAI.6 Furthermore, such model is trained on The Pile [76],
an 800+ GB open dataset containing a very diverse set of textual
documents, including source code. Given the significantly bigger
size and input token limit (2048), our few-shot learning tests were
rather successful. We observed that the model was indeed able to
understand the specified classification task and output a correct label
in most of the cases. Furthermore, we did not have any problem with
running the float16 revision of the model on our smaller GPU, as
the model took only ~12 out of the available 24 GB of memory. It
is also quite impressive that we obtained comparable results using
the 8-bit quantized version of the same model, that almost halves the
memory requirements, by leveraging on a recently-added feature of
the transformers library, whose details are described in [62]. However,
using the few-shot learning strategy still imposes great limitations
in terms of the amount of training examples that the model can
observe. This way, the ability of the model to generalize is in turn quite
limited. At the time of writing, the 8-bit quantized version seems not
to support fine-tuning. Therefore, for our fine-tuning tests, we used the
float16 revision. Although, to avoid getting CUDA out-of-memory
errors on our GPU setup, it was necessary to use DeepSpeed [195], a
framework that leverages on Zero Redundancy Optimizer (ZeRO) [190,
191] to optimize model training memory footprint, either on a single or
multiple GPUs, at the expense of speed. Setting up effective fine-tuning

3 https://huggingface.co/models

4 https://huggingface.co/gpt2-medium

5 https://huggingface.co/EleutherAI/gpt-j-6B

6 https://www.eleuther.ai/

https://huggingface.co/models
https://huggingface.co/gpt2-medium
https://huggingface.co/EleutherAI/gpt-j-6B
https://www.eleuther.ai/

156 large language models for declarative deployment code analysis

jobs, and properly assessing the resulting model performance, is still
a work in progress. Contrary to few-shot learning tests, they require
more, and better annotated, input data then the limited sample we
were able to generate from one of the repository of internal projects at
NBL.

8.5 conclusions

We proposed a method for analyzing declarative deployment code
(specifically, Kubernetes deployment manifest files), such that non-
expert developers can benefit from design patterns recommendations.
To the best of our knowledge, our proposed approach is a novel
way to address QA-related issues by specializing LLMs on declarative
deployment code analysis. We conducted a preliminary validation of
our ML pipeline on a simplified version of the problem, that shows
that LLMs are indeed a viable and promising option for achieving our
end goal.

Part V

C O N C L U D I N G R E M A R K S

9
C O N C L U S I O N S

Over the last decade, an ever-growing number of organizations have
been adopting cloud computing, either private or public, to develop
many diverse types of applications and services, with varying levels of
criticality. Therefore, it is fundamental for service providers to make
sure they are up to the agreed level of performance, and to continu-
ously improve their infrastructures in order to quickly react to, and
possibly anticipate, system disruptions. However, the traditional over-
provisioning strategies, used by service providers to ensure that SLAs
are not breached by components failures and/or workload fluctua-
tions, are inherently cost- and energy-inefficient. Furthermore, they do
not provide any actual guarantee when facing unforeseen anomalous
events that, due to the complex interactions existing in this type of
environments, can quickly propagate and affect large portions of the
entire systems. Therefore, for the operation teams that administrate
such huge and complex systems, it is crucial to introduce novel and
more sophisticated analysis techniques, that can enable a more proac-
tive approach to data center operations. The unprecedented availability
of data, collected at each level of a modern cloud infrastructure (e.g.,
physical hosts, networking equipments, virtualized instances, applica-
tions, etc.), indeed allows for adopting incredibly effective data-driven
methods like, for instance, those proposed in the ML research field.
Such techniques are expected to be extremely effective at filling the
gap left by relying only on traditional model-driven approaches that,
alone, quickly become inadequate at dealing with the complexity of
the interactions among system components, at scale.

The various works presented in this thesis demonstrate the ef-
fectiveness of data-driven techniques in enabling more intelligent,
and autonomous, data center operations. For instance, we addressed
several problems that represent critical pain-points of NSPs. Indeed,
in Chapters 3 and 4, we presented our proposals for implementing
high-performance anomalous VNF behavior detection [50, 125, 126].
Such solutions aim at supporting human operators by providing ac-
tionable feedbacks that can complement their own analysis, offering
a more comprehensive view of the evolution of the health status of
the monitored system over an extended period. We used SOMs to
implement the proposed approaches, such that they are sufficiently

159

160 conclusions

light-weight, computationally-wise, and do not require labelled data
to classify anomalies. To further improve processing time, we also
contributed our own, open-source, GPU-accelerated implementation
of SOMs [148]. While validating this work, we identified some open
questions that still need additional investigations. For instance, the
proposed AD technique has a number of hyperparameters (e.g., SOM

grid size, parameters, and thresholds described in Section 3.3) that
have to be set. A grid search can be used for this purpose, but it re-
quires a non-negligible processing time, as possible configurations can
easily grow in the range of tens or hundreds. In order to select the best
SOM hyperparameters, the various analysis runs should be compared
with one another using an automated and quantitative assessment
method. This cannot be simply done based on the SOM quantiza-
tion error, as it would decrease increasing the SOM size, driving the
choice towards excessively large networks. It would be interesting
to investigate on using average silhouette width [201] to drive this
type of search. Also, another promising path is to combine our ap-
proach with DL methods for time-series classification [98, 107]. An
interesting approach could be using a SOM to produce a more compact
and discrete representation of a time-series autoencoder, as presented
in [71]. In Chapter 5, we presented our work on time-series forecasting
techniques applied to NFV operational metrics [49]. Such methods are
particularly important for NSPs, as they can be used to estimate the
expected resource utilization over a specific time-horizon, offering a
guide for capacity-planning activities. We provided a thorough analy-
sis of several, diverse, time-series forecasting algorithms, ranging from
classical statistical models to more sophisticated neural architectures,
highlighting their advantages and disadvantages, both in terms of
accuracy and operational costs. Our analysis can be easily extended by
considering additional datasets extracted from the Vodafone NFV data
centers, possibly increasing the number of considered metrics. Also,
a useful extension would be to design improved ML techniques that
can process additional information besides the operational metrics
to be forecasted like, e.g., rough traffic volume forecasts manually
produced by internal analysts quarterly. On a related note, it would be
interesting to investigate the applicability of topology-aware predic-
tion techniques [157], that look quite promising in the context of NFV

metrics forecasting. The aforementioned tools for AD and forecasting
have been developed and validated using real data, and according
to actual operational needs, of the Vodafone network operator. Such
collaboration highlights the relevance of our contributions to service
providers that operate large-scale cloud infrastructures. Indeed, our
tools are now actively used in production environments to support
the daily activities of the Vodafone NVI operations team.

Another stream of works presented in this thesis focused on more
general, and fundamental, problems in cloud operations. For in-

conclusions 161

stance, in Chapter 6, we presented our approach to predictive auto-
scaling [123]. Elasticity-control is a long-standing issue in the cloud
computing space but, nonetheless, it is still a very active, and inter-
esting, research area. Remarkably, while a humongous amount of
diverse data-driven approaches have been proposed during the years,
we observed that very few provided actual, open-source, implemen-
tations. This is not only a huge problem in terms of reproducibility,
but also contributes to such data-driven techniques not being easily
transferrable from research labs to actual production environments.
Therefore, we decided to focus our efforts on designing a general
architecture that could easily enable the usage of advanced predictive
analytics in elasticity-control loops. We implemented our approach
as an open-source extension to the Monasca monitoring framework
for OpenStack. Such an approach allows cloud orchestrators to apply
time-series forecasting techniques to estimate the evolution of relevant
metrics, and take decisions based on the predicted state of the sys-
tem. Human operators are able to fully customize what underlying
ML models are used and how the monitoring data are ingested, to
realize robust, and light-weight, elasticity-control policies. Further
extensions are possible to better integrate our proposed forecasting
component within OpenStack. For instance, one could provide a num-
ber of standard predictor implementations that can easily be deployed
by an operator—that is not necessarily an ML expert—through the
OpenStack CLI. Regarding the orchestration logics, additional ML tech-
niques (e.g., RL) could be explored to experiment with alternative
scaling policies, rather than only relying on the threshold-based ap-
proach. However, for them to be dependable, learning-based policies
cannot be delivered as black-boxes. Therefore, it would be useful to
also provide human operators with the ability to query the models to
get explanations about their outputs [135, 199], such that they can trou-
bleshoot and fix possible erroneous behaviors. Regarding the model
training, a useful extension would be to provide means for automatic
periodic re-training on fresh data and concept drift detection, to trigger
model updates whenever the current version starts exhibiting per-
formance drops, e.g., as the authors of [111] did. In this regard, our
architecture would certainly benefit from integrating continual learn-
ing techniques [46]. It would be interesting to also conduct a deeper
validation of our architecture by considering additional data sets from
real production workloads. In this way, it would be possible to address
scalability issues that might arise in massive deployment scenarios,
with thousands of predictive elasticity loops that control different
services, possibly throughout a Cloud-Fog-Edge architecture [154]. In
this regard, a promising possibility is to leverage on Monasca’s scal-
able analytics processing architecture, that is based on Apache Storm.
In Chapter 7, we presented our work on intelligent operations (un-
published work, currently under review) where, with respect to [123],

162 conclusions

we broadened our scope and considered, beside elasticity, a set of
additional anomalous scenarios that operations teams typically face
during their activities. Indeed, our approach offers to human operators
a way to embed their experience into a model able to recommend the
most suitable course of action, given a particular observed unhealthy
condition of the monitored system. The approach consists in an ML

pipeline, composed by two models in sequence, to detect anomalous
patterns, and recommend specific corrective actions that proved to
be successful, in the past, at restoring normal conditions. Mapping
anomalous scenarios to the corresponding corrective actions can be
done, e.g., by correlating the impressive amount of information stored
in issue tracking systems and/or post-mortem documents to system-
and application-level measurements. Remarkably, in this way, it is pos-
sible to implement very effective autonomous operations frameworks
on top of supervised learning models (e.g., GBTs) that, in general,
exhibit better performance than their unsupervised counterparts, in
exchange for having to deal with data labelling issues. Also in this
case, we validated our proposed approach on OpenStack, also using a
Cassandra deployment as a test application, to highlight the relevance
of our work for modern data center operations. It would be useful to
conduct a more thorough study to better (quantitatively) compare our
approach to existing alternatives. In this research area, such an activity
is rendered particularly difficult by the general lack of open-source
implementations readily integrated within frameworks like OpenStack.
For the classification, we opted for supervised-learning. However, it
would be interesting to apply unsupervised or weakly-supervised
approaches to our problem, to possibly weaken the dependency on
labelled data. Also in this case, a very useful extension would be
to integrate automatic model retraining, to counteract the disastrous
effects of concept drift, and model explainability techniques in the
end-to-end pipeline. Indeed, guaranteeing a sufficient level of robust-
ness to fluctuations and interpretability is of utmost importance, as
cloud operations are a scenario where any type of automation should
be highly dependable and auditable. Furthermore, packaging our
approach as a proper OpenStack service would be required to offer
a reliable, open-source, solution for intelligent cloud operations to a
wide audience.

Finally, in Chapter 8, we presented an additional stream of work,
where our focus shifted from operations to also include the development
part of the DevOps cycle. Indeed, our work consists in an approach to
specialize LLMs for declarative deployment code analysis [127]. This
work was conducted in collaboration with Nokia Bell Labs (NBL), that
provided us with a real problem faced by their multidisciplinary re-
search teams, and a collection of Kubernetes manifest files exported
from a repository of internal projects. Our goal was to create a tool
to support research teams in their QA activities, such that they can

9.1 future research directions 163

produce robust deployment specifications. In general, this is far from
being trivial, and it is also particularly time-consuming for domain
experts to enable every member of the team, with potentially very
diverse expertise, to provide high-quality contributions. We developed
a prototype of our proposed ML pipeline, based on LLMs, to auto-
matically provide QA-related recommendations to developers, such
that they can benefit of established best practices and design patterns.
Our approach was empirically evaluated on the collection of Kuber-
netes manifest files provided by NBL. It would be useful to extend the
proposed approach beyond recommendations that can be obtained
with standard static analysis tools (e.g., Polaris), by considering more
convoluted design patterns and architectural smells [31, 161], that
involve a potentially large number of Kubernetes resources, possi-
bly taking into account also security concerns [183]. In these regards,
framing the problem as an extractive question-answering task seems a
promising avenue. However, it would also be interesting to investigate
the feasibility of a hybrid approach that combines LLMs with other
types of models that can leverage on existing structures (e.g., relations
among Kubernetes resources) in the input data, like GNNs [10]. Also,
it would be interesting to conduct a more thorough comparison of
different types of LLMs and their usage modes (e.g., few-shot learning
vs fine-tuning vs re-training). On a related note, exploring methods for
deriving more compact representations of the inputs seem a promising
avenue to work around the maximum input tokens limit (e.g., YAML
vs JSON encoding; optimize tokenizers for declarative code, similarly
to the approach used for the natural language-guided programming
model proposed by [91]). As Kubernetes is not the only cloud comput-
ing framework that leverages on declarative code for its configuration,
it would be useful to generalize our approach to other forms of deploy-
ment configuration files like, for instance, OpenStack HOTs. Finally, we
believe it would be interesting to integrate active learning [198] tech-
niques into our approach, to facilitate expert architects with sharing
and embedding their knowledge into the underlying model.

9.1 future research directions

In what follows, we outline open problems and research directions
that are potentially interesting for future studies and applications on
data-driven operations support.

9.1.1 Anomaly Detection

AD is among the principal concerns of data center administrators and
also serves as enabling technology for many other types of analysis.
For instance, the capability of detecting suspect performance degrada-
tion is fundamental to the purpose of establishing automated proactive

164 conclusions

strategies to minimize the risk of SLAs violations [209]. In this space,
there is a continuous need for performant and scalable algorithms
that can tackle massive high-dimensional datasets [222] and return
feedbacks in a timely-manner, as usually such information are only
useful if one has enough time to react to such unexpected events [248].
Addressing this problem is also particularly challenging when deal-
ing with high-dimensional and possibly incomplete sequences [17].
Also, the inherent scarcity of outliers and lack of ground truth are
common issues in real scenarios, and makes the evaluation of such
algorithms very difficult. Therefore, in order to improve the current
state of the art, devising strategies for effective data augmentation
might be included among the research items of the project. In par-
ticular, methodologies based on unsupervised (or semi-supervised) ML

algorithms should be investigated. Such approaches are particularly
useful in case of lack of considerable amount of labeled data and
could be also implemented using active learning strategies, with the
additional benefit of incorporating experts feedbacks in the learning
process [56, 180].

DL enables the possibility of overcoming the shortage of data for
a specific task by transferring the knowledge obtained solving other
(related) tasks, i.e., transfer learning. Using such technique for time-
series data is a promising research avenue [68, 268]. For instance, in
the NFV context, it is not unusual to have the very same VNF (i.e., the
same components of the particular service chain) to be deployed with
(possibly very) different configurations in different data centers of
the same organization. In such cases, the related performance (e.g., in
terms of latency, throughput, etc.) can differ a lot from each other even
though the underlying infrastructure do not. It might be interesting
to investigate on the effectiveness of transfer learning in this scenario,
such that the operations of an individual data center can benefit from
the lessons learned by others.

9.1.2 Intelligent Auto-Scaling & Resource Allocation

Elasticity is among the primary reasons for the success of the cloud
computing paradigm. Auto-scaling is in fact one of the most attractive
features of a cloud environment, consisting in the capability of an
application to self-adapt its resources (both at hardware- and software-
level), in response to some changes in its operating conditions, to
optimize QoS [37, 184] while containing costs. Classical auto-scaling
mechanisms are typically based on prescriptive analytics and simple
automation rules that, for instance, kick in as soon as a predefined
threshold is reached. In this way, auto-scaling can be interpreted as a
MAPE (Monitoring, Analysis, Planning, and Execution) control prob-
lem [109], where each of the phases entails a number of challenges
that make it a particularly hard one. However, in order to establish

9.1 future research directions 165

proactive operations strategies it is desirable to leverage on reliable
predictive methods [204]. Such an approach is far from trivial to imple-
ment, as it should have an extremely low footprint, not to interfere
with the actual production workloads, while also being sophisticated
enough to find the optimal strategy to scale complex applications,
whose performance bottlenecks are not necessarily easy to identify.
The latter consideration especially applies when dealing with hetero-
geneous applications, for instance, made in part of some components
that are not scalable by design (e.g., relational databases), where acting
on the elastic components could be even useless towards the goal of
solving performance issues.

An important aspect that should be given more relevance when
designing auto-scaling mechanisms is the possibility that cloud ap-
plications can be deployed across many geographically distributed
data centers. This is nowadays a common practice in cloud-native
development to address latency-related concerns (i.e., trying to mini-
mize the response time by serving users requests in the closest data
center) or just to improve the overall reliability and availability of
the application, making it robust to data center-wide disruptions. In
this scenario, though, the auto-scaling problem inevitably grows in
complexity as a global coordination becomes necessary to take into
account also the reliability assessments [138] of the individual regions
in the search for an optimal scaling plan.

9.1.3 Root-Cause Analysis

RCA is among the toughest activities conducted by data center oper-
ators. It consists in investigating on the prime causes of failures and
anomalous behaviors of a system with the aim of formulating hypoth-
esis and (hopefully) explanations that can guide the implementation
of corrective actions and prevent similar faults to occur again. This
kind of tasks are extremely time-consuming, as they typically require
a deep understanding of the specific infrastructure, the services that
are deployed on it, and distributed systems in general. On top of that,
the typical scale of the systems an operator has to deal with, including
not only the components internal to the data center but also the many
others distributed at the edge [90, 237], and the incredibly fast pace at
which their configurations are updated make troubleshooting issues a
really complex task. Such task is progressively becoming impossible
to conduct with traditional tools (e.g., dashboards, threshold-based
alerts) and requires higher-quality automated support to process the
massive volume of diagnostic information [221]. Indeed, very often
what can be easily observed and fixed by human experts are only
symptoms of deeper and more complex problems, that can propagate
rather quickly and cripple a huge number of services, websites or
applications that depend on the faulty component. Events like this can

166 conclusions

potentially start a series of undesirable chain-reactions, that typically
result in diverse issues experienced by the customers. After recover-
ing from a system outage, even highly skilled engineers can take up
to several days to complete a post-mortem investigation, eventually
leading to meaningful insights on the actual causes. Then, deriving
the required fixes to be performed, automations to be developed, or
just the documentation to be produced is far from trivial, as things
change pretty fast in a production environment, and new issues can be
introduced by such interventions. Automated reasoning approaches
could drastically simplify this kind of tasks by providing operators
with reasonable hypothesis and explanations, thus reducing the scope
of the operations. Even better, if designed to operate in real-time in
response to detected anomalies [181, 255], they could also provide a
system with a certain degree of self-healing capabilities by triggering
automated remediation procedures.

An additional challenge to conducting effective RCA is posed by
the growing trend in designing applications according to MSA. Such
design choice offers many advantages when it comes to building
large-scale, resilient, flexible distributed systems but, in these cases,
performance issues are usually harder to locate and fix than in classical
monolithic architectures. This is usually due to the complex relations
and dependencies that exist among the individual services, that can
also be implemented using heterogeneous technologies and updated
with high frequency, independently of each other. In such scenario,
RCA of performance issues is obviously an extremely difficult task.
Many approaches rely on the applications to be properly instrumented
in order to leverage on logs and metrics [75, 261], but this can lead to
significant overhead. Others are based on causality graphs that model
the dependencies among back-end and front-end components [149,
249], that are totally ineffective when the issues have no impact on
the latter. With the aim of taking the best from both worlds, an ad-
ditional class of methods leverages on correlating application- and
system-level metrics to detect anomalous events and maintains a graph
that models the propagation of such anomalies across the services
(and their hosts) [20, 255], adapting very well to highly dynamic and
heterogeneous MSA.

Among the nastiest types of incidents that typically occur in a cloud
environment, from an RCA viewpoint, correlated and partial failures
deserve a (dis)honorable mention. Correlated failures usually originate
from faulty components that constitute a shared dependency among
multiple services or multiple instances of an individual service, such
as networking equipment or lower-level software modules. Indeed,
even replication, a common practice in Cloud Computing to enhance
services reliability and to implement high-availability, can be useless
at preventing such failures if the replicas themselves share such de-
pendencies, often hidden by the tons of layers that compose cloud

9.1 future research directions 167

infrastructures stacks. System outages deriving from this kind of fail-
ures are quite costly, both in terms of human effort needed to diagnose
and fix the issue and in terms of financial and reputation loss. There-
fore, there is a trend in shifting from a post-failure diagnosis to a more
proactive approach, aiming at preventing such events from occurring.
Although, current state-of-the-art methods approach this problem by
checking the reliability of a cloud service only before its deployment [36,
265], not at runtime. Real-time monitoring is essential, though, since
correlated failure are generally caused by events that occur very high
frequency in a cloud environment, such as network updates, software
updates, configuration changes, or even human intervention to fix
pre-existing issues [84, 134]. In order to provide real-time support, one
can leverage on the fact that typical updates only affect a small part
of services stack and, thus, the scope of the analysis can be restricted
(e.g., using differential fault graphs) and obtain a huge speed-up. Such
problem is still NP-hard, but its solution can also be effectively ac-
celerated by reducing it to a Boolean SAT problem, as proposed in
[264]. Once the root cause of the (potential) failure has been detected,
an improvement strategy should be recommended to reduce the risk
of such event taking place. This is crucial to the purpose of reduc-
ing human intervention to the bare minimum, since it can be highly
inefficient and error-prone. As one can expect, the accuracy of the
results coming from this kind of approaches is bounded by the quality
and the granularity of the data describing the dependencies among
system components and their respective reliability levels. In addition,
the fault graph model that is leveraged by these methods only takes
into account deterministic failures, excluding non-deterministic and,
in particular, partial ones. Indeed, the latter type of failures can be
very tricky to fix, and even to detect, as it typically consists of only a
restricted subset of the components of a given software not to be work-
ing properly, while the remaining parts do not exhibit any symptoms.
With respect to total failures, after which a system can be restarted
without any repercussion other than the downtime, partial failures can
lead to severe inconsistencies and data losses caused by the healthy
components not being aware of the others to be malfunctioning and
keeping on working according to their programming. According to the
results reported by [140]: 48% of the partial failures included in their
evaluation of open-source large-scale software systems was caused
by not (or poorly) handled errors; 48% of the failures caused some
processes to be stuck but not completely unresponsive such that, for
instance, health checking modules were keeping on responding in
time when queried by other components; 71% of the failures were
triggered by specific production environments conditions that were
not exposed by the testing in staging environments; 68% of the failures
required the faulty component to be manually repaired/restarted; the
median diagnosis time was 6 day and 5 hours. The latter result per-

168 conclusions

fectly demonstrates the share of human effort that has to be put when
conducting RCA in large-scale distributed systems.

A
F E W- S H O T L E A R N I N G E X A M P L E S

Listing A.1: Example of prompt used for few-shot learning.

apiVersion: apps/v1

kind: Deployment

spec:

replicas: 1

strategy: {}

template:

spec:

containers:

- image: aaa-docker-registry.com/image-name-aaa:0.1_dev

name: image-name-aaa

ports:

- name: http

containerPort: 80

protocol: TCP

resources:

requests:

cpu: 0.1

memory: 2Mi

limits:

cpu: 2

memory: 5Gi

restartPolicy: Always

status: {}

Answer = cpu_limit_positive

#####

apiVersion: apps/v1

kind: Deployment

spec:

replicas: 1

template:

spec:

containers:

- image: bbb-docker-registry.com/image-name-bbb:1.0.0

name: image-name-bbb

169

170 few-shot learning examples

Answer = cpu_limit_negative

#####

apiVersion: apps/v1

kind: Deployment

spec:

replicas: 1

strategy: {}

template:

spec:

containers:

- env:

image: aaa-docker-registry.com/image-name-ccc:0.1_dev

name: image-name-ccc

ports:

- name: dbapp

containerPort: 27017

protocol: TCP

resources:

requests:

cpu: 0.1

memory: 2Mi

limits:

cpu: 1

memory: 2Gi

restartPolicy: Always

status: {}

Answer = cpu_limit_positive

#####

apiVersion: apps/v1

kind: Deployment

spec:

replicas: 1

template:

spec:

serviceAccountName: image-name-ddd

securityContext:

{}

containers:

- name: image-name-ddd

securityContext:

runAsNonRoot: true

runAsUser: 1000

image: "ccc-docker-registry.com:9090/image-name-ddd:0"

imagePullPolicy: Always

stdin: true

tty: true

ports:

few-shot learning examples 171

- name: http

containerPort: 3000

protocol: TCP

resources:

{}

Answer = cpu_limit_negative

#####

apiVersion: apps/v1

kind: Deployment

spec:

template:

spec:

containers:

- image: aaa-docker-registry.com/image-name-eee:1.0.8-rc.5

name: image-name-eee

ports:

- containerPort: 8080

Answer = cpu_limit_negative

#####

apiVersion: apps/v1

kind: Deployment

spec:

replicas: 1

template:

spec:

containers:

- name: image-name-fff

image: aaa-docker-registry.com/image-name-fff:1.0.1

imagePullPolicy: IfNotPresent

ports:

- containerPort: 8080

- name: image-name-ggg

image: ddd-docker-registry.com/image-name-ggg:0.39.0

imagePullPolicy: IfNotPresent

ports:

- containerPort: 8181

Answer = cpu_limit_negative

#####

apiVersion: apps/v1

kind: StatefulSet

spec:

replicas: 1

podManagementPolicy: "Parallel"

172 few-shot learning examples

template:

spec:

containers:

- name: image-name-hhh

image: aaa-docker-registry.com/image-name-hhh:v1.3

imagePullPolicy: Always

ports:

- containerPort: 5944

resources:

requests:

cpu: 0.1

memory: 250Mi

limits:

cpu: 4

memory: 10Gi

readinessProbe:

exec:

command:

- ls

- /tmp

initialDelaySeconds: 5

periodSeconds: 60

restartPolicy: Always

Answer = cpu_limit_positive

#####

apiVersion: apps/v1

kind: Deployment

spec:

replicas: 1

template:

spec:

initContainers:

- name: config-data

image: aaa-docker-registry.com/image-name-iii:1.0.1

containers:

- image: aaa-docker-registry.com/image-name-jjj:1.0.1

name: image-name-jjj

ports:

- containerPort: 30306

resources:

requests:

cpu: 0.1

memory: 750Mi

limits:

cpu: 0.5

memory: 1Gi

readinessProbe:

exec:

command:

few-shot learning examples 173

- ls

- /tmp

initialDelaySeconds: 5

periodSeconds: 60

restartPolicy: Always

Answer = cpu_limit_positive

#####

B I B L I O G R A P H Y

[1] Sherif Abdelwahed, Jia Bai, Rong Su, and Nagarajan Kan-
dasamy. “On the application of predictive control techniques
for adaptive performance management of computing systems.”
In: IEEE Transactions on Network and Service Management 6.4
(2009), pp. 212–225. issn: 1932-4537.

[2] Subutai Ahmad, Alexander Lavin, Scott Purdy, and Zuha
Agha. “Unsupervised real-time anomaly detection for stream-
ing data.” In: Neurocomputing 262 (2017), pp. 134–147. issn:
0925-2312.

[3] Virgilio A. F. Almeida. “Capacity Planning for Web Services
Techniques and Methodology.” In: Performance Evaluation of
Complex Systems: Techniques and Tools. Ed. by Maria Carla
Calzarossa and Salvatore Tucci. Springer Berlin Heidelberg,
2002, pp. 142–157. isbn: 978-3-540-45798-5.

[4] Ahmad Alnafessah, Alim Ul Gias, Runan Wang, Lulai Zhu,
Giuliano Casale, and Antonio Filieri. “Quality-Aware DevOps
Research: Where Do We Stand?” In: IEEE Access 9 (2021),
pp. 44476–44489. issn: 2169-3536.

[5] Hamid Arabnejad, Claus Pahl, Pooyan Jamshidi, and Giovani
Estrada. “A Comparison of Reinforcement Learning Techniques
for Fuzzy Cloud Auto-Scaling.” In: 2017 17th IEEE/ACM Interna-
tional Symposium on Cluster, Cloud and Grid Computing (CCGRID).
IEEE, 2017, pp. 64–73. isbn: 978-1-5090-6611-7.

[6] Carlos Hernán Tobar Arteaga, Fulvio Rissoi, and Oscar Mauri-
cio Caicedo Rendon. “An adaptive scaling mechanism for man-
aging performance variations in network functions virtualiza-
tion: A case study in an nfv-based epc.” In: 13th International
Conference on Network and Service Management. 2017, pp. 1–7.

[7] Pepa Atanasova, Jakob Grue Simonsen, Christina Lioma, and
Isabelle Augenstein. “A Diagnostic Study of Explainability
Techniques for Text Classification.” In: Proceedings of the 2020
Conference on Empirical Methods in Natural Language Processing
(EMNLP). Association for Computational Linguistics, 2020,
pp. 3256–3274.

[8] Mohsen Attaran and Jeremy Woods. “Cloud computing tech-
nology: improving small business performance using the Inter-
net.” In: Journal of Small Business & Entrepreneurship 31.6 (2019),
pp. 495–519.

175

176 bibliography

[9] AWS. Summary of the Amazon DynamoDB Service Disruption
and Related Impacts in the US-East Region. 2015. url: https:
//aws.amazon.com/message/5467D2/.

[10] Davide Bacciu, Federico Errica, Alessio Micheli, and Marco
Podda. “A gentle introduction to deep learning for graphs.” In:
Neural Networks 129 (2020), pp. 203–221. issn: 08936080.

[11] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio.
“Neural Machine Translation by Jointly Learning to Align and
Translate.” In: 3rd International Conference on Learning Represen-
tations, San Diego, CA, USA, May 7-9. 2015.

[12] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neu-
ral Machine Translation by Jointly Learning to Align and Translate.
2016. url: http://arxiv.org/abs/1409.0473.

[13] Abul Bashar. “Autonomic scaling of Cloud Computing re-
sources using BN-based prediction models.” In: IEEE 2nd Inter-
national Conference on Cloud Networking. 2013, pp. 200–204.

[14] Nathan Bell and Jared Hoberock. “Thrust: A Productivity-
Oriented Library for CUDA.” In: GPU Computing Gems Jade
Edition. Morgan Kaufmann, 2012, pp. 359–371. isbn: 978-0-12-
385963-1.

[15] Jacob Benesty, Jingdong Chen, Yiteng Huang, and Israel Cohen.
“Pearson correlation coefficient.” In: Noise reduction in speech
processing. Springer, 2009, pp. 37–40.

[16] Christophe Bertero, Matthieu Roy, Carla Sauvanaud, and Gilles
Tredan. “Experience Report: Log Mining Using Natural Lan-
guage Processing and Application to Anomaly Detection.” In:
2017 IEEE 28th International Symposium on Software Reliability
Engineering (ISSRE). IEEE, 2017, pp. 351–360. isbn: 978-1-5386-
0941-5.

[17] Ane Blázquez-García, Angel Conde, Usue Mori, and Jose A.
Lozano. “A review on outlier/anomaly detection in time series
data.” In: (2020). url: http://arxiv.org/abs/2002.04236.

[18] Michael Borkowski, Stefan Schulte, and Christoph Hochreiner.
“Predicting Cloud Resource Utilization.” In: IEEE/ACM 9th
International Conference on Utility and Cloud Computing. 2016,
pp. 37–42.

[19] George EP Box, Gwilym M Jenkins, and Gregory C Reinsel.
Time series analysis: forecasting and control. Vol. 734. John Wiley
& Sons, 2011.

[20] Álvaro Brandón, Marc Solé, Alberto Huélamo, David Solans,
María S. Pérez, and Victor Muntés-Mulero. “Graph-based root
cause analysis for service-oriented and microservice architec-
tures.” In: Journal of Systems and Software 159 (2020), p. 110432.
issn: 01641212.

https://aws.amazon.com/message/5467D2/
https://aws.amazon.com/message/5467D2/
http://arxiv.org/abs/1409.0473
http://arxiv.org/abs/2002.04236

bibliography 177

[21] Eric A. Brewer. “Kubernetes and the Path to Cloud Native.”
In: Proceedings of the Sixth ACM Symposium on Cloud Computing.
Kohala Coast, Hawaii: Association for Computing Machinery,
2015, p. 167. isbn: 9781450336512.

[22] Tom Brown et al. “Language Models are Few-Shot Learners.”
In: Advances in Neural Information Processing Systems. Vol. 33.
Curran Associates, Inc., 2020, pp. 1877–1901.

[23] Sandro Brunner, Martin Blöchlinger, Giovanni Toffetti, Josef
Spillner, and Thomas Michael Bohnert. “Experimental Evalua-
tion of the Cloud-Native Application Design.” In: Proceedings
of the 8th International Conference on Utility and Cloud Comput-
ing. Limassol, Cyprus: IEEE Press, 2015, pp. 488–493. isbn:
9780769556970.

[24] Anna L Buczak and Erhan Guven. “A survey of data mining
and machine learning methods for cyber security intrusion
detection.” In: IEEE Communications Surveys & Tutorials 18.2
(2015), pp. 1153–1176.

[25] Rajkumar Buyya, James Broberg, and Andrzej M. Goscinski.
Cloud Computing Principles and Paradigms. Wiley Publishing,
2011. isbn: 9780470887998.

[26] Rajkumar Buyya, Kotagiri Ramamohanarao, Chris Leckie, Ro-
drigo N. Calheiros, Amir Vahid Dastjerdi, and Steve Versteeg.
“Big Data Analytics-Enhanced Cloud Computing: Challenges,
Architectural Elements, and Future Directions.” In: 2015 IEEE
21st International Conference on Parallel and Distributed Systems
(ICPADS). 2015, pp. 75–84.

[27] Rodrigo N. Calheiros, Enayat Masoumi, Rajiv Ranjan, and Ra-
jkumar Buyya. “Workload Prediction Using ARIMA Model and
Its Impact on Cloud Applications’ QoS.” In: IEEE Transactions
on Cloud Computing 3.4 (2015), pp. 449–458. issn: 2168-7161.

[28] Ricardo J. G. B. Campello, Davoud Moulavi, Arthur Zimek,
and Jörg Sander. “Hierarchical Density Estimates for Data
Clustering, Visualization, and Outlier Detection.” In: ACM
Transactions on Knowledge Discovery from Data 10.1 (2015), 5:1–
5:51. issn: 1556-4681.

[29] L. Canetta, N. Cheikhrouhou, and R. Glardon. “Applying two-
stage SOM-based clustering approaches to industrial data anal-
ysis.” In: Production Planning & Control 16.8 (2005), pp. 774–
784.

[30] Giuseppe Antonio Carella, Michael Pauls, Lars Grebe, and
Thomas Magedanz. “An extensible autoscaling engine (ae) for
software-based network functions.” In: 2016 IEEE Conference
on Network Function Virtualization and Software Defined Networks
(NFV-SDN). IEEE. 2016, pp. 219–225.

178 bibliography

[31] Andrés Carrasco, Brent van Bladel, and Serge Demeyer. “Mi-
grating towards microservices: migration and architecture
smells.” In: Proceedings of the 2nd International Workshop on Refac-
toring. Association for Computing Machinery, 2018, pp. 1–6.
isbn: 978-1-4503-5974-0.

[32] David M. Chan, Roshan Rao, Forrest Huang, and John F. Canny.
“T-SNE-CUDA: GPU-Accelerated T-SNE and its Applications
to Modern Data.” In: 2018 30th International Symposium on
Computer Architecture and High Performance Computing (SBAC-
PAD). IEEE, 2018, pp. 330–338. isbn: 978-1-5386-7769-8.

[33] Chris Chatfield. “The Holt-winters forecasting procedure.” In:
Journal of the Royal Statistical Society: Series C (Applied Statistics)
27.3 (1978), pp. 264–279.

[34] Dar-Ren Chen, Ruey-Feng Chang, and Yu-Len Huang. “Breast
cancer diagnosis using self-organizing map for sonography.”
In: Ultrasound in medicine & biology 26.3 (2000), pp. 405–411.

[35] Mark Chen et al. Evaluating Large Language Models Trained on
Code. 2021. url: http://arxiv.org/abs/2107.03374.

[36] Ruichuan Chen, Istemi Ekin Akkus, Bimal Viswanath, Ivica
Rimac, and Volker Hilt. “Towards Reliable Application De-
ployment in the Cloud.” In: Proceedings of the 13th International
Conference on emerging Networking EXperiments and Technologies.
ACM, 2017, pp. 464–477. isbn: 9781450354226.

[37] Tao Chen, Rami Bahsoon, and Xin Yao. “A Survey and Tax-
onomy of Self-Aware and Self-Adaptive Cloud Autoscaling
Systems.” In: ACM Computing Surveys 51.3 (2018), pp. 1–40.
issn: 0360-0300.

[38] Tianqi Chen and Carlos Guestrin. “XGBoost: A Scalable Tree
Boosting System.” In: Proceedings of the 22nd ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining.
ACM, 2016, pp. 785–794.

[39] Margaret Chiosi et al. Network Functions Virtualisation - Intro-
ductory White Paper. Tech. rep. 2012.

[40] Ioannis P. Chochliouros, Anastasia S. Spiliopoulou, Alexandros
Kostopoulos, Maria Belesioti, Evangelos Sfakianakis, Philippos
Georgantas, Eirini Vasilaki, Ioannis Neokosmidis, Theodoros
Rokkas, and Athanassios Dardamanis. “Putting Intelligence
in the Network Edge Through NFV and Cloud Computing:
The SESAME Approach.” In: Engineering Applications of Neural
Networks. Springer, 2017, pp. 704–715. isbn: 978-3-319-65172-9.

http://arxiv.org/abs/2107.03374

bibliography 179

[41] Dan Claudiu Ciresan, Ueli Meier, Jonathan Masci, Luca Maria
Gambardella, and Jürgen Schmidhuber. “Flexible, High Per-
formance Convolutional Neural Networks for Image Classifi-
cation.” In: Proc. 22nd International Joint Conference on Artificial
Intelligence (IJCAI), Barcelona, Catalonia, Spain, July 16-22, 2011.
Ed. by Toby Walsh. IJCAI/AAAI, 2011, pp. 1237–1242.

[42] Gregory Cohen, Saeed Afshar, Jonathan Tapson, and André
van Schaik. “EMNIST: an extension of MNIST to handwritten
letters.” In: CoRR abs/1702.05373 (2017).

[43] Brian F Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakr-
ishnan, and Russell Sears. “Benchmarking cloud serving sys-
tems with YCSB.” In: Proceedings of the 1st ACM symposium on
Cloud computing. 2010, pp. 143–154.

[44] Emilio Corchado and Bruno Baruque. “WeVoS-ViSOM: An
ensemble summarization algorithm for enhanced data visu-
alization.” In: Neurocomputing 75.1 (2012), pp. 171–184. issn:
09252312.

[45] Eli Cortez, Anand Bonde, Alexandre Muzio, Mark Russinovich,
Marcus Fontoura, and Ricardo Bianchini. “Resource Central:
Understanding and Predicting Workloads for Improved Re-
source Management in Large Cloud Platforms.” In: 26th Sym-
posium on Operating Systems Principles. ACM, 2017, pp. 153–167.
isbn: 978-1-4503-5085-3.

[46] Andrea Cossu, Antonio Carta, Vincenzo Lomonaco, and Da-
vide Bacciu. “Continual learning for recurrent neural net-
works: An empirical evaluation.” In: Neural Networks 143 (2021),
pp. 607–627. issn: 0893-6080.

[47] Tommaso Cucinotta. distwalk. 2022. url: https://github.com/
tomcucinotta/distwalk.

[48] Tommaso Cucinotta, Luca Abeni, Mauro Marinoni, Alessio
Balsini, and Carlo Vitucci. “Reducing Temporal Interference in
Private Clouds through Real-Time Containers.” In: 2019 IEEE
International Conference on Edge Computing (EDGE). IEEE, 2019,
pp. 124–131. isbn: 978-1-7281-2708-8.

[49] Tommaso Cucinotta, Giacomo Lanciano, Antonio Ritacco, Fabio
Brau, Filippo Galli, Vincenzo Iannino, Marco Vannucci, An-
tonino Artale, Joao Barata, and Enrica Sposato. “Forecasting
Operation Metrics for Virtualized Network Functions.” In: 2021
IEEE/ACM 21st International Symposium on Cluster, Cloud and
Internet Computing (CCGrid). 2021, pp. 596–605.

[50] Tommaso Cucinotta, Giacomo Lanciano, Antonio Ritacco,
Marco Vannucci, Antonino Artale, Joao Barata, Enrica Sposato,
and Luca Basili. “Behavioral Analysis for Virtualized Network
Functions: A SOM-based Approach.” In: Proceedings of the 10th

https://github.com/tomcucinotta/distwalk
https://github.com/tomcucinotta/distwalk

180 bibliography

International Conference on Cloud Computing and Services Sci-
ence. SCITEPRESS - Science and Technology Publications, 2020,
pp. 150–160. isbn: 978-989-758-424-4.

[51] Tommaso Cucinotta, Mauro Marinoni, Alessandra Melani, An-
drea Parri, and Carlo Vitucci. “Temporal Isolation Among
LTE/5G Network Functions by Real-time Scheduling.” In: Pro-
ceedings of the 7th International Conference on Cloud Computing
and Services Science. SCITEPRESS - Science and Technology
Publications, 2017, pp. 368–375. isbn: 978-989-758-243-1.

[52] Tommaso Cucinotta, Marco Vannucci, Antonio Ritacco, Gi-
acomo Lanciano, Antonino Artale, Joao Barata, and Enrica
Sposato. “A method of identifying and classifying the behavior
modes of a plurality of data relative to a telephony infrastruc-
ture for network function virtualization.” EP3772833A1 (Filed),
IT102019000014241A (Filed). 2021.

[53] Tommaso Cucinotta, Marco Vannucci, Antonio Ritacco, Gi-
acomo Lanciano, Antonino Artale, Joao Barata, and Enrica
Sposato. “A method of predicting the time course of a plurality
of data relative to a telephony infrastructure for network func-
tion virtualization.” EP3772834A1 (Filed), IT102019000014262A
(Filed). 2021.

[54] Laizhong Cui, F. Richard Yu, and Qiao Yan. “When big data
meets software-defined networking: SDN for big data and big
data for SDN.” In: IEEE Network 30.1 (2016), pp. 58–65. issn:
08908044.

[55] L. Dagum and R. Menon. “OpenMP: an industry standard
API for shared-memory programming.” In: IEEE Computational
Science and Engineering 5.1 (1998), pp. 46–55.

[56] Shubhomoy Das, Weng-Keen Wong, Thomas Dietterich, Alan
Fern, and Andrew Emmott. “Incorporating Expert Feedback
into Active Anomaly Discovery.” In: 2016 IEEE 16th Interna-
tional Conference on Data Mining (ICDM). IEEE, 2016, pp. 853–
858. isbn: 978-1-5090-5473-2.

[57] Ailing De, Yuan Zhang, and Chengan Guo. “A parallel adaptive
segmentation method based on SOM and GPU with applica-
tion to MRI image processing.” In: Neurocomputing 198 (2016),
pp. 180–189. issn: 09252312.

[58] Jeffrey Dean and Sanjay Ghemawat. “MapReduce: Simplified
Data Processing on Large Clusters.” In: Commun. ACM 51.1
(2008), pp. 107–113. issn: 0001-0782.

[59] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gu-
navardhan Kakulapati, Avinash Lakshman, Alex Pilchin,
Swaminathan Sivasubramanian, Peter Vosshall, and Werner
Vogels. “Dynamo: Amazon’s highly available key-value store.”

bibliography 181

In: ACM SIGOPS operating systems review 41.6 (2007), pp. 205–
220.

[60] Mehmet Demirci. “A survey of machine learning applications
for energy-efficient resource management in cloud computing
environments.” In: Proceedings - 2015 IEEE 14th International
Conference on Machine Learning and Applications, ICMLA 2015.
IEEE, 2016, pp. 1185–1190. isbn: 9781509002870.

[61] Denız Demırcı, Nazenın şahın, Melıh şirlancis, and Cengiz
Acarturk. “Static Malware Detection Using Stacked BiLSTM
and GPT-2.” In: IEEE Access 10 (2022), pp. 58488–58502. issn:
2169-3536.

[62] Tim Dettmers, Mike Lewis, Younes Belkada, and Luke Zettle-
moyer. LLM.int8(): 8-bit Matrix Multiplication for Transformers at
Scale. 2022. url: http://arxiv.org/abs/2208.07339.

[63] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina
Toutanova. “BERT: Pre-training of Deep Bidirectional Trans-
formers for Language Understanding.” In: Proceedings of the
2019 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, Vol-
ume 1 (Long and Short Papers). Association for Computational
Linguistics, 2019, pp. 4171–4186.

[64] Ignacio Díaz, Manuel Domínguez, Abel A. Cuadrado, and Juan
J. Fuertes. “A new approach to exploratory analysis of system
dynamics using SOM. Applications to industrial processes.”
In: Expert Systems with Applications 34.4 (2008), pp. 2953–2965.
issn: 0957-4174.

[65] Qingfeng Du, Yu He, Tiandi Xie, Kanglin Yin, and Juan Qiu.
“An Approach of Collecting Performance Anomaly Dataset
for NFV Infrastructure.” In: Algorithms and Architectures for
Parallel Processing. Ed. by Jaideep Vaidya and Jin Li. Springer
International Publishing, 2018, pp. 59–71. isbn: 978-3-030-05057-
3.

[66] Darrell Etherington. Amazon AWS S3 outage is breaking things for
a lot of websites and apps. 2017. url: http://tcrn.ch/2mpOdPd.

[67] Mostafa Farshchi, Jean-Guy Schneider, Ingo Weber, and John
Grundy. “Metric selection and anomaly detection for cloud op-
erations using log and metric correlation analysis.” In: Journal
of Systems and Software 137 (2018), pp. 531–549. issn: 0164-1212.

[68] Hassan Ismail Fawaz, Germain Forestier, Jonathan Weber, Lhas-
sane Idoumghar, and Pierre Alain Muller. “Transfer learning
for time series classification.” In: Proceedings - 2018 IEEE In-
ternational Conference on Big Data, Big Data 2018. IEEE, 2019,
pp. 1367–1376. isbn: 9781538650356.

http://arxiv.org/abs/2208.07339
http://tcrn.ch/2mpOdPd

182 bibliography

[69] Tom Fawcett. “An introduction to ROC analysis.” In: Pattern
Recognition Letters 27.8 (2006), pp. 861–874. issn: 0167-8655.

[70] Xincai Fei, Fangming Liu, Hong Xu, and Hai Jin. “Adap-
tive VNF Scaling and Flow Routing with Proactive Demand
Prediction.” In: IEEE Conference on Computer Communications.
Vol. 2018-April. 2018, pp. 486–494. isbn: 978-1-5386-4128-6.

[71] Vincent Fortuin, Matthias Hüser, Francesco Locatello, Heiko
Strathmann, and Gunnar Rätsch. “Som-Vae: Interpretable dis-
crete representation learning on time series.” In: 7th Interna-
tional Conference on Learning Representations, ICLR 2019. 2019.

[72] Christian W Frey. “Monitoring of complex industrial pro-
cesses based on self-organizing maps and watershed trans-
formations.” In: 2012 IEEE International Conference on Industrial
Technology. IEEE. 2012, pp. 1041–1046.

[73] Jerome H. Friedman. “Greedy Function Approximation: A
Gradient Boosting Machine.” In: The Annals of Statistics 29.5
(2001), pp. 1189–1232. issn: 0090-5364.

[74] Juan J Fuertes, Manuel Domìnguez, Perfecto Reguera, Miguel
A Prada, Ignacio Dìaz, and Abel A Cuadrado. “Visual dynamic
model based on self-organizing maps for supervision and fault
detection in industrial processes.” In: Engineering Applications
of Artificial Intelligence 23.1 (2010), pp. 8–17.

[75] Yu Gan, Yanqi Zhang, Kelvin Hu, Dailun Cheng, Yuan He,
Meghna Pancholi, and Christina Delimitrou. “Seer: Leveraging
Big Data to Navigate the Complexity of Performance Debug-
ging in Cloud Microservices.” In: Proceedings of the Twenty-
Fourth International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems. ACM, 2019, pp. 19–
33. isbn: 9781450362405.

[76] Leo Gao et al. The Pile: An 800GB Dataset of Diverse Text for
Language Modeling. 2020. url: http://arxiv.org/abs/2101.
00027.

[77] Domenico Giordano, Matteo Paltenghi, Stiven Metaj, and An-
tonin Dvorak. “Anomaly detection in the CERN cloud infras-
tructure.” In: EPJ Web of Conferences 251 (2021), p. 02011. issn:
2100-014X.

[78] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep
Learning. MIT Press, 2016.

[79] Chris Gorman. TensorFlow Self-Organizing Map. 2019. url:
https://github.com/cgorman/tensorflow-som.

[80] Michael Grothaus. That major Google outage meant some Nest
users couldn’t unlock doors or use the AC. 2019. url: https://www.
fastcompany.com/90358396/.

http://arxiv.org/abs/2101.00027
http://arxiv.org/abs/2101.00027
https://github.com/cgorman/tensorflow-som
https://www.fastcompany.com/90358396/
https://www.fastcompany.com/90358396/

bibliography 183

[81] Taylor Liles Groves, Ryan E. Grant, Aaron Gonzales, and Do-
rian Arnold. “Unraveling network-induced memory contention:
Deeper insights with machine learning.” In: IEEE Transactions
on Parallel and Distributed Systems 29.8 (2018), pp. 1907–1922.
issn: 10459219.

[82] Anton Gulenko, Marcel Wallschlager, Florian Schmidt, Odej
Kao, and Feng Liu. “Evaluating machine learning algorithms
for anomaly detection in clouds.” In: Proceedings - 2016 IEEE
International Conference on Big Data, Big Data 2016. IEEE, 2016,
pp. 2716–2721. isbn: 9781467390040.

[83] Anton Gulenko, Marcel Wallschläger, Florian Schmidt, Odej
Kao, and Feng Liu. “A System Architecture for Real-time
Anomaly Detection in Large-scale NFV Systems.” In: Proce-
dia Computer Science 94 (2016), pp. 491–496. issn: 1877-0509.

[84] Haryadi S. Gunawi, Mingzhe Hao, Riza O. Suminto, Agung
Laksono, Anang D. Satria, Jeffry Adityatama, and Kurnia J.
Eliazar. “Why does the cloud stop computing? Lessons from
hundreds of service outages.” In: Proceedings of the Seventh
ACM Symposium on Cloud Computing. ACM, 2016, pp. 1–16.
isbn: 9781450345255.

[85] Lav Gupta, M. Samaka, Raj Jain, Aiman Erbad, Deval Bhamare,
and H. Anthony Chan. “Fault and performance management
in multi-cloud based NFV using shallow and deep predictive
structures.” In: Journal of Reliable Intelligent Environments 3.4
(2017), pp. 221–231. issn: 21994676.

[86] Charles R. Harris et al. “Array programming with NumPy.”
In: Nature 585.7825 (2020), pp. 357–362.

[87] Tom Harris. “A Kohonen SOM based, machine health monitor-
ing system which enables diagnosis of faults not seen in the
training set.” In: Proceedings of 1993 International Conference on
Neural Networks (IJCNN-93-Nagoya, Japan). Vol. 1. IEEE. 1993,
pp. 947–950.

[88] Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The Ele-
ments of Statistical Learning: Data Mining, Inference, and Prediction.
Springer, 2009.

[89] Hassan Hawilo, Abdallah Shami, Maysam Mirahmadi, and
Rasool Asal. “NFV: state of the art, challenges, and implemen-
tation in next generation mobile networks (vEPC).” In: IEEE
Network 28.6 (2014), pp. 18–26. issn: 0890-8044.

[90] Ying He, F. Richard Yu, Nan Zhao, Victor C.M. Leung, and
Hongxi Yin. “Software-Defined Networks with Mobile Edge
Computing and Caching for Smart Cities: A Big Data Deep
Reinforcement Learning Approach.” In: IEEE Communications
Magazine 55.12 (2017), pp. 31–37. issn: 01636804.

184 bibliography

[91] Geert Heyman, Rafael Huysegems, Pascal Justen, and Tom
Van Cutsem. “Natural language-guided programming.” In:
Proceedings of the 2021 ACM SIGPLAN International Symposium
on New Ideas, New Paradigms, and Reflections on Programming and
Software. Association for Computing Machinery, 2021, pp. 39–
55. isbn: 978-1-4503-9110-8.

[92] Benjamin Hoover, Hendrik Strobelt, and Sebastian Gehrmann.
“exBERT: A Visual Analysis Tool to Explore Learned Repre-
sentations in Transformer Models.” In: Proceedings of the 58th
Annual Meeting of the Association for Computational Linguistics:
System Demonstrations. Association for Computational Linguis-
tics, 2020, pp. 187–196.

[93] Scott Horsfield and Ankur Sethi. Introducing Native Support
for Predictive Scaling with Amazon EC2 Auto Scaling. 2021. url:
https : / / aws . amazon . com / blogs / compute / introducing -

native- support- for- predictive- scaling- with- amazon-

ec2-auto-scaling.

[94] Shashikant Ilager, Rajeev Muralidhar, and Rajkumar Buyya.
“Artificial Intelligence (AI)-Centric Management of Resources
in Modern Distributed Computing Systems.” In: IEEE Cloud
Summit. 2020, pp. 1–10.

[95] Waheed Iqbal, Abdelkarim Erradi, Muhammad Abdullah, and
Arif Mahmood. “Predictive Auto-scaling of Multi-tier Applica-
tions Using Performance Varying Cloud Resources.” In: IEEE
Transactions on Cloud Computing (2019), pp. 1–1. issn: 2168-7161.

[96] Arman Iranfar, Marina Zapater, and David Atienza. “Machine
Learning-Based Quality-Aware Power and Thermal Manage-
ment of Multistream HEVC Encoding on Multicore Servers.”
In: IEEE Transactions on Parallel and Distributed Systems 29.10

(2018), pp. 2268–2281. issn: 15582183.

[97] Sadeka Islam, Jacky Keung, Kevin Lee, and Anna Liu. “Empir-
ical prediction models for adaptive resource provisioning in
the cloud.” In: Future Generation Computer Systems 28.1 (2012),
pp. 155–162. issn: 0167-739X.

[98] Hassan Ismail Fawaz, Germain Forestier, Jonathan Weber, Lhas-
sane Idoumghar, and Pierre Alain Muller. “Deep learning for
time series classification: a review.” In: Data Mining and Knowl-
edge Discovery 33.4 (2019), pp. 917–963. issn: 1573756X.

[99] Naman Jain, Skanda Vaidyanath, Arun Iyer, Nagarajan Natara-
jan, Suresh Parthasarathy, Sriram Rajamani, and Rahul Sharma.
“Jigsaw: large language models meet program synthesis.” In:
Proceedings of the 44th International Conference on Software Engi-
neering. Association for Computing Machinery, 2022, pp. 1219–
1231. isbn: 978-1-4503-9221-1.

https://aws.amazon.com/blogs/compute/introducing-native-support-for-predictive-scaling-with-amazon-ec2-auto-scaling
https://aws.amazon.com/blogs/compute/introducing-native-support-for-predictive-scaling-with-amazon-ec2-auto-scaling
https://aws.amazon.com/blogs/compute/introducing-native-support-for-predictive-scaling-with-amazon-ec2-auto-scaling

bibliography 185

[100] N. Jalodia, S. Henna, and A. Davy. “Deep Reinforcement Learn-
ing for Topology-Aware VNF Resource Prediction in NFV En-
vironments.” In: IEEE Conference on Network Function Virtualiza-
tion and Software Defined Networks. 2019, pp. 1–5.

[101] Vinodh Kumaran Jayakumar, Jaewoo Lee, In Kee Kim, and
Wei Wang. “A Self-Optimized Generic Workload Prediction
Framework for Cloud Computing.” In: 2020 IEEE International
Parallel and Distributed Processing Symposium. 2020, pp. 779–788.

[102] Yuan Jiang and Zhi-Hua Zhou. “SOM Ensemble-Based Image
Segmentation.” In: Neural Processing Letters 20.3 (2004), pp. 171–
178. issn: 1370-4621.

[103] Li Ju, Prashant Singh, and Salman Toor. “Proactive Autoscaling
for Edge Computing Systems with Kubernetes.” In: 10th Inter-
national Workshop on Cloud and Edge Computing and Applications
Management. 2021.

[104] Rudolph Emil Kalman. “A New Approach to Linear Filtering
and Prediction Problems.” In: Transactions of the ASME–Journal
of Basic Engineering 82.Series D (1960), pp. 35–45.

[105] Peng Kang and Palden Lama. “Robust Resource Scaling of
Containerized Microservices with Probabilistic Machine learn-
ing.” In: IEEE/ACM 13th International Conference on Utility and
Cloud Computing. 2020, pp. 122–131.

[106] Aadharsh Kannan, Jacob LaRiviere, and R. Preston McAfee.
“Characterizing the Usage Intensity of Public Cloud.” In: ACM
Trans. Econ. Comput. 9.3 (2021). issn: 2167-8375.

[107] Kathan Kashiparekh, Jyoti Narwariya, Pankaj Malhotra,
Lovekesh Vig, and Gautam Shroff. “ConvTimeNet: A Pre-
trained Deep Convolutional Neural Network for Time Series
Classification.” In: 2019 International Joint Conference on Neural
Networks (IJCNN). Vol. 2019-July. IEEE, 2019, pp. 1–8. isbn:
978-1-7281-1985-4.

[108] Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang, Wei Chen,
Weidong Ma, Qiwei Ye, and Tie-Yan Liu. “LightGBM: a highly
efficient gradient boosting decision tree.” In: Proceedings of the
31st International Conference on Neural Information Processing
Systems. Curran Associates Inc., 2017, pp. 3149–3157. isbn: 978-
1-5108-6096-4.

[109] J.O. Kephart and D.M. Chess. “The vision of autonomic com-
puting.” In: Computer 36.1 (2003), pp. 41–50. issn: 0018-9162.

[110] Abeer Abdel Khaleq and Ilkyeun Ra. “Development of QoS-
aware agents with reinforcement learning for autoscaling of mi-
croservices on the cloud.” In: 2021 IEEE International Conference
on Autonomic Computing and Self-Organizing Systems Companion.
2021, pp. 13–19.

186 bibliography

[111] Lidia Kidane, Paul Townend, Thijs Metsch, and Erik Elmroth.
“When and How to Retrain Machine Learning-based Cloud
Management Systems.” In: IEEE International Parallel and Dis-
tributed Processing Symposium Workshops. 2022, pp. 688–698.

[112] In Kee Kim, Wei Wang, Yanjun Qi, and Marty Humphrey.
“CloudInsight: Utilizing a Council of Experts to Predict Future
Cloud Application Workloads.” In: 2018 IEEE 11th International
Conference on Cloud Computing (CLOUD). 2018, pp. 41–48.

[113] Colin Ian King. stress-ng. 2023. url: https://github.com/
ColinIanKing/stress-ng.

[114] Diederik P. Kingma and Jimmy Lei Ba. “Adam: A method
for stochastic optimization.” In: 3rd International Conference on
Learning Representations, ICLR. 2015.

[115] Teuvo Kohonen. “The Self-Organizing Map.” In: Proceedings of
the IEEE 78.9 (1990), pp. 1464–1480. issn: 15582256.

[116] J. F. Kolen and S. C. Kremer. “Gradient Flow in Recurrent Nets:
The Difficulty of Learning LongTerm Dependencies.” In: A
Field Guide to Dynamical Recurrent Networks. 2001, pp. 237–243.

[117] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. “Im-
ageNet Classification with Deep Convolutional Neural Net-
works.” In: Advances in Neural Information Processing Systems 25.
Ed. by F Pereira, C J C Burges, L Bottou, and K Q Weinberger.
Curran Associates, Inc., 2012, pp. 1097–1105.

[118] Kubernetes. Kubernetes Overview. 2023. url: https : / /

kubernetes.io/docs/concepts/overview/.

[119] Sameer G. Kulkarni, Wei Zhang, Jinho Hwang, Shriram Ra-
jagopalan, K. K. Ramakrishnan, Timothy Wood, Mayutan Aru-
maithurai, and Xiaoming Fu. “NFVnice: Dynamic backpressure
and scheduling for NFV service chains.” In: Proceedings of the
Conference of the ACM Special Interest Group on Data Communica-
tion. Vol. 14. 2017, pp. 71–84. isbn: 9781450346535.

[120] Jitendra Kumar, Ashutosh Kumar Singh, and Rajkumar Buyya.
“Self directed learning based workload forecasting model for
cloud resource management.” In: Information Sciences 543 (2021),
pp. 345–366. issn: 0020-0255.

[121] Jan Lachmair, Thomas Mieth, Rene Griessl, Jens Hagemeyer,
and Mario Porrmann. “From CPU to FPGA — Acceleration of
self-organizing maps for data mining.” In: 2017 International
Joint Conference on Neural Networks (IJCNN). Vol. 2017-May.
IEEE, 2017, pp. 4299–4308. isbn: 978-1-5090-6182-2.

[122] Giacomo Lanciano. monasca-predictor. 2022. doi: 10 .

5281 / zenodo . 5627812. url: https : / / github . com /

giacomolanciano/monasca-predictor.

https://github.com/ColinIanKing/stress-ng
https://github.com/ColinIanKing/stress-ng
https://kubernetes.io/docs/concepts/overview/
https://kubernetes.io/docs/concepts/overview/
https://doi.org/10.5281/zenodo.5627812
https://doi.org/10.5281/zenodo.5627812
https://github.com/giacomolanciano/monasca-predictor
https://github.com/giacomolanciano/monasca-predictor

bibliography 187

[123] Giacomo Lanciano, Filippo Galli, Tommaso Cucinotta, Davide
Bacciu, and Andrea Passarella. “Predictive auto-scaling with
OpenStack Monasca.” In: Proceedings of the 14th IEEE/ACM Inter-
national Conference on Utility and Cloud Computing. Association
for Computing Machinery, 2021, pp. 1–10. isbn: 978-1-4503-
8564-0.

[124] Giacomo Lanciano, Filippo Galli, Tommaso Cucinotta, Davide
Bacciu, and Andrea Passarella. Companion repo of the paper "Ex-
tending OpenStack Monasca for Predictive Elasticity Control". 2022.
doi: 10.5281/zenodo.5888406. url: https://github.com/
giacomolanciano/predictive-elasticity-monasca.

[125] Giacomo Lanciano, Antonio Ritacco, Fabio Brau, Tommaso Cu-
cinotta, Marco Vannucci, Antonino Artale, Joao Barata, and
Enrica Sposato. “Using Self-Organizing Maps for the Behav-
ioral Analysis of Virtualized Network Functions.” In: Cloud
Computing and Services Science. Ed. by Donald Ferguson, Claus
Pahl, and Markus Helfert. Springer International Publishing,
2021, pp. 153–177. isbn: 978-3-030-72369-9.

[126] Giacomo Lanciano, Antonio Ritacco, Tommaso Cucinotta,
Marco Vannucci, Antonino Artale, Luca Basili, Enrica Sposato,
and Joao Barata. “SOM-based behavioral analysis for virtual-
ized network functions.” In: Proceedings of the 35th Annual ACM
Symposium on Applied Computing. ACM, 2020, pp. 1204–1206.
isbn: 978-1-4503-6866-7.

[127] Giacomo Lanciano, Manuel Stein, Volker Hilt, and Tommaso
Cucinotta. “Analyzing Declarative Deployment Code with
Large Language Models.” In: Proceedings of the 13th International
Conference on Cloud Computing and Services Science. SCITEPRESS
- Science and Technology Publications, 2023.

[128] Nikolay Laptev, Jason Yosinski, Li Erran Li, Slawek Smyl, Erran
Li Li, and Slawek Smyl. “Time-series Extreme Event Forecasting
with Neural Networks at Uber.” In: International Conference on
Machine Learning - Time Series Workshop 34 (2017), pp. 1–5.

[129] L. Le, D. Sinh, B. P. Lin, and L. Tung. “Applying Big Data,
Machine Learning, and SDN/NFV to 5G Traffic Clustering,
Forecasting, and Management.” In: 2018 4th IEEE Conference on
Network Softwarization and Workshops (NetSoft). 2018, pp. 168–
176.

[130] Kenneth Levenberg. “A method for the solution of certain
non-linear problems in least squares.” In: Quarterly of Applied
Mathematics 2.2 (1944), pp. 164–168. issn: 0033-569X, 1552-4485.

[131] Mark Leznik et al. RECAP Artificial Data Traces. 2019. doi: 10.
5281/zenodo.3458559. url: https://zenodo.org/record/
3458559.

https://doi.org/10.5281/zenodo.5888406
https://github.com/giacomolanciano/predictive-elasticity-monasca
https://github.com/giacomolanciano/predictive-elasticity-monasca
https://doi.org/10.5281/zenodo.3458559
https://doi.org/10.5281/zenodo.3458559
https://zenodo.org/record/3458559
https://zenodo.org/record/3458559

188 bibliography

[132] Ruiyin Li, Mohamed Soliman, Peng Liang, and Paris Avgeriou.
“Symptoms of Architecture Erosion in Code Reviews: A Study
of Two OpenStack Projects.” In: 2022 IEEE 19th International
Conference on Software Architecture (ICSA). 2022, pp. 24–35.

[133] Te-Sheng Li and Cheng-Lung Huang. “Defect spatial pattern
recognition using a hybrid SOM-SVM approach in semicon-
ductor manufacturing.” In: Expert Systems with Applications 36.1
(2009), pp. 374–385. issn: 09574174.

[134] Ze Li et al. “Gandalf: An Intelligent, End-To-End Analytics Ser-
vice for Safe Deployment in Large-Scale Cloud Infrastructure.”
In: 17th USENIX Symposium on Networked Systems Design and Im-
plementation (NSDI 20). 2020, pp. 389–402. isbn: 9781939133137.

[135] Bryan Lim, Sercan Ö. Arik, Nicolas Loeff, and Tomas Pfister.
“Temporal Fusion Transformers for interpretable multi-horizon
time series forecasting.” In: International Journal of Forecasting
37.4 (2021), pp. 1748–1764. issn: 0169-2070.

[136] Seppo Linnainmaa. “Taylor expansion of the accumulated
rounding error.” In: BIT Numerical Mathematics 16.2 (1976),
pp. 146–160. issn: 0006-3835.

[137] Peter J. Liu, Mohammad Saleh, Etienne Pot, Ben Goodrich,
Ryan Sepassi, Lukasz Kaiser, and Noam Shazeer. “Generating
Wikipedia by Summarizing Long Sequences.” In: International
Conference on Learning Representations. 2018.

[138] Xuan Liu, Bo Cheng, Yi Yue, Meng Wang, Biyi Li, and Junliang
Chen. “Traffic-Aware and Reliability-Guaranteed Virtual Ma-
chine Placement Optimization in Cloud Datacenters.” In: 2019
IEEE 12th International Conference on Cloud Computing (CLOUD).
Vol. 2019-July. IEEE, 2019, pp. 91–98. isbn: 978-1-7281-2705-7.

[139] Yao Liu, Jun Sun, Qing Yao, Su Wang, Kai Zheng, and
Yan Liu. “A Scalable Heterogeneous Parallel SOM Based on
MPI/CUDA.” In: Proceedings of The 10th Asian Conference on
Machine Learning. Ed. by Jun Zhu and Ichiro Takeuchi. Vol. 95.
PMLR, 2018, pp. 264–279.

[140] Chang Lou, Peng Huang, and Scott Smith. “Understanding,
Detecting and Localizing Partial Failures in Large System Soft-
ware.” In: 17th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 20). 2020. isbn: 9781939133137.

[141] Wei Ma, Mengjie Zhao, Xiaofei Xie, Qiang Hu, Shangqing
Liu, Jie Zhang, Wenhan Wang, and Yang Liu. Is Self-Attention
Powerful to Learn Code Syntax and Semantics? 2022. url: http:
//arxiv.org/abs/2212.10017.

[142] Laurens van der Maaten and Geoffrey Hinton. “Visualizing
Data using t-SNE.” In: Journal of Machine Learning Research 9.86

(2008), pp. 2579–2605. issn: 1533-7928.

http://arxiv.org/abs/2212.10017
http://arxiv.org/abs/2212.10017

bibliography 189

[143] Stephen MacNeil, Andrew Tran, Dan Mogil, Seth Bernstein,
Erin Ross, and Ziheng Huang. “Generating Diverse Code Ex-
planations using the GPT-3 Large Language Model.” In: Pro-
ceedings of the 2022 ACM Conference on International Computing
Education Research - Volume 2. Vol. 2. Association for Computing
Machinery, 2022, pp. 37–39. isbn: 978-1-4503-9195-5.

[144] C. Makaya, D. Freimuth, D. Wood, and S. Calo. “Policy-based
NFV management and orchestration.” In: IEEE Conference on
Network Function Virtualization and Software Defined Network.
2015, pp. 128–134.

[145] Pankaj Malhotra, T. V. Vishnu, Lovekesh Vig, Puneet Agarwal,
and Gautam Shroff. “TimeNet: Pre-trained deep recurrent neu-
ral network for time series classification.” In: ESANN 2017 -
Proceedings, 25th European Symposium on Artificial Neural Net-
works, Computational Intelligence and Machine Learning. 2017,
pp. 607–612. isbn: 9782875870391.

[146] N. Malini and M. Pushpa. “Analysis on credit card fraud iden-
tification techniques based on KNN and outlier detection.” In:
2017 Third International Conference on Advances in Electrical, Elec-
tronics, Information, Communication and Bio-Informatics (AEEICB).
2017, pp. 255–258.

[147] Riccardo Mancini. XPySom. 2022. url: https://github.com/
Manciukic/xpysom.

[148] Riccardo Mancini, Antonio Ritacco, Giacomo Lanciano,
and Tommaso Cucinotta. “XPySom: High-Performance Self-
Organizing Maps.” In: 2020 IEEE 32nd International Symposium
on Computer Architecture and High Performance Computing (SBAC-
PAD). IEEE, 2020, pp. 209–216. isbn: 978-1-72819-924-5.

[149] Leonardo Mariani, Cristina Monni, Mauro Pezze, Oliviero Rig-
anelli, and Rui Xin. “Localizing Faults in Cloud Systems.” In:
2018 IEEE 11th International Conference on Software Testing, Ver-
ification and Validation (ICST). IEEE, 2018, pp. 262–273. isbn:
978-1-5386-5012-7.

[150] Bernard Marr. The 5 Biggest Cloud Computing Trends In 2022.
https://www.forbes.com/sites/bernardmarr/2021/10/25/

the-5-biggest-cloud-computing-trends-in-2022/. 2021.

[151] Martin Abadi et al. TensorFlow: Large-Scale Machine Learning on
Heterogeneous Systems. 2015. url: https://www.tensorflow.
org/.

[152] Sabine McConnell, Robert Sturgeon, Gregory Henry, Andrew
Mayne, and Richard Hurley. “Scalability of Self-organizing
Maps on a GPU cluster using OpenCL and CUDA.” In: Journal
of Physics: Conference Series 341 (2012), p. 012018. issn: 1742-
6596.

https://github.com/Manciukic/xpysom
https://github.com/Manciukic/xpysom
https://www.forbes.com/sites/bernardmarr/2021/10/25/the-5-biggest-cloud-computing-trends-in-2022/
https://www.forbes.com/sites/bernardmarr/2021/10/25/the-5-biggest-cloud-computing-trends-in-2022/
https://www.tensorflow.org/
https://www.tensorflow.org/

190 bibliography

[153] Peter Mell and Tim Grance. The NIST Definition of Cloud Com-
puting. SP 800–145. 2011. url: https : / / csrc . nist . gov /

publications/detail/sp/800-145/final.

[154] Giovanni Merlino, Rustem Dautov, Salvatore Distefano, and
Dario Bruneo. “Enabling Workload Engineering in Edge, Fog,
and Cloud Computing through OpenStack-based Middle-
ware.” In: ACM Transactions on Internet Technology 19.2 (2019),
28:1–28:22. issn: 1533-5399.

[155] Albert Mestres et al. “Knowledge-defined networking.” In:
Computer Communication Review 47.3 (2017), pp. 1–10. issn:
19435819.

[156] Stiven Metaj. “End-to-end anomaly detection system in the
CERN Openstack Cloud infrastructure.” PhD thesis. 2022.

[157] R. Mijumbi, S. Hasija, S. Davy, A. Davy, B. Jennings, and
R. Boutaba. “Topology-Aware Prediction of Virtual Network
Function Resource Requirements.” In: IEEE Transactions on
Network and Service Management 14.1 (2017), pp. 106–120.

[158] M. Miyazawa, M. Hayashi, and R. Stadler. “vNMF: Distributed
fault detection using clustering approach for network func-
tion virtualization.” In: IFIP/IEEE International Symposium on
Integrated Network Management (IM). 2015, pp. 640–645.

[159] Haris Mumtaz, Paramvir Singh, and Kelly Blincoe. “A sys-
tematic mapping study on architectural smells detection.” In:
Journal of Systems and Software 173 (2021), p. 110885. issn: 0164-
1212.

[160] Sasho Nedelkoski, Jorge Cardoso, and Odej Kao. “Anomaly De-
tection and Classification using Distributed Tracing and Deep
Learning.” In: 2019 19th IEEE/ACM International Symposium on
Cluster, Cloud and Grid Computing (CCGRID). 2019, pp. 241–250.

[161] Davide Neri, Jacopo Soldani, Olaf Zimmermann, and Antonio
Brogi. “Design principles, architectural smells and refactor-
ings for microservices: a multivocal review.” In: SICS Software-
Intensive Cyber-Physical Systems 35.1 (2020), pp. 3–15. issn: 2524-
8529.

[162] John Nickolls, Ian Buck, Michael Garland, and Kevin Skadron.
“Scalable Parallel Programming with CUDA: Is CUDA the Par-
allel Programming Model That Application Developers Have
Been Waiting For?” In: Queue 6.2 (2008), pp. 40–53. issn: 1542-
7730.

[163] Carlos H.Z. Nicodemus, Cristina Boeres, and Vinod E.F. Re-
bello. “Managing Vertical Memory Elasticity in Containers.”
In: IEEE/ACM 13th International Conference on Utility and Cloud
Computing. 2020, pp. 132–142.

https://csrc.nist.gov/publications/detail/sp/800-145/final
https://csrc.nist.gov/publications/detail/sp/800-145/final

bibliography 191

[164] T. Niwa, M. Miyazawa, M. Hayashi, and R. Stadler. “Universal
fault detection for NFV using SOM-based clustering.” In: 2015
17th Asia-Pacific Network Operations and Management Symposium
(APNOMS). 2015, pp. 315–320.

[165] Ryosuke Okuta, Yuya Unno, Daisuke Nishino, Shohei Hido,
and Crissman Loomis. “CuPy: A NumPy-Compatible Library
for NVIDIA GPU Calculations.” In: Proceedings of Workshop on
Machine Learning Systems (LearningSys) in The Thirty-first Annual
Conference on Neural Information Processing Systems (NIPS). 2017.

[166] OpenStack. Cinder Documentation. 2022. url: https://docs.
openstack.org/cinder.

[167] OpenStack. Glance Documentation. 2022. url: https://docs.
openstack.org/glance.

[168] OpenStack. Heat Documentation. 2022. url: https : / / docs .

openstack.org/heat.

[169] OpenStack. Kolla Documentation. 2022. url: https://docs.
openstack.org/kolla.

[170] OpenStack. Monasca Documentation. 2022. url: https://docs.
openstack.org/monasca.

[171] OpenStack. Neutron Documentation. 2022. url: https://docs.
openstack.org/neutron.

[172] OpenStack. Nova Documentation. 2022. url: https://docs.
openstack.org/nova.

[173] OpenStack. Octavia Documentation. 2022. url: https://docs.
openstack.org/octavia.

[174] OpenStack. Senlin Documentation. 2022. url: https://docs.
openstack.org/senlin.

[175] Per Olov Ostberg et al. “Reliable capacity provisioning for
distributed cloud/edge/fog computing applications.” In: Eu-
CNC 2017 - European Conference on Networks and Communications.
IEEE, 2017, pp. 1–6. isbn: 9781538638736.

[176] E.J. Palomo, J. North, D. Elizondo, R.M. Luque, and T. Watson.
“Application of growing hierarchical SOM for visualisation of
network forensics traffic data.” In: Neural Networks 32 (2012),
pp. 275–284. issn: 08936080.

[177] Adam Paszke et al. “PyTorch: An Imperative Style, High-
Performance Deep Learning Library.” In: Advances in Neural
Information Processing Systems 32. 2019, pp. 8024–8035.

[178] Fabian Pedregosa et al. “Scikit-learn: Machine Learning in
Python.” In: Journal of Machine Learning Research 12.85 (2011),
pp. 2825–2830.

https://docs.openstack.org/cinder
https://docs.openstack.org/cinder
https://docs.openstack.org/glance
https://docs.openstack.org/glance
https://docs.openstack.org/heat
https://docs.openstack.org/heat
https://docs.openstack.org/kolla
https://docs.openstack.org/kolla
https://docs.openstack.org/monasca
https://docs.openstack.org/monasca
https://docs.openstack.org/neutron
https://docs.openstack.org/neutron
https://docs.openstack.org/nova
https://docs.openstack.org/nova
https://docs.openstack.org/octavia
https://docs.openstack.org/octavia
https://docs.openstack.org/senlin
https://docs.openstack.org/senlin

192 bibliography

[179] Jianing Pei, Peilin Hong, and Defang Li. “Virtual Network
Function Selection and Chaining Based on Deep Learning in
SDN and NFV-Enabled Networks.” In: 2018 IEEE International
Conference on Communications Workshops (ICC Workshops). IEEE,
2018, pp. 1–6. isbn: 978-1-5386-4328-0.

[180] Tiago Pimentel, Marianne Monteiro, Adriano Veloso, and Nivio
Ziviani. “Deep Active Learning for Anomaly Detection.” In:
(2018). url: http://arxiv.org/abs/1805.09411.

[181] Teerat Pitakrat, Dušan Okanović, André van Hoorn, and Lars
Grunske. “Hora: Architecture-aware online failure prediction.”
In: Journal of Systems and Software 137 (2018), pp. 669–685. issn:
01641212.

[182] Steven J. Plimpton and Karen D. Devine. “MapReduce in MPI
for Large-Scale Graph Algorithms.” In: Parallel Comput. 37.9
(2011), pp. 610–632. issn: 0167-8191.

[183] Francisco Ponce, Jacopo Soldani, Hernán Astudillo, and Anto-
nio Brogi. “Smells and refactorings for microservices security:
A multivocal literature review.” In: Journal of Systems and Soft-
ware 192 (2022), p. 111393. issn: 0164-1212.

[184] Chenhao Qu, Rodrigo N. Calheiros, and Rajkumar Buyya.
“Auto-scaling web applications in clouds: A taxonomy and
survey.” In: ACM Computing Surveys 51.4 (2018), pp. 1–33. issn:
0360-0300.

[185] Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya
Sutskever. Improving Language Understanding by Generative Pre-
Training. Tech. rep. 2018.

[186] Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario
Amodei, and Ilya Sutskever. Language Models are Unsupervised
Multitask Learners. 2019.

[187] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sha-
ran Narang, Michael Matena, Yanqi Zhou, Wei Li, and Peter J.
Liu. “Exploring the Limits of Transfer Learning with a Uni-
fied Text-to-Text Transformer.” In: Journal of Machine Learning
Research 21.140 (2020), pp. 1–67. issn: 1533-7928.

[188] Sabidur Rahman, Tanjila Ahmed, Minh Huynh, Massimo Tor-
natore, and Biswanath Mukherjee. “Auto-scaling VNFs using
machine learning to improve QoS and reduce cost.” In: IEEE
International Conference on Communications. 2018.

[189] Anand Rajaraman and Jeffrey David Ullman. “Data Mining.”
In: Mining of Massive Datasets. Cambridge University Press,
2011, pp. 1–17. isbn: 978-1-107-73741-9.

http://arxiv.org/abs/1805.09411

bibliography 193

[190] Samyam Rajbhandari, Jeff Rasley, Olatunji Ruwase, and Yux-
iong He. “ZeRO: memory optimizations toward training trillion
parameter models.” In: Proceedings of the International Conference
for High Performance Computing, Networking, Storage and Analysis.
IEEE Press, 2020, pp. 1–16. isbn: 978-1-72819-998-6.

[191] Samyam Rajbhandari, Olatunji Ruwase, Jeff Rasley, Shaden
Smith, and Yuxiong He. “ZeRO-infinity: breaking the GPU
memory wall for extreme scale deep learning.” In: Proceedings
of the International Conference for High Performance Computing,
Networking, Storage and Analysis. Association for Computing
Machinery, 2021, pp. 1–14. isbn: 978-1-4503-8442-1.

[192] Ragunathan (Raj) Rajkumar, Insup Lee, Lui Sha, and John
Stankovic. “Cyber-physical systems: The next computing revo-
lution.” In: Proceedings of the 47th Design Automation Conference -
DAC ’10. ACM Press, 2010, p. 731. isbn: 9781450300025.

[193] Syama Sundar Rangapuram, Matthias Seeger, Jan Gasthaus,
Lorenzo Stella, Yuyang Wang, and Tim Januschowski. “Deep
state space models for time series forecasting.” In: Advances in
Neural Information Processing Systems. Vol. 2018-Decem. 2018,
pp. 7785–7794.

[194] Windhya Rankothge, Jiefei Ma, Franck Le, Alessandra Russo,
and Jorge Lobo. “Towards making network function virtual-
ization a cloud computing service.” In: Proceedings of the 2015
IFIP/IEEE International Symposium on Integrated Network Man-
agement, IM 2015. IEEE, 2015, pp. 89–97. isbn: 9783901882760.

[195] Jeff Rasley, Samyam Rajbhandari, Olatunji Ruwase, and Yux-
iong He. “DeepSpeed: System Optimizations Enable Training
Deep Learning Models with Over 100 Billion Parameters.” In:
Proceedings of the 26th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining. Association for Computing
Machinery, 2020, pp. 3505–3506. isbn: 978-1-4503-7998-4.

[196] Andreas Rauber, Philipp Tomsich, and Dieter Merkl. “par-
SOM: a parallel implementation of the self-organizing map
exploiting cache effects: making the SOM fit for interactive
high-performance data analysis.” In: Proceedings of the IEEE-
INNS-ENNS International Joint Conference on Neural Networks.
IJCNN 2000. Neural Computing: New Challenges and Perspectives
for the New Millennium. Vol. 6. IEEE, 2000, 177–182 vol.6. isbn:
0-7695-0619-4.

[197] Quentin Rebjock, Valentin Flunkert, Tim Januschowski, Lau-
rent Callot, and Joel Castellon. “A Simple and Effective Predic-
tive Resource Scaling Heuristic for Large-scale Cloud Applica-
tions.” In: 2nd International Workshop on Applied AI for Database
Systems and Applications. 2020.

194 bibliography

[198] Pengzhen Ren, Yun Xiao, Xiaojun Chang, Po-Yao Huang, Zhi-
hui Li, Brij B. Gupta, Xiaojiang Chen, and Xin Wang. “A Survey
of Deep Active Learning.” In: ACM Computing Surveys 54.9
(2021), 180:1–180:40. issn: 0360-0300.

[199] Michele Resta, Anna Monreale, and Davide Bacciu. “Occlusion-
Based Explanations in Deep Recurrent Models for Biomedical
Signals.” In: Entropy 23.8 (2021).

[200] Trevor Richardson and Eliot Winer. “Extending parallelization
of the self-organizing map by combining data and network
partitioned methods.” In: Advances in Engineering Software 88

(2015), pp. 1–7. issn: 09659978.

[201] Peter J. Rousseeuw. “Silhouettes: A graphical aid to the in-
terpretation and validation of cluster analysis.” In: Journal of
Computational and Applied Mathematics 20 (1987), pp. 53–65. issn:
0377-0427.

[202] Nilabja Roy, Abhishek Dubey, and Aniruddha Gokhale. “Ef-
ficient Autoscaling in the Cloud Using Predictive Models for
Workload Forecasting.” In: IEEE 4th International Conference on
Cloud Computing. 2011, pp. 500–507.

[203] D.E. Rumelhart, G.E. Hinton, and R.J. Williams. “Learning
representations by back-propagating errors.” In: Nature 6088.33

(1986), pp. 533–536.

[204] Krzysztof Rzadca et al. “Autopilot: workload autoscaling at
Google.” In: Proceedings of the Fifteenth European Conference on
Computer Systems. ACM, 2020, pp. 1–16. isbn: 9781450368827.

[205] R. Samrin and D. Vasumathi. “Review on anomaly based net-
work intrusion detection system.” In: 2017 International Con-
ference on Electrical, Electronics, Communication, Computer, and
Optimization Techniques (ICEECCOT). 2017, pp. 141–147.

[206] Tran Van Sang, Ryosuke Kobayashi, Rie S. Yamaguchi, and
Toshiyuki Nakata. “Accelerating Solution of Generalized Lin-
ear Models by Solving Normal Equation Using GPGPU on a
Large Real-World Tall-Skinny Data Set.” In: 2019 31st Interna-
tional Symposium on Computer Architecture and High Performance
Computing (SBAC-PAD). Vol. 2019-Octob. IEEE, 2019, pp. 112–
119. isbn: 978-1-7281-4194-7.

[207] Tugdual Sarazin, Hanane Azzag, and Mustapha Lebbah. “SOM
Clustering Using Spark-MapReduce.” In: 2014 IEEE Interna-
tional Parallel & Distributed Processing Symposium Workshops.
IEEE, 2014, pp. 1727–1734. isbn: 978-1-4799-4116-2.

bibliography 195

[208] Sami Sarsa, Paul Denny, Arto Hellas, and Juho Leinonen. “Au-
tomatic Generation of Programming Exercises and Code Expla-
nations Using Large Language Models.” In: Proceedings of the
2022 ACM Conference on International Computing Education Re-
search - Volume 1. Vol. 1. Association for Computing Machinery,
2022, pp. 27–43. isbn: 978-1-4503-9194-8.

[209] Carla Sauvanaud, Mohamed Kaâniche, Karama Kanoun,
Kahina Lazri, and Guthemberg Da Silva Silvestre. “Anomaly
detection and diagnosis for cloud services: Practical experi-
ments and lessons learned.” In: Journal of Systems and Software
139 (2018), pp. 84–106. issn: 0164-1212.

[210] F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, and G.
Monfardini. “The Graph Neural Network Model.” In: IEEE
Transactions on Neural Networks 20.1 (2009), pp. 61–80. issn:
1941-0093.

[211] Jürgen Schmidhuber and Sepp Hochreiter. “Long short-term
memory.” In: Neural Comput 9.8 (1997), pp. 1735–1780.

[212] Lucia Schuler, Somaya Jamil, and Niklas Kühl. “AI-based Re-
source Allocation: Reinforcement Learning for Adaptive Auto-
scaling in Serverless Environments.” In: IEEE/ACM 21st Inter-
national Symp. on Cluster, Cloud and Internet Comp. 2021, pp. 804–
811.

[213] Skipper Seabold and Josef Perktold. “statsmodels: Econometric
and statistical modeling with python.” In: 9th Python in Science
Conference. 2010.

[214] Ankur Sethi. Using EC2 Auto Scaling predictive scaling poli-
cies with Blue/Green deployments. 2021. url: https : / / aws .

amazon.com/blogs/compute/retaining- metrics- across-

blue-green-deployment-for-predictive-scaling.

[215] Tushar Sharma, Maria Kechagia, Stefanos Georgiou, Rohit Ti-
wari, and Federica Sarro. A Survey on Machine Learning Tech-
niques for Source Code Analysis. 2021. url: http://arxiv.org/
abs/2110.09610.

[216] Runyu Shi, Jia Zhang, Wenjing Chu, Qihao Bao, Xiatao Jin,
Chenran Gong, Qihao Zhu, Chang Yu, and Steven Rosenberg.
“MDP and Machine Learning-Based Cost-Optimization of Dy-
namic Resource Allocation for Network Function Virtualiza-
tion.” In: 2015 IEEE International Conference on Services Comput-
ing. IEEE, 2015, pp. 65–73. isbn: 978-1-4673-7281-7.

[217] Connor Shorten and Taghi M. Khoshgoftaar. “Language Mod-
els for Deep Learning Programming: A Case Study with
Keras.” In: Deep Learning Applications, Volume 4. Ed. by M. Arif
Wani and Vasile Palade. Springer Nature, 2023, pp. 135–161.
isbn: 978-981-19615-3-3.

https://aws.amazon.com/blogs/compute/retaining-metrics-across-blue-green-deployment-for-predictive-scaling
https://aws.amazon.com/blogs/compute/retaining-metrics-across-blue-green-deployment-for-predictive-scaling
https://aws.amazon.com/blogs/compute/retaining-metrics-across-blue-green-deployment-for-predictive-scaling
http://arxiv.org/abs/2110.09610
http://arxiv.org/abs/2110.09610

196 bibliography

[218] Catherine Shu. Netflix Crippled On Christmas Eve By AWS Out-
ages. 2012. url: http://tcrn.ch/Y9mxXr.

[219] John Sipple. “Interpretable, Multidimensional, Multimodal
Anomaly Detection with Negative Sampling for Detection of
Device Failure.” In: Proceedings of the 37th International Confer-
ence on Machine Learning. PMLR, 2020, pp. 9016–9025.

[220] Jacopo Soldani and Antonio Brogi. “Anomaly Detection and
Failure Root Cause Analysis in (Micro) Service-Based Cloud
Applications: A Survey.” In: ACM Comput. Surv. 55.3 (2022).
issn: 0360-0300.

[221] Marc Solé, Victor Muntés-Mulero, Annie Ibrahim Rana, and
Giovani Estrada. “Survey on Models and Techniques for Root-
Cause Analysis.” In: (2017). url: http://arxiv.org/abs/1701.
08546.

[222] Hongchao Song, Zhuqing Jiang, Aidong Men, and Bo Yang.
“A Hybrid Semi-Supervised Anomaly Detection Model for
High-Dimensional Data.” In: Computational Intelligence and Neu-
roscience 2017 (2017), pp. 1–9. issn: 1687-5265.

[223] Ankita Nandkishor Sontakke, Manasi Patwardhan, Lovekesh
Vig, Raveendra Kumar Medicherla, Ravindra Naik, and Gau-
tam Shroff. “Code Summarization: Do Transformers Really
Understand Code?” In: Deep Learning for Code Workshop. 2022.

[224] Matheus A. Souza, Lucas A. Maciel, Pedro Henrique Penna,
and Henrique C. Freitas. “Energy Efficient Parallel K-Means
Clustering for an Intel® Hybrid Multi-Chip Package.” In: 2018
30th International Symposium on Computer Architecture and High
Performance Computing (SBAC-PAD). IEEE, 2018, pp. 372–379.
isbn: 978-1-5386-7769-8.

[225] John E. Stone, David Gohara, and Guochun Shi. “OpenCL: A
Parallel Programming Standard for Heterogeneous Computing
Systems.” In: Computing in Science & Engineering 12.3 (2010),
pp. 66–73.

[226] Ilya Sutskever, Oriol Vinyals, and Quoc V Le. “Sequence to
sequence learning with neural networks.” In: Advances in neural
information processing systems. 2014, pp. 3104–3112.

[227] Pengcheng Tang, Fei Li, Wei Zhou, Weihua Hu, and Li Yang.
“Efficient auto-scaling approach in the telco cloud using self-
learning algorithm.” In: 2015 IEEE Global Communications Con-
ference (GLOBECOM). 2015, pp. 1–6.

[228] Hassan Tariq, Harith Al-Sahaf, and Ian Welch. “Modelling
and Prediction of Resource Utilization of Hadoop Clusters:
A Machine Learning Approach.” In: 12th IEEE/ACM Interna-
tional Conference on Utility and Cloud Computing. Auckland, New

http://tcrn.ch/Y9mxXr
http://arxiv.org/abs/1701.08546
http://arxiv.org/abs/1701.08546

bibliography 197

Zealand: Association for Computing Machinery, 2019, pp. 93–
100. isbn: 9781450368940.

[229] Sean J Taylor and Benjamin Letham. “Forecasting at scale.” In:
The American Statistician 72.1 (2018), pp. 37–45.

[230] Ian Tenney et al. “The Language Interpretability Tool: Extensi-
ble, Interactive Visualizations and Analysis for NLP Models.”
In: Proceedings of the 2020 Conference on Empirical Methods in
Natural Language Processing: System Demonstrations. Association
for Computational Linguistics, 2020, pp. 107–118.

[231] Chandra Thapa, Seung Ick Jang, Muhammad Ejaz Ahmed,
Seyit Camtepe, Josef Pieprzyk, and Surya Nepal. “Transformer-
Based Language Models for Software Vulnerability Detection.”
In: Proceedings of the 38th Annual Computer Security Applica-
tions Conference. Association for Computing Machinery, 2022,
pp. 481–496. isbn: 978-1-4503-9759-9.

[232] TPC. TPC-W Benchmark. 2021. url: http://www.tpc.org/
tpcw/.

[233] Duc Truong and Jude Cross. How Blizzard Entertainment
Uses Autoscaling With Overwatch. 2019. url: https : / /

www . openstack . org / videos / summits / denver - 2019 /

how - blizzard - entertainment - uses - autoscaling - with -

overwatch.

[234] Joseph Tsidulko. AWS Apologizes For Cloud Outage, Blames Typo.
2017. url: https://www.crn.com/news/cloud/300084012/aws-
apologizes-for-cloud-outage-blames-typo.htm.

[235] Shreshth Tuli et al. “HUNTER: AI based holistic resource man-
agement for sustainable cloud computing.” In: Journal of Sys-
tems and Software 184 (2022), p. 111124. issn: 0164-1212.

[236] Marian Turowski and Alexander Lenk. “Vertical Scaling Ca-
pability of OpenStack.” In: Service-Oriented Computing - IC-
SOC 2014 Workshops. Ed. by Farouk Toumani, Barbara Per-
nici, Daniela Grigori, Djamal Benslimane, Jan Mendling, Nejib
Ben Hadj-Alouane, Brian Blake, Olivier Perrin, Iman Saleh
Moustafa, and Sami Bhiri. Springer International Publishing,
2015, pp. 351–362. isbn: 978-3-319-22885-3.

[237] Lorenzo Valerio, Marco Conti, and Andrea Passarella. “Energy
efficient distributed analytics at the edge of the network for IoT
environments.” In: Pervasive and Mobile Computing 51 (2018),
pp. 27–42. issn: 15741192.

[238] Frenk D Van den Berg, PJJ Kok, Haibing Yang, MP Aarnts,
Philip Meilland, Thomas Kebe, Mathias Stolzenberg, David
Krix, Wenqian Zhu, AJ Peyton, et al. “Product uniformity
control-A research collaboration of european steel industries to
non-destructive evaluation of microstructure and mechanical

http://www.tpc.org/tpcw/
http://www.tpc.org/tpcw/
https://www.openstack.org/videos/summits/denver-2019/how-blizzard-entertainment-uses-autoscaling-with-overwatch
https://www.openstack.org/videos/summits/denver-2019/how-blizzard-entertainment-uses-autoscaling-with-overwatch
https://www.openstack.org/videos/summits/denver-2019/how-blizzard-entertainment-uses-autoscaling-with-overwatch
https://www.openstack.org/videos/summits/denver-2019/how-blizzard-entertainment-uses-autoscaling-with-overwatch
https://www.crn.com/news/cloud/300084012/aws-apologizes-for-cloud-outage-blames-typo.htm
https://www.crn.com/news/cloud/300084012/aws-apologizes-for-cloud-outage-blames-typo.htm

198 bibliography

properties.” In: Electromagnetic Non-Destructive Evaluation (XXI).
6 September 2017 through 8 September 2017. 2018, pp. 120–129.

[239] Sofie Van Gassen, Britt Callebaut, Mary J Van Helden, Bart
N Lambrecht, Piet Demeester, Tom Dhaene, and Yvan Saeys.
“FlowSOM: Using self-organizing maps for visualization and
interpretation of cytometry data.” In: Cytometry Part A 87.7
(2015), pp. 636–645.

[240] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit,
Llion Jones, Aidan N Gomez, Lukasz Kaiser, and Illia Polo-
sukhin. “Attention is All you Need.” In: Advances in Neural
Information Processing Systems. Vol. 30. Curran Associates, Inc.,
2017.

[241] Abhishek Verma, Luis Pedrosa, Madhukar Korupolu, David
Oppenheimer, Eric Tune, and John Wilkes. “Large-scale cluster
management at Google with Borg.” In: Proceedings of the Tenth
European Conference on Computer Systems - EuroSys ’15. ACM
Press, 2015, pp. 1–17. isbn: 9781450332385.

[242] Giuseppe Vettigli. MiniSom. 2019. url: https://github.com/
JustGlowing/minisom.

[243] VMWare. vRealize Operations Documentation. 2023. url: https:
//docs.vmware.com/en/vRealize-Operations/index.html.

[244] Werner Vogels. A new era of DevOps, powered by machine learning.
2021. url: https://www.allthingsdistributed.com/2021/05/
devops-powered-by-machine-learning.html.

[245] Marcel Wallschläger, Anton Gulenko, Florian Schmidt, Odej
Kao, and Feng Liu. “Automated Anomaly Detection in Vir-
tualized Services Using Deep Packet Inspection.” In: Procedia
Computer Science. Vol. 110. Elsevier, 2017, pp. 510–515.

[246] Yao Wan, Wei Zhao, Hongyu Zhang, Yulei Sui, Guandong Xu,
and Hai Jin. “What do they capture? a structural analysis of pre-
trained language models for source code.” In: Proceedings of the
44th International Conference on Software Engineering. Association
for Computing Machinery, 2022, pp. 2377–2388. isbn: 978-1-
4503-9221-1.

[247] Endong Wang, Qing Zhang, Bo Shen, Guangyong Zhang, Xi-
aowei Lu, Qing Wu, and Yajuan Wang. “Intel Math Kernel
Library.” In: High-Performance Computing on the Intel Xeon Phi™:
How to Fully Exploit MIC Architectures. Springer International
Publishing, 2014, pp. 167–188. isbn: 978-3-319-06486-4.

[248] Hongzhi Wang, Mohamed Jaward Bah, and Mohamed Ham-
mad. “Progress in Outlier Detection Techniques: A Survey.” In:
IEEE Access 7 (2019), pp. 107964–108000. issn: 2169-3536.

https://github.com/JustGlowing/minisom
https://github.com/JustGlowing/minisom
https://docs.vmware.com/en/vRealize-Operations/index.html
https://docs.vmware.com/en/vRealize-Operations/index.html
https://www.allthingsdistributed.com/2021/05/devops-powered-by-machine-learning.html
https://www.allthingsdistributed.com/2021/05/devops-powered-by-machine-learning.html

bibliography 199

[249] Ping Wang, Jingmin Xu, Meng Ma, Weilan Lin, Disheng Pan,
Yuan Wang, and Pengfei Chen. “CloudRanger: Root cause
identification for cloud native systems.” In: Proceedings - 18th
IEEE/ACM International Symposium on Cluster, Cloud and Grid
Computing, CCGRID 2018. Institute of Electrical and Electronics
Engineers Inc., 2018, pp. 492–502. isbn: 9781538658154.

[250] Weili Wang, Lun Tang, Chenmeng Wang, and Qianbin Chen.
“Real-Time Analysis of Multiple Root Causes for Anomalies
assisted by Digital Twin in NFV Environment.” In: IEEE Trans-
actions on Network and Service Management (2022), pp. 1–1. issn:
1932-4537.

[251] Yukihiro Watanabe, Hiroshi Otsuka, Masataka Sonoda, Shinji
Kikuchi, and Yasuhide Matsumoto. “Online failure prediction
in cloud datacenters by real-time message pattern learning.”
In: CloudCom 2012 - Proceedings: 2012 4th IEEE International
Conference on Cloud Computing Technology and Science. IEEE,
2012, pp. 504–511. isbn: 9781467345095.

[252] Peter Wittek and Sandor Daranyi. “A GPU-Accelerated Algo-
rithm for Self-Organizing Maps in a Distributed Environment.”
In: Proceedings of ESANN-12, 20th European Symposium on Ar-
tificial Neural Networks, Computational Intelligence and Machine
Learning. 2012.

[253] Peter Wittek, Shi Chao Gao, Ik Soo Lim, and Li Zhao. “somoclu
: An Efficient Parallel Library for Self-Organizing Maps.” In:
Journal of Statistical Software 78.9 (2017). issn: 1548-7660.

[254] Thomas Wolf et al. “Transformers: State-of-the-Art Natural Lan-
guage Processing.” In: Proceedings of the 2020 Conference on Em-
pirical Methods in Natural Language Processing: System Demonstra-
tions. Association for Computational Linguistics, 2020, pp. 38–
45.

[255] Li Wu, Johan Tordsson, Erik Elmroth, and Odej Kao. “Mi-
croRCA: Root Cause Localization of Performance Issues in
Microservices.” In: NOMS 2020 - 2020 IEEE/IFIP Network Op-
erations and Management Symposium. IEEE, 2020, pp. 1–9. isbn:
978-1-7281-4973-8.

[256] Yi Xiao, Rui-Bin Feng, Zi-Fa Han, and Chi-Sing Leung. “GPU
Accelerated Self-Organizing Map for High Dimensional Data.”
In: Neural Processing Letters 41.3 (2015), pp. 341–355. issn: 1370-
4621.

[257] Yikai Xiao, Qixia Zhang, Fangming Liu, Jia Wang, Miao Zhao,
Zhongxing Zhang, and Jiaxing Zhang. “NFVdeep: Adaptive
online service function chain deployment with deep reinforce-
ment learning.” In: Proceedings of the International Symposium on
Quality of Service. Vol. 19. 2019, pp. 1–10. isbn: 9781450367783.

200 bibliography

[258] Lu Xu, Yang Xu, and Tommy W.S. Chow. “PolSOM: A new
method for multidimensional data visualization.” In: Pattern
Recognition 43.4 (2010), pp. 1668–1675. issn: 00313203.

[259] Tomonari Yamagutchi, Koichi Nagata, and Pham Quang
Truong. “Pattern Recognition of EEG Signal during Motor
Imagery by Using SOM.” In: Second International Conference on
Innovative Computing, Informatio and Control (ICICIC 2007). IEEE,
2007, pp. 121–121. isbn: 0-7695-2882-1.

[260] Song Yang, Philipp Wieder, Ramin Yahyapour, Stojan Tra-
janovski, and Xiaoming Fu. “Reliable Virtual Machine Place-
ment and Routing in Clouds.” In: IEEE Transactions on Paral-
lel and Distributed Systems 28.10 (2017), pp. 2965–2978. issn:
10459219.

[261] Yue Yuan, Wenchang Shi, Bin Liang, and Bo Qin. “An Approach
to Cloud Execution Failure Diagnosis Based on Exception Logs
in OpenStack.” In: 2019 IEEE 12th International Conference on
Cloud Computing (CLOUD). Vol. 2019-July. IEEE, 2019, pp. 124–
131. isbn: 978-1-7281-2705-7.

[262] Matei Zaharia et al. “Apache Spark: A Unified Engine for Big
Data Processing.” In: Commun. ACM 59.11 (2016), pp. 56–65.
issn: 0001-0782.

[263] Zakia Zaman, Sabidur Rahman, and Mahmuda Naznin. “Novel
Approaches for VNF Requirement Prediction Using DNN and
LSTM.” In: 2019 IEEE Global Communications Conference (GLOBE-
COM). 2019, pp. 1–6.

[264] Ennan Zhai, Mahesh Balakrishnan, Bingchuan Tian, Ang Chen,
Ruzica Piskac, Bo Song, and Haoliang Zhang. “Check before
You Change: Preventing Correlated Failures in Service Up-
dates.” In: 17th USENIX Symposium on Networked Systems De-
sign and Implementation (NSDI 20). USENIX Association, 2020,
pp. 575–589. isbn: 9781939133137.

[265] Ennan Zhai, Ruichuan Chen, David Isaac Wolinsky, and Bryan
Ford. “Heading off correlated failures through independence-
as-a-service.” In: Proceedings of the 11th USENIX Symposium on
Operating Systems Design and Implementation, OSDI 2014. 2014,
pp. 317–334. isbn: 9781931971164.

[266] Jialu Zhang, Todd Mytkowicz, Mike Kaufman, Ruzica Piskac,
and Shuvendu K. Lahiri. Can Pre-trained Language Models be
Used to Resolve Textual and Semantic Merge Conflicts? 2021. url:
http://arxiv.org/abs/2111.11904.

[267] Kaicheng Zhang, Akhil Guliani, Seda Ogrenci-Memik, Gokhan
Memik, Kazutomo Yoshii, Rajesh Sankaran, and Pete Beck-
man. “Machine Learning-Based Temperature Prediction for
Runtime Thermal Management Across System Components.”

http://arxiv.org/abs/2111.11904

bibliography 201

In: IEEE Transactions on Parallel and Distributed Systems 29.2
(2018), pp. 405–419. issn: 10459219.

[268] Xu Zhang et al. “Cross-dataset Time Series Anomaly Detection
for Cloud Systems.” In: USENIX ATC. 2019, pp. 1063–1076.
isbn: 9781939133038.

[269] Hui Zhao, Jing Wang, Feng Liu, Quan Wang, Weizhan
Zhang, and Qinghua Zheng. “Power-Aware and Performance-
Guaranteed Virtual Machine Placement in the Cloud.” In:
IEEE Transactions on Parallel and Distributed Systems 29.6 (2018),
pp. 1385–1400. issn: 10459219.

[270] Moubarak Zoure, Toufik Ahmed, and Laurent Réveillére. “Net-
work Services Anomalies in NFV: Survey, Taxonomy, and Veri-
fication Methods.” In: IEEE Transactions on Network and Service
Management (2022), pp. 1–1. issn: 1932-4537.

	Abstract
	Publications
	Contents
	List of Figures
	List of Tables
	Acronyms
	 Why Data-Driven Operations?
	1 Introduction
	1.1 Motivations
	1.2 The Case for Data-Driven Operations
	1.3 Research Goals
	1.3.1 G1 - Data-driven Operations Support Framework
	1.3.2 G2 - Autonomy vs Learning from Human Interaction
	1.3.3 G3 - Performance & Efficiency

	1.4 Contributions
	1.5 Thesis Structure

	2 Background
	2.1 Cloud Computing Technologies
	2.1.1 OpenStack
	2.1.2 Kubernetes
	2.1.3 VMWare vRealize Operations Manager
	2.1.4 Network Functions Virtualization

	2.2 Machine Learning Methodologies for Operations Support
	2.2.1 Self-Organizing Maps
	2.2.2 ARMA, ARIMA, and SARIMA
	2.2.3 Holt-Winters
	2.2.4 Non-linear Auto-Regressive Neural Networks
	2.2.5 Recurrent Neural Networks
	2.2.6 Long Short-Term Memory
	2.2.7 Gradient-Boosted Trees
	2.2.8 Large Language Models

	 High-performance Anomaly Detection
	3 SOM-based Anomalous VNF Behavior Detection
	3.1 Introduction
	3.1.1 Contributions
	3.1.2 Chapter Organization

	3.2 Related Work
	3.3 Proposed Approach
	3.3.1 Workflow
	3.3.2 SOM Implementation
	3.3.3 Hierarchical Grouping
	3.3.4 Alerting

	3.4 Experiments
	3.4.1 Multi-metric Analysis
	3.4.2 Hyperparameters Grid Search
	3.4.3 Per-VNF Analysis
	3.4.4 Hierarchical Grouping
	3.4.5 Alerting

	3.5 Conclusions

	4 XPySom: High-Performance SOMs
	4.1 Introduction
	4.1.1 Contributions
	4.1.2 Chapter Organization

	4.2 Related Work
	4.3 Proposed Approach
	4.3.1 Matrix-based batch SOM
	4.3.2 XPySom

	4.4 Experiments
	4.4.1 Quantization error vs training epochs
	4.4.2 Training time vs SOM grid sizes
	4.4.3 Training time vs training epochs
	4.4.4 Training time vs training samples
	4.4.5 Training time vs input features

	4.5 Conclusions

	 Predictive Resource Management
	5 VNF Metrics Forecasting
	5.1 Introduction
	5.1.1 Chapter Organization

	5.2 Related Work
	5.3 Compared Approaches
	5.3.1 Neural Architectures

	5.4 Experiments
	5.4.1 Experimental Set-up
	5.4.2 Presentation of Results
	5.4.3 Neural Architectures
	5.4.4 Classical Forecasting Techniques
	5.4.5 Comparative Analysis

	5.5 Conclusions

	6 Predictive Auto-scaling
	6.1 Introduction
	6.1.1 Problem Presentation
	6.1.2 Contributions
	6.1.3 Chapter Organization

	6.2 Related Work
	6.2.1 Predictive elasticity control in cloud computing
	6.2.2 Elasticity control with Reinforcement Learning
	6.2.3 Summary

	6.3 Proposed Approach
	6.3.1 Implementation Details

	6.4 Experiments
	6.4.1 Synthetic Elastic Application
	6.4.2 Experimental Set-up
	6.4.3 Predictors Configuration
	6.4.4 Validation on synthetic workload
	6.4.5 Validation on real workload traces
	6.4.6 Reproducibility

	6.5 Conclusions

	7 Intelligent Cloud Operations
	7.1 Introduction
	7.1.1 Contributions
	7.1.2 Chapter Organization

	7.2 Related Work
	7.3 Proposed Approach
	7.3.1 General Architecture
	7.3.2 Implementation Details

	7.4 Experiments
	7.4.1 Experimental Set-up
	7.4.2 Synthetic Workload Generator
	7.4.3 Apache Cassandra
	7.4.4 Anomaly Injection
	7.4.5 Results

	7.5 Conclusions

	 Quality-aware DevOps
	8 Large Language Models for Declarative Deployment Code Analysis
	8.1 Introduction
	8.1.1 Chapter Organization

	8.2 Related Work
	8.3 Proposed Approach
	8.3.1 ML Pipeline

	8.4 Preliminary Experiments
	8.5 Conclusions

	 Concluding Remarks
	9 Conclusions
	9.1 Future Research Directions
	9.1.1 Anomaly Detection
	9.1.2 Intelligent Auto-Scaling & Resource Allocation
	9.1.3 Root-Cause Analysis

	A Few-shot Learning Examples
	 Bibliography

