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Local quantum thermal susceptibility
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Thermodynamics relies on the possibility to describe systems composed of a large number of

constituents in terms of few macroscopic variables. Its foundations are rooted into the

paradigm of statistical mechanics, where thermal properties originate from averaging

procedures which smoothen out local details. While undoubtedly successful, elegant and

formally correct, this approach carries over an operational problem, namely determining the

precision at which such variables are inferred, when technical/practical limitations restrict our

capabilities to local probing. Here we introduce the local quantum thermal susceptibility, a

quantifier for the best achievable accuracy for temperature estimation via local measure-

ments. Our method relies on basic concepts of quantum estimation theory, providing an

operative strategy to address the local thermal response of arbitrary quantum systems at

equilibrium. At low temperatures, it highlights the local distinguishability of the ground state

from the excited sub-manifolds, thus providing a method to locate quantum phase transitions.
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T
he measurement of temperature is a key aspect in science,
technology and in our daily life. Many ingenious solutions
have been designed to approach different situations and

required accuracies1. What is the ultimate limit to the precision at
which the temperature of a macroscopic state can be determined?
An elegant answer to this question is offered by estimation theory2–4:
The precision is related to the heat capacity of the system5,6.

In view of the groundbreaking potentialities offered by
present-day nanotechnologies7–12 and the need to control the
temperature at the nano-scale, it is highly relevant to question
whether the heat capacity is still the relevant (fundamental)
precision limit to small-scale thermometry. The extensivity of the
heat capacity is a consequence of the growing volume-to-surface
ratio with the size13. However, at a microscopic level such
construction may present some limitations14,15. Moreover a series
of theoretical efforts recently concentrated on a self-consistent
generalization of the classical thermodynamics to small-scale
physics, where quantum effects become predominant16–22. In
particular, a lot of attention has been devoted to the search for
novel methods of precision nanothermometry that could exploit
the essence of quantum correlations23–28. In this context, the
possibility to correctly define the thermodynamical limit, and
therefore the existence of the temperature in the quantum regime,
has been thoroughly investigated. It has been shown that the
minimal subset of an interacting quantum system, which can be
described as a canonical ensemble, with the same temperature of
the global system, depends not only on the strength of
the correlations within the system, but also on the temperature
itself29–31. Using a quantum information-oriented point of view,
this phenomenon has also been highlighted in Gaussian fermionic
and bosonic states, by exploiting quantum fidelity as the figure of
merit32,33. Furthermore, the significant role played by quantum
correlations has been recently discussed with specific attention to
spin- and fermonic-lattice systems with short-range interactions34.

In this paper, we propose a quantum-metrology approach to
thermometry, through the analysis of the local sensitivity of generic
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An explicit evaluation of the limit in equation (1) can be
obtained via the Uhlmann’s theorem38 (see the ‘Methods’ section
for details). A convenient way to express the final result can be
obtained by introducing an ancillary system A0B0 isomorphic to
AB and the purification of rb defined as

rb
�� E

¼
X
i

e� bEi=2ffiffiffiffiffiffi
Zb

p Eij iAB � Eij iA0B0 ; ð4Þ

where H¼
P

i Ei Eij iAB Eih j is the spectral decomposition of the
system Hamiltonian. It can then be proved that

SA rb
h i

¼ SAB rb
h i

�
X
jok

lj � lk
� 	2
lj þ lk

ej

 ��H ekj i
�� ��2; ð5Þ

where {|eji} are the eigenvectors of the reduced density matrix
TrA0 ½ rbihrb

�� ��� living on ABB0, obtained by taking the partial
trace of |rbi with respect to the ancillary system A0, while {lj} are
the corresponding eigenvalues (which, by construction, coincide
with the eigenvalues of rAb ).

Equation (5) makes it explicit the ordering between SA½rb� and
SAB½rb�: the latter is always greater than the former due to the
negativity of the second contribution appearing on the right hand
side. Furthermore, if H does not include interaction terms (that is,

H intð Þ
AB ¼0), one can easily verify thatSA½rb� reduces to the variance

of the local Hamiltonian of A, and is given by the heat capacity of
the Gibbs state e�bHA=ZA

b which, in this special case, represents

rAb , that is, SA½rb�¼ Tr½rAb H2
A��Tr½rAb HA�2¼� @2

@b2 lnZ
A
b .

Finally we observe that in the high-temperature regime (b-0)
the expression (5) simplifies yielding

SA rb
h i

¼ 1
dA

Tr ~H2
A � 2b~HA

TrB H2½ �
dB

þ b~H3
A

� �
þO b2

� 	
;

ð6Þ

where dA and dB denote the Hilbert space dimensions of A and B
respectively, and we defined ~HA¼ TrB H½ �=dB having set, without
loss of generality, Tr[H]¼ 0.

A measure of state distinguishability. In the low-temperature
regime, the LQTS can be used to characterize how much the ground
state of the system AB differs from the first excited subspaces when
observing it locally on A. This is a direct consequence of the fact
that the QFI (which we used to define our functional) accounts for
the degree of statistical distinguishability between two quantum
states (in our case the reduced density matrices rAb and rAbþ e)
differing by an infinitesimal change in the investigated parameter
(in our case the inverse temperature b). Therefore for b-N, the
LQTS can be thought as a quantifier of the local distinguishability
among the lowest energy levels in which the system is frozen.

To clarify this point, let us consider the general scenario
depicted in Fig. 2, where we only discuss the physics of the
ground state (with energy E0¼ 0) and of the lowest excited levels
with energy Ei bounded by twice the energy of the first excited
level, Eir2E1. The degeneracy of each considered energy
eigenstate is denoted by ni. From equation (5), it then follows
that up to first order in the parameter e�bE1 we get

SA rb
h i

¼
X
i

ni
n0

E2
i e

� bEi 1�Tr PA
0 �

A
i

� �� 	
þO e� 2bE1

� 	
:

ð7Þ

Here �A
i ¼ TrB �i½ �, where Pi is the normalized projector on the

degenerate subspace of energy Ei. Moreover, PA
0 is the span of the

local subspace associated to the ground state, that is,

PA
0 ¼

PnA0
j¼1 jfjiAhfjj with �A

0 ¼
PnA0

j¼1 pjjfjiAhfjj and nA0
being the number of non-zero eigenvalues (pj40) of �A

0 .
Equation (7) can be interpreted as follows. Our capability of

measuring b relies on the distinguishability between the states rAb
and rAbþ e, with eoob. In the zero-temperature limit, the system

lies in the ground state and locally reads as �A
0 , while at small

temperatures, the lowest energy levels start to get populated. If
their reduced projectors �A

i (iZ1) are not completely contained
in the span of �A

0 , that is Tr PA
0 �

A
i

� �
6¼ 1, there exist some local

states whose population is null for T¼ 0 and greater than zero at
infinitesimal temperatures. Such difference implies that the first
order in SA does not vanish. On the contrary, if the reduced
projectors �A

i are completely contained in the span of �A
0 , that is

Tr PA
0 �

A
i

� �
¼1, we can distinguish rAb from rAbþ e only thanks to

infinitesimal corrections O exp � 2bE1ð Þð Þ to the finite-valued
populations of the lowest energy levels (see the ‘Methods’ section
for an explicit evaluation of the latter). In conclusion, the quantity
SA½rb!1� acts as a thermodynamical indicator of the degree of
distinguishability between the ground-state eigenspace and the
lowest energy levels in the system Hamiltonian.

LQTS and phase estimation. A rather stimulating way to interpret
equation (5) comes from the observation that, in the extended sce-
nario where we have purified AB as in equation (4), the global
variance (3) formally coincides with the QFI FABA0B0 ðjr jð Þ

b iÞ asso-
ciated with the estimation of a phase j which, for given b, has been
imprinted into the system ABA0B0 by a unitary transformation
e� iH0j=2, with H0 being the analogous of H on the ancillary system
A0B0, that is,SAB½rb�¼FABA0B0 ðjr jð Þ

b iÞ where jr jð Þ
b i¼e� iH0j=2 rbi

��
(refs 4,35,39). Interestingly enough, a similar connection can be also
established with the second term appearing in the right hand side of
equation (5): indeed the latter coincides with the QFI FBA0B0 ðjrðjÞb iÞ
that defines the Cramér–Rao bound for the estimation of the phase j
of jr jð Þ

b i, under the constraint of having access only on the subsystem
BA0B0 (that is, that part of the global system which is complementary
to A). Accordingly, we can thus express the LQTS as the difference
between these two QFI phase estimation terms, the global one versus
the local one or, by a simple rearrangement of the various con-
tributions, construct the following identity

SA rb
h i

þFBA0B0 r jð Þ
b

��� E� �
¼ DH2


 

b ð8Þ

that establishes a complementarity relation between the temperature
estimation on A and the phase estimation on its complementary
counterpart BA0B0, by forcing their corresponding accuracies to sum
up to the energy variance hDH2ib of the global system (3).
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Figure 2 | Energy spectrum of a quantum system. The figure provides a

schematic representation of the low-energy spectrum for a generic many-

body quantum system. For simplicity the ground-state (gs) energy E0 is set

to zero. Here Pi denotes the normalized projector on the eigenspaces of

energy Ei, which can be ni-fold degenerate.
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Local thermometry in many-body systems. We have tested the
behaviour of our functional on two models of quantum spin
chains, with a low-energy physics characterized by the emergence
of quantum phase transitions (QPTs) belonging to various uni-
versality classes40.

Specifically, we consider the quantum spin-1/2 Ising and
Heisenberg chains, in a transverse magnetic field h and with a z
axis anisotropy D respectively,

HIsing ¼ � J
X
i

sxi s
x
iþ 1 þ hszi

� �
; ð9Þ

HXXZ ¼ J
X
i

sxi s
x
iþ 1 þsyi s

y
iþ 1

� 	
þDszi s

z
iþ 1

� �
: ð10Þ

Here sai denotes the usual Pauli matrices (a¼ x, y, z) on the i-th
site, and periodic boundary conditions have been assumed. We set
J¼ 1 as the system’s energy scale. At zero temperature, the
model (9) presents a Z2-symmetry breaking phase transition at
|hc|¼ 1 belonging to the Ising universality class. The Hamiltonian
(10) has a critical behaviour for � 1rDr1, while it presents a
ferromagnetic or antiferromagnetic ordering elsewhere. In the
latter case, the system exhibits a first-order QPT in correspondence
to the ferromagnetic point Df¼ � 1, and a continuous QPT of the
Kosterlitz–Thouless type at the antiferromagnetic point Daf¼ 1.

Figure 3 displays the small-temperature limit of SA½rb� for the
two models above, numerically computed by exploiting
expression (21) in the ‘Methods’ section. We first observe that,
as expected, for all the values of h and D, the LQTS monotonically
increases with increasing the number nA of contiguous spins
belonging to the measured subsystem A. More interestingly, we
find that even when A reduces to two or three sites, its thermal
behaviour qualitatively reproduces the same features of the global
system (represented in both models by the uppermost curve). In
particular, even at finite temperatures and for systems composed

of 12 sites, the LQTS is sensitive to the presence of critical
regions where quantum fluctuations overwhelm thermal ones.
The reminiscence of QPTs at finite temperatures has been
already discussed via a quantum-metrology approach, through
the analysis of the Bures metric tensor in the parameter space
associated with the temperature and the external parameters41.
The diagonal element of such tensor referring to infinitesimal
variations in temperature, corresponds to the thermal
susceptibility of the whole system. The latter quantity has been
recently studied for the XY model28, showing its sensitivity to
critical points of Ising universality class.

In the low-temperature regime, such global sensitivity can be
understood within the Landau–Zener (LZ) formalism42. This
consists of a two-level system, whose energy gap DE varies with
respect to an external control parameter G, and presents a
minimum DEmin in correspondence to some specific value Gc.
Conversely, the global heat capacity (3) may exhibit a maximum or
a local minimum at Gc, according to whether DEmin is greater or
lower than the value of DE* at which the expression SAB½rb� �
DH2h ib is maximum in DE, respectively. Indeed it can be shown
that hDH2ib for a two-level system exhibits a non-monotonic
behaviour as a function of DE, at fixed b (see the ‘Methods’
section). Quite recently, an analogous mechanism has also been
pointed out for the global heat capacity in the Lipkin–Meshkov–
Glick model27. The LZ formalism represents a simplified picture of
the mechanism underlying QPTs in many-body systems. However,
by definition, the temperature triggers the level statistics and the
equilibrium properties of physical systems. Therefore, both the
heat capacity of the global system5,6 and the LQTS of its
subsystems are expected to be extremely sensitive to the presence
of critical regions in the Hamiltonian parameter space.

In the Supplementary Note 1, we performed a finite-size scaling
analysis of SA½rb� as a function of the size of the measured
subsystem. For slightly interacting systems, one expects the LQTS
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Figure 3 | The LQTS in the Ising and the Heisenberg models at low temperature. We numerically computed the LQTS of equation (1) in the low-

temperature limit for a chain with L¼ 12 sites in the following two cases: (a) the Ising model as a function of the adimensional transverse field h; (b) the

Heisenberg XXZ chain as a function of the anisotropy D. The uppermost (red) curve corresponds to the global quantum thermal susceptibility, that is the

heat capacity. The other curves stand for different sizes nA of the measured subsystem A of AB (nA increases along the direction of the arrow). The inset

in b magnifies the data around D¼ � 1. In the XXZ model, the LQTS with nA ¼ 1 can be proved to rigorously vanish. The inverse temperature has been fixed

in both cases at b¼9.
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to be well approximated by the heat capacity of A (at least when
this subsystem is large enough). The latter quantity should scale
linearly with its size nA. This is indeed the case for the Ising model
(9), where a direct calculation of hDH2ib can be easily performed28.
Our data for the scaling of the stationary points ofSA½rb� close to
QPTs suggest that significant deviations from a linear growth with
nA are present (see the Supplementary Fig. 1). This indicates that
correlations cannot be neglected for the sizes and the systems
considered here. A similar behaviour has been detected for the
XXZ model, as shown in the Supplementary Fig. 2.

Discussion
We have proposed a theoretical approach to temperature locality
based on quantum estimation theory. Our method deals with the
construction of the local quantum thermal susceptibility, which
operationally highlights the degree at which the thermal
equilibrium of the global system is perceived locally, avoiding
any additional hypothesis on the local structure of the system.
This functional corresponds to the highest achievable accuracy up
to which it is possible to recover the system temperature at
thermal equilibrium via local measurements. Let us remark that,
even if in principle, the Cramér–Rao bound is achievable, from a
practical perspective it represents a quite demanding scenario, as
it requires the precise knowledge of the Hamiltonian, the
possibility to identify and perform the optimal measurements
on its subsystems, and eventually a large number of copies of the
system. However, in this manuscript, we have adopted a more
theoretical perspective, and focused on the geometrical structure
of the quantum statistical model underlying local thermalization.

In the low-temperature regime, our functional admits an
interpretation as a measure of the local state distinguishability
between the spaces spanned by the Hamiltonian ground state and
its first energy levels. Furthermore, we established a complemen-
tarity relation between the highest achievable accuracy in the local
estimation of temperature and of a global phase, by showing that
the corresponding accuracies associated with complementarity
subsystems sum up to heat capacity of the global system. Finally,
we considered two prototypical many-body systems featuring
quantum phase transitions, and studied their thermal response at
low temperatures. On one hand, we found that optimal
measurements on local systems provide reliable predictions on
the global heat capacity. On the other hand, our functional is
sensitive to the presence of critical regions, even though the total
system may reduce to a dozen of components and the measured
subsystem to one or two sites.

Let us remark that most of the results presented herewith do not
refer to any specific choice of the interaction Hamiltonian, H intð Þ

AB
between A and B. As an interesting implementation of our scheme,
we foresee the case of non-thermalizing interactions43,44, whose
potentialities for precision thermometry have been already unveiled.

We conclude by noticing that, while in this article we focused
on temperature, the presented approach can be extended to other
thermodynamic variables (like entropy, pressure, chemical
potential and so on), or functionals45. In the latter case,
quantum-estimation-based strategies, not explicitly referred to a
specific quantum observable, but rather bearing the geometrical
traits of the Hilbert space associated to the explored systems, may
provide an effective route.

Methods
Derivation of useful analytical expressions for the LQTS. Let us recall the
definition of the LQTS for a given subsystem A of a global system AB at thermal
equilibrium:

SA rb
h i

¼ 8 lim
e!0

1�F rAb ; r
A
bþ e

� �
e2

ð11Þ

where F r; sð Þ¼ Tr
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r

p
s

ffiffiffi
r

pp� �
is the fidelity between two generic quantum

states r and s. According to the Uhlmann’s theorem38, we can compute F as

F rAb ; r
A
bþ e

� �
¼ max

rAb

�� 

; rAbþ e

�� 
 rAb rAbþ e

���D E��� ���; ð12Þ

where the maximization involves all the possible purifications jrAb i and jrAbþ ei of
rAb and rAbþ e, respectively through an ancillary system a. A convenient choice is to
set a¼BA0B0 , with A0B0 isomorphic to AB. We then observe that, by
construction, the vector |rbi of equation (4), besides being a purification of rb, is
also a particular purification of rAb . We can now express the most generic
purification of the latter as

rAb
��� E

¼ 1A � Vð Þ rb
�� E

¼ 1A � Vð Þ e
� bH=2ffiffiffiffiffiffi
Zb

p 1Ej i; ð13Þ

where V belongs to the set of unitary transformations on a, where 1X represents
the identity operator on a given system X , and where in the last equality we
introduced the vector 1Ej i ¼

P
i Eij iAB Eij iA0B0 , Eij iAB being the eigenvectors of H.

We can thus write the fidelity (12) as

F ¼
ffiffiffiffiffiffiffiffiffiffiffi
Zb

Zbþ e

s
max
V

rb
D �� 1A � Vð Þ e� eH=2 � 1A0B0

� �h i
rb
�� E��� ���: ð14Þ

Since we are interested in the small-e limit, without loss of generality we set
V¼ exp(i e O), with O being an Hermitian operator on the ancillary system a. It
comes out that, up to corrections of order O e3ð Þ, the LQTS reads

SA½rb� ¼ SAB rb
h i

þ 4min
O

Tr rabO
2

h i
�Tr rabO

h i2�

þ i
2

rb
D �� O;H½ � rb

�� E�
;

ð15Þ

where we have defined rab¼ TrA½ rbihrb
�� ���. By differentiating the trace with respect

to O, we determine the minimization condition for it, yielding

O�oð Þrab þ rab O�oð Þ ¼ Q; ð16Þ

with o¼ Tr½rabO� and Q ¼ � i
2 ½H0; rab�, H0 being the analogous of H which acts on

A0B0 (by construction H |rbi¼H0|rbi). Equation (16) explicitly implies that O
does not depend on o, which, without loss of generality, can be set to zero.
Moreover, it enables to rewrite the LQTS in equation (15) as

SA rb
h i

¼ SAB rb
h i

� 4 Tr rab O
2

h i
: ð17Þ

The solution of the operatorial equation (16) can be found by applying Lemma 1
presented at the end of this section, yielding

O ¼ O0 þ i
2 PH0R�RH0Pð Þ

þ i
2

Pþ1

n¼1
� 1ð Þn Pra � n

b H0ra nb � h:c:
� �� �

; ð18Þ

with O0 being an operator which anti-commutes with O, ra � n
b being the

Moore–Penrose pseudoinverse of rab to the power n, R being the
projector on kernel of rab , P¼ 1a�R being its complementary counterpart, and
with h.c. denoting the hermitian conjugate term. By substituting this expression in
equation (17), we finally get

SA rb
h i

¼2
X
j;k

ljlk
lj þ lk

ej H
0j jek


 
�� ��2 �Tr rbH
h i2

ð19Þ

where rab ¼
P

ili|eiihei| is the spectral decomposition of rab , sharing the same
spectrum with rAb . The expression above holds for both invertible and not
invertible rab. To the latter scenario belongs the case in which H¼HA þHB , where
one can easily prove that the LQTS reduces to the variance of the local Hamiltonian
HA , that is, SA¼ Tr½rbH2

A��Tr½rbHA�2 (notice that the non-zero eigenvalues of
rab are li¼e�bEA

i =ZA
b which correspond to eij i¼ EA

i

�� 

� jrBb i, being

HA¼
P

i E
A
i EA

i

�� 

hEA

i j, ZA
b ¼ Tr e� bHA

� �
and rBb

��� E
the purification of rBb through

the ancillary system B0). The expression above can also be rewritten as

SA rb
h i

¼ SAB rb
h i

�
X
jok

lj � lk
� 	2
lj þ lk

ej

 ��H0 ekj i
�� ��2 ð20Þ

which can be cast into equation (5) by simply exploiting the fact that the system is
symmetric with respect to the exchange of AB with A0B0.

It is finally useful to observe that LQTS can be also expressed in terms of the
eigenvectors of A, rAb ¼

P
ili|giihgi| as:

SA rb
h i

¼ 2
X
j;k

Tr rbH gj
�� 


gkh j
h i��� ���2

lj þ lk
�Tr rbH

h i2
; ð21Þ

where we have used the Schmidt decomposition of |rbi, with respect to bipartitionAa,

rb
�� E

¼
X
i

ffiffiffiffi
li

p
gij i eij i: ð22Þ
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In particular, expression (21) can be exploited to numerically compute the LQTS, for
instance when dealing with quantum many-body systems (see Fig. 3 and the
discussion in the Supplementary Note 1).

Lemma 1: For any assigned operators X, Y satisfying the equation

XW þWX ¼ Y; ð23Þ
the following solution holds

W ¼ W0 þX � 1YRþRYX � 1

þ
Pþ1

n¼0
� 1ð ÞnXnPY X � nþ 1ð Þ �R

� 	
;

ð24Þ

where X � 1 is the Moore Penrose pseudoinverse of X, R is the projector on kernel
of X, P¼ 1�R (1 indicates the identity matrix) and W0 is a generic operator
which anti-commutes with Y (see also ref. 46). Furthermore if X and Y are
Hermitian, equation (23) admits solutions which are Hermitian too: the latter can
be expressed as

W ¼ W0 þX � 1YRþRYX � 1

þ 1
2

Pþ1

n¼0
� 1ð ÞnXnPY X � nþ 1ð Þ �R

� 	
þ h:c:

� �
;

ð25Þ

where now W0 is an arbitrary Hermitian operator which anti-commutes with Y.
Proof: Since (23) is a linear equation, a generic solution can be expressed as the

sum of a particular solution plus a solution W0 of the associated homogeneous

equation, that is, an operator which anti-commute with X,

XW0 þW0X ¼ 0: ð26Þ
A particular solution W of equation (23) can be always decomposed as

W ¼ RWRþRWPþPWRþPWP: ð27Þ
Notice that by definition, RX¼XR¼O, where O identifies the null operator.
Multiplying (23) on both sides by R, one gets the condition RYR¼O. The operator
W, solution of equation (23), is defined up to its projection on the kernel subspace,
that is

W 0 ¼ W þ RWR ) XW 0 þW 0X ¼ Y : ð28Þ
Therefore, without loss of generality we can set

RWR ¼ O: ð29Þ
Multiplying equation (23) by X � 1 on the right side and repeating the same
operation on the left side, we get:

RWP ¼ RYX � 1; ð30Þ

PWR ¼ X � 1YR: ð31Þ
On the other hand, PWP satisfies the relation

PWP ¼ PYX � 1 �PYR�X PWPð ÞX � 1: ð32Þ
This equation can be solved recursively in PWP and gives

PWP ¼
X1
n¼0

� 1ð ÞnXnPY X � 1þ nð Þ �R
� �

; ð33Þ

thus concluding the first part of the proof. The second part of the proof follows
simply by observing that, if X and Y are Hermitian, and if W solves equation (23),
then also its adjoint counterpart does. Therefore, for each solution W of the
problem, we can construct an Hermitian one by simply taking (WþWw)/2.

Second-order term corrections to LQTS. In the low-temperature regime
(b-N), we have computed the second-order correction term to the LQTS, that is
of SA½rb� in equation (1), and found:

E1n1
n0

� �2

e� 2bE1 � 2þTr PA
0 �

A
1 þ�A

1 �
A � 1
0 �A

1 1þPA
0

� 	� ��

� 2
Xþ1

n¼0

� 1ð ÞnTr �A
1 �

A� ðnþ 2Þ
0 �A

1 �
A nþ 1
0

h i)
;

with EkZE1 and where the series in n is meant to converge to 1/2 when

ΔEmin

ΔE (Γ)

E1

E0

Γ

Figure 4 | The two-level Landau–Zener model. A sketch of the behaviour

of the two eigenenergies (E1, E2) as a function of some control parameter G.
The gap DE¼ E2� E1 displays a pronounced minimum in correspondence of

a given Gc value.
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Tr½�A
1 �

A � nþ 2ð Þ
0 �A

1 �
A nþ 1
0 �¼1, that is,

Pþ1
n¼0 � 1ð Þn � limx!� 1

Pþ1
n¼0 xn¼ 1

2. To
vanish, this second-order correction term requires a stronger condition with
respect to one necessary to nullify the first-order term in the LQTS, equation (7).
It is given by �A

1 ¼�A
0 , and corresponds to the requirement that the system ground

state must be locally indistinguishable from the first excited level.

Heat capacity in the two-level LZ scheme. Here we discuss the simplified
case in which only the ground state (with energy E0) and the first excited level
(with energy E1) of the global system Hamiltonian H play a role. In particular, we
are interested in addressing a situation where the ground-state energy gap
DE�E1� E0 may become very small, as a function of some external control
parameter G (for example, the magnetic field or the system anisotropy). A sketch is
depicted in Fig. 4, and refers to the so-called LZ model42. This resembles the usual
scenario when a given many-body system is adiabatically driven, at zero
temperature, across a quantum phase transition point.

In correspondence of some critical value Gc, the gap is minimum. For a typical
quantum many-body system, such minimum value DEmin tends to close at the
thermodynamic limit and a quantum phase transition occurs (notice that Gc may
depend on the system size). Hereafter, without loss of generality, we will assume
E0¼ 0 and take E1¼DE so that the system heat capacity (3) reduces to:

SAB rb
h i

¼ n1 DEð Þ2e�bDE

n0 þ n1e� bDE � n1DEe�bDE

n0 þ n1e�bDE

� �2

: ð34Þ

Here n0 and n1 are the degeneracy indexes associated to the levels E0 and E1,
respectively. Notice that SAB½rb� is always non-negative and exhibits a
non-monotonic behaviour as a function of DE, at fixed b. Indeed it is immediate to
see thatSAB½rb� ! 0 in both limits DE-0 and DE-þN. For fixed b, n0 and n1,
the heat capacity displays a maximum in correspondence of the solution of the
transcendental equation

@SAB½rb�
@DE

¼ 0 () ebDE ¼ n1
n0

ð2þ bDEÞ
ðbDE � 2Þ: ð35Þ

In particular, for n0¼ n1¼ 1, the latter relation is fulfilled for DE	 
 2:3994=b,
while for n0¼ 2, n1¼ 1, it is fulfilled for DE	 
 2:2278=b.

It turns out that the behaviour of the heat capacity as a function of increasing G
in a two-level LZ scheme depends on the relative sizes of DE* and DEmin, as
pictorially shown in Fig. 5: (a) if DEmin4DE*, then SAB½rb� will exhibit a
maximum in correspondence of Gc; (b) if DEminoDE*, a maximum at G	

1
corresponding to DE¼DE* will appear, followed by a local minimum at Gc and
eventually by another maximum at G	

2 where the former condition occurs again.
Since DE* is a function of b, and DEmin depends on the system size, the point of
minimum gap can be signalled by a maximum or by a local minimum depending
on the way the two limits L-þN (thermodynamic limit) and b-þN

(zero-temperature limit) are performed. In the Supplementary Note 2, we explicitly
address the two many-body Hamiltonians considered in the last subsection of the
‘Results’ section, namely the Ising and the XXZ model (see the Supplementary
Figs 3 and 4). Here in particular, we discussed the possible emergence
of corrections to the low-temperature energy variance (34) when one takes
into account the presence of the low-lying energy levels beyond the first
excited one.

Data availability. The data that support the findings of this study are available
from the corresponding author upon request.
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