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Abstract

We consider bipartite systems as versatile probes for the estimation of transformations acting locally
on one of the subsystems. We investigate what resources are required for the probes to offer a
guaranteed level of metrological performance, when the latter is averaged over specific sets of local
transformations. We quantify such a performance via the average skew information (AvSk), a convex
quantity which we compute in closed form for bipartite states of arbitrary dimensions, and which is
shown to be strongly dependent on the degree of local purity of the probes. Our analysis contrasts and
complements the recent series of studies focused on the minimum, rather than the average,
performance of bipartite probes in local estimation tasks, which was instead determined by quantum
correlations other than entanglement. We provide explicit prescriptions to characterize the most
reliable states maximizing the AvSk, and elucidate the role of state purity, separability and correlations
in the classification of optimal probes. Our results can help in the identification of useful resources for
sensing, estimation and discrimination applications when complete knowledge of the interaction
mechanism realizing the local transformation is unavailable, and access to pure entangled probes is
technologically limited.

1. Introduction

Quantum metrology is one of the most promising branches of quantum technology and studies how to exploit
the laws of quantum mechanics to improve the precision in the estimation or identification of some target
parameter characterizing a quantum system of interest [ 1-5]. A typical estimation scenario involves three
distinct phases [3]: (i) a probe system is initialized in an input state; (ii) the probe interacts with the system that
encodes the parameter to be estimated; (iii) the output state of the probe is measured and compared with the
input state. From the comparison, if we know the physical mechanism that governs the combined probe—target
dynamics (e.g. the interaction Hamiltonian), we can deduce the value of the parameter. In general, the
measurement process is affected by statistical errors, whose origin can be extrinsic (e.g. environmental noise) or
intrinsic (e.g. Heisenberg uncertainty relations, input and output states being in general non-orthogonal and
hence not distinguishable with certainty).

To improve the precision of the estimation, several strategies can be adopted. First, we can optimize the
input state of the probe so that the probe—target interaction is able to imprint the highest possible amount of
information about the target parameter into the probe, i.e. the input and output states become most
distinguishable. In particular, there might be states of the probe that are left unchanged by the interaction with
the measured system and are useless in this sense, so we usually want to avoid them. Second, we can repeat the
measurement several times to enlarge our statistical ensemble of data and extract a sharper expectation value.
This can be realized by preparing many copies of the probe and making them interact independently with the
system (parallel scheme), or by making the same probe interact repeatedly with the system before extracting the
information (sequential scheme). Third, we can exploit the presence of genuine quantum resources, such as
quantum coherence, or quantum correlations either between the many copies of the probe or between the probe
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and some ancillary system that is kept as a reference, to gain advantage over purely classical strategies. In
particular, it is well known that the presence of entanglement allows one to estimate a parameter encoded in a
unitary dynamics (e.g. a phase shift) with an error that scales as 1 /N with respect to the number N of collected
measurements, while classical strategies can at most achieve a scaling of 1/ JN [3,5].

In some specific cases of practical relevance, we may not have a complete trusted knowledge of the probe—
target interaction mechanism and therefore we may find it harder to optimize the input state of the probe in
order to maximize the efficiency of the estimation. For example, we could imagine a situation in which we
become aware of unwanted noise sources just before we retrieve the output state, meaning that the actual
transformation is different from what we expected when we prepared the probe, which is then likely to be sub-
optimized. As another example, we could be asked to prepare a passe-partout probe state that must be good
whenever the interaction with the measured system is described by a Hamiltonian picked at random from a
given ensemble, so that we have no interest in optimizing the probe for a particular element of the ensemble. It
turns out that in such and similar situations, that we may describe as instances of ‘black-box’ quantum
metrology, the presence of correlations gives another fundamental advantage [6—10]. While with a single probe
system we always run the risk of preparing the probe in a state which is left unmodified by some unlucky
interaction mechanism with the target system, by exploiting correlations between the probe and an ancillary
system kept as a reference we can instead guarantee a minimum detection efficiency.

Itis then interesting to ask the following question: given a certain minimum efficiency that we want to
achieve in a black-box quantum metrology task, what resource should we look for in our probe state? The
answer has been found in several recent works [6—10] and in short is: discord-type correlations. These are general
quantum correlations that encompass entanglement but also describe the nonclassical nature of most separable
states. They have been introduced for the first time in 2001 under the name of quantum discord [11, 12] and
have been the subject of extensive studies in the last decade [13]. In particular, it has been recently shown that
quantum correlations in a bipartite probe can be exploited to guarantee a minimum precision in the estimation
ofalocal phase [7, 8] or a minimum probability of detecting a remote object in a quantum illumination [9] or
quantum reading [10] scenario. Let us stress the following fact. While, as one could expect, pure maximally
entangled states of the probe-ancilla bipartite system are still the best option for the considered tasks,
entanglement is not a necessary resource in the black-box scenario. On the contrary, discord-type correlations
embody the fundamental feature that provides, guarantees and quantifies a quantum over classical advantage in
avast class of metrology tasks (see also [14]). Therefore, one can also consider using ‘cheaper’ separable but
quantumly correlated states [15, 16] if the required minimum precision is not too stringent, and in general if the
production of pure entangled states is hindered by technological limitations.

In this paper we extend the above analysis a significant step further. As just discussed, the amount of discord-
type quantum correlations in the input state of the probe is all the information that we need in order to know
what the worst-case performance will be and hence guarantees a minimum estimation efficiency. However two
states with the same amount of discord-type correlations are not fully equivalent resources from a general
metrological point of view. Indeed, although they are characterized by the same minimum estimation efficiency,
one of the two states could be better on average and thus preferable over the other, as long as the information
about the system-target interaction remains partially unknown. For all practical purposes, truly versatile probes
for quantum metrology should then be able to offer acceptable performances on average when employed for a
broad range of tasks. Therefore, other than investigating the resources involved in determining a worst-case
performance as done earlier, one should address a different key question: given a certain average efficiency that
we want to achieve in a black-box quantum metrology task, what resource should we look for in our probe state?
Here, we discuss this aspect in full detail and we provide a comprehensive classification and characterization of
bipartite quantum probe states in terms of their average metrological performance. Together with previous
results [6—10], our analysis can have a direct impact on the concrete search for optimal and versatile probe states
useful for a plethora of metrological applications in realistic conditions.

To deliver a quantitative analysis, we focus here on the skew information I (p, H) = —Tr[[/p, HJ*]/2,
which expresses the amount of information stored in a state p that cannot be accessed by measuring the
observable H, due to the noncommutativity between state and observable [17, 18]. The skew information is one
possible extension of the classical Fisher information to the quantum domain, being part of a larger family of
Riemannian contractive metrics on the quantum state space [19, 20]: therefore, it directly quantifies the
susceptibility of a probe state p to an infinitesimal change in a target parameter encoded in the observable H. If
the observable acts locally on one subsystem of a bipartite state, the skew information is bounded from below by
the amount of discord-type correlations in the state and its minimum value can be used in fact as a measure of
discord-type correlations, defined in [6] as the local quantum uncertainty (LQU). This quantity is closely related
to other measures, such as the interferometric power (IP) [7] and the discriminating strength (DS) [9], that have
adirect interpretation in terms of metrological tasks in worst-case scenarios. For example, the LQU coincides
with the DS for qubit systems and gives a lower bound to the IP in general. Therefore the LQU can be interpreted
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as a minimum susceptibility of a bipartite state to local transformations on one subsystem, thus being relevant
from a quantum estimation perspective. Moreover it is based on a simple functional, the skew information, that
is typically easy to compute and serves as a good starting point for our investigation.

For arbitrary states of a generic bipartite system, we compute here the average of the skew information over
specific classes of local observables acting on one subsystem. The resulting quantity, referred to as average skew
information (AvSk), quantifies therefore the average susceptibility of a bipartite state to local transformations.
Remarkably, such an average susceptibility can be expressed through a simple analytical expression, that clearly
shows what is the role played by the properties of the observables and by the properties of the state in
determining the average performance. Thanks to this, we provide an extensive characterization of the AvSk and
of its features. In the specific case of a two-qubit system, where the LQU is also computable in closed form [6], we
then carry out a parallel study of our new quantity and of the LQU that allows us to identify which states of the
probe are better given different constraints. It turns out that the resources needed in the probe state to optimize
the average metrological performance are quite distinct from those (discord-type correlations) needed instead to
guarantee a minimum performance. We also find that our AvSk is equivalent, up to a numerical prefactor, to
another quantity recently introduced by Luo and coworkers [21] which is similarly based on the skew
information but considers a different kind of averaging. This connection allows us to easily prove that the AvSk
can be adapted to define a measure of correlations but not specifically of quantum (like the LQU) or classical
correlations. Furthermore, our analysis complements that of Luo et al by finding a nice closed analytic
expression and a clear operational meaning for their measure. Finally, we also compute the variance of the skew
information to investigate what additional knowledge can be gained from higher moments of the statistics.

The main content of the paper is structured as follows. In section 2 we compute the average of the skew
information over an ensemble of local observables with fixed non-degenerate spectrum. In section 3 we
enumerate and prove the basic properties of the AvSk. In section 4 we discuss how the AvSk depends on the
choice of the spectrum of the local observable. In section 5 we compute the AvSk for specific classes of states and
we derive some general bounds. In section 6 we make a detailed analysis of the two-qubit case, comparing the
AvSk with the LQU (i.e. the minimum skew information). In section 7 we also compute the variance of the skew
information and we discuss what this refined statistics can tell us about the presence of quantum correlations. In
section 8 we discuss the connection between our quantity and the one recently introduced by Luo et al [21], and
we provide additional comments on the role of correlations. Finally, in section 9 we provide an explicit
interpretation of the main results of this paper from a metrological point of view. We present our concluding
remarks in section 10. Some technical derivations are deferred to appendices.

2. Average of the skew information over local observables with fixed non-degenerate
spectrum

If pis a density operator on a Hilbert space Hy and H is an Hermitian operator on Hy, the skew information of p
with respect to His defined as[17, 18]

1(p, H) = — Tt[[/7. HY] )

and expresses the amount of information stored in a state p that cannot be accessed by measuring the observable
H, due to the noncommutativity between state and observable. Note that in general it is always possible to find an
observable H, which is diagonal in the eigenbasis of p and therefore can grant complete knowledge of the state,
i.e. I(p, H,) = 0.However, this is no longer true if we make the additional assumption that observables act only
on apart of the global system.

It has been recently shown [6] that when p = p, ; is a density operator of a bipartite system described by the
Hilbert space Hap = Ha ® Hpand H = Hy ® Ipisalocal Hermitian operator acting only on H,, the skew
information is bounded from below by the presence of general nonclassical correlations of the discord type [11—
13] in the state p. Quantum discord, as proposed in the original formulation [11, 12], measures the part of the
information stored in the correlations of a bipartite system AB that cannot be retrieved by measuring locally one
of the subsystems (say A). These locally unaccessible correlations arise because a local measurement can perturb
the state of the system by projecting it onto a particular local basis for A, losing some information in the process,
and the existence of an unperturbing measurement is not guaranteed. In the same spirit, taking the minimum of
the skew information over some ensemble of local observables of a bipartite system gives the minimum
incompatibility between the state p and the ensemble of observables, i.e. the amount of information that always
remains hidden under a certain family of local measurements. In particular, if one considers the set of all local
observables with a fixed non-degenerate spectrum, one obtains the LQU introduced in [6]
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UM(p) = min 1(p, H(A), @
{H (AN}
which is in fact a good quantifier of discord-type correlations. In equation (2) the minimum is taken over a set of
local observables with fixed non-degenerate spectrum Ay = . \; i)4 (i, where { i), }is an orthonormal basis
of A and the \;’s are all different. This is necessary to ensure that the identity [, is excluded from the
minimization set and the trivial case I (p, I4) = 0 is avoided (this must hold also if considering any subspace of
H,). That is, only observables of the form H (A4) = UyA, U, are considered, where Uy, is any local unitary
transformation on subsystem A. As shown in [6], the LQU satisfies all the properties required to a well-behaved
measure of discord-type quantum correlations [22, 23]. In particular it is zero if and only if the original quantum
discord is zero and hence captures the same type of correlations. Moreover, the LQU is strongly connected to
other measures of quantum correlations, such as the IP [7] and the DS [9], that have a clear interpretation in a
metrological context. For example, the LQU coincides with the DS if the bipartite system is made of two qubits,
and in this case it measures the minimum efficiency of a given bipartite state as a probe for a quantum
illumination task [24] where one must decide if any transformation in a given set of isospectral local unitary
operations has been performed or not on the probe.

Here, instead of taking the minimum as in equation (2), we compute the average of the skew information
over the set of Hermitian operators Uy A, Uy " spanned by the unitary group on H,. In light of the above
discussion, this quantity, which will be named simply AvSk, can be interpreted as the average susceptibility of a
bipartite probe to local transformations and local parameters. The AvSk can be written as an integral with
respect to the Haar measure of the unitary group diy; (Ua)

() = [ dpa (U1 (o, UibaU') = = 3 [ dug (UDTYIL/7, UM T, )

In choosing our notation, we made explicit the fact that the AvSk depends only on the state and on the specific
choice of the spectrum. To compute the integral in equation (3) we start by rewriting equation (1) for the case of
abipartite state p = p, andalocal observable H = Hy ® Izas

I(p, Hy) = Tr[(VpHa)(Ha \/p) — (VpHa) (P Ha)]
=[Tr(JpagHa @ H g Jpap — (PapHa ® Jpap H y)Sas 48] (4)

where following the procedure of [25] we introduced a copy Hap = H y ® Hp of the original Hilbert space
Hag = Ha ® Hp and the swap operator Sy54p actingon Hyp @ H 4p [26]. Using equation (4) and the
properties of the swap operator (see appendix A) we can now rewrite equation (3) as

I(p) = Tr[(pap @ Las — JPag @ JPap) TO(Ma @ Ay) Sap 4] (5)

where T®(A4 ® A ) is the so-called twirling channel [27-29] applied to the operator A4 ® A , (see
appendix B)

TN © M) = [dug(U) (U @ U & AU} @ UY)

_ NaTr[ALP - Tr[AG], Ni Tr[A] — Tr[AaF
Na(N; — 1) NN -1y

(6)

AA

In writing equation (6) we introduced the dimension N, of the Hilbert space H,. Plugging the last two lines of
equation (6) into equation (5), using again the properties of the swap operator, and evaluating the trace, we
finally get a remarkably compact formula for the AvSk of an arbitrary bipartite state p

Ny Tr[A4] — Tr[AA)
Ni(N; — 1)

We stress that the analytic expression equation (7) holds for any dimension of the Hilbert spaces H, and Hp.

M (p) =

[Ny — Trs[(Tra[ /o 1)* 11 ™)

3. Properties of the AvSk

We discuss now some properties of the AvSk Z*4(p).

Property 1a—For any fixed spectrum, the AvSk is non-negative. This is trivially true as the skew information
is non-negative and this is not changed by taking the average.

Property 1b—For any fixed non-degenerate spectrum, the AvSk is zero if and only if the state is of the form

I
= — Q pg. 8
PaB Ny Pp (®)
The proof of this is rather long and is postponed to section 5.
Property 2—The AvSkis invariant under local unitary operations Wy, Vj.Indeed, consider the
transformation p — (W4 ® Vg)p (W} @ V) which also maps Jp into (Wy @ V) /p wWle V}). Then, by

4
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4. Dependence of the AvSk on the spectrum

The expression equation (7) for the AvSk that we found at the end of section 2 explicitly factors the dependence
on the spectrum of the observable and the dependence on the state. In this section, we investigate how different
choices of the spectrum relate to one another.

4.1. Invariance under translation of the spectrum
First we show that if two spectra A, and A/, are connected by a rigid shift, the two induced AvSks are equal. The
rigid shift condition is expressed as A, = A, + nl,, where nis any real number. We then have

Tr[Ay] = Tr[Aa] + nNa, (17)
Tr[A,?] = Tr[A%] + 2 Tr[Aa] + 17°Na. (18)

Plugging the above expressions into equation (7) and considering only the part containing the spectrum, we
easily see that

Ny Tr[A, 7] — Tr[AL NaTr[As7] — Tr[Aa]
Ni(Ni - 1) N(N;—1)

(19)

This implies that Z*4(p) = Z™+74(p), V1. Therefore, this allows us to simplify equation (7) by considering
only spectra with trace equal to zero

Tr[A%]

Tr[A]l =0 = IM =
[Ad] 0=

[Ny — Trp[(Tra[21)*1]- (20)

4.2, Scaling under scalar multiplication of the spectrum
Next, we consider what happens if we take a spectrum A4 and transform it to A4 by scalar multiplication.
Thanks to equation (20), it is immediate to see that Z "4 (p) = n? T/ (p) for any value of 7).

4.3. Optimal spectrum

We can now ask which spectrum yields the highest prefactor to the AvSk. From the previous results, it is obvious
that multiplication of a spectrum by a big real number can make the prefactor as big as desired. However, we
want here to highlight the role played by the distribution of the eigenvalues, rather than their magnitude. We can
make a fair comparison by exploiting the translation invariance and the scaling introduced above, and
considering only positive spectra with unit trace (i.e. we map each spectrum to a density matrix). We then see

from equation (7) that all the information about the spectrum is in the prefactor %, which for a fixed
dimension N4 depends only on the spectrum purity. Therefore it is immediate to see that the best spectraare
those that have Ny — 1degenerate eigenvalues, i.e. those spectra that can be mapped into pure-state density
matrices by means of rigid shifts and scalar multiplications. For example one such spectrum, taken traceless to
satisfy the condition discussed in section 4.1,is given by Ay = {(Ny — 1)/Ny, —1/Ny .. — 1/Np}

This means that if we want to encode some information on a state but we cannot choose the encoding basis,
an almost fully degenerate spectrum allows to encode, on average, the maximum amount of information. We
stress that this situation is almost opposite to what happens for the LQU [6] and for similar measures of quantum
correlations such as the IP [7] and the DS [9] that consider the worst-case performance, where it is instead
believed that the optimal spectrum is harmonic [9, 34], i.e. fully non-degenerate and with equally spaced
eigenvalues. Furthermore, we see that the AvSk is non-trivial as soon as the spectrum has some different
eigenvalues, i.e. assoonas A4 = I4. We do not need to impose here the stricter condition of full non-degeneracy
required, for example, by the LQU.

5. Dependence of the AvSk on the state

In this section, we study the AvSk for specific classes of states or, conversely, we look for the states that yield the
maximum and the minimum AvSk given specific constraints. All the results provided here hold for any
dimension of Hy ® Hg. Withoutloss of generality, we consider traceless spectra (see section 4.1).

5.1. AvSk for pure states
We start by considering pure bipartite states. As we have seen in section 3, the AvSk takes a simple form on the set
of pure states 1)4p
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Tr[A}]

Ni -1

TM( Y)ag) =

[Ny — Trs[p2lls (21)

where p; = Ty [ ¥)ag (¥ ]is the reduced state of subsystem Band Tr[p3] is its purity, which can take values
between 1/min{N,, Nz}and 1. Therefore we can find the following bounds for the AvSk of pure states:

T[] N e[ 1
Nf\—l[NA 117 (¢>AB)<N§*1 Ny min{NL Net | (22)

where the upper bound is saturated by pure maximally entangled states and the lower bound is saturated by pure
product states.

5.2. AvSk for separable states

Another interesting class of states is given by separable states. Here we have no entanglement and we can
investigate if the presence of discord-type quantum correlations has a specific impact on the AvSk, as it has for
the LQU [6]. We start by considering a general separable state

Prep = 2015 ® 05 (23)
1

where pg) and pg) are arbitrary density matrices of Aand B, p; > 0 and Zi p, = 1.From the convexity of the
AvSKk (see section 3), we have

0 < T (i) < 200 MG @ ) < max T, © py), (24)
i PASPB.

where in the last term we take the maximum over all product states p = p, ® pg. By direct substitution in
equation (20), we have

Tr[A Tr[A
0< T (o, ® pp) = L[N, vy < Tl gy (25)
and finally
2
0 < IAA(psep) < TE[AA] [ZVA - 1] (26)

The lower bound is saturated, for example, by product states of the form p = I, /Ny ® pg (as announced in
section 3, and as we are going to show, these are the only states with zero AvSk) while the upper bound is
saturated, for example, by product states where the local density matrix on A is pure,ie. p = )4 (¥ & pg.

A few remarks are in order here. First of all, we notice that all separable states yield alower AvSk than any
pure entangled state. We can then use the AvSk as a witness of entanglement and say that

2
IM(p) > EZ[AAll [Na — 1] = p is entangled. (27)
2

Furthermore, since the maximum AvSk among separable states is reached by a completely uncorrelated state, we
can claim that the presence of quantum correlations other than entanglement has no specific effect on the
average susceptibility of a bipartite state to local transformations. Of great importance is instead the local purity
of the probing subsystem A: as soon as p, is not maximally mixed, an average metrological performance is
guaranteed even in absence of a correlated reference subsystem B.

We recall, however, that discord-type correlations as measured by the LQU determine instead the minimum
susceptibility of a bipartite state to local transformations. A comparative analysis of the AvSk and of the LQU can
serve then to identify states that simultaneously yield satisfactory levels of complementary figure of merits and
emerge as suitable probes for sensing applications. We will come back to this point in section 6, where we
investigate the specific case of two qubits.

5.2.1. AvSk for CQ states

We compute here the AvSk for a specific class of separable states, i.e classically correlated states that have zero
LQU (or equivalently zero quantum discord). Since we are considering local measurements on subsystem A, the
set of classically correlated states is given by the so called CQ states [11, 13]

Ny A
Pcq = ZP;‘ (i ® ,Og), (28)
i=1
where {p}is a set of probabilities, { 7)4}is an orthonormal basis of A and {pg)}are general density matrices for

subsystem B. Note that for any such state the existence of a commuting local observable H, that nullifies the
skew information is guaranteed (i.e. when H, is diagonal in the basis { i)4}). The CQ states include the so called

7
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CCstates
Ny Np

Pcc = Zzpfj i ® js(js (29)

i=1j=1

where now also { j)g}isan orthonormal basis of B. Starting from an arbitrary CQ state, we plug equation (28)
into equation (20) and get

Trs[(Tral [Peg])*] = Tr Zp,p@+z Zm@@ S1i2 Y b TP o1 (30)

j>i= j>i=1
Alower bound to equation (30) is given by Trp[( Tta [, /pcq ] )?] = 1. The bound is saturated, for example, when

only one of the p;’s is non zero, i.e. for product states )4 () & pg. Another possibility is that the ,/ pg) "sareall

orthogonal to each other. For example, the set {pg)} could be a set of pure orthogonal states { ¢,)5 (¢, }onB
(thus giving a CC state). The corresponding upper bound to the AvSk of CQ states becomes

Tr[AA]

Iha
(pCQ) NA

[NA 1]. (1)
We can also find an upper bound to equation (30) if we use the inequality Tr [(,/ pg) -/ pg) )?] > 0, namely

b2 Z F T A1 < 1 Z Ji; (Tl + Tr [6])

j>i=1 ]11

=142 3 B = M—

j>i=1 i,j= 1

PJ

= Nj. (32)

The bound is saturated if and only if p; = 1/N, for each iand all the pg)’s are equal. In other words, the CQ state
must be of the form I,/Ny ® pj to have zero AvSk. In conclusion, the bounds to the AvSk of CQ states become

Tr [AA]

A

0 < IM (Pcq) <

[N =1 (33)

5.2.2. AvSk for quantum—classical (QC) states

We can also compute the AvSk on the set of QC states that, opposite in spirit to the CQ states, can have a finite
amount of discord-type quantum correlations (as measured e.g. by the LQU with respect to subsystem A). An
arbitrary QC state can be written as

N
Pac = ZP,‘P(,;) ® ip(i, (34)

i=1

where { i)3}is an orthonormal basis of Band {p(’)} are general density matrices for subsystem A. We plug this
into equation (20) and get

Np -
1< Tral(Tralyge)?] = Sop (Tr[Yp1? < N (35)

Thelower bound is saturated if and only if all the { p(’)} in equation (34) are pure states, i.e. for all density
matrices that can be written in the form

Ppac = ZP Yida (i @ (i, (36)

where { 1);)4}1s a set of generic pure states of A (in particular we do not require them to be orthogonal, at
difference with the set { i)s}). We will use the name (pure quantum)-classical (pQC) for states of the form
equation (36). Westress that p, ¢ is not itself pure in general (th