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Abstract

Following the previous developments to simulate fully anharmonic spectra within

the vibrational second-order perturbation level of theory [J. Chem. Phys 2012, 126,

134108], an extension to transitions up to three quanta is presented here. A general

formulation including the mechanical and electrical anharmonicities is adopted in order

to facilitate the support of additional properties, and thus spectroscopies. In addition

to providing more accurate theoretical band-shapes, inclusion of overtones and combi-

nation bands up to three quanta paves the way to a more complete interpretation of

near-infrared spectra.
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Introduction

Thanks to constant improvements in the models and the efforts devoted to make programs

accessible to a wide community of users beyond the field of theoretical chemistry, compu-

tational spectroscopy has become a routine tool for the interpretation and prediction of

spectra.1–4 Furthermore, the availability of efficient hardware, even in workstation-like ma-

chines, gives the possibility to devise tailored simulations where the accuracy of the models

can be balanced with its cost depending on the size and complexity of the molecular systems

of interest. In the specific case of vibrational spectroscopy, a remarkable achievement con-

cerns the inclusion of anharmonic effects in the simulations, which can be done through ad

hoc programs or more general-purpose packages.5–16 For small molecules, fully variational

methods based on an accurate representation of the potential energy surface can be used

in order to obtain converged ro-vibrational levels.11,17–22 However, their high computational

cost prevents their feasibility for larger systems and less expensive models are needed, with a
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trade-off with respect to the achievable accuracy. Among the alternatives, the most success-

ful ones are those based on the vibrational self-consistent field (VSCF)23–31 or vibrational

second-order perturbation theory (VPT2).32–44 The latter is particularly appealing since it

can reach accurate results at a limited cost, with almost all the computational time due

to the generation of the required data and in particular the third and fourth derivatives of

the potential energy through numerical differentiation.45,46 In practice, since each displaced

geometry can be treated separately, a significant speedup can be achieved by performing the

differentiation along each normal coordinate in parallel.

It should be noted that an alternative way is to compute analytically the cubic and quartic

force fields. Such a possibility was first limited to Hartree–Fock,47–49 but has recently been

extended to the density functional theory (DFT) as well thanks to the work of Ruud and

coworkers.50 In the present work, numerical differentiation has been used.

While the calculation of vibrational energies at the VPT2 level is now a routine task

widespread in various computational packages, work on transition intensities has been scarcer

and either restricted to a type of spectroscopy51–53 or based on a partial anharmonic treat-

ment, by either considering only the anharmonicity of the wave function (mechanical an-

harmonicity) or of the property (electric anharmonicity).53–55 Following the path opened by

Handy and coworkers56 and the derivation proposed by Stanton and Vázquez,51,57 we have

proposed a reformulation of the transition intensities to fundamental bands, overtones and

combination bands up to 2 quanta based on a model property, which could be straightfor-

wardly identified to a property of interest, either function of the normal coordinates or their

conjugate momenta.58 This approach has been successfully applied to simulate IR, Raman

and VCD spectra of medium-size molecular systems in gas phase and solutions.59–62 The

present work provides an extension to this previous work where transitions to overtones

and combination bands up to 3 quanta are explored. This paves the way to the detailed

simulation of spectra over a large energy range, well within the near-infrared region (NIR).

This paper is organized as follows. The first part summarizes the principles of the deriva-
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tion used to provide general equations for each type of transition and applicable to various

properties, such as the electric and magnetic dipoles or the polarizability tensor (both static

and frequency-dependent). VPT2 formulas for transition energies and intensities to any

excited vibrational state with up to 3 quanta are then derived and gathered in easily im-

plementable forms. As illustrations of the implementations, the IR and NIR spectra of one

small system, nitric acid, and two medium-size systems, naphthalene and isobutene, are in-

vestigated and analyzed. The supporting information contains simpler formulas obtainable

for 3-quanta overtones and 2-states combinations with 1 mode excited with 2 quanta and

the other one with 1 quantum, which can be interesting to achieve more efficient implemen-

tations.

Theory

Within a time-independent framework, the spectrum band-shape is simulated as a sum of

transition between two (theoretically infinite) ensembles of initial and final states, vibrational

in the present case. The quantity of interest is chosen to be directly observable experimentally

or easily derivable from measurements. Regarding vibrational spectroscopies, infrared (IR),

vibrational circular dichroism (VCD) and Raman are commonly given in terms of molar

absorption coefficients (ε(ν̄0)), difference between the molar absorption coefficients (∆ε(ν̄0))

and absolute differential Raman cross sections (∂σ(ν̄0)/∂Ω), respectively,

ε(ν̄0) =
8π3NAν̄0

3000 ln(10)hc(4πε0)

∑
I

ρI

∑
F

DIFδ(εF − εI − ν̄0) (1)

∆ε(ν̄0) =
32π3NAν̄0

3000 ln(10)hc2(4πε0)

∑
I

ρI

∑
F

RIFδ(εF − εI − ν̄0) (2)

∂σ(ν̄0)

∂Ω
=(2π)4

∑
I

ρI

∑
F

(ν̄0 − (εF − εI ))4
SIF

45
δ(εF − εI − ν̄0) (3)
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where ν̄0, εI and εF are the vibrational wavenumbers (in cm−1) of the incident light, and the

initial and final states, respectively. ρI is the Boltzmann population of state “I” and δ the

Dirac function. In practice, the latter is replaced by distribution functions to simulate the

broadening observed experimentally. DIF , RIF and SIF are respectively the dipole strength,

the rotatory strength and the Raman activity, which will be discussed in detail in the part

dedicated to the calculation of the transition intensities. Regarding the units, ε(ν̄0) and

∆ε(ν̄0) are commonly expressed in dm3 ·mol−1 · cm−1, and ∂σ(ν̄0)/∂Ω in m2 · sr−1.

In order to get accurate band-shapes, both band positions (vibrational energies) and

intensities (transition integrals), must be treated beyond the harmonic approximation. With

target molecular systems of medium-to-large sizes, the most suited approach to account for

the anharmonic effects is the vibrational second-order perturbation theory (VPT2), which

offers a good balance between accuracy and computational cost. In the following, the systems

of interest will be assumed devoid of degenerate normal modes (asymmetric tops), so the

discussion will be targeted to abelian groups. The case of symmetric and linear molecules

will be deferred to a later work.

To conclude this part, as described in the introduction and in Ref.,58 the inclusion of

anharmonicity in the calculation of vibrational energies and intensities has been explored by

various groups, which have adopted different approaches and conventions. In order to get

a coherent picture, the references used as starting points for the developments have been

voluntarily limited to the papers describing the actual implementation used here.

Vibrational energies

The vibrational energies (in cm−1), which are directly related to band positions, can be ob-

tained from a single formula at the VPT2 level. Starting from the implementation described

in Ref.,45 the latter can be written as,
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εn = χ0 +
N∑
i

ωi

(
ni +

1

2

)
+

N∑
i

N∑
j=i

χij

(
ni +

1

2

)(
nj +

1

2

)
(4)

where ωi is the harmonic wavenumber associated to mode i, n the vector of the N normal

modes of the system containing the number of quanta for each mode and χ0 the zero-point

contribution (in cm−1), given by,45,58

64χ0 =
∑
i

kiiii +
7

9

∑
i

kiii
2

ωi
+ 3

∑
i

∑
j 6=i

ωikijj
2

4ωj2 − ωi2
− 16

∑
i<j<k

ωiωjωkkijk
2

∆ijk

− 16
∑
τ

Beq

τ

[
1 + 2

∑
i<j

{ζij,τ}2
] (5)

Beq
τ is a Cartesian element of the inverse inertia tensor at the reference geometry (in

cm−1) and ζij,τ is a Cartesian component of the Coriolis couplings between modes i and j,

and ∆ijk is defined as,

∆ijk = ωi
4 + ωj

4 + ωk
4 − 2

(
ωi

2ωj
2 + ωi

2ωk
2 + ωj

2ωk
2
)

kijk and kijkl are respectively the third and fourth derivatives of the potential energy V (in

cm−1) with respect to the dimensionless normal coordinates q, also called cubic and quartic

force constants,

kijk =
∂3V

∂qi∂qj∂qk
and kijkl =

∂4V

∂qi∂qj∂qk∂ql

χ is the matrix containing the anharmonic contributions (in cm−1), whose elements are
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defined as,

16χii = kiiii −
5kiii

2

3ωi
−
∑
j 6=i

(
8ωi

2 − 3ωj
2
)
kiij

2

ωj
(
4ωi2 − ωj2

) (6)

4χij = kiijj −
2ωikiij

2(
4ωi2 − ωj2

) − 2ωjkijj
2(

4ωj2 − ωi2
) − kiiikijj

ωi
− kjjjkiij

ωj

+
∑
k 6=i,j

[
2ωk
(
ωi

2 + ωj
2 − ωk2

)
kijk

2

∆ijk

− kiikkjjk
ωk

]
+

4
(
ωi

2 + ωj
2
)

ωiωj

∑
τ

Beq

τ {ζij,τ}2
(7)

All energy derivatives and the Coriolis couplings are expressed in cm−1.

By replacing n in equation 4 with the states of interest, it is straightforward to derive

the associated transition energies from the vibrational ground state as νn = εn− ε0. For the

possible states with up to 3 quanta, the corresponding energies are,

Fundamental bands

| 1i 〉 → ν1i = ωi + 2χii +
1

2

∑
j 6=i

χij

Overtones

| 2i 〉 → ν2i = 2ωi + 6χii +
∑
j 6=i

χij = 2ν1i + 2χii

| 3i 〉 → ν3i = 3ωi + 12χii +
3

2

∑
j 6=i

χij = 3ν1i + 6χii

Combination bands

| 1i1j 〉 → ν1i1j = ωi + ωj + 2(χii + χjj + χij) +
1

2

∑
k 6=i,j

{χik + χjk} = ν1i + ν1j + χij

| 2i1j 〉 → ν2i1j = 2ωi + ωj + 6χii + 2χjj +
7

2
χij +

1

2

∑
k 6=i,j

{2χik + χjk} = ν2i + ν1j + 2χij

| 1i1j1k 〉 → ν1i1j1k = ωi + ωj + ωk + 2(χii + χjj + χkk + χij + χik + χjk) +
1

2

∑
l 6=i,j,k

{χil + χjl + χkl}

= ν1i + ν1j + ν1k + χij + χik + χjk
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Thanks to the availability of simple and general formulas to compute VPT2 energies,

their implementation is greatly facilitated and such a feature is now available in various

computational chemistry programs. However, a rapid analysis of equations 6 and 7 is enough

to highlight one of the major pitfalls in the calculation of VPT2 energies, which is the

possible presence of resonance situations where one or more terms in the right-hand side

of those equations can be nearly vanishing. Such singularities, called Fermi resonances, of

type I (ωi ≈ 2ωj) and II (ωi ≈ ωj + ωk), result in an incorrect account of the anharmonic

contributions, with potentially large errors in the computed vibrational energies. Since the

probability and the number of occurrences of resonances grow with the number of normal

modes, hence the system size, a proper handling of Fermi resonances is required and has been

the subject of various studies.44,45,63–66 Due to the potential impact of this phenomenon on

the band positions, a few words will be spent on the possible treatments of resonances. The

first step is the identification of the resonant terms, generally done by mean of thresholds on

the frequency difference, which can be complemented by additional criteria. An example of

the latter is based on the test proposed by Martin and coworkers to evaluate the deviation

between the VPT2 result and a model variational calculation by calculating the fourth-order

term of an ad hoc Taylor expansion series.63 In this case, the identification of resonant terms

will rely on two consecutive tests, first on the magnitude of the frequency difference and then

on the Martin test. In the deperturbed VPT2 (DVPT2) approach, terms flagged as resonant

are simply ignored in the calculation of χ. To be thorough, the tests are not done on the

terms in equations 6 and 7 but on those obtained once every elements in the right-hand side of

these equations have been expanded in partial fractions. A drawback of the DVPT2 method

is that it corresponds to a truncated VPT2 treatment, with actual contributions of unknown

magnitude simply discarded. As the number of resonances, and so of ignored terms, increases,

the reliability of the DVPT2 treatment drops. In order to compensate this shortcoming, the

discarded terms can be reintroduced in a successive step by using a reduced-dimensionality

variational treatment.45,66 This approach is referred to as the generalized VPT2 (GVPT2)
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and can be considered as the method of reference when accuracy is required, thus it has been

used in the present work. An alternative approach, initially proposed by Kuhler, Truhlar and

Isaacson64 and named degeneracy-corrected PT2 (DCPT2), relies on a different strategy and

is devoid of any threshold. The underlying idea is to replace all potentially resonant terms

by a non-resonant form, based on a model variational interaction matrix. A major drawback

of this method is the inaccuracy it introduces far from resonance, which can be partially

lifted by introducing a transition function to mix the results from the VPT2 and DCPT2

approaches, as done with the hybrid DPCT2-VPT2 (HDCPT2) scheme.65 While slightly

less accurate than GVPT2, HDCPT2 is interesting as a preliminary method to check the

reliability of the criteria used to identify the resonant terms, in particular in benchmark

studies. Further technical details and tests on those models can be found in Ref.65

Transition intensities

The quantities of interest here for IR and VCD are respectively DIF and RIF , given by,

DIF = |〈 µ 〉I ,F |2 (8)

RIF = = (〈 µ 〉I ,F〈m 〉F ,I ) (9)

where 〈 µ 〉I ,F and 〈m 〉F ,I represents the transition integral of the electric and magnetic

dipoles between the initial and final vibrational states, respectively expressed in debye and

statA·cm.

The definition of the Raman activity depends on the experimental setup. The most

common definition is obtained by assuming that the scattered light is unpolarized and per-

pendicular to the incident one, which has a perpendicular polarization. In such conditions,

SIF is defined as,

SIF = 45aI ,F
2 + 7gI ,F

2 (10)

where the isotropic invariants a and g are respectively the mean isotropic polarizability and
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the symmetric anisotropy, given by,

aI ,F =
1

3
[〈 αxx 〉I ,F + 〈 αyy 〉I ,F + 〈 αzz 〉I ,F ]

gI ,F =
1

2
[〈 αxx 〉I ,F − 〈 αyy 〉I ,F ]2 +

1

2
[〈 αyy 〉I ,F − 〈 αzz 〉I ,F ]2 +

1

2
[〈 αzz 〉I ,F − 〈 αxx 〉I ,F ]2

+ 3
[
〈 αxy 〉I ,F2 + 〈 αyz 〉I ,F2 + 〈 αzx 〉I ,F2]

Note that α can be either the static or frequency-dependent polarizability tensor, the deriva-

tion presented being independent of the definition of α. The Raman activity is often ex-

pressed in Å4/amu since the first derivatives of the polarizability, which are the only con-

tributing terms at the harmonic level, are often expressed with respect to the mass-weighted

normal coordinates. In the present case, the derivatives are expressed with respect to the

dimensionless normal coordinates, so S is expressed in Å6.

Following the strategy introduced before,58 a generic property P will be considered from

here on, defined by the following relations,

P = P (0) + P (1) + P (2) (11)

P (0) = P eq + s0

N∑
i=1

Pi(a
†
i + Sai) (12)

P (1) = s1

N∑
i=1

N∑
j=1

Pjiqj(a
†
i + Sai) (13)

P (2) = s2

N∑
i=1

N∑
j=1

N∑
k=1

Pjkiqjqk(a
†
i + Sai) (14)

where a†i and ai are respectively the creation and annihilation operators. s0, s1 and s2 are

constant factors and S represents a sign, so it can be either +1 or -1.

The above expressions can be related to µ,m and α by applying the equivalence relations

given in table 1.

Contrary to energies, there is no unique formula to be applied to obtain the transition

intensity to any state of interest, but ad hoc equations need to be developed for each case.
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Table 1: Equivalence relations between the model property P and actual prop-
erties µ, m and α. A is the atomic axial tensor (AAT).67

P P0 Pi Pji Pjki s0 s1 s2 S

µ µeq
∂µ

∂qi

∂2µ

∂qiqj

∂3µ

∂qiqjqk

1√
2

1

2
√

2

1

6
√

2
+1

m 0 Ai
∂Ai

∂qj

∂2Ai

∂qjqk

ı~√
2

ı~√
2

ı~
2
√

2
−1

α αeq
∂α

∂qi

∂2α

∂qiqj

∂3α

∂qiqjqk

1√
2

1

2
√

2

1

6
√

2
+1

The machinery used in this work is based on the Rayleigh-Schrödinger perturbation theory

and has been detailed in Ref.58 The present discussion will focus on the main steps of the

procedure used to derive the transition integrals at the VPT2 level. The starting point is

the transition integral 〈 P 〉I ,F ,

〈 P 〉I ,F =
〈 ψvI | P e | ψvF 〉√
〈 ψvI | ψvI 〉〈 ψvF | ψvF 〉

(15)

where ψv represents the vibrational wavefunction, and P e is the expected value of P obtained

from electronic structure calculations (P e = 〈 φI | P | φI 〉. In the following, the superscript

“e” will be dropped.

Equation 15 is then developed by expanding the vibrational wavefunction and the prop-

erty up to the second perturbative order. The various terms are then collected by overall

order and only those up to the second order are kept. It should be noted that the denom-

inator, which corresponds to the normalization condition, is also simplified by applying a

Taylor expansion up to the second order. The different terms of interest are,
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〈 P 〉I ,F = 〈 P 〉I ,F (0) + 〈 P 〉I ,F (1) + 〈 P 〉I ,F (2) (16)

〈 P 〉I ,F (0) = 〈 ψvI (0) | P (0) | ψvF (0) 〉 (17)

〈 P 〉I ,F (1) = 〈 ψvI (0) | P (1) | ψvF (0) 〉+ 〈 ψvI (1) | P (0) | ψvF (0) 〉+ 〈 ψvI (0) | P (0) | ψvF (1) 〉 (18)

〈 P 〉I ,F (2) = 〈 ψvI (0) | P (2) | ψvF (0) 〉+ 〈 ψvI (2) | P (0) | ψvF (0) 〉+ 〈 ψvI (0) | P (0) | ψvF (2) 〉

+ 〈 ψvI (1) | P (1) | ψvF (0) 〉+ 〈 ψvI (0) | P (1) | ψvF (1) 〉+ 〈 ψvI (1) | P (0) | ψvF (1) 〉

− 〈 ψ
v
I

(0) | P (0) | ψvF (0) 〉
2

[
〈 ψvF (1) | ψvF (1) 〉+ 〈 ψvI (1) | ψvI (1) 〉

] (19)

As a reminder, the first- and second-order perturbative wavefunctions are given by,

| ψvr (1) 〉 =
∑
s 6=r

〈 ψvs (0) | Ĥ (1) | ψvr (0) 〉
εr(0) − εs(0)

| ψvs (0) 〉 (20)

| ψvr (2) 〉 =
∑
s 6=r

∑
t6=r

〈 ψvs (0) | Ĥ (1) | ψvt (0) 〉〈 ψvt (0) | Ĥ (1) | ψvr (0) 〉
(εr(0) − εt(0))(εr(0) − εs(0))

| ψvs (0) 〉

+
∑
s

〈 ψvs (0) | Ĥ (2) | ψvr (0) 〉
εr(0) − εs(0)

| ψvs (0) 〉
(21)

with Ĥ (1) and Ĥ (2) the first and second perturbation orders of the Watson Hamiltonian.32

The terms in equations 17 to 19 are then developed for the transitions of interest and

the non-null elements are collected in a single equation. In order to assist the derivation

and ensure that all terms have been properly accounted for, an ad hoc program had been

initially written and further refined to support transition integrals to 3-quanta states.
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For fundamental bands, the resulting equation is reported below,58

〈 P 〉0,1i = s0 × S× Pi +
s2
2

∑
j

{Pjij + Pijj + SPjji} −
s0
8

∑
jk

kijkkPj

[
1

ωi + ωj
− S(1− δij)

ωi − ωj

]
− s1

8

∑
jk

{
kijk (Pjk + Pkj)

(
1

ωi + ωj + ωk
− S

ωi − ωj − ωk

)
+
kjkk
ωj

[2SPji + (1 + S)Pij]

}

+
s0
2

∑
jk

(∑
τ

Beq

τ ζik,τζjk,τ

)
Pj

{√
ωiωj

ωk

(
1

ωi + ωj
+

S(1− δij)
ωi − ωj

)
− ωk√

ωiωj

(
1

ωi + ωj
− S(1− δij)

ωi − ωj

)}

+
s0
16

∑
jkl

kiklkjklPj

{
(1− δij)(1− δik)(1− δil)

[
1

(ωi + ωj)(ωj + ωk + ωl)
− S

(ωi − ωj)(ωj + ωk + ωl)

+
S

(ωi + ωk + ωl)(ωj + ωk + ωl)
− 1

(ωi − ωk − ωl)(ωj + ωk + ωl)
+

S

(ωi − ωj)(ωi − ωk − ωl)

+
1

(ωi + ωj)(ωi + ωk + ωl)

]

+ δij(1 + δik)(1− δil)
[

1

2ωi(ωi + ωk + ωl)
− 1

2ωi(ωi − ωk − ωl)
+

S

2(ωi + ωk + ωl)2

− S

2(ωi − ωk − ωl)2

]

+ (1− δij)(1− δik)δil
[

1

ωk(ωi + ωj)
+

2

(2ωi + ωk)(ωi + ωj)
+

3

(ωi + ωj)(ωi + ωj + ωk)

+
S

(ωi − ωj)(ωi − ωj − ωk)
− 2S

(ωi − ωj)(ωi + ωj + ωk)
− 3S

ωk(ωi − ωj)

− S

ωk(ωi − ωj − ωk)
+

2S

(2ωi + ωk)(ωi + ωj + ωk)
+

3

ωk(ωi + ωj + ωk)

]}

+ kijkkllkPj

{
δij
ωiωk

(
1 +

δikδil(6− 4S)

9

)

+ (1− δij)(1− δik)(1− δil)
[

1

(ωi + ωj)(ωi + ωj + ωk)
+

1

ωk(ωi + ωj)
− S

ωk(ωi − ωj)

+
S

(ωi − ωj)(ωi − ωj − ωk)
+

1

ωk(ωi + ωj + ωk)
− S

ωk(ωi − ωj − ωk)

]

+ δik(1− δij)
[

(1 + δil)

(
1

(2ωi + ωj)(ωi + ωj)
− S

ωi(ωi − ωj)
+

1

ωi(2ωi + ωj)

)
+ δil

(
1

3ωi(ωi + ωj)
+

S

3ωi(2ωi + ωj)
− S

(ωi − ωj)(2ωi + ωj)

)
+

1

ωi(ωi + ωj)
− S

ωj(ωi − ωj)
+

S

ωiωj

]}
(22)
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where δij is the Kronecker delta. From an analysis of table 1, and more precisely the case

of the magnetic dipole with the axial atomic tensor, it should be noted the indices of Pij

and Pijk may not be freely interchangeable. For this reason, equation 22 and the following

equations are written with the most general case in mind.

For overtones (〈 P 〉0,2i) and combination bands (〈 P 〉0,1i1j) of two quanta, a common

formula can be used to compute the transition integral,

〈 P 〉0,(1+δij)i(1−δij)j =

√
2

1 + δij
×
[
s1 × S

2
(Pij + Pji)

+
s0
4

∑
k

kijkPk

(
S

ωi + ωj − ωk
− 1

ωi + ωj + ωk

)] (23)

Note that in the original paper,58 the second term was incorrectly reported, with “kijkPk”

missing.

In the same way, a common formula can be derived for the transition integrals to overtones
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(〈 P 〉0,3i) and combinations bands (〈 P 〉0,2i1j and 〈 P 〉0,1i1j1k) of 3 quanta,

〈 P 〉0,(1+δij+δik)i(1−δij)j(1−δik)k =

A× s2 × S (Pjki + Pikj + Pijk)

+ A
s0
4

∑
l

kijklPl

[
S

ωi + ωj + ωk − ωl
− 1

ωi + ωj + ωk + ωl

]
+ A

s0
2

∑
τ

∑
l

Beq

τ Pl

[
ζij,τζkl,τ

(
ωiωk
ωjωl

+
ωjωl
ωiωk

+
ωiωl
ωjωk

+
ωjωk
ωiωl

)
+ ζτikζ

τ
jl

(
ωiωj
ωkωl

+
ωkωl
ωiωj

+
ωiωl
ωjωk

+
ωjωk
ωiωl

)
+ ζτilζ

τ
jk

(
ωiωj
ωkωl

+
ωkωl
ωiωj

+
ωiωk
ωjωl

+
ωjωl
ωiωk

)]
×
[

1

ωi + ωj + ωk + ωl
− S

ωi + ωj + ωk − ωl

]
+ A

s1
4

∑
l

{
kijl

[
S× (Pkl + Plk)

ωi + ωj − ωl
− Pkl + S× Plk

ωi + ωj + ωl

]
+ kikl

[
S× (Pjl + Plj)

ωi + ωk − ωl
− Pjl + S× Plj

ωi + ωk + ωl

]
+ kjkl

[
S× (Pil + Pli)

ωj + ωk − ωl
− Pil + S× Pli
ωj + ωk + ωl

]}
+ A

s0
8

∑
l,m

kijlkklmPm

[
1

(ωl + ωj + ωi)(ωm + ωk + ωj + ωi)
+

1

(ωl − ωj − ωi)(ωm + ωk + ωj + ωi)

+
S

(ωl + ωj + ωi)(ωm − ωk − ωj − ωi)
+

S

(ωl − ωj − ωi)(ωm − ωk − ωj − ωi)

]
+ kiklkjlmPm

[
1

(ωl + ωk + ωi)(ωm + ωk + ωj + ωi)
+

1

(ωl − ωk − ωi)(ωm + ωk + ωj + ωi)

+
S

(ωl + ωk + ωi)(ωm − ωk − ωj − ωi)
+

S

(ωl − ωk − ωi)(ωm − ωk − ωj − ωi)

]
+ kjklkilmPm

[
1

(ωl + ωk + ωj)(ωm + ωk + ωj + ωi)
+

1

(ωl − ωk − ωj)(ωm + ωk + ωj + ωi)

+
S

(ωl + ωk + ωj)(ωm − ωk − ωj − ωi)
+

S

(ωl − ωk − ωj)(ωm − ωk − ωj − ωi)

]
(24)

with

A =

√
(1 + δij + δik)!

(1 + δij + δik)!

.

It should be noted that, while the definition of a unique formula like equation 24 is

convenient from a theoretical point of view, a direct implementation may suffer from low
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performance since several terms can be combined or ignored for the overtone and the “2i1j”

cases. More compact formulas for these two cases are provided in appendix.

To be complete, for transitions to states with 4 quanta only two terms of opposite signs

remain at the VPT2 level. As a result, the intensity is systematically null. Consequently,

transitions to states with 4 quanta will require a higher level of perturbation theory (VPT4

for instance) or a more accurate variational approach.

An important final point of this discussion regards the specific problem of the mag-

netic dipole. Indeed, the electronic transition magnetic dipole moment within the Born-

Oppenheimer (BO) approximation, gives vanishing contributions for vibrational transitions

from the ground state. In order to overcome this issue, contributions from excited electronic

states68 are included by applying a first-order perturbative correction to the BO approxi-

mation. Within the simple perturbation theory (SPT), additional terms arise due to the

non-commuting character of the nuclear kinetic operator and the electronic wavefunction,69

〈m 〉I ,F =
〈 ψvI |me | ψvF 〉√
〈 ψvI | ψvI 〉〈 ψvF | ψvF 〉

− 〈 ψvF |me | ψvI 〉√
〈 ψvI | ψvI 〉〈 ψvF | ψvF 〉

(25)

To obtain the correct transition integral for the magnetic dipole, it is necessary to ac-

count for the second term in equation 25 . The corresponding formulas are very similar to

equations 22, 23 and 24, thus it is convenient to define them with respect to the latter,

〈 P 〉1i,0 = S× 〈 P 〉0,1i +
s2
2

(1− S)
∑
j

(Pijj + Pjij) (26)

〈 P 〉(1+δij)i(1−δij)j ,0 = S× 〈 P 〉0,(1+δij)i(1−δij)j (27)

〈 P 〉(1+δij+δik)i(1−δij)j(1−δik)k,0 = S× 〈 P 〉0,(1+δij+δik)i(1−δij)j(1−δik)k (28)

As a result, the transition moment of the magnetic dipole in equation 9 with the SPT
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correction to the BO approximation are,

〈m 〉SPT1i,0 = −2〈m 〉BO
0,1i

+ s2
∑
j

(Pijj + Pjij) (29)

〈m 〉SPT(1+δij)i(1−δij)j ,0 = −2〈m 〉BO
0,(1+δij)i(1−δij)j (30)

〈m 〉SPT(1+δij+δik)i(1−δij)j(1−δik)k,0 = −2〈m 〉BO
0,(1+δij+δik)i(1−δij)j(1−δik)k (31)

where the superscript “BO” refers to the transition moments computed with the equations 22

to 24.

Similarly to energies, transitions intensities at the VPT2 level suffer from the problem of

resonances. An analysis of equations 22 to 24 shows that the presence of Fermi resonances

can also lead in this case to incorrect accounts of the anharmonic contributions and result in

wrong calculated intensities. However, equations 22 and 24 contain each one an additional

potential source of singularities, if ωj ≈ ωi for fundamental bands and if ωl ≈ ωi+ωj +ωk for

3-quanta transitions. While the case of Fermi resonance also in transition intensities has been

already considered in the literature,44,57 the problem of numerical instability due to 1-1 and 1-

3 resonances in the calculation of transition moments and how to handle it has been generally

ignored. Following the strategy used before and by other authors,57 the Fermi resonances

will be treated in the same way as for energy, using the same definition of the resonant terms.

For 1-1 (eq. 22) and 1-3 (eq. 24) resonances, an ad hoc double criterion will be used, based

on the magnitude of the frequency difference in the denominator and of the numerator. A

comparison of equations 22 and 24 shows that the terms where such resonances can arise

are very similar, so the same thresholds can be used for the second criterion (numerator).

Regarding the magnitude of the denominator, the most critical case of 1-1 resonances is due

to near-degenerate modes (for instance the symmetric and antisymmetric C-H stretchings of

methyl groups), so a low value can be used as threshold. For 1-3, a larger value must be used

in order to compensate for the numerical inaccuracies. More details on those thresholds will

be given in the computational details.
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Computational details

Calculations were performed for isolated molecules with DFT, using the B3LYP functional

coupled to the SNSD62 basis set. The latter has been built from the N07D basis set70–72

by consistently including diffuse s functions on all atoms, and one set of diffuse polarized

functions (d on heavy atoms and p on hydrogens). It was devised to provide an optimal ratio

between size and reliability to compute frequencies and molecular properties. As a result,

it is well suited to treat medium-to-large molecules and was the reason for its choice here.

DFT calculations have been done with an ultrafine grid for the numerical integrations (199

radial points, 590 angular points), and default tight density-based convergence criteria for

the self-consistent field step. In order to ensure that a proper minimum of the PES is reached,

geometry optimization were carried out with very tight convergence criteria (convergence on

forces: 10−6 Hartree/Bohr, convergence on estimated displacement: 4 · 10−6 Bohr).

Anharmonic data, were calculated by numerical differentiations, following the scheme

described in ref.,45 using the default setting of 0.01
√

amu · Å along each mass-weighted

normal coordinate,

kijk =
1

3

[√
~

2πcωi

kjk(+δQi)− kjk(−δQi)

2δQi

+

√
~

2πcωj

kik(+δQj)− kik(−δQj)

2δQj

+

√
~

2πcωk

kij(+δQk)− kij(−δQk)

2δQk

] (32)

kiijk =
~

2πcωi

kjk(+δQi)− kjk(−δQi)

δQi
2 (33)

kiijj =
1

2

[
~

2πcωi

kjj(+δQi)− kjj(−δQi)

δQi
2 +

~
2πcωj

kii(+δQj)− kii(−δQj)

δQj
2

]
(34)

Pji =

√
~

2πcωj

Pi(+δQj)− Pi(−δQj)

2δQj

(35)

Pjji =
~

2πcωj

Pi(+δQj)− Pi(−δQj)

δQj
2 (36)

where kij is the analytic second derivative of the energy with respect to dimensionless normal
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coordinates qi and qj. Note that if the indices of P are interchangeable as it is the case with

the electric dipole and polarizability tensor, Pji can be obtained in two different ways, and

the average is used in this case,

Pji =
1

2

[√
~

2πcωi

Pj(+δQi)− Pj(−δQi)

2δQi

+

√
~

2πcωj

Pi(+δQj)− Pi(−δQj)

2δQj

]
(37)

The previous equations are intended for the general case, where the numerical differentiation

is carried out over all the normal coordinates. In presence of reduced-dimensionality schemes

where a subset of the normal modes are considered active and only the corresponding normal

coordinates are used for the displacements, some of the constants may not be computed or

only a reduced number of combinations could be available. In the latter case, the missing

terms in the previous equations are simply ignored and the leading fraction is corrected

according to the number of terms actually used.62,73

Based on the data available from the numerical differentiations, some comments on the

feasibility of the computation of transitions integrals are in order. For the transition to fun-

damental bands (equation 22), the off-diagonal elements Pijj and Pjij (both corresponding

to ∂2Aj/∂qi∂qj) are not available, which could result in a potential issue in the reliability

of the calculations. However, once the SPT correction to the BO approximation is applied,

those terms are canceled out so the transition magnetic dipole moment can be calculated

without any problem. Equation 23 raises no particular issue. The main problem is with

equation 24, that is the transitions to 3-quanta states. 〈P 〉0,1i1j1k requires some off-diagonal

terms, namely kijkl and Pijk, which are not available if l 6= k 6= j 6= i. While such terms

are unlikely to give significant contributions, in particular with respect to the other terms,

one should remain cautious of the reliability of the results with the missing terms. Another

problem arises for 〈P 〉0,2i1j in the specific case of the magnetic dipole, since the convenient

cancellation of the off-diagonal terms Pijj and Pjij does not happen here. This problem is

not present for IR and Raman, the former being the spectroscopy of interest in the present
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case.

Regarding the treatment of resonances, the GVPT2 approach has been used for the

energies. For the deperturbed step, the following criteria were used to identify the resonant

terms

Type Frequency test Martin test

I |ωi − 2ωj| ≤ 200 cm−1 ∆1
ij ≥ 1 cm−1

II |ωi − ωj − ωk| ≤ 200 cm−1 ∆2
ijk ≥ 1 cm−1

where ∆1
ij and ∆2

ijk are the so-called Martin parameters defined in ref.45 The test is carried

out in two successive steps, first on the frequency difference and then on the magnitude (∆1
ij

and ∆2
ijk). This procedure reduces the time needed for the test but also limits the risk of a

false positive where a term is incorrectly flagged as resonant based on the sole Martin test.

For intensities, the same tests as for energies have been used to identify Fermi resonances.

In practice, the set of resonant terms is built once, during the vibrational energy calculation

step and applied to the energies and successively to the transition intensities. Regarding

the 1-1 and 1-3 resonances described in the previous section, the test proposed in Ref.58 has

been used and extended here. For 1-1 resonance, the criterion on the frequency difference

is, ∆1-1
ω = |ωj − ωi| ≤ 2 cm−1, while a larger value is used for 1-3 resonances, ∆1-3

ω =

|ωl − ωi − ωj − ωk| ≤ 20 cm−1. The terms with risks of singularities due to 1-1 and 1-3

resonances derive from the same perturbative term. As a result, the same criteria are used

regarding the magnitude of the numerators, which are divided in two categories based on

their unit. The Coriolis and quartic terms have numerator in cm−1, while those of the cubic

terms are in cm−2, so two distinct tests are defined, respectively K1-n
1 and K1-n

2 .

∣∣K1-n
1

∣∣ ≥ 10 cm−1 and
∣∣K1-n

2

∣∣ ≥ 10 cm−2

The equations presented above have been implemented in a locally modified version of

Gaussian.10
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Results

Due to the strong decrease of intensity observed at higher energy, IR spectra over large energy

ranges are often divided in regions, generally correlated to the X–H stretching overtones, in

particular the C–H ones. The C–H stretching bands represent interesting markers for the

study of IR spectra of organic systems, thanks to their strong intensities and their limited

couplings with other modes. The analysis of overtone spectra is then generally based on the

local mode approach (see Ref.74 for a discussion on the underlying theory), where empirical

parameters are used to evaluate the anharmonic contributions and interpret the observed

spectra. The study of C–H stretchings can be facilitated by choosing well suited molecules,

which explains the extensive study of alkenes and alkanes.74–80 As a result, a large quantity

of reference data has been collected and can be used for a preliminary validation of the

procedure presented here. It should be noted that for CH stretchings, the energy levels at

the VPT2 level are equivalent to those of the Morse potential, so it is expected that the

perturbative approach remains accurate also for higher overtones.81 As previously stated by

Stanton and coworkers,82 this observation cannot be generalized to the case of the property

surface, which can have a significantly different form.

Nitric acid The first case study, which will serve for a preliminary validation of the imple-

mentation, is the infrared spectrum of nitric acid (depicted in Fig. 1). Due to the interest it

presents in the understanding of the depletion process of stratospheric ozone, this molecule

has been extensively studied and a large number of highly resolved spectra, including in-

frared, has been recorded.83 Moreover, the IR spectrum of HNO3 has also been simulated at

the VPT2 level over a large energy range (0–11000 cm−1) and directly compared to highly

resolved experimental measurements by Vaida and coworkers,84 facilitating the comparison

with the data computed here. As a first remark, the protocol used for the calculation of

the intensities in ref.84 differs from the one presented here. Instead of eqs. 22 to 24, the

transition moments are obtained as sums over states by explicitly considering all terms in
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eq. 11, which makes such treatment rather cumbersome. Anyway, the results are expected

to be the same as with the present formulas for the same set of initial data (energy and

property derivatives).51 Fundamental wavenumbers are reported in Table 2 together with

the corresponding description of the associated vibrations and experimental frequencies.83

The overall agreement with experimental values is rather good with the main discrepancies

associated to modes 1, 2 and 9. For overtones and combination bands, only those whose

energy is reported in Ref.84 are gathered in Table 3. All calculated data taken from Ref.84

were obtained at the CCSD(T)85 level of theory with the atomic natural orbital (ANO)86

basis set. In order to make the comparison with those values possible, the same protocol

was followed. The general principle is to associate the discrepancies between the experimen-

tal and computed energies to the harmonic part and systematically correct each transition

energy with an ad hoc contribution. To do so, the shift associated to each mode is obtained

for each fundamental band as, ∆i = νexpi − ν1i . Then, the energy for each overtone and

combination state is calculated as,

εn = χ0 +
N∑
i

(ωi + ∆i)

(
ni +

1

2

)
+

N∑
i

N∑
j=i

χij

(
ni +

1

2

)(
nj +

1

2

)

the non-corrected (ν) and corrected (νcorr) results are given in Table 3.

The method is similar to the hybrid scheme used by various authors87–96 to reach an

optimal balance between accuracy and computational cost, with a higher level of theory

employed for the harmonic part and a more affordable one for the anharmonic part. The

basic difference is that here, only one level of theory is employed and the harmonic part is

corrected to fit a set of reference data. In practice, this also has an impact on the conversion

of anharmonic data to get derivatives with respect to dimensionless normal coordinates.

Indeed, the numerical differentiations are done along mass-weighted normal coordinates.

This means that the higher level of theory in the “ab initio” hybrid scheme can also be used

in the conversion process to further improve the quality of the calculations, which is not
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possible in the “fitting” approach, except by mean of an iterative procedure to converge to

the reference data.

Considering first the experimental results, the average error is rather small with the main

discrepancies associated to states where the H–ON bending mode (mode 4) is involved (|24 〉,

| 34 〉, | 1411 〉 and | 2411 〉 and | 1421 〉), which hints at an improper description of the PES

with the current calculations, since the energy of the fundamental band was well reproduced

(≈ 3 cm−1 of difference with respect to experiment). The same error is observed with respect

to the CCSD(T)/ANO results for the states involving this mode, which suggests a better

reproduction of the PES at this level of theory. However, in absence of the raw ab initio

results, it is not possible to further validate this remark. A significant difference is also

observed between B3LYP/SNSD and CCSD(T)/ANO results for the transition energy to

| 1821 〉, in strong contrast with the overall good agreement for the other modes. The most

plausible explanation would be an error in the reported energy in Ref.,84 which could be in

reality 7698 cm−1.

Regarding intensities, the interpretation of the result is more complex. If the comparison

is done on the order of magnitude of the different peaks, the agreement between the present

results and the data reported in Ref.84 is very satisfactory. For a more quantitative analy-

sis, only the computed CCSD(T)/ANO intensities, reported in Table 3, can be used. The

difference between the two sets of theoretical values vary significantly from one transition to

another, which may be associated to several origins. First of all, and contrary to what was

done for the transition wavenumbers, no correction scheme was applied to the intensities,

which means a major dependence on the accuracy of the electronic structure calculation

regarding the definition of both potential energy and property surfaces. Moreover, as men-

tioned above, the numerical differentiations to obtain the anharmonic terms are done along

the mass-weighted normal coordinates and the resulting derivatives must be converted to

the dimensionless normal coordinates. This conversion involves the harmonic frequencies

and their quality will have a direct impact on kijk, kijkl, Pij and Pijk, hence the transition
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moments. For this reason, and since the electronic structure calculations are significantly

different, a quantitative comparison of the intensities is rather complex and would require

an extensive benchmark, which is beyond the scope of the present work of implementation.

Since a quantitative comparison with experiment is not possible, a more meaningful analy-

sis is to compare directly the simulated spectra with their experimental counterpart. The

IR spectra computed at both harmonic and anharmonic levels are shown in Fig. 2, together

with the experimental one, measured over the 2000–8000 cm−1 wavenumber range.97 In order

to simulate the band broadening observed in the recorded spectra, Lorentzian distribution

functions with half-widths at half-maximum of 12 cm−1 were used. The agreement with

experiment appears very good but most features are hardly visible due to the low intensity

of many bands with respect to the fundamental one (transition to | 11 〉). A zoom on the

lower section of the spectra is shown in Fig. 3, together with a proposal of assignment for

the visible experimental bands when the computed data are unambiguous. The assignment

presented here is in agreement with the one given in Ref.,84 which is however limited to

only a few bands. The only discrepancy is for the band at about 4750 cm−1 (transition to

| 2213 〉). While the band position is correctly calculated at the B3LYP/SNSD level with the

correction scheme, its intensity is very low, preventing a clear assignment of this band.

Naphthalene As a second example, naphthalene (Fig. 1) is a polycyclic aromatic hy-

drocarbon (PAH), a family of compounds considered to be significant contributors to the

IR spectra registered in the interstellar medium and partly responsible for the observed

aromatic infrared bands, either as isolated molecules or embedded in more complex sys-

tems (see Refs.98,99 for more details). As the smallest member of this family, naphthalene

has been extensively studied experimentally and theoretically both in its neutral and ionic

forms.74,78,79,98,100–105 In order to get a thorough characterization of the IR spectrum of such

compounds, high-resolution (in the far infrared)103–105 and near-infrared spectra74,79 have

been recorded. The latter are of interest in the present work. The same computational
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procedure has been used here. The harmonic and anharmonic wavenumbers of the 48 modes

of naphthalene are reported in Table 4, and compared to experimental results taken from

Ref.102 With respect to experimental frequencies, a very good agreement is found, with a

mean absolute error of 5.4 cm−1.

To simulate the spectra, the same fitting procedure as for nitric acid has been employed.

For the 4 modes, which are both Raman and IR inactive, the shift to be applied to the

harmonic part of the transition energies was assumed null. The harmonic and anharmonic

spectra computed this way are reported in Table 4 together with their experimental coun-

terpart taken from Ref.106 As a first remark, while one would expect strong 1-1 resonances

in the anharmonic transition integrals associated to the C-H stretchings fundamental bands

due to the presence of near-degenerate frequencies (in particular, ω1 ≈ ω29, and ω2 ≈ ω30),

those terms give no contribution, so the influence of the threshold ∆1-1
ω (provided it remains

small) is null. The reasons for this can be found from an analysis of eq. 22. First of all, 1-1

resonances appear in the terms deriving purely from the mechanical anharmonicity (cubic,

quartic and Coriolis terms). In the case where modes i and j have approximately the same

energy (ωi ≈ ωj), the transition intensity of a fundamental band associated to mode i will be

impacted by a singularity if the first derivative of the property with respect to mode j (Pj)

is not null and there is a strong coupling between mode i and j (in kijkk and kijk) or they

have both significant couplings with the same modes (in kiklkjkl and ζikζjk). In the present

case, for each couple of near-degenerate modes, the first derivative of the electric dipole with

respect to one of the modes is negligible while the second mode is insufficiently coupled with

the other modes.

The very good agreement between the anharmonic and experimental spectra allows for a

detailed assignment of the various bands observable in the latter and summarized in Fig. 5.

The most intense bands in the 0–3500 cm−1 region are also reported in Table 5. As expected,

the 3-quanta transitions are too weak to contribute in this region and most features are

related to fundamental bands. An exception is the 1700–2000 cm−1 zone, empty in the
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harmonic spectrum since it involves 2-quanta transitions but correctly represented at the

anharmonic level, both for the bands positions and shapes (Fig. 4).

For higher quanta and with a medium-size system like naphthalene, a quantitative com-

parison of experimental and computed data is far from straightforward. The main issue

is that most bands are the result of multiple contributions, which must be unraveled by

mean of mathematical models. The latter generally require a preliminary hypothesis on the

structure of the band and the extrapolation is often based on a local-mode theory with the

coupling between the modes assumed negligible. However, as can be seen in Table 6, the

main contributions in the 2-quanta and 3-quanta regions of the theoretical spectrum are

related here to combination bands, incompatible with the local-mode results extrapolated

from experimental data. For this reason, comparison with experiment will focus on the direct

comparison with the band-shape, taken from Ref.79 for both regions. First of all, the two

experimental spectra were not registered at the same temperature, the 2-quanta region at

300 K and the 3-quanta one at 330 K, which means that some discrepancies are expected

with the theoretical spectra, where hot-bands are neglected. The second and third over-

tones regions are shown in Fig. 6, with the most intense transitions given in Table 6. The

intensities of the experimental spectra where scaled to match the computed band-shapes.

For the 2-quanta region, the experimental spectrum was shifted by +85 cm−1. The overall

agreement with experiment is good with the different features correctly reproduced in the

theoretical band-shape. As expected, this region is dominated by 2-quanta transitions but

3-quanta transitions can also be clearly identified in the right-wing of the band, in particular

the small band at about 6200 cm−1. However, the mixing between the CH stretching modes

results in a significant number of combination states with comparable transition intensities,

which prevent a clear assignment of the observed bands. It is likely related to the underlying

Cartesian-based description used for the definition of the normal modes and a simpler picture

should be expected by using internal coordinates. However, such a step requires further work

regarding the correct description of the system and the adaptation of the equations presented

26



here, which are beyond the scope of this work. For the 3-quanta region, the experimental

band needs to be further shifted, by a total of about 275 cm−1. In this zone, the recorded

spectrum shows a single band, which can be matched by using larger broadening functions

with half-widths at half-maximum of 32 cm−1. As for 2-quanta, the theoretical band-shape

is composed of a multiple transitions of similar intensities, with the main ones reported in

Table 6.

Isobutene The NIR spectrum of isobutene, or 2-methylpropene (Fig. 1), starting from

the second overtone C–H stretching region has been recently recorded and analyzed with a

local mode model.80 Following the same protocol as for the previous systems, the computed

harmonic and anharmonic fundamental wavenumbers are reported in Table 7 together with

their experimental counterparts. Regarding the latter, it should be noted that relatively large

differences can be observed in the sets used in the literature (see for instance Refs.107–109

and references therein). The choice made here was to use the values reported in a relatively

recent work by Krimm and coworkers.109 With respect to naphthalene, the mean absolute

error is higher, at about 12 cm−1, on par with the nitric acid but with stronger discrepancies

for some modes. In particular, the sequence of normal modes, ordered by increasing energies,

is changed between the experimental and computed values. In order to be consistent with

the previous studies, the fitting scheme will be kept here as well.

The simulated harmonic and anharmonic spectra obtained with the corrected energies are

reported in Fig.7 and compared to their experimental counterpart.106 As for naphthalene,

it is interesting to start with a more technical discussion on the actual calculation of the

transition moments, in connection with the problem of resonances. The symmetric and

antisymmetric CH stretchings of CH2 (noted CHo for the olefinic CH vibrations in Ref.80)

are well separated in energy with a shift of about 80 cm−1. This is not the case for those of

the methyl group (CHip for the vibrations where the largest displacements are in the C-C=C

planes and CHop for those out-of-planes, respectively modes 2 and 23 and 11 and 16 here),
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with about 2 cm−1 of difference between the symmetric and antisymmetric modes. Due to

the presence of those near-degenerate frequencies (ω2 ≈ ω23, and ω11 ≈ ω16), it is expected

that strong 1-1 resonances in the anharmonic transition integrals occur. However, those

terms give no contribution, so the influence of the threshold ∆1-1
ω is null. The reasons for

this are the null first derivative of the electric dipole with respect to q11 as shown in Table 7,

while symmetry considerations prevent the necessary couplings for the other modes. As a

result, even with nearly equal frequencies, there is no singularity in this case.

In the region of interest here (0-3500 cm−1), fundamental bands are largely dominating.

However, at variance with naphthalene, 3-quanta transitions give visible contributions in

the 2900–3500 cm−1 zone, resulting in bands not present in the experimental spectrum.

While being a potential case of 1-3 resonances, modifying the threshold ∆1-3
ω used to identify

resonant terms has a marginal impact on the peak intensity. The 3 main peaks correspond to

transitions to 3-modes combination bands, which involve 2 CH3 torsion mode (v15 and v21)

and 1 CH stretching band of CH3 (respectively v24 at 3187 cm−1, v2 at 3286 cm−1 and v11 at

3319 cm−1). The cause of those peaks could be an inaccurate representation of the couplings

between the normal modes based on Cartesian coordinates. An overall good agreement can

be observed between the anharmonic and experimental spectra, also for the band intensities,

with the main discrepancy related to the band at 880 cm−1, strongly underestimated in the

theoretical spectra. The shifted transitions allow for an unequivocal assignment of most

bands, given in Fig. 8. It is thus possible to assign two bands to 2-quanta transitions, at

about 1660 and 1750 cm−1. Additional information on the contributions of the transitions

to the band shape are provided in Table 8.

The 2nd and 3rd overtone regions of the IR spectrum of isobutene are shown in Fig. 9

with the most intense transitions in each region reported in Table 9. As a first remark, due

to the energy of the corresponding transitions, the problem of 1-3 resonances, raised in the

fundamental region, is non-existent here. For the 2-quanta region, the experimental spectrum

was taken from Ref.110 and scaled based on its most intense peak to match the computed
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one. The peaks above 5750 cm−1 are present in both experimental and anharmonic spectra

and a tentative assignment could be employed, using the data from Table 9. Nevertheless,

some discrepancies regarding their relative intensities can be observed, which result in only

a qualitative agreement of the computed band-shape with the experimental one. This is

not the case below 5750 cm−1 where the features are missing in the theoretical spectrum.

The reason for this discrepancy could be an insufficient accuracy of the PES, which is only

marginally corrected with the fitting procedure employed here, but this may also be due

to intrinsic limitations of the normal modes based on Cartesian coordinates. For the 3-

quanta region, the experimental spectrum from Ref.80 had to be shifted by about 150 cm−1

in order to be superimposed with the computed one. The most striking difference between

the two band-shapes is their width, with the theoretical one being narrower. Because of

its structure, this cannot be compensated by using a larger half-width at half-maximum to

simulate the broadening. However, if this issue is set aside, an analysis of the band pattern

shows similarities, albeit insufficient to permit any reliable assignment. Calculations were

also performed with the polarizable continuum model (PCM) through its integral equation

formalism version (IEF-PCM)111,112 to simulate the solvent effects (xenon). However, as

expected and previously noted in Ref.,80 those effects are negligible.

Conclusions

This paper presents general and easily implementable formulas to compute fully anhar-

monic transitions from the ground state up to 3-quanta states within the VPT2 model.

The possibility of calculating 3-quanta transitions presents an interest when investigating

near-infrared spectra up to the second overtone region. Moreover, it can lead to a better

description of sensitive spectroscopies, like vibrational circular dichroism. The preliminary

results obtained with naphthalene and isobutene are encouraging, with the possibility to

represent meaningfully the band-shape in the 9000 cm−1 region. It is expected that more
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demanding computations involving electronic structure calculations at higher levels of theory

should be able to further improve the accuracy of the theoretical spectra. This would also

give the possibility to assess systematically the reliability of VPT2 for 3-quanta calculations.

Finally, the contributions from the 3-quanta transitions in the IR region below 3500 cm−1

of isobutene due to the couplings between CH stretchings from the CH2 groups with the

methylic torsions hints at the likely necessity for a better description of the vibrations by

using internal coordinates instead of the Cartesian ones.

Future works are planned to investigate the possibilities offered by this machinery for

other spectroscopies, especially those mentioned above (VCD, Raman), on more diverse

molecular systems.
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Table 2: Harmonic (ω) and anharmonic (ν) wavenumbers (in cm−1) for the modes
of nitric acid. The superscript “∗” indicates that a variational treatment was
applied to the anharmonic frequencies due to the presence of Fermi resonances.
Experimental wavenumbers are taken from ref.83 (“A” stands for asymmetric
and “S” for symmetric, “ip” for in-plane, “op” for out-of plane). ∆i represents
the error of anharmonic frequencies with respect to experimental data and MAE
the mean absolute error.

Symm Mode ω ν Exp. ∆i

1 A′ O–H str. 3719.586 3535.822 3550.7 14.878
2 NO2 str. (A) 1768.847 1725.108 1709.568 -15.540
3 NO2 str. (S) 1360.312 1329.958 1326.185 -3.773
4 H–ON bend. 1329.226 1299.552∗ 1303.069 3.517
5 NO2 bend. (ip) 905.071 881.651 879.109 -2.542
6 O–NO2 str. 655.219 639.572 646.826 7.254
7 O–NO2 bend. 589.835 577.343 580.304 2.961
8 A′′ NO2 bend. (op) 775.522 763.040 763.154 0.114
9 O–H torsion 488.010 445.286 458.229 12.943

MAE 7.058
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Table 3: Harmonic (ω), anharmonic (ν) wavenumbers (in cm−1) and the corre-
sponding CCSD(T)/ANO (νCC) or experimental (Exp.) values from Ref.84 νcorr

are the anharmonic frequencies obtained by correcting the harmonic part so
that the fundamental frequencies are equal to their experimental counterparts.
The anharmonic (Ianh) and CCSD(T)/ANO (ICC) are in cm molecule−1. MAE
stands for the mean absolute error of the corrected anharmonic wavenumbers
(νcorr) with respect to the values given in the column in which the MAE value
is printed.

Final state ω ν νcorr νCC Exp. Ianh ICC

| 29 〉 976.02 856.865 882.751 896.448 6.58×10−19
| 39 〉 1464.03 1234.738 1273.567 1288.84 2.44×10−20
| 24 〉 2658.452 2563.935 2570.969 2530.1 3.91×10−19
| 23 〉 2720.624 2651.298 2643.752 2644.4 3.18×10−19
| 11 〉 3719.586 3535.822 3550.7 3550.7 1.37×10−17 1.21×−17
| 34 〉 3987.679 3829.473 3840.024 3862.4 4.23×10−21
| 1911 〉 4207.597 3974.367 4002.188 4004.4 4006 2.45×10−19 2.18×−19
| 1711 〉 4309.421 4109.517 4127.356 4127.4 4127 5.18×10−20 4.23×−20
| 1611 〉 4374.806 4175.487 4197.619 4197 4195 5.41×10−21 6.93×−21
| 1811 〉 4495.109 4298.848 4313.84 4313.9 1.48×10−21 5.69×−22
| 1511 〉 4624.658 4418.63 4430.966 4430 4440 2.04×10−20 3.04×−20
| 1411 〉 5048.813 4795.043 4813.438 4833 4831 1.38×10−19 7.24×−20
| 1311 〉 5079.899 4861.676 4872.781 4864.3 4866 8.15×10−20 1.62×−19
| 1211 〉 5488.434 5256.621 5255.959 5255.1 5254.2 8.07×10−20 8.10×−20
| 2411 〉 6378.039 6043.312 6065.224 6139 1.12×10−22
| 21 〉 7439.173 6910.774 6940.53 6935 6940 6.89×10−19 6.17×−19
| 1921 〉 7927.183 7342.579 7385.278 7384 7381.1 9.79×10−21 8.15×−21
| 1721 〉 8029.007 7480.821 7513.538 7507.9 2.15×10−21 5.94×−22
| 1621 〉 8094.392 7550.532 7587.542 7580.9 2.22×10−22 1.28×−22
| 1821 〉 8214.695 7673.787 7703.657 7598 9.68×10−23 5.81×−23
| 1521 〉 8344.244 7794.739 7821.953 7814.7 1.97×10−22 1.96×−22
| 1421 〉 8768.399 8141.773 8175.046 8196.4 8198 1.40×10−20 4.93×−21
| 1321 〉 8799.485 8232.524 8258.507 8236 8260 3.34×10−21 1.03×−20
| 1221 〉 9208.02 8627.264 8641.48 8634.1 2.12×10−21 1.64×−21
| 31 〉 11158.759 10124.856 10169.49 10152 10173 4.50×10−20 3.07×−20

MAE 12.974 13.402
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Table 4: Harmonic (ω), anharmonic (ν) and experimental wavenumbers (in
cm−1) for the modes of naphthalene. The superscript “∗” indicates that a varia-
tional treatment was applied to the anharmonic frequencies due to the presence
of Fermi resonances. Experimental data were taken from Ref.102 The description
of the vibrations is roughly based on Ref.100 (‖ for vibrations in the aromatic
plan and ⊥ for those out of the plan). Only the non-negligible components first
derivatives of the electric dipole with respect to the dimensionless normal coor-
dinates (µi, in Debye) are reported. MAE stands for the mean absolute error of
the corrected anharmonic wavenumbers (ν) with respect to the values given in
the column in which the MAE value is printed.

Symm Mode ω ν Exp. µi

1 Ag CH stretch. 3192.8 3058.5 3057

2 CH stretch. 3167.9 3040.3∗ 3051

3 CC stretch. 1614.8 1578.7 1576

4 CH bend. (‖) 1489.6 1462.0∗ 1464

5 CγCγ stretch. 1411.4 1376.6 1383

6 CH bend. (‖) 1178.8 1166.6 1168

7 skeletal distort. (‖) 1044.0 1030.6 1025

8 skeletal breath. 771.0 759.9 764

9 skeletal dist. (‖) 517.9 513.1 513

10 Au CH bend. (⊥) 997.4 961.0

11 CH bend. (⊥) 850.9 828.9

12 skeletal distort. (⊥) 634.0 614.9

13 skeletal distort. (⊥) 186.1 179.1

14 B1g CH bend. (⊥) 965.2 935.6 952

15 CH bend. (⊥) 731.4 713.4 726

16 skeletal distort. (⊥) 396.8 383.9 390

17 B1u CH stretch. 3180.2 3049.7 3065 -2.951y

18 CH stretch. 3162.4 3011.0∗ 3008 -1.018y

19 CC stretch. 1639.4 1603.3 1602 4.305×10−1y
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Symm Mode ω ν Exp. µi

20 CH bend. (‖) 1415.1 1389.8 1392 5.537×10−1y

21 CH bend. (‖) 1285.6 1265.5∗ 1268 -6.764×10−1y

22 CC distort. (‖) 1144.8 1132.2 1130 5.235×10−1y

23 skeletal distort. (‖) 801.9 795.9 796 1.117×10−1y

24 skeletal distort. (‖) 363.2 362.3 359 1.785×10−1y

25 B2g CH bend. (⊥) 1002.5 965.5 979

26 CH bend. (⊥) 903.2 872.2 880

27 skeletal distort. (⊥) 796.3 734.9 773

28 skeletal distort. (⊥) 482.2 466.7 465

29 B2u CH stretch. 3192.0 3056.2∗ 3057 -2.546x

30 CH stretch. 3164.6 3037.4∗ 3042 -3.324×10−1x

31 CC stretch. 1548.3 1512.5∗ 1514 7.970×10−1x

32 CC stretch. 1399.4 1371.1∗ 1361 1.574×10−1x

33 CH bend. (‖) 1232.9 1216.5 1210 -2.129×10−1x

34 CH bend. (‖) 1169.4 1153.2 1135 1.836×10−1x

35 skeletal breath. 1033.9 1017.2 1012 7.090×10−1x

36 skeletal distort. (‖) 629.0 624.2 620 3.303×10−1x

37 B3g CH stretch. 3179.1 3055.1∗ 3057

38 CH stretch. 3160.6 3015.5∗ 3018

39 CC stretch. 1672.0 1629.9 1629

40 CC stretch. 1488.8 1461.0∗ 1458

41 CH bend. (‖) 1266.5 1244.4 1240

42 CH bend. (‖) 1167.7 1150.3 1145

43 skeletal distort. (‖) 942.2 934.9 936

44 skeletal distort. (‖) 514.8 509.6 509

45 B3u CH bend. (⊥) 986.0 956.2 959 4.448×10−1z
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Symm Mode ω ν Exp. µi

46 CH bend. (⊥) 803.0 779.8 782 2.272z

47 CC distort. (⊥) 492.9 474.0 473 7.949×10−1z

48 Ring wag. 173.6 167.7 166 1.549×10−1z

MAE 5.4
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Table 5: Highest harmonic (Iharm) and anharmonic (Ianh) transition intensities
(in km/mol) of the IR spectrum of naphthalene in the 0–3500 cm−1 region.
Transition energies (both harmonic, ω, and anharmonic, ν) are given in cm−1.

Final state ω ν νcorr Iharm Ianh
| 147 〉 492.9 474.0 473.0 23.29 19.42
| 136 〉 629.0 624.2 620.0 3.15 3.09
| 146 〉 803.0 779.8 782.0 116.78 110.18
| 145 〉 986.0 956.2 959.0 3.65 4.04
| 135 〉 1033.9 1017.2 1012.0 8.83 8.34
| 121 〉 1285.6 1265.5 1268.0 6.47 6.20
| 120 〉 1415.1 1389.8 1392.0 3.94 3.11
| 131 〉 1548.3 1512.5 1514.0 7.45 7.47
| 110125 〉 1999.9 1919.0 1932.5 3.26
| 118 〉 3162.4 3011.0 3008.0 5.96 4.79
| 117 〉 3180.2 3049.7 3065.0 49.76 66.99
| 129 〉 3192.0 3056.2 3057.0 36.91 48.54
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Table 6: Highest anharmonic (I) transition intensities (in km/mol) of the IR
spectrum of naphthalene in the 2nd and 3rd overtone regions. Transition energies
(both harmonic, ω, and anharmonic, ν) are given in cm−1.

Final state ω ν νcorr I
| 118138 〉 6323.0 6024.8 6024.3 0.875
| 130138 〉 6325.2 6035.2 6042.3 1.800
| 12118 〉 6330.3 6036.2 6043.9 1.352
| 117138 〉 6340.7 6052.1 6069.9 0.512
| 118137 〉 6341.5 6053.7 6052.6 0.888
| 117137 〉 6359.3 6075.4 6092.6 0.996
| 11129 〉 6384.8 6076.2 6075.5 0.688
| 11117137 〉 9552.1 9065.3 9081.0 0.075
| 11118137 〉 9534.3 9049.7 9047.1 0.063
| 12130137 〉 9511.6 9053.1 9070.3 0.062
| 12130138 〉 9493.0 8997.4 9015.2 0.100
| 118137138 〉 9502.1 9027.8 9029.2 0.057
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Table 7: Harmonic (ω), anharmonic (ν) and experimental wavenumbers (in
cm−1) for the modes of isobutene. The superscript “∗” indicates that a varia-
tional treatment was applied to the anharmonic frequencies due to the presence
of Fermi resonances. The description of the vibrations is based on Ref.107 (A
stands for asymmetric and S for symmetric). Only the non-negligible compo-
nents first derivatives of the electric dipole with respect to the dimensionless
normal coordinates (µi, in Debye) are reported. MAE stands for the mean ab-
solute error of the corrected anharmonic wavenumbers (ν) with respect to the
values given in the column in which the MAE value is printed.

Symm Mode ω ν Exp. µi
1 A1 CH str. of CH2 (S) 3132.8 2987.5∗ 2989 1.203y
2 CH str. of CH3 (A) 3106.3 2962.7 2941 -1.880y
3 CH str. of CH3 (S) 3012.3 2926.6∗ 2911 -2.657y
4 C=C str. 1714.0 1668.5∗ 1661 1.487y
5 CH3 def. (A) 1496.2 1456.3 1470 1.108y
6 CH2 def 1439.1 1412.7∗ 1416 -3.047×10−1y
7 CH3 def. (S) 1406.8 1378.9∗ 1366 -1.141×10−1y
8 CH3 rock 1078.7 1057.6 1064 -4.031×10−1y
9 C–C str. (S) 815.3 798.3 801 8.982×10−2y

10 skeletal def. 378.7 380.9 383 7.789×10−2y
11 A2 CH str. of CH3 (A) 3052.6 2912.7 2970
12 CH3 def. (A) 1464.6 1429.3 1450
13 CH3 rock. 1013.2 991.6 988
14 CH2 tors. 699.8 682.6 700
15 CH3 tors. 173.7 163.0 165
16 B1 CH str. of CH3 (A) 3055.1 2914.7 2945 -2.641z
17 CH3 def. (A) 1482.7 1436.2∗ 1444 1.134z
18 CH3 rock. 1099.2 1074.4 1079 -1.061×10−1z
19 CH2 wag 914.2 888.1 890 1.539z
20 skeletal wag 440.2 439.9 429 4.550×10−1z
21 CH3 tors. 210.3 196.0 196 -6.861×10−2z
22 B2 CH str. of CH2 (A) 3213.1 3070.0 3086 1.792x
23 CH str. of CH3 (A) 3104.4 2964.0∗ 2980 2.114x
24 CH str. of CH3 (S) 3006.9 2921.5∗ 2893 -1.789x
25 CH3 def. (A) 1477.7 1447.8∗ 1458 -5.548×10−1x
26 CH3 def. (S) 1404.6 1370.9 1381 -8.335×10−1x
27 C–C str. (A) 1293.6 1264.4 1282 -4.482×10−1x
28 CH2 rock. 982.3 963.7 974 1.779×10−1x
29 CH3 rock. 956.6 942.9 950 2.173×10−2x
30 skeletal rock. 435.8 437.3 430 2.019×10−1x

MAE 12.2
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Table 8: Highest harmonic (Iharm) and anharmonic (Ianh) transition intensi-
ties (in km/mol) of the IR spectrum of isobutene in the 0–3500 cm−1 region.
Transition energies (both harmonic, ω, and anharmonic, ν) are given in cm−1.

Final state ω ν νcorr Iharm Ianh
| 120 〉 440.2 439.9 429.0 8.55 8.49
| 119 〉 914.2 888.1 890.0 47.08 43.95
| 126 〉 1404.6 1370.9 1381.0 8.99 8.18
| 117 〉 1482.7 1436.2 1444.0 15.74 11.94
| 15 〉 1496.2 1456.3 1470.0 14.90 14.29
| 14 〉 1714.0 1668.5 1661.0 23.43 23.57
| 124 〉 3006.9 2921.5 2893.0 19.35 20.21
| 13 〉 3012.3 2926.6 2911.0 42.57 43.42
| 116 〉 3055.1 2914.7 2945.0 41.47 45.19
| 123 〉 3104.4 2964.0 2980.0 26.16 32.17
| 12 〉 3106.3 2962.7 2941.0 20.68 15.85
| 11 〉 3132.8 2987.5 2989.0 8.39 11.35
| 122 〉 3213.1 3070.0 3086.0 18.16 22.44
| 111115121 〉 3436.7 3260.0 3319.3 5.30
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Table 9: Highest anharmonic (I) transition intensities (in km/mol) of the IR
spectrum of isobutene in the 2nd and 3rd overtone regions. Transition energies
(both harmonic, ω, and anharmonic, ν) are given in cm−1.

Final state ω ν νcorr I
| 211 〉 6105.3 5777.6 5892.2 0.623
| 216 〉 6110.3 5811.5 5872.1 0.738
| 12123 〉 6210.8 5834.6 5828.9 0.776
| 11122 〉 6345.9 5949.1 5966.6 0.405
| 222 〉 6426.2 6075.5 6107.5 1.133
| 13111124 〉 9071.9 8534.8 8548.0 0.053
| 111116124 〉 9114.7 8525.6 8528.9 0.144
| 22123 〉 9317.1 8658.3 8630.9 0.052
| 11222 〉 9559.0 8839.5 8873.0 0.098
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Figure 1: Skeletal formulas of isobutene (1), naphthalene (2) and nitric acid (3). For the
first molecules, all carbons are in the (y,z) plan and the x axis points toward the reader. For
nitric acid, all atoms are in the (x,y) plane. The “γ” symbols designates the positions of the
“Cγ” used in the description of the vibrations in Table 4.

41



Figure 2: Simulated (harmonic and anharmonic) and experimental IR spectra of nitric acid
in the 2000–8000 cm−1 region. The theoretical spectra were obtained by applying lorentzian
distribution functions with half-widths at half-maximum of 12 cm−1 to account for the band
broadening. Experimental data were taken from Ref.97 The experimental spectrum was
scaled to match the highest anharmonic peak.
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Figure 3: Simulated anharmonic and experimental IR spectra of nitric acid in the 2000–
8000 cm−1 region. The transitions have been divided based on the total number of quanta
in the final state. Experimental data were taken from Ref.97 Since all transitions have the
vibrational ground state as origin, only the final state is reported for the band assignment.
Multiple significant contributions are separated by commas
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Figure 4: Simulated (harmonic and anharmonic) and experimental IR spectra of naphthalene
in the 0–3500 cm−1 region. The theoretical spectra were obtained by applying lorentzian
distribution functions with half-widths at half-maximum of 12 cm−1 to account for the band
broadening. Experimental data were taken from Ref.106 The experimental spectrum was
scaled to match the highest anharmonic peak
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Figure 5: Simulated anharmonic and experimental IR spectra of naphthalene in the 0–
3500 cm−1 region. The transitions have been divided based on the total number of quanta in
the final state. Experimental data were taken from Ref.106 In order to view the contributions
to the smaller bands, the most intense bands have been truncated.
The letters refer to the following band assignment, where only the final state is reported
(multiple contributions are indicated with a “+” sign): A: | 146 〉; B: | 145 〉; C: | 135 〉; D:
| 136144 〉+| 122 〉; E: | 121 〉; F: | 120 〉; G: | 131 〉; H: | 119 〉; I: | 126146 〉+| 115145 〉; J: | 114146 〉; K:
| 111114 〉; L: | 111125 〉; M: | 126145 〉+| 110126 〉; N: | 114145 〉+| 110114 〉; O: | 110125 〉+| 125145 〉;
P: | 132139 〉; Q: | 118 〉; R: | 117 〉+| 129 〉; S: | 13119 〉; T: | 119139 〉
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Figure 6: Simulated IR spectra of naphthalene in the 5500–6500 cm−1 (2nd overtone,
left panel) and 8600-9500 cm−1 (3rd overtones, right panel) regions. Band broadening was
simulated by means of lorentzian distribution functions with half-width at half-maximum of
12 cm−1. For the 3-quanta region, a broadening with HWHM=32 cm−1 (HW32) has been
also used and the band obtained with the default broadening (HW12) was scaled down by
a factor of two. The transitions have been divided based on the total number of quanta in
the final state. The experimental spectrum was taken from Ref.79 and shifted by +250 cm−1

and scaled so that its highest peak matched the highest theoretical one.
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Figure 7: Simulated (harmonic and anharmonic) and experimental IR spectra of isobutene
in the 0–3500 cm−1 region. The theoretical spectra were obtained by applying lorentzian
distribution functions with half-width at half-maximum of 12 cm−1 to account for the band
broadening. Experimental data were taken from Ref.106 The experimental spectrum was
scaled to match the highest anharmonic peak.
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Figure 8: Simulated anharmonic and experimental IR spectra of isobutene in the 0–
3500 cm−1 region. The transitions have been divided based on the total number of quanta
in the final state. Experimental data were taken from Ref.106

The letters refer to the following band assignment, where only the final state is reported
(multiple contributions are indicated with a “+” sign): A: |119 〉; B: |128 〉; C: |18 〉; D: |127 〉;
E: | 126 〉; F: | 117 〉+| 15 〉; G: | 14 〉; H: | 218 〉; I: | 27 〉; J: | 124 〉+| 13 〉; K: | 116 〉; L: | 123 〉+| 12 〉;
M: | 11 〉
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Figure 9: Simulated IR spectra of isobutene in the 5500–6500 cm−1 (2nd overtone, left panel)
and 8200-9200 cm−1 (3rd overtones, right panel) regions. Band broadening was simulated by
means of lorentzian distribution functions with half-width at half-maximum of 12 cm−1. The
transitions have been divided based on the total number of quanta in the final state. The
experimental spectra were taken from Refs.110 (left panel) and80 (right panel) and scaled
so that its highest peak matched the highest theoretical one. The latter was shifted by
+150 cm−1.
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Korona, T.; Lindh, R.; Mitrushenkov, A.; Rauhut, G. et al. MOLPRO, version 2012.1,

a Package of ab initio Programs. 2012; see http://www.molpro.net.

(13) Valiev, M.; Bylaska, E. J.; Govind, N.; Kowalski, K.; Straatsma, T. P.; Van Dam, H.

J. J.; Wang, D.; Nieplocha, J.; Apra, E.; Windus, T. L. et al. NWChem: A Com-

prehensive and Scalable Open-Source Solution for Large Scale Molecular Simulations.

Comput. Phys. Commun. 2010, 181, 1477–1489.

(14) Shao, Y.; Molnar, L. F.; Jung, Y.; Kussmann, J.; Ochsenfeld, C.; Brown, S. T.;

Gilbert, A. T.; Slipchenko, L. V.; Levchenko, S. V.; O’Neill, D. P. et al. Advances in

Methods and Algorithms in a Modern Quantum Chemistry Program Package. Phys.

Chem. Chem. Phys. 2006, 8, 3172–3191.

51



(15) Gaw, F.; Willetts, A.; Handy, N.; Green, W. In Advances in Molecular Vibrations and

Collision Dynamics ; Bowman, J. M., Ed.; JAI Press, 1992; Vol. 1; Chapter SPECTRO

- a Program for Derivation of Spectroscopic Constants From Provided Quartic Force

Fields and Cubic Dipole Fields.

(16) Carbonnière, P.; Dargelos, A.; Pouchan, C. The VCI-P Code: an Iterative Variation-

Perturbation Scheme for Efficient Computations of Anharmonic Vibrational Levels

and IR Intensities of Polyatomic Molecules. Theor. Chem. Acc. 2010, 125, 543–554.

(17) Carter, S.; Culik, S. J.; Bowman, J. M. Vibrational Self-Consistent Field Method for

Many-Mode Systems: A New Approach and Application to the Vibrations of CO

Adsorbed on Cu(100). J. Chem. Phys. 1997, 107, 10548–10469.

(18) Koput, J.; Carter, S.; Handy, N. C. Ab initio Prediction of The Vibrational-Rotational

Energy Levels of Hydrogen Peroxide and its Isotopomers. J. Chem. Phys. 2001, 115,

8345–8350.
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