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Abstract

Deep neural networks are usually considered black-
boxes due to their complex internal architec-
ture, that cannot straightforwardly provide human-
understandable explanations on how they behave.
Indeed, Deep Learning is still viewed with skepti-
cism in those real-world domains in which incor-
rect predictions may produce critical effects. This
is one of the reasons why in the last few years Ex-
plainable Artificial Intelligence (XAI) techniques
have gained a lot of attention in the scientific com-
munity. In this paper, we focus on the case of multi-
label classification, proposing a neural network that
learns the relationships among the predictors as-
sociated to each class, yielding First-Order Logic
(FOL)-based descriptions. Both the explanation-
related network and the classification-related net-
work are jointly learned, thus implicitly introduc-
ing a latent dependency between the development
of the explanation mechanism and the develop-
ment of the classifiers. Our model can integrate
human-driven preferences that guide the learning-
to-explain process, and it is presented in a unified
framework. Different typologies of explanations
are evaluated in distinct experiments, showing that
the proposed approach discovers new knowledge
and can improve the classifier performance.

1 Introduction
In the last few years the scientific community devoted a
lot of effort to the proposal of approaches that yield ex-
planations to the decisions of machine learning-based sys-
tems [Bibal and Frénay, 2016; Doshi-Velez and Kim, 2017;
Došilović et al., 2018; Guidotti et al., 2018; Teso and Ker-
sting, 2019]. In particular, several Explainable Artificial In-
telligence (XAI) [Gunning, 2017] techniques have been de-
veloped, with different properties and output formats. They
generally rely on existing interpretable models, such as de-
cision trees, rules, linear models [Freitas, 2014; Huysmans
et al., 2011], that are considered easily understandable by
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humans. On the other hand, in order to provide an ex-
planation for black-box predictors, such as (deep) neural
networks and support vector machines, a new interpretable
model that is as faithful as possible to the original predictor
is considered, sometimes acting on localized regions of the
space [Guidotti et al., 2018]. Then, the explanation prob-
lem consists in finding the best interpretable model approx-
imating the black-box predictor. In the context of the XAI
literature, there is no clear agreement on what an explana-
tion should be, nor on what are the suitable methodologies
to quantitatively evaluate its quality [Carvalho et al., 2019;
Molnar, 2019]. There is also a strong dependence on the tar-
get of the explanation, e.g., a common user, an expert, or an
artificial intelligence researcher.

In this paper, we consider multi-label classification, where
each input example belongs to one of more classes, and on
First-Order Logic (FOL)-based explanations of the behaviour
of the classifier. We focus on neural network-based sys-
tems, that implicitly learn from supervisions the relationships
among the considered classes. We propose to introduce an-
other neural network that operates in the output space of the
classifier, also referred to as concept space, further project-
ing the data onto the so-called rule space, where each co-
ordinate represents the activation of a rule/explanation that,
afterwards, is described by FOL. In particular, we propose
to progressively prune the connections of the newly intro-
duced network and interpret each of its neurons as a learn-
able boolean function (an idea related to several methods
[Fu, 1991; Towell and Shavlik, 1993; Tsukimoto, 2000;
Sato and Tsukimoto, 2001; Zilke et al., 2016]), ending up
in a FOL formula for each coordinate of the rule space.

The concepts-to-rules projection can be learned using dif-
ferent criteria, that bias the type of rules discovered by the
system. We propose a general unsupervised criterion based
on information principles, following [Melacci and Gori,
2012]. However, humans usually have expectations on the
kind of explanations they might get. For example, suppose
we are training a network to classify digits and also to predict
whether they are even numbers. If we do not know what being
even means, we might be particularly interested in knowing
the relationships between the class even and the other classes
(i.e., that even numbers are 0 or 2 or 4 or 6 or 8). It could
not be so useful to discover that 0 is not 2, even if it is still a
valid explanation in the considered multi-label problem. Mo-
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tivated by this consideration, we propose a generic framework
that can discover both unbiased and user-biased explanations.

A key feature of the proposed framework is that learning
the classifier and the explanation-related network takes place
in a joint process, differently from what could be done, for
example, by classic data mining tools [Liu, 2007; Witten and
Frank, 2005]. This implicitly introduces a latent dependency
between the development of the explanation mechanism and
the one of the classifiers. When cast into the semi-supervised
learning setting, we show that linking the two networks can
lead to better quality classifiers, bridging the predictions on
the unsupervised portion of the training data by means of the
explanation net, that acts as a special regularizer.

The paper is organized as follows. Section 2 introduces the
use cases covered in this paper, while the proposed model is
described in Section 3. Experiments are collected in Section 4
and Section 5 concludes the paper.

2 Scenarios
We consider a multi-label classification problem, in which a
multi-output classifier is learned from data. Each output unit
is associated to a function in [0, 1] that predicts how strongly
an input example belongs to the considered class. We will
also interchangeably refer to these functions as task functions
(in a more general perspective where each function is related
to a different task), or predicates (if we interpret each output
score as the truth value of a logic predicate).

We also consider a set of explanations, that express knowl-
edge on the relationships among the task functions, and that
are the outcome of the proposed approach. Such knowledge
is not known in advance, and it represents a way to explain
what the classifier implicitly learned about the task functions.
In order to guide the process of building the explanations,
the user can specify one or more preferences. In particular,
the user can decide if the explanations have to describe lo-
cal relationships that only hold in sub-portions of the concept
space or global rules that hold everywhere, or even if they
must focus on a user-selected task function (as in the exam-
ple of Section 1). In what follows we report an overview of
the specific use cases explored in this paper.

Local Explanations. In this scenario, the explanations are
automatically produced without making any assumptions on
which task functions to consider. In order to provide a valid
criterion to develop explanations, we enforce them to only
hold in sub-portions of the concept space and, overall, to
cover the whole dataset. The user can provide an example to
the trained network and get back the explanation associated to
it, that may highlight partial co-occurrences of the task func-
tions. For instance, the system might discover that “eyes or
sunglasses” is a valid rule for some pictures (the ones with
faces) but not for others (the ones without faces).

Global Explanations. Local explanations may provide
very specific knowledge concerning only small portions of
data. In order to describe more general properties that hold
on the whole dataset, we may be interested in global explana-
tions. Global explanations may catch general relations among
task functions that are valid for all the points of the considered

dataset, such as mutual exclusion of two classes or hierarchi-
cal relations.

Class-driven Explanations. The user may require explana-
tions about the behaviour of specific task functions. He could
also specify if he is looking for necessary conditions (IF→)
or necessary and sufficient explanations (IFF ↔). For in-
stance, focusing on the driving class man, we may discover
that a certain pattern is classified as “man only if it is also
classified as containing hand, body, head”, and so on. In the
example of Section 1, even was the class driving a necessary
and sufficient explanation. The rules of this scenario are com-
pletely tailored around the user-selected target classes.

Combined Explanations. All the scenarios described so
far may be arbitrarily combined in case the user is simulta-
neously interested in multiple explanations according to dif-
ferent criteria. In particular, some explanations might have
to specify the behaviour of some task functions, while the
remaining ones might have to be automatically acquired in
order to describe global or local interactions.

3 Model
We consider data belonging to the perceptual space X ⊆ Rd,
and n labels/classes, each of them associated to a task func-
tion fi, i = 1, . . . , n, that corresponds to an output unit of a
neural network. For any x ∈ X , fi(x) ∈ [0, 1] expresses the
membership degree of the example x to the i-th class. We in-
dicate with f(x) the function that returns the n-dimensional
vector with the outputs of all the task functions. Such vector
belongs to the so-called concept space.

Let us consider another set of functions implemented by
neural networks, indicated with ψj , j = 1, . . . ,m, whose
input domain is the concept space while their output domain
is the rule space. Each ψj(f(x)) expresses the validity of
a certain explanation with respect to the output of the task
functions on the data sample x ∈ X . In addition, we assume
ψj(f(x)) ∈ [0, 1] in order to relate the value of ψj to the
truth-degree of a certain FOL formula.

Different criteria are needed to learn the parameters of the
functions ψj in order to implement the scenarios of Sec-
tion 2, as we will describe in Section 3.1. Once the ex-
plaining functions are learnt, we will consider their approx-
imation as boolean functions, and they will be given a de-
scription in terms of FOL, as we will discuss in Section 3.2.
Throughout the paper, the notation ψ̂j denotes both the ap-
proximating boolean function and its associated logical for-
mula. Finally, Xj denotes the subset of the input space where
the j-th explanation holds true, also named its support, i.e.,
Xj = {x ∈ X : ψ̂j(f(x)) = 1}. When no subscript is spec-
ified, f and ψ indicate the collection of all the fi’s and ψj’s,
respectively.

3.1 Learning Criteria
We consider a semi-supervised setting in which only a portion
of the data in X is labeled [Melacci and Belkin, 2011]. This
is a natural setting of several real-world applications, since
getting labeled data is usually costly, and it also allows us
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to better emphasize the proprieties of the explanation learn-
ing mechanisms, that can exploit both labeled and unlabeled
training data with no distinctions.

The classic cross-entropy loss is used to enforce the task
functions fi’s to fit the available supervisions, paired with
a regularization criterion to favour smooth solutions (weight
decay). In order to implement the scenarios of Section 2, we
need to augment the training loss with further criteria (penalty
terms) that involve the explaining functions ψj’s, for all x’s,
being them labeled or not, and described in what follows.1

Mutual Information-based Criterion. The maximization
of the Mutual Information (MI) between the concept and rule
spaces can be enforced in order to implement the principles
behind the Local Explanations scenario, and it could also be
used as a basic block to implement the Global Explanations
scenario (Section 2). In the latter case, further operations are
needed, and they will be described in Section 3.2. Maximiz-
ing the transfer of information from the n task functions to
the m explaining functions is a fully unsupervised process
that leads to configurations of the ψj’s functions such that,
for each x ∈ X , only one of them is active (close to 1) while
all the others are close to zero (see [Melacci and Gori, 2012]).
In order to define the MI index, we introduce the probability
distribution PΨ=j|Y=f(x)(ψ, f(x)), for all j, as the probabil-
ity of ψj to be active in f(x). Following the classic notation
of discrete MI, Ψ is a discrete random variable associated to
the set of explaining functions while Y is the variable related
to the data in the concept space.2 The penalty term to mini-
mize is minus the MI index, that is
LMI(ψ, f,X) = −HΨ(ψ, f,X) +HΨ|Y (ψ, f,X) , (1)

where HΨ and HΨ|Y denote the entropy and conditional
entropy functions (respectively) associated to the aforemen-
tioned probability distribution and measured over the whole
X . An outcome of the maximization of the MI index
is that the supports of the explaining functions will tend
to partition the input space X , i.e., X =

⋃m
j=1Xj and

Xj ∩ Xk = ∅, for j 6= k (see [Melacci and Gori, 2012;
Betti et al., 2019] for further details).
Class-driven Criteria. The Class-driven Explanations sce-
nario of Section 2 aims at providing explanations for user-
selected task functions. Let assume that the user wants the
system to learn an explaining function ψh(i) that is driven by
the user-selected fi, being h(·) an index mapping function.
We propose to enforce the support Xh(i) of ψh(i) to contain
(IF→) or to be equal to (IFF↔) the space regions in which
fi is active. Notice that fi and ψh(i) have different input do-
mains (perceptual space and concept space, respectively), so
we are introducing a constraint between two different repre-
sentations of the data (see e.g. [Melacci et al., 2009]). More-
over, since the goal of this scenario is to explain fi in terms
of the other fu6=i’s, we mask the i-th component of f(x) by
setting it to 0 for all x ∈ X . This also avoids trivial so-
lutions in which ψh(i) only depends on fi. We denote by

1Each penalty term is intended to be weighed by a positive scalar.
2We implemented the probability distribution using the softmax

operator, scaling the logits with a constant factor to ensure that when
ψj(x) = 1 all the other ψz 6=j0 are zero.

Mutual Information 
Criterion (MI)

Eq. 1

Class-driven 
Criterion (IF→) 

Eq. 2

Class-driven 
Criterion (IFF↔) 

Eq. 3

Criteria to train the ᴪ networks Sec. 3

Local 
Explanations 

(DNF - Sec. 3.2)

Global 
Explanations 

(CNF - Sec. 3.2)

Class-driven 
Explanations 

(IF→)

Class-driven 
Explanations 

(IIF↔)

Scenarios Sec. 2

Combined 
Explanations

(Custom)

Figure 1: The criteria of the proposed framework and their relations
with the use-cases of Section 2.

P, S ⊆ {1, . . . , n} the disjoint sets of task function indexes
selected for class-driven IF → and IFF ↔ explanations, re-
spectively. The loss terms that implement the described prin-
ciples are reported in Eq. 2 and Eq. 3,

L→(ψ, f,X) =
∑

i∈P,x∈X
max{0, fi(x)− ψh(i)(f(x))} (2)

L↔(ψ, f,X) =
∑

i∈S,x∈X
|fi(x)− ψh(i)(f(x))| . (3)

While Eq. 2 does not penalize those points on which
ψh(i)(x) > fi(x), Eq. 3 specifically enforces the ψh(i) and
fi to be equivalent. In order to avoid trivial solutions of Eq.
2 in which, for instance, ψh(i) is always 1, we enforce the su-
perivision loss of fi also on the output of ψh(i). Notice that
these losses never explicitly estimate Xh(i).
Class-driven & Mutual Information-based Criteria. The
Combined Explanations scenario of Section 2 is the most gen-
eral one, and it can be implemented involving all the penalty
terms described so far. The MI index can be enforced only
on those ψj’s for which the user is looking for a local ex-
planation, while other explaining functions can be dedicated
to class-driven explanations. Interestingly, we can also nest
the MI index inside a class-driven explanation, since the user
could ask for multiple local explanations for each selected
driving class. In this case, multiple ψj’s are allocated for
each driving class, and the MI index is computed assuming
the probability distribution of the discrete samples in the con-
cept space to be proportional to the activation of the task func-
tion we have to explain. This scenario can be arbitrarily made
more complex, and it is out of the scope of this paper to focus
on all the possible combinations of the proposed criteria.

Fig. 1 summarizes the role of the described loss terms and
their relations with the scenarios of Section 2.

3.2 First-Order Logic Formulas
Each explaining function ψj is a [0, 1]-valued function de-
fined in [0, 1]n. At the end of the training stage, each ψj
is converted into a boolean function ψ̂j (this is also con-
sidered with a different goal e.g. in [Fu, 1991; Towell and
Shavlik, 1993; Tsukimoto, 2000; Sato and Tsukimoto, 2001;
Zilke et al., 2016]), and then converted into a FOL formula.

The booleanization step is obtained by approximating any
neuron output with its closest integer (assuming sigmoids as
activation functions, this value can only be 0 or 1) and by re-
peating this process for each layer, from the output neurons
of the task functions up to the output layer of ψ. As a result,
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h1 h3 ψ1 ψ1

0 0 0.8 1
0 1 0.0 0
1 0 1.0 1
1 1 0.4 0

h2 h3 ψ2 ψ2

0 0 1.0 1
0 1 0.0 0
1 0 1.0 1
1 1 0.8 1

f1 f3 h1 h1
0 0 0.1 0
0 1 1.0 1
1 0 0.0 0
1 1 0.2 0

f2 f4 h2 h2
0 0 0.3 0
0 1 0.0 0
1 0 1.0 1
1 1 0.0 0

f2 f3 h3. h3
0 0 0.0 0
0 1 0.8 1
1 0 0.6 1
1 1 1.0 1

^ ^

^

^ ^

^ ^

^ ^ ^ ^

^ ^ ^ ^

Figure 2: Extracting FOL formulas from each ψj . Hidden and out-
put neurons are paired truth tables (right) and their corresponding
logic description (top), as described in Sec. 3.2. The truth tables in-
clude the real-value neuron outputs (third column) and their boolean
approximation (last column). The FOL descriptions of ψ1, ψ2 are
the outcome of composing the truth tables of the hidden neurons.

for each neuron we get a boolean function, whose truth-table
can be easily rewritten as a boolean formula in Disjunctive
Normal Form (DNF), i.e., a disjunction of minterms (con-
junction of literals). By composing the formulas attached to
each neuron, accordingly to the network structure, we get ψ̂j ,
that is the boolean formula of the output neuron associated
to ψj . The whole procedure is illustrated in the example of
Figure 2. Clearly, this procedure is efficient only if the fan-in
of each neuron is small, a condition that we enforce with the
procedure described in Section 3.3.

In the case of Local Explanations (Section 2), each ψj is
close to 1 only in some sup-portions of the space, due to the
maximum mutual information criterion, so that the FOL rule
ψ̂j will hold true only on Xj ⊂ X (and false otherwise). As
a consequence, each explanation is local,

∀x ∈ Xj , ψ̂j(f(x)) , for j = 1, . . . ,m .

The case of Global Explanations (Section 2) is still built
on the maximum mutual information criterion. A global ex-
planation (i.e., an explanation holding on the whole input
space X) can be obtained by a disjunction of ψ̂1, . . . , ψ̂m.
However, the resulting formula will be generally unclear and
quite complex. A possible approach to get a set of global
explanations starting from the previous case is then to con-
vert it in Conjunctive Normal Form (CNF), i.e., a conjunc-
tion of K disjunctions of literals {ψ̂′k, k = 1, . . . ,K},∨m
j=1 ψ̂j(f(x)) ≡

∧K
k=1 ψ̂

′
k(f(x)). In this case, the follow-

ing global formulas are valid in all X ,

∀x ∈ X, ψ̂′k(f(x)) , for k = 1, . . . ,K . (4)

Unfortunately, converting a boolean formula into CNF can
lead to an exponential explosion of the formula. However,
after having converted each ψ̂j in CNF, the conversion can be
computed in polynomial time with respect to the number of
minterms in each ψ̂j [Russell and Norvig, 2016].

The Class-driven Explanations (Section 2) naturally gen-
erate rules that hold for all X but that are specific for some
set of predicates. In particular, Eq. 2 and Eq. 3 enforce
1fi ⊆ Xh(i) and 1fi = Xh(i) respectively (for all i ∈ P and

i ∈ S), being 1fi the characteristic function associated to re-
gions where fi is active. From a logic point of view, we get
the validity of the following FOL formulas:

∀x ∈ X, f̂i(x)→ ψ̂h(i)(x) for i ∈ P ,

∀x ∈ X, f̂i(x)↔ ψ̂h(i)(x) for i ∈ S ,

where→ and↔ are the implication and logical equivalence,
respectively, and f̂i is the boolean approximation of fi.

3.3 Learning Strategies
Keeping the fan-in of each neuron in the ψ-networks close
to small values is a condition that is needed in order to effi-
ciently devise FOL formulas. L1-norm-based regularization
can be exploited to reduce the number of non-zero-weighed
input connections of each neuron. After the training stage,
we propose to progressively prune the connections with the
smallest absolute values of the associated weights, in order to
keep exactly q ≥ 2 input connections per neuron. This pro-
cess is performed in an iterative fashion. At each iteration,
only one connection per neuron is removed, and a few op-
timization epochs are performed (using the same loss of the
training stage), to let the weights of the ψ functions to re-
adapt after the weight removal. We repeat this process until
all the neurons are left with q input connections.

Globally training the whole model involves optimizing the
weights of the f - and ψ-networks. However, this might
lead to low-quality solutions, since the criteria of Section 3.1
might have a dominating role in the optimization. We pro-
pose to initially train only the f -networks using the available
supervisions and the cross-entropy loss, for E epochs. Then,
once the selected criteria of Section 3.1 are added to the cost
function, both the f and ψ-networks are jointly trained. After
a first experimentation, we found to be even more efficient to
further specialize the latter training, alternating the optimiza-
tion of the f and ψ-networks (Nf epochs for the weights of
f and Nψ epochs for the weights of ψ, repeated D times).

4 Experiments
We considered two different tasks, the joint recognition of
objects and objects parts in the PASCAL-Part dataset, and the
recognition of face attributes in portrait images of the CelebA
data.3 In both cases, we compared the quality of the plain
classifier (Baseline), against the classifiers augmented with
the explanation networks.
Experimental Setup. According to Section 3.3, we set
E = 25, and then 4 learning stages (D = 4) are performed,
each of them composed ofNf = 25 epochs for the f -network
(stage > 1) and Nψ = 10 epochs for the ψ-network. For
a fair comparison, the baseline classifier is trained for 100
epochs. Each dataset was divided into training, validation,
test sets, and we report the (macro) F1 scores measured on
the test data. All the main hyperparameters (weights of terms
composing the learning criteria of Section 3.1, initial learning
rate (Adam optimizer, mini-batch-based stochastic gradient),
contribute of the weight decay) have been chosen through a

3
PASCAL-Part: https://www.cs.stanford.edu/∼roozbeh/pascal-parts/pascal-parts.html.
CelebA: http://mmlab.ie.cuhk.edu.hk/projects/CelebA.html

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)

2237

https://www.cs.stanford.edu/~roozbeh/pascal-parts/pascal-parts.html
http://mmlab.ie.cuhk.edu.hk/projects/CelebA.html


# Labeled Baseline MI IF→ IFF↔
10 57.0 ± 0.3 58.1 ± 0.2 58.5 ± 0.2 57.1 ± 0.1
100 63.5 ± 0.2 63.7 ± 0.2 63.6 ± 0.2 63.9 ± 0.1

Scenario Explanations Explanations (DEEPER ψ)

LOCAL
∀x ∈ Xi, Beak ∨Bird ∀x ∈ Xi, Bottle ∨ Table
∀x ∈ Xj , Headlight ∨ Plate ∀x ∈ Xj , Arm ∧ ¬Bottle ∧ ¬Horn ∧ ¬Table
∀x ∈ Xk, Cat ∨Horse ∀x ∈ Xk, ¬Bottle ∧ ¬Table ∧ (Car ∨Motorbike)

GLOBAL

∀x, AeroplaneBody ∨Beak ∨Bird ∨ Table ∨ Plant
∨Car ∨Headlight ∨Motorbike ∨Muzzle ∨ Train
∨Chainwheel ∨ ¬Aeroplane

∀x, Bird ∨ Coach ∨Hand ∨Nose
∨Sheep ∨ Stern ∨Wheel ∨ ¬Roofside

∀x, ¬Saddle ∨Bird ∨ Coach ∨Hand ∨Nose
∀x,¬Horse ∨AeroplaneBody ∨Beak ∨Bird ∨ Train
∨Car ∨ Chainwheel ∨Headlight ∨Muzzle ∨ Table
∨Motorbike ∨ Plant

∨Sheep ∨ Stern ∨Wheel

CLASS-
DRIVEN
IF →

∀x, Car → Backside ∨Mirror ∨ (Window ∧ ¬Coach) ∀x, Aeroplane→ Engine ∨ Stern
∀x, Bicycle→ Saddle ∨Handlebar ∀x, Chair → (Table ∧ Sofa) ∨ (Table ∧ ¬Door)
∀x, Train→ Coach ∨ TrainHead ∀x, Boat→ ¬Bottle ∧ ¬Cat ∧ ¬Coach ∧ ¬Leftside

∧¬Paw ∧ ¬Wheel ∧ ¬Wing

CLASS-
DRIVEN
IFF ↔

∀x, Horse↔ (Hoof ∧ Ear) ∨ (Hoof ∧Neck) ∀x, Aeroplane↔ AeroplaneBody ∧ ¬Horn
∀x, Bird↔ Beak ∧ ¬Horn ∀x, Car ↔ Door ∨Mirror
∀x, Bicycle↔ (Chainwheel ∧ ¬Cow ∧Handlebar)
∨(Chainwheel ∧ ¬Cow ∧ Saddle)

∀x, Dog ↔Muzzle ∧ Paw ∧ ¬Table ∧ ¬TrainHead

Table 1: PASCAL-Part dataset. Top: macro F1 scores % (±standard deviation), different learning settings and number of labeled points
per-class. Bottom: explanations yielded in different scenarios (two types of ψ-network). Functions f̂i’s are indicated with their class-names.

grid search procedure, with values ranging in [10−1, 10−4],
selecting the model that returned the best accuracy on a held-
out validation set. Results are averaged over 5 different runs.
Each neuron is forced to keep only q = 2 input connections in
the ψ-network. Deeper ψ-networks are capable of providing
more complex explanations, since the compositional structure
of the network can relate multiple predicates. We considered
two types of ψ-networks, with one or two hidden layers (10
units each), respectively, with the exception of the case of
MI in which we considered no-hidden layers or one hidden
layer (10 units). This is due to the unsupervised nature of
theMI criterion, that, when implemented in deeper networks
might capture more complex regularities. When class-driven
criteria are exploited, we considered an independent neural
network to implement each ψj associated to a driving class.
The input space of each of them is different, due to the mask-
ing of the driving task function, as described in Section 3.1.
When considering the MI criterion only, we used a single ψ-
network with a number of output units m (one for each ψj)
ranging from 10 to 50 (cross-validated).

PASCAL-Part. This dataset is composed of 10,103 labeled
images of objects (Man, Dog, Car, Train, etc.) and object-
parts (Head, Paw, Beak, etc.). We divided them into three
splits, composed of 9,092 training images, 505 validation im-
ages, 506 test images, respectively (keeping the original class
distribution). Following the approach of [Donadello et al.,
2017], very specific parts were merged into unique labels,
leading to c = 64 classes, out of which 16 are main ob-
jects that contain object-parts from the other classes. From
each image, we extracted 2048 features using a ResNet50
backbone network pretrained on ImageNet. We used 100
hidden units and c output units to implement the f -network.
We tested two different semi-supervised settings in which 10

Figure 3: F1 score % on (a) the driving classes and (b) on the other
classes, in function of the number of labeled examples per class.

and 100 labeled examples per-class are respectively provided.
The remaining portion of the training data is left unlabeled (it
is exploited by the learning criteria of Section 3.1). In the
class-driven cases, we considered the main objects as driving
classes, so m = 16. Results are reported in Table 1, in which
the F1 scores (upper portion) and a sample of the extracted
rules (lower portion) are shown. The proposed learning crite-
ria lead to an improvement of the classifier performance that
is more evident when less supervisions are provided, as ex-
pected. We further explored this result, distinguishing be-
tween the F1 measured (a) on the driving classes, that are
more represented, and (b) on the other classes. Fig. 3 (top)
shows that evident improvements (w.r.t. the baseline) can
sometimes be due to only one of the two groups of classes,
and there is not a clear trend among the criteria. Notice that s
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# Labeled Baseline MI IF→ IFF↔
25 54.7 ± 0.4 55.0 ± 0.3 56.1 ± 0.1 55.1 ± 0.2
100 60.0 ± 0.1 60.4 ± 0.2 60.9 ± 0.2 60.5 ± 0.2

Scenario Explanations Explanations (DEEPER ψ)

LOCAL
∀x ∈ Xi, Bangs ∧ ¬Bald ∀x ∈ Xi, BlackHair ∧Attractive ∧ Y oung
∀x ∈ Xj , StraightHair ∧ BushyEyebrows ∀x ∈ Xj , (Old ∧GrayHair) ∨ (Old ∧ ¬Y oung)
∀x ∈ Xk, F emale ∧Attractive ∀x ∈ Xk, NoBeard ∧ Female ∧ ¬WearNecktie

GLOBAL

∀x, Bangs ∨BlondHair ∨Blurry ∨Goatee
∨StraightHair ∨WearHat
∨¬Attractive ∨ ¬Female ∨ ¬Male

∀x, Beard ∨BlackHair ∨BrownHair ∨Goatee
∨HeavyMakeup ∨Mustache ∨Old∨
WearNecktie ∨ ¬Beard ∨ ¬Y oung

∀x, Blurry ∨Goatee ∨WearHat
∨¬Attractive ∨ ¬BlackHair ∨ ¬BlondHair
∨¬Female ∨ ¬StraightHair

∀x, HeavyMakeup ∨Mustache ∨WearNecktie
∨Y oung ∨ ¬Beard ∨ ¬WearLipstick

CLASS-
DRIVEN
IF →

∀x, Attractive→ PaleSkin ∨RosyCheeks
∨(¬Blurry ∧ ¬Chubby)

∀x, Male→ Beard ∨ FiveOClockShadow
∨DoubleChin ∨ ¬WearLipstick

∀x, Beard→ Goatee ∨ Sideburns
∀x, Old→ GrayHair ∨ ¬Attractive

∀x, Bald→ RecedingHairline ∧ ¬Bangs
∧¬RosyCheeks ∧ ¬WavyHair

∀x, Female→ HeavyMakeup ∨WearLipstick
∨(¬DoubleChin ∧ ¬WearNecktie)

CLASS-
DRIVEN
IFF ↔

∀x, Bald↔ ¬BlackHair ∧ ¬BrownHair
∧¬StraightHair ∧ ¬WavyHair

∀x, Beard↔ (Goatee ∧Mustache)
∨(Goatee ∧ Sideburns)

∀x, NotBald↔ Bangs ∨BrownHair ∨WavyHair ∀x, Bald↔ ¬Bangs ∧ ¬StraightHair ∧ ¬WavyHairg
∀x, Male↔ ¬WearLipstick ∧ ¬WearNecklace ∀x, Y oung ↔ (¬GrayHair ∧BigLips)

∨(¬GrayHair ∧ ¬WearNecklace)

Table 2: CelebA dataset. Top: macro F1 scores % (±standard deviation), different learning settings and number of labeled points per-class.
Bottom: explanations yielded in different scenarios (two types of ψ-network). Functions f̂i’s are indicated with their class-names.

class-driven criterion not necessarily leads to better driving-
task-functions, while it can also improve the other functions.
This is because some driving classes might also participate in
explaining other driving classes. The explanations in Table 1
show that deeper ψ networks usually lead to more complex
formulas, as expected. Local Explanations depend on the re-
gions covered by the Xj , and they sometimes involve seman-
tically related classes, that might be simultaneously active on
the same region. Global Explanations show possible cover-
ings of the whole classifier output space. We only show 2
sample ψ̂′j’s from Eq. 4. They might be harder to follow,
since they merge multiple local explanations. In the deeper
case we get more compact terms, that, however, are more nu-
merous, i.e., larger K. Class-driven Explanations IF→ and
IFF↔ provide a semantically coherent description of objects
and their parts. Interestingly, these rules usually implement
reasonable expectations on this task, with a few exceptions.
The IFF↔ case is more restrictive than IF→ (compare Car,
Bicycle in the two cases).

CelebA. This dataset is composed of over 200k images of
celebrity faces, out of which 45% are used as training data,
5% as validation data and ≈ 100k are used for testing. The
dataset is composed of 40 annotated attributes (classes) per
image (BlondHair, Sideburns, GrayHair, WavyHair, etc.), that
we extended by adding the attributes NotAttractive, NotBald,
Female, Beard, Old, as opposite of the already existing At-
tractive, Bald, Male, NoBeard, Young. In the class-driven
criteria, these two sets of attributes are the ones we require to
explain (c = 10). We exploit the same pre-processing and
neural architectures of the previous experiment, evaluating

semi-supervised settings with 25 and 100 labeled examples
per class. Results are reported in Table 2 and Fig. 3 (bot-
tom). We obtained a slightly less evident improvement of the
performance with respect to the baseline, especially in the
less-supervised case. This is mostly due to the fact that some
classes are associated to high-level attributes (such as Attrac-
tive) that might be not easy to generalize from a few supervi-
sions. When distinguishing among the results on driving and
not-driving classes (Fig. 3), improvements are more evident.
From the Local Explanations in the lower portion of Table 2,
we can appreciate that some rules are able to capture in a fully
unsupervised way the relationships between, for example, be-
ing Attractive and Young, or being Old and with GrayHair.
Global Explanations show more differentiated coverings of
the classifier output space. Class-driven Explanations IF→
and IFF↔ yield descriptions that, again, are usually in line
with common expectations (see Beard, Bald, Male).

5 Conclusions
We presented an approach that yields First-Order Logic-
based explanations of a multi-label neural classifier, using an-
other neural network that learns to explain the classifier itself.
We plan to follow this innovative research direction consider-
ing new use-cases and rule types.
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