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follows: given two distributions with equal masses of a given material g0(x),g1(x) (corresponding for instance to an embankment and an excavation), �nda transport map  which carries the �rst distribution into the second andminimizes the transport costC( ) := ZX jx�  (x)jg0(x) dx:The condition that the �rst distribution of mass is carried into the secondcan be written asZ �1(B) g0(x) dx = ZB g1(y) dy 8B � X Borel (1)or, by the change of variables formula, asg1( (x)) jdetr (x)j = g0(x) for Ln-a.e. x 2 Bif  is one to one and su�ciently regular.More generally one can replace the functions g0; g1 by positive measuresf0; f1 with equal mass, so that (1) reads f1 =  #f0, and replace the euclideandistance by a generic cost function c(x; y), studying the problemmin #f0=f1 ZX c(x;  (x)) df0(x): (2)The in�mum of the transport problem leads also to a c-dependent distancebetween measures with equal mass, known as Kantorovich{Wasserstein dis-tance.The optimal transport problem and the Kantorovich{Wasserstein dis-tance have a very broad range of applications: Fluid Mechanics [9], [10];Partial Di�erential Equations [31, 28]; Optimization [13], [14] to quote justa few examples. Moreover, the 1-Wasserstein distance (corresponding toc(x; y) = jx � yj in (2)) is related to the so-called 
at distance in Geomet-ric Measure Theory, which plays an important role in its development (see[6], [24], [29], [27], [43]). However, rather than showing speci�c applications(for which we mainly refer to the Evans survey [21] or to the introductionof [9]), the main aim of the notes is to present the di�erent formulations ofthe optimal transport problem and to compare them, focussing mainly onthe linear case c(x; y) = jx � yj. The main sources for the preparation of2



the notes have been the papers by Bouchitt�e{Buttazzo [13, 14], Ca�arelli{Feldman{McCann [15], Evans{Gangbo [22], Gangbo{McCann [26], Sudakov[41] and Evans [21].The notes are organized as follows. In Section 1 we discuss some basicexamples and in Section 2 we discuss Kantorovich's generalized solutions, i.e.the transport plans, pointing out the connection between them and the trans-port maps. Section 3 is entirely devoted to the one dimensional case: in thissituation the order structure plays an important role and considerably sim-pli�es the theory. Sections 4 and 5 are devoted to the ODE and PDE basedformulations of the optimal transport problem (respectively due to Brenierand Evans{Gangbo); we discuss in particular the role of the so-called trans-port density and the equivalence of its di�erent representations. Namely, weprove that any transport density � can be represented as R 10 �t#(jy�xj
) dt,where 
 is an optimal planning, as R 10 jEtj dt, where Et is the \velocity �eld"in the ODE formulation, or as the solution of the PDE div(r�u�) = f1� f0,with no regularity assumption on f1, f0. Moreover, in the same generalitywe prove convergence of the p-laplacian approximation.In Section 6 we discuss the existence of the optimal transport map, follow-ing essentially the original Sudakov approach and �lling a gap in his originalproof (see also [15, 42]). Section 7 deals with recent results, related to thoseobtained in [25], on the regularity and the uniqueness of the transport den-sity. Section 8 is devoted to the connection between the optimal transportproblem and the so-called mass optimization problem. Finally, Section 9contains a self contained list of the measure theoretic results needed in thedevelopment of the theory. Main notationX a compact convex subset of an Euclidean space RnB(X) Borel �-algebra of XLn Lebesgue measure in RnHk Hausdor� k-dimensional measure in RnLip(X) real valued Lipschitz functions de�ned on XLip1(X) functions in Lip(X) with Lipschitz constant not greater than 1�u the set of points where u is not di�erentiable�t projections (x; y) 7! x+ t(y � x), t 2 [0; 1]So(X) open segments ]]x; y[[ with x; y 2 XSc(X) closed segments [[x; y]] with x; y 2 X, x 6= y3



M(X) signed Radon measures with �nite total variation in XM+(X) positive and �nite Radon measures in XM1(X) probability measures in Xj�j total variation of � 2 [M(X)]n�+; �� positive and negative part of � 2 M(X)f#� push forward of � by f1 Some elementary examplesIn this section we discuss some elementary examples that illustrate the kindof phenomena (non existence, non uniqueness) which can occur. The �rstone shows that optimal transport maps need not exist if the �rst measure f0has atoms.Example 1.1 (Non existence) Let f0 = �0 and f1 = (�1 + ��1)=2. In thiscase the optimal transport problem has no solution simply because there isno map  such that  #f0 = f1.The following two examples deal with the case when the cost function cin X �X is jx� yj, i.e. the euclidean distance between x and y. In this casewe will use as a test for optimality the fact that the in�mum of the transportproblem is always greater thansup�ZX u d(f1 � f0) : u 2 Lip1(X)� : (3)Indeed,ZX u d(f1 � f0) = ZX u( (x))� u(x) df0(x) � ZX j (x)� xj df0(x)for any admissible transport  . Actually we will prove this lower bound issharp if f0 has no atom (see (6) and (13)).Our second example shows that in general the solution of the optimaltransport problem is not unique. In the one-dimensional case we will obtain(see Theorem 3.1), uniqueness (and existence) in the class of nondecreasingmaps.Example 1.2 (Book shifting) Let n � 1 be an integer and f0 = �[0;n]L1and f1 = �[1;n+1]L1. Then the map  (t) = t+ 1 is optimal. Indeed, the cost4



relative to  is n and, choosing the 1-Lipschitz function u(t) = �t in (3), weobtain that the supremum is at least n, whence the optimality of  follows.But since the minimal cost is n, if n > 1 another optimal map  is given by (t) = (t+ n on [0; 1]t on [1; n].In the previous example the two transport maps coincide when n = 1;however in this case there is one more (and actually in�nitely many) optimaltransport map.Example 1.3 Let f0 = �[0;1]L1 and f1 = �[1;2]L1 (i.e. n = 1 in the previousexample). We have already seen that  (t) = t + 1 is optimal. But in thiscase also the map  (t) = 2� t is optimal as well.In all the previous examples the optimal transport maps  satisfy thecondition  (t) � t. However is is easy to �nd examples where this does nothappen.Example 1.4 Let f0 = �[�1;1]L1 and f1 = (��1 + �1)=2. In this case the op-timal transport map  is unique (modulo L1-negligible sets); it is identicallyequal to �1 on [�1; 0) and identically equal to 1 on (0; 1]. The veri�cationis left to the reader as an exercise.We conclude this section with some two dimensional examples.Example 1.5 Assume that 2f0 is the sum of the unit Dirac masses at (1; 1)and (0; 0), and that 2f1 is the sum of the unit Dirac masses at (1; 0) and(0; 1). Then the \horizontal" transport and the \vertical" transport are bothoptimal. Indeed, the cost of these transports is 1 and choosing u(x1; x2) = x1in (3) we obtain that the in�mum of the transport problem is at least 1.Example 1.6 Assume that f1 is the sum of two Dirac masses at A; B 2 R2and assume that f0 is supported on the middle axis between them. ThenZX jx�  (x)j df0(x) = ZX jx� Aj df0(x)whenever  (x) 2 fA;Bg, hence any admissible transport is optimal.5



2 Optimal transport plans: existence andregularityIn this section we discuss Kantorovich's approach to the optimal transportproblem. His idea has been to look for optimal transport \plans" , i.e. proba-bility measures 
 in the product space X�X, rather than optimal transportmaps. We will see that this more general viewpoint can be used in severalsituations to prove that actually optimal transport maps exist (this interme-diate passage through a weak formulation of the problems is quite commonin PDE and Calculus of Variations).(MK) Let f0; f1 2 M1(X). We say that a probability measure 
 inM1(X�X) is admissible if its marginals are f0 and f1, i.e.�0#
 = f0; �1#
 = f1:Then, given a Borel cost function c : X �X ! [0;1], we minimizeI(
) := ZX�X c(x; y) d
(x; y)among all admissible 
 and we denote by Fc(f0; f1) the value of the in�mum.We also call an admissible 
 a transport plan. Notice also that in Kan-torovich's setting no restriction on f0 or f1 is necessary to produce admissibletransport plans: the product measure f0�f1 is always admissible. In partic-ular the following de�nition is well posed and produces a family of distancesin M1(X).De�nition 2.1 (Kantorovich{Wasserstein distances) Let p � 1 andf0; f1 2 M1(X). We de�ne the p-Wasserstein distance between f0 and f1 byFp(f0; f1) := � min�0#
=f0; �1#
=f1 ZX�X jx� yjp d
�1=p : (4)The di�erence between transport maps and transport plans can be betterunderstood with the following proposition.6



Proposition 2.1 (Transport plans versus transport maps) AnyBorel transport map  : X ! X induces a transport plan 
 de�ned by
 := (Id�  )#f0: (5)Conversely, a transport plan 
 is induced by a transport map if 
 is concen-trated on a 
-measurable graph �.Proof. Let  be a transport map. Since �0�(Id� ) = Id and �1�(Id� ) = we obtain immediately that �0#
 = f0 and �1#
 =  #f0 = f1. Noticealso that, by Lusin's theorem, the graph of  is 
 -measurable.Conversely, let � � X � X be a 
-measurable graph on which 
 is con-centrated and write � = f(x; �(x)) : x 2 �0(�)gfor some function � : �0(�) ! X. Let (Kh) be an increasing sequence ofcompact subsets of � such that 
(� nKh)! 0 and notice thatf0 (�0(Kh)) = 
 ���10 (�0(Kh))� � 
(Kh)! 1:Hence, �0(�) � [h�0(Kh) is f0-measurable and with full measure in X.Moreover, representing 
 as 
x 
 f0 as in (58) we get0 = limh!1
(X �X nKh) = ZX 
x (fy : (x; y) =2 [hKhg) df0(x)� Z ��0(�) 
x(X n f�(x)g) df0(x)(here R � denotes the outer integral). Hence 
x is the unit Dirac mass at �(x)for f0-a.e. x 2 X. Since x 7!  (x) := ZX y d
x(y)is a Borel map coinciding with � f0-a.e., we obtain that 
x is the unit Diracmass at  (x) for f0-a.e. x. For A; B 2 B(X) we get
(A�B) = ZA 
x(B) df0(x) = f0 (fx : (x;  (x)) 2 A� Bg) = 
 (A �B)7



and therefore 
 = 
 . �The existence of optimal transport plans is a straightforward consequenceof the w�-compactness of probability measures and of the lower semicontinu-ity of I.Theorem 2.1 (Existence of optimal plans) Assume that c is lowersemicontinuous in X�X. Then there exists 
 2M1(X�X) solving (MK).Moreover, if c is continuous and real valued we havemin (MK) = inf #f0=f1 ZX c(x;  (x)) df0(x) (6)provided f0 has no atom.Proof. Clearly the set of admissible 
's is closed, bounded and w�-compactfor the w�-convergence of measures (i.e. in the duality with continuous func-tions in X �X). Hence, it su�ces to prove thatI(
) � lim infh!1 I(
h)whenever 
h w�-converge to 
. This lower semicontinuity property follows bythe fact that c can be approximated from below by an increasing sequenceof continuous and real valued functions ch (this is a well known fact: seefor instance Lemma 1.61 in [4]). The functionals Ih induced by ch convergemonotonically to I, whence the lower semicontinuity of I follows.In order to prove the last part we need to show the existence, for any
 2M+(X �X) with �0#
 = f0 and �1#
 = f1, of Borel maps  h : X ! Xsuch that  h#f0 = f1 and � h(x) 
 f0 weakly converge to 
 in M(X � X).The approximation Theorem 9.3 provides us, on the other hand, with a Borelmap ' : X ! X such that '#f0 has no atom, is arbitrarily close to f1 and�'(x) 
 f0 is arbitrarily close (with respect to the weak topology) to 
. Wewill build  h by an iterated application of this result.By a standard approximation argument we can assume that L = Lip(c)is �nite and that �jx� yj � c(x; y) 8x; y 2 Xfor some � > 0. Possibly replacing c by c=� we assume � = 1.8



Fix now an integer h, set f00 = f0 and choose '0 : X ! X such that'0#f00 has no atom andF1(f1; '0#f00 ) < 2�h and ZX c('0(x); x) df00 (x) < Fc(f1; f00 ) + 2�h:Then, we set f10 = '0#f00 , �nd '1 : X ! X such that '1#f10 has no atomandF1(f1; '1#f10 ) < 2�1�h and ZX c('1(x); x) df10 (x) < Fc(f1; f10 )+2�1�h:Proceeding inductively and setting fk0 = '(k�1)#fk�10 we �nd 'k such thatF1(f1; 'k#fk0 ) < 2�k�h and ZX c('k(x); x) dfk0 (x) < Fc(f1; fk0 )+2�k�hand 'k#fk0 has no atom. Then, we set �0(x) = x and �k = 'k�1 � � � � � '0for k � 1, so that fk0 = �k#f0. We claim that (�k) is a Cauchy sequence inL1(X; f0;X). Indeed,1Xk=0 ZX j�k+1(x)� �k(x)j df0(x) = 1Xk=0 ZX j'k(y)� yj dfk0 (y)� 21�h + 1Xk=0 F1(f1; fk0 ) <1:Denoting by  h the limit of �k, passing to the limit as k ! 1 we obtain h#f0 = f1; moreover, we haveZX c(�k(x); x) df0(x) � ZX c('0(x); x) df0(x) + L kXi=1 ZX j�i(x)� �i�1(x))j df0(x)� Fc(f1; f0) + 2�h + L kXi=1 ZX j'i(y)� yj df i0(y) � Fc(f1; f0) + 2�h(1 + 2L):Passing to the limit as k !1 we obtainZX c( h(x); x) df0(x) � Fc(f1; f0) + 2�h(1 + 2L)9



and the proof is achieved. �For instance in the case of Example 1.1 (where transport maps do notexist at all) it is easy to check that the unique optimal transport plan is givenby 12�0 � ��1 + 12�0 � �1:In general, however, uniqueness fails because of the linearity of I and of theconvexity of the class of admissible plans 
. In Example 1.2, for instance,any measure t(Id�  1)#f0 + (1� t)(Id�  2)#f0is optimal, with t 2 [0; 1] and  1;  2 optimal transport maps.In order to understand the regularity properties of optimal plans 
 weintroduce, following [26, 35], the concept of cyclical monotonicity.De�nition 2.2 (Cyclical monotonicity) Let � � X �X. We say that �is c-ciclically monotone ifnXi=1 c(xi+1; yi) � nXi=1 c(xi; yi) (7)whenever n � 2 and (xi; yi) 2 � for 1 � 1 � n, with xn+1 = x1.The cyclical monotonicity property can also be stated in a (apparently)stronger form: nXi=1 c(x�(i); yi) � nXi=1 c(xi; yi) (8)for any permutation � : f1; : : : ; ng ! f1; : : : ; ng. The equivalence canbe proved either directly (reducing to the case when � has no nontrivialinvariant set) or verifying, as we will soon do, that any cyclically monotoneset is contained in the c-superdi�erential of a c-concave function and thenchecking that the superdi�erential ful�ls (8).Theorem 2.2 (Regularity of optimal plans) Assume that c is continu-ous and real valued. Then, for any optimal 
 the set spt
 is c-ciclicallymonotone. Moreover, the union of spt
 as 
 range among all optimal plansis c-ciclically monotone. 10



Proof. Assume by contradiction that there exist an integer n � 2 and points(xi; yi) 2 spt
, i = 1; : : : ; n, such thatf ((xi); (yi)) := nXi=1 c(xi+1; yi)� c(xi; yi) < 0with xn+1 = x1. For 1 � i � n, let Ui, Vi be compact neighbourhoods of xiand yi respectively such that 
(Ui � Vi) > 0 and f ((ui); (vi)) < 0 wheneverui 2 Ui and vi 2 Vi.Set now � = mini 
(Ui�Vi) and denote by 
i 2 M1(Ui�Vi) the normal-ized restriction of 
 to Ui�Vi. We can �nd a compact space Y , a probabilitymeasure � in Y and Borel maps �i = ui�vi : X ! Ui�Vi such that 
i = �i#�for i = 1; : : : ; n (it su�ces for instance to de�ne Y as the product of Ui�Vi,so that �i are the projections on the i-coordinate) and de�ne
 0 := 
 + �n nXi=1 (ui+1 � vi)#� � (ui � vi)#�:Since ��i#� = �
i � 
 we obtain that 
 0 2 M+(X � X); moreover, it iseasy to check that �0#
 0 = f0 and �1#
 0 = f1. This leads to a contradictionbecause I(
 0)� I(
) = �n ZY nXi=1 c(ui+1; vi)� c(ui; vi) d� < 0:In order to show the last part of the statement we notice that the collection ofoptimal transport plans is w�-closed and compact. If (
h)h�1 is a countabledense set, then h[i=1 spt
i = spt hXi=1 1h
i!is c-ciclically monotone for any h � 1. Passing to the limit as h ! 1 weobtain that the closure of the union of spt
h is c-ciclically monotone. By thedensity of (
h), this closure contains spt
 for any optimal plan 
. �Next, we relate the c-cyclical monotonicity to suitable concepts (adaptedto c) of concavity and superdi�erential.11



De�nition 2.3 (c-concavity) We say that a function u : X ! R is c-concave if it can be represented as the in�mum of a family (ui) of functionsgiven by ui(x) := c(x; yi) + tifor suitable yi 2 X and ti 2 R.Remark 2.1 [Linear and quadratic case] In the case when c(x; y) isa symmetric function satisfying the triangle inequality, the notion of c-concavity is equivalent to 1-Lipschitz continuity with respect to the metricdc induced by c. Indeed, given u 2 Lip1(X; dc), the family of functions whosein�mum is u is simply fc(x; y) + u(y) : y 2 Xg :In the quadratic case c(x; y) = jx � yj2=2 a function u is c-concave if andonly if u� jxj2=2 is concave. Indeed, u = inf i c(�; yi) + ti impliesu(x)� 12 jxj2 = infi hx;�yii+ 12 jyij2 + tiand therefore the concavity of u � jxj2=2. Conversely, if v = u � jxj2=2 isconcave, from the well known formulav(x) = infy; p2@+v(y)v(y) + hp; x� yi(here @+v is the superdi�erential of v in the sense of convex analysis) weobtain u(x) = infy;�p2@+v(y) 12 jp� xj2 + c(p; y):�De�nition 2.4 (c-superdi�erential) Let u : X ! R be a function. Thec-superdi�erential @cu(x) of u at x 2 X is de�ned by@cu(x) := fy : u(z) � u(x) + c(z; y) � c(x; y) 8z 2 Xg : (9)The following theorem ([39], [40], [35]) shows that the graphs of superdif-ferentials of c-concave functions are maximal (with respect to set inclusion)c-cyclically monotone sets. It may considered as the extension of the wellknown result of Rockafellar to this setting.12



Theorem 2.3 Any c-ciclically monotone set � is contained in the graph ofthe c-superdi�erential of a c-concave function. Conversely, the graph of thec-superdi�erential of a c-concave function is c-ciclically monotone.Proof. This proof is taken from [35]. We �x (x0; y0) 2 � and de�neu(x) := inf c(x; yn)� c(xn; yn) + � � �+ c(x1; y0)� c(x0; y0) 8x 2 Xwhere the in�mum runs among all collections (xi; yi) 2 � with 1 � i � n andn � 1. Then u is c-concave by construction and the cyclical monotonicity of �gives u(x0) = 0 (the minimum is achieved with n = 1 and (x1; y1) = (x0; y0)).We will prove the inequalityu(x) � u(x0) + c(x; y0)� c(x0; y0) (10)for any x 2 X and (x0; y0) 2 �. In particular (choosing x = x0) this impliesthat u(x0) > �1 and that y0 2 @cu(x0). In order to prove (10) we �x� > u(x0) and �nd (xi; yi) 2 �, 1 � i � n, such thatc(x0; yn)� c(xn; yn) + � � �+ c(x1; y0)� c(x0; y0) < �:Then, setting (xn+1; yn+1) = (x0; y0) we �ndu(x) � c(x; yn+1)� c(xn+1; yn+1) + c(xn+1; yn)� c(xn; yn)+ � � �+ c(x1; y0)� c(x0; y0) � c(x; y0)� c(x0; y0) + �:Since � is arbitrary (10) follows.Finally, if v is c-concave, yi 2 @cv(xi) for 1 � i � n and � is a permutationwe can add the inequalitiesv(x�(i))� v(xi) � c(x�(i); yi)� c(xi; yi)to obtain (8). �In the following corollary we assume that the cost function is symmetric,continuous and satis�es the triangle inequality, so that c-concavity reducesto 1-Lipschitz continuity with respect to the distance induced by c.Corollary 2.1 (Linear case) Let 
 2 M1(X � X) with �0#
 = f0 and�1#
 = f1. Then 
 is optimal for (MK) if and only if there exists u : X ! Rsuch that ju(x)� u(y)j � c(x; y) 8(x; y) 2 X �X (11)13



u(x)� u(y) = c(x; y) for (x; y) 2 spt
. (12)In addition, there exists u satisfying (11) such that (12) holds for any optimalplanning 
. We will call any function u with these properties a maximalKantorovich potential.Proof. (Su�ciency) Let 
 0 be any admissible transport plan; by applying(11) �rst and then (12) we getI(
 0) � ZX�X u(x)� u(y) d
 0 = ZX u df0 � ZX u df1= ZX u(x)� u(y) d
 = I(
):(Necessity) Let � be the closure of the union of spt
 0 as 
 0 varies among alloptimal plans for (MK). Then we know that � is c-cyclically monotone, hencethere exists a c-concave function u such that � � @cu. Then, (11) follows bythe c-convexity of u, while the inclusion � � @cu impliesu(y)� u(x) � c(y; y) � c(x; y) = �c(x; y)for any (x; y) 2 spt
 � �. This, taking into account (11), proves (12). �A direct consequence of the proof of su�ciency is the identitymin (MK) = max�Z ud(f0 � f1) : u 2 Lip1(X; dc)� (13)(where dc is the distance in X induced by c) and the maximum on the rightis achieved precisely whenever u satis�es (12).In the following corollary, instead, we consider the case when c(x; y) =jx � yj2=2. The result below, taken from [26], was proved �rst by Brenierin [7, 8] under more restrictive assumptions on f0; f1 (see also [26] for thegeneral case c(x; y) = h(jx � yj)). Before stating the result we recall thatthe set �v of points of nondi�erentiability of a real valued concave functionv (i.e. the set of points x such that @+v(x) is not a singleton) is countably(CC) regular (see [44] and also [1]). This means that �v can be covered witha countable family of (CC) hypersurface, i.e. graphs of di�erences of convexfunctions of n � 1 variables. This property is stronger than the canonicalHn�1-recti�ability: it implies that Hn�1-almost all of �v can be covered bya sequence of C2 hypersurfaces. 14



Corollary 2.2 (Quadratic case) Assume that any (CC) hypersurface isf0-negligible. Then the optimal planning 
 is unique and is induced by anoptimal transport map  . Moreover  is the gradient of a convex function.Proof. Let u : X ! R be a c-concave function such that the graph �of its superdi�erential contains the support of any optimal planning 
. Asc(x; y) = jx � yj2=2, an elementary computation shows that (x0; y0) 2 � ifand only if �y0 2 @+v(x0)where v(x) = u(x)� jxj2=2 is the concave function already considered in Re-mark 2.1. Then, by the above mentioned results on di�erentiability of con-cave functions, the set of points where v is not di�erentiable is f0-negligible,hence for f0-a.e. x 2 X there is a unique y0 = �rv(x0) 2 X such that(x0; y0) 2 �. As spt
 � �, by Proposition 2.1 we infer that
 = (Id�  )#f0for any optimal planning 
, with  = �rv. �Example 2.1 (Brenier polar factorization theorem) A remarkableconsequence of Corollary 2.2 is the following result, known as polarfactorization theorem. A vector �eld r : X ! X such thatLn(r�1(B)) = 0 whenever Ln(B) = 0 (14)can be written as ru � �, with u convex and � measure preserving.It su�ces to apply the Corollary to the measure f0 = r#(Ln X) (abso-lutely continuous, due to (14)) and f1 = Ln X; we have thenLn X = (rv)#(r#(Ln X)) = (rv � r)#(Ln X)for a suitable convex function v, hence � = (rv) � r is measure preserving.The desired representation follows with u = v�, since ru = (rv)�1.Let us assume that f0 = Ln X and let f1 2 M+(X) be any other mea-sure such that f1(X) = Ln(X); in general the problem of mapping f0 into f1through a Lipschitz map has no solution (it su�ces to consider, for instance,the case when X = B1 and f1 = 1n H1 @B1). However, another remarkableconsequence of Corollary 2.2 is that the problem has solution if we require the15



transport map to be only a function of bounded variation: indeed, boundedmonotone functions (in particular gradients of Lipschitz convex functions)are functions of bounded variation (see for instance Proposition 5.1 of [2]).Moreover, we can give a sharp quantitative estimate of the error made in theapproximation by Lipschitz transport maps.Theorem 2.4 There exists a constant C = C(n;X) with the following prop-erty: for any � 2 M+(X) with �(X) = Ln(X) and any M > 0 there exista Lipschitz function � : X ! X and B 2 B(X) such that Lip(�) � M ,Ln(X n B) � C=M and � = �#(Ln B) + �swith �s 2M+(X) and �s(X) � Ln(X n B).Proof. By Corollary 2.2 we can represent � =  #(Ln X) with  : X ! Xequal to the gradient of a convex function. Let 
 be the interior of X; byapplying Proposition 5.1 of [2] (valid, more generally, for monotone operators)we obtain that the total variation jD j(
) can be estimated with a suitableconstant C depending only on n andX. Therefore, by applying Theorem 5.34of [4] we can �nd a Borel set B � X (it is a suitable sublevel set of themaximal function of jD j) such that Ln(X n B) � c(n)jD j(
)=M and therestriction of  to B is a M -Lipschitz function, i.e. with Lipschitz constantnot greater than M . By Kirszbraun theorem (see for instance [24]) we canextend  jB to a M -Lipschitz function � : X ! X. Setting Bc = X n B wehave then� =  #(Ln B) +  #(Ln Bc) = �#(Ln B) +  #(Ln Bc)and setting �s =  #(Ln Bc) the proof is achieved. �3 The one dimensional caseIn this section we assume that X = I is a closed interval of the real line;we also assume for simplicity that the transport cost is c(x; y) = jx� yjp forsome p � 1.Theorem 3.1 (Existence and uniqueness) Assume that f0 is a di�usemeasure, i.e. f0(ftg) = 0 for any t 2 I. Then16



(i) there exists a unique (modulo countable sets) nondecreasing function : sptf0 ! X such that  #f0 = f1;(ii) the function  in (i) is an optimal transport, and if p > 1 is the uniqueoptimal transport.In the one-dimensional case these results are sharp: we have already seenthat transport maps need not exist if f0 has atoms (Example 1.1) and that,without the monotonicity constraint, are not necessarily unique when p = 1.Proof. (i) Let m = min I and de�ne (s) := sup ft 2 I : f1([m; t]) � f0([m; s])g : (15)It is easy to check that the following properties hold:(a)  is non decreasing;(b)  (I) � sptf1;(c) if  (s) is not an atom of f1 we havef1([m; (s)]) = f0([m; s]): (16)Let T be the at most countable set made by the atoms of f1 and by thepoints t 2 I such that  �1(t) contains more than one point; then  �1 is wellde�ned on  (I)nT and  �1([t; t0]) = [ �1(t);  �1(t0)] whenever t; t0 2  (I)nTwith t < t0. Then (c) givesf1([t; t0]) = f1([m; t0])� f1([m; t]) = f0([m; �1(t0)])� f0([m; �1(t)])= f0([ �1(t);  �1(t0)]) = f0( �1([t; t0]))(notice that only here we use the fact that f0 is di�use). By (b) the closedintervals whose endpoints belong to  (I) nT generate the Borel �-algebra ofsptf1, and this proves that  #f0 = f1.Let � be any nondecreasing function such that �#f0 = f1 and assume,possibly modifying � on a countable set, that � is right continuous. LetT := fs 2 sptf0 : (s; s0) \ sptf0 = ; for some s0 > s g :17



and notice that T is at most countable (since we can index with T a family ofpairwise disjoint open intervals). We claim that � �  on sptf0 n T ; indeed,for s 2 sptf0 n T and s0 > s we have the inequalitiesf1([m;�(s0)]) = f0(��1([m;�(s0)])) � f0([m; s0]) > f0([m; s])and, by the de�nition of  , the inequality follows letting s0 # s. In particularZI ��  df0 = ZI � df0 � ZI  df0 = ZI 1 df1 � ZI 1 df1 = 0whence � =  f0-a.e. in I. It follows that �(s) =  (s) at any continuitypoint s 2 sptf0 of � and  .(ii) By a continuity argument it su�ces to prove that  is the unique solutionof the transport problem for any p > 1 (see also [26, 15]). Let 
 be an optimalplanning and notice that the cyclical monotonicity proved in Theorem 2.2gives jx� y0jp + jx0 � yjp � jx� yjp + jx0 � y0jpwhenever (x; y); (x0; y0) 2 spt
. If x < x0, this condition implies that y � y0(this is a simple analytic calculation that we omit, and here the fact thatp > 1 plays a role). This means that the setT := fx 2 sptf0 : card(fy : (x; y) 2 spt
g) > 1gis at most countable (since we can index with T a family of pairwise disjointopen intervals) hence f0-negligible. Therefore for f0-a.e. x 2 I there existsa unique y = ~ (x) 2 I such that (x; y) 2 spt
 (the existence of at least oney follows by the fact that the projection of spt
 on the �rst factor is sptf0).Notice also that ~ is nondecreasing in its domain.Arguing as in Proposition 2.1 we obtain that
 = (Id� ~ )#f0:In particular f1 = �1#
 = �1# �(Id� ~ )#f0� = ~ #f0and since ~ is non decreasing it follows that ~ =  (up to countable sets) onsptf0. � 18



4 The ODE version of the optimal transportproblemIn this and in the next section we rephrase the optimal transport problem indi�erential terms. In the following we consider a �xed auxiliary open set 
containing X; we assume that 
 is su�ciently large, namely that the openr-neighbourhood of X is contained in 
, with r > diam(X) (the necessity ofthis condition will be discussed later on).The �rst idea, due to Brenier ([10, 9] and also [11]) is to look for all thepaths ft inM+(X) connecting f0 to f1. In the simplest case when ft = �x(t),it turns out that the velocity �eld Et = _x(t)�x(t) is related to ft by theequation _ft +r � Et = 0 in (0; 1)� 
 (17)in the distribution sense. Indeed, given ' 2 C1c (0; 1) and � 2 C1c (
), itsu�ces to take '(t)�(x) as test function in (17) and to use the de�nitions offt and Et to obtain( _ft +r � Et)('�) = �Z 10 _'(t)�(x(t)) + '(t)hr�(x(t)); _x(t)i dt= �Z 10 ddt ['(t)�(x(t))] dt = 0:More generally, regardless of any assumption on (ft; Et) 2 M+(X) �[M(
)]n, it is easy to check that (17) holds in the distribution sense if andonly if _ft(�) = r� �Et in (0,1) 8� 2 C1c (
) (18)in the distribution sense. We will use both interpretations in the following.One more interpretation of (17) is given in the following proposition.Recall that a map f de�ned in (0; 1) with values in a metric space (E; d) issaid to be absolutely continuous if for any " > 0 there exists � > 0 such thatXi (yi � xi) < � =) Xi d (f(yi); f(xi)) < "for any family of pairwise disjoint intervals (xi; yi) � (0; 1).19



Proposition 4.1 If some family (ft) �M1(X) ful�ls (17) for suitable mea-sures Et 2 [M(
)]n satisfying R 10 jEtj(
) dt < 1 then f is an absolutelycontinuous map between (0; 1) and M1(X), endowed with the 1-Wassersteindistance (4) andlimh!0 F1(ft+h; ft)jhj � jEtj(
) for L1-a.e. t 2 (0; 1). (19)Conversely, if ft is an absolutely continuous map we can choose Et so thatequality holds in (19).Proof. In (13) we can obviosuly restrict to test functions u such that juj �r = diam(X) on X; by our assumption on 
 any of these function can beextended to Rn in such a way that the Lipschitz constant is still less than 1and u � 0 in a neighbourhood of Rn n
. In particular, choosing an optimalu and setting u" = u � �" we getF1(fs; ft) = lim"!0+ ZX u" d(ft � fs) = lim"!0+ Z ts r � E� (u") d�= � lim"!0+ Z ts E� � ru" d� � Z ts jE� j(
) d� (20)whenever 0 � s � t � 1 and this easily leads to (19).In the proof of the converse implication we can assume with no loss ofgenerality (up to a reparameterization by arclength) that f is a Lipschitzmap. We can consider M1(X) as a subset of the dual Y = G�, whereG := �� 2 C1(Rn) \ Lip(Rn) : � � 0 on Rn n
	endowed with the norm k�k = Lip(�). By using convolutions and (13) itis easy to check that F1(�; �) = k� � �kY , so that M1(X) is isometricallyembedded in Y . Moreover, using Hahn{Banach theorem it is easy to checkthat any y 2 Y is representable as the divergence of a measure E 2 [M(
)]nwith kyk = jEj(
) (E is not unique, of course).By a general result proved in [5], valid also for more than one independentvariable, any Lipschitz map f from (0; 1) into the dual Y of a separableBanach space is weakly�-di�erentiable for L1-almost every t, i.e.9w� � limh!0 ft+h � fth =: _f(t)20



and ft � fs = R ts _f(� ) d� for s; t 2 (0; 1). In addition, the map is alsometrically di�erentiable for L1-almost every t, i.e.9 limh!0 kft+h � ftkjhj =: m _f(t)Although _f is only a w�-limit of the di�erence quotients, it turns out (see[5]) that the metric derivative m _f is L1-a.e. equal to k _fk.Putting together these informations the conclusion follows. �According to Brenier, we can formulate the optimal transport problem asfollows.(ODE) Let f0; f1 2 M1(X) be given probability measures. MinimizeJ(E) := Z 10 jEtj(
) dt (21)among all Borel maps ft : [0; 1] ! M+(X) and Et : [0; 1] ! [M(
)]n suchthat (17) holds.Example 4.1 In the case considered in Example 1.3 the measuresft = �[t;t+1]L1; Et = �[t;t+1]L1provide an admissible and optimal 
ow, obviously related to the optimaltransport map x 7! x + 1. But, quite surprisingly, we can also de�ne anoptimal 
ow by ft = 8><>: 11�2t�[2t;1]L1 if 0 � t < 1=2�1 if t = 1=212t�1�[1;2t]L1 if 1=2 < t � 1whose \velocity �eld" isEt = ( 2(1�x)(1�2t)2�[2t;1]L1 if 0 � t < 1=22(x�1)(2t�1)2�[1;2t]L1 if 1=2 < t � 1.It is easy to check that _ft = r � Et = 0 and that jEtj are probability mea-sures for any t 6= 1=2, hence J(E) = 1. The relation of this new 
ow withthe optimal transport map x 7! 2 � x will be seen in the following (seeRemark 4.1(3)). 21



In order to relate solutions of (ODE) to solutions of (MK) we will needan uniqueness theorem, under regularity assumptions in the space variable,for the ODE _ft+r � (gtft) = 0. If ft; gt are smooth (say C2) with respect toboth the space and time variables, uniqueness is a consequence of the classicalmethod of characteristics (see for instance x3.2 of [20]), which provides therepresentation ft(xt) = f0(x) exp��Z t0 cs(xs) ds�where ct = r � gt and xt solves the ODE_xt = gt(xt); x0 = x; t 2 (0; 1):See also [32] for more general uniqueness and representation results in a weaksetting.Theorem 4.1 Assume that_ft +r � (gtft) = 0 in (0; 1)� Rn (22)where R 10 jftj(Rn) dt < 1 and jgtj + Lip(gt) � C, with C independent of tand f0 = 0. Then ft = 0 for any t 2 (0; 1).Proof. Let g"t be obtained from gt by a molli�cation with respect to thespace and time variables and de�ne X"(s; t; x) as the solution of the ODE_x = g"s(x) (with s as independent variable) such that X"(s; s; x) = x. De�ne,for  2 C1c ((0; 1)� Rn) �xed,'"(t; x) := �Z 1t  (s;X"(s; t; x)) ds:Since X" (s; t;X"(t; 0; x)) = X"(s; 0; x) we have'" (t;X"(0; t; x)) = �Z 1t  (s;X"(s; 0; x)) dsand, di�erentiating both sides, we infer�@'"@t + g"t � r'"� (t;X"(t; 0; x)) =  (t;X"(t; 0; x))22



whence  = (@'"=@t+ g"t � r'") in (0; 1)� Rn.Insert now the test function '" in (22) and take into account that f0 = 0to obtain0 = Z 10 ZRn ft(@'"@t + gt � r'") dxdt = Z 10 ZRn ft + ft(gt � g"t ) � r'" dxdt:The proof is �nished letting "! 0+ and noticing that jg"t j+ jr'"j � C, withC independent of ". �In the following theorem we show that (MK) and (ODE) are basicallyequivalent. Here the assumption that 
 is large enough plays a role: indeed,if for instance X = [[x0; x1]], f0 = �x0 and f1 = �x1, the in�mum of (ODE) iseasily seen to be less thandist(x0; @
) + dist(x1; @
):Therefore, in the general case when f0; f1 are arbitrary measures in X, werequire that dist(@
; X) > diam(X).Theorem 4.2 ((MK) versus (ODE)) The problem (ODE) has at leastone solution and min (ODE) = min (MK). Moreover, for any optimal plan-ning 
 2 M1(X �X) for (MK) the measuresft := �t#
; Et := �t# ((y � x)
) t 2 [0; 1] (23)with �t(x; t) = x+ t(y � x) solve (ODE).Proof. Let (ft; Et) be de�ned by (23). For any � 2 C1(Rn) we computeddt ZX � dft = ddt ZX�X � (x+ t(y � x)) d
= ZX�X r� (x+ t(y � x)) � (y � x) d
= nXi=1 ZX ri� dEt;i = �r � Et(�)hence the ODE (17) is satis�ed. Then, we simply evaluate the energy J(E)in (21) byJ(E) = Z 10 j�t#((y � x)
)j(X) dt � Z 10 �t#(jy � xj
)(X) dt (24)= Z 10 ZX�X jx� yj d
dt = I(
):23



This shows that inf (ODE) � min (MK).In order to prove the opposite inequality we �rst use Proposition 4.1and then we present a di�erent strategy, which provides more geometricinformations.By Proposition 4.1 we haveF1(f0; f1) � Z 10 ddtF1(ft; f0) dt � Z 10 jEtj(
) dtfor any admissible 
ow (ft; Et). This proves that min (MK) � inf (ODE).For given (and admissible) (ft; Et), and assuming thatsptZ 10 jEtj dt �� 
we exhibit an optimal planning 
 with I(
) � J(E).To this aim we �x a cut-o� function � 2 C1c (
) with 0 � � � 1 and � � 1on X [ spt R 10 jEtj dt; then, we de�nef "t := ft � �" + "� and E"t := Et � �"where � is any convolution kernel with compact support and �"(x) ="�n�(x="). Notice that f "t are strictly positive on sptEt; moreover (17) stillholds, sptE"t � 
 for " small enough and L1-a.e. t and by (53) we haveZRn jE"t j(y) dy � jEtj(
) 8t 2 [0; 1]: (25)We de�ne g"t = E"t =f "t and denote by  "t (x) the semigroup in [0; 1] associatedto the ODE _ "t (x) = g"t ( "t (x)) ;  "0(x) = x: (26)Notice that this 
ow for " small enough maps 
 into itself and leaves Rn n
�xed. Now, we claim that f "t =  "t#(f "0Ln) for any t 2 [0; 1]. Indeed, sinceby de�nition _f "t +r � (g"t f "t ) = _f "t +r �E"t = 0by Theorem 4.1 and the linearity of the equation we need only to checkthat also �"t =  "t#(f "0Ln) satis�es the ODE _�"t + r � (g"�"t ) = 0. This is astraightforward computation based on (26).24



Using this representation, we can view  "1 as approximate solutions of theoptimal transport problem and de�ne
" := (Id�  "1)#(f "0Ln);i.e. Z '(x; y) d
"(x) = ZRn ' (x;  "1(x)) f "0(x) dxfor any bounded Borel function ' in Rn � Rn.In order to evaluate I(
"), we notice thatLength( "t (x)) = Z 10 jg"t j( "t (x)) dthence, by multiplying by f "0 and integrating we getZRnLength( "t (x))f "0(x) dx = Z 10 ZRn jg"t (y)jf "t (y) dydt (27)= Z 10 ZRn jE"t j(y) dydt � Z 10 jEtj(
) dt:As I(
") = ZRn j "1(x)� xjf "0(x) dx � ZRnLength( "t (x)) df0(x);this proves that I(
") � J(E). Passing to the limit as " # 0 and noticingthat �0#
" = f "0Ln; �1#
" = f "1Lnwe obtain, possibly passing to a subsequence, an admissible planning 
 2M1(Rn � Rn) for f0 and f1 such that I(
) � J(E). We can turn 
 ina planning supported in X � X simply replacing 
 by (� � �)#
, where� : Rn ! X is the orthogonal projection. �Remark 4.1 (1) Starting from (ft; Et), the (possibly multivalued) operationleading to 
 and then to the new 
ow~ft := �t#
; ~Et := �t# ((y � x)
)can be understood as a sort of \arclength reparameterization" of (ft; Et).However, since this operation is local in space (consider for instance the case25



of two line paths, one parameterized by arclength, one not), in general thereis no function '(t) such that( ~ft; ~Et) = (f'(t); E'(t)):(2) The solutions (ft; Et) in Example 4.1 are built as �t#
 and �t#((y�x)
)where 
 = (Id� )#f0 and  (x) = x+1,  (x) = 2�x. In particular, in thesecond example, f1=2 = �1 because 1 is the midpoint of any transport ray.(3) By making a regularization �rst in space and then in time of (ft; Et) onecan avoid the use of Theorem 4.1, using only the classical representation ofsolutions of (22) with characteristics. �Remark 4.2 (Optimality conditions) (1) If (ft; Et) is optimal, thenspt R 10 jEtj dt �� 
. Indeed, we can �nd 
0 �� 
 which still has the propertythat the open r-neighbourhood of X is contained in 
0, with r = diam(X),hence Z 10 jEtj(
) dt = min (MK) = Z 10 jEtj(
0) dt:(2) Since the two sides in the chain of inequalities (24) are equal when 
 isoptimal, we inferj�t#((y � x)
)j = �t#(jy � xj
) for L1-a.e. t 2 (0; 1): (28)Analogously, we have ����Z 10 Et dt���� = Z 10 jEtj dt (29)whenever (ft; Et) is optimal. If the strict inequality < holds, thenf̂t = f0 + t(f1 � f0) and Êt = Z 10 E� d�provide an admissible pair for (ODE) with strictly less energy. �Remark 4.3 (Nonlinear cost) When the cost function c(x; y) is jx � yjpfor some p > 1 the corresponding problem (MK) is still equivalent to (ODE),provided we minimize, instead of J , the energyJp(f;E) := Z 10 �p(ft; Et) dt26



where �p(�; �) = 8>><>>:ZX ����� ���p d� if j�j << �;+1 otherwise.The proof of the equivalence is quite similar to the one given in Theorem 4.2.Again the essential ingredient is the inequality�p(� � �"; � � �") � �p(�; �)The latter follows by Jensen's inequality and the convexity of the map(z; t) 7! jzjpt1�p in Rn � (0;1), which provide the pointwise estimate����� � �"� � �" ����p � � �" � ������ ���p �� � �":In this case, under the same assumptions on f0 made in Corollary 2.2, due tothe uniqueness of the optimal planning 
 = (Id�  #)f0, we obtain that, foroptimal (ft; Et), 
" = (Id� "1)#f "0 converge to 
 as "! 0+. As a byproduct,the maps  "1 converge to  as Young measures. If f0 << Ln it follows that h converge to  in [Lr(f0)]n for any r 2 [1;1) (see Lemma 9.1 and theremark following it).See x2.6 of [4] for a systematic analysis of the continuity and semicon-tinuity properties of the functional (�; �) 7! �p(�; �) with respect to weakconvergence of measures. �In the previous proof I don't know whether it is actually possible to showfull convergence of 
" as " ! 0+. However, using a more re�ned estimateand a geometric lemma (see Lemma 4.1 below) we will prove that any limitmeasure 
 satis�es the conditionZ 10 �t#(jy � xj
) dt = Z 10 jEtj dt: (30)We call transport density any of the measures in (30). This double repre-sentation will be relevant in Section 7, where under suitable assumptions wewill obtain the uniqueness of the transport density.Corollary 4.1 Let (ft; Et) be optimal for (ODE). Then there exists an op-timal planning 
 such that (30) holds. In particular spt R 10 jEtj dt � X.27



Proof. Let m = min (MK) = min (ODE) and recall that, by Remark 4.2(1),the measure R 10 jEtj dt has compact support in 
. It su�ces to build anoptimal planning 
 such thatZ 10 �t#((y � x)
) dt = Z 10 Et dt: (31)Indeed, by (29) we get Z 10 �t#(jy � xj
) � Z 10 jEtj dtand the two measures coincide, having both mass equal to m.Keeping the same notation used in the �nal part of the proof of Theo-rem 4.2, we de�ne 
"t as (Id �  "t )#f "0 and we computeI(
") = Z 10 ddtI(
"t ) dt = Z 10 ZBR  "t (x)� xj "t (x)� xj � _ "t (x)f "0(x) dxdt:Since I(
")! m as "! 0+ and since (by (25))Z 10 ZBR j _ "t (x)jf "0(x) dxdt = Z 10 ZBR jE"t j dxdt � Z 10 jEtj(
) dt = mwe infer lim"!0+ ZBR Z 10 ����� _ "t (x)j _ "t (x)j �  "t (x)� xj "t (x)� xj�����2 j _ "t (x)jf "0(x) dtdx = 0: (32)Now using Lemma 4.1 and the Young inequality 2ab � �a2 + b2=�, for any� 2 C1c (Rn) we obtain����Z 10 [�t#((y � x)
")� E"t ](�) dt����= ����ZX Z 10 [( "1(x)� x)�(t( "1(x)� x))� _ "t (x)�( "t (x))]f "0(x) dtdx����� RLip(�)� ZX Length( "t )f "0 (x) dx+ RLip(�)� ZX Z 10 ����� _ "t (x)j _ "t (x)j �  "t (x)� xj "t (x)� xj�����2 j _ "t (x)jf "0(x) dtdx:28



with R = diam(
). Passing to the limit �rst as " ! 0+, taking (32) intoaccount and then passing to the limit as � ! 0+ we obtainZ 10 �t#((y � x)
)(�) dt = Z 10 Et(�) dt:�Lemma 4.1 Let  2 Lip([0; 1];Rn) with  (0) = 0 and � 2 Lip(Rn). Then����Z 10  (1)�(t (1))� _ (t)�( (t)) dt���� � LRZ 10 ����� _ (t)j _ (t)j �  (t)j (t)j����� j _ (t)j dtwith L = Lip(�), R = sup j j.Proof. We start from the elementary identityddt [�(s (t)) i(t)] � dds�s�(s (t)) _ i(t)� (33)= s nXj=1 @�@xj (s (t))� i(t) _ j(t)�  j(t) _ i(t)�and integrate both sides in [0; 1]� [0; 1]. Then, the left side becomes exactlythe integral that we need to estimate from above. The right side, up to themultiplicative constant Lip(�), can be estimated withZ 10 j (t) ^ _ (t)j dt = Z 10 j (t)j ����� _ (t) ^ _ (t)j _ (t)j �  (t)j (t)j!����� dt� sup j jZ 10 ����� _ (t)j _ (t)j �  (t)j (t)j����� j _ (t)j dt:�Remark 4.4 The geometric meaning of the proof above is the following: theintegral to be estimated is the action on the 1-form �dxi of the closed andrecti�able current T associated to the closed path starting at 0, arriving at29



 (1) following the curve  (t), and then going back to 0 through the segment[[0;  (1)]]; for any 2-dimensional current G such that @G = T , asT (�dxi) = G(d� ^ dxi); (34)this action can be estimated by the mass of G times Lip(�). The coneconstruction provides a currentG with @G = T , whose mass can be estimatedby Z 10 Z 10 sj (t) ^ _ (t)j dsdt:With this choice of G the identity (34) corresponds to (33). �In order to relate also (ft; Et) to the Kantorovich potential, we de�ne thetransport rays and the transport set and we prove the di�erentiability of thepotential on the transport set.De�nition 4.1 (Transport rays and transport set) Let u 2 Lip1(X).We say that a segment ]]x; y[[� X is a transport ray if it is a maximal openoriented segment whose endpoints x; y satisfy the conditionu(x)� u(y) = jx� yj: (35)The transport set Tu is de�ned as the union of all transport rays. We alsode�ne T eu as the union of the closures of all transport rays.Denoting by F the compact collection of pairs (x; y) with x 6= y such that(35) holds, the transport set is also given byTu = [t2(0;1) [(x;y)2Ffx+ t(y � x)gand therefore is a Borel set (precisely a countable union of closed sets).We can now easily prove that the u is di�erentiable at any point in Tu.Proposition 4.2 (Di�erentiability of the potential) Let u 2 Lip1(X).Then u is di�erentiable at any point z 2 Tu. Moreover �ru(z) is the unitvector parallel to the transport ray containing z.Proof. Let x; y 2 X be such that (35) holds. By the triangle inequality andthe 1-Lipschitz continuity of u we getu(x)� u(x+ t(y � x)) = tjy � xj 8t 2 [0; 1]:30



This implies that, setting � = (y � x)=jy � xj, the partial derivative of ualong � is equal to �1 for any internal point z of the segment. For any unitvector � perpendicular to � we haveu(z + h�)� u(z) = u(z + h�)� u(z +pjhj�) + u(z +pjhj�)� u(z)� pjhj2 + jhj �pjhj = O(jhj3=2) = o(jhj):A similar argument also proves that u(z + h�) � u(z) � o(jhj). This provesthe di�erentiability of u at z and the identity ru(z) = ��. �In Section 6 we will need a mild Lipschitz property of the potential ruon T eu (see also [15, 42] for the case of general strictly convex norms). Wewill use this property to prove in Corollary 6.1 that T eu n Tu is Lebesguenegligible. This property can also be used to prove that ru is approximatelydi�erentiable Ln-a.e. on Tu (see for instance Theorem 3.1.9 of [24]).Theorem 4.3 (Countable Lipschitz property) Let u 2 Lip1(X). Thereexists a sequence of Borel sets Th covering Ln-almost all of T eu such that rurestricted to Th is a Lipschitz function.Proof. Given a direction � 2 Sn�1 and a 2 R, let R be the union of the halfclosed transport rays [[x; y[[ with hy � x; �i � 0 and hy; �i � a. It su�ces toprove that the restriction of ru toT := R \ fx : x � � < ag n�uhas the countable Lipschitz property stated in the theorem. To this aim,since BVloc funtions have this property (see for instance Theorem 5.34 of [4]or [24]), it su�ces to prove that ru coincides Ln-a.e. in T with a suitablefunction w 2 [BVloc(S)]n, where Sa = fx : x � � < ag. To this aim we de�ne~u(x) := minfu(y) + jx� yj : y 2 Yagwhere Ya is the collection of all right endpoints of transport rays with y�� � a.By construction ~u � u and equality holds on R � T .We claim that, for b < a, ~u � Cjxj2 is concave in Sb for C = C(b) largeenough. Indeed, since jx� yj � a� b > 0 for any y 2 Ya and any x 2 Sb, thefunctions u(y) + jx� yj � Cjxj2; y 2 Ya31



are all concave in H for C large enough depending on a � b. In particular,as gradients of real valued concave functions are BVloc (see for instance [2]),we obtain that w := r~u = r(u� Cjxj2) + 2Cxis a BVloc function in Sa. Since ru = w Ln-a.e. in T the proof is achieved.By a similar argument, using semi-convexity in place of semi-concavity,one can take into account the right extreme points of the transport rays. �As a byproduct of the equivalence between (MK) and (ODE) we canprove that (ODE) has \regular" solutions, related to the transport set andto the gradient of any maximal Kantorovich potential u.Theorem 4.4 (Regularity of (ft; Et)) For any solution (ft; Et) of (ODE)representable as in Theorem 4.2 for a suitable optimal planning 
 there existsa 1-Lipschitz function u such that(i) ft is concentrated on the transport set Tu and jEtj � Cft for L1-a.e.t 2 (0; 1), with C = diam(X);(ii) Et = �rujEtj for L1-a.e. t 2 (0; 1);(iii) for any convolution kernel � we havelim"!0+ Z 10 ZX jru�ru � �"j2 djEtj dt = 0; (36)(iv) jEtj(X) = R 10 jE� j(X) d� for L1-a.e. t 2 (0; 1).Proof. (i) Let u be any maximal Kantorovich potential and let T = Tu bethe associated transport set. For any t 2 (0; 1) we haveft(X n T ) = ZX�X �f(x;y): x+t(y�x)=2T g d
 = 0because, by (12), any segment ]]x; y[[ with (x; y) 2 spt
 is contained in atransport ray, hence contained in T . The inequality jEtj � Cft simplyfollows by the fact that jx� yj � C on spt
.32



(ii) Choosing t satisfying (28) and taking into account Proposition 4.2, forany � 2 C(X) we obtainZX �ru djEtj = ZX�X �(�t)ru(�t)jy � xj d
= �ZX�X �(�t)(y � x) d
 = �Et(�):(iii) Let m = J(E) = min (MK). By (13) we getm = ZX u d(f0 � f1) = lim"!0+ ZX u � �" d(f1 � f0)= lim"!0+ ZX Z 10 u � �" d _ft dt = lim"!0+ Z 10 ru � �" � Et dt� Z 10 jEtj(X) dt = m:This proves thatlim"!0+ Z 10 �jEtj(X)� ZXhru � �";rui djEtj� dt = 0whence, taking into account that jruj = 1 and jru � �"j � 1, (36) follows.(iv) The inequality jEtj(X) � I(
) = J(E) has been estabilished during theproof of Theorem 4.2. By minimality equality holds for L1-a.e. t 2 (0; 1). �Remark 4.5 (1) It is easy to produce examples of optimal 
ows (ft; Et)satisfying (i), (ii), (iii), (iv) which are not representable as in Theorem 4.2(again it su�ces to consider the sum of two paths, with constant sum ofvelocities). It is not clear which conditions must be added in order to obtainthis representation property.(2) Notice that condition (i) actually implies that f is a Lipschitz map from[0; 1] into M1(X) endowed with the 1-Wasserstein metric. �5 The PDE version of the optimal transportproblem and the p-laplacian approximationIn this section we see how, in the case when the cost function is linear, theoptimal transport problem can be rephrased using a PDE. As in the previous33



section we consider an auxiliary bounded open set 
 such that the open r-neighbourhood of X is contained in 
, with r > diam(X); we assume alsothat 
 has a Lipschitz boundary.Speci�cally, we are going to consider the following problem and its con-nections with (MK) and (ODE).(PDE) Let f 2M(X) be a measure with f(X) = 0. Find � 2M+(
) andu 2 Lip1(
) such that:(i) there exist smooth functions uh uniformly converging to u on X, equalto 0 on @
 and such that the functions ruh converge in [L2(�)]n to afunction r�u satisfyingjr�uj = 1 �-a.e. in 
; (37)(ii) the following PDE is satis�ed in the sense of distributions�r � (r�u�) = f in 
: (38)Given (�; u) admissible for (PDE), we call � the transport density (thereason for that soon will be clear) and r�u the tangential gradient of u.Remark 5.1 (1) Choosing uh as test function in (38) gives�(
) = Z
 jr� uj2 d� = limh!1Z
hr�u;ruhi d� (39)= limh!1 f(uh) = f(u);so that the total mass �(
) depends only on f and u and that � is concen-trated on X. We will prove in Theorem 5.1 that actually �(
) depends onlyon f .(2) It is easy to prove that, given (�; u), there is at most one tangentialgradient r�u: indeed if ruh ! r�u and r~uh ! ~r�u we haveZ
r�u � ~r�u d� = limh!1Z
r�u � r~uh d� = limh!1 f(~uh) = f(u) = �(
)34



whence r�u = ~r�u �-a.e. On the other hand, Example 5.1 below showsthat to some u there could correspond more than one measures � solving(PDE). We will obtain uniqueness in Section 7 under absolute continuityassumptions on f+ or f�. �We will need the following lemma, in which the assumption that 
 is\large enough" plays a role.Lemma 5.1 If (�; u) solves (PDE) then spt� �� 
.Proof. Let 
0 �� 
00 �� 
 be such that jx � yj > r = diam(X) for anyx 2 X and any y 2 Rnn
0. We choose a minimum point x0 for the restrictionof u to X and de�new(x) := min�[u(x)� u(x0)]+;dist(x;Rn n
0)	 :Then, it is easy to check that w(x) = u(x)� u(x0) on X and that w � 0 onRn n
0. Since�(
) = f(u) = f(u� u(x0)) = lim�!0+ f(w � �")= lim�!0+ Z
r�u � rw � �" dx � �(
00)we conclude that �(
 n
00) = 0. �In the following theorem we build a solution of (PDE) choosing � as atransport density of (MK) with f0 = f+ and f1 = f�. As a byproduct, byCorollary 4.1 we obtain that the support of � is contained in X and that �is representable as the right side in (30).Theorem 5.1 ((ODE) versus (PDE)) Assume that (ft; Et) withspt R 10 jEtj dt �� 
 solves (ODE) and let u be a maximal Kantorovichpotential relative to f0; f1. Then, setting f = f0 � f1, the pair (�; u) with� = R 10 jEtj dt solves (PDE) with r�u = ru and, in particular, spt� � X.Conversely, if (�; u) solves (PDE), setting f0 = f+ and f1 = f�, themeasures (ft; Et) de�ned byft := f0 + t(f1 � f0); Et := �r�u�solve (ODE) and spt� � X. In particular�(X) = min (ODE) = min (MK):35



Proof. By Corollary 4.1 we can assume that � is representable as in (30) fora suitable optimal planning 
. Then, condition (i) in (PDE) with r�u = rufollows by (36). By (17) and condition (ii) of Theorem 4.4 we getr � (r�ujFtj) = r � (rujFtj) = _ftwith Ft = �t#((y � x)
). Integrating in time and taking into account thede�nition of �, we obtain (38). Notice also that �(X) = J(E).If (ft; Et) are de�ned as above, we get_ft +r �Et = f1 � f0 �r � (r�u�) = f1 � f0 + f = 0:Also in this case J(E) = �(X). �Example 5.1 (Non uniqueness of �) In general, given f , the measurewhich solves (PDE) for a given u 2 Lip1(X) is not unique. As an exampleone can consider the situation in Example 1.5, where � can be concentratedeither on the horizontal sides of the square or on the vertical sides of thesquare.As shown in [22], an alternative construction can be obtained by solvingthe problem \��1u = f", i.e. studying the following problems(�r � (jrupjp�2rup) = f in 
up = 0 on @
 (40)as p ! 1. In this case � is the limit, up to subsequences, of jrupjp�1Ln.Under suitable regularity assumptions, Evans and Gangbo prove that � =aLn for some a 2 L1(
) and use (a; u) to build an optimal transport  ; theirconstruction is based on a careful regularization corresponding to the oneused in Theorem 4.2 in the special case Et = aLn and ft = f0 + t(f1 � f0).However, since the goal in Theorem 4.2 is to build only an optimal planning,and not an optimal transport, our proof is much simpler and works in a muchgreater generality (i.e. no special assumption on f).Now we also prove that the limiting procedure of Evans and Gangbo leadsto solutions of (PDE), regardless of any assumption on the data f0; f1.Theorem 5.2 Let up be solutions of (40) with p � n + 1. Then(i) the measures Hp = jrupjp�2rupLn 
 are equi-bounded in 
;36



(ii) (up) are equibounded and equicontinuous in 
;(iii) If (H;u) = limj(Hpj ; upj ) with pj !1, then (�; u) solves (PDE) with� = jHj.Proof. (i) Using up as test function and the Sobolev embedding theorem weget Z
 jrupjp dx = f(up) � jf j(X)kupk1 � C �Z
 jrup0jp0 dx�1=p0with p0 = n+ 1. Using H�older inequality we inferZ
 jrupjp dx � C pp�1Ln(
) p�p0p0(p�1) :(ii) Follows by (i) and the Sobolev embedding theorem.(iii) Clearly �r �H = f in 
. By (i) and H�older inequality we infersupq�n+1Z
 jrujq dx <1whence jruj � 1 Ln-a.e. in 
.We notice �rst that the functional� 7! Z
 ���� �j�j � w����2 � dj�jis lower semicontinuous with respect to the weak convergence of measuresfor any nonnegative � 2 Cc(
), w 2 [C(
)]n. The veri�cation of this fact isstraightforward: it su�ces to expand the squares. Second, we notice thatlim�!0+ lim supp!1 Z
 ���� HpjHpj � ru"����2 djHpj = 0whenever u" 2 Lip1(Rn) are smooth functions uniformly converging to u inX and equal to 0 on @
. Indeed, as jru"j � 1, we haveZ
 ���� HpjHpj � ru"����2 djHpj � 2Z
 jrupjp�1�1� ru" � rupjrupj � dx� 2Z
 jrupjp�2(jrupj2 �ru" � rup) dx+ !p= 2f(up)� 2f(u") + !p37



where !p = supt�0 tp�1 � tp tends to 0 as p!1.Taking into account these two remarks, setting p = pj and passing to thelimit as j !1 we obtainlim�!0+ Z
 ���� HjHj � ru"����2 � djHj = 0:for any nonnegative � 2 Cc(
). This implies that ru" converge in L2loc(jHj)to the Radon{Nikod�ym derivative H=jHj. Since jru"j � 1 we have alsoconvergence in [L2(jHj)]n.We now set � = jHj and r�u = lim�ru�, so that H = r�u� and (38) issatis�ed. �6 Existence of optimal transport mapsIn this section we prove the existence of optimal transport maps in the casewhen c(x; y) = jx � yj and f0 is absolutely continuous with respect to Ln,following essentially the original Sudakov approach and �lling a gap in itsoriginal proof (see the comments after Theorem 6.1). Using a maximal Kan-torovich potential we decompose almost all of X in transport rays and webuild an optimal transport maps by gluing the 1-dimensional transport mapsobtained in each ray. The assumption f0 << Ln is used to prove that theconditional measures f0C within any transport ray C are non atomic (andeven absolutely continuous with respect to H1 C), so that Theorem 3.1 isapplicable. Therefore the proof depends on the following two results whoseproof is based on the countable Lipschitz property of ru stated in Theo-rem 4.3.Theorem 6.1 Let B 2 B(X) and let � : B ! Sc(X) be a Borel map satis-fying the conditions(i) �(x) \ �(x0) = ; whenever �(x) 6= �(x0);(ii) x 2 �(x) for any x 2 B;(iii) the direction �(x) of �(x) is a Sn�1-valued countably Lipschitz map onB. 38



Then, for any measure � 2 M+(X) absolutely continuous with respect toLn B, setting � = �#� 2 M+(Sc(X)), the measures �C of Theorem 9.1 areabsolutely continuous with respect to H1 C for �-a.e. C 2 Sc(X).Proof. Being the property stated stable under countable disjoint unions wemay assume that(a) there exists a unit vector � such that �(x) � � � 12 for any x 2 B;(b) �(x) is a Lipschitz map on B;(c) B is contained in a stripfx : a� b � x � � � agwith b > 0 su�ciently small (depending only on the Lipschitz constantof �) and �(x) intersects the hyperplane fx : x � � = ag.Assuming with no loss of generality � = en and a = 0, we write x = (y; z)with y 2 Rn�1 and z < 0. Under assumption (a), the map T : �(B)! Rn�1which associates to any segment �(x) the vector y 2 Rn�1 such that (y; 0) 2�(x) is well de�ned. Moreover, by condition (i), T is one to one. Hence,setting f = T � � : B ! Rn�1,� = T#� = f#�; C(y) = T�1(y) � f�1(y)and representing � = �y 
 � with �y = �C(y) 2M1(f�1(y)), we need only toprove that �y << H1 C(y) for �-a.e. y.To this aim we examine the Jacobian, in the y variables, of the mapf(y; t). Writing � = (�y; �t), we havef(y; t) = y + � (y; t)�y(y; t) with � (y; t) = � t�t(y; t) :Since �t � 1=2 and � � 2b on B we havedet (ryf(y; t)) = det�Id+ �ry�y + t�2t ry�t 
 �y� > 0if b is small enough, depending only on Lip(�).39



Therefore, the coarea factorCf :=sXA det2A(where the sum runs on all (n� 1)� (n� 1) minors A of rf) of f is strictlypositive on B and, writing � = gLn with g = 0 out of B, Federer's coareaformula (see for instance [4], [37]) gives� = gCfCfLn = gCf H1 f�1(y)
 Ln�1 = �0y 
 � 0with B = fy 2 Rn�1 : H1(f�1(y)) > 0g and�0y := gCf H1 f�1(y)Rf�1(y) g=Cf dH1 ; � 0 = �Zf�1(y) gCf dH1�Ln�1 B:By Theorem 9.2 we obtain � = � 0 and �y = �0y for �-a.e. y, and this concludesthe proof. �Remark 6.1 (1) In [41] V.N.Sudakov stated the theorem above (see Propo-sition 78 therein) for maps � : B ! So(X) without the countable Lipschitzassumption (iii) and also in a greater generality, i.e. for a generic \Boreldecomposition" of the space in open a�ne regions, even of di�erent dimen-sions. However, it turns out that the assumption (iii) is essential even if werestrict to 1-dimensional decompositions. Indeed, G.Alberti, B.Kirchheimand D.Preiss [3] have recently found an example of a compact family of openand pairwise disjoint segments in R3 such that the collection B of the mid-points of the segments has strictly positive Lebesgue measure. In this case,of course, if � = Ln B the conditional measures �C are unit Dirac massesconcentrated at the midpoint of C, so that the conclusion of Theorem 6.1fails.If n = 2 it is not hard to prove that actually condition (iii) follows by (ii),so that the counterexample mentioned above is optimal.(2) Since any open segment can be approximated from inside by closed seg-ments, by a simple approximation argument one can prove that Theorem 6.1still holds as well for maps � : B ! So(X) or for maps with values into halfopen [[x; y[[ segments. 40



Also the assumption (i) that the segments do not intersect can be relaxed.For instance we can assume that the segments can intersect only at theirextreme points, provided the collection of these extreme points is Lebesguenegligible. This is precisely the content of the next corollary. �Corollary 6.1 (Negligible extreme points) Let u 2 Lip1(X). Then thecollection of the extreme points of the transport rays is Lebesgue negligible.Proof. We prove that the collection L of all left extreme points is negligible,the proof for the right ones being similar. Let B = L n �u and set�(x) := [[x; x� r(x)2 ru(x)]]where r(x) is the length of the transport ray emanating from x (this ray isunique due to the di�erentiability of u at x). By Theorem 4.3 the map � hasthe countable Lipschitz property on B and, by construction, �(x)\�(x0) = ;whenever x 6= x0. By Theorem 6.1 we obtain� = ZSc(X) �C d�with � = Ln B, � = �#� and �C << H1 C probability measures concen-trated on ��1(C) for �-a.e. C. Since ��1(C) contains only one point for anyC 2 �(B) we obtain �C = 0 for �-a.e. C, whence �(B) = �(Sc(X)) = 0. �Theorem 6.2 (Sudakov) Let f0; f1 2 M1(X) and assume that f0 << Ln.Then there exists an optimal transport  mapping f0 to f1. Moreover, iff1 << Ln we can choose  so that  �1 is well de�ned f1-a.e. and  �1# f1 = f0.Proof. Let 
 be an optimal planning. In the �rst two steps we assume thatfor f0-a.e. x there exists y 6= x such that (x; y) 2 spt
. (41)This condition holds for instance if f0 ^ f1 = 0 because in this case anyoptimal planning 
 does not charge the diagonal � of X �X, i.e. 
(�) = 0(otherwise h = �0#(��
) = �1#(��
) would be a nonzero measure less thanf0 and f1). 41



Let u 2 Lip1(X) be a maximal Kantorovich potential given by Corol-lary 2.1, i.e. a function satisfyingu(x)� u(y) = jx� yj 
-a.e. in X �X (42)for any optimal planning 
 and let Tu be the transport set relative to u (seeDe�nition 4.1). In the following we seteX = fx 2 X n�u : 9y 6= x s.t. (x; y) 2 spt
g :By (41) and the absolute continuity assumption we know that f0 is concen-trated on eX. Notice also that for any x 2 eX there exists a unique closedtransport ray containing x: this follows by the fact that any x 2 eX is adi�erentiability point of u and by Proposition 4.2.Step 1. We de�ne r : X �X ! Sc(X) as the map which associates to anypair (x; y) the closed transport ray containing [[x; y]]. By (42) the map r iswell de�ned 
-a.e. out of the diagonal �; moreover, being f0 concentratedon eX, r is also well de�ned 
-a.e. on �. Hence, according to Theorem 9.1we can represent 
 = 
C 
 � with � := r#
and (42) gives u(x)� u(y) = jx� yj 
C-a.e. in X �X (43)for �-a.e. C 2 Sc(X). By the su�ciency part in Corollary 2.1 we infer that
C is an optimal planning relative to the probability measuresf0C := �0#
C ; f1C := �1#
Cfor �-a.e. C 2 Sc(X). By (56) we infer�t#
(B) = ZSc(X) �t#
C(B) d�(C) 8t 2 [0; 1]; B 2 B(X): (44)Notice also that F1(f0; f1) = ZSc(X)F1(f0C; f1C) d�(C): (45)42



Indeed,I(
) = ZX�X jx�yj d
 = ZSc(X) ZX�X jx�yj d
C d�(C) = ZSc(X) I(
C) d�(C)and we know by (43) that 
C is optimal for �-a.e. C 2 Sc(X).Step 2. We denote by � : eX ! Sc(X) the natural map, so that �(x) is theclosed transport ray containing x. Since r = � � �0 on eX �X we obtain� = r#
 = �#(�0#
) = �#f0:Moreover (44) givesf0(B) = ZSc(X) f0C(B) d�(C) 8B 2 B(X): (46)Notice that the segments �(x), x 2 eX, can intersect only at their rightextreme point and that, by Corollary 6.1, the collection of these extremepoints is Lebesgue negligible. As a consequence of (46) with � = �#f0 andRemark 6.1(2), the measures f0C are absolutely continuous with respect toH1 C for �-a.e. C 2 Sc(X). Hence, by Theorem 3.1, for �-a.e. C 2 Sc(X)we can �nd a nondecreasing map  C : C ! C (this notion makes sense, sinceC is oriented) such that  C#f0C = f1C . Notice also that  �1 is well de�nedf1C-a.e., if also f1C << H1 C.Taking into account that the closed transport rays in �( eX) are pairwisedisjoint in eX, we can glue all the maps  C to produce a single Borel map : eX ! X. The map  is Borel because we have been able to exhibitthe one dimensional transport map constructively and because of the Borelproperty of the maps C 7! fiC (see (15) and (54)); the simple but boringdetails are left to the reader.Since  #f0C =  C#f0C = f1C for �-a.e. C 2 Sc(X), taking (44) intoaccount we infer #f0 = ZSc(X)  #f0C d�(C) = ZSc(X) f1C d�(C) = f1:Finally  is an optimal transport because (45) holds and any  C is an optimaltransport.Step 3. In this step we show how the assumption (41) can be removed. Wede�ne X 0 := fx 2 X : (x; x) 2 spt
 and (x; y) =2 spt
 8y 6= xg43



and L = f(x; x) : x 2 X 0g. Then, we set f 00 = f0 X 0 and f 000 = f0 X 00,with X 00 = X nX 0, andf 01 := �1#(
 L); f 001 := f1 � f 01:Since L � �, we have f 01 = �0#(
 L) = f 00, hence we can choose on X 0the map  1 = Id as transport map to obtain ( 1)#f 00 = f 01. Since f 000 isconcentrated on X 00 the condition (41) is satis�ed with f 000 in place of f0 andwe can �nd an optimal transport map  2 : X 00 ! X such that ( 2)#f 000 = f 001 .Gluing these two transport maps we obtain a transport map  such that #f0 = f1; since, by construction,u(x)� u( (x)) = jx�  (x)j f0-a.e. in Xwe infer that  is optimal. �This proof strongly depends on the strict convexity of the euclidean dis-tance, which provides the �rst and second order di�erentiability properties ofthe potential u on the transport set Tu. Notice also that if c(x; y) = kx� ykand the norm k � k is not strictly convex, then the \transport rays" neednot be one-dimensional and, to our knowledge, the existence of an optimaltransport map is an open problem in this situation. Indeed, this existenceresult is stated by Sudakov in [41] but his proof is faulty, for the reasonsoutlined in Remark 6.1(1).Under special assumptions on the data f0; f1 (absolute continuity, sep-arated supports, Lipschitz densities) Evans and Gangbo provided in [22] aproof based on di�erential methods of the existence of optimal transportmaps. For stricly convex norms, the �rst fully rigorous proofs of the exis-tence of an optimal transport map under the only assumption that f0 << Lnhave been given in [15] and [42]. As in Theorem 6.2 the proof is stronglybased on the di�erentiability of the directions of transport rays.7 Regularity and uniqueness of the transportdensityIn this section we investigate the regularity and the uniqueness propertiesof the transport density � arising in (PDE). Recall that, as Theorem 5.1shows, any such measure � can also be represented as R 10 jEtj dt for a suitable44



optimal pair (ft; Et) for (ODE) (even with Et independent of t). In turn, byCorollary 4.1, any optimal measure � = R 10 jEtj dt can be represented as� = Z 10 �t#(jy � xj
) dt (47)for a suitable optimal planning 
. For this reason, in the following we restrictour attention to the representation (47), valid for any optimal measure � for(PDE).A more manageable formula for �, �rst considered by G.Bouchitt�e andG.Buttazzo in [14], is given in the following elementary lemma.Lemma 7.1 Let � be as in (47). Then�(B) = ZX�X Length (]]x; y[[\B) d
(x; y) 8B 2 B(X): (48)Proof. For any Borel set B we have�(B) = Z 10 Z��1t (B) jy � xj d
(x; y) dt = ZX�X jy � xjZ 10 ���1t (B) dt d
(x; y)= ZX�X Length (]]x; y[[\B) d
(x; y):� A direct consequence of (48) is that � is concentrated on the transportset (since 
-a.e. segment ]]x; y[[ is contained in a transport ray); anotherconsequence is the density estimate�(Br(x))2r � f0(X)f1(X) (49)because Length(]]x; y[[\Br(x)) � 2r for any ball Br(x) and any segment ]]x; y[[.The �rst results on � that we state, proved by A.Pratelli in [33] (see also[19]), relate the dimensions of f0 and f1 to the dimension of � and show thatnecessarily � is absolutely continuous with respect to the Lebesgue measureif f0 (or, by symmetry, f1) has this property.45



Theorem 7.1 Assume that for some k > 0 we havesupr2(0;1) f0(Br(x))rk <1 f0-a.e. in X.Then � has the same property. In particular � << Ln if f0 << Ln.The proof of Theorem 7.1 is based on (48); the density estimate on � isachieved by a careful analysis of the transport rays crossing a generic ballBr(x). A similar analysis proved the following summability estimate (see[19]).Theorem 7.2 Assume that f0 = g0Ln and f1 = g1Ln with g0; g1 2 Lp(X),p > 1. Then � = hLn with h 2 L1(X) if p = 1, h 2  Lq(X) for any q < pif p <1.It is not known whether g0; g1 2 Lp implies h 2 Lp for p <1.De�nition 7.1 (Hausdor� dimension of a measure) Let � 2 M+(X).The Hausdor� dimension H-dim(�) is the supremum of all k � 0 such that� << Hk.In other words �(B) = 0 whenever Hk(B) = 0 for some k < H-dim(�)and for any k > H-dim(�) there exists a Borel set B with �(B) > 0 andHk(B) = 0. Notice that if � is made of pieces of di�erent dimensions, thenH-dim(�) is the smallest of these dimensions.Using the density estimates and the implications (see for instance Theo-rem 2.56 of [4] or [37]; here t > 0 and k > 0)lim supr!0+ �(Br(x))!krk � t 8x 2 B =) �(B) � tHk(B) (50)lim supr!0+ �(Br(x))!krk � t 8x 2 B =) �(B) � 2ktHk(B) (51)we can prove a natural lower bound on the Hausdor� dimension of �.Corollary 7.1 Let � be a transport density. ThenH-dim(�) � maxf1;H-dim(f0);H-dim(f1)g :46



Proof. By (49) we infer that � has �nite (and even bounded) 1-dimensionaldensity at any point. In particular (51) gives �(B) = 0 whenever H1(B) = 0,so that H-dim(�) � 1.Let k = H-dim(f0) and k0 < k; then f0 has �nite k0-dimensional densityf0-a.e., otherwise by (50) the set where the density is not �nite would beHk0-negligible and with strictly positive f0-measure. By Theorem 7.1 weinfer that � has �nite k0-dimensional density �-a.e. By the same argumentused before with k0 = 1 we obtain that H-dim(�) � k0 and therefore, sincek0 < k is arbitrary, H-dim(�) � k. A symmetric argument proves thatH-dim(�) � H-dim(f1). �We conclude this section proving the uniqueness of the transport density,under the assumption that either f0 << Ln or f1 << Ln (see Example 5.1for a nonuniqueness example if neither f0 nor f1 are absolutely continuous).Similar results have been �rst announced by Feldman and McCann (see [25]).We �rst deal with the one dimensional case, where this absolute continuityassumption is not needed.Lemma 7.2 Let � be a transport density in X � R and assume that theinterior (a; b) of X is a transport ray. Then � = hL1 in (a; b) withh(t) = �f ((a; t)) + c L1-a.e. in (a; b)for some constant c, where f = f1� f0 and � = 1 if u0 = 1 in (a; b), � = �1if u0 = �1 in (a; b). Moreoverc = F1(f0; f1)� � R(a;b)(b� t) df(t)b� a :Proof. The proof of the �rst statement is based on the equation �0 = �fand on a smoothing argument. By integrating both sides we getc(b� a) = �(X)� � Z ba f ((a; t)) dt = �(X)� � Z ba Z(a;t) 1 df(� ) dt= �(X)� � Z(a;b) Z b� 1 dt df(� ) = �(X)� � Z(a;b)(b� � ) df(� ):The conclusion is achieved taking into account that �(X) = min (MK) =F1(f0; f1). � 47



Theorem 7.3 (Uniqueness) Assume that either f0 or f1 are absolutelycontinuous with respect to Ln. Then the transport density is absolutely con-tinuous and unique.Proof. We already know from Theorem 7.1 that any transport density isabsolutely continuous and we can assume that f0 << Ln. By Corollary 4.1we know that the class of transport densities relative to (f0; f1) is equal to theclass of transport densities relative to (f0�h; f1�h) where h is any measurein M+(X) such that h � f0 ^ f1 (indeed, this subtraction does not changethe velocity �eld Et). Hence, it is not restrictive to assume that f0 ^ f1 = 0.We can assume that � is representable as in (30) for a suitable optimalplanning 
. Adopting the same notation of the proof of Theorem 6.1, wehave 
 = 
C 
 �where � = �#f0 does not depend on 
 (and here the absolute continuityassumption on f0 plays a crucial role) and 
C is an optimal planning relativeto the measures f0C = �0#
C , f1C = �1#
C for �-a.e. C. In particular� = Z 10 �t# (jy � xj
C 
 �) dt = Z 10 �t#(jy � xj
C) dt
 �:Hence, it su�ces to show that the measures�C := Z 10 �t#(jy � xj
C) dtdo not depend on 
 (up to �-negligible sets of course). To this aim, takinginto account Lemma 7.2, it su�ces to show that f0C and f1C do not dependon 
.Indeed, we already know from (46) and Theorem 9.2 that f0C do notdepend on 
.The argument for f1C is more involved. First, since 
(�) = 0 (due to theassumption f0^ f1 = 0), we have jx� yj > 0 
-a.e., and therefore jx� yj > 0
C-a.e. for �-a.e. C 2 Sc(X). As a consequence, setting C = [[xC ; yC ]], weobtain that f1C(xC) = 0 for �-a.e. C. Second, we examine the restrictionf 01C of f1C to the relative interior of C noticing that (44) givesf1 Tu = ZSc(X) f1C Tu d�(C) = ZSc(X) f 01C d�(C)48



because Tu\C is the relative interior of C for any C 2 �( ~X). By Theorem 9.2we obtain that f 01C depend only on f1, Tu and �.In conclusion, since f1C = f 01C + (1� f 01C(X)) �yCwe obtain that f1C do not depend on 
 as well. �8 The Bouchitt�e{Buttazzo mass optimiza-tion problemIn [13, 14] Bouchitt�e and Buttazzo consider the following problem. Givenf 2M(X) with f(X) = 0, they de�neE(�) := inf �ZX 12 jrvj2 d�� f(v) : v 2 C1(X)�for any � 2 M+(X). Then, they raised the following mass optimizationproblem.(BB) Given m > 0, maximize E(�) among all measures � 2 M+(X) with�(X) = m.A possible physical interpretation of this problem is the following: we mayimagine that � represents the conductivity of some material, thinking thatthe conductivity (i.e. the inverse resistivity) is zero out of spt�; accordinglywe may imagine that f = f+ � f� is a balanced density of positive andnegative charges. Then �E(�) represents the heating corresponding to thegiven conductivity, so that there is an obvious interest in maximizing E(�)and, for a minimizer u, the (formal) �rst variation of the energy�r � (ru�) = f+ � f�corresponds to Ohm's law.More generally, problems of this sort appear in Shape Optimization andLinear Elasticity. In these cases u is no longer real valued and general energies49



of the form F(u) = ZX f (x;ru(x)) d�(x) (52)must be considered in order to take into account light structures, correspond-ing to mass distributions not absolutely continuous with respect to Ln. Thiswas the main motivation for Bouchitt�e, Buttazzo and Seppecher [12] in theirdevelopment of a general di�erential calculus with measures. This calculus,based on a suitable concept of tangent space to a measure, enables the studyof the relaxation of functionals (52) and provides an explicit formula for theirlower semicontinuous envelope.Coming back to the scalar problem (BB), a remarkable fact discoveredin [13, 14] is its connection with the Monge{Kantorovich optimal transportproblem, in the case when c(x; y) = jx�yj. It turns out that the solutions of(BB) are in one to one correspondence with constant multiples of transportdensities for (PDE) (or, equivalently, for (MK) with f0 = f+ and f1 = f�).As a byproduct we have that � << Ln if either f0 or f1 are absolutelycontinuous with respect to Ln and � is unique if both f0 and f1 are absolutelycontinuous with respect to Ln.Theorem 8.1 ((PDE) versus (BB)) Let (�; u) be a solution of (PDE)and set ~m = �(X). Then ~� = m~m� solves (BB) and any solution of (BB) isrepresentable in this way. Moreovermax(BB) = �12 ~m2m :Proof. Setting v = �uh (with uh as in the de�nition of (PDE)), for any� 2M+(X) with �(X) = m we estimateE(�) � m2 �2 � �f(uh)so that, letting h!1 and taking into account (39), we obtainE(�) � m2 �2 � ~m�:By minimizing with respect to � we obtain E(�) � � ~m2=(2m).50



On the other hand, using Young inequality and choosing � so that � ~m =m we can estimateZX 12 jrvj2 d~�� f(v) � ZXhrv; �r�ui d~�� �2m2 � f(v)= �r � (r�u�)(v)� f(v)� 12 ~m2m= �12 ~m2mfor any v 2 C1(X). This proves that ~� is optimal for (BB).Conversely, it has been proved in [13, 14] that for any solution � of (BB)there exists v 2 Lip(X) such that jr�vj = m= ~m �-a.e. and�r � (r�v�) = f;where r�v is understood in the Bouchitt�e{Buttazzo sense. But since (see[14] again)ZX jr�vj2 d� = inf �lim infh!1 ZX jrvhj2 d� : vh ! v uniformly; vh 2 C1(X)�we obtain a sequence of smooth functions vh uniformly converging to v suchthat rvh ! r�v in [L2(�)]n. Setting u = ~mmv and � = m~m�, this proves that(�; u) solves (PDE). �9 Appendix: some measure theoretic resultsIn this section we list all the measure theoretic results used in the previoussection; reference books for the content of this section are [36], [18] and [4].Let us begin with some terminology.� (Measures) Let X be a locally compact and separable metric space. Wedenote by [M(X)]m the space of Radon measures with values in Rm andwith �nite total variation in X. We recall that the total variation measureof � = (�1; : : : ; �m) 2 [M(X)]m is de�ned byj�j(B) := sup( 1Xi=1 j�(Bi)j : B = 1Gi=1Bi; Bi 2 B(X))51



and belongs toM+(X). By Riesz theorem the space [M(X)]m endowed withthe norm k�k = j�j(X) is isometric to the dual of [C(X)]m. The duality isgiven by the integral, i.e. h�; ui := mXi=1 ZX ui d�i:Recall also that, for � 2 M+(X) and f 2 [L1(X;�)]m, the measure f� 2[M(X)]m is de�ned byf�(B) := ZB f d� 8B 2 B(X)and jf�j = jf j�.� (Push forward of measures) Let � 2 [M(X)]m, let Y be another metricspace and let f : X ! Y be a Borel map. Then the push forward measuref#� 2 [M(Y )]m is de�ned byf#�(B) := � �f�1(B)� 8B 2 B(Y )and satis�es the more general propertyZY u df#� = ZX u � f d� for any bounded Borel function u : Y ! R.It is easy to check that jf#�j � f#j�j.� (Support) We say that � 2 [M(X)]m is concentrated on a Borel set Bif j�j(X n B) = 0 and we denote by spt� the smallest closed set on which� is concentrated (the existence of a smallest set follows by the separabilityof X, precisely by the Lindel�of property). The support is also given by theformula (sometimes taken as the de�nition)spt� = fx 2 X : j�j(B%(x)) > 0 8% > 0g :� (Convolution) If X � Rn, � 2 [M(X)]m and � 2 C1c (Rn) (for instancea convolution kernel); we de�ne� � �(x) := ZX �(x� y) d�(y) x 2 Rn:52



Notice that � � � 2 [C1(Rn)]m because D�(� � �) = (D��) � � for anymultiindex � and sup jD�(� � �)j � sup jD��jk�k:Moreover, using Jensen's inequality it is easy to check (see for instance The-orem 2.2(ii) of [4]) thatZC j� � �j dx � j�j(C�) where C� := fx : dist(x;C) � diam(spt�)g (53)for any closed set C � Rn.� (Weak convergence) Assume that X is a compact metric space. We saythat a family of measures (�h) �M(X) weakly converges to � 2M(X) iflimh!1ZX u d�h = ZX u d� 8u 2 C(X)i.e., if �h weakly� converge to � as elements of the dual of C(X). In thecase X is locally compact and separable, the concept is analogous, simplyreplacing C(X) the the subspace Cc(X) of functions with compact support.It is easy to check that � � �"Ln weakly converge to � in Rn whenever � is aconvolution kernel.We mention also the following criterion for the weak convergence of pos-itive measures (see for instance Proposition 1.80 of [4]): if �h; � 2 M+(X)satisfy lim infh!1 �h(A) � �(A) 8A � X openand lim suph!1 �h(X) � �(X)then RX � d�h ! RX � d� for any bounded continuous function � : X ! R.� (Measure valued maps) Let X; Y be locally compact and separablemetric spaces. Let y 7! �y be a map which assigns to any y 2 Y a measure�y 2 [M(X)]m. We say that �y is a Borel map if y 7! �y(A) is a real valuedBorel map for any open set A � X. By a monotone class argument it canbe proved that y 7! �y is a Borel map if and only ify 7! �y (fx : (y; x) 2 Bg) is a Borel map for any B 2 B(Y �X): (54)Moreover y 7! j�yj is a Borel map whenever y 7! �y is Borel (detailedproofs are in x2.5 of [4]). If � 2 M+(Y ), analogous statements hold for53



B(Y )�-measurable measure valued maps, where B(Y )� is the �-algebra of �-measurable sets (in this case one has to replace B(Y �X) by B(Y )�
B(X)in (54)).� (Decomposition of measures) The following result plays a fundamentalrole in these notes; it is also known as disintegration theorem.Theorem 9.1 (Decomposition of measures) Let X; Y be locally com-pact and separable metric spaces and let � : X ! Y be a Borel map. Let� 2 [M(X)]m and set � = �#j�j 2 M+(Y ). Then there exist measures�y 2 [M(X)]m such that(i) y 7! �y is a Borel map and j�yj is a probability measure in X for �-a.e.y 2 Y ;(ii) � = �y 
 �, i.e.�(A) = ZY �y(A) d�(y) 8A 2 B(X); (55)(iii) j�yj (X n ��1(y)) = 0 for �-a.e. y 2 Y .The representation provided by Theorem 9.1 of � can be used sometimesto compute the push forward of �. Indeed,f#(�y 
 �) = f#�y 
 � (56)for any Borel map f : X ! Z, where Z is any other compact metric space.Notice also that j�j = j�yj 
 �: (57)Indeed, the inequality � is trivial and the opposite one follows by evaluatingboth measures at B = X, using the fact that j�yj(X) = 1 for �-a.e. y.In the case when m = 1 and � 2 M+(X) the proof of Theorem 9.1 isavailable in many textbooks of measure theory or probability (in this case�y are the the so-called conditional probabilities induced by the randomvariable �, see for instance [18]); in the vector valued case one can arguecomponent by component, but the fact that j�yj are probability measures isnot straightforward. 54



In Theorem 2.28 of [4] the decomposition theorem is proved in the casewhen X = Y �Z is a product space and �(y; z) = y is the projection on the�rst variable; in this situation, since �y are concentrated on ��1(y) = fyg�Z,it is sometimes convenient to consider them as measures on Z, rather thanmeasures on X, writing (55) in the form�(B) = ZY �y (fz : (y; z) 2 Bg) d�(y) 8B 2 B(X): (58)Once the decomposition theorem is known in the special case X = Y � Zand �(y; z) = z the general case can be easily recovered: it su�ces to embedX into the product Y �X through the map f(x) = (�(x); x) and to applythe decomposition theorem to ~� = f#�.Now we discuss the uniqueness of �x and � in the representation � =�x 
 �. For simplicity we discuss only the case of positive measures.Theorem 9.2 Let X; Y and � be as in Theorem 9.1; let � 2 M+(X),� 2 M+(Y ) and let y 7! �y be a Borel M+(X)-valued map de�ned on Ysuch that(i) � = �y 
 �, i.e. �(A) = RY �y(A) d�(y) for any A 2 B(X);(ii) �y(X n ��1(y)) = 0 for �-a.e. y 2 Y .Then �y are uniquely determined �-a.e. in Y by (i), (ii) and, setting B =fy : �y(X) > 0g, the measure � B is absolutely continuous with respect to�#�. In particular � B�#� �y = �y for �#�-a.e. y 2 Y (59)where �y are as in Theorem 9.1.Proof. Let �y; �0y be satisfying (i), (ii). We have to show that �y = �0y for�-a.e. y. Let (An) be a sequence of open sets stable by �nite intersectionwhich generates the Borel �-algebra of X. Choosing A = An \ ��1(B), withB 2 B(Y ), in (i) givesZB �y(An) d�(y) = ZB �0y(An) d�(y):55



Being B arbitrary, we infer that �y(An) = �0y(An) for �-a.e. y, and thereforethere exists a �-negligible set N such that �y(An) = �0y(An) for any n 2 Nand any y 2 Y nN . By Proposition 1.8 of [4] we obtain that �y = �0y for anyy 2 Y nN .Let B0 � B be any �#�-negligible set; then ��1(B0) is �-negligible andtherefore (ii) gives0 = ZY �y ���1(B0)� d�(y) = ZB0 �y(X) d�(y):As �y(X) > 0 on B � B0 this implies that �(B0) = 0. Writing � B = h�#�we obtain � = h�y 
 �#� and � = �y 
 �#�. As a consequence (59) holds.�� (Young measures) These measures, introduced by L.C.Young, arise ina natural way in the study of oscillatory phenomena and in the analysis ofweak limits of nonlinear quantities (see [30] for a comprehensive introductionto this wide topic).Speci�cally, assume that we are given compact metric spaces X; Y anda sequence of Borel maps  h : X ! Y ; in order to understand the limitbehaviour of  h we associate to them the measures
 h = (Id�  h)#� = Z � h(x) d�(x)and we study their limit in M(X � Y ). Assuming, possibly passing to asubsequence, that 
 h ! 
, due to the fact that �0#(
 h) = � for any h weobtain that �0#
 = �, hence according to Theorem 9.1 we can represent 
as 
 = 
x 
 �for suitable probability measures 
x in Y , with x 7! 
x Borel. The familyof measures 
x is called Young limit of the sequence ( h); once the Younglimit is known, we can compute the w�-limit of 
( h) in L1(X;�) for any
 2 C(Y ): indeed, using test function of the form �(x)
(y), we easily obtainthat the limit (in the dual of C(X) and therefore in L1(X;�)) is given byL
(x) := ZY 
(y) d
x(y):We will use the following two well known results of the theory of Youngmeasures. 56



Theorem 9.3 (Approximation theorem) Let 
 2 M+(X�Y ) and write
 = 
x 
 � with � = �0#
. Then, if � has no atom, there exists a sequenceof Borel maps  h : X ! Y such that
x 
 � = limh!1 � h(x) 
 �:Moreover, we can choose  h in such a way that the measures  h#� have noatom as well.Proof. (Sketch) We assume �rst that 
x = 
 is independent of x. By ap-proximation we can also assume that
 = pXi=1 pi�yifor suitable yi 2 Y and pi 2 [0; 1]. Let Qh, h 2 Zn, be a partition of Rn incubes with side length 1=h; since � has no atom, by Lyapunov theorem wecan �nd a partition X1h; : : : ; Xph of X \Qh such that �(X ih) = pi�(X \Qh).Then we de�ne  h = pi on X ih:For any � 2 C(X) and ' 2 C(Y ) we haveZX�Y �'d(� h 
 �) = Xh2Zn pXi=1 '(yi)ZXih � d�� Xh2Zn pXi=1 pi'(yi)ZX\Qh � d� = ZX�Y �'d� � 
and this proves that �� 
 = limh!1 � h 
 �:If we want  h#� to be non atomic, the above construction needs to be modi-�ed only slightly: it su�ces to take small balls Bi centered at yi and to de�ne h equal to �i on X ih, where �i : Rn ! Bi is any Borel and one to one map.If 
x is piecewise constant (say in a canonical subdivision of X inducedby a partition in cubes) then we can repeat the local construction above ineach region where 
x is constant. Moreover we can approximate Lipschitz57



functions 
x (with respect to the 1-Wasserstein distance) with piecewise con-stant ones. Finally, any Borel map 
x can be approximated by Lipschitz onesthrough a convolution. �We will also need the following result.Lemma 9.1 Let  h;  : X ! Y be Borel maps and � 2 M1(X). Then h !  �-a.e. if and only if
h := � h(x) 
 �(x)! 
 := � (x) 
 �(x)weakly in M(X � Y ).Proof. Assume that  h !  �-a.e. SinceZX�Y 'd
' = ZX '(x; �(x)) d�(x) 8' 2 C(X � Y )the dominated convergence theorem gives that 
h ! 
. To prove the oppositeimplication, �x " > 0 and a compact set K such that  jK is continuous and�(X nK) < ". We use as test function'(x; y) = �K(x)
 (y �  (x))with 
(t) = 1 ^ jtj=" (by approximation, although not continuous in X � Y ,this is an admissible test function) to obtainlimh!1� (fx 2 K : j h(x)�  (x)j � �g) = 0:The conclusion follows letting "! 0+. �With a similar proof one can obtain a slightly more general result, namely
h := � h(x) 
 �h ! 
 := � (x) 
 �:implies  h !  �-a.e. provided j�h � �j(X)! 0.References[1] G.Alberti: On the structure of the singular set of convex functions.Calc. Var., 2 (1994), 17{27. 58
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