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Introduction

These notes are devoted to the Monge—Kantorovich optimal transport prob-
lem. This problem, in the original formulation of Monge, can be stated as
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follows: given two distributions with equal masses of a given material gy(z),
g1(z) (corresponding for instance to an embankment and an excavation), find
a transport map v which carries the first distribution into the second and
minimizes the transport cost

O(y) = /X & — () g0(x) .

The condition that the first distribution of mass is carried into the second
can be written as

/ go(z) de = / g1(y)dy VB C X Borel (1)
¢Y~1(B) B

or, by the change of variables formula, as
g1(¢(z)) |[detVy(z)| = go(z)  for L™-ae. z € B

if ¢/ is one to one and sufficiently regular.

More generally one can replace the functions gy, g1 by positive measures
fo, f1 with equal mass, so that (1) reads f; = ¥4 fo, and replace the euclidean
distance by a generic cost function ¢(z,y), studying the problem

min / c(z,P(z)) dfp(z). (2)
Ypfo=h Jx

The infimum of the transport problem leads also to a c-dependent distance
between measures with equal mass, known as Kantorovich—Wasserstein dis-
tance.

The optimal transport problem and the Kantorovich—Wasserstein dis-
tance have a very broad range of applications: Fluid Mechanics [9], [10];
Partial Differential Equations [31, 28]; Optimization [13], [14] to quote just
a few examples. Moreover, the 1-Wasserstein distance (corresponding to
c(z,y) = |z — y| in (2)) is related to the so-called flat distance in Geomet-
ric Measure Theory, which plays an important role in its development (see
[6], [24], [29], [27], [43]). However, rather than showing specific applications
(for which we mainly refer to the Evans survey [21] or to the introduction
of [9]), the main aim of the notes is to present the different formulations of
the optimal transport problem and to compare them, focussing mainly on
the linear case c¢(z,y) = |z — y|. The main sources for the preparation of



the notes have been the papers by Bouchitté-Buttazzo [13, 14], Caffarelli-
Feldman—McCann [15], Evans—Gangbo [22], Gangbo—McCann [26], Sudakov
[41] and Evans [21].

The notes are organized as follows. In Section 1 we discuss some basic
examples and in Section 2 we discuss Kantorovich’s generalized solutions, i.e.
the transport plans, pointing out the connection between them and the trans-
port maps. Section 3 is entirely devoted to the one dimensional case: in this
situation the order structure plays an important role and considerably sim-
plifies the theory. Sections 4 and 5 are devoted to the ODE and PDE based
formulations of the optimal transport problem (respectively due to Brenier
and Evans—Gangbo); we discuss in particular the role of the so-called trans-
port density and the equivalence of its different representations. Namely, we
prove that any transport density px can be represented as fol e (|y — z|7y) dt,

where 7 is an optimal planning, as fol |E;| dt, where FE is the “velocity field”
in the ODE formulation, or as the solution of the PDE div(V  uu) = f1 — fo,
with no regularity assumption on f;, fy. Moreover, in the same generality
we prove convergence of the p-laplacian approximation.

In Section 6 we discuss the existence of the optimal transport map, follow-
ing essentially the original Sudakov approach and filling a gap in his original
proof (see also [15, 42]). Section 7 deals with recent results, related to those
obtained in [25], on the regularity and the uniqueness of the transport den-
sity. Section 8 is devoted to the connection between the optimal transport
problem and the so-called mass optimization problem. Finally, Section 9
contains a self contained list of the measure theoretic results needed in the
development of the theory.

Main notation

X a compact convex subset of an Euclidean space R"
B(X) Borel o-algebra of X

L Lebesgue measure in R"

HF Hausdorfl £-dimensional measure in R™

Lip(X) real valued Lipschitz functions defined on X
Lip,(X) functions in Lip(X) with Lipschitz constant not greater than 1

Y the set of points where u is not differentiable
T projections (z,y) — = + t(y — z), t € [0,1]
So(X) open segments |z, y[ with z, y € X

S.(X) closed segments [z,y] with z, y € X, z # y
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M(X) signed Radon measures with finite total variation in X
M, (X) positive and finite Radon measures in X
M (X) probability measures in X

| total variation of p € [M(X)]"
wt, o positive and negative part of u € M(X)
falt push forward of u by f

1 Some elementary examples

In this section we discuss some elementary examples that illustrate the kind
of phenomena (non existence, non uniqueness) which can occur. The first
one shows that optimal transport maps need not exist if the first measure f,
has atoms.

Example 1.1 (Non existence) Let fy = 6, and fi = (61 + 6-1)/2. In this
case the optimal transport problem has no solution simply because there is

no map 1 such that 9y fo = fi.

The following two examples deal with the case when the cost function ¢
in X x X is | —yl, i.e. the euclidean distance between = and y. In this case
we will use as a test for optimality the fact that the infimum of the transport
problem is always greater than

sup{/Xud(fl—fo): ue Lipl(X)}. (3)

Indeed,

[ wdthi= ) = [ wtota) = @ dio) < [ 1) ~ o) (o)

for any admissible transport . Actually we will prove this lower bound is
sharp if fy has no atom (see (6) and (13)).

Our second example shows that in general the solution of the optimal
transport problem is not unique. In the one-dimensional case we will obtain
(see Theorem 3.1), uniqueness (and existence) in the class of nondecreasing
maps.

Example 1.2 (Book shifting) Let n > 1 be an integer and fy = xjo.,£!
and fi = x[Lnt1]L" Then the map ¢(t) = ¢ 4+ 1 is optimal. Indeed, the cost
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relative to ¢ is n and, choosing the 1-Lipschitz function u(t) = —t in (3), we
obtain that the supremum is at least n, whence the optimality of ¢ follows.
But since the minimal cost is n, if n > 1 another optimal map v is given by

t+mn on[0,1]
p(t) = 7
t on [1,n].
In the previous example the two transport maps coincide when n = 1;
however in this case there is one more (and actually infinitely many) optimal
transport map.

Example 1.3 Let f) = X[0,1]£1 and f; = X[Lg]ﬁl (i.e. n =1 in the previous
example). We have already seen that ¢(¢) = ¢t + 1 is optimal. But in this
case also the map 1 (¢) = 2 — ¢ is optimal as well.

In all the previous examples the optimal transport maps ¢ satisfy the
condition 9 (t) > t. However is is easy to find examples where this does not
happen.

Example 1.4 Let fo = x—111£" and fi = (6_1 + 61)/2. In this case the op-
timal transport map v is unique (modulo £'-negligible sets); it is identically
equal to —1 on [—1,0) and identically equal to 1 on (0, 1]. The verification
is left to the reader as an exercise.

We conclude this section with some two dimensional examples.

Example 1.5 Assume that 2f is the sum of the unit Dirac masses at (1, 1)
and (0,0), and that 2f; is the sum of the unit Dirac masses at (1,0) and
(0,1). Then the “horizontal” transport and the “vertical” transport are both
optimal. Indeed, the cost of these transports is 1 and choosing u(z, z2) = x4
in (3) we obtain that the infimum of the transport problem is at least 1.

Example 1.6 Assume that f; is the sum of two Dirac masses at A, B € R?
and assume that f is supported on the middle axis between them. Then

[ o= v@ldn@) = [ 1o = Al

whenever ¢(z) € {A, B}, hence any admissible transport is optimal.



2 Optimal transport plans: existence and
regularity

In this section we discuss Kantorovich’s approach to the optimal transport
problem. His idea has been to look for optimal transport “plans” , i.e. proba-
bility measures v in the product space X x X, rather than optimal transport
maps. We will see that this more general viewpoint can be used in several
situations to prove that actually optimal transport maps exist (this interme-
diate passage through a weak formulation of the problems is quite common
in PDE and Calculus of Variations).

(MK) Let fo, f1 € M(X). We say that a probability measure y in M;(X x
X) is admissible if its marginals are fy and fi, i.e.

Wo#’}’:foa 7T1#’)’:f1~

Then, given a Borel cost function ¢: X x X — [0, 00|, we minimize

I(y) = /X cle)dr(a)

among all admissible v and we denote by F.( fo, f1) the value of the infimum.

We also call an admissible v a transport plan. Notice also that in Kan-
torovich’s setting no restriction on fj or f; is necessary to produce admissible
transport plans: the product measure fy x f; is always admissible. In partic-
ular the following definition is well posed and produces a family of distances

in Ml(X)

Definition 2.1 (Kantorovich—Wasserstein distances) Let p > 1 and
fo, J1 € My(X). We define the p-Wasserstein distance between fy and f by

1/p
Fo(fo, f1) = min / lz —y[Pdy| . (4)
mogY=Ffo. mgv=f1 Jx«x

The difference between transport maps and transport plans can be better
understood with the following proposition.



Proposition 2.1 (Transport plans versus transport maps) Any
Borel transport map v : X — X nduces a transport plan vy, defined by

Yy = ([d X ¢)#f(). (5)

Conversely, a transport plan v 1s induced by a transport map if v 1s concen-
trated on a y-measurable graph T'.

Proof. Let ¢ be a transport map. Since myo(IdXx ) = Id and 70 (Idx ) =
1) we obtain immediately that moxy, = fo and migvyy = ¥ufo = fi. Notice
also that, by Lusin’s theorem, the graph of 1 is y,-measurable.

Conversely, let I' C X x X be a y-measurable graph on which 7 is con-
centrated and write

I'={(z,¢(z)): z€m(l)}

for some function ¢ : mo(I') — X. Let (K}) be an increasing sequence of
compact subsets of T' such that v(T'\ K}) — 0 and notice that

fo(mo(Kn)) =~ (WJI(WU(Kh))) > y(Ky) — 1.

Hence, mo(I') D Upmo(Kp) is fo-measurable and with full measure in X.
Moreover, representing v as v, ® fo as in (58) we get

0 = lim 7(X><X\Kh):/X% {y: (2,9) ¢ UKoY df(2)

h—o0

> / (X {B(2)}) dhole)

o(T")

(here [* denotes the outer integral). Hence v, is the unit Dirac mass at ¢(z)
for fo-a.e. x € X. Since

= P(z) = /Xyd'yw(y)

is a Borel map coinciding with ¢ fy-a.e., we obtain that v, is the unit Dirac
mass at ¥(z) for fp-a.e. z. For A, B € B(X) we get

v(A X B) = /A%(B) dfo(z) = fo({z: (z,¢(z)) € Ax B}) = v4(A X B)



and therefore vy = v,. O

The existence of optimal transport plans is a straightforward consequence
of the w*-compactness of probability measures and of the lower semicontinu-
ity of I.

Theorem 2.1 (Existence of optimal plans) Assume that ¢ is lower
semicontinuous in X X X. Then there exists v € My(X X X) solving (MK).
Moreover, if ¢ is continuous and real valued we have

min (MK) = inf /X (2, () dfo () (6)

Yy fo=f1

provided fo has no atom.

Proof. Clearly the set of admissible v’s is closed, bounded and w*-compact
for the w*-convergence of measures (i.e. in the duality with continuous func-
tions in X x X). Hence, it suffices to prove that

I(y) < liminf I(yy)
h—o0

whenever 7, w*-converge to . This lower semicontinuity property follows by
the fact that ¢ can be approximated from below by an increasing sequence
of continuous and real valued functions ¢, (this is a well known fact: see
for instance Lemma 1.61 in [4]). The functionals I}, induced by ¢, converge
monotonically to I, whence the lower semicontinuity of I follows.

In order to prove the last part we need to show the existence, for any
¥ € M4 (X x X) with mopy = fo and mgy = fi, of Borel maps ¢, : X — X
such that ¥4 fo = f1 and 6y, (x) ® fo weakly converge to v in M(X x X).
The approximation Theorem 9.3 provides us, on the other hand, with a Borel
map ¢ : X — X such that ¢4 f, has no atom, is arbitrarily close to f; and
Sp(x) @ fo is arbitrarily close (with respect to the weak topology) to y. We
will build 1, by an iterated application of this result.

By a standard approximation argument we can assume that L = Lip(c)
is finite and that

Sl — y| < c(z,v) Ve, y e X

for some § > 0. Possibly replacing ¢ by ¢/§ we assume 6 = 1.



Fix now an integer h, set fJ = f, and choose ¢, : X — X such that
gD()#f(? has no atom and

Filfr, SDO#f(?) <27 and /XC(@O(«T),QT) df[?(x) < Folfy, f[?) +27"

Then, we set fi = @oufJ, find ¢; : X — X such that ¢4/} has no atom
and

Flhuewf) <2 and [ doa)a)di@) < Flh 2

Proceeding inductively and setting f¥ = go(k_l)#fé‘“_l we find ¢}, such that

Flfvewfy) <2770 and / (pnle),2) dfy(z) < Ful . )42
X

and @4 f& has no atom. Then, we set ¢p(z) = = and ¢ = @1 0+ 0 g
for k > 1, so that f¥ = ¢z fo. We claim that (¢;) is a Cauchy sequence in
LY(X, fo; X). Indeed,

;/X|¢k+l( ) — ¢n(z)| dfo(z) ;/XH%(?J) yldfE(y)
< P ST F(A 1) < o
k=0

Denoting by 1), the limit of ¢;, passing to the limit as & — oo we obtain
Yne fo = f1; moreover, we have

/Xc(qsk(w)’aj) dfo(z) < /XC(QOU(’T)ﬁ”)dfO(w)‘I‘LZ/X|¢i($)—¢i—1($))|df0($)

k
< Flfi, fo)+27" + LZ/ l0i(y) — yl dfs(y) < Fulfo, fo) +27"(1 + 2L).
i=1 /X
Passing to the limit as £ — oo we obtain

/X (o (2), 2) dfolz) < Folfro fo) +27(1+2L)
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and the proof is achieved. [

For instance in the case of Example 1.1 (where transport maps do not
exist at all) it is easy to check that the unique optimal transport plan is given

by
1 1
—0p X 0-1 + —dp X 1.
590 1+ 500 X 01
In general, however, uniqueness fails because of the linearity of I and of the

convexity of the class of admissible plans . In Example 1.2, for instance,
any measure

t(ld x P1)gfo+ (1 —t)(Ld x 2)4 fo

is optimal, with ¢ € [0, 1] and %1, 12 optimal transport maps.
In order to understand the regularity properties of optimal plans v we
introduce, following [26, 35], the concept of cyclical monotonicity.

Definition 2.2 (Cyclical monotonicity) LetT C X x X. We say that T
18 c-ciclically monotone if

T

Y el@iny) =D el ui) (7)

=1 =1
whenever n > 2 and (z;,y;) €T for 1 <1< n, with z,41 = ;.

The cyclical monotonicity property can also be stated in a (apparently)
stronger form:

Zc(xg(i)ayi) Z Zc(ajzyyz) (8)
=1 =1
for any permutation o : {1,...,n} — {1,...,n}. The equivalence can

be proved either directly (reducing to the case when o has no nontrivial
invariant set) or verifying, as we will soon do, that any cyclically monotone
set is contained in the c-superdifferential of a c-concave function and then
checking that the superdifferential fulfils (8).

Theorem 2.2 (Regularity of optimal plans) Assume that ¢ is continu-
ous and real valued. Then, for any optimal v the set spty is c-ciclically
monotone. Moreover, the union of spty as v range among all optimal plans
18 c-ciclically monotone.
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Proof. Assume by contradiction that there exist an integer n > 2 and points
(z;,yi) € spty, i =1,... ,n, such that

n

F(x), () =) elwipn, 9:) — (i vi) <0

=1

with z,,; = 2. For 1 <1 < n, let U;, V; be compact neighbourhoods of z;
and y; respectively such that v(U; x V;) > 0 and f ((u;), (v;)) < 0 whenever
u; € U; and v; € V.

Set now A = min; y(U; X V;) and denote by 7; € M;(U; X V;) the normal-
ized restriction of y to U; x V;. We can find a compact space Y, a probability
measure o in Y and Borel maps n; = u; xv; : X — U; x V] such that v; = nix0o
for i =1,... ,n (it suffices for instance to define Y as the product of U; X V;,
so that n; are the projections on the i-coordinate) and define

A

Y=+ D (i1 X vi)go — (u; X v;)go.

i=1

Since Anigo = Avy; < v we obtain that 4/ € M (X x X); moreover, it is
easy to check that moxy = f; and m47y' = f1. This leads to a contradiction
because

I(y) = I(y) = %/YZ c(wiy1,vi) — c(ui,v;) do < 0.

In order to show the last part of the statement we notice that the collection of
optimal transport plans is w*-closed and compact. If (’7/11)1121 is a countable

dense set, then
h hoq
U spty; = spt (Z E%)
=1

=1
is c-ciclically monotone for any A > 1. Passing to the limit as h — oo we

obtain that the closure of the union of spt~; is c-ciclically monotone. By the
density of (), this closure contains spty for any optimal plan y. O

Next, we relate the c-cyclical monotonicity to suitable concepts (adapted
to ¢) of concavity and superdifferential.
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Definition 2.3 (c-concavity) We say that a function v : X — R is c-
concave if it can be represented as the infimum of a family (u;) of functions
given by

wi(z) = ez, y;) + ti

for switable y; € X andt; € R.

Remark 2.1 [Linear and quadratic case]| In the case when ¢(z,y) is
a symmetric function satisfying the triangle inequality, the notion of c-
concavity is equivalent to 1-Lipschitz continuity with respect to the metric
d. induced by c. Indeed, given u € Lip; (X, d,), the family of functions whose
infimum is u is simply

{e(z,y) +uly) : y € X},

In the quadratic case c¢(z,y) = |z — y|?/2 a function u is c-concave if and
only if w — |z]?/2 is concave. Indeed, u = inf; ¢(-,y;) + ¢; implies

1 . 1
u(z) — §|:c|2 = ui1f (@, —y;) + §|y2|2 + ¢

and therefore the concavity of u — |z|?/2. Conversely, if v = u — |2|?/2 is
concave, from the well known formula

viz) = inf v + (p,z —
() y,pEOTV(y) (y) <p y>

(here 01w is the superdifferential of v in the sense of convex analysis) we
obtain

1
u(x) = inf —lp—z]* + c(p,vy).
( ) y, —p€dtu(y) 2 P | (p y)

O

Definition 2.4 (c-superdifferential) Let v : X — R be a function. The
c-superdifferential O.u(x) of u at x € X is defined by
dou(z) :={y: u(z) <u(z)+c(z,y) — c(z,y) Vz € X}. (9)

The following theorem ([39], [40], [35]) shows that the graphs of superdif-
ferentials of c-concave functions are maximal (with respect to set inclusion)
c-cyclically monotone sets. It may considered as the extension of the well
known result of Rockafellar to this setting.
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Theorem 2.3 Any c-ciclically monotone set I' is contained in the graph of
the c-superdifferential of a c-concave function. Conversely, the graph of the
c-superdifferential of a c-concave function s c-ciclically monotone.

Proof. This proof is taken from [35]. We fix (zy,y) € I' and define
w(z) :=inf ez, yn) — c(@n, yn) + -+ - + (21, %) — (2o, ) Vo € X

where the infimum runs among all collections (z;,v;) € ' with 1 <4 < n and

n > 1. Then u is c-concave by construction and the cyclical monotonicity of I

gives u(zo) = 0 (the minimum is achieved with n = 1 and (z1,41) = (20, %))
We will prove the inequality

u(z) <wu(z) + ez, y') — (', y') (10)

for any # € X and (2/,4') € I'. In particular (choosing = z) this implies
that u(z') > —oo and that ¥ € J.u(z'). In order to prove (10) we fix
A > u(z') and find (z;,y;) € T, 1 < i < n, such that

C(xla yn) - C($n7 yn) + -+ C(xlv 3/0) - C(LU(), y(]) < A

Then, setting (2,41, Ynt1) = (2',y') we find

u(x) < C(x, yn+1) - C('rn+la yn+1) + C(xn+1> yn) - C(xm yn)

+ ez y) = c(zo, vo) < ez, ) — (2 y) + A
Since A is arbitrary (10) follows.
Finally, if v is c-concave, y; € 8.v(x;) for 1 < i < n and o is a permutation
we can add the inequalities
v(To()) — v(zi) < c(To(i), i) — (i, vi)

to obtain (8). O

In the following corollary we assume that the cost function is symmetric,
continuous and satisfies the triangle inequality, so that c-concavity reduces
to 1-Lipschitz continuity with respect to the distance induced by c.

Corollary 2.1 (Linear case) Let v € M (X X X) with mopy = fo and
gy = fi1. Then vy is optimal for (MK) if and only if there exists u: X — R
such that

u(e) —u(y)] < clayy)  V(a,y) € X x X (11)
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u(z) —u(y) = c(z,y) for (z,y) € spty. (12)

In addition, there exists w satisfying (11) such that (12) holds for any optimal
planning v. We will call any function u with these properties a maximal
Kantorovich potential.

Proof. (Sufficiency) Let 4" be any admissible transport plan; by applying
(11) first and then (12) we get

I(y) = /XX)(U(:L’)—U(y)dv’:/Xudfo—/xudfl
= /XU(J«‘)—U(y)d'r:f(v)-

(Necessity) Let T' be the closure of the union of spty’ as 7' varies among all
optimal plans for (MK). Then we know that I' is ¢-cyclically monotone, hence
there exists a c-concave function u such that I' C d.u. Then, (11) follows by
the c-convexity of u, while the inclusion I' C d.u implies

w(y) —u(x) < c(y,y) — c(z,y) = —c(z,y)
for any (z,y) € spty C I'. This, taking into account (11), proves (12). O

A direct consequence of the proof of sufficiency is the identity
min (MK) = max { / wd(fo— f1) ¢ € Lipy(X, dc)} (13)

(where d. is the distance in X induced by ¢) and the maximum on the right
is achieved precisely whenever u satisfies (12).

In the following corollary, instead, we consider the case when c¢(z,y) =
|z — y|?/2. The result below, taken from [26], was proved first by Brenier
in [7, 8] under more restrictive assumptions on fy, f1 (see also [26] for the
general case c¢(z,y) = h(|z — y|)). Before stating the result we recall that
the set 3, of points of nondifferentiability of a real valued concave function
v (i.e. the set of points & such that *v(z) is not a singleton) is countably
(CC) regular (see [44] and also [1]). This means that X, can be covered with
a countable family of (CC) hypersurface, i.e. graphs of differences of convex
functions of n — 1 variables. This property is stronger than the canonical
H"L-rectifiability: it implies that /" !-almost all of ¥, can be covered by
a sequence of C? hypersurfaces.
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Corollary 2.2 (Quadratic case) Assume that any (CC) hypersurface is
fo-negligible. Then the optimal planning v is unique and is induced by an
optimal transport map . Moreover v is the gradient of a convex function.

Proof. Let v : X — R be a c-concave function such that the graph T’
of its superdifferential contains the support of any optimal planning ~. As
c(z,y) = |z — y|?/2, an elementary computation shows that (zg,yo) € [ if
and only if
—yo € 0T v(zp)

where v(z) = u(z) — |z|?/2 is the concave function already considered in Re-
mark 2.1. Then, by the above mentioned results on differentiability of con-
cave functions, the set of points where v is not differentiable is fy-negligible,

hence for fy-a.e. = € X there is a unique yy = —Vuv(zy) € X such that
(zo,y0) € T. As spty C T, by Proposition 2.1 we infer that

v = (Idx¥)gfo

for any optimal planning 7, with ¢ = —Vv. O

Example 2.1 (Brenier polar factorization theorem) A  remarkable
consequence of Corollary 2.2 is the following result, known as polar
factorization theorem. A vector field r : X — X such that

L"(rY(B))=0  whenever L"(B)=0 (14)

can be written as Vu on, with u convex and 7 measure preserving.
It suffices to apply the Corollary to the measure fi = r4(L"L X) (abso-
lutely continuous, due to (14)) and f; = £"L X; we have then

LMLX = (Vu)g(rg(L"LX)) = (Vvor)u(L"LX)

for a suitable convex function v, hence n = (Vv) o r is measure preserving.
The desired representation follows with u = v*, since Vu = (Vu)™h

Let us assume that fy = £*L X and let f; € M (X) be any other mea-
sure such that fi(X) = £"(X); in general the problem of mapping f, into fi
through a Lipschitz map has no solution (it suffices to consider, for instance,
the case when X = B; and f; = %7—[1|_8B1). However, another remarkable
consequence of Corollary 2.2 is that the problem has solution if we require the

15



transport map to be only a function of bounded variation: indeed, bounded
monotone functions (in particular gradients of Lipschitz convex functions)
are functions of bounded variation (see for instance Proposition 5.1 of [2]).
Moreover, we can give a sharp quantitative estimate of the error made in the
approximation by Lipschitz transport maps.

Theorem 2.4 There exists a constant C' = C(n, X)) with the following prop-
erty: for any p € M4(X) with u(X) = L"(X) and any M > 0 there exist
a Lipschitz function ¢ : X — X and B € B(X) such that Lip(¢) < M,
L"(X \ B) < C/M and

p=ou(L"LB)+p
with p* € M4 (X) and p*(X) < L*(X \ B).

Proof. By Corollary 2.2 we can represent p = ¢4 (L"L X) with ¢ : X — X
equal to the gradient of a convex function. Let 2 be the interior of X; by
applying Proposition 5.1 of [2] (valid, more generally, for monotone operators)
we obtain that the total variation |D|(Q2) can be estimated with a suitable
constant C depending only on n and X. Therefore, by applying Theorem 5.34
of [4] we can find a Borel set B C X (it is a suitable sublevel set of the
maximal function of |D|) such that £*(X \ B) < ¢(n)|D¢|(2)/M and the
restriction of ¥ to B is a M-Lipschitz function, i.e. with Lipschitz constant
not greater than M. By Kirszbraun theorem (see for instance [24]) we can
extend ¢|p to a M-Lipschitz function ¢ : X — X. Setting B = X \ B we
have then

b= Up(£"UB) + (LU BY) = 64(L"LB) + by LU BY)

and setting p* = ¢4 (L"L B®) the proof is achieved. O

3 The one dimensional case

In this section we assume that X = [ is a closed interval of the real line;
we also assume for simplicity that the transport cost is ¢(z,y) = |z — y|? for
some p > 1.

Theorem 3.1 (Existence and uniqueness) Assume that fo is a diffuse
measure, t.e. fo({t}) =0 for anyt € I. Then
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(1) there exists a unique (modulo countable sets) nondecreasing function

P2 sptfo = X such that Yy fo = f1;

(11) the function v in (i) is an optimal transport, and if p > 1 is the unique
optimal transport.

In the one-dimensional case these results are sharp: we have already seen
that transport maps need not exist if f; has atoms (Example 1.1) and that,
without the monotonicity constraint, are not necessarily unique when p = 1.

Proof. (i) Let m = min I and define

Y(s) :=sup{t € I: fi([m,t]) < fo([m,s])}. (15)
It is easy to check that the following properties hold:

(a) v is non decreasing;

(b) ¥(I) D sptfi;
(c) if (

(s) is not an atom of f; we have
fillm, 9(s)]) = fo(lm, s]). (16)

Let 1" be the at most countable set made by the atoms of f; and by the
points ¢ € I such that ¢y~!(¢) contains more than one point; then ¢! is well
defined on ¢(I)\T and ¥~ 1([t,¢']) = [¢1(¢), v (¢')] whenever ¢, t' € (I)\T
with ¢ < t'. Then (c) gives

At = fllmt]) = fillmat]) = follm, v (1)) = follm, ¥ 7' (2)])
= So(l™ (1), 97 (#)]) = fo(w™ ([, 1))
(notice that only here we use the fact that fj is diffuse). By (b) the closed
intervals whose endpoints belong to ¢(7) \ T generate the Borel o-algebra of
sptf1, and this proves that 14 fo = fi.

Let ¢ be any nondecreasing function such that ¢4 fy, = fi and assume,
possibly modifying ¢ on a countable set, that ¢ is right continuous. Let

T:={s€sptfo: (s,8)Nsptfy =10 for some s’ > s }.
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and notice that 7" is at most countable (since we can index with 7" a family of
pairwise disjoint open intervals). We claim that ¢ > v on sptf, \ T; indeed,
for s € sptfy \ T and s’ > s we have the inequalities

Fillm, &(s)]) = fol@™ ([m, &(s)])) = follm, s'1) > fo([m, s])

and, by the definition of ¢, the inequality follows letting s’ | s. In particular

/I¢—1/deo:/l¢dfu—/l¢dfo:/Ildfl—/lldfl:0

whence ¢ = ¢ fo-a.e. in I. It follows that ¢(s) = 1(s) at any continuity
point s € sptfy of ¢ and .
(i) By a continuity argument it suffices to prove that v is the unique solution
of the transport problem for any p > 1 (see also [26, 15]). Let y be an optimal
planning and notice that the cyclical monotonicity proved in Theorem 2.2
gives

o=yl + ]2 =yl > [z -yl + 2" =y}
whenever (z,y), (¢/,y') € spty. If z < &/, this condition implies that y < v/
(this is a simple analytic calculation that we omit, and here the fact that
p > 1 plays a role). This means that the set

T :={z €sptfy: card({y: (z,y) € spty}) > 1}

is at most countable (since we can index with 7" a family of pairwise disjoint
open intervals) hence fy-negligible. Therefore for fy-a.e. x € I there exists
a unique y = ’LZ(:U) € I such that (z,y) € spty (the existence of at least one
y follows by the fact that the projection of spty on the first factor is spt fy).
Notice also that 1 is nondecreasing in its domain.

Arguing as in Proposition 2.1 we obtain that
v = (Id x D)y fo.

In particular

J1=may = ma ((fd X IZ))#fo) = by fo

and since 7,/; is non decreasing it follows that 1/7 = 1 (up to countable sets) on
sptfy. O
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4 The ODE version of the optimal transport
problem

In this and in the next section we rephrase the optimal transport problem in
differential terms. In the following we consider a fixed auxiliary open set €2
containing X; we assume that €2 is sufficiently large, namely that the open
r-neighbourhood of X is contained in €, with r» > diam(X) (the necessity of
this condition will be discussed later on).

The first idea, due to Brenier ([10, 9] and also [11]) is to look for all the
paths f; in M4 (X) connecting f to fi. In the simplest case when f; = 6,4,
it turns out that the velocity field FE;, = #(t)d,) is related to f, by the
equation

f+V-E,=0 in(0,1)xQ (17)

in the distribution sense. Indeed, given ¢ € C(0,1) and ¢ € C=(Q), it
suffices to take ¢(t)$(x) as test function in (17) and to use the definitions of
f+ and E; to obtain

(fe+ V- E)(eg) = —/ ¢(t)(x(t) + (1) (Vo(z(t)), 2(¢)) di

- - [ Gle@sta@)d o

More generally, regardless of any assumption on (fi, £;) € M4 (X) X
[M(2)]", it is easy to check that (17) holds in the distribution sense if and
only if

@) =Vé-E i (0]) VéeCX(©) (1)

in the distribution sense. We will use both interpretations in the following.
One more interpretation of (17) is given in the following proposition.

Recall that a map f defined in (0, 1) with values in a metric space (E,d) is

said to be absolutely continuous if for any € > 0 there exists é > 0 such that

YD i—w)<s = Zd(f(yf;),f(xi)) <e

%

for any family of pairwise disjoint intervals (z;,v;) C (0,1).
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Proposition 4.1 If some family (f:) C My(X) fulfils (17) for suitable mea-
sures By € [M(Q)]" satisfying fol |E:|(2) dt < oo then f is an absolutely
continuous map between (0,1) and M;(X), endowed with the 1-Wasserstein
distance (4) and

lim fl(ft+ha ft)

1
lim 7 < |E¢|(2) for L'-a.e. t € (0,1). (19)

Conversely, if f; 1s an absolutely continuous map we can choose F; so that

equality holds in (19).

Proof. In (13) we can obviosuly restrict to test functions u such that |u| <
r = diam(X) on X; by our assumption on § any of these function can be
extended to R™ in such a way that the Lipschitz constant is still less than 1
and u = 0 in a neighbourhood of R™ \ Q. In particular, choosing an optimal
u and setting u. = u * p. we get

t

Fi(fs, fr) = lim u.d(fy — fs) = lim V- B (u.)dr

e—=0t Jx e—=0t J,
t t
= — lim E, - Vu.dr < / |E. () dr (20)
e=01 J s

whenever 0 < s < ¢t < 1 and this easily leads to (19).

In the proof of the converse implication we can assume with no loss of
generality (up to a reparameterization by arclength) that f is a Lipschitz
map. We can consider M;(X) as a subset of the dual Y = G*, where

G:={¢pe C'(R")NLip(R"): ¢ =0 on R"\ O}

endowed with the norm ||¢|| = Lip(¢). By using convolutions and (13) it
is easy to check that Fy(u,v) = || — vy, so that M;(X) is isometrically
embedded in Y. Moreover, using Hahn—Banach theorem it is easy to check
that any y € Y is representable as the divergence of a measure £ € [M(Q)]"
with ||y|| = |E|(2) (£ is not unique, of course).

By a general result proved in [5], valid also for more than one independent
variable, any Lipschitz map f from (0,1) into the dual Y of a separable
Banach space is weakly*-differentiable for £'-almost every ¢, i.e.

Jw* — lim w =: f(t)

h—0

20



and f; — f, = fst f(T) dr for s,t € (0,1). In addition, the map is also
metrically differentiable for £!'-almost every t, i.e.

Vforn— Sl _

Jlim = mf(t)

h—0 |h|

Although f is only a w*-limit of the difference quotients, it turns out (see
[5]) that the metric derivative mf is L'-a.e. equal to || f]|-
Putting together these informations the conclusion follows. [

According to Brenier, we can formulate the optimal transport problem as
follows.

(ODE) Let fy, f1 € M1(X) be given probability measures. Minimize

J(E) = A |B,|(9) dt (21)

among all Borel maps f; : [0,1] = M (X) and E; : [0,1] = [M(Q)]” such
that (17) holds.

Example 4.1 In the case considered in Example 1.3 the measures

fi = X[t,t+1]£17 Ey = X[t,t+1]['1
provide an admissible and optimal flow, obviously related to the optimal
transport map = +— x + 1. But, quite surprisingly, we can also define an
optimal flow by
XLt i 0<t<1/2
Je=14 6 ift=1/2
serxpeg Lt i 1/2<t<1
whose “velocity field” is
2(1—=2 .
E, = u(—T)lX[m]ﬁl if0<t<1/2
%X[m]ﬁl if1/2<t<1.
It is easy to check that ft = V - E; = 0 and that |E;| are probability mea-
sures for any ¢ # 1/2, hence J(E) = 1. The relation of this new flow with

the optimal transport map = +— 2 — x will be seen in the following (see
Remark 4.1(3)).
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In order to relate solutions of (ODE) to solutions of (MK) we will need
an uniqueness theorem, under regularity assumptions in the space variable,
for the ODE f, + V - (g:ft) = 0. If f;, g; are smooth (say C?) with respect to
both the space and time variables, uniqueness is a consequence of the classical
method of characteristics (see for instance §3.2 of [20]), which provides the

e = e exp (= [ o) as)

where ¢; = V - ¢g; and z; solves the ODE

representation

&y = gi(2e), zo =z, t€(0,1).

See also [32] for more general uniqueness and representation results in a weak
setting.

Theorem 4.1 Assume that
i+ Vo (gf)=0 in(0,1) xR (22)

where fol |fe](R*)dt < oo and |g| + Lip(g:) < C, with C independent of t
and fo = 0. Then f; =0 for any t € (0,1).

Proof. Let g; be obtained from g, by a mollification with respect to the

space and time variables and define X¢(s,¢,z) as the solution of the ODE

& = ¢5(z) (with s as independent variable) such that X°(s, s, z) = z. Define,
for ¥ € C° ((0,1) x R™) fixed,

= /'l,bSXEStJ?))dS.
Since X° (s,t, X°(t,0,2)) = X°(s,0,z) we have
¢ (t,X°(0,t,2)) / P (s, X(s,0,2)) ds
and, differentiating both sides, we infer

{590

g +g; - che} (t, X°(t,0,2)) = ¢ (t,X(t,0,2))
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whence ¢ = (9¢° /0t + g; - V) in (0,1) x R™.
Insert now the test function ¢° in (22) and take into account that fy =0
to obtain

1 a 5 1
0 :/ ft( ‘|‘9t V) dadt :/ fiv + filgr — g7) - V£ dadt.
0 RrR" 0 Rn

The proof is finished letting ¢ — 0% and noticing that |g5|+|V¢®| < C, with
C independent of . [

In the following theorem we show that (MK) and (ODE) are basically
equivalent. Here the assumption that €2 is large enough plays a role: indeed,
if for instance X = [z, 1], fo = 6., and fi = 6,,, the infimum of (ODE) is

easily seen to be less than
dist(zg, Q) + dist(z1, 0Q).

Therefore, in the general case when fjy, f; are arbitrary measures in X, we

require that dist(99, X') > diam(X).

Theorem 4.2 ((MK) versus (ODE)) The problem (ODE) has at least
one solution and min (ODE) = min (MK). Moreover, for any optimal plan-
ning v € M1(X x X) for (MK) the measures

fti=my, Epi=mp ((y—z)y) t €[0,1] (23)
with m(z,t) =  + t(y — z) solve (ODE).

Proof. Let (f;, E;) be defined by (23). For any ¢ € C*(R") we compute

/¢’dft = 2 bettly—a) dy

dt Jx«x

= Vo(z+tly—z)) (y—z)dy

XxX
_ Z/vadEt,i — V- E(9)
=1

hence the ODE (17) is satisfied. Then, we simply evaluate the energy J(E)
in (21) by

1E) = [ frala=omI(X) i< [ maplly—ol)(X)dr (20

1
= // |z — y| dydt = I(v).
0 XxX
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This shows that inf (ODE) < min (MK).

In order to prove the opposite inequality we first use Proposition 4.1
and then we present a different strategy, which provides more geometric
informations.

By Proposition 4.1 we have

1 d 1
Fi(fo, f1) < a}—l(ft;fo)dtﬁ/o | E4|(€2) dt

0

for any admissible flow (f;, E}). This proves that min (MK) < inf (ODE).
For given (and admissible) ( f;, E;), and assuming that

1
spt/ |Ey|dt CC Q
0

we exhibit an optimal planning v with /() < J(E).
To this aim we fix a cut-off function §# € C*(Q2) with0 < # < land § =1
on X Uspt fol |E¢| dt; then, we define

fi == fixp.+€0 and E;:=FE; *p,

where p is any convolution kernel with compact support and p.(z) =
e7"p(z/e). Notice that ff are strictly positive on sptEy;; moreover (17) still
holds, spt Ef C 2 for ¢ small enough and £L!-a.e. ¢ and by (53) we have

[ W< E@  vieb (25)

We define g; = Ef/f{ and denote by ¢;(z) the semigroup in [0, 1] associated
to the ODE

Ui(e) = gi (Wi(2),  Wi(e) == (26)

Notice that this flow for € small enough maps € into itself and leaves R™ \ Q
fixed. Now, we claim that f; = ¢, (f5£") for any t € [0,1]. Indeed, since
by definition ‘ _

fi+V-(gfi)=/F+V-E =0
by Theorem 4.1 and the linearity of the equation we need only to check
that also v = Y7, (ffL") satisfies the ODE & + V - (¢°vf) = 0. This is a

straightforward computation based on (26).
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Using this representation, we can view 9] as approximate solutions of the
optimal transport problem and define

7" = (Id x Y)x(f5L"),
l.e.

[ewvare) = [ o) i) ds

for any bounded Borel function ¢ in R" x R".
In order to evaluate I(y°), we notice that

Length (v (x)) :/0 |9¢ | (¥ (=) dt

hence, by multiplying by f; and integrating we get
1
[ L@ fite)ds = [ [ igi(wlsi) du 20
" 0 n
1 1
= | B i < [ BN
0 Jrr 0

As
I(y%) = /}Rn [Yi(z) — z|f5(z) dz < / Length(v; (z)) dfo(z),

n

this proves that I(y°) < J(E). Passing to the limit as ¢ | 0 and noticing
that

oy = foL", mgy = [L"
we obtain, possibly passing to a subsequence, an admissible planning v €
M (R* x R™) for fy and f; such that I(y) < J(E). We can turn v in
a planning supported in X x X simply replacing v by (7 X )47y, where
7w : R* — X is the orthogonal projection. [

Remark 4.1 (1) Starting from (f;, E;), the (possibly multivalued) operation
leading to v and then to the new flow

J;t = T, Et =y ((y — 2)7)

can be understood as a sort of “arclength reparameterization” of (f;, Ey).
However, since this operation is local in space (consider for instance the case
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of two line paths, one parameterized by arclength, one not), in general there
is no function ¢(t) such that

(fis E0) = (Fons Bot)-

(2) The solutions (f:, E¢) in Example 4.1 are built as 7y and g ((y — 2)7)
where v = (Id x )% fo and ¥(z) = 2 + 1, ¥(2) = 2— 2. In particular, in the
second example, fi/o = d; because 1 is the midpoint of any transport ray.
(3) By making a regularization first in space and then in time of ( f;, E;) one
can avoid the use of Theorem 4.1, using only the classical representation of
solutions of (22) with characteristics. O

Remark 4.2 (Optimality conditions) (1) If (f:, E;) is optimal, then
spt fol |E:| dt CC . Indeed, we can find Q' CC Q which still has the property
that the open r-neighbourhood of X is contained in ', with r = diam(X),
hence

/0|Et|(Q)dt:min(MK):/0 |B,|(9) dt.

(2) Since the two sides in the chain of inequalities (24) are equal when 7 is
optimal, we infer

[T ((y — 2)y)| = mene(Jly — z]7) for L'-a.e. t € (0,1). (28)

1 1
/Etdt‘:/ B dt (29)
0 0

whenever (f;, E;) is optimal. If the strict inequality < holds, then

Analogously, we have

1
ft = fo ‘|‘7f(f1 - fo) and FE, = / E.dr
0
provide an admissible pair for (ODE) with strictly less energy. O

Remark 4.3 (Nonlinear cost) When the cost function ¢(z,y) is |z — y|?
for some p > 1 the corresponding problem (MK) is still equivalent to (ODE),
provided we minimize, instead of J, the energy

1
J(f, E) = /U ®,(f,, Ey) dt
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where

! do if |v| << o

‘7/
x 10

+00 otherwise.

q)p(a, V)

The proof of the equivalence is quite similar to the one given in Theorem 4.2.
Again the essential ingredient is the inequality

Q,(v*pe,0%p.) < Pp(v,0)

The latter follows by Jensen’s inequality and the convexity of the map
(2,t) = |z[Pt*77 in R™ x (0, 00), which provide the pointwise estimate

r
a) * Pe.

In this case, under the same assumptions on f, made in Corollary 2.2, due to
the uniqueness of the optimal planning v = (Id X 1) f, we obtain that, for
optimal (f;, Et), v = (Id X ¢7) 4 f§ converge to v as e — 0. As a byproduct,
the maps ¢§ converge to ¥ as Young measures. If fy << L™ it follows that
1y, converge to ¢ in [L"(fy)]" for any r € [1,00) (see Lemma 9.1 and the
remark following it).

See §2.6 of [4] for a systematic analysis of the continuity and semicon-
tinuity properties of the functional (o,v) +— ®,(0,v) with respect to weak
convergence of measures. [

14

p
U*psé (‘_
g

vk pe

T * POg

In the previous proof I don’t know whether it is actually possible to show
full convergence of ¢ as ¢ — 0%. However, using a more refined estimate
and a geometric lemma (see Lemma 4.1 below) we will prove that any limit
measure 7 satisfies the condition

1 1
/ r(ly — ) dt = / By dt. (30)
0 0

We call transport density any of the measures in (30). This double repre-
sentation will be relevant in Section 7, where under suitable assumptions we
will obtain the uniqueness of the transport density.

Corollary 4.1 Let (fi, E;) be optimal for (ODE). Then there exists an op-
timal planning y such that (30) holds. In particular sptfol |E| dt C X.
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Proof. Let m = min (MK) = min (ODE) and recall that, by Remark 4.2(1),

the measure fol |F¢|dt has compact support in Q. It suffices to build an
optimal planning v such that

/01 e ((y — x)y) dt = /01 E, dt. (31)

Indeed, by (29) we get

1 1
[ mally == [ 1z ae
0 0

and the two measures coincide, having both mass equal to m.
Keeping the same notation used in the final part of the proof of Theo-
rem 4.2, we define v; as (Id x ¢§)4 f§ and we compute

1(¥%) 2/0 / /BR 0 (o %( )fo(z) ddt.

Since I(7°) — m as € = 0% and since (by (25))

//I;Rh/}t )| fi(x) dwdt = /LR|E6|d$dt</|Et

we infer

Ji@) _ i) -z |
W5 ()| ¥ (=) — ]

@)\ (a) didz = 0. (32)

Iim
8—)(]+ B

Now using Lemma 4.1 and the Young inequality 2ab < da® + b%/6, for any
¢ € C(R™) we obtain

1

rialty = 2)7) - B0 dt\

] / (05 () — 2) (65 () — 2)) — 5 (2) S5 ()] i () dt
< RLip(¢)5 [ Length()f5 () de

RLlp

2

(2) _ i@ =@ | e o) dtdas

(z)]  |U5(z) — 2]

28



with R = diam((2). Passing to the limit first as ¢ — 0T, taking (32) into
account and then passing to the limit as § — 0% we obtain

| matto—am@ = [ Boa.
O

Lemma 4.1 Let ¢ € Lip([0, 1], R™) with ¢(0) = 0 and ¢ € Lip(R"). Then

AﬁmwwmwwwvwwmwASLﬂﬁlég(wﬂ&MMMﬁ
with L = Lip(¢), R = sup [4)].
Proof. We start from the elementary identity
L OW0] — = [s(s(e)1 (1) (33)
- iigﬁwwm(mm@m—¢NWﬁo

and integrate both sides in [0, 1] x [0, 1]. Then, the left side becomes exactly
the integral that we need to estimate from above. The right side, up to the
multiplicative constant Lip(¢), can be estimated with

1 . G : P(t) ()
A|wﬂAMMﬁ——AIWW¢@A<Wm||wm)dt
) 9 |

O

Remark 4.4 The geometric meaning of the proof above is the following: the
integral to be estimated is the action on the 1-form ¢dz; of the closed and
rectifiable current 7" associated to the closed path starting at 0, arriving at
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(1) following the curve 9(t), and then going back to 0 through the segment
[0,%(1)]; for any 2-dimensional current G such that 0G =T, as

T(pdz;) = G(de A dz;), (34)

this action can be estimated by the mass of G times Lip(¢). The cone
construction provides a current G with 0G = T', whose mass can be estimated

by
1,1 ‘
/ / S|(t) A (t)] dsdt.
0o Jo
With this choice of G the identity (34) corresponds to (33). O

In order to relate also (f;, E¢) to the Kantorovich potential, we define the
transport rays and the transport set and we prove the differentiability of the
potential on the transport set.

Definition 4.1 (Transport rays and transport set) Let u € Lip,(X).
We say that a segment |z, y[C X is a transport ray if it is a mazimal open
oriented segment whose endpoints x, y satisfy the condition

u(z) = uly) = [z -yl (35)

The transport set T, is defined as the union of all transport rays. We also
define T.0 as the union of the closures of all transport rays.

Denoting by F the compact collection of pairs (z,y) with « # y such that
(35) holds, the transport set is also given by

.= U U {=+iy—=)
te(0,1) (z,y)EF

and therefore is a Borel set (precisely a countable union of closed sets).
We can now easily prove that the u is differentiable at any point in 7,.

Proposition 4.2 (Differentiability of the potential) Let u € Lip,(X).
Then w 1is differentiable at any point z € T,. Moreover —Vu(z) is the unit
vector parallel to the transport ray containing z.

Proof. Let z, y € X be such that (35) holds. By the triangle inequality and
the 1-Lipschitz continuity of u we get

u(z) —u(z+tly—=z)) =tly—=z|  Vtelo,1].
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This implies that, setting v = (y — z)/|y — x|, the partial derivative of u
along v is equal to —1 for any internal point z of the segment. For any unit
vector ¢ perpendicular to v we have

w(z+ hé) —u(z) = ulz+4 hé) —ulz +/|hlv) + ulz + V|h|IV) — u(z)

< VIR +[r] = /1l = O(Ih*?) = of|h]).

A similar argument also proves that u(z + h&) — u(z) > o(|h|). This proves
the differentiability of w at z and the identity Vu(z) = —v. O

In Section 6 we will need a mild Lipschitz property of the potential Vu
on 7. (see also [15, 42] for the case of general strictly convex norms). We
will use this property to prove in Corollary 6.1 that 7.° \ 7, is Lebesgue
negligible. This property can also be used to prove that Vu is approximately
differentiable £L"-a.e. on T, (see for instance Theorem 3.1.9 of [24]).

Theorem 4.3 (Countable Lipschitz property) Letu € Lip,(X). There
exists a sequence of Borel sets T}, covering L™-almost all of T,¢ such that Vu
restricted to 1}, 1s a Lipschitz function.

Proof. Given a direction » € S""! and a € R, let R be the union of the half
closed transport rays [z, y[ with (y — z,v) > 0 and (y,v) > a. It suffices to
prove that the restriction of Vu to

T:=Rn{z: z-v<a}\X,

has the countable Lipschitz property stated in the theorem. To this aim,
since BV, funtions have this property (see for instance Theorem 5.34 of [4]
or [24]), it suffices to prove that Vu coincides £"-a.e. in T with a suitable
function w € [BW,.(5)]", where S, = {z: z-v < a}. To this aim we define

() = min{u(y) + |z —y|: v € Y,}

where Y, is the collection of all right endpoints of transport rays with y-v > a.
By construction @ > w and equality holds on R D T

We claim that, for b < a, @ — C|z|* is concave in S, for C = C(b) large
enough. Indeed, since |z —y| > a—b > 0 for any y € Y, and any z € S, the
functions

u(y) + |z =y = Claf?, y €Y,
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are all concave in H for C large enough depending on a — b. In particular,
as gradients of real valued concave functions are BV, (see for instance [2]),
we obtain that

w:= Vi = V(u—Clz]*) +2Cz

is a BV}, function in S,. Since Vu = w L™-a.e. in T the proof is achieved.
By a similar argument, using semi-convexity in place of semi-concavity,
one can take into account the right extreme points of the transport rays. O

As a byproduct of the equivalence between (MK) and (ODE) we can
prove that (ODE) has “regular” solutions, related to the transport set and
to the gradient of any maximal Kantorovich potential w.

Theorem 4.4 (Regularity of (fi, E;)) For any solution (fi, E;) of (ODE)
representable as in Theorem 4.2 for a suitable optimal planning v there exists
a 1-Lipschitz function u such that

(i) fi is concentrated on the transport set T, and |E;| < C'f; for L-a.e.
t €(0,1), with C = diam(X);

(ii) Ey = —Vu|Ey| for Ll-a.e. t € (0,1);

(1it) for any convolution kernel p we have

1
lim/ /|Vu—Vu*pE|2d|Et|dt:0; (36)
0 Jx

e—0t
(iv) |E|(X) = [i |B|(X)dr for L'-a.e. t € (0,1),

Proof. (i) Let u be any maximal Kantorovich potential and let 7 = 7, be
the associated transport set. For any ¢ € (0,1) we have

HXA\T) = / X{(2y): o+t(y—)gT} dy =0

XxX

because, by (12), any segment |z, y[ with (z,y) € spty is contained in a
transport ray, hence contained in 7. The inequality |E;| < Cf; simply
follows by the fact that |z — y| < C on spty.

32



(ii) Choosing t satisfying (28) and taking into account Proposition 4.2, for
any ¢ € C(X) we obtain

L¢vud|Et| _ LXX¢(ﬂt)Vu(ﬂt)|y—x|d7
- - /X blm)ly— o) dy = ~Fi(9).

(iii) Let m = J(F) = min (MK). By (13) we get

m = /Xud(fo—fl):El_i)%lJr/Xu*pgd(fl—fo)

1 1
= lim// u* p.dfydt = lim/ Vuxp. - By dt
8—)0+ X 0 6—)0+ 0
1
< /|Et|(X)dt:m.
0

This proves that

1
lim {|Et|(X) — / (Vu* p., Vu) d|Et|] dt =0
e—0t 0 X

whence, taking into account that |Vu| =1 and |Vu x p.| < 1, (36) follows.
(iv) The inequality |E:|(X) < I(y) = J(E) has been estabilished during the
proof of Theorem 4.2. By minimality equality holds for £!-a.e. t € (0,1). O

Remark 4.5 (1) It is easy to produce examples of optimal flows (f;, F;)
satisfying (i), (ii), (iii), (iv) which are not representable as in Theorem 4.2
(again it suffices to consider the sum of two paths, with constant sum of
velocities). It is not clear which conditions must be added in order to obtain
this representation property.

(2) Notice that condition (i) actually implies that f is a Lipschitz map from
[0,1] into M;(X) endowed with the 1-Wasserstein metric. O

5 The PDE version of the optimal transport
problem and the p-laplacian approximation

In this section we see how, in the case when the cost function is linear, the
optimal transport problem can be rephrased using a PDE. As in the previous
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section we consider an auxiliary bounded open set €2 such that the open 7-
neighbourhood of X is contained in 2, with r > diam(X); we assume also
that 2 has a Lipschitz boundary.

Specifically, we are going to consider the following problem and its con-
nections with (MK) and (ODE).

(PDE) Let f € M(X) be a measure with f(X) = 0. Find p € M,(Q) and
u € Lip,(§2) such that:

(i) there exist smooth functions wj, uniformly converging to u on X, equal
to 0 on 9N and such that the functions Vuy, converge in [L%(p)]" to a
function V,u satisfying

|V,ul =1 p-a.e. in (37)

(i) the following PDE is satisfied in the sense of distributions

V- (Vyup)=f in Q. (38)

Given (u,u) admissible for (PDE), we call p the transport density (the
reason for that soon will be clear) and V,u the tangential gradient of u.

Remark 5.1 (1) Choosing uy, as test function in (38) gives

Q) = /IV;,,uIQdu=,11m /(V“u,Vuh)du (39)
Q 1—> 00 O
= iz fl) = f(),

so that the total mass () depends only on f and w and that u is concen-
trated on X. We will prove in Theorem 5.1 that actually x(§2) depends only

on f.
(2) Tt is easy to prove that, given (u,u), there is at most one tangential
gradient V,u: indeed if Vu;, — V,u and Vi, — V,u we have

11— 00

/ Vo -Vade= lim [ Vyu- Vi, de = lim f(i,) = f(u) = 1(Q)
Q h Q h— o0
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whence V, u = @“u p-a.e. On the other hand, Example 5.1 below shows
that to some u there could correspond more than one measures p solving
(PDE). We will obtain uniqueness in Section 7 under absolute continuity
assumptions on ft or f~. O

We will need the following lemma, in which the assumption that € is
“large enough” plays a role.

Lemma 5.1 If (u,u) solves (PDE) then sptu CC €.

Proof. Let ' CC Q" CC Q be such that |z — y| > » = diam(X) for any
z € X and any y € R"\ ). We choose a minimum point z, for the restriction
of u to X and define

w(z) := min {[u(z) — u(z)]t, dist(z, R* \ ')} .

Then, it is easy to check that w(z) = u(z) — u(z) on X and that w =0 on

R™ \ Q. Since
w(2) = flu)= flu—u(zy)) = lim f(wx*p,)

e—0t

= lim / V-V * pe de < (")
=0t Jq

we conclude that p(2\ Q") =0. O

In the following theorem we build a solution of (PDE) choosing x as a
transport density of (MK) with fy = f* and f; = f~. As a byproduct, by
Corollary 4.1 we obtain that the support of i is contained in X and that p
is representable as the right side in (30).

Theorem 5.1 ((ODE) versus (PDE)) Assume  that (f:, E:)  with
sptfol |E¢|dt CC Q solves (ODE) and let w be a mazimal Kantorovich
potential relative to fy, fi. Then, setting f = fo — f1, the pair (u,u) with
= fol |Ey| dt solves (PDE) with V,u = Vu and, in particular, sptu C X.

Conversely, if (u,u) solves (PDE), setting fo = f* and f1 = f~, the
measures (f;, Et) defined by

ft = f0+t(f1_f0)7 Et = _V/LU,UJ
solve (ODE) and sptyp C X. In particular
#(X) = min (ODE) = min (MK).
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Proof. By Corollary 4.1 we can assume that y is representable as in (30) for
a suitable optimal planning . Then, condition (i) in (PDE) with V,u = Vu
follows by (36). By (17) and condition (ii) of Theorem 4.4 we get

V- (V/tu|Ft|) =V (Vu|F]) = ft

with F; = mu((y — 2)v). Integrating in time and taking into account the
definition of p, we obtain (38). Notice also that u(X) = J(E).
If (f:, Et) are defined as above, we get

fiAV - Bi=fi—fo—V - (Vyup)=fi— fo+ f=0.

Also in this case J(E) = p(X). O

Example 5.1 (Non uniqueness of 1) In general, given f, the measure
which solves (PDE) for a given u € Lip;(X) is not unique. As an example
one can consider the situation in Example 1.5, where p can be concentrated
either on the horizontal sides of the square or on the vertical sides of the
square.

As shown in [22], an alternative construction can be obtained by solving
the problem “—A_u = f”, i.e. studying the following problems
—V - (|Vu,[f72Vu,) = f in Q (40)

u, =0 on 02

as p — oo. In this case y is the limit, up to subsequences, of |Vu,[P~1L".
Under suitable regularity assumptions, Evans and Gangbo prove that y =
al™ for some a € L'(Q2) and use (a,u) to build an optimal transport ; their
construction is based on a careful regularization corresponding to the one
used in Theorem 4.2 in the special case E; = aL" and f; = fo +t(f1 — fo)-
However, since the goal in Theorem 4.2 is to build only an optimal planning,
and not an optimal transport, our proof is much simpler and works in a much
greater generality (i.e. no special assumption on f).

Now we also prove that the limiting procedure of Evans and Gangbo leads
to solutions of (PDE), regardless of any assumption on the data fy, fi.

Theorem 5.2 Let u, be solutions of (40) withp > n+ 1. Then

i) the measures H, = |Vu,[P"2Vu,L"LQ are equi-bounded in ;
i P P q ;

36



(i1) (u,) are equibounded and equicontinuous in §);

(i41) If (H,u) = lim;(H,,, up,) with p; — oo, then (u,u) solves (PDE) with
p=|H|

Proof. (i) Using u, as test function and the Sobolev embedding theorem we
g

et
1/po
[ 19 de = ) <1l < ([ 19017 i)
Q Q

with pg = n + 1. Using Holder inequality we infer

pP—PpPo

P
/ |Vup|p de < C'r-1 L”(Q)po(p—l),
Q

(ii) Follows by (i) and the Sobolev embedding theorem.
(iii) Clearly —V - H = f in Q. By (i) and Hélder inequality we infer

sup /|Vu|qdzc<oo
qg>n+lJQ

whence |Vu| < 1 L"-a.e. in Q.
We notice first that the functional

=
Q

is lower semicontinuous with respect to the weak convergence of measures
for any nonnegative ¢ € C.(Q2), w € [C(Q)]*. The verification of this fact is
straightforward: it suffices to expand the squares. Second, we notice that

lim lim sup /

e—0F p— 00 QO
whenever u. € Lip;(IR") are smooth functions uniformly converging to u in
X and equal to 0 on 9. Indeed, as |Vu.| < 1, we have

2
1%
m—w‘ ¢d|l/|

2

d|H,| =0

H
L _ Vu,
| H,|

H, ? / _1( Vu, - Vu )
—Vu.| dH, < 2 Vu,|? 11— —2 ) de
A ol <2 | 1Vl V|

IN

2/ |Vup|p_2(|Vup|2 — Vu. - Vu,) de + w,
0
= 2f(up) = 2f(ue) + wp
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where w, = sup,s *~* — ¥ tends to 0 as p — oo.
Taking into account these two remarks, setting p = p; and passing to the
limit as 7 — oo we obtain

lim
e—=0+ Q

for any nonnegative ¢ € C.(2). This implies that Vu,. converge in L _(|H|)
to the Radon—Nikodym derivative H/|H|. Since |Vu.| < 1 we have also
convergence in [L*(|H|)]™.

We now set y = |H| and V,u = lim, Vu,, so that H = V,uu and (38) is

satisfied. O

2

$d|H| = 0.

H
— — Vu,
|H]|

6 Existence of optimal transport maps

In this section we prove the existence of optimal transport maps in the case
when ¢(z,y) = |z — y| and f; is absolutely continuous with respect to L™,
following essentially the original Sudakov approach and filling a gap in its
original proof (see the comments after Theorem 6.1). Using a maximal Kan-
torovich potential we decompose almost all of X in transport rays and we
build an optimal transport maps by gluing the 1-dimensional transport maps
obtained in each ray. The assumption fy << L" is used to prove that the
conditional measures foc within any transport ray C' are non atomic (and
even absolutely continuous with respect to #'L '), so that Theorem 3.1 is
applicable. Therefore the proof depends on the following two results whose
proof is based on the countable Lipschitz property of Vu stated in Theo-
rem 4.3.

Theorem 6.1 Let B € B(X) and let 7 : B — S.(X) be a Borel map satis-
fying the conditions

(i) m(z) N7w(z') = O whenever n(z) # w(z');
(1t) x € w(x) for any x € B;

(iii) the direction v(z) of w(z) is a S"-valued countably Lipschitz map on

B.
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Then, for any measure X € My (X) absolutely continuous with respect to
LB, setting p = g\ € My (S:(X)), the measures Ao of Theorem 9.1 are
absolutely continuous with respect to H' L C' for p-a.e. C € S.(X).

Proof. Being the property stated stable under countable disjoint unions we
may assume that

(a) there exists a unit vector v such that v(z)-v > % for any = € B;
(b) v(z) is a Lipschitz map on B;
(¢) B is contained in a strip

{z:a-b<Lz-v<a}

with b > 0 sufficiently small (depending only on the Lipschitz constant
of v) and 7(z) intersects the hyperplane {z : = -v = a}.

Assuming with no loss of generality v = e,, and a = 0, we write z = (y, 2)
with y € R*™! and z < 0. Under assumption (a), the map 7" : m(B) — R*™*
which associates to any segment 7(z) the vector y € R*™! such that (y,0) €
m(z) is well defined. Moreover, by condition (i), 7" is one to one. Hence,
setting f =T om: B — R* 1,

V= T#/,L = f#)\, C(y) - T_l(y) D f_l(y)

and representing A = 1, ® v with 7, = A\¢(,) € M1(f~}(y)), we need only to
prove that n, << H'L C(y) for v-a.e. y.

To this aim we examine the Jacobian, in the y variables, of the map
f(y,t). Writing v = (v, ), we have

fly,t) =y +7(y, t)vy(y,t) with T(y,t) = —
Since v; > 1/2 and 7 < 2b on B we have
t
det (Vyf(y, t)) = det ([d + 7V, + —2Vyy,g (% I/y) >0
Vi

if b is small enough, depending only on Lip(v).
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Therefore, the coarea factor

Cf:=|>  det’4
A

(where the sum runs on all (n—1) x (n — 1) minors A of Vf) of f is strictly
positive on B and, writing A = ¢L" with ¢ = 0 out of B, Federer’s coarea
formula (see for instance [4], [37]) gives

N

g
= Jcrem=L
cr ¢/

1 —1 n—1 __
=o't (M) ®L™ =,V

with B = {y e R"': #}(f'(y)) > 0} and

LZHIL YY) <
/ Cf / g 1 n—1
771 = s vV = / —d?—[ > £ |_B
" fia9/CrdH! -1y CF

By Theorem 9.2 we obtain v = v/ and 5, = 7/, for v-a.e. y, and this concludes
the proof. [

Remark 6.1 (1) In [41] V.N.Sudakov stated the theorem above (see Propo-
sition 78 therein) for maps 7 : B — S,(X) without the countable Lipschitz
assumption (iii) and also in a greater generality, i.e. for a generic “Borel
decomposition” of the space in open affine regions, even of different dimen-
sions. However, it turns out that the assumption (iii) is essential even if we
restrict to 1-dimensional decompositions. Indeed, G.Alberti, B.Kirchheim
and D.Preiss [3] have recently found an example of a compact family of open
and pairwise disjoint segments in R® such that the collection B of the mid-
points of the segments has strictly positive Lebesgue measure. In this case,
of course, if A = L"L B the conditional measures \¢ are unit Dirac masses
concentrated at the midpoint of C', so that the conclusion of Theorem 6.1
fails.

If n = 2 it is not hard to prove that actually condition (iii) follows by (ii),
so that the counterexample mentioned above is optimal.
(2) Since any open segment can be approximated from inside by closed seg-
ments, by a simple approximation argument one can prove that Theorem 6.1
still holds as well for maps 7 : B — S,(X) or for maps with values into half
open [z, y[ segments.
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Also the assumption (i) that the segments do not intersect can be relaxed.
For instance we can assume that the segments can intersect only at their
extreme points, provided the collection of these extreme points is Lebesgue
negligible. This is precisely the content of the next corollary. O

Corollary 6.1 (Negligible extreme points) Let u € Lip,(X). Then the
collection of the extreme points of the transport rays i1s Lebesque negligible.

Proof. We prove that the collection L of all left extreme points is negligible,
the proof for the right ones being similar. Let B = L \ ¥, and set

m(z) = [z,z — @Vu(zc)]]

where r(z) is the length of the transport ray emanating from z (this ray is
unique due to the differentiability of u at z). By Theorem 4.3 the map 7 has
the countable Lipschitz property on B and, by construction, m(z)Nw(z') = @
whenever z # z'. By Theorem 6.1 we obtain

A= / A¢ dv
Se(X)

with A = L"L B, v = mg ) and A\¢ << H'L C probability measures concen-
trated on 7=1(C) for v-a.e. C. Since 71 (C') contains only one point for any

C € m(B) we obtain A¢ = 0 for v-a.e. C, whence A\(B) =v(S,(X))=0. O

Theorem 6.2 (Sudakov) Let fy, fi € Mi(X) and assume that fy << L".
Then there exists an optimal transport b mapping fy to fi. Moreover, if
f1 << L™ we can choose i so that =1 is well defined fi-a.e. and ¢;1f1 = fo.

Proof. Let v be an optimal planning. In the first two steps we assume that
for fo-a.e. z there exists y # x such that (z,y) € spty. (41)

This condition holds for instance if fy A fi = 0 because in this case any
optimal planning 7 does not charge the diagonal A of X x X, i.e. y(A)=0
(otherwise h = myx(xaY) = m#(xay) would be a nonzero measure less than

fu and fl)-
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Let u € Lip;(X) be a maximal Kantorovich potential given by Corol-
lary 2.1, i.e. a function satisfying

u(z) —u(y) = |z — y| ~v-a.e. in X x X (42)

for any optimal planning 7 and let 7, be the transport set relative to u (see
Definition 4.1). In the following we set

X={ze X\, : Jy#uzst. (z,y) € spty}.

By (41) and the absolute continuity assumption we know that f, is concen-
trated on X. Notice also that for any r € X there exists a unique closed
transport ray containing x: this follows by the fact that any z € X is a
differentiability point of v and by Proposition 4.2.

Step 1. We define r : X x X — S.(X) as the map which associates to any
pair (z,y) the closed transport ray containing [z,y]. By (42) the map r is
well defined y-a.e. out of the diagonal A; moreover, being f; concentrated
on X, r is also well defined y-a.e. on A. Hence, according to Theorem 9.1
we can represent

Y=9 Qv with ZRER
and (42) gives
u(z) — u(y) = |z — y| Yo-a.e. iIn X X X (43)

for v-a.e. C' € §.(X). By the sufficiency part in Corollary 2.1 we infer that
~v¢ 1s an optimal planning relative to the probability measures

fOC = To#C, flC’ = Tge

for v-a.e. C'€ S.(X). By (56) we infer

m(B) = [ L FeB)(O) VeI, BeBX). (1)

Notice also that

Fi(fo, fr) = 5.0 Fi(foc, fre) dv(C). (45)
(X)
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Indeed,

I(y) = / & —y|dy = / / 2 —y| dve dv(C) = / I(v¢) di(C)
XxX Se(X) JXxX Se(X)

and we know by (43) that ¢ is optimal for v-a.e. C' € S.(X).
Step 2. We denote by 7 : X — S.(X) the natural map, so that m(z) is the
closed transport ray containing z. Since 7 = w o 1y on X X X we obtain

V=rgy = 7T#(7T0#’y) = T fo.

Moreover (44) gives
folB) = /S | B @) B e BX) (46)

Notice that the segments 7(z), z € )?, can intersect only at their right
extreme point and that, by Corollary 6.1, the collection of these extreme
points is Lebesgue negligible. As a consequence of (46) with v = 7y f; and
Remark 6.1(2), the measures fyc are absolutely continuous with respect to
H'LC for p-ae. C € S.(X). Hence, by Theorem 3.1, for p-a.e. C' € S.(X)
we can find a nondecreasing map ¢ : C' — C (this notion makes sense, since
C is oriented) such that ¥ cx foc = fic. Notice also that ™1 is well defined
fic-a.e., if also fio << H'LC. _

Taking into account that the closed transport rays in 7(X) are pairwise
disjoint in 5(', we can glue all the maps ¥¢ to produce a single Borel map
¥ : X — X. The map v is Borel because we have been able to exhibit
the one dimensional transport map constructively and because of the Borel
property of the maps C' — fc (see (15) and (54)); the simple but boring
details are left to the reader.

Since Vg foc = Yoxfoc = fic for pae. C € S.(X), taking (44) into
account we infer

bafo= [ bafcdi(C) = /5 L fiedl€)=f

S(X)

Finally 9 is an optimal transport because (45) holds and any ¢ is an optimal
transport.

Step 3. In this step we show how the assumption (41) can be removed. We
define

X':={z € X: (z,z) € spty and (z,y) ¢ spty Yy # =}
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and L = {(z,z) : = € X'}. Then, we set f) = fyLX' and fi = foL X",
with X” = X \ X', and

f1:=mg(yL L), V= f1

Since L C A, we have f] = myu(yLL) = f/, hence we can choose on X'
the map ¢; = Id as transport map to obtain (¢;)xf) = fi. Since f is
concentrated on X" the condition (41) is satisfied with f in place of fy and
we can find an optimal transport map 9 : X” — X such that (¢q)xf] = f.
Gluing these two transport maps we obtain a transport map ¢ such that

4 fo = f1; since, by construction,

u(z) — u(y(z)) = |z — ¢¥(z)| forae. in X
we infer that v is optimal. [

This proof strongly depends on the strict convexity of the euclidean dis-
tance, which provides the first and second order differentiability properties of
the potential u on the transport set 7,. Notice also that if ¢(z,vy) = ||z — y||
and the norm || - || is not strictly convex, then the “transport rays” need
not be one-dimensional and, to our knowledge, the existence of an optimal
transport map is an open problem in this situation. Indeed, this existence
result is stated by Sudakov in [41] but his proof is faulty, for the reasons
outlined in Remark 6.1(1).

Under special assumptions on the data fy, fi (absolute continuity, sep-
arated supports, Lipschitz densities) Evans and Gangbo provided in [22] a
proof based on differential methods of the existence of optimal transport
maps. For stricly convex norms, the first fully rigorous proofs of the exis-
tence of an optimal transport map under the only assumption that f, << L"
have been given in [15] and [42]. As in Theorem 6.2 the proof is strongly
based on the differentiability of the directions of transport rays.

7 Regularity and uniqueness of the transport
density

In this section we investigate the regularity and the uniqueness properties
of the transport density p arising in (PDE). Recall that, as Theorem 5.1

shows, any such measure y can also be represented as fol |E| dt for a suitable
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optimal pair (f;, E}) for (ODE) (even with E; independent of ¢). In turn, by
Corollary 4.1, any optimal measure pu = fol |Ey| dt can be represented as

)= / rea(y — aly) dt (47)

for a suitable optimal planning . For this reason, in the following we restrict
our attention to the representation (47), valid for any optimal measure p for
(PDE).

A more manageable formula for y, first considered by G.Bouchitté and
G.Buttazzo in [14], is given in the following elementary lemma.

Lemma 7.1 Let p be as in (47). Then

u(B) = /X  Length (e.3[0B) dy(e,y) VB EB(X). (49

Proof. For any Borel set B we have

1 1
u(B) = / / ly — z|dy(z,y) dt :/ Iy—:vlf Xat(p) At dy(z,y)
0 J=71(B) XxX 0

= /XXLength(]]x,y[[ﬂB) dy(z,y).

d

A direct consequence of (48) is that u is concentrated on the transport
set (since vy-a.e. segment ]z,y[ is contained in a transport ray); another
consequence is the density estimate

#(B,(z))

o < fo(X) f1(X) (49)

because Length(]z, y[NB,(z)) < 2r for any ball B, (z) and any segment ]z, y[.
The first results on p that we state, proved by A.Pratelli in [33] (see also
[19]), relate the dimensions of f; and f; to the dimension of 1 and show that
necessarily p is absolutely continuous with respect to the Lebesgue measure
if fy (or, by symmetry, f;) has this property.
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Theorem 7.1 Assume that for some k > 0 we have

fo(B:(2))

sup ———— <00 fo-a.e. in X.
r€(0,1) r

Then p has the same property. In particular p << L™ if fo << L™.

The proof of Theorem 7.1 is based on (48); the density estimate on u is
achieved by a careful analysis of the transport rays crossing a generic ball
B,(z). A similar analysis proved the following summability estimate (see

[19]).

Theorem 7.2 Assume that fy = goL" and f1 = g1 L" with gy, g1 € LP(X),
p>1. Then p = hL™ with h € L>(X) if p =00, h € LYX) for any g < p
if p < o0.

It is not known whether gy, g1 € L? implies h € L? for p < oo.

Definition 7.1 (Hausdorff dimension of a measure) Let p € M (X).
The Hausdorff dimension H-dim(u) is the supremum of all k > 0 such that
<< HE.

In other words p(B) = 0 whenever #*(B) = 0 for some k < H-dim(u)
and for any k£ > H-dim(p) there exists a Borel set B with (B) > 0 and
#*(B) = 0. Notice that if 4 is made of pieces of different dimensions, then
H-dim(p) is the smallest of these dimensions.

Using the density estimates and the implications (see for instance Theo-
rem 2.56 of [4] or [37]; here ¢ > 0 and k > 0)

limsupw >tVzreB = u(B)> t’]—[k(B) (50)

r—0t wk,rk

B,
limsup'u(’—('f)) <tVreB = u(B)<2"H"B) (51)
r—0+ WET™

we can prove a natural lower bound on the Hausdorff dimension of n.
Corollary 7.1 Let pu be a transport density. Then

H-dim(p) > max {1, H-dim( fo), H-dim(f1)} .
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Proof. By (49) we infer that p has finite (and even bounded) 1-dimensional
density at any point. In particular (51) gives p(B) = 0 whenever #!(B) = 0,
so that H-dim(u) > 1.

Let k = H-dim(fy) and &’ < k; then f; has finite &'-dimensional density
fo-a.e., otherwise by (50) the set where the density is not finite would be
H* -negligible and with strictly positive fy-measure. By Theorem 7.1 we
infer that p has finite k’-dimensional density u-a.e. By the same argument
used before with &' = 1 we obtain that H-dim(u) > &' and therefore, since
k' < k is arbitrary, H-dim(y) > k. A symmetric argument proves that
H-dim(p) > H-dim(f;). O

We conclude this section proving the uniqueness of the transport density,
under the assumption that either fy << £" or f; << L" (see Example 5.1
for a nonuniqueness example if neither f; nor f; are absolutely continuous).
Similar results have been first announced by Feldman and McCann (see [25]).

We first deal with the one dimensional case, where this absolute continuity
assumption is not needed.

Lemma 7.2 Let p be a transport density in X C R and assume that the
interior (a,b) of X is a transport ray. Then u = hL' in (a,b) with

h(t) =of ((a,t)) +c L'-a.e. in (a,b)

for some constant ¢, where f = f1 — fo ando =1 ifu' =1 in (a,b), c = —1
if W' = =1 in (a,b). Moreover
~7:1(f0, fl) - Jf(a,b)(b - t) df(t)
c= ' .
b—a

Proof. The proof of the first statement is based on the equation y' = of
and on a smoothing argument. By integrating both sides we get

o) = wX) o [ F((a0)d=px)-o [ /(at)ldf(f)dt
= X) —a/(a_b)/T Ldedf(r) = u(X) ‘“/(ab)(b”) &(r).

The conclusion is achieved taking into account that p(X) = min (MK) =
-Tl(f(]afl)' O
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Theorem 7.3 (Uniqueness) Assume that either fy or f1 are absolutely
continuous with respect to L™. Then the transport density is absolutely con-
tinuous and unique.

Proof. We already know from Theorem 7.1 that any transport density is
absolutely continuous and we can assume that f; << £". By Corollary 4.1
we know that the class of transport densities relative to (fy, f1) is equal to the
class of transport densities relative to (fy — h, fi — h) where h is any measure
in My (X) such that A < fy A f1 (indeed, this subtraction does not change
the velocity field E;). Hence, it is not restrictive to assume that fy A f; = 0.

We can assume that p is representable as in (30) for a suitable optimal
planning v. Adopting the same notation of the proof of Theorem 6.1, we
have

Y=YV

where v = w4 fy does not depend on v (and here the absolute continuity
assumption on f; plays a crucial role) and v¢ is an optimal planning relative
to the measures foc = moxYe, fic = migye for v-a.e. C. In particular

1 1
/,L:/ e ([y — z|yve @ v) dt:/ T (ly — z|ye) dt @ v.
0 0

Hence, it suffices to show that the measures

1
o i= [ mip(ly = o)
0

do not depend on 7 (up to v-negligible sets of course). To this aim, taking
into account Lemma 7.2, it suffices to show that fy¢ and fi¢ do not depend
on 7.

Indeed, we already know from (46) and Theorem 9.2 that fyc do not
depend on 7.

The argument for fio is more involved. First, since v(A) = 0 (due to the
assumption fy A fi = 0), we have |z —y| > 0 v-a.e., and therefore |z —y| > 0
yo-a.e. for v-a.e. C € S.(X). As a consequence, setting C' = [z¢, yc], we
obtain that fic(z¢) = 0 for v-a.e. C. Second, we examine the restriction
fic of fic to the relative interior of C noticing that (44) gives

fll_ﬁ:/ flCLTudy(O)zf flo du(C)
SC(X) Sc(X)
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because T,NC is the relative interior of C for any C' € F(X) By Theorem 9.2
we obtain that f]. depend only on f;, 7, and v.
In conclusion, since

fic = fie + (1= fie(X)) 0y

we obtain that f;o do not depend on 7y as well. O

8 The Bouchitté—Buttazzo mass optimiza-
tion problem

In [13, 14] Bouchitté and Buttazzo consider the following problem. Given

[ € M(X) with f(X) =0, they define

E(p) = inf{/X%|Vv|2du— fv): ve OOC(X)}

for any 1 € My(X). Then, they raised the following mass optimization
problem.

(BB) Given m > 0, maximize £(u) among all measures 4 € M (X) with
p(X) =m.

A possible physical interpretation of this problem is the following: we may
imagine that y represents the conductivity of some material, thinking that
the conductivity (i.e. the inverse resistivity) is zero out of sptu; accordingly
we may imagine that f = f* — f~ is a balanced density of positive and
negative charges. Then —&(p) represents the heating corresponding to the
given conductivity, so that there is an obvious interest in maximizing £(f)
and, for a minimizer u, the (formal) first variation of the energy

=V (Vup)=f"=f"

corresponds to Ohm’s law.
More generally, problems of this sort appear in Shape Optimization and
Linear Elasticity. In these cases u is no longer real valued and general energies
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of the form
Fw) = [ f(@u(e) dufa) (5)

must be considered in order to take into account light structures, correspond-
ing to mass distributions not absolutely continuous with respect to £". This
was the main motivation for Bouchitté, Buttazzo and Seppecher [12] in their
development of a general differential calculus with measures. This calculus,
based on a suitable concept of tangent space to a measure, enables the study
of the relaxation of functionals (52) and provides an explicit formula for their
lower semicontinuous envelope.

Coming back to the scalar problem (BB), a remarkable fact discovered
in [13, 14] is its connection with the Monge—Kantorovich optimal transport
problem, in the case when ¢(z,y) = | —y|. It turns out that the solutions of
(BB) are in one to one correspondence with constant multiples of transport
densities for (PDE) (or, equivalently, for (MK) with f, = f* and f; = f7).

As a byproduct we have that © << L" if either f, or f; are absolutely
continuous with respect to £™ and p is unique if both f; and f; are absolutely
continuous with respect to £".

Theorem 8.1 ((PDE) versus (BB)) Let (u,u) be a solution of (PDE)
and set m = p(X). Then fi = Zu solves (BB) and any solution of (BB) is
representable in this way. Moreover

~ 2

1
max(BB) = —§m—.
m

Proof. Setting v = Auy, (with wy, as in the definition of (PDE)), for any
v € M4 (X) with v(X) = m we estimate

E(v) < 5N =M (w)
so that, letting h — oo and taking into account (39), we obtain
E(v) < %v Y

By minimizing with respect to A we obtain £(v) < —m?/(2m).
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On the other hand, using Young inequality and choosing A so that Am =
m we can estimate

1 m
/X Rl VoPdi— f(v) > /X (Vo, AV ,u) dft = N = f(v)

1 m?
= -V (Vam) - fE) - 5
B 1m?
T 2m

for any v € C*°(X). This proves that fi is optimal for (BB).
Conversely, it has been proved in [13, 14] that for any solution o of (BB)
there exists v € Lip(X) such that |V,v| = m/m o-a.e. and

—V - (V,vo) = f,

where V,v is understood in the Bouchitté-Buttazzo sense. But since (see
[14] again)

/ |V(,U|2 do = inf {hmlnf/ |VU;,| do : v, — v uniformly, v, € C™(X )}
X

h— oo

we obtain a sequence of smooth functions v;, uniformly converging to v such
that Vv, — V,v in [L*(0)]". Setting u = ’”v and p = %o, this proves that
(o,u) solves (PDE). O

9 Appendix: some measure theoretic results

In this section we list all the measure theoretic results used in the previous
section; reference books for the content of this section are [36], [18] and [4].
Let us begin with some terminology.

e (Measures) Let X be a locally compact and separable metric space. We
denote by [M(X)|™ the space of Radon measures with values in R™ and
with finite total variation in X. We recall that the total variation measure

of = (p1,... , fm) € [M(X)]™ is defined by

|| (B —sup{zm : B:DBN BiEB(X)}

=1
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and belongs to M (X). By Riesz theorem the space [M(X)]™ endowed with
the norm ||u|| = |p|(X) is isometric to the dual of [C(X)]™. The duality is
given by the integral, i.e.

(pyu) == Z/ w; dp;.
i=1 X

Recall also that, for u € M (X) and f € [L}(X, p)]™, the measure fu €
[M(X)]™ is defined by

fu(B) = [ fan VB € B(X)

and |ful = [f|p.
¢ (Push forward of measures) Let ;1 € [M(X)]™, let Y be another metric

space and let f : X — Y be a Borel map. Then the push forward measure
fap € [M(Y)]™ is defined by

fen(B)=u(f7(B)  VBEB(Y)
and satisfies the more general property

/ udfpp = / uo fdu for any bounded Borel function u : ¥ — R.
Y b's

It is easy to check that |fup| < fau|ul.

e (Support) We say that p € [M(X)]™ is concentrated on a Borel set B
if |p|(X \ B) = 0 and we denote by sptu the smallest closed set on which
p is concentrated (the existence of a smallest set follows by the separability
of X, precisely by the Lindeldf property). The support is also given by the
formula (sometimes taken as the definition)

sptu ={z € X : |u|(By(z)) >0 Vo> 0}.

¢ (Convolution) If X C R", u € [M(X)]™ and p € C*(R") (for instance

a convolution kernel); we define

pwxola) = [ ple = 9)duto) 30
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Notice that p* p € [C®(R™)]™ because D*(pu * p) = (D*p) x p for any
multiindex a and
sup |D*(p % p)| < sup [Dpl||u|-

Moreover, using Jensen’s inequality it is easy to check (see for instance The-
orem 2.2(ii) of [4]) that

/c lp* p|de < |u|(C,) where C,:={z: dist(z,C) < diam(sptp)} (53)

for any closed set C' C R".

e (Weak convergence) Assume that X is a compact metric space. We say
that a family of measures (u,) C M(X) weakly converges to u € M(X) if

lim/ud,uh:/ud/,t Vu € C(X)
h=ee Jx X
i.e., if p, weakly* converge to p as elements of the dual of C(X). In the
case X 1is locally compact and separable, the concept is analogous, simply
replacing C(X) the the subspace C.(X) of functions with compact support.
It is easy to check that p* p. L™ weakly converge to p in R” whenever p is a
convolution kernel.

We mention also the following criterion for the weak convergence of pos-
itive measures (see for instance Proposition 1.80 of [4]): if uy, p € M4 (X)
satisfy

liminf pp,(A) > u(A) VA C X open

h—o0

and
lim sup pp(X) < p(X)

h—oc -
then fX ¢ dpy, — fX ¢ du for any bounded continuous function ¢ : X — R.

o (Measure valued maps) Let X, Y be locally compact and separable
metric spaces. Let y — ), be a map which assigns to any y € Y a measure
Ay € [M(X)]™. We say that )\, is a Borel map if y — \,(A) is a real valued
Borel map for any open set A C X. By a monotone class argument it can
be proved that y — A, is a Borel map if and only if

y— XA, ({z: (y,2) € B}) 1is a Borel map for any B € B(Y x X). (54)

Moreover y + |)\,| is a Borel map whenever y — )\, is Borel (detailed
proofs are in §2.5 of [4]). If p € M (Y), analogous statements hold for
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B(Y'),-measurable measure valued maps, where B(Y'), is the o-algebra of u-
measurable sets (in this case one has to replace B(Y x X) by B(Y), ® B(X)
in (54)).

¢ (Decomposition of measures) The following result plays a fundamental
role in these notes; it is also known as disintegration theorem.

Theorem 9.1 (Decomposition of measures) Let X, Y be locally com-
pact and separable metric spaces and let 1 : X — Y be a Borel map. Let
A€ M(X)]™ and set p = mx|A| € M4(Y). Then there exist measures
Ay € [M(X)]™ such that

(i) y— A, is a Borel map and |\,| is a probability measure in X for p-a.e.
yey;

(1) X=X, ® p, t.e.
M) = [ A4 duty) VA € B(X); (55)

(i55) |A\ ) (X \ 7 (y)) =0 for p-ae. y€Y.

The representation provided by Theorem 9.1 of A can be used sometimes
to compute the push forward of A. Indeed,

f#(Ay@)ﬂ) = faAy® p (56)

for any Borel map f : X — Z, where Z is any other compact metric space.
Notice also that

Al =12 ® p. (57)

Indeed, the inequality < is trivial and the opposite one follows by evaluating
both measures at B = X, using the fact that |A\,|(X) =1 for p-a.e. y.

In the case when m = 1 and A € M (X) the proof of Theorem 9.1 is
available in many textbooks of measure theory or probability (in this case
Ay are the the so-called conditional probabilities induced by the random
variable 7, see for instance [18]); in the vector valued case one can argue
component by component, but the fact that |\,| are probability measures is
not straightforward.
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In Theorem 2.28 of [4] the decomposition theorem is proved in the case
when X =Y x Z is a product space and 7(y, z) = y is the projection on the
first variable; in this situation, since \, are concentrated on 77! (y) = {y} x Z,
it 1s sometimes convenient to consider them as measures on Z, rather than
measures on X, writing (55) in the form

AB) = [ 0 (s o) € BY duty) VB EB(Y).  (59)

Once the decomposition theorem is known in the special case X =Y x Z
and 7(y, z) = z the general case can be easily recovered: it suffices to embed
X into the product Y x X through the map f(z) = (w(z),z) and to apply
the decomposition theorem to A = fa

Now we discuss the uniqueness of A\, and p in the representation A =
Ae ® p. For simplicity we discuss only the case of positive measures.

Theorem 9.2 Let X, Y and w be as in Theorem 9.1; let A € Mi(X),
p € My(Y) and let y — n, be a Borel M, (X)-valued map defined on'Y
such that

(i) X=n, @, i.e. N(A) = [, n,(A)du(y) for any A € B(X);
(ii) n, (X \ 7 (y)) =0 for p-a.e. y €Y.

Then n, are uniquely determined p-a.e. in'Y by (i), (ii) and, setting B =
{y: ny(X) >0}, the measure LB is absolutely continuous with respect to
muX. In particular

LB
l:r?ny =X, formgl-ae yeY (59)

where A\, are as in Theorem 9.1.

Proof. Let n,, 1, be satisfying (i), (ii). We have to show that 5, = 7, for
p-a.e. y. Let (A4,) be a sequence of open sets stable by finite intersection
which generates the Borel o-algebra of X. Choosing A = A4, N7~!(B), with
B e B(Y), in (i) gives

/B ny(An) du(y) = /B 7 (An) da(y).
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Being B arbitrary, we infer that n,(A,) = n,(A,) for g-a.e. y, and therefore
there exists a p-negligible set N such that 7,(A,) = n;(A,n) for any n € N
and any y € Y \ N. By Proposition 1.8 of [4] we obtain that 7, = 7| for any
yeY\N.

Let B’ C B be any mgA-negligible set; then 77!(B’) is A-negligible and
therefore (ii) gives

0:=/;ny0f4(39)fhdy)=l/iny0Y)duﬁH~

As n,(X) > 0on B D B’ this implies that y(B’) = 0. Writing puL. B = hmg
we obtain A = hn, ® mx and A = A\, ® mg . As a consequence (59) holds.
O

¢ (Young measures) These measures, introduced by L.C.Young, arise in
a natural way in the study of oscillatory phenomena and in the analysis of
weak limits of nonlinear quantities (see [30] for a comprehensive introduction
to this wide topic).

Specifically, assume that we are given compact metric spaces X, Y and
a sequence of Borel maps #;, : X — Y; in order to understand the limit
behaviour of 1, we associate to them the measures

Yo, = (Id X hn)gpp = /%Aw) du(z)

and we study their limit in M(X x Y'). Assuming, possibly passing to a
subsequence, that v,, — 7, due to the fact that myx(vyy,,) = p for any h we
obtain that myxy = u, hence according to Theorem 9.1 we can represent ~y
as
T=7 Qu

for suitable probability measures «, in Y, with « — ~, Borel. The family
of measures v, is called Young limit of the sequence (¢,); once the Young
limit is known, we can compute the w*-limit of () in L®(X, ) for any
v € C(Y): indeed, using test function of the form ¢(z)y(y), we easily obtain
that the limit (in the dual of C'(X) and therefore in L>(X, u)) is given by

Lie) = [ 20 dnlo)

We will use the following two well known results of the theory of Young
measures.
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Theorem 9.3 (Approximation theorem) Lety € M (X XY) and write
Y=Y ® p with u = mogy. Then, if u has no atom, there exists a sequence
of Borel maps 1, : X —'Y such that

L@ = lim 8y () & L.
Yo ® = M 0y, (a) @ p

Moreover, we can choose vy, in such a way that the measures Ypup have no
atom as well.

Proof. (Sketch) We assume first that v, = v is independent of z. By ap-
proximation we can also assume that

p
= Z piéyi
=1

for suitable y; € Y and p; € [0,1]. Let Qp, h € Z™, be a partition of R” in
cubes with side length 1/h; since p has no atom, by Lyapunov theorem we
can find a partition X},... , X? of X N Qy, such that u(X}) = p;u(X N Qp).
Then we define

Yy, =p; on X;z

For any ¢ € C(X) and ¢ € C(Y) we have

bodban) = Y wlw) [ odn

XxY hezn i=1 X5

~ Z ZP#(%)/ ¢dp = P dp x y

and this proves that
pxy= lim &y, ® .
h— o0

If we want 44 to be non atomic, the above construction needs to be modi-
fied only slightly: it suffices to take small balls B; centered at y; and to define
¥y, equal to ¢; on X}, where ¢; : R" — B; is any Borel and one to one map.

If ~, is piecewise constant (say in a canonical subdivision of X induced
by a partition in cubes) then we can repeat the local construction above in
each region where 7, is constant. Moreover we can approximate Lipschitz
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functions 7, (with respect to the 1-Wasserstein distance) with piecewise con-
stant ones. Finally, any Borel map =, can be approximated by Lipschitz ones
through a convolution. O

We will also need the following result.

Lemma 9.1 Let ¢y, ¢ : X — Y be Borel maps and p € My(X). Then
U, = Y p-a.e. if and only if

Y = 511,,1(:;) & /J($) =Y = Oya) ® ,u(:c)
weakly in M(X xY).

Proof. Assume that ¢;, — ¢ p-a.e. Since

/x D= /X o(z,¢(x))du(z) Ve e C(X xY)

the dominated convergence theorem gives that v;, — . To prove the opposite
implication, fix £ > 0 and a compact set K such that | is continuous and
p(X \ K) < e. We use as test function

p(z,y) = xx(2)y (y — ¥(z))

with v(¢t) = 1 A |t|/e (by approximation, although not continuous in X X Y,
this is an admissible test function) to obtain

Jim p({z € K2 [gn(z) —d(2)] > €}) = 0.

The conclusion follows letting ¢ — 0F. O

With a similar proof one can obtain a slightly more general result, namely

Vi 1= Sp(a) ® i = Y 1= Oy(a) @ pe

implies 15, = 9 p-a.e. provided |p;, — p|(X) — 0.
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