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Abbreviations 

 

AmBic  Ammonium Bicarbonate  

BED  Browser Extensible Data 

CDS  Coding DNA Sequences 

cRAP   common Repository of Adventitious Proteins  

DNL  Dynamic Noise Level 

dORF  Downstream Open Reading Frame 

DTT  DL-dithiothreitol  

EIC  Extracted Ion Chromatogram 

Exome-seq Exome Sequencing 

GFF  General Feature Format 

GTF  General Transfer Format 

IAA  Iodoacetamide  

InDel   Insertion/Deletion 

LC-MS/MS Liquid chromatography coupled to tandem mass spectrometry 

LncRNA Long non-coding RNA 

mRNA  Messenger RNA 

NGS  Next Generation Sequencing 

pre-mRNA Precursor mRNA 

QC  Quality Control 

RNA   Ribo Nucleic Acid 

RNA-seq RNA Sequencing 

rRNA   Ribosomal RNA 

SIS  Stable Isotope labeled Synthetic peptides 

SNV  Single Nucleotide Variation 

TEC  To be Experimentally Confirmed 

uORF  Upstream Open Reading Frame 

VCF  Variant Call Format 

MAF  Minor Allele Frequency  
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Summary 

 

Proteomics investigations rely on reference proteomes for the identification of proteins. These 

reference proteomes reflect the proteins that can be produced by an ideal organism, and so 

explicitly exclude protein isoforms that may be produced as a result of genetic mutation. In 

order to identify non-reference, or non-canonical, proteoforms the results of genomics analyses 

must be incorporated into the protein identification workflow. I developed such a 

proteogenomics workflow for the comprehensive identification and validation of non-

canonical proteins. This development was performed using MCF7 cells, a widely used in-vitro 

model of breast cancer, because it includes a large number of pathogenic mutations. The 

comprehensive proteogenomics analysis of MCF7 cells was performed using customized 

protein sequence database searches. In addition to confirming the protein forms of variants 

identified by next-generation sequencing, multiple novel proteoforms were identified and 

validated with synthetic isotopically-labeled standards. Peptides originating from single 

nucleotide variants, in-frame Insertion/Deletion, upstream open reading frames, transcripts in 

non-canonical reading frame, long non-coding RNA, transcripts with retained intron, exon 

extensions, novel exons, non-consensus splicing, variants not detected by next-generation 

sequencing, and novel isoforms were all identified and validated. Many of the proteins have 

previously been reported to play a role in tumor development, but many specific proteoforms 

are reported here for the first time. The results amply demonstrate that the reference proteome 

databases from UniProt, RefSeq and GENCODE widely underestimate the complexity of the 

oncoproteome space.  

The proteogenomics pipeline reported here was developed to be able to understand how cancer 

associated mutations affect the proteome, as many mutations do not lead to stable protein 

product. Furthermore, mutations may act through secondary routes and affect the regulation of 

which protein isoforms are produced, and so it is insufficient to limit the search to the direct 

protein analogues of the genetic mutation (i.e. altered peptide sequences produced by single-

nucleotide variants and insertion/deletion events). 
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1. Introduction 

In the last decades an unprecendented rate of improvement has been observed in the molecular 

analytical technolgies for nucleic acids and proteins. The high-throughput technologies for the 

analysis of nucleic acids and proteins have evolved in parallel but independently. 

Proteogenomics is a multi omics research area that integrates the results of mass spectrometry 

(MS) based proteomics with next-generation sequencing (NGS) based genomics, 

transcriptomics or translatomics to better characterize and understand cellular systems 1. In the 

past these methods were applied and studied independently to one another. Decreasing costs 

and improved ease-of-use (i.e. accessibility) has made it feasible to interrogate the same sample 

by multiple approaches. In proteogenomics the results of genome and RNA sequencing, gene 

expression, and protein expression are simultaenously investigated and integrated. The 

application of different molecular analysis methods on the same sample cohort is used to 

validate results and provide new insight that are not possible using any single technique. In 

proteogenomics customised protein sequence databases are generated using information from 

genome and RNA sequencing, which are then used to identify novel peptides that are not 

present in reference proteome databases 1. 

 

1.1. From genes to proteins 

In biology a gene is regarded as a unit of heredity that is passed from one generation to another. 

The genome is the complement of all genes that make up an organism. After the discovery of 

DNA as the genetic material 2 a gene was defined as a segment of DNA contained in a larger 

DNA strand that comprised a chromosome. The genome is the set of DNA strands on all the 

chromosomes in an individual. The genome is the blueprint of the organism, and can be said 

to contain the instructions in the form of protein coding and non-coding genes. The information 

flow from the gene begins with transcription, in which the genomic DNA is transcribed into 

RNA and finally translated into a protein, as depicted in Figure 1. The non-coding genes code 

for functional RNA molecules that are not translated into proteins. In the case of a protein-

coding gene the transcribed RNA molecule is known as a premature mRNA (pre-mRNA). The 

pre-mRNA molecule undergoes a process called splicing whereby some specific segments of 

the pre-RNA molecule are removed and the remaining are then concatenated together. The 

removed segments are known as introns and the retained segments are known as exons.  
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Figure 1. Steps of gene expression. 

 

The spliced RNA sequence is known as messenger RNA (mRNA). The mRNA sequence 

contains an Open Reading Frame (ORF) flanked by untranslated sequences (UTR). The UTR 

upstream of the ORF is known as 5’-UTR and the UTR downstream of the ORF is known as 

3’-UTR. During protein synthesis by ribosomes the mRNA is read three nucleotides at a time 

(codon) and, depending on the nucleotide code, a specific amino acid is incorporated into the 

growing protein chain (Figure 2A). The relationship between the codons and the incorporated 

amino acid is determined by the genetic code, Figure 2B.  

 

 

 

 

 

 

 

 

 

A) B) 

Figure 2. Protein synthesis, the mRNA is read three nucleotides at a time. B) The genetic 

code translates the 3-nucleotide code into the identity of the amino acid. 
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The genetic code is the set of rules used by cells to translate the genetic sequence contained in 

the mRNA into a protein sequence. Each of the 20 amino acids are carried by specific transfer 

RNA (tRNA) molecules, which recognize a specific codon. Translation is carried out in the 

ribosomes where the codon on the mRNA is recognized by the anticodon on the tRNA, after 

which the amino acid carried by the tRNA is incorporated into the growing protein chain. 

During synthesis the protein is also folded into its conformation, the three-dimensional 

structure essential for its biological function.  

 

1.2. Genome sequencing 

Genome sequencing is the determination of the order of the DNA nucleotides in a genome. 

The genome of two individuals of a species is different due to the presence or the absence of 

DNA variants. Thus, for comparisons between the genomes of different individuals a reference 

genome is required. Individual genomes can then be compared against this reference genome. 

To provide such a standard reference genome for our own species the Human Genome Project 

(HGP) was launched in 1990 3. In 2004, HGP published a final version of the euchromatin 

region of the human genome 3–5. At the time, this was the highest quality vertebrate genome 

ever published. The source DNA for this project was sampled from several donors and 

analyzed by hierarchical shotgun assembly 4. In this approach, a set of large insert clones of 

100-200 kb each, covering the genome are generated 4. Shotgun sequencing is then performed 

on selected clones 4. The shotgun process generates fragments from random positions in the 

target molecule. The fragments from sequenced clones are then assembled into a linear 

sequence up to the total chromosome length 4. Following the success of the HGP the Genome 

Reference Consortium (GRC) was established to continuously maintain and improve the 

human genome 6. Besides the reference human genome the GRC also maintains and updates 

the mouse and zebrafish genomes 7. The data model of the reference genome released by GRC 

in the public domain is called an assembly 8. HGP and GRC provided the first comprehensive 

information on human gene structure which led to the growth of follow-up technologies such 

as genome wide association studies and genome wide gene expression profiling using 

microarrays 9. Later, the introduction of next generation sequencing (NGS) allowed sequencing 

of the whole genome of single individuals at ever decreasing cost (currently available for 

approximately 600 Euro at BGI-Europe) 10. 
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1.3. Genome annotation 

Genome annotation confers the structural and functional significance of every nucleotide in a 

genome. Since the sequencing of the human genome more than a decade ago, the process of 

annotation of the human genome is still ongoing. The result of genome sequencing is a DNA 

sequence containing a long string of the four nucleotides Adenine (A), Guanine (G), Cytosine 

(C) and Thymine (T). Genome annotation adds layers of information, including the precise 

location of genes, exons, introns, coding DNA sequence (CDS), and UTR, onto the DNA 

sequence 11. This is known as structural genome annotation. Functional annotation concerns 

the biological function, regulation and expression analysis of its structural elements. The use 

of the word genome annotation in this thesis specifically relates to its structural annotation.  

The reference human genome assembly released by GRC is annotated independently by the 

National Center of Biotechnology Information (NCBI) 12 and GENCODE 13. The NCBI 

Eukaryotic Genome Annotation Pipeline is an automated pipeline that produces structural 

annotations of coding and non-coding genes, transcripts and proteins on the finished and 

unfinished public genome assemblies 8. The annotation pipeline outputs the set of genes and 

their placement on the genome sequence. It provides content for various NCBI resources 

including Nucleotide, Protein, BLAST, Gene, and the Genome Data Viewer (GDV) 8. Core 

components of the pipeline are the alignment programs Splign 14, ProSplign 11, and Gnomon 

11, a gene prediction program combining information from experimental evidence and from ab 

initio models 11. The GENCODE Consortium aims to identify all gene features in the human 

genome using a combination of computational analysis, manual annotation and experimental 

validation 13. It provides refined annotations by integrating Ensembl automated predictions and 

the Human and Vertebrate Genome Analysis and Annotation (HAVANA) manual annotations 

13. The annotated gene models are divided into categories on the basis of their functional 

potential and the type of available supporting evidence 13.  The genes are categorized into 

protein-coding gene, long noncoding RNA (lncRNA) gene and pseudogenes 13. At the 

transcript level additional biotypes reflect functionality, for example, protein coding or subject 

to nonsense mediated decay (NMD) 13.  A status is assigned at both the gene and transcript 

level: known (represented in the HUGO Gene Nomenclature Committee (HGNC) database 

and RefSeq); novel (not currently represented in HGNC or RefSeq databases but supported by 
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transcript evidence or evidence from a paralogous or orthologous locus); or putative (supported 

by transcript evidence of lower confidence) 13. An example of a segment of the reference 

human genome (GRCh38) annotated by NCBI and GENCODE (Ensembl) is shown in Figure 

3. The annotation process is an ongoing effort thus each new release may update previous 

annotations. These updates can affect the number and structures of some genes, their 

corresponding transcripts and proteins.  

 

 

Figure 3. Genome annotations of a section of the human genome as seen in the Genome Data 

Viewer (GDV) from NCBI. The displayed region is from chr11: 72751835-72798640. The 

DNA sequence is shown at the top as a blue block. Annotations from NCBI release 109 and 

Ensembl (GENCODE) release 94 are shown in separate tracks. In each track, genes, transcripts 

and proteins are colored green, purple and red respectively. Exons are shown as blocks and 

introns as straight lines connecting exons. The annotation from the NCBI shows a single gene 

labeled STARD10, a single transcript labeled NM_006645.2 (purple line) and a single protein 

NP_006636.2 (red line). The Ensembl annotation contains two protein coding genes, Ensembl 

ids: ENSG00000186635 (ARAP1) and ENSG00000214530 (STARD10), the latter of which 

has multiple transcripts (purple lines) and multiple protein isoforms (red lines). Note: the start 

of ARAP1 is extended upstream in Ensembl annotation compared to NCBI annotation.     
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1.4.  Reference and variant sequences 

The assembled human genome provided by GRC represent a haploid assembly sampled from 

many individuals 6. The human genome (GRCh38), is a composite representation (a consensus) 

of the human genome 6. It is not a person’s genome. Variations in some regions of the human 

genome are so extreme that it is not possible to represent them in a single consensus sequence 

7. These regions are represented as alternate loci assembly units in the genome, for example 

highly variable histocompatibility gene segments on chromosome 6 8. Genome annotation 

pipelines utilized by NCBI and GENCODE provide the set of genes, transcript and proteins 

and their precise locations in the genome. This set of genes, transcripts and proteins are known 

as reference sequences. The reference sequences are the same for all individuals of a species. 

The genome of every individual is different due to the presence of DNA variants such as SNPs, 

block substitutions, homozygous indels, heterozygous indels, inversions, segment duplications 

and copy number variations 15. Furthermore the real genome of a person is diploid and is 

different than the genome of another person. The differences in the genome manifest at the 

transcript and the protein level, giving rise to molecules that will be different than the reference 

sequences. Thus, two individuals may produce a protein that is different in its primary 

sequence, or two individuals may produce a protein that are identical in their primary sequence 

but the encoding mRNA is different. The different sequences in different individuals are 

known as variant sequences. dbSNP is an NCBI resource of short variants (SNVs and InDels) 

16. As of dbSNP build 151, more than 660 million small variants have been reported in humans, 

out of which more than 381 million variants are localized in various genes of the human 

genome 17. This massive explosion in the numbers of variants identified in humans is largely 

due to the advent of NGS technologies.    

  

1.5. Next-generation sequencing 

First generation genetic sequencing technologies, such as capillary based Sanger sequencing 

and shotgun sequencing, were utilized for the generation of the sequence data of the HGP 3. 

The shotgun sequencing was performed on the insert clones and not on the whole genome, in 

order to eliminate the issue of long range misassembly and reduce the risk of short range 

misassembly 4. These assembly problems were perceived to be profound for the human 

genome due to the presence of almost 50% repeat sequences 4. In 2007, the introduction of 
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NGS technologies substantially lowered the cost of genetic sequencing. The application of 

NGS methods require the target DNA to be fragmented into smaller segments. These fragments 

are then fixed onto a medium and amplified by polymerase chain reaction (PCR) into colonies. 

The nucleotide sequences of the fragments in a colony are then determined using modified 

nucleotides. The modified nucleotides emit a light signal when integrated in to the growing 

chain, thus revealing their identity and the genome sequence. An image capture device is used 

to record the light signals, Figure 4.  

 

 

Figure 4. NGS technologies: template preparation, sequencing and data analysis. DNA is 

sheared by sonication or nebulisation to form fragments of 300–500 bp. Library amplification 

by either emulsion PCR or solid-phase amplification, followed by sequencing and data 

analysis. 

 

 

Different NGS platforms differ in the way the colonies are formed, amplified and how the 

nucleotide sequence is determined 18. High throughput is essential and is achieved by 

sequencing millions of colonies in parallel. The sequence data generated by the NGS platforms 

are referred to as reads, which is typically between 75 to 500 base pairs depending on the 
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platform. The ability to sequence massive amounts of DNA has enabled the investigation of 

genome sequences. Wang et al. utilized it to sequence the diploid genome of a person 10.  Yi 

et al. analyzed the exonic regions from 50 individuals for discovering adaptations to higher 

altitude 19. By converting mRNA into DNA one can evaluate gene expression at the genome 

scale and discover novel transcripts and splice isoforms 20.  

 

1.6. Exome sequencing 

The sequences corresponding to the exons in a genome is known as the exome. In humans, the 

exome comprises approximately 1% of the full genome sequence3. In whole exome sequencing 

(WES) the targets are the exons of all protein coding genes. Targeting only a subset of the 

genome in WES lowers the sequencing cost and simplifies the data analysis (compared to 

WGS). WES can be used for the identification of genetic variants that affect heritable 

phenotypes, which includes both pathological and natural variants 21–24. To selectively capture 

the exon sequences two types of technologies exist, solution-based and array-based exome 

capture. In solution-based exome capture the genome is fragmented and biotinylated probes 

are used to selectively capture and hybridize the exon sequences 25. The hybridized targets are 

captured using magnetic streptavidin beads and the untargeted sequences are washed away. In 

array-based capture the probes are bound on high-density microarrays 26. The probes 

selectively capture the exon sequences and the untargeted fragments are washed away. The 

captured targets are then amplified by PCR and sequenced by NGS  25. The reads generated by 

the NGS platforms are then aligned to the reference genome followed by variant calling to 

detect small mutations (SNVs and InDels)  in the sample 27.   

 

1.7. RNA-sequencing 

RNA-sequencing (RNA-seq) with NGS technology is used to identify and quantify RNA 

molecules. It is widely utilized for cataloging transcript species, such as mRNAs and lncRNAs, 

to determine the transcriptional structure of genes, and differential gene expression analysis, 

for example between normal vs disease state 20. Unlike Exome-seq where precise knowledge 

of target sequences (exons) is required RNA-seq can be performed without any prior 

knowledge of the target sequences (transcripts) 20. It can be applied for de-novo construction 

of the transcriptome for those species whose reference genome is not yet sequenced 28. It can 
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also be applied for the detection of DNA variants 29. In RNA-seq the target RNAs (for ex. poly-

A containing mRNAs) are extracted using poly-T oligo attached magnetic beads. The purified 

mRNAs are then fragmented into small pieces. The cleaved RNA fragments are then copied 

into cDNA sequences using reverse transcriptase.  The single stranded cDNA fragments are 

then copied into double stranded cDNA sequences. Adapters are then attached to the 

fragments. Each fragment with or without amplification is then sequenced by NGS. After 

sequencing, the resulting reads are either aligned to a reference genome or reference 

transcriptome, or assembled de-novo to construct the transcriptome map if the assembled 

genome is unavailable 18. 

  

1.8. LC-MS/MS based proteomics 

In mass spectrometry (MS) based proteomics the goal is to identify and quantify all proteins 

present in the sample. In the bottom-up proteomics approach the proteins are extracted and 

digested with a proteolytic enzyme such as trypsin. The resulting mixture of peptides is 

separated by Liquid Chromatography (LC) and injected into a mass spectrometer, where the 

peptides are ionized and accurate measurements made of the peptide’s mass and isotopic 

profile 30. Modern mass spectrometers are also able to isolate peptides (on the basis of the 

measured molecular mass) and then dissociate the isolated peptides into structurally 

informative fragments. This process, termed tandem mass spectrometry or MS/MS for short, 

provides the raw data used for the identification of proteins. The precursor ion mass (i.e. 

isolated and subject to MS/MS) and the masses of the structurally informative fragments are 

submitted to proteomics search engines 31. The search engines statistically match the 

experimental data (masses of precursor and MS/MS fragments) to theoretical data (masses of 

precursor and expected fragments) of the peptides predicted from a database of known protein 

sequences and assign a score for every match. The peptide with the highest scoring match 

between the experimental and theoretical data is reported as a Peptide Spectrum Match (PSM).  

Proteins are then inferred from the identified peptides, Figure 5. To evaluate the False 

Discovery Rate (FDR), a target decoy search strategy is utilized in which the same data is also 

searched against a database of decoy proteins. The decoy protein sequences are created from 

the target proteins by reversing or randomizing the amino acid sequences. The proportion of 
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PSMs in the decoy database to the total PSMs (target PSMs + decoy PSMs) above a score 

threshold is utilized to estimate the rate of false positives 32.  

The proteomics search engines utilized for protein identification require a database of protein 

sequences, usually this database is the reference proteome of the organism of the sample. A 

protein can only be identified if it is contained in the database. For many applications, 

especially cancer, the reference proteome may not contain all of the proteins that may be 

expressed. 

 

  

 

 

 

 

 

 

 

 

 

 

1.9. Proteogenomics 

Proteogenomics integrates the data generated from genome and transcriptome sequencing into 

the proteomics data analysis pipeline. The central idea in proteogenomics is to interrogate 

proteomics data using customized protein sequence databases that are derived from genome or 

transcriptome sequencing. Peptides identified from these custom databases but which are not 

part of the reference proteome can be utilized to discover novel genes, correct existing gene 

annotations and confirm the expression of variant proteins (e.g. resulting from mutation) 33 34.  

Initially proteogenomics was used for the correction of existing gene models 35. Lately it has 

emerged as a powerful tool in the study of cancer 36. Cancer is driven by genomic alterations 

that result in a series of genomic changes that include mutations, methylations, copy number 

aberrations and translocations 1. To understand the molecular changes associated with cancer 

deep genome sequencing has been performed, for example the International Cancer Genome 

Figure 5. Summary of protein identification by mass spectrometry. 
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Consortium and The Cancer Genome Atlas (TCGA) projects 37. It was later understood that 

the definition of the cancer proteome was also vital to link cancer genotypes to phenotypes. To 

accelerate the knowledge of the molecular basis of cancer through the application of 

quantitative, proteomic technologies the Clinical Proteomics Tumor Analysis Consortium 

(CPTAC) was launched under the auspices of the National Cancer Institute (NCI) 38. It carries 

out large scale proteome characterization of matched tumor samples which had undergone 

genome and transcriptome sequencing in the TCGA projects 38 . The complexity and high-

throughput nature of each omics technology is not amenable to manual interpretation. Thus, 

bioinformatics plays a vital role in proteogenomics for data integration and its interpretation 

39.  

Genetic mutations accumulate during cancer progression and change the proteome landscape 

by translation of variant proteins 40, aberrant proteins 41, alternative splice isoforms 42, upstream 

open reading frames (uORFs) 43,44, long non-coding RNAs (LncRNAs) 45 and novel protein 

coding sequences (CDS) 46. uORFs are protein translations from the 5’-UTR of the mRNA and 

always precede the natural start site in the mRNA 47,48. uORFs have been found to regulate the 

expression of the main ORF 49,50. Likewise, dORFs are translations from the 3’-UTR of the 

mRNA and always end after the natural stop site in the mRNA 48. LncRNAs are transcript 

classes that do not code for proteins because they do not contain a long open reading frame 51, 

nevertheless evidence for their active translation has been reported 48,52–54.  

The compact reference proteome databases from UniProt 55,  RefSeq 56, GENCODE 13 used to 

identify proteins in LC-MS/MS experiments only contain curated reference protein sequences, 

and so cannot be used to identify peptides from genomic variants or novel proteoforms. LC-

MS/MS analysis of a cancer proteome using such a reference protein database limits the 

analysis to proteins that are expressed by normal human cells. As such it under utilizes the 

sensitivity of MS methods to identify mutant or aberrant peptide signatures present in the 

sample that cannot be explained by a reference human proteome 57. 

Many specific germline mutations are strongly associated with disease and have been essential 

to our understanding of the molecular basis of many cancers 58–61. For example the 

identification of germline mutations in succinate dehydrogenase genes in patients with head 

and neck paragangliomas 62 and pheochromocytomas 63, inactivating mutations of fumarate 

hydratase in hereditary leiomyomas and type 2 papillary renal cell carcinoma syndrome 64, and 
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mutations in the isocitrate dehydrogenases genes in patients with Ollier disease 65  and low 

grade/secondary gliomas 66. 

In personalized proteogenomics sample specific mutation data is used to generate a patient-

and-sample-specific protein sequence database 57,67. Proteogenomics pipelines have been 

reported for the mutations and isoforms identified by NGS experiments 68. It should be noted 

that all of these types of genomic alterations may occur simultaneously, and protein sequences 

may also originate from supposedly non-coding transcripts and non-coding regions of protein 

coding transcripts 69,70. Furthermore there are many common protein modifications that may 

occur of biological origin (acetylation, deamidation, methylation, etc.), or that occur during the 

preparation of the samples (e.g. oxidation) or during the mass spectrometry analysis itself (loss 

of water, ammonia). When proteogenomics is used to identify novel proteoforms resulting 

from genomic mutation it is essential to first consider these common protein modifications, 

and to consider all types of mutation. The evidence level needed for the confident identification 

of novel proteoforms, especially those related to disease, necessarily exceeds that used for the 

routine identification of normal proteins.  

 

1.9.1. Databases for proteogenomics searches 

In proteogenomics the first step is the construction of customized protein sequence databases. 

The types of database utilized depend upon the goals of the proteogenomics experiment 71. If 

the goal is to discover protein variants, a database of variant proteins predicted from the 

genomic variants must be constructed 71. Likewise, if the goal is to identify novel protein splice 

isoforms, a database of novel proteoforms predicted from the reference genome or measured 

transcriptome can be generated. A database of ORFs from transcript sequences can be 

generated to discover uORFs, dORFs, alternate frame translations and translations from 

supposedly non-coding transcripts. A database of ORFs from gene sequences or full genome 

can be generated to discover intronic and novel CDS translations.    

 

1.9.2. Types of peptides in proteogenomics  

Peptides identified from the customized databases used in proteogenomics searches must be 

mapped onto the reference genome. By mapping these peptides onto the same genomic co-

ordinate system that is utilized to view NGS data the results can be placed in their genomic 
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context. All peptides in a proteogenomics search can be divided into two major groups, 

intragenic and intergenic peptides 71. Intragenic peptides map onto the annotated gene 

segments of the genome whereas intergenic peptides map onto the unannotated segments of 

the genome, Figure 6. The intragenic peptides can then be classified as protein-coding or non-

coding based on the biotypes of the genes onto which they map. The non-coding peptides map 

onto non-coding genes such as pseudogenes and lncRNA genes. Most peptides from an MS 

experiments map onto exons or between two or more exons (exon-spanning) of the protein 

coding genes. A small fraction can have a different origin, such as non-coding regions of 

protein coding genes (Intron, 5’-UTR, 3’-UTR). Others may map onto the protein coding 

transcripts in an alternate frame (Alt-frame). Intragenic peptides can also span the boundary of 

exons and introns (Exon-extension), or map onto unannotated alternative splice junctions 

(Exon-skipping). Peptides discovered from a personalized proteome (SNV and InDel) may 

map onto CDS regions of the gene. Finally, some peptides may map onto novel exons predicted 

by the RNA-seq data (novel isoforms). 

 

 

Figure 6. Types of peptides that can be identified in a proteogenomics experiment.    
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1.9.3. Proteogenomics mapping 

Search engines utilized in the identification of proteins from MS/MS spectra report identified 

proteins by their names or identifiers. The protein names or identifiers are extracted from the 

fasta headers of the sequences contained in the protein database supplied to the search engines. 

If gene level identification is desired a link between the identified protein and its encoding 

gene is established by matching the protein identifiers to the encoding genes. Peptides in 

proteogenomics searches may originate from reference proteins, SNVs, InDel, Exon-skipping, 

uORFs, altCDS, dORFs, Exon-extension, noncoding RNAs, novel isoforms, pseudogenes and 

novel CDS. Although all peptides identified in an LC-MS/MS experiment have a genomic 

origin: Genome  Gene  transcript  protein  peptide, search engines do not report 

peptides by their genomic co-ordinates. By mapping them onto a coordinate system that also 

enables the visualization of the corresponding genomic features one can learn about their 

genomic context. The coordinate system of choice is the reference genome of the organism. 

This coordinate system is extensively utilized for the display of NGS data, such as sequence 

reads, variants, and novel isoforms. Genome browsers such as the Integrative Genomics 

Viewer (IGV) and Genome Data Viewer (GDV) enable the visualization of genomic features 

alongside the NGS data. Thus, by mapping peptides onto the reference genome one can 

visualize them with their associated genomic features. The mapping procedure should report 

the result in a format that can be easily understood by the genome browsers. This is known as 

(proteo)genomics mapping. Currently, several tools exist that can be utilized for this purpose, 

such as PGx 72, Peppy 73, Proteogenomics Mapping Tool 74, Pepline 75, ProteoAnnotator 76, 

MSProGene 77, GalaxyP 78 and PoGo 79. Most available tools can be broadly divided into two 

groups: pipeline dependent and pipeline independent. The pipeline dependent tools such as 

Peppy and GalaxyP limit the users to a specific analysis pipeline, and thus a specific method 

for FDR, search engine etc... Although pipeline dependent tools can be user friendly in the 

sense they are designed with considerations to proteogenomics mapping, they limit the user’s 

freedom with regard to the bioinformatics options for peptide identification. Pipeline 

independent tools such as PoGo require the set of peptides as input, but generate the peptide 

co-ordinates in Browser Extensible Data (BED) file format, which is easily understood by 

genome browsers such as IGV and GDV.  
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1.9.4. Limitations with current proteogenomics mapping tools 

Although, many tools are available for mapping peptides to their genomic origin they have 

limitations in sensitivity and specificity 79 . BLAST is a powerful tool for alignment of query 

nucleic acid or protein sequences to a database of nucleic acids or proteins 80 . TBLASTN is 

one of the tools in the BLAST tool suite that can map a query protein sequence to a database 

of nucleic acids such as a reference transcriptome or reference genome. It can also be utilized 

to map peptides by customizing the TBLASTN search parameters for short sequences. 

TBLASTN suffers from sensitivity if the peptide sequence is too small and/or contains low 

sequence diversity. For example, the SNV peptide “LLLEEEQKEEEER” produced due to a 

mutation at chr10 position 3200020, cannot be mapped by TBLASTN (version 2.8.1) onto 

human RefSeq transcripts, genes or the full human genome. Furthermore, the TBLASTN 

output cannot be directly utilized in genome browsers and has to be converted to BED format 

or General Transfer Format (GTF).       

PoGo is another tool that can map reference and SNV peptides to their genomic co-ordinates. 

To perform mapping PoGo requires the peptides and associated PSMs as a text file, a reference 

annotation file (GTF), and a reference protein sequence file (FASTA). One of the output 

formats of PoGo is BED file format, which can be directly utilized in genome browsers for 

visualization. PoGo is a fast peptide mapper and can be successfully applied to map thousands 

of peptides directly onto the reference genome, and is also able to accommodate up to 2 SNVs 

on the peptides 79. Although PoGo is adept at mapping reference and SNV peptides onto the 

reference genome, it cannot map peptides produced due to Exon-skipping, InDel mutations, 

non-coding regions of protein coding transcripts, or non-coding transcripts. PoGo maps all 

peptides onto the reference proteome then transforms the peptide locations onto the reference 

genome without incorporating any knowledge of the detected SNVs. Even if the peptide has 

been generated from a VCF file of detected variants (NGS guided), PoGo does not utilizes this 

information and can map the SNV peptide to all possible genomic co-ordinates or reference 

proteins. For example, the SNV peptide “TNTFPLLEDEDDLFTDQKVK” of the gene 

WASHC2A and produced due to a mutation at chr10 position 50129923, was mapped by PoGo 

onto WASHC2A and WASHC2C. Both WASH genes are highly homologous with their 

corresponding UniProt proteins “Q641Q2” and “Q9Y4E1” sharing 97% sequence identity. 

The NGS data demonstrated that the mutation was present in WASHC2A and not in 
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WASHC2C. Specific RNA-seq reads were aligned onto the WASHC2A gene but not on the 

WASHC2C gene. Mapping the peptide with PoGo unnecessarily introduced ambiguity about 

its origin because it did not utilize all of the available information. In other words, despite NGS 

evidence that the peptide has a single genomic origin, event level classification of the peptide 

using PoGo would result in it being classified as ambiguous due to multiple possible genomic 

co-ordinates. 
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1.10. Objectives 

In this work computational methods for proteogenomics have been developed to identify and 

validate non-canonical proteins. The data for this project was generated from Exome-seq, 

RNA-seq and LC-MS/MS analysis of MCF7 cells.  

It is known that cancer is driven by mutations in the genome. Mutations accumulated during 

tumor development can alter the primary sequence and expression level of the mutated gene, 

and through dysregulation can affect the expression or other proteins. However the reference 

proteome databases used to identify proteins are curated to only include those proteins 

produced by normal cells, and thus cannot be utilized to identify those due to mutation. 

Proteogenomics analysis enables the analysis of such non-canonical proteins by creating 

customized protein sequence databases that include the mutant proteins, as well as novel 

protein isoforms that may result from dysregulation of protein expression.   

In the first part of my work I developed Python scripts to generate customized protein sequence 

databases from the reference genome, transcriptome and from variants identified in NGS 

experiments. These proteogenomics databases were then subsequently used to identify 

peptides from non-canonical proteins (i.e. those not included in the curated reference protein 

databases).  

In the second part of my work I focused on quality control of the non-canonical peptides. For 

example it is not uncommon that peptides will be confidently identified based on MS/MS 

spectra with a poor signal-to-noise-ratio. Such identifications have an increased risk of being 

a false positive because noise peaks may contribute to the identification. To guard against such 

false positives a dynamic noise level (DNL) algorithm was incorporated to remove peptides 

identified from spectra with poor signal quality.  

Peptides are frequently identified using a fraction of the peaks contained in the MS/MS 

spectrum, because the statistical match between experimental data and predicted MS/MS 

spectra is greater if the database search utilizes only the most common fragmentation channels 

for the MS/MS method. Although it is not necessary for the identification to use all high 

intensity fragment ions, the presence of non-annotated peaks increases the risk of false positive 

identifications. To further guard against the non-canonical peptides being false positive 

identifications an MS/MS spectrum annotation tool was developed to comprehensively 
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annotate the matched spectrum. The tool was utilized post database search to ensure that the 

other possible fragmentation channels could explain the non-annotated peaks. 

Non-canonical peptides identified through the proteogenomics analysis pipeline are best 

contextualized by mapping them on to the genome. In the third part of my work, I developed 

an algorithm to map these peptides onto the reference genome. The genomic mapping was 

utilized to assign context to the identified peptides and in their genomic classification. 

In the final part of my work I developed methods for the validation of the non-canonical 

peptides. Synthetic isotopically-labeled standards (SIS) of the non-canonical peptides were 

purchased; the SIS peptides were then added to the cell extracts and targeted proteomics 

experiments performed on the non-canonical peptides (endogenous and SIS). I wrote Python 

scripts to quantitatively compare the MS/MS spectra and elution profiles of the endogenous 

and SIS peptides. A two tier automated validation scheme was implemented in which the 

cosine similarity was utilized to compare the fragmentation patterns and elution profiles.  

The result of the proteogenomics searches, data quality control, genomic mapping, and 

validation, is a list of confident non-canonical peptides that can be classified in terms of the 

underlying genome. The development has been performed using the MCF7 breast cancer cell 

line, because it is a widely used model system and is known to include a large number of 

genomic mutations. 
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2. Methods 

 

2.1. MCF7 cells 

In this project proteogenomics analysis of MCF7 cells line has been performed. Data from 

Exome-seq and shotgun proteomics of MCF7 cells were produced in-house whereas and the 

RNA-seq data on MCF7 cells was obtained from a public resource (Ion Community website 

81).  

   

2.2. Exome-seq 

The library was sequenced to mean 33x coverage using a Life Technologies Ion Proton 

sequencing platform (Ion Torrent, Life Technologies, Grand Island, NY) for NGS. Genomic 

DNA was extracted from MCF7 cells and the DNA concentration was measured using a Qubit 

system (Life Technologies). Each fragment library was constructed from 1 μg of DNA using 

the IonTargetSeq exome enrichment kit. The quality and the quantity of the amplified library 

was checked using an Agilent 2100 Bioanalyzer instrument with the Agilent High Sensitivity 

DNA Kit. A total of 500 ng of amplified, size-selected library DNA was used for exome 

enrichment: a probe hybridization reaction followed by recovery of the probe-hybridized DNA 

and amplification of the exome-enriched library. The exome-enriched library was analyzed on 

an Agilent 2100 Bioanalyzer instrument with the Agilent High Sensitivity DNA Kit and the 

dilution required for template preparation was determined. For sequencing an Ion PI 

Sequencing 200 kit (Ion Torrent, Life Technologies, Grand Island, NY) was used. After the 

Ion Proton run the data was analyzed in the Ion Torrent server (Ion Torrent, Life Technologies, 

Grand Island, NY), set for alignment to the reference human genome build 38.  The variants 

were called using the Variant Caller Plugin included in the Torrent suite. Variant analysis was 

restricted to variants occurring in exome regions.  

 

2.3. RNA-seq 

RNA-seq data of MCF7 cells was obtained from the Ion community website 81. Two data 

analysis pipelines, one using TopHat2 82  and the other using BWA MEM 83, were used. For 

both pipelines the reference human genome GRCh38 was used and variant calling was 

performed identically. In TopHat2 analysis the unmapped reads, generated from the first step, 
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were re-aligned using Bowtie2 84 . The reads mapped with Tophat2 and Bowtie2 were then 

merged using the Picard 85 command SamMerge. We applied the samtools 86 command rmdup 

on the merged file to remove PCR duplicates. Variant calling was performed by samtools 

command “mpileup”. A further filter with a Perl script (Vcf_filter, 2010, Ion Torrent System, 

modified by Nils Homer) was also performed. 

 

2.4. Genomic variants in MCF7 cells 

Variants identified in Exome-seq, RNA-seq and previously reported in the Catalogue Of 

Somatic Mutations In Cancer (COSMIC) 87 were obtained in Variant Call File (VCF) format 

and merged together into a single VCF file with VCFtools 88. The merged file contained the 

union of all variants identified in our NGS experiments and publicly available through 

COSMIC. 

 

2.5. LC-MS/MS 

 

2.5.1. Reagents for LC-MS/MS 

Urea, Ammonium Bicarbonate (AmBic), Iodoacetamide (IAA), DL-dithiothreitol (DTT), 

bovine trypsin, water, acetonitrile (ACN), formic acid, ammonium hydroxide were purchased 

from Sigma-Aldrich (St. Louis, MO, USA). Lys-C was produced by Wako (Neuss, Germany). 

Complete mini EDTA-free Cocktail and PhosSTOP phosphatase inhibitor Cocktail in tablets 

were purchased from Roche (Basel, Switzerland). C18 and Reversed Phase, S (RPS) cartridges 

were purchased from Agilent Technologies (Santa Clara, CA, USA). 326 crude synthetic heavy 

stable isotope standard (SIS) peptides containing one C-terminal heavy Lysine (composition 

C12[-6]N14[-2]C13[6]N15[2]: +8 Da) or heavy Arginine (composition C12[-6]N14[-

4]C13[6]N15[4]: +10 Da) were purchased from JPT technologies (Berlin, Germany). 

 

2.5.2. Sample Preparation for LC-MS/MS  

MCF7 cells were lysed by sonication with an ultrasonic processor (Q125A, QSonica - 5 times 

50% power, 2 sec pulses, 40 J) in lysis buffer (8M urea, Complete mini EDTA-free Cocktail, 

PhosSTOP phosphatase inhibitor Cocktail and 50mM AmBic in MilliQ Water) and spinned 

down for 40 min at 21000 g. Supernatant was recovered in a clean eppendorf tube and the 
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protein concentration determined with a microBCA protein assay (Thermo Fisher Scientific). 

Reduction was performed using DTT at a final concentration of 4 mM during 25 min 

incubation at 56 °C. Alkylation was performed with 8 mM IAA, incubating at room 

temperature in the dark for 30 mins. Digestion was performed in two steps. Lys-C was added 

(1:75 enzyme/protein) and incubated for 4 hours at 37 °C. Trypsin was added at 1:100 

enzyme/protein after dilution to 2 M urea with 50 mM AmBic and incubated overnight at 37 

°C. In the morning the solution was acidified with 10 % formic acid in H2O until pH < 2. 

The resulting MCF7 proteolytic peptides were desalted and fractionated using an AssayMAP 

Bravo (Agilent Technologies) equipped with C18 and RPS cartridges, respectively. Peptide 

desalting was performed using the peptide cleanup V2 protocol. Briefly, C18 cartridges were 

primed with ACN, equilibrated with 50 µL of 0.1% Formic Acid, 100 µL of diluted samples 

were loaded at 5 µL/min. Two cup washes and a cartridge wash were performed with 50 µL 

of water 0.1% formic acid at 10 µL/min, followed by a stringent syringe wash with ACN and 

then peptides were eluted with 30 µL of 80% ACN and 0.1% formic acid at 5 µL/min. 

After desalting the proteolytic peptides were dried in vacuum, and resuspended in 10 mM 

NH4OH pH 10 solution for high pH fractionation. Two sets of fractions were generated for the 

proteogenomics discovery runs. For each run 150 µg of peptides were divided in seven 

fractions using different percentages of ACN in 10 mM aqueous NH4OH pH 10 for peptide 

elution. Specifically the elution solutions were Set A: 0%, 12.5%, 20%, 27.5%, 35%, 42.5%, 

70%; Set B: 0%, 12.5%, 17.5%, 22.5%, 27.5%, 32.5%, 70%. High pH fractionation was 

performed using the fractionation protocol V1.0. RPS cartridges were primed with 100 µL of 

ACN and equilibrated with 50 µL of 10 mM aqueous NH4OH pH 10. The peptide sample was 

loaded in 100 µL 10 mM NH4OH pH 10 at 5µL/min and the flow through was collected. A 

cartridge and cup wash were performed with 100 and 50 µL of the same high pH buffer, and 

fractions eluted with 35 µL plugs at 5 µL/min. All the fractions, including the flow through, 

were dried in vacuum and resuspended in 10% Formic Acid in water before individual LC-

MS/MS analysis. 

For the validation experiments 326 stable isotopically-labeled standard (SIS) peptides were 

individually resuspended in ACN/H2O/formic acid, ratio 50/49/1, and mixed in equimolar 

quantities using the “Reagent transfer” utility of the AssayMAP Bravo. Five sets of seven 

fractions were generated for the validation runs. In the first run, the MCF7 sample was 
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reanalyzed without addition of the SIS peptides. In the second, third and fourth runs the MCF7 

sample was spiked with the SIS peptides at three different concentrations (0.05, 1 and 20 fmol 

for every µg of tryptic digest). In the fifth and final run, the SIS equimolar peptide mix was 

analyzed separately. For each validation run high pH fractionation was performed on the 

AssayMAP Bravo using 0%, 12%, 18%, 24%, 30%, 36%, 80% of ACN in 10 mM aqueous 

NH4OH pH 10.  

 

2.5.3. LC-MS/MS analysis 

LC-MS/MS experiments were performed using an Easy-nLC 1000 (Thermo Scientific) 

coupled to an Orbitrap Fusion mass spectrometer (Thermo Scientific). Proteolytic peptides 

were separated using an EASY-spray C18 column (2 µm particle size, 75 µm x 50 cm, Thermo 

Fisher Scientific) equipped with a trap column (2 µm particle size, 75 µm x 2 cm Thermo 

Fisher Scientific). The eluents had the following composition, eluent A: H2O 0.1 % Formic 

Acid, and eluent B: ACN 0.1 % Formic Acid. Each peptide sample was loaded on to the column 

at 800 bar with 100 % A and peptides were eluted at 300 nl/min using a segmented gradient: 

5 % B for 5 min, 5 - 22 % B in 104 min, 22 - 32 % B in 15 min, 32 – 90 % B in 10 min, 90 % 

B for 15 min. The electrospray voltage was set at 2.2 kV and the ion transfer tube temperature 

at 275 °C.  

Data dependent tandem mass spectrometry was performed using top speed mode (3 sec max 

cycle time). The Full MS scan was acquired in the Orbitrap, m/z 350 to 1500, at 120,000 

resolution. The Automatic Gain Control (AGC, which controls the number of ions to ensure 

consistent high mass accuracy) target was set at 4e5 with 100 ms maximum injection time. 

Monoisotopic precursor selection and a dynamic exclusion of 60 s were adopted. Peptide ions 

with a charge state from +2 to +7 and an intensity greater than 5e3 counts were selected for 

high energy collision dissociation (HCD) using a normalized collision energy (NCE) of 35 % 

and a 1.6 m/z isolation window. MS/MS spectra were acquired in the ion trap mass analyzer 

with a rapid scan rate, 1e4 AGC target and 35 ms of maximum injection time. Data acquisition 

was performed in profile mode for the MS scans and in the centroid mode for MS/MS. 
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2.5.4. Reference proteome databases 

Reference human protein databases, in fasta file format, were obtained from UniProt (release 

September 2016), GENCODE (release 25), and RefSeq (release 78). Mapping files containing 

mapped protein sequences between GENCODE and RefSeq as well as between GENCODE 

and UniProt were obtained from GENCODE release 25. A reference protein sequence database 

was created by taking 82,636 non-redundant protein sequences from GENCODE. This protein 

set was extended with any UniProt protein sequence that had not been mapped onto 

GENCODE proteins. This included 1329 manually annotated “SwissProt” proteins and 610 

computationally predicted “TrEMBL” 89 protein sequences. Finally, we added 2643 manually 

annotated RefSeq protein sequences, which had not been mapped onto GENCODE. 

Computationally predicted RefSeq protein sequences were not added to the reference proteins 

to keep the number of reference sequences fairly small and complete. Finally, our reference 

protein database contained a total of 87218 non-redundant protein sequences. 

 

2.6. Data formats 

In this section the file formats utilized in this work are briefly described. Genome annotations 

were obtained in GTF and GFF3 format. The reference sequences (genes, transcripts and 

proteins) were obtained in FASTA format and the genomic co-ordinates of peptides were 

produced in BED file format. The genomic variants in MCF7 cells were obtained in VCF 

format.   

  

2.6.1.1.  Genome annotation and sequence file formats 

The reference human genome is released as a fasta file that contains the DNA sequences of all 

chromosomes, haplotypes, patches and scaffolds on the forward strand. Sequences are 

composed of 5 letters: Adenine (A), (Guanine) G, Cytosine (C), (Thymine) T and Unknown 

(N). The DNA sequence of the reverse strand is not included in the fasta file but can be inferred, 

since bases in the forward strand are complementary to the bases on the reverse strand (e.g. A 

pairs with T and G pairs with C). 

The annotations on the sequences in the fasta file are released in GTF or GFF3 format. The 

GTF or GFF3 format is a structured tab separated hierarchical feature file. This file format is 

extensively used to record genomic features such as gene, transcript, exon, CDS, start codon, 
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end codon and UTRs. A GTF file consists of 9 columns. The columns in the file are: seqname, 

source, feature, start, end, score, strand, frame and attribute. A line in the annotation file 

contains the chromosome (seqname), start position (start), end positon (end), and strand 

information for any feature localized in the genome. The chromosome can be one of autosomes 

(1 to 22), sex chromosomes (X and Y) and mitochondrial (M). The feature could be one of 

gene, transcript, exon, CDS, start codon, stop codon and UTR. The start and end values are 

positive integers which defines the inclusive range of nucleic acids that belong to a feature. 

The strand is either positive (+) or negative (-). The annotation file is hierarchically structured. 

A gene may have multiple transcripts and any transcript may have one or more exons. An exon 

may have a CDS if the transcript is protein coding.  

 

2.6.1.2. VCF file format 

A VCF file is used to record genomic variants. It is a structured tab separated file and contains 

8 columns. The columns in the VCF file are #CHROM, POS, ID, REF, ALT, QUAL, FILTER 

and INFO. Any variant detected by the variant calling programs is represented in a single line 

with its chromosome (#CHROM), position (POS), reference allele in the genome (REF) and 

the alternate allele (ALT) detected in the sample. The variants in the VCF file are always 

recorded in the forward strand.  

 

2.6.1.3. BED file format 

The BED format is a structured tab separated file that is used to record genomic features.  It 

can easily handle features that are distributed over multiple exons and can be loaded into any 

genome browser for visualization. A BED file consists of a single feature per line separated by 

tabs. Each line contains 3 to 12 columns. The 12 columns of the BED file are: chrom, 

chromStart, chromEnd, name, score, strand, thickStart, thickEnd, itemRGB, blockCount, 

clockSizes, blockStarts.   

1. chrom – name of the chromosome. 

2. chromStart – Start position of feature. The system is 0 based. 

3. chromEnd – End position of the feature. End position is not included in view. 

4. name – Display name of the feature. 

5. score –Score of the feature (between 0 to 1000). 
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6. strand – Strand defined as + or -. 

7. thickStart – Co-ordinate to start drawing co-ordinate as solid rectangle. 

8. thickEnd – Co-ordinate at which to stop drawing feature as solid line. 

9. itemRGB – An RGB color value for the feature. 

10. blockCount – The number of sub elements of the feature. 

11. blockSizes – The size of these sub-elements. 

12. blockStarts – The start coordinate of each sub-element. 

 

 

2.7. Algorithm development 

Python scripts were written for the generation of customized databases, application of a 

dynamic noise level (DNL) algorithm on MS/MS spectra, comprehensive annotation of 

MS/MS spectra, proteogenomics mapping of all classes of peptides, chromatogram extraction 

of endogenous and the synthetic stable isotope-labeled standard (SIS) peptides as well as 

comparisons of their fragmentation pattern and elution profiles. Besides the modules available 

in the Python standard library, the following packages were extensively utilized:  BioPython 

90, Pandas 91 , NumPy 92, SciPy 93, Pyteomics 94 and Matplotlib 95. In the following sections, 

the algorithms utilized for performing these tasks are briefly described.  

      

2.7.1. Extraction of reference sequences 

With the full genome and the annotation file it is possible to generate the full set of reference 

genes, transcripts and protein sequences. This might seem to be an unnecessary task since the 

annotation sources also provide these reference sequences. The reference genes, transcripts 

and protein sequences are the outputs of the genome annotation process. The utility of this task 

can be fully exploited when one seeks to perform sequence operations such as; producing a 

personalized genome, transcriptome and proteome. Sequences from the genome file can be 

extracted guided by their co-ordinates in the annotation file and customized databases for 

proteogenomics searches can be constructed. Programming languages such as Python have an 

extensive collection of modules for dealing with biological sequences. BioPython is one such 

package that can be used for the extraction, manipulation and translation of DNA sequences. 

Guided by the co-ordinates in the annotation file an in-silico transcription and translation can 
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be performed. To generalize this, let P be a protein that is produced from a transcript T of Gene 

G. Let’s assume transcript T has 3 exons, each containing a CDS. To obtain the full sequence 

of the protein coding gene G, the genomic co-ordinates of gene G in the annotation file can be 

utilized to extract the DNA sequence from the genome file (FASTA). If G is situated on the 

reverse strand of the DNA then the extracted gene sequence is reverse complemented. 

Automating the gene extraction process for all genes in the annotation file will result in a set 

of all gene sequences. If one wants to construct the spliced mRNA sequence of transcript T, 

then the DNA sequence of all three exons of transcript T are extracted from the genome file 

guided by their co-ordinates in the annotation file. If the transcript is located on the reverse 

strand then the extracted exon sequences are reverse complemented. The three exon sequences 

are then concatenated together in proper exon order to get the full length spliced mRNA 

sequence of transcript T. Automating the transcript extraction process for all transcripts in the 

annotation file will result in a set of all transcript sequences (reference transcriptome). If one 

wants to construct the full protein sequence P, the DNA sequence of each of the three CDSs 

on each of the three exons of transcript T are extracted guided by their co-ordinates in the 

annotation file. If the transcript is situated on the reverse strand, each of the extracted CDS 

sequences are reverse complemented. The CDS sequences from the exons are then 

concatenated together in proper CDS order to produce the full length CDS. The full length 

CDS is then translated into a full length protein P utilizing the proper genetic code. Repeating 

the protein extraction process for all protein coding transcripts in the annotation file will 

generate the full set of proteins (reference proteome). The described method for gene, transcript 

and protein extraction can be performed for any species whose genome has been sequenced 

and the corresponding annotation is available along with the genetic code for translation of 

nucleic acid sequences. The set of gene, transcript and protein sequences that can be extracted 

from the genome guided by their co-ordinates in the annotation file are referred to as reference 

sequences of the organism. The reference sequences are the same for all individuals of a 

species. The use of the terms reference genes, reference transcripts and reference proteins in 

the following sections would relate to these sequences that are accessible directly from the 

assembled genome (FASTA) and its corresponding annotation file (GTF or GFF3). 
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2.7.2. Generation of variant sequences 

In-house python scripts were utilized for the generation of variant proteins in FASTA format. 

To create a personalized proteome of a sample incorporating the variants identified by NGS, 

the VCF file can be utilized along with the annotation file (GTF or GFF3) and the genome file 

(FASTA). To generalize this, the example of generating a reference protein sequence P in the 

section above can be extended with the variant information in the VCF file. Let, V be a variant 

(SNP or InDel) located in the VCF file which causes amino acid changes in the encoded 

reference protein P. The variant V is stored in the VCF file with its chromosome (#CHROM), 

position on chromosome (POS), reference bases in the reference genome (REF) and alternate 

bases detected in the sample (ALT). Start and end co-ordinates of all three CDSs of protein P 

are scanned for the presence of variants in the VCF file. Reference CDS sequences of protein 

P that satisfy the condition: CDS start <= POS <= CDS end, are extracted. The CDS is then 

modified by the substitution of reference bases (REF) at position (POS) with alternate bases 

(ALT), and a variant CDS is generated. The variant CDS can now be utilized instead of the 

reference CDS to generate the full length CDS sequence, which upon translation will generate 

the full length variant protein. Repeating the variant protein generation process for all reference 

proteins in the annotation file, and utilizing all detected variants in the VCF file, will generate 

a set of variant proteins (personalized proteome).  

If more than one variant (mixed variants) were identified at a genomic location all possible 

variant CDSs were generated. If a protein contained more than one SNV they all appear on the 

same variant protein at different amino acid positions. If the variant amino acid in a protein is 

Arginine (R) or Lysine (K) it creates new tryptic sites. If more than one SNV occur in those 

proteins, the set of tryptic peptides generated when all SNVs are applied together will be 

different than the set of tryptic peptides when those SNVs are applied individually. For such 

cases, we also generated variant proteins in which all SNVs were individually applied. For 

example, if a protein contains two SNVs, one of them being R or K, a variant protein was 

generated with both SNVs appearing together on the same variant protein. Two other variant 

proteins were also generated in which the SNVs were individually applied. This approach 

provided all the tryptic peptides that could be obtained as a result of the two SNVs on the 

protein. Insertion or deletion mutations in the VCF file were applied one at a time, so for each 

insertion or deletion mutation separate variant protein sequences were generated. Thus, if a 
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protein had two insertion and two deletion mutations, four protein sequences were generated, 

one for each insertion and deletion mutation. 

 

 

2.7.3.  Generation of customized protein databases from the reference genome 

and transcriptome 

Python scripts were written to generate a database of novel exon-skipped proteins from the 

reference transcript structures in FASTA format.  An exon in the transcript was skipped if its 

frame of translation was the same as the subsequent exon, Figure 7. The exon-skipped 

transcript was then translated into an exon-skipped protein.  

 

 

Figure 7. An example of exon-skipping. The figure shows a transcript structure of a gene with 

5 exons (1 to 5) and 4 introns as straight blue lines connecting the exons. Exons that have the 

same frame of translation are shown in grey (exon 3 and exon 4). A novel exon-skipped 

isoform transcript sequence was generated by skipping exon 3, and splicing exon 2 to exon 4.    

 

Three transcript biotype specific databases were generated. GENCODE transcripts with 

biotypes protein coding or NMD, retained intron and long non-coding RNA were translated 

into ORFs in 3 frames (1, 2 and 3). Translation in frame 1 was conducted by taking all nucleic 

acids in the transcript sequence. Translation in frame 2 and 3 was done by removing one and 

two nucleic acids from the beginning of the transcript sequence, respectively. GENCODE gene 

and CDS sequences with 100 base pairs flanking sequences were extracted guided by their co-

ordinates in the GTF file. The extracted sequences were translated into ORFs in three frames.  

 

2.7.4.  Noise detection in the MS/MS spectra 

After the database search it is not uncommon that some peptides, even confidently identified 

peptides, are reported from spectra with poor signal-to-noise-ratio (SNR). When seeking to 

identify novel proteoforms it is incumbent to demand the highest data quality, in order to 
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minimize false positive identifications. In principal, such spectra can be filtered out through 

visual inspection but it cannot match the very high throughput of proteomics experiments. As 

part of an automated quality control of identified peptides a dynamic noise level algorithm 

(DNL) 96 was implemented in Python to filter out peptide spectrum matches that have low 

SNR. The DNL algorithm makes two assumptions about the MS/MS spectra: 1) in a good 

quality spectrum the signal peaks are of greater intensity than the noise peaks, and 2) there is 

at least one noise peak in all spectra 96. The steps of the DNL algorithm are:  

i) All peaks in the spectrum are sorted in order of increasing abundance Ii (i = 1, 2,… N).  

ii) The first peak in the sorted spectrum is assumed to be noise.  

iii) The SNR of the other peaks are calculated as the ratio of their intensity to the predicted 

peak intensity of a noise peak, which is predicted by scaling the abundance of the noise 

peak by a scaling factor (1 + α). Here the default setting of α was 0.5. 

iv) If the SNR of the second peak is greater than the minimum SNR threshold (SNRmin) the 

second peak is considered to be signal and the predicted noise level is set as the noise 

level for the entire MS/MS spectrum. If the SNR of the second peak is not greater than 

the SNRmin the algorithm scans from peaks 3 to N. For any peak k the previous k-1 peaks 

are considered noise. The noise level for peak k is calculated by fitting a linear regression 

to the intensities of the previous k-1 peaks. If the SNR for peak k exceeds SNRmin it is 

considered signal and that noise level is set as the noise level for the entire MS/MS 

spectrum.  

In this work the DNL algorithm was modified to not consider the second peak as signal. If the 

second peak was determined to be signal then the scaling factor α was increased by 0.1 until 

the second peak was determined to be noise.  

 

 

2.8. Comprehensive annotation of matched MS/MS spectra 

An additional quality control step consisted of assessing how many of the detected fragment 

ions could be explained by the identified peptide. The database search methods used for protein 

identification only use a fraction of the possible peptide fragmentation pathways, which is 

determined by the fragmentation method used, e.g. HCD generates primarily a, b, and y type 
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fragments, whereas electron transfer dissociation generates primarily c, and z type fragments, 

Figure 8.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The specification of the fragment ion series (determined by the MS/MS technique) during 

database search is performed to maintain statistical power: the inclusion of all possible 

fragmentation channels would increase the search space but decrease the specificity (the score 

distribution for the random matches is increased while the score for the correct match is 

unchanged). Accordingly, the MS/MS spectra from confidently identified peptides can contain 

high intensity but non-annotated fragment ion peaks that were not used for the identification. 

Although it is not necessary to annotate all high intensity peaks, annotating them increases the 

confidence in the identified peptide because more fragment ions can be explained. If the 

precursor ion is isolated with little or no interference from other co-eluting ions it is important 

that all high intensity fragment peaks can be rationalized. The MS/MS spectra used to identify 

peptides may contain fragment peaks that were not included in the database search, for example 

Figure 8. Peptide ion fragmentation channels in MS/MS. Double backbone cleavage can 

give rise to internal fragments, and cleavage of amino acid side chains can lead to d, v, 

and w fragment ions. 
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from immonium ions, internal fragments, and neutral losses of the peptide precursor. A python 

based spectrum annotation tool was developed to comprehensively annotate the matched 

spectrum. The tool was utilized post database search to investigate if unannotated peaks in 

MS/MS spectra could be explained by other fragment ion types, charge states and neutral 

losses. These quality control steps were developed to ensure all novel proteoforms were 

characterized by good signal-to-noise ratio MS/MS spectra, and in which the identification can 

be used to annotate all good signal-to-noise ratio peaks. 

 

2.8.1.  Proteogenomic mapping 

If the genomic co-ordinates of the peptides are tracked during the search (as in Peppy), peptide 

mapping is not required. If peptides are discovered from reference or customized databases, 

they need to be explained by mapping them onto the reference genome. Genome annotation 

systems at NCBI and GENCODE provide the co-ordinates of genes, transcripts, exon and CDS 

in GFF3 or GTF file format, respectively. These files do not contain the genomic co-ordinates 

of reference proteins, but they can be deduced from the genomic co-ordinates of its CDS. In 

this way, the peptide mapping problem can be traversed backwards where the peptide position 

on the protein is transformed into CDS co-ordinates. In the following sections algorithms 

implemented in python to map different types of peptides are shown. In all cases the algorithms 

use as inputs: genome annotations (in GTF or GFF3 format), a database of proteins (FASTA 

format) and input peptide sequences to be mapped (CSV format). 

 

2.8.1.1. Mapping reference peptides to the reference genome 

Genomic co-ordinates of peptides from reference proteins can be deduced by transforming the 

peptide position in the protein to its position on the full CDS. The peptide position on the full 

CDS can then transformed into its genomic co-ordinates. An algorithm to map peptides of the 

reference proteome to their genomic co-ordinates is described below. See Figure 9 and Figure 

10 for a graphical representation of peptide mapping in forward and reverse strand. 

Step 1: Let, PStart be the peptide start position on a protein and len be the length of the peptide. 

The peptide end position, PEnd, on the protein is given by: PStart + len -1.  
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Step 2: The peptide position onto the protein is transformed into its position on the full 

reference CDS. Let cdsStart be the start position of the peptide on the full CDS. Then, cdsStart 

can be computed with the formula:  

cdsStart = (PStart-1)*3 + frame of the first CDS of the protein + 1. 

The frame value (0, 1 or 2) for every CDS is encoded in the GTF. Frame value 0 indicates that 

the first base of the CDS is the first base of a codon, 1 indicates that the second base of the 

CDS is the first base of a codon, and 2 indicates that the third base of the CDS is the first base 

of a codon. Since each amino acid in the protein corresponds to a triplet of nucleic acids the 

end position of the peptide on the CDS, cdsEnd, can be computed as:  

cdsEnd = cdsStart + (3 * len ) - 1.  

Step 3. The CDS feature which contain the cdsStart and cdsEnd positions are extracted. This 

is done by extracting all CDS’s of the transcript and calculating their cumulative length until 

each CDS. These values are contained in the vector cumlen. The CDS on which the condition, 

cdsStart <= cumlen is satisfied for the first time is located. The peptide begins on this CDS 

feature which we refer to as cdsStartFeature. The subsequent CDS on which the condition 

cdsEnd<=cumlen is satisfied for the first time is located. The peptide ends on this CDS which 

we refer to as cdsEndFeature.  

Step 4: If the cdsStartFeature and cdsEndFeature are the same CDS then the peptide is located 

within a single CDS and is not exon-spanning. If cdsEndFeature is consecutive to 

cdsStartFeature the peptide spans CDSs of two exons: starting within the exon of 

cdsStartFeature and ending within the exon of cdsEndFeature. If any other CDS’s exist 

between cdsStartFeature and cdsEndFeature the peptide spans multiple exons. Once, the 

cdsStartFeature and cdsEndFeature are located the genomic start and end co-ordinate of the 

peptide can be calculated as follows: 

Genomic start =   Start of cdsStartFeature + cdsStart – cumlen before cdsStartFeature - 1 

Genomic end =    Start of cdsEndFeature + cdsEnd – cumlen before cdsEndFeature -1 

If the protein is on the reverse strand, 

Genomic start =   End of cdsStartFeature – (cdsStart – cumlen before cdsStartFeature) +1 

Genomic end =    End of cdsEndFeature – (cdsEnd – cumlen before cdsEndFeature) + 1. 

The deduced genomic start and end positions can be utilized to generate the peptide co-ordinate 

in BED file format. 
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Figure 9. Mapping reference peptides to the reference genome on the forward strand. The 

cdsStartFeature is shown as a blue box and the cdsEndFeature is shown as red box. The 

mapped genomic co-ordinate of the peptide is shown as a green block. The circled numbers 

correspond to the steps in the algorithm described in the text. 

 

 

 

Figure 10. Mapping reference peptides to the reference genome on the reverse strand. The 

cdsStartFeature is shown as a blue box and the cdsEndFeature is shown as a red box. The 

mapped genomic co-ordinate of the peptide is shown as a green block.  
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2.8.1.2. Mapping SNV peptides to the reference genome 

The algorithm discussed in section 2.8.1.1 can also be utilized to obtain genomic co-ordinates 

of SNV peptides if their reference proteins can be tracked. Instead of providing reference 

proteins (FASTA) a database of SNV proteins (FASTA) can be provided. An example fasta 

header of a SNV protein is shown below.  

>ENST00000629481.1_snp_4 chr19 Gene=ENSG00000239998.5 GN=LILRA2 Strand=+ 

54574349_T/C_49_ATC/ACC_I/T_snp 

The header of the SNV protein links it to reference Ensembl transcript ENST00000629481 of 

Gene LILRA2. Once the peptide location on the SNV protein is determined the genomic co-

ordinate of the reference transcript ENST00000629481 can be utilized to map the peptide, 

Figure 11. SNVs do not cause any change in the reference transcript length. Thus the mapping 

of peptides from SNVs can be treated in the same manner as the mapping of reference peptides 

to the reference genome.   

 

Figure 11. Mapping SNV peptides to the reference genome on the forward strand. The 

cdsStartFeature is shown as a blue box and the cdsEndFeature is shown as a red box. The 

mapped genomic co-ordinate of the peptide is shown as a green block. 
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2.8.1.3. Mapping exon-skipped peptides to the reference genome 

Exon-skipped proteins are generated from the reference transcript structures by skipping single 

or multiple exons. If the information regarding which exons were skipped from the reference 

transcripts is retrievable the mapping of the peptides is readily achieved. The algorithm 

described in section 2.8.1.1 can also be used for this task by modifying the inputs. Instead of 

reference annotation (GTF) and reference proteins (FASTA), an exon-skipped annotation 

(GTF) and a database of exon-skipped proteins (FASTA) are provided as inputs to the 

algorithm.  An example fasta header of an exon-skipped proteins is shown below. 

>ENST00000368216.8_NovIso_3 chr1 Gene=ENSG00000143303.11 GN=RRNAD1 

Strand=+ Skipping exon 3 

The header shows that the proteoform was generated by skipping exon 3 from the reference 

transcript ENST00000368216 of the RRNAD1 gene. In this case the GTF file needs to conform 

to the database of exon-skipped proteins. GTF file of exon-skipped isoform transcripts can be 

generated from the reference GTF file. For every exon-skipped protein in the fasta file a novel 

transcript feature can be generated by removing the exon and CDS features of the skipped exon 

from the reference transcript feature. For the proteoform example shown above, exon 3 and its 

CDS are removed from the reference transcript ENST00000368216. The modified GTF file, 

the fasta file of exon-skipped proteins and the peptides to map can then be submitted to the 

mapping algorithm described in section 2.8.1.1 to obtain genomic co-ordinates of the exon-

skipped peptides, Figure 12.  
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Figure 12. Mapping exon-skipped peptides to the reference genome. The cdsStartFeature is 

colored blue and the cdsEndFeature is colored red. The mapped genomic co-ordinate of the 

peptide is shown as a green block. 

 

   

 

2.8.1.4. Mapping peptides from 6 frame transcript sequences to the 

reference genome 

Proteogenomics searches can be conducted with three or six frame translated transcript 

sequences. Although most peptides from this type of search will have a reference protein origin 

some will not. These include peptides originating from (designated) non-coding regions of 

coding transcripts, peptides from non-coding transcripts and complement sequences of coding 

or non-coding transcripts. A fasta file of transcript sequences from which the peptides were 

discovered is required. This can be obtained from annotation resources such as NCBI or 

Ensembl or can be generated in-silico by utilizing the annotation file (GTF) and the full 

genome FASTA file. For in-silico generation all exons of a transcript are extracted from the 

full genome utilizing the co-ordinates of the exons in the annotation file. The exon sequences 

are concatenated in proper exon order. If the transcript is on the reverse strand the exon 

sequences are reverse complemented before concatenation. The transcript sequences can then 

be translated in three forward frames (1, 2 and 3). Translation in frame 1 is conducted by 
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utilizing all nucleic acids in the transcripts. Translations in frames 2 and 3 are conducted by 

utilizing all nucleic acids in the transcript except the first and the second base, respectively.  

If peptides need to be mapped on the complement sequences of transcripts then the reference 

annotation file can be appended with annotations for complement sequences. The protein 

translations from complement sequences need to be generated as well. This is easily achieved 

by reverse complementing the reference transcript sequences and translating them in frames 1, 

2 and 3. To generate annotations for complement sequences a copy of the reference annotation 

is generated. The strand information of all transcripts and its sub-features (exons and CDS) in 

the copied GTF file is reversed (+ to – and vice versa). The order of exons in also reversed. 

For example if a transcript had three exons on the forward strand, the strand is set to negative 

and the order of exons reversed in the copied GTF file. Exon number 1 is set to exon number 

3, and exon number 3 is set to exon number 1. The hierarchical order of exons (exon 1 followed 

by exon 2 and so on) in the copied GTF file is preserved after these changes. The modified 

GTF file can then be appended to the reference GTF file. After this step the modified mapping 

algorithm can be applied for peptide mapping. The inputs to the algorithm are the GTF file 

with reference and complement annotations, six-frame translated protein database and peptides 

to map, Figure 13.  

Step 1: Let PStart be the start position of a peptide on a proteoform and len be the length of 

the peptide. Then the peptide end position on the proteoform is: PEnd = PStart + len -1. 

Step 2: The peptide position on the proteoform is transformed into its position on the transcript. 

Let tStart be the start position of the peptide on the transcript, computed as: 

tStart  = (PStart-1)*3 + frame of the translated proteoform. 

The frame value (1, 2 or 3) for every proteoform is recorded while translating the transcript 

sequences. Since each amino acid in the proteoform corresponds to a triplet of nucleic acids 

the end position of the peptide on the transcript can be computed: 

tEnd = tStart + (3 * len) -1.  

Step 3: The Exon features that contain the tStart and tEnd positions are extracted. This is done 

by extracting the cumulative length until each exon of the transcript. The values are stored in 

a vector referred to as exon_cumlen. The exon on which the condition tStart <= exon_cumlen 

is satisfied for the first time is located. The peptide starts on this exon, referred to as 

exonStartFeature. The subsequent exon on which the condition tEnd<=exon_cumlen is 
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satisfied for the first time is located. The peptide ends on this exon, referred to as 

exonEndFeature. 

Step 4: If the exonStartFeature and exonEndFeature are the same exon then the peptide is 

located within a single exon and is not exon-spanning. If exonEndFeature is consecutive to 

exonStartFeature the peptide spans two exons: starting within exonStartFeature and ending 

within the exonEndFeature. If any other exons exist between exonStartFeature and 

exonEndFeature then the peptide spans multiple exons. Once exonStartFeature and 

exonEndFeature are determined the genomic start and end co-ordinates of the peptide can be 

calculated as follows: 

Genomic start =   Start of exonStartFeature + tStart – cumlen before exonStartFeature – 1. 

Genomic end =    Start of exonEndFeature + tEnd – cumlen before exonEndFeature -1. 

If the protein is on the reverse strand, 

Genomic start =   End of exonStartFeature – (tStart – cumlen before exonStartFeature) +1. 

Genomic end =    End of exonEndFeature – (tEnd – cumlen before exonEndFeature) + 1. 

 

 

Figure 13. Mapping peptides from 6 frame transcripts to the reference genome. The 

exonStartFeature is colored blue and the exonEndFeature is colored red. The mapped genomic 

co-ordinate of the peptide is shown as a green block. 

 



 48 

2.8.1.5. Mapping InDel peptides to the reference genome 

InDel mutations change the length of the encoded mRNA and thereby produce proteins whose 

lengths differ from the reference proteins. If the mutation is in-frame (addition or deletion of 

nucleotides in multiples of 3), it adds or removes amino acids into the encoded protein. If the 

mutation is out of frame (addition or deletion of nucleotides not in multiples of three) the 

protein’s primary sequence is modified and the protein’s length altered. If the mutation that 

generated the InDel peptide can be retrieved the genomic co-ordinates of the peptide can be 

deduced by modifying the mapping algorithm used to generate the cdsEnd co-ordinates in 

section 2.8.1.1 and supplying the reference GTF file, database of InDel proteins along with the 

peptide sequences to map. 

For example, a peptide “MVSAL-QQQQQQQR” was identified due to an in-frame deletion in 

protein TNRC6B. The fasta header of the in-frame deleted proteoform is shown below. 

>ENST00000454349.6_del_52_DB_4 chr22 Gene=ENSG00000100354.20 GN=TNRC6B 

Strand=+ 

40301172_TGCAGCAGCAGCAGCAGCAGCAGCAG/TGCAGCAGCAGCAGCAGCAG

CAG_23_CTG/fs*_L/fs*  

The InDel protein is produced from reference transcript ENST00000454349 of TNRC6B. The 

fasta header shows the chromosome, gene id, gene name, strand and the mutation string. The 

mutation is in-frame deletion identified by the numbers of bases in the reference allele 

(REF)“TGCAGCAGCAGCAGCAGCAGCAGCAG” (26) and the alternate allele (ALT) 

“TGCAGCAGCAGCAGCAGCAGCAG” (23), respectively.  

The modified mapping uses:  

cdsEnd = cdsStart + (3 * len ) – 1 – (length of (ALT) –length of (REF)). 

After this modification the same algorithm described in section 2.8.1.1 can be applied to map 

InDel peptides to the reference genome, Figure 14.  

 



 49 

 

Figure 14. Mapping peptides from InDel mutations to the reference genome. The 

cdsStartFeature is colored blue and the cdsEndFeature is colored red. The mapped genomic 

co-ordinate of the peptide is shown as a green block. 

 

 

2.8.1.6. Mapping peptides from six-frame gene sequences  

The gene sequences can be extracted from the full genome fasta file guided by their co-

ordinates in the GTF file. If peptide mapping is desired on the complement strands of genes 

the annotations for the complement sequences must be generated. This can be achieved by 

generating a copy of all reference gene annotations and reversing their strand information (+ 

to – and vice versa). All sequence (original and the copy) are then translated in three frames.  

Peptide positions are then computed on the translated proteoforms and transformed into 

genomic co-ordinates, Figure 15. Let PStart be the peptide start position in any proteoform 

and len be the length of the peptide. The peptide positions are then transformed into the 

genomic co-ordinates as follows: 

Genomic start = Start of the gene + frame of the proteoform + (PStart-1) * 3 - 1 

Genomic end = Genomic start + len*3 -1. 

For peptides mapped onto proteoforms in the negative strand, 

Genomic start = End of the gene – frame of the proteoform – (PStart-1) * 3 + 1 

Genomic end = Genomic start – len*3 +1. 
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Figure 15. Mapping peptides from six-frame gene sequences to the reference genome. The 

mapped genomic co-ordinate of the peptide is shown as a green block. 

 

 

 

2.8.1.7. Mapping peptides from GNOMON predicted proteins to reference 

and alternate assemblies  

GNOMOM predicted proteins have two different genomic assembly origins. The reference 

(GRCh38) and the alternate (CHM1_1.1) assembly. Both of these assemblies and the 

corresponding annotations files generated by GNOMON are available from the NCBI. The 

algorithm described in section 2.8.1.1 can be used directly for mapping of peptides onto the 

GNOMON sequences by modifying the inputs. For reference assembly mapping the 

GNOMOM predicted proteins (FASTA) and the GNOMON predicted annotations (GFF3) 

from the reference assembly are provided as inputs. For alternate assembly mapping the 

GNOMOM predicted proteins (FASTA) and the GNOMON predicted annotations (GTF) from 

the alternate assembly are provided as inputs.  

 

2.8.1.8. Mapping peptides from 6 frame full genome searches  

The full genome (FASTA) contains all the chromosomes sequences in forward strand. Nucleic 

acid sequences of the complement strands can be generated by reverse complementing each 

chromosome sequence. All sequences can then be translated in three frames (1, 2 and 3). 

Peptide positions are then computed onto each translated proteoforms and transformed into 

genomic co-ordinates, Figure 16. Let PStart be the start position of a peptide onto a translated 



 51 

chromosome and let len be the length of the peptide. Then the genomic co-ordinate of the 

peptide can be obtained as follows. 

Genomic start = frame of proteoform + (PStart-1)*3  

Genomic end = Genomic start + len*3 - 1  

If the proteoform was obtained from the reverse strand, 

Genomic end = length of chromosome - frame of proteoform – (PStart-1)*3 +1 

Genomic start = Genomic end – (len*3) +1. 

 

 

Figure 16. Mapping peptides from six-frame full genome searches. 

 

 

2.8.2. Generating peptide co-ordinates in BED format 

The sections above described the methods developed to obtain the genomic co-ordinates of 

peptides identified from the proteogenomics searches. All methods produced peptide co-

ordinates that were represented as: chromosome, peptide start position on the chromosome, 

and peptide end position on the chromosome. If the peptide was mapped onto the reverse strand 

of the DNA the peptide start co-ordinate was greater than the peptide end co-ordinate. 

Additional information is also available, such as; strand (forward or reverse), starting exon of 

the peptide (if any) and ending exon of the peptide (if any). These values are sufficient to 

represent the genomic co-ordinates of the peptides in BED file format, thus enabling the results 

to be loaded into any genome browser to visualize the location of the mapped peptides. The 

proteogenomics peptides were color coded into two groups: Ambiguous proteogenomics 

peptides (Black) and Unambiguous proteogenomics peptides (Red).  
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2.9. Validation of the non-canonical peptides  

Some of the non-canonical peptides identified by proteogenomics searches were selected for 

validation using synthetic 13C isotopically-labeled standard (SIS) peptides. The physical and 

chemical properties of the endogenous and SIS peptides are near identical, thus their 

chromatographic profiles and fragmentation patterns should be near identical. A similarity 

metric was used to validate the presence of the endogenous non-canonical peptides. A two-tier 

validation scheme was implemented in Python. Scripts were written for similarity 

computations between the fragmentation patterns (i.e. their MS/MS spectra) and elution 

profiles of the endogenous and SIS peptides.   

Tier1: The cosine similarity was used to quantitatively compare the fragment spectra from 

endogenous and SIS proteogenomic peptides. In-house python scripts were utilized for the 

following tasks. We first applied the DNL algorithm to the MS/MS spectra then annotated the 

signal peaks with fragment ion-types: a, b, y, internal ions (a-type, b-type) of length up to 10 

amino acids, and precursors with a maximum loss of 1 water and/or 1 ammonia. The maximum 

charge state for the fragments was set to 2+ if the precursor was doubly charged, otherwise it 

was limited to one less than the precursor charge. Fragment ion peaks matching un-fragmented 

precursors and its isotopes were removed from the spectra. If a peak could be matched to 

multiple fragment ions we annotated the peaks based on the following priority rule: N-terminus 

or C-terminus fragments > neutral losses from N-terminus or C-terminus fragments > internal 

fragments > neutral losses from internal fragments. If a peak matched to multiple annotations 

after priority based selection we selected the annotation that gave the lowest mass deviation. 

All matched fragment ions present in both the SIS and endogenous MS/MS spectra, above 

noise level, were utilized for determining MS/MS spectral similarity. The intensities of the 

fragment ion peaks were variance stabilized by square root transform and normalized to sum 

1000 before similarity computation. MS/MS spectral similarity was only computed if the 

endogenous and SIS MS/MS spectra contained at least 10 common fragment ions. Non-

canonical, proteogenomic peptides with a cosine similarity greater than 0.9 were considered 

validated at tier 1. 

Tier 2: The extracted ion chromatogram (EIC) of all tier 1 peptides, endogenous and SIS, were 

then examined to ensure their retention times were identical. MS raw files from validation runs 

were converted to .ms1 format with MSConvert (Proteowizard version 3.0.10051). MS1 scans 
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were centroided during conversion. The resulting peak lists were used for chromatogram 

extraction using in-house python scripts and a 10 ppm tolerance. Peptide identification time 

points were extracted from the Mascot 97 search results and the apex of peptide elution peaks 

calculated. Local intensity minimum time points before and after the elution apex were 

determined and used as the time range in which the endogenous and SIS peptide elution 

profiles were compared. If the computed elution profile time range was less than 15 seconds 

or more than 45 seconds we compared a 30 sec time window spanning the elution apex.  

The intensities of the peptides were estimated by summing the intensities of its monoisotopic, 

1C13 and 2C13 peaks, and the similarity was computed between the endogenous and SIS peptide 

profiles. Next, a Savitzky Golay filter 98 was applied onto the summed extracted peaks and the 

similarity computed between the filtered endogenous and SIS peptide profiles. The peptide 

intensities within the time range were normalized to sum 1 before similarity computation. 

Peptides with a similarity score greater than 0.9 either in the raw or in the filtered profiles were 

selected for further processing. Next, we compared the Savitzky Golay filtered peak profiles 

of each individual isotope (monoisotopic, 1C13 and 2C13) of the endogenous and SIS peptides. 

Peptides with a mean isotope profile similarity greater than 0.9 were selected for further 

processing. As a final filter the relative intensities of the isotopes were also compared; only 

those peptides whose isotope composition similarity was greater than 0.9 were considered 

validated at tier 2. 

 

2.10. Proteogenomics databases 

A database of 37,366 SNV proteins and a database of 106905 InDel proteins was created by 

utilizing all variants in the VCF file (see methods section generation of variant sequences for 

details).  Transcriptome fasta files were obtained from GENCODE release 25 and RefSeq 

release June 2016. A database of 187,036 novel splice isoforms was created by skipping single 

exons from the GENCODE mRNAs and “Non-sense mediated decay” (NMD) transcript 

structures. An exon in the GENCODE transcript was skipped if its frame of translation was the 

same as the subsequent exon. GENCODE transcripts with biotypes “protein coding” and NMD 

were translated into ORFs in 3 frames. NMD transcripts contain a premature stop site in its 

canonical reading frame and are targeted by the NMD pathway for degradation to prevent 
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production of truncated proteins 99. ORFs of length less than 10 were discarded and a database 

of 2,221,980 ORFs from protein coding transcripts was created.  

GENCODE gene and CDS sequences with 100 base pairs flanking sequences were translated 

into three frames and ORFs of length less than 20 were discarded. Two databases containing 

20,512,063 ORFs from genes and 1,706,623 ORFs from CDS sequences were created. 

GENCODE transcripts with biotype “long non-coding RNA” were translated in three frames 

and ORFs of length less than 20 were discarded. A database of 125590 ORFs from lncRNAs 

was created. GENCODE transcript sequences with biotype “retained intron” were translated 

in three frames and ORFs of length less than 50 were discarded. A database of 156169 ORFs 

from retained intron transcripts was created.  

A Fasta file of 316,902 GNOMON predicted human protein sequences was obtained from 

NCBI Annotation release 107. GNOMON is NCBI’s eukaryotic genome annotation pipeline. 

The fasta file contains model protein sequences based on experimental cDNA sequences and/or 

ab-initio models from the reference (GRCh38) and the alternate (CHM1_1.1) genome 

assemblies. Full length protein sequences in the GNOMON fasta file that were not present in 

the merged reference proteome were extracted and a smaller database of 69,136 GNOMON 

full length models was created. Henceforth, this database will be referred as GNOMON-small. 

Transcriptome fasta files from GENCODE containing 198,093 transcripts and RefSeq 

containing 176,426 transcripts were utilized for six-frame nucleic acid searches. The human 

genome fasta file was obtained from GENCODE release 23 and split into chunks with the help 

of a script (splitter.pl) from Matrix Science and utilized for six-frame nucleic acid search. All 

sequence databases were uploaded onto Mascot server 97 for database searches. 

 

2.11. Database searches 

2.11.1. Discovery searches 

The raw LC-MS/MS data from 14 in-depth proteomics investigations of MCF7 cells were 

converted to Mascot Generic Format (MGF) using Proteome Discoverer version 1.4 (Thermo 

Scientific). The MGF files were searched using Mascot server version 2.5. A total of 29 

discovery searches were performed, the details of which are reported in Table 1.  

10 searches were performed with different reference proteomes and search parameters (search 

numbers 1 to 10 in Table 1). 19 searches were performed with different proteogenomics 
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databases and search parameters (search numbers 11 to 29 in Table 1). Carbamidomethyl (C) 

was set as fixed modification and 0.6 Da fragment tolerance was used in all searches. Two 

searches (search numbers 3 & 4 in Table 1) with the merged reference proteome were 

conducted with 15 ppm precursor mass tolerance whereas it was set to 10 ppm in all other 

searches. Trypsin was set as the digestion enzyme in all searches except one search with the 

merged reference proteome where it was set to semi-trypsin (search number 5 in Table 1). A 

database of common Repository of Adventitious Proteins (cRAP) was obtained from The 

Global Proteome Machine (GPM) website and searched alongside all databases. Each of the 

proteogenomic databases was searched alongside the merged reference proteome database and 

cRAP database except for the 6 frame nucleic acid searches (search numbers 24,25,26,27 and 

29 in Table 1) because Mascot server version 2.5 did not allow amino acid database to be 

specified alongside nucleic acid databases. A maximum of 2 missed cleavages were allowed 

in all searches except for two proteogenomics searches where it was set to 0 (search numbers 

28 & 29 in Table 1). A total of 7 variable modifications were investigated for the reference 

proteome searches: Oxidation (M), Acetyl Protein (N-term), Deamidation (NQ), Carbamyl (N-

term), Gln->pyro-Glu (N-term Q), Glu->pyro-Glu (N-term E) and Ammonia-loss (N-term C). 

Because of the much larger search space for proteogenomic databases, these searches were 

performed using the 3 most common variable modifications, which were determined in a 

preliminary experiment using the reference proteome. The variable modifications used for the 

proteogenomic searches were Oxidation (M), Acetyl Protein (N-term), and Deamidation (NQ). 
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Table 1: Summary of database searches. Variable modifications are abbreviated as follows: 

Ac: Acetyl (Protein N-term), AL: Ammonia-loss (N-term C), Ca: Carbamyl (N-term), NQ: 

Deamidated (NQ), Gln: Gln->pyro-Glu (N-term Q), Glu: Glu->pyro-Glu (N-term E), Ox: 

Oxidation (M). Databases are abbreviated as follows: C: cRAP, MRP: merged reference 

proteome. Other abbreviations: 3F: 3 frame, 6F: 6 frame, PC: protein coding, MC: missed 

cleavages, Tol: peptide mass tolerance (ppm). 

 

# Databases used 
# 

Sequences # Residues Cleavage MC Variable Modifications Tol 

1  C, MRP 87334 32498123 Trypsin 2 Ac, Ox 10 

2  C, MRP 87334 32498123 Trypsin 2 Ac, NQ, Ox 10 

3  C, MRP 87334 32498123 Trypsin 2 Ac, Ox 15 

4  C, MRP 87334 32498123 Trypsin 2 Ac, AL, Ca, NQ, Gln, Ox 15 

5  C, MRP 87334 32498123 semiTrypsin 2 Ac, Ox 10 

6  C, GENCODE  proteome 94475 35226872 Trypsin 2 Ac, NQ, Ox 10 

7  C, UniProt  proteome 92633 36837450 Trypsin 2 Ac, NQ, Ox 10 

8  C, RefSeq  proteome 110502 74023435 Trypsin 2 Ac, Ox 10 

9  C, RefSeq  proteome 110502 74023435 Trypsin 2 Ac, NQ, Ox 10 

10  C, RefSeq  proteome 110502 74023435 Trypsin 2 Ac, NQ, Gln, Glu, Ox 10 

11  C, SNV  proteome, MRP 124700 75219935 Trypsin 2 Ac, Ox 10 

12  C, SNV  proteome, MRP 124700 75219935 Trypsin 2 Ac, NQ, Ox 10 

13  C, InDel  proteome, MRP 194239 100112565 Trypsin 2 Ac, Ox 10 

14  C, InDel  proteome, MRP 194239 100112565 Trypsin 2 Ac, NQ, Ox 10 

15  C, Exonskip  proteome, MRP 274370 270153356 Trypsin 2 Ac, Ox 10 

16  C, Exonskip  proteome, MRP 274370 270153356 Trypsin 2 Ac, NQ, Ox 10 

17  C, GNOMON  small, MRP 156470 87455704 Trypsin 2 Ac, Ox 10 

18 C,  PC  transcripts  ORFs  3F,  MRP 2309314 140406097 Trypsin 2 Ox 10 

19 CDS  extensions  ORFs  3F,  C, MRP 1706623 109281358 Trypsin 2 Ac, NQ, Ox 10 

20  C, LncRNA  ORFs  3F, MRP 212924 42228922 Trypsin 2 Ac, Ox 10 

21 C, Retained  intron  ORFs  3F, MRP 243503 47876774 Trypsin 2 Ac, Ox 10 

22 C, Retained  intron  ORFs  3F, MRP 243503 47876774 Trypsin 2 Ac, NQ, Ox 10 

23  C, GNOMON proteome, MRP 404236 237567077 Trypsin 2 Ac, Ox 10 

24 GENCODE  transcriptome  6F 1188558 588294950 Trypsin 2 Ox 10 

25 GENCODE  transcriptome  6F 1188558 588294950 Trypsin 2 NQ, Ox 10 

26 RefSeq  transcriptome  6F 1058556 1173530098 Trypsin 2 Ox 10 

27 RefSeq  transcriptome  6F 1058556 1173530098 Trypsin 2 NQ, Ox 10 

28  C, GENCODE  PC  genes  3F, MRP 20599397 870230701 Trypsin 0 Ox 10 

29 Genome  6F 1612098 6505830240 Trypsin 0 Ox 10 
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2.12.  Validation searches 

35 data files from the validation experiments, namely MCF7 cell extracts spiked with SIS 

peptides, were converted to MGF using MSConvert (Proteowizard version 3.0.10051). A 

proteogenomic database was created that contained the non-canonical peptides identified in 

the discovery proteogenomics searches. The MGF files of the 35 validation experiments were 

then searched on Mascot server against the merged reference proteome, proteogenomics 

database and cRAP database. Precursor and fragment mass tolerance were set to 15 ppm and 

0.6 Da, respectively. Carbamidomethyl (C) was set as fixed modification and Oxidation (M), 

Acetyl Protein (n-term), Deamidated (NQ), Carbamy (n-term), Gln->pyro-Glu (N-term Q), 

Label:13C(6)15N(2) (C-term K) and Label:13C(6)15N(4) (C-term R) were set as variable 

modifications. A maximum of 2 missed cleavages was allowed. 

 

2.13. Filtering proteogenomics peptides 

The results from the proteogenomics database searches were filtered at a significance threshold 

(p-value) of 0.05 and percolated to a False Discovery Rate (FDR) of 1% utilizing the “show 

percolator scores” option in Mascot. The FDR estimation was performed using a target decoy 

strategy inside Mascot using default settings. PSMs with percolated Mascot score below 13 

were removed. After utilizing Percolator 100 the Mascot score threshold 13 corresponded to a 

Mascot expectation score threshold of 0.05. All spectra identified in the discovery 

proteogenomics searches were collected. Python scripts were then utilized to filter the search 

results. We applied multiple filters to minimize false positive identifications. Specifically: 

i) All peptides identified in the reference database searches were removed. We 

filtered peptides against UniProt, RefSeq, GENCODE and cRAP databases by 

string search to ensure no non-canonical peptides could be mapped onto reference 

proteins or contaminants.  

ii) Peptides that differed with reference peptides only by Leucine/Isoleucine were 

removed.  

iii) Non-canonical peptides that contained a deamidation were removed if the peptide, 

after deamidation, could be mapped onto a reference protein. i.e. the non-
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canonical peptide and the peptide contained in a reference protein differed only by 

the deamidation (ND or QE) .  

iv) Non-canonical peptides with variable modifications Deamidation (NQ) and/or 

Oxidation (M) were removed if the corresponding unmodified peptide was not 

also identified.  

v) Non-canonical peptides identified from spectra whose precursor isolation 

exhibited greater than 70% interference were removed. Interference values for the 

precursor isolation were exported from Proteome Discoverer (version 1.4).     

vi) Only non-canonical peptides from MS/MS spectra that had at least 100 fragment 

peaks were retained. A dynamic noise level algorithm (DNL) was then applied to 

the MS/MS spectra 96. Fragment peaks with intensity above the noise level were 

regarded as signal peaks. Peptides from MS/MS spectra that had less than 8 signal 

peaks were also removed.  

vii) Only non-canonical peptides with length 10 to 40 amino acids were retained. 

viii) Non-canonical peptides originating from reference transcriptome and genome 

derived databases were also subjected to a local blastp (version 2.6.0+) 101 search 

against a combined database of the protein sequences from GENCODE, UniProt, 

RefSeq and cRAP proteomes. Non-canonical peptides originating from 

transcriptome and genome derived databases were removed if they could be 

aligned, using a maximum of two amino acid difference, with any protein 

sequence in the combined proteome. We noted that some of these peptides could 

not be aligned to reference proteins by blast search due to regions of low amino 

acid complexity, in this instance a string based search was used to establish if they 

matched. 

Some non-canonical peptides could be identified using multiple proteogenomics databases. We 

recorded the origin of all filtered peptides for all database searches and assigned a database to the 

peptide based on the following database priority rule: SNVs > InDel > Exonskip > GNOMON-

small > GENCODE protein coding transcripts > retained introns > CDS extensions > GENCODE 

protein coding genes > lncRNAs > GENCODE transcriptome > RefSeq transcriptome > 

GNOMON > human genome. 
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2.14. Proteogenomics mapping 

The “genomic context” of the non-canonical peptides was provided by mapping them onto the 

proteome, transcriptome and genome sequences using in-house python scripts. We obtained 

the genomic coordinates of the peptides in BED file format. Mapping was performed in a step-

wise manner in which peptides mapped at each level were classified and filtered out from the 

next mapping step as follows: 

i) Non-canonical peptides identified in the SNVs, InDel and Exonskip database 

searches were mapped onto their respective proteins. The peptide coordinates on the 

proteins were then converted to genomic coordinates utilizing the GENCODE release 

27 annotation file. Mapped peptides were classified as SNV-pep, InDel-pep and 

Exonskip-pep, respectively.    

ii) Peptides identified from GNOMON databases were mapped onto the GNOMON 

predicted protein sequences from NCBI annotation release 108. The peptide 

coordinates were converted to genomic coordinates using the GNOMON predicted 

annotation files from reference (ref_GRCh38.p7_gnomon_top_level.gff3) and 

alternate (alt_CHM1_1.1_gnomon_top_level.gff3) assemblies. Mapped peptides 

whose coordinates overlapped with any known protein-coding gene’s coordinates in 

the main annotation files from reference (ref_GRCh38.p7_top_level.gff3) and 

alternate (alt_CHM1_1.1_top_level.gff3) assemblies were classified as novel-

isoform-pep. Peptides mapping to locations containing non-coding genes in the main 

annotation files were classified as non-coding-pep, and peptides that mapped to 

locations that did not contain any known gene in the main annotation files were 

classified as novel-CDS-pep.    

iii) All remaining unclassified peptides were then mapped onto the GENCODE release 

27 transcriptome in 3 frames. Mapped peptides were classified as uORF-pep, altCDS-

pep and dORF-pep if they mapped onto the 5’-UTR, CDS and 3’-UTR regions of 

protein-coding or NMD transcripts, respectively. Peptides mapping onto the non-

coding RNAs were classified as non-coding-pep.  

iv) Peptides were then mapped onto the GENCODE release 27 gene sequences in 3 

frames. Peptides mapping onto protein coding genes were classified as intron-pep and 

exon-extension-pep if they originated from introns and exon-intron boundaries 
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respectively. Peptides mapping onto the non-coding genes were classified as non-

coding-pep.   

v) Next, peptides were mapped onto the transcriptome and gene sequences from NCBI 

annotation release 108 in 3 frames, and classified as mentioned in section iii) and iv) 

above for GENCODE annotation. 

vi) Peptides were then mapped onto the complement sequences of GENCODE 

transcriptome, GENCODE genes, RefSeq transcriptome and RefSeq genes, 

respectively. Mapped peptides were classified into novel-CDS-pep. 

vii) Finally, peptides were mapped onto the full human genome (GRCh38.p10) in 6 

frames. The peptide co-ordinates were converted to genomic coordinates. Peptides 

were classified into novel-CDS-pep if they mapped outside the annotated gene 

regions in GENCODE release 27 annotation file or RefSeq annotation from NCBI 

annotation release 108.   

During all mapping steps we accepted only those peptide co-ordinates that obeyed tryptic 

cleavage rule since all proteogenomics searches were conducted in tryptic mode. Finally, we 

performed gene based grouping of mapped proteogenomics peptides. Peptides that mapped to 

more than one gene, to multiple genomic coordinates, or were classified into more than one 

genomic context were reclassified into ambiguous-pep. 

 

 

2.15. Validation of the non-canonical peptides 

326 peptides corresponding to novel proteins identified with the discovery proteogenomics 

searches were selected for validation using SIS peptides. The peptides were selected on the 

basis of their length, 10-21 amino acids for easier synthesis, and without cysteine to avoid 

difficulties associated with Sulphur oxidation.  Five LC-MS/MS validation experiments were 

performed (see LC-MS/MS section for details). After database search (see section database 

searches for search parameters) the results were again percolated to a target FDR of 1%. We 

collected the spectra of the SIS and endogenous peptides from the discovery and validation 

searches. A two tier validation of selected peptides was then performed. In Tier 1, the cosine 

similarity was used to quantitatively compare the fragment spectra from the endogenous and 

SIS peptides. Peptides with a cosine similarity greater than 0.9 were considered validated at 
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tier 1. For Tier 2, the cosine similarity was used to compare the elution profiles and isotopic 

composition of SIS and endogenous peptides. Peptides that had a profile similarity and isotopic 

composition similarity greater than 0.9 were considered validated at tier 2.  
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3. Results 

We performed a comprehensive proteogenomics analysis of MCF7 cells, a popular cancer cell-

line routinely utilized in cancer studies. We constructed customized databases utilizing variants 

from NGS data and COSMIC, GNOMON predicted proteins, reference transcriptome and the 

human genome. We first conducted extensive searches with reference proteomes from UniProt, 

GENCODE, RefSeq and a merged reference database. All peptides identified using the 

reference proteome databases were filtered out from the peptides identified using the 

proteogenomics searches. In this manner the subsequent data analysis focused exclusively on 

peptides due to novel (non-canonical) proteins. To guard against false positives we also 

conducted extensive QC checks of the identified non-canonical peptides. A sub-set of these 

peptides were then validated using synthetic isotopically-labeled standard (SIS) peptides. This 

study highlights the presence of proteoforms in MCF7 cells that are missed by proteome 

profiling experiments that only utilize reference proteomes and thus thereby underestimate the 

complexity of the oncoproteome. 

 

3.1. Application of the DNL algorithm  

MS/MS spectra contain noise. It is known that the database search method used to identify 

proteins can report confidently identified peptides from MS/MS spectra with poor signal-to-

noise. An example of such a PSM (peptide spectral match) with poor signal-to-noise is shown 

in Figure 17, in which the peaks colored red have been used for the peptide spectral match. 

When the focus of the study is the identification of novel proteoforms it is important to ensure 

that the identifications are not based on noise in the MS/MS spectra, as that would increase the 

chance of false positives. Low signal-to-noise spectra can be identified via visual inspection 

but given the throughput of modern proteomics experiments visual examination is highly 

unpractical. Instead we applied a dynamic noise level (DNL) algorithm 96 to the MS/MS 

spectra to remove PSMs with poor signal quality. After application of the DNL all MS/MS 

peaks in Figure 17 were found to fall below the noise level. 
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Figure 17. Example of a peptide identification resulting from an MS/MS spectrum with low 

S/N. The peptide “TKPGVQAALEVEVDRAEEGCQWGAPPTHGQAPHR”, charge 3+, m/z 

1226.993 was confidently identified by the Mascot search engine.   
     

 

3.2. Comprehensive annotation of matched MS/MS spectrum 

The database search of MS/MS spectra uses a set of predefined fragmentation channels. The 

choice of fragmentation channels depends on the tandem mass spectrometry method utilized 

to acquire the MS/MS spectra. For the collision induced dissociation method used here Mascot 

considers a, b and y fragment ions, including neutral loss of a single ammonia molecule. The 

maximum charge carried by the fragment ions is limited to 2+. These presets define the search 

space for the peptide-spectral-match.  

The MS/MS spectrum of the peptide “GTAAAAAAAAAAAAAKVPAK” is shown in Figure 

18. The peptide was mapped to the variant protein sequence of 60S ribosomal protein L14 

(RPL14). The variant protein contains three extra alanine residues (indicated in red above) 

when compared with the wild type RPL14 protein. Although the peptide sequence was 

identified with high confidence (Mascot Score: 43, expectation: 4.50E-05) many high intensity 

peaks in the spectrum remained unassigned (black peaks in Figure 18). Unassigned peaks in 

the MS/MS spectra increase the risk of false positive identifications, and so must be avoided 

when reporting novel proteins. To ensure all identifications of novel proteins could describe 

the majority of peaks present in the MS/MS spectra I developed a python based “spectrum 
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annotation tool” to comprehensively annotate the matched MS/MS spectrum. The annotation 

tool includes additional fragmentation channels not considered during the Mascot search. Note: 

the additional fragmentation channels were not used for identification, but to ensure the 

identifications could describe the MS/MS spectrum more completely. Figure 19 and Figure 20 

demonstrate that the inclusion of additional fragmentation channels increased the number of 

MS/MS peaks that could be assigned, thereby increasing the confidence of the non-canonical 

peptide PSM. 

 

 

 

Figure 18. MS/MS spectra of the peptide "GTAAAAAAAAAAAAAKVPAK", charge 2+, 

m/z 812.465, as identified by Mascot (peaks used for identification indicated in red). 
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Figure 19. MS/MS spectra of the peptide "GTAAAAAAAAAAAAAKVPAK", charge 2+, 

m/z 812.465. Adding water loss as an additional fragmentation channel (indicated by **) led 

to additional peak matches, including b(3)**, b(4)**, b(5)**, b(6)**, b(7)**, b(8)**, b(9)** 

and b(10)**. Noise level (blue line) was determined by DNL. 

 

 

Figure 20. MS/MS spectra of the peptide "GTAAAAAAAAAAAAAKVPAK", charge 2+, 

m/z 812.465. Internal fragment ions (green peaks) were also utilized for annotation. Internal 

fragments are labeled by the start and end position of the fragment in the precursor peptide. 

Noise level (blue line) was determined by DNL. 
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3.3. Peptides from reference proteomes  

When we utilized GENCODE, UniProt and RefSeq as reference protein sequence databases 

(searches 6, 7 and 9 from Table 1) ~95 % of the peptides were identified by all three databases, 

Figure 21. Not including redundancies (i.e. the same peptide identified using different 

databases) we identified 270,741 spectra grouped into 97,144 peptides from all reference 

proteome searches (searches 1 to 10 in Table 1). ~25% of the 1,096,963 input spectra were 

assigned to peptides of the reference proteome. 52,548 spectra (~19 % of identified) were 

assigned to peptides with PTMs and 20,134 spectra (~7 % of identified) were assigned to 

peptides with unspecific cleavage. 

Using a standard RefSeq search with 2 variable modifications: Acetyl (N-term) and Oxidation 

(M) we could assign 199,133 MS/MS spectra. To ensure that MS/MS spectra from reference 

protein sequences were not mistakenly assigned as novel non-canonical proteins, we expanded 

the search to include different reference proteomes including common PTMs, artifacts and 

unspecific peptide cleavages. As a result, the number of MS/MS spectra that could be assigned 

to reference proteins was increased by almost 35%. 

 

Figure 21. Venn diagram of identified peptides (left) and identified spectra (right) from three 

common reference proteomes. The data is extracted from searches 6, 7 and 9 from Table 1. 

Only rank 1 peptide and spectra matches are shown.    
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3.4. Sensitivity of database search decreases with increasing database size 

The inclusion of all possible peptides contained in the transcriptome and genome greatly 

increase the size of the proteome database and thus decreases the statistical power of matching 

MS/MS spectra to peptides. To assess the severity of this effect for our analysis we determined 

how the protein identification rate was affected by database size. Searching the LC-MS/MS 

data against the merged reference proteome database resulted in 110,498 spectra 

unambiguously grouped onto 47,300 zero-missed-cleavage unmodified peptides (Figure 22). 

For the purposes of this database-size investigation we considered these identifications as 

representing 100% of the true reference spectra and reference peptides. The score distributions 

of these peptides, identified using different proteogenomics searches, are shown in Figure 22. 

Note: peptides with missed cleavages were not considered because searches with the ORF 

database derived from the gene sequence (search number 28 in Table 1) and the full human 

genome (search number 29 in Table 1) were conducted with 0 missed cleavages. A table 

summarizing peptides and spectra identified in all discovery searches is provided in online 

appendix 1. The number of peptides that could be consistently identified differed significantly 

for the proteome, transcriptome and genome derived databases. When we utilized the 

SNVs/InDel/Exonskip databases we recovered ~99% of the peptides identified using only the 

merged reference proteome. ~96% of peptides were recovered when the GNOMON database 

was used. Approximately, 91% of the peptides were recovered when utilizing the ORF 

database from CDS extensions and protein coding transcripts. ~74% of the peptides were 

recovered using an ORF database derived from gene sequences, whereas ~82% were recovered 

from a six-frame translated full transcriptome database. When the full human genome was 

searched in 6 frames just ~37 % of the peptides were recovered.  

The peptides that are present in the merged reference proteome are also present in the reference 

transcriptome and genome (except peptides spanning splice sites). Thus, at a constant 1% FDR 

fewer peptides could be identified when a larger database was utilized (even if all databases 

contained the peptides). As the peptide search space increases from proteome < transcriptome 

< genome the probability that an MS/MS spectrum will match to a random peptide sequence 

within the database increases, thus leading to an increased rate of false discovery. To mitigate 

the effect of larger database size and hence increased rate of false discovery, we conducted 

searches with proteogenomics databases targeting specific proteogenomics classes. For 
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example: to find peptides originating from transcripts with retained introns we utilized the 

retained intron transcripts from GENCODE and translated it in three frames, which accounts 

for ~13% of the full GENCODE transcriptome in release 27.   

 

  

 

Figure 22. Percolated Mascot score distribution of unambiguous peptides (top) and spectra 

(bottom) with 0 missed cleavages identified in proteogenomics searches that were previously 

identified in the merged reference proteome search. The nucleic acid searches are indicated 

with an *. Search results were percolated to target FDR of 1% with p-value 0.05. Minimum 

Mascot score is 13. 
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3.5. Classification of non-canonical peptides identified by proteogenomics searches 

We collected all MS/MS spectra identified exclusively with the proteogenomics searches. This 

included 3760 spectra grouped into 3021 peptides. We subjected these identifications to 

extensive filtering to ensure all of these non-canonical peptides originated from high quality 

mass spectra and could not be assigned to reference peptides with common modifications. 

After this filtration step 1726 spectra remained that could be grouped into 1227 peptides. 

Annotated spectra of all filtered peptides are included in online appendix 8. We mapped the 

proteogenomic peptides onto the genome and classified all filtered peptides (Table 2). An 

example of the mapping of peptides onto the gene StAR related lipid transfer domain 

containing 10 (STARD10) is shown in Figure 23. The full list of filtered, classified peptides is 

provided in online appendix 2. Out of 1227 filtered peptides 55 could not be mapped onto the 

genome (Table 2). The genomic coordinates of all mapped 1172 peptides is provided in online 

appendix 3 & 4 in BED file format. 59 peptides were classified as ambiguous, which means 

they could be mapped onto multiple genomic coordinates, multiple genes or were classified 

into more than one genomic context. The remaining 1113 peptides were unambiguously 

classified into 11 different classes (Table 2). Of these, 203 peptides were classified as novel-

CDS-pep, which means they mapped onto genomic coordinates that are not currently 

annotated. The remaining 910 peptides were unambiguously grouped into 790 genes (Table 

2). A full itemized list of peptides, grouped by genes is provided in online appendix 5.    
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Figure 23. Visualization of the genomic mapping of non-canonical peptides on to the gene 

STARD10. The peptides (shown in the “peptides” track) were identified from a GNOMON 

predicted protein model of STARD10 gene. The reference STARD10 gene, transcript 

(NM_006645.2) and protein (NP_006636.2) are shown in green, purple and red blocks, 

respectively, in the upper annotation track. The exons are shown as blocks and introns as lines 

connecting the blocks. The reference protein starts from exon 2 of the STARD10 transcript 

(note protein is on reverse strand). The GNOMON predicted model protein differs from the 

reference STARD10 protein, in that its N-terminal region has 77 additional amino acids. 

Proteogenomic mapping reveals that three of the peptides “R.KVASASAAASTLSEPPR.R”, 

“R.KVASASAAASTLSEPPRR.T”, and “K.VASASAAASTLSEPPR.R” map onto the 5’-

UTR region of the reference STARD10 mRNA. The results also demonstrate the presence of 

a novel exon predicted by GNOMON. “R.SAGAGSYGALANSAWGGPR.K” and 

“R.SAGAGSYGALANSAWGGPRK.V” map onto a region spanning the novel GNOMON 

exon and exon 2 of the reference STARD10 mRNA, and the peptide “MEEELALGPR.G” 

maps exclusively onto the novel exon. 
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Table 2. All filtered non-canonical (proteogenomics) peptides classified by genomic context. 

 

 Discovery Validation 

Genomic context Peptides PSMs Genes Targeted Tier 1 Tier 2 

SNV-pep 295 630 219 152 143 108 

InDel-pep 36 46 35 6 3 1 

Exonskip-pep 8 9 8 0 0 0 

Novel-isoform-pep 45 108 36 17 16 12 

uORF-pep 87 126 72 27 17 5 

altCDS-pep 78 83 78 15 7 3 

dORF-pep 61 61 61 7 0 0 

Exon-extension-pep 30 35 29 1 1 1 

Intron-pep 98 100 97 8 1 0 

Non-coding-pep 172 187 169 32 9 2 

Novel-CDS-pep 203 213 0 46 4 1 

Ambiguous-pep 59 73 0 10 5 4 

Unmapped-pep 55 55 0 5 1 0 

Total 1227 1726 790 326 207 137 
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3.6. Validation of non-canonical peptides identified by proteogenomics search 

A subset of the non-canonical peptides (length 10-21 amino acids, cysteine free) identified in 

the discovery searches were selected for validation. Isotopically labeled analogues of 326 

proteogenomic peptides were synthesized using heavy lysine or heavy arginine (stable 

isotopically labeled). Mixtures of the stable isotopically-labeled standard (SIS) peptide 

analogues were added to the MCF7 proteolytic peptides at 3 different concentrations and the 

samples analyzed by LC-MS/MS. The presence of endogenous proteogenomic peptides were 

validated on the basis of the similarity of the tandem mass spectra of the endogenous peptides 

with their isotopically labeled analogues (tier 1), and on the basis of matched retention times 

and elution profiles (tier 2). An example of a tier 1 and 2 validated peptide 

“R.SAGAGSYGALANSAWGGPR.K” from a GNOMON predicted novel isoform of 

STARD10 protein is shown in Figure 24 and Figure 25. Out of 326 peptides targeted for 

validation 19 of the isotopically labeled analogues were not detected (online appendix 2). 207 

peptides passed tier 1 validation, in which the MS/MS spectrum of the endogenous non-

canonical peptide scored at least 0.9 cosine similarity with that of the SIS validation standard 

(Table 2). A comparison of the MS/MS spectra from the endogenous peptides with their SIS 

analogues, for all non-canonical peptides that passed tier 1 validation is shown in online 

appendix 9. Of these, 137 peptides (66%) also passed tier 2 validation (Table 2). A comparison 

of the extracted ion chromatograms of the endogenous peptides and their SIS analogues, for 

all tier 2 validated non-canonical peptides, is available in inline appendix 10. In the following 

sections, we show examples of peptides identified from different genomic events. Peptides 

validated at tier 1 are shown in italic fonts and peptides validated also at tier 2 are shown in 

bold + italic fonts.   
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Figure 24. Annotated MS/MS spectra of the endogenous and SIS peptide of a novel isoform 

of STARD10. Peptide “R.SAGAGSYGALANSAWGGPR.K”, charge 2+ (left). Noise level 

(blue horizontal line) was determined by DNL. The N-terminal (a/b) and C-terminal (y) 

fragment ions are shown in red, internal fragments in green and un-fragmented precursors in 

orange. Ammonia loss is indicated with a * and water loss is shown with a $ sign. The spectra 

on the right show the MS/MS peaks selected for the similarity computation (top: endogenous 

peptide, bottom: SIS peptide). The intensities of the selected peaks were variance stabilized by 

square root transform and normalized to sum 1000 before similarity calculation. A total of 46 

common annotated peaks were compared. The peptide passed tier 1 validation with a similarity 

score of 0.98. 
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3.7. Peptides from variants identified by next-generation sequencing  

SNVs were the largest group of non-canonical peptides identified by the proteogenomics 

searches. 295 SNV peptides were identified with 630 PSMs (Table 2). We performed gene 

based grouping of the variant peptides and grouped the 295 peptides onto 219 protein coding 

genes. 152 SNV peptides were selected for validation using SIS peptides, of which 143 (94%) 

passed tier 1 validation and 108 (71%) also passed tier 2 validation. The largest number of 

SNV peptides was obtained from Plectin (PLEC) with 10 peptides and 28 spectra (online 

appendix 5). The SNV peptide “R.EQLQQEQALLEEIER.H”, variant amino acid shown in 

grey (Q/R), produced due to the variant “rs11136334” (Highest population MAF: 0.46) 102 was 

validated at tiers 1 and 2 (Figure 26 and Figure 27).  

 

Endogenous 

Standard 

0C13: 875.419 m/z 

1C13: 875.920 m/z 

2C13: 876.422 m/z 

0C13: 880.423 m/z 

1C13: 880.925 m/z 

2C13: 881.426 m/z 

Figure 25. Extracted ion chromatograms of the endogenous peptide and the SIS peptide of a 

novel isoform of STARD10. Peptide “R.SAGAGSYGALANSAWGGPR.K”, charge 2+. The 

elution profiles were compared within the time window highlighted with a light blue box, and 

which corresponded to 42 MS scans. The peptide passed tier 2 validation with a profile 

similarity 0.99. Apex elution times for the SIS and endogenous peptides were both 85.6 

minutes. The MS/MS identification time points are shown with black vertical lines. Asterisks 

(*) indicate the MS/MS spectra have also been validated at tier 1 with a cosine similarity above 

0.9. The mass traces in the extracted ion chromatograms were extracted using an m/z tolerance 

of +/-10 ppm. 
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Figure 26. MS/MS spectra of the endogenous (top left) and SIS peptide (bottom left) from a 

common variant in PLEC gene. Peptide “R.EQLQQEQALLEEIER.H”, charge 3+. The noise 

level (blue horizontal line) was determined by DNL. The N-terminal (a/b) and C-terminal (y) 

fragment ions are shown in red, internal fragments (a-type, b-type) in green and un-fragmented 

precursors in orange. Ammonia loss is shown with a * and water loss is shown with a $ sign. 

The spectra on the right show the MS/MS peaks selected for the similarity computation (top: 

endogenous peptide, bottom: SIS peptide). The intensity of the selected peaks were variance 

stabilized by square root transform and normalized to sum 1000 before similarity computation. 

The intensities of 102 common annotated peaks were compared. The peptide passed tier 1 

validation with a similarity score of 0.99. 
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Figure 27. Extracted ion chromatograms (EIC) of peptide “R.EQLQQEQALLEEIER.H”, 

charge 2+, in 5 validation runs. The elution profiles were compared within the time window 

highlighted with a light blue box. The peptide passed tier 2 validation with a profile similarity 

of 1.0. Apex elution times for the SIS and endogenous peptides were both 113.7 minutes. The 

MS/MS identification time points are shown with black vertical lines. Asterisks (*) indicate 

the MS/MS spectra have also been validated at tier 1 with a cosine similarity above 0.9. The 

top EIC (MCF7-light) shows the EIC of the endogenous peptide (MCF7-light) without any 

spike. The bottom EIC (Mix-heavy) shows the EIC of the SIS peptide in the SIS peptide 

mixture. The six EICs in between (0.05-light, 0.05-heavy, 1-light, 1-heavy, 20-light and 20-

heavy) show EIC’s of the light and heavy (SIS) peptide from the three validation experiments, 

in which the MCF7 tryptic digest was spiked with the SIS peptide mix at three different 

concentrations (0.05, 1 and 20 fmol for every µg of tryptic digest). The EICs of the SIS peptide 

in the validation runs are inverted for ease of comparison with the EIC’s of the endogenous 

peptide. The legends show the calculated m/z of the peptide isotopes. 
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A rare variant “rs2669761” (Highest population MAF: <0.01) 103  of WASH complex subunit 

2A (WASHC2A) was detected in the NGS experiments. The two peptides 

“K.TNTFPLLEDEDDLFTDQKVK.K”, and “K.TNTFPLLEDEDDLFTDQK.V”, were 

identified (variant amino acid in grey), the first of which passed tier 1 validation (Figure 28) 

and the second passed tier 1 and tier 2 validation (Figure 29 and Figure 30). 

 

 

Figure 28. MS/MS spectra of the endogenous (top left) and SIS peptide (bottom left) from a 

rare variant of WASHC2A. Peptide “K.TNTFPLLEDEDDLFTDQKVK.K”, charge 3+. Noise 

level (blue horizontal line) was determined by DNL. The N-terminal (a/b) and C-terminal (y) 

fragment ions are shown in red, internal fragments (a-type, b-type) in green and un-fragmented 

precursors in orange. Ammonia loss is shown with a * and water loss is shown with a $ sign. 

The spectra on the right show the MS/MS peaks selected for the similarity computation (top: 

endogenous peptide, bottom: SIS peptide). The intensity of the selected peaks were variance 

stabilized by square root transform and normalized to sum 100 before similarity computation. 

The intensities of 88 common annotated peaks were compared. The peptide passed tier 1 

validation with a similarity score of 0.91. 
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Figure 29. MS/MS spectra of the endogenous (top left) and SIS peptide (bottom left) from a 

rare variant of WASHC2A. Peptide “K.TNTFPLLEDEDDLFTDQK.V”, charge 2+ (left). 

Noise level (blue horizontal line) was determined by DNL. The N-terminal (a/b) and C-

terminal (y) fragment ions are shown in red, internal fragments (a-type, b-type) in green and 

un-fragmented precursors in orange. Ammonia loss is shown with a * and water loss is shown 

with a $ sign. The spectra on the right show the MS/MS peaks selected for the similarity 

computation (top: endogenous peptide, bottom: SIS peptide). The intensity of the selected 

peaks were variance stabilized by square root transform and normalized to sum 100 before 

similarity computation. The intensities of 74 common annotated peaks were compared. The 

peptide passed tier 1 validation with a similarity score of 0.98.  
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Figure 30. EICs of peptide “K.TNTFPLLEDEDDLFTDQK.V”, charge 2+, in 5 validation 

runs. The elution profiles were compared within the time window highlighted with a light blue 

box. The peptide passed tier 2 validation with a profile similarity of 0.99. Apex elution times 

for the SIS and endogenous peptides were identical in all validation runs. The MS/MS 

identification time points are shown with black vertical lines. Asterisks (*) indicate the MS/MS 

spectra have also been validated at tier 1 with a cosine similarity above 0.9. The top EIC shows 

the EIC of the endogenous peptide (MCF7-light) without any spike. The bottom EIC (Mix-

heavy) shows the EIC of the SIS peptide in the SIS peptide mixture. The six EICs in between 

(0.05-light, 0.05-heavy, 1-light, 1-heavy, 20-light and 20-heavy) show EIC’s of the light and 

heavy (SIS) peptide from the three validation experiments, in which the MCF7 tryptic digest 

was spiked with the SIS peptide mix at three different concentrations (0.05, 1 and 20 fmol for 

every µg of tryptic digest). The EICs of the SIS peptide in the validation runs are inverted for 

ease of comparison. 

 

 

 

A total of 36 peptides from 46 PSMs were identified from insertion/deletion events. 6 InDel 

peptides were selected for validation, of which 3 passed tier 1 validation and 1 also passed tier 

2. An in-frame insertion variant “rs369485042” 104 of a trinucleotide repeat was detected in 

ribosomal protein L14 (RPL14) in its transcriptome. The corresponding peptides, each with 

three additional Alanine residues, “K.GTAAAAAAAAAAAAAKVPAK.K” and 
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“K.GTAAAAAAAAAAAAAKVPAKK.I” (additional amino acids in grey), were identified by 11 

PSMs and validated at tier 1 (Figure 31 and Figure 32).  

  

 

Figure 31. Annotated MS/MS spectra of the endogenous (top left) and SIS peptide (bottom 

left) of an in-frame insertion variant of ribosomal protein L14. Peptide 

“K.GTAAAAAAAAAAAAAKVPAK.K”, charge 3+. Noise level (blue horizontal line) was 

determined by DNL. The N-terminal (a/b) and C-terminal (y) fragment ions are shown in red, 

internal fragments (a-type, b-type) in green and un-fragmented precursors in orange. Ammonia 

loss is shown with a * and water loss is shown with a $ sign. The spectra on the right show the 

MS/MS peaks selected for the similarity computation (top: endogenous peptide, bottom: SIS 

peptide). The intensity of the selected peaks were variance stabilized by square root transform 

and normalized to sum 1000 before similarity computation. The intensities of 74 common 

annotated peaks were compared. The peptide passed tier 1 validation with a similarity score of 

0.95. 
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Figure 32. Annotated MS/MS spectra of the endogenous (top left) and SIS peptide (bottom 

left) of an in-frame insertion variant of ribosomal protein L14. Peptide 

“K.GTAAAAAAAAAAAAAKVPAKK.I”, charge 4+. Noise level (blue horizontal line) was 

determined by DNL. The N-terminal (a/b) and C-terminal (y) fragment ions are shown in red, 

internal fragments (a-type, b-type) in green and un-fragmented precursors in orange. Ammonia 

loss is shown with a * and water loss is shown with a $ sign. The spectra on the right show the 

MS/MS peaks selected for the similarity computation (top: endogenous peptide, bottom: SIS 

peptide). The intensity of the selected peaks were variance stabilized by square root transform 

and normalized to sum 1000 before similarity computation. The intensities of 73 common 

annotated peaks were compared. The peptide passed tier 1 validation with a similarity score of 

0.97. 

 

 

An in-frame deletion event was detected in the gene Trinucleotide repeat containing 6B 

(TNRC6B) in the NGS experiments. The proteogenomic peptide “MVSAL-QQQQQQQR” 

with a deletion of the analogous Glutamine residue (indicated with a hyphen) was identified 

and validated at the proteome level (Figure 33 and Figure 34). 
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Figure 33. Annotated MS/MS spectra of the endogenous (top left) and SIS peptide (bottom 

left) of an in-frame deletion variant of TNRC6B. Peptide “MVSAL-QQQQQQQR”, charge 

2+. Noise level (blue horizontal line) was determined by DNL. The N-terminal (a/b) and C-

terminal (y) fragment ions are shown in red, internal fragments (a-type, b-type) in green and 

un-fragmented precursors in orange. Ammonia loss is shown with a * and water loss is shown 

with a $ sign. The spectra on the right show the MS/MS peaks selected for the similarity 

computation (top: endogenous peptide, bottom: SIS peptide). The intensity of the selected 

peaks were variance stabilized by square root transform and normalized to sum 1000 before 

similarity computation. The intensities of 45 common annotated peaks were compared. The 

peptide passed tier 1 validation with a similarity score of 0.96. 
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Figure 34. EICs of peptide “MVSAL-QQQQQQQR”, charge 2+, in 5 validation runs. The 

elution profiles were compared within the time window highlighted with a light blue box. The 

peptide passed tier 2 validation with a profile similarity of 0.96. The MS/MS identification 

time points are shown with black vertical lines. Asterisks (*) indicate the MS/MS spectra have 

also been validated at tier 1 with a cosine similarity above 0.9. The top EIC (MCF7-light) 

shows the EIC of the endogenous peptide (MCF7-light) without any spike. The bottom EIC 

(Mix-heavy) shows the EIC of the SIS peptide in the SIS peptide mixture. The six EICs in 

between (0.05-light, 0.05-heavy, 1-light, 1-heavy, 20-light and 20-heavy) show EIC’s of the 

light and heavy (SIS) peptide from the three validation experiments, in which the MCF7 tryptic 

digest was spiked with the SIS peptide mix at three different concentrations (0.05, 1 and 20 

fmol for every µg of tryptic digest). The EICs of the SIS peptide in the validation runs are 

inverted for ease of comparison with the EIC’s of the endogenous peptide.  

 

 

3.8. Peptides from exon-skipping events 

We identified 8 peptides that were produced as a result of exon-skipping events (Table 2). 

None of the peptides were selected for validation because they did not meet the length 

requirements (10-21) for heavy peptide synthesis. The gene eukaryotic translation initiation 

factor 4 gamma 1 (EIF4G1) codes for a protein that is a component of the protein complex 

EIF4F. The peptide “MNKAPQSTGPPPAPSPGLPQHFYPSR.A” was identified from a novel 

isoform of EIF4G1, generated by the skipping of exon 3 from the protein coding transcript 
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“ENST00000342981”, Figure 35. The amino acids “MNKAPQSTGPPPAPSPGLPQ” derive 

from exon 2, and “HFYPSR" derive from exon 4. The peptide was identified in the discovery 

experiments with a single PSM corresponding to a missed cleavage, but was further supported 

by the identification of the terminal tryptic peptide “K.APQSTGPPPAPSPGLPQHFYPSR.A” 

with 3 PSMs in the validation experiments. To the authors’ knowledge, no known isoform has 

been reported that results from the splicing of exons 2 and 4 of transcript “ENST00000342981” 

(Figure 36). Thus, identification of this peptide indicates that a novel isoform of EIF4G1 is 

expressed in MCF7 cells, in which exon 3 of transcript “ENST00000342981” is skipped.  

 

 

Figure 35. Annotated MS/MS spectra of the endogenous peptide of the exon-skipped variant 

of EIF4F1 gene. Peptide “MNKAPQSTGPPPAPSPGLPQHFYPSR.A”, charge 3+. The noise 

level (blue horizontal line) was determined by DNL. The N-terminal (a/b) and C-terminal (y) 

fragment ions are shown in red, internal fragments are shown in green and un-fragmented 

precursors in orange. Ammonia loss is shown with a * sign and water loss is shown with a $ 

sign. 
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3.9. Peptides from non-coding regions of protein coding transcripts 

We identified 87 and 61 peptides that mapped onto the 5’-UTR, and 3’-UTR region of protein 

coding transcripts, respectively (Table 2). For example, the two peptides 

“R.GGAAPAGGGAEAGPGGGPGGAGGAAAK.A and “K.AGGAADMTDNIPLQPVR.Q” 

were identified from the 5’-UTR region of ATPase phospholipid transporting 9A (ATP9A), 

Figure 37. The amino acids GGAAPAGGGAEAGPGGGPGGAGGAAAKAGGAAD 

originate from the 5’-UTR region (indicated in grey here for clarity) and the amino acids 

MTDNIPLQPVR originate from the main ORF. The peptide 

Skipped Exon 

Figure 36. Visualization of exon skipped peptide “MNKAPQSTGPPPAPSPGLPQHFYPSR.A” 

on the EIF4G1 gene, Ensembl id: ENSG00000114867. The skipped exon, exon 3 of transcript 

ENST00000342981, is indicated. Green bars denote reference genes. Purple bars denote 

reference transcripts, and red bars reference proteins. Colored blocks represent exons, and lines 

introns. The genomic mapping of the exon skipped peptide sequence is shown in the bottom track 

as dark grey blocks. It can be seen that the peptide sequence span only the flanking exons; the 

peptide did not contain amino acids from the skipped exon. 
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“K.AGGAADMTDNIPLQPVR.Q” spanned the main ORF and the 5’-UTR region, and was 

validated at tier 1 and tier 2 (Figure 38 and Figure 39). 

 

 

Figure 37. The two peptides “R.GGAAPAGGGAEAGPGGGPGGAGGAAAK.A” and 

“K.AGGAADMTDNIPLQPVR.Q” map onto the 5’-UTR region of ATP9A mRNA 

ENST00000338821. The first peptide maps fully on to the 5’-UTR region of the transcript, 

whereas the second peptide maps onto the 5’-UTR region and the CDS coding for the first 11 

amino acids of ATP9A protein ENSP00000343481. Green bars denote reference genes. Purple 

bars denote reference transcripts, and red bars reference proteins. Colored blocks represent 

exons, and lines introns. The genomic co-ordinates of the peptide sequences are shown in the 

bottom track. 
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Figure 38. Annotated MS/MS spectra of the endogenous (top left) and SIS peptide (bottom 

left) that spans the main ORF and the 5’-UTR region of ATP9A. Peptide 

“K.AGGAADMTDNIPLQPVR.Q”, charge 2+. The N-terminal (a/b) and C-terminal (y) 

fragment ions are shown in red, internal fragments (a-type, b-type) in green and un-fragmented 

precursors in orange. Ammonia loss is shown with a * and water loss is shown with a $ sign. 

The spectra on the right show the MS/MS peaks selected for the similarity computation (top: 

endogenous peptide, bottom: SIS peptide). The intensities of the selected peaks were variance 

stabilized and normalized to sum 1000 before the similarity calculation. The intensities of 46 

common annotated peaks were compared. The peptide passed tier 1 validation with a similarity 

score of 0.96. 
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Figure 39. Extract ion chromatogram (EIC) of the endogenous and SIS peptide that spans the 

main ORF and the 5’-UTR region of ATP9A in 5 validation runs. Peptide 

“K.AGGAADMTDNIPLQPVR.Q”, charge 2+. The elution profiles were compared within the 

time window highlighted with a light blue box. The peptide passed tier 2 validation with a 

profile similarity of 0.98. Apex elution times for the SIS and endogenous peptides were 

identical in all validation runs. The MS/MS identification time points are shown with black 

vertical lines. Asterisks (*) indicate the MS/MS spectra have also been validated at tier 1 with 

a cosine similarity above 0.9. The top EIC (MCF7-light) shows the EIC of the endogenous 

peptide (MCF7-light) without any spike. The bottom EIC (Mix-heavy) shows the EIC of the 

SIS peptide in the SIS peptide mixture. The six EICs in between (0.05-light, 0.05-heavy, 1-

light, 1-heavy, 20-light and 20-heavy) show EIC’s of the light and heavy (SIS) peptide from 

the three validation experiments, in which the MCF7 tryptic digest was spiked with the SIS 

peptide mix at three different concentrations (0.05, 1 and 20 fmol for every µg of tryptic 

digest). The EICs of the SIS peptide in the validation runs are inverted for ease of comparison 

with the EIC’s of the endogenous peptide. 
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3.10. Peptides from alternate frame of protein coding transcripts 

We identified 78 peptides that mapped onto the CDS of protein coding transcripts but in a non-

canonical frame (Table 2). The gene keratin 8 (KRT8) is situated on the reverse strand of 

chromosome 12. A peptide “R.GLQLLQPHQLLQGR.G” was unambiguously mapped onto 

KRT8 gene and also validated at tiers 1 and tier 2 (Figure 40 and Figure 41). The reference 

protein is coded in the +3 frame of the protein-coding transcript “ENST00000552150” of 

KRT8 gene whereas this peptide exclusively mapped to the +2 frame (Figure 42). 

 

 

Figure 40. Annotated MS/MS spectra of the endogenous (top left) and SIS peptide (bottom 

left) from the alternate frame translation of KRT8 mRNA. Peptide 

“R.GLQLLQPHQLLQGR.G”, charge 3+. Noise level (blue horizontal line) was determined 

by DNL. The N-terminal (a/b) and C-terminal (y) fragment ions are shown in red, internal 

fragments (a-type, b-type) in green and un-fragmented precursors in orange. Ammonia loss is 

shown with a * and water loss is shown with a $ sign. The spectra on the right show the MS/MS 

peaks selected for the similarity computation (top: endogenous peptide, bottom: SIS peptide). 

The intensities of the selected peaks were variance stabilized by square root transform and 

normalized to sum 1000 before similarity computation. The intensities of 43 common 

annotated peaks were compared. The peptide passed tier 1 validation with a similarity score of 

0.95. 
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Figure 41. Extracted ion chromatogram (EIC) of the endogenous and the SIS peptide from the 

alternate frame translation of KRT8 mRNA in five validation runs. Peptide 

“R.GLQLLQPHQLLQGR.G”, charge 3+. The elution profiles were compared within the time 

window highlighted with a light blue box. The peptide passed tier 2 validation with a profile 

similarity of 0.97. Apex elution times for the SIS and endogenous peptides were identical in 

all validation runs. The MS/MS identification time points are shown with black vertical lines. 

Asterisks (*) indicate the MS/MS spectra have also been validated at tier 1 with a cosine 

similarity above 0.9.The top EIC (MCF7-light) shows the EIC of the endogenous peptide 

(MCF7-light) without any spike. The bottom EIC (Mix-heavy) shows the EIC of the SIS 

peptide in the SIS peptide mixture. The six EICs in between (0.05-light, 0.05-heavy, 1-light, 

1-heavy, 20-light and 20-heavy) show EIC’s of the light and heavy (SIS) peptide from the three 

validation experiments, in which the MCF7 tryptic digest was spiked with the SIS peptide mix 

at three different concentrations (0.05, 1 and 20 fmol for every µg of tryptic digest). The EICs 

of the SIS peptide in the validation runs are inverted for ease of comparison with the EIC’s of 

the endogenous peptide.  
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Figure 42. Visualization of the peptide “R.GLQLLQPHQLLQGR.G on the KRT8 gene 

ENSG00000170421. The peptide maps onto the -1 frame of chromosome 12 whereas all 

reference KRT8 proteins are coded in the -2 frame (shown in six-frame translation track). 

Green bars denote reference genes. Purple bars denote reference transcripts, and red bars 

reference proteins. The locations of the peptide sequence identified by the proteogenomic 

search are shown in the bottom track (dark grey block). 

 

 

3.11. Peptides from non-coding transcripts and genes 

A total of 172 peptides from 187 spectra were identified from non-coding transcripts and genes 

(Table 2). This included transcripts with biotypes: retained intron, lncRNA, anti-sense, sense-

intronic, rRNA, TEC, and pseudogene transcripts. For example, GATA3 antisense RNA 1 

(GATA3-AS1) is a long non-coding RNA gene situated on the reverse strand of chromosome 

10. Two peptides “R.GAEVPGEAAPGAR.A” and “R.ARQPALPGELR.G” were identified 

from transcript “ENST00000355358” of GATA3-AS1 (Figure 43), the first of which satisfied 

tiers 1 and 2 validation (Figure 44 and Figure 45).  
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Figure 43. Visualization of the peptides “R.GAEVPGEAAPGAR.A” and 

“R.ARQPALPGELR.G” on GATA3-AS1 long non-coding RNA. The peptides map onto the 

exon of GATA3-AS1 non-coding transcript ENST00000355358.  Green bars denote reference 

genes. Purple bars denote reference transcripts. Colored blocks represent exons, and lines 

introns. The locations of the peptide sequences identified by the proteogenomic search are 

shown in the bottom track.   

 

 

 

Figure 44. Annotated MS/MS spectra of the endogenous (top left) and SIS peptide (bottom 

left) from long non-coding RNA gene GATA3-AS1. Peptide “R.GAEVPGEAAPGAR.A”, 

charge 2+. The N-terminal (a/b) and C-terminal (y) fragment ions are shown in red, internal 

fragments (a-type, b-type) in green and un-fragmented precursors in orange. Ammonia loss is 

shown with a * and water loss is shown with a $ sign. The spectra on the right show the MS/MS 

peaks selected for the similarity computation (top: endogenous peptide, bottom: SIS peptide). 

The intensities of the selected peaks were variance stabilized by square root transform and 

normalized to sum 1000 before similarity computation. The intensities of 23 common 

annotated peaks were compared. The peptide passed tier 1 validation with a similarity score of 

0.98. 
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Figure 45. Extracted ion chromatogram (EIC) of the endogenous and SIS peptide from long 

non-coding RNA gene GATA3-AS1 in five validation runs. Peptide 

“R.GAEVPGEAAPGAR.A”, charge 2+. The elution profiles were compared within the time 

window highlighted with a light blue box. The peptide passed tier 2 validation with a profile 

similarity of 0.97. Apex elution times for the SIS and endogenous peptides were identical in 

all validation runs. The MS/MS identification time points are shown with black vertical lines. 

Asterisks (*) indicate the MS/MS spectra have also been validated at tier 1 with a cosine 

similarity above 0.9. The top EIC (MCF7-light) shows the EIC of the endogenous peptide 

(MCF7-light) without any spike. The bottom EIC (Mix-heavy) shows the EIC of the SIS 

peptide in the SIS peptide mixture. The six EICs in between (0.05-light, 0.05-heavy, 1-light, 

1-heavy, 20-light and 20-heavy) show EIC’s of the light and heavy (SIS) peptide from the three 

validation experiments, in which the MCF7 tryptic digest was spiked with the SIS peptide mix 

at three different concentrations (0.05, 1 and 20 fmol for every µg of tryptic digest). The EICs 

of the SIS peptide in the validation runs are inverted for ease of comparison with the EIC’s of 

the endogenous peptide.  
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The gene heterogeneous nuclear ribonucleoprotein L (HNRNPL) is situated on the reverse 

strand of chromosome 19. The missed cleavage peptide “R.QRQPPLLGDHPAEYGEGR.G” 

was identified with 5 PSMs from the retained intron transcript “ENST00000597731”. The 

peptide spans the boundary of exon 7 (amino acids shown in black) and intron 7-8 (shown in 

grey) of the protein-coding transcript “ENST00000221419” (Figure 46). Although the peptide 

was identified from the retained intron transcripts of HNRNPL, it could also be produced due 

to aberrant splicing of the protein-coding transcripts. For example, the splicing of pre-mRNA 

transcript “ENST00000221419” that retains intron 7-8 would lead to a larger protein 

containing the 37 extra amino acids originating from intron 7-8. The peptide was subsequently 

validated at tier 1 and tier 2 (Figure 47 and Figure 48). 

 

 

Figure 46. Visualization of peptide “R.QRQPPLLGDHPAEYGEGR.G” on the gene 

HNRNPL, Ensembl id: ENSG00000104824. The peptide maps onto the exons of retained-

intron-transcripts ENST00000597731 and ENST00000598985. The peptide also spans the 

boundary of exon and intron of protein coding transcripts ENST00000221419, 

ENST00000601449 and ENST00000600873. Green bars denote reference genes. Purple bars 

denote reference transcripts, and red bars reference proteins. Colored blocks represent exons, 

and lines introns. The locations of the peptide sequences identified by the proteogenomic 

search are shown in the bottom track.   
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Figure 47. Annotated MS/MS spectra of the endogenous (top left) and SIS peptide (bottom 

left) from the retained-intron transcript of HNRNPL. Peptide 

“R.QRQPPLLGDHPAEYGEGR.G”, charge 4+. The N-terminal (a/b) and C-terminal (y) 

fragment ions are shown in red, internal fragments (a-type, b-type) in green and un-fragmented 

precursors in orange. Ammonia loss is shown with a * and water loss is shown with a $ sign. 

The spectra on the right show the MS/MS peaks selected for the similarity computation (top: 

endogenous peptide, bottom: SIS peptide). The intensities of the selected peaks were variance 

stabilized by square root transform and normalized to sum 1000 before similarity computation. 

The intensities of 59 common annotated peaks were compared. The peptide passed tier 1 

validation with a similarity score of 0.95. 
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Figure 48. Extracted ion chromatograms (EIC) of the endogenous and SIS peptide from the 

retained-intron transcript of HNRNPL gene in five validation runs. Peptide 

“R.QRQPPLLGDHPAEYGEGR.G”, charge 3+. The elution profiles were compared within 

the time window highlighted with a light blue box. The peptide passed tier 2 validation with a 

profile similarity score 0.94. Apex elution times for the SIS and endogenous peptides were 

identical in all validation runs. The MS/MS identification time points are shown with black 

vertical lines. Asterisks (*) indicate the MS/MS spectra have also been validated at tier 1 with 

a cosine similarity above 0.9. The top EIC (MCF7-light) shows the EIC of the endogenous 

peptide (MCF7-light) without any spike. The bottom EIC (Mix-heavy) shows the EIC of the 

SIS peptide in the SIS peptide mixture. The six EICs in between (0.05-light, 0.05-heavy, 1-

light, 1-heavy, 20-light and 20-heavy) show EIC’s of the light and heavy (SIS) peptide from 

the three validation experiments, in which the MCF7 tryptic digest was spiked with the SIS 

peptide mix at three different concentrations (0.05, 1 and 20 fmol for every µg of tryptic 

digest). The EICs of the SIS peptide in the validation runs are inverted for ease of comparison 

with the EIC’s of the endogenous peptide.  
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3.12. Peptides from introns and exon boundaries of protein coding genes 

A total of 98 peptides were identified from intronic regions and 30 peptides were identified 

from the exon-intron boundaries of protein coding genes (Table 2). The peptide 

“R.ASAAEGVGEPGASAGR.A” was identified with 2 PSMs from the gene WD repeat 

domain 26 (WDR26) in a search of ORFs generated from gene sequences (Figure 49). The 

peptide mapped on to the 5’-UTR region (amino acids “EGVGEPGASAGR.A” shown in black 

above) and the genomic region upstream of 5’-UTR (amino acids “R.ASAA” shown in grey 

above) of the protein coding transcript “ENST00000414423”. This peptide, validated at tier 1 

and tier 2, indicates that the first exon of transcript “ENST00000414423” is extended upstream 

and contains a CDS (Figure 50 and Figure 51).   

 

 

Figure 49. Peptide originating from upstream of exon 1 of WDR26. Visualization of peptide 

“R.ASAAEGVGEPGASAGR.A” on gene WDR26 (ENSG00000162923). The peptide spans 

the boundary of exon 1 of transcript ENST00000414423 and the genomic region upstream of 

exon 1. It also maps onto the intron of protein coding transcript ENST00000445239 (purple 

line) of WDR26. Green bars denote reference genes. Purple bars denote reference transcripts. 

The locations of the peptide sequences identified by the proteogenomic search are shown in 

the bottom row (dark grey block extending upstream of the transcript).   
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Figure 50. Annotated MS/MS spectra of the endogenous (top left) and SIS peptide (bottom 

left) from the boundary of exon 1 and the genomic region upstream of exon 1 of WDR26. 

Peptide “R.ASAAEGVGEPGASAGR.A”, charge 2+. The N-terminal (a/b) and C-terminal (y) 

fragment ions are shown in red, internal fragments (a-type, b-type) in green and un-fragmented 

precursors in orange. Ammonia loss is shown with a * and water loss is shown with a $ sign. 

The spectra on the right show the MS/MS peaks selected for the similarity computation (top: 

endogenous peptide, bottom: SIS peptide). The intensities of the selected peaks were variance 

stabilized by square root transform and normalized to sum 1000 before similarity computation. 

The intensities of 49 common annotated peaks were compared. The peptide passed tier 1 

validation with a similarity score of 0.96. 
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Figure 51. Extracted ion chromatograms of the endogenous and the SIS peptide from five 

validation runs. Peptide “R.ASAAEGVGEPGASAGR.A”, charge 2+. The elution profiles 

were compared within the time window highlighted with a light blue box. The peptide passed 

tier 2 validation with a profile similarity of 0.99. Apex elution times for the SIS and 

endogenous peptides were identical in all validation runs. The MS/MS identification time 

points are shown with black vertical lines. Asterisks (*) indicate the MS/MS spectra have also 

been validated at tier 1 with a cosine similarity above 0.9. The top EIC (MCF7-light) shows 

the EIC of the endogenous peptide (MCF7-light) without any spike. The bottom EIC (Mix-

heavy) shows the EIC of the SIS peptide in the SIS peptide mixture. The six EICs in between 

(0.05-light, 0.05-heavy, 1-light, 1-heavy, 20-light and 20-heavy) show EIC’s of the light and 

heavy (SIS) peptide from the three validation experiments, in which the MCF7 tryptic digest 

was spiked with the SIS peptide mix at three different concentrations (0.05, 1 and 20 fmol for 

every µg of tryptic digest).  
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3.13. Peptides from novel isoforms 

A total of 45 peptides were identified that were classified as novel isoforms of known protein 

coding genes (Table 2). 6 peptides from 46 PSMs were obtained from a GNOMON predicted 

model of STARD10 gene (online appendix 5). A blast search with the NCBI non-redundant 

protein sequences demonstrated that amino acids (78-368) of the protein model showed 100% 

similarity to reference human STARD10. Thus, the protein could represent an N-terminally 

extended (1-77) isoform of STARD10. All 6 non-canonical peptides of STARD10 identified 

by the proteogenomic analysis were mapped to this extended N-terminal region, Figure 52. 

Four of the peptides passed tier 1 and tier 2 validation, “R.SAGAGSYGALANSAWGGPR.K”, 

“R.SAGAGSYGALANSAWGGPRK.V”, “R.KVASASAAASTLSEPPR.R”, and 

“K.VASASAAASTLSEPPR.R”. Another passed tier 1 “R.KVASASAAASTLSEPPRR.T”. The 

final peptide was not included in the peptides selected for validation, “MEEELALGPR.G”. 

The identification and validation of 5 of these peptides indicates that a novel isoform of 

STARD10 is expressed by MCF7 cells. The tier 1 validation and tier 2 validation of one of the 

peptides is shown in Figure 53 and Figure 54. 
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Figure 52. Mapping of the non-canonical peptides identified by the proteogenomic searches 

demonstrate the presence of an N-terminal extended form of STARD10. The peptides 

“R.KVASASAAASTLSEPPR.R”, “R.KVASASAAASTLSEPPRR.T” and 

“K.VASASAAASTLSEPPR.R” map onto the 5’-UTR region of protein coding transcripts of 

STARD10; the other three peptides “R.SAGAGSYGALANSAWGGPR.K”, 

“R.SAGAGSYGALANSAWGGPRK.V”, and “MEEELALGPR.G” do not map onto any 

reference transcripts. Green bars denote reference genes. Purple bars denote reference 

transcripts, and red bars proteins. Colored blocks represent exons, and lines introns. The 

locations of the peptide sequences identified by the proteogenomic search are shown in the 

bottom track (dark grey blocks (amino acids); light grey blocks (intron)). 
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Figure 53. Annotated MS/MS spectra of the endogenous (top left) and SIS peptide (bottom 

left) from the N-terminally extended isoform of STARD10. Peptide 

“K.VASASAAASTLSEPPR.R”, charge 2+. The N-terminal (a/b) and C-terminal (y) fragment 

ions are shown in red, internal fragments (a-type, b-type) in green and un-fragmented 

precursors in orange. Ammonia loss is shown with a * and water loss is shown with a $ sign. 

The spectra on the right show the MS/MS peaks selected for the similarity computation (top: 

endogenous peptide, bottom: SIS peptide). The intensities of the selected peaks were variance 

stabilized by square root transform and normalized to sum 1000 before similarity computation. 

The intensities of 47 common annotated peaks were compared. The peptide passed tier 1 

validation with a similarity score of 0.97. 
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Figure 54. Extracted ion chromatograms (EIC) of the endogenous and SIS peptide from the 

N-terminal extended isoform of STARD10 in five validation runs. Peptide 

“K.VASASAAASTLSEPPR.R”, charge 2+. The elution profiles were compared within the 

time window highlighted with a light blue box. The peptide passed tier 2 validation with a 

profile similarity of 0.99. Apex elution times for the SIS and endogenous peptides were 

identical in all validation runs. The MS/MS identification time points are shown with black 

vertical lines. Asterisks (*) indicate the MS/MS spectra have also been validated at tier 1 with 

a cosine similarity above 0.9. The top EIC (MCF7-light) shows the EIC of the endogenous 

peptide (MCF7-light) without any spike. The bottom EIC (Mix-heavy) shows the EIC of the 

SIS peptide in the SIS peptide mixture. The six EICs in between (0.05-light, 0.05-heavy, 1-

light, 1-heavy, 20-light and 20-heavy) show EIC’s of the light and heavy (SIS) peptide from 

the three validation experiments, in which the MCF7 tryptic digest was spiked with the SIS 

peptide mix at three different concentrations (0.05, 1 and 20 fmol for every µg of tryptic 

digest).  
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The proteogenomics analysis provided evidence for the expression of a novel exon in Talin-1 

(TLN1). We detected 2 peptides from the GNOMON predicted protein model of TLN1 (Figure 

55). The peptides span exon 17, a novel exon, and exon 18 of transcript “ENST00000314888”. 

The first peptide, “R.SPPDSPTDALMQLAK.A”, spanned the novel exon (black) and exon 18 

(grey), and was validated at tier 1 and tier 2 (Figure 56 and Figure 57).  The other peptide, 

“R.QNLLQAAGNVGQASGELLQQIGESDTDPHFQICASR.G”, spanned exon 17 (grey) 

and the novel exon (black) but was too long to synthesize the isotopically labeled standard 

peptide needed for validation.  

A blast search with the NCBI non-redundant protein sequences demonstrated that this protein 

model has 100% sequence similarity to protein “AQN67632.1”, an isoform of TLN1. This 

isoform is not included in the reference protein datasets of RefSeq or GENCODE. The RNA-

seq data from NCBI includes a putative exonic region (black arrow in Figure 55) between exon 

17 and exon 18 of transcript “ENST00000314888”. Our RNA-seq data contains a significant 

number of reads in this region, aligned by both TopHat and BWA, Figure 58. The validated 

proteogenomics peptides and the RNA-seq data confirm the translation of the GNOMON 

predicted isoform of TLN1 in MCF7 cells.  

 

 

Figure 55. Visualization of the non-canonical peptides spanning a novel exon in the TLN1 

gene ENSG00000137076. The peptide “R.SPPDSPTDALMQLAK.A” spans the novel exon 

and exon 18; the peptide “R.QNLLQAAGNVGQASGELLQQIGESDTDPHFQICASR.G” 

spans exon 17 and the novel exon. RNA-seq exon coverage from the NCBI includes a putative 

exonic region (black arrow) between exons 17 and 18. Expression of the novel exon in MCF7 

cells would cause the insertion of 17 extra amino acids “ICASRGAGVRSPPDSPT” at 

position 666 in reference protein ENSP00000316029. The tryptic parts of this insertion are 

included in the peptides identified by the proteogenomics search (indicated in bold text). Green 

bars denote reference genes. Purple bars denote reference transcripts, and red bars proteins. 

Colored blocks represent exons, and lines introns. The locations of the peptide sequences 

identified by the proteogenomic search are shown in the bottom track (dark grey blocks 

overlapping with exons 17, 18 and the novel exon).  
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Figure 56. Annotated MS/MS spectra of the endogenous (top left) and SIS peptide (bottom 

left) from the novel isoform of TLN1. Peptide “R.SPPDSPTDALMQLAK.A”, charge 2+. The 

N-terminal (a/b) and C-terminal (y) fragment ions are shown in red, internal fragments (a-type, 

b-type) in green and un-fragmented precursors in orange. Ammonia loss is shown with a * and 

water loss is shown with a $ sign. The spectra on the right show the MS/MS peaks selected for 

the similarity computation (top: endogenous peptide, bottom: SIS peptide). The intensities of 

the selected peaks were variance stabilized by square root transform and normalized to sum 

1000 before similarity computation. The intensities of 57 common annotated peaks were 

compared. The peptide passed tier 1 validation with a similarity score of 0.98. 
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Figure 57. Extracted ion chromatograms (EIC) of endogenous and SIS peptides from a novel 

isoform of TLN1 in five validation runs. Peptide “R.SPPDSPTDALMQLAK.A”, charge 2+. 

The elution profiles were compared within the time window highlighted with a light blue box. 

The peptide passed tier 2 validation with a profile similarity of 0.99. Apex elution times for 

the SIS and endogenous peptides were near identical in all validation runs. The MS/MS 

identification time points are shown with black vertical lines. Asterisks (*) indicate the MS/MS 

spectra have also been validated at tier 1 with a cosine similarity above 0.9. The top EIC 

(MCF7-light) shows the EIC of the endogenous peptide (MCF7-light) without any spike. The 

bottom EIC (Mix-heavy) shows the EIC of the SIS peptide in the SIS peptide mixture. The six 

EICs in between (0.05-light, 0.05-heavy, 1-light, 1-heavy, 20-light and 20-heavy) show EIC’s 

of the light and heavy (SIS) peptide from the three validation experiments, in which the MCF7 

tryptic digest was spiked with the SIS peptide mix at three different concentrations (0.05, 1 

and 20 fmol for every µg of tryptic digest). The EICs of the SIS peptide in the validation runs 

are inverted for ease of comparison with the EIC’s of the endogenous peptide.  
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Figure 58.  Visualization of the RNA-seq data of MCF7 cells analyzed by TopHat and BWA. 

A significant number of reads (indicated by an oval), aligned by both TopHat and BWA, were 

recorded at the novel exon between exon 17 and exon 18 of TLN1.   

 

 

  



 108 

4. Discussion 

We utilized customized protein sequence databases for the identification of non-canonical 

peptides in MCF7 cells. These were:- 

i) SNVs and Insertion/Deletion mutations identified in Exome-Seq, RNA-seq and 

publicly available through COSMIC were utilized for the identification of peptides 

from variant proteins.  

ii) Transcript sequences from GENCODE and RefSeq were utilized for discovering 

peptides from uORFs, dORFs, and alternate-reading-frame encoded proteins in 

protein coding genes.  

iii) Transcripts with biotypes “lncRNA” and “retained intron” from GENCODE were 

searched in three frame for the identification of peptides from non-coding 

transcripts.  

iv) Protein coding gene sequences and CDS sequences including flanking sequences 

of up to 100 base pairs were translated in three frames in order to identify peptides 

spanning exon-intron boundaries and introns.  

v) GNOMON predicted proteins were utilized for the identification of novel isoforms 

and variants that were not identified in Exome-seq and RNA-seq experiments.  

vi) A six-frame translation search of the transcriptome (GENCODE and RefSeq) and 

full human genome was also performed in order to identify peptides from novel 

coding DNA sequences. 

A reference proteome database was constructed by merging reference protein sequences from 

GENCODE, RefSeq and UniProt. We first performed extensive searches with the reference 

proteome database to identify all peptides that could be assigned to reference proteins. Thus, 

the results concern peptides that could not be assigned to a reference proteome.  

The analysis led to the identification of 1227 non-canonical peptides (Table 2 and online 

appendix 2) after an exhaustive quality control analysis of the MS/MS spectra and search 

engine identification results to ensure all non-canonical peptides originated from high quality 

spectra, and which could not be explained by known modifications. Specifically, 

i) Non-canonical peptides were removed if they differed from reference peptides by 

only Leucine/Isoleucine or deamidation;  
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ii) Non-canonical peptides were removed if they were only detected in a modified 

form;  

iii) Non-canonical peptides from ORFs, GNOMON, transcriptome and genome 

searches were accepted only if they possessed sufficient sequence diversity (at 

least 3 amino acid difference) from any peptide within the reference proteome 

database.  

iv) Non-canonical peptides were removed if their precursor ion isolation contained 

greater than 70% interference. 

v) Non-canonical peptides were removed if their MS/MS spectrum was 

characterized by a low number of peaks or low signal-to-noise. 

To validate the results and confirm the presence of the non-canonical peptides stable isotope-

labeled standard (SIS) peptides were synthesized and used as reference standards. We then 

followed a two-tier validation strategy. In tier 1 we quantified the similarity of the MS/MS 

spectrum of the endogenous peptide with that of its isotopically labeled reference standard 

(using only those fragment ions that could be assigned). Endogenous peptides with cosine 

similarity greater that 0.9 were considered validated at tier 1. For tier 2 validation we examined 

the extracted ion chromatogram of the tier 1 peptides. Peptides that eluted at identical elution 

times, and that had elution and isotopic profile similarities greater than 0.9 were considered 

validated at tier 2. 

  

 

4.1. Choice of reference proteomes can impact which proteoforms are identified  

The LC-MS/MS data was searched with all three common reference proteomes from 

GENCODE, UniProt and RefSeq. It was found that utilizing different reference proteome 

databases could impact which canonical protein isoforms were identified. For example, two 

peptides “GYATDESTVSSVQGSR”, and “EKGYATDESTVSSVQGSR” were identified 

from a predicted splice isoform (XP_005247870) of FMR1 autosomal homolog 1 (FXR1) in 

the RefSeq database. This predicted isoform is not present in the UniProt or GENCODE 

reference protein databases. The peptides spans the boundary of intron 12-13 (grey text above) 

and exon 13 (black text above) of the pre-mRNA transcript NM_005087.3 (Figure 59). The 

retention of intron 12-13 in the protein-coding transcript would cause the insertion of 28 amino 
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acids “MGFRPSSTRGPEKEKGYATDESTVSSVQ” at position 379 in the reference FXR1 

protein NP_005078.2. The splice isoform is predicted to be produced by RefSeq annotation 

but not by GENCODE. The RNA-seq data of MCF7 cells contains alignments at intron 12-13, 

and the proteogenomic analysis reported here identified the associated proteolytic peptide, 

indicating that this predicted splice isoform of FXR1 is expressed in MCF7 cells at the gene 

and protein level.  

 

 

 

Figure 59. Visualization of the RNA-seq data of MCF7 cells analyzed by TopHat and BWA. 

RNA-seq reads aligned between exon 12 and exon 13 of FXR1 protein coding transcript 

NM_005087.3. A significant number of reads (black circle) aligned to intron 12. The identified 

peptides “GYATDESTVSSVQGSR” “EKGYATDESTVSSVQGSR” contain amino acids 

from intron 12 (grey amino acids) and exon 13 (black amino acids).  

 

 

4.2. Validation of peptides with missed cleavages  

Peptides with missed cleavages are not routinely utilized for validation because the digestion 

efficiency in different experiments may differ; furthermore it has been reported that missed 

cleavage peptides are detected with lower sensitivity 105. However, missed cleavage peptides 

span a larger fraction of a protein’s sequence, thereby enabling the identification of more 
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proteoforms. In our analysis we targeted peptides for validation that contained missed 

cleavages. The peptide “K.GTAAAAAAAAAAAAAKVPAKK.I”, with 2 missed cleavages, was 

identified in the proteogenomic discovery experiments with 3 extra Alanine residues (grey text 

above). The MS/MS spectra used to identify this peptide in the discovery experiments 

exhibited a high similarity (0.97) with the MS/MS spectrum of the SIS peptide standard (Figure 

32). However, we did not detect this missed cleavage peptide in the validation experiments 

presumably because of the increased digestion efficiency of the validation experiments 

(determined by calculating the proportion of missed cleavage peptides). The terminal tryptic 

peptide “K.GTAAAAAAAAAAAAAK.V” was detected in both the proteogenomic discovery 

and validation experiments but was omitted from the list of non-canonical peptides because 

the spectrum also matched a semi-tryptic peptide from the reference proteome, but with a lower 

score. As a conservative approach, we rejected all peptides whose spectra matched to peptides 

from the reference proteome. Although, we could not detect the endogenous missed cleavage 

peptide in the validation experiments the high similarity score in tier 1 validation indicates the 

proteoform is present in MCF7 cells.  

 

4.3. Variant missed in next-generation sequencing 

The variant calling programs used for the analysis of next-generation sequencing data reject 

mutations that do not meet a user-defined minimum number of reads. If a mutation does not 

generate sufficient reads they are rejected as artifacts. Or in other words, if the sequencing 

experiments are not performed with sufficient depth the exons on which the variant lies might 

not be sequenced, or the result deemed unreliable. We detected a total of 15 peptides from the 

GNOMON-small database that were classified as novel-isoform-pep and non-coding-pep but 

could be aligned to reference proteins by a single amino acid variation (online appendix 6). 

Accordingly, we considered if these peptides were variants that were not detected by NGS. Six 

of the peptides were targeted for validation, of which 5 passed tier 1 validation and 3 also 

passed tier 2 validation. The genomic coordinates of the peptides as undetected variants of 

reference proteins were obtained by utilizing the software tool PoGo 106 and are provided in 

online appendix 7. As an example, the peptide “K.AEEPGDGPAEEWLGR.A” was identified 

from the GNOMOM protein model of SFT2 domain containing 3 (SFT2D3) but with the 

Arginine (R) at position 38 replaced by a Glycine (G) (shown in grey for clarity). This peptide 
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was successfully validated at tier 1 and tier 2 (Figure 60 and Figure 61). A longer missed 

cleavage peptide, “K.AGGPAAAEPLLAAEKAEEPGDGPAEEWLGR.A”, was also 

identified but was too long for our provider of stable isotope-labeled standard peptides, and so 

could not be validated.  

Figure 62 shows the mapping of these 2 peptides onto the SFT2D3 gene on the alternate 

assembly. Close examination of the dbSNP database revealed a missense variant “rs10206957” 

that would cause this amino acid substitution. SFT2D3 is an intronless gene on chromosome 

2. The variant was not detected in the NGS experiments due to absence of read coverage in the 

CDS region of the gene (Figure 63).  

  

   

 

Figure 60. Annotated MS/MS spectra of the endogenous (top left) and SIS peptide (bottom 

left) from an undetected variant of SFT2D3. Peptide “K.AEEPGDGPAEEWLGR.A”, charge 

2+. The N-terminal (a/b) and C-terminal (y) fragment ions are shown in red, internal fragments 

(a-type, b-type) in green and un-fragmented precursors in orange. Ammonia loss is shown with 

a * and water loss is shown with a $ sign. The spectra on the right show the MS/MS peaks 

selected for the similarity computation (top: endogenous peptide, bottom: SIS peptide). The 

intensities of the selected peaks were variance stabilized by square root transform and 

normalized to sum 1000 before similarity computation. The intensities of 36 common 

annotated peaks were compared. The peptide passed tier 1 validation with a similarity score of 

0.96. 
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Figure 61. Extracted ion chromatograms (EIC) of endogenous and SIS peptides from an 

undetected variant of SFT2D3 gene from five validation runs. Peptide 

“K.AEEPGDGPAEEWLGR.A”, charge 2+. The elution profiles were compared within the 

time window highlighted with a light blue box. The peptide passed tier 2 validation with a 

profile similarity of 0.98. Apex elution times for the SIS and endogenous peptides were 

identical in all validation runs. The MS/MS identification time points are shown with black 

vertical lines. Asterisks (*) indicate the MS/MS spectra have also been validated at tier 1 with 

a cosine similarity above 0.9.The top EIC (MCF7-light) shows the EIC of the endogenous 

peptide (MCF7-light) without any spike. The bottom EIC (Mix-heavy) shows the EIC of the 

SIS peptide in the SIS peptide mixture. The six EICs in between (0.05-light, 0.05-heavy, 1-

light, 1-heavy, 20-light and 20-heavy) show EIC’s of the light and heavy (SIS) peptide from 

the three validation experiments, in which the MCF7 tryptic digest was spiked with the SIS 

peptide mix at three different concentrations (0.05, 1 and 20 fmol for every µg of tryptic 

digest). The EICs of the SIS peptide in the validation runs are inverted for ease of comparison 

with the EIC’s of the endogenous peptide.  
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Figure 62. Peptide evidence for the SFT2D3 protein from the alternate genome assembly 

CHM1_1.1. The two peptides “K.AEEPGDGPAEEWLGR.A” and 

“K.AGGPAAAEPLLAAEKAEEPGDGPAEEWLGR.A” map onto the SFT2D3 gene. 

Nucleic acid at chromosome location chr2:128463821 on the alternate assembly is Guanine 

(G) whereas it is Cytosine (C) in the reference assembly (GRCh38) for transcript 

NM_032740.3. This nucleic acid change would cause the amino acid Arginine (R) at position 

38 on the reference assembly protein NP_116129.3 to be replaced by Glycine (G), as was 

detected here (shown with grey text above). Green bars denote reference genes. Purple bars 

denote reference transcripts, and red bars reference proteins. The location of the peptide 

sequences are shown in the bottom track (dark grey blocks). 

 

 

 

 

Figure 63. Low read coverage in the coding DNA sequence (CDS) of SFT2D3. Significant 

reads were aligned in the 3’-UTR region of SFT2D3 but almost no reads aligned with the CDS 

region where the variant “rs10206957” is located (annotated with an oval).    
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Two peptides “K.NSVTPDM-EEMYKK.A” and “K.NSVTPDM-EEMYK.K” were identified 

from GNOMON predicted protein of 60S ribosomal protein L5 (RPL5) gene, in which the 

methionine (M) at position 236 on reference protein ENSP00000495549 is deleted (shown 

with a hyphen above). The peptide “K.NSVTPDM-EEMYK.K” was validated at tier 1 and 2 

(Figure 64 and Figure 65). An examination of the dbSNP database did not reveal any deletion 

variants at this position. The peptides span the boundary of exon 6 and exon 7 on transcript 

ENST00000644759, indicated with black and grey text above. The RNA-seq intron features 

from NCBI show that transcripts with both consensus (GT-AG) and non-consensus (GT-TG) 

splice sites have been reported at the junction of exons 6 and 7 in RPL5 (Figure 66). The 

canonical splicing encodes the reference RPL5 protein whereas the alternate splicing would 

cause the skipping of Methionine at position 236.  

 

 

Figure 64. Annotated MS/MS spectra of the endogenous (top left) and SIS peptide (bottom 

left) from the GNOMON predicted protein of RPL5. Peptide “K.NSVTPDM-EEMYK.K”, 

charge 2+. The N-terminal (a/b) and C-terminal (y) fragment ions are shown in red, internal 

fragments (a-type, b-type) in green and un-fragmented precursors in orange. Ammonia loss is 

shown with a * and water loss is shown with a $ sign. The spectra on the right show the MS/MS 

peaks selected for the similarity computation (top: endogenous peptide, bottom: SIS peptide). 

The intensities of the selected peaks were variance stabilized by square root transform and 

normalized to sum 1000 before similarity computation. The intensities of 31 common 

annotated peaks were compared. The peptide passed tier 1 validation with a similarity score of 

0.98. 
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Figure 65. Extracted ion chromatograms (EIC) of endogenous and isotopically-labeled 

standard peptides from the GNOMON predicted protein of RPL5 gene in five validation runs. 

Peptide “K.NSVTPDM-EEMYK.K”, charge 2+. The elution profiles were compared within 

the time window highlighted with a light blue box. The peptide passed tier 2 validation with a 

profile similarity of 0.97. Apex elution times for the SIS and endogenous peptides were nearly 

identical in all validation runs. The MS/MS identification time points are shown with black 

vertical lines. Asterisks (*) indicate the MS/MS spectra have also been validated at tier 1 with 

a cosine similarity above 0.9. The top EIC (MCF7-light) shows the EIC of the endogenous 

peptide (MCF7-light) without any spike. The bottom EIC (Mix-heavy) shows the EIC of the 

SIS peptide in the SIS peptide mixture. The six EICs in between (0.05-light, 0.05-heavy, 1-

light, 1-heavy, 20-light and 20-heavy) show EIC’s of the light and heavy (SIS) peptide from 

the three validation experiments, in which the MCF7 tryptic digest was spiked with the SIS 

peptide mix at three different concentrations (0.05, 1 and 20 fmol for every µg of tryptic 

digest). The EICs of the SIS peptide in the validation runs are inverted for ease of comparison 

with the EIC’s of the endogenous peptide.  
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Figure 66. Peptide evidence of alternative splicing in RPL5. Visualization of two peptides 

“K.NSVTPDM-EEMYKK.A” and “K.NSVTPDM-EEMYK.K” on the RPL5 gene, Ensembl 

id: ENSG00000122406. The NCBI reference transcripts (shown in purple) with the canonical 

splicing GT-AG (black arrow line) would lead to the generation of the canonical protein 

sequence (with methionine), whereas the alternate splicing GT-TG (orange arrow line) would 

lead to the detected protein, without methionine at position 236. Green bars denote reference 

genes. Purple bars denote reference transcripts, and red bars reference proteins. Colored blocks 

represent exons, and lines introns. The genomic locations of the peptides are shown in the 

bottom track (short dark grey blocks at the beginning and end of the light grey block (intron), 

and overlapping with the exons). 

 

 

4.4. Ambiguous proteogenomics peptides 

A total of 65 non-canonical peptides were classified as ambiguous (Table 2). For example, the 

non-canonical peptide “R.CHLGPGHQAGPGLHRPPSPR.C” was identified with 2 PSMs 

from protein coding transcript ENST00000611571 of Mucin 1 (MUC1) in a non-canonical 

frame (Figure 67). Proteogenomic mapping revealed the peptide could be mapped onto 22 

genomic co-ordinates, all within the MUC1 mRNA (Figure 68). The peptide is classified as 

ambiguous due to multiple coordinate hits on the transcriptome but it is produced 

unambiguously by the MUC1 gene.  
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Figure 67. MS/MS spectra of peptide “R.CHLGPGHQAGPGLHRPPSPR.C”, charge 5+, m/z 

426.42. The noise level (blue horizontal line) was determined by DNL. The N-terminal (a/b) 

and C-terminal (y) fragment ions are shown in red, internal fragments are shown in green and 

un-fragmented precursors in orange. Ammonia loss is shown with a * sign and water loss is 

shown with a $ sign. 

 

 

 

 

Figure 68. Ambiguous mapping of a peptide. The peptide “CHLGPGHQAGPGLHRPPSPR” 

can be mapped on to 22 different coordinates all within the MUC1 gene ENSG00000185499.  
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Some non-canonical peptides could be classified into different classes if different genome 

annotation systems were used. Peptide “R.VDPQGQCPEHGACPSLLAHVSAEGR.R” was 

identified with a single PSM from the HELZ2 gene (Figure 69). Proteogenomic mapping 

revealed that the peptide has a unique coordinate within the HELZ2 gene (Figure 70). 

However, the peptide is classified as ambiguous because it could be mapped onto two non-

coding transcripts of HELZ2 from GENCODE with different biotypes; ENST00000370082 - 

“retained intron” and ENST00000479540 - “processed transcript”. Note: The GENCODE 

annotation was preferentially used over NCBI; if the NCBI annotation was given priority the 

peptide would have been unambiguously classified as an uORF-peptide because it maps onto 

the 5’-UTR region of RefSeq protein coding transcripts NM_001037335, XM_024452007 and 

XM_024452006 (Figure 70). Utilizing NCBI annotation over GENCODE would cause some 

proteogenomic peptides to be classified differently due to the differences in the transcript and 

gene models produced by these two annotation systems.  

 

 

 

Figure 69. MS/MS spectra of peptide “R.VDPQGQCPEHGACPSLLAHVSAEGR.R”, charge 

4+, m/z 668.81. The noise level (blue horizontal line) was determined by DNL. The N-terminal 

(a/b) and C-terminal (y) fragment ions are shown in red, internal fragments are shown in green 

and non-fragmented precursors in orange. Ammonia loss is shown with a * sign and water loss 

is shown with a $ sign. 
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Figure 70. Mapping of “R.VDPQGQCPEHGACPSLLAHVSAEGR.R” onto HELZ2 is 

dependent on which annotation system is used (Ensembl or NCBI). The peptide maps onto two 

Ensembl transcripts ENST00000479540 and ENST00000370082 with biotypes “processed 

transcript” and “retained intron”, respectively. Based on NCBI RefSeq annotation the peptide 

maps onto the 5’-UTR region of protein coding transcripts NM_001037335, XM_024452007 

and XM_024452006. Green bars denote reference genes. Purple bars denote reference 

transcripts, and red bars reference proteins. Colored blocks represent exons, and lines introns. 

The location of the non-canonical peptides identified by the proteogenomic search is shown in 

the bottom row.   

 

 

4.5. Unmapped proteogenomics peptides 

A total of 55 peptides were classified as unmapped in our analysis (Table 2). Unmapped 

peptides were identified in searches conducted with CDS extensions, 6 frame transcriptome 

and GNOMON databases. Some peptides remained unmapped due to differences between the 

annotations of the genomic features utilized to generate the databases (GENCODE version 25) 

and the one used to map them (GENCODE version 27). Most unmapped peptides either had a 

stop codon replaced with a standard amino acid or were produced from the N-term/C-terminal 

of the ORFs from CDS extension databases. During database search with Mascot (version 2.5) 

stop codons in nucleic acid searches and unknown amino acids (X) in amino acid searches are 

replaced by all standard amino acids. Peptides identified from these databases may have a stop 

codon or unknown amino acid replaced by a standard amino acid. We considered such peptide 

matches to be spurious results and so they were not utilized for assignment of genomic context. 
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4.6. Novel proteoforms are expressed in MCF7 cells 

We successfully validated the protein level expression of variants identified in next-generation 

sequencing. Our analysis demonstrated that besides SNVs many other proteoforms could be 

detected in MCF7 cells. Peptide “K.AGGAADMTDNIPLQPVR.Q” was identified from the 

uORF of ATP9A mRNA. Expression of uORFs have been shown to regulate the expression of 

main ORF genes 50. The peptide “R.GLQLLQPHQLLQGR.G” was validated from the last 

exon of the KRT8 gene in a non-canonical frame. An undetected frame-shift or ribosomal 

frame-shifting may be responsible for the production of the resulting truncated KRT8 protein 

in MCF7 cells. KRT8 is the major component of intermediate filament cytoskeleton and its 

high expression has been linked to tumor progression and metastasis of gastric cancer 107. 

KRT8 expression is enhanced in MCF7 cell lines  108. 

 

A peptide “R.GAEVPGEAAPGAR.A” was validated from the long non-coding RNA gene 

GATA3-AS1. The peptide was identified from an ORF of length 125 amino acids within the 

GATA3-AS1 gene (Figure 71). The translation of GATA3-AS1 in MCF7 cells is particularly 

interesting because the gene coding for the protein GATA3 is on the opposite strand and 

harbors an insertion mutation that leads to the translation of a truncated proteoform of GATA3 

41. Recent evidence demonstrates that peptides produced from long non-coding RNA genes 

can have important biological and functional roles, for example the small peptide Myoregulin 

(MRLN) that regulates muscle performance 53.  

 

 

MEPDFLHSVGVKLPHTPPNTCPRASPSHPPSQGRRDPVPVEVGKPSRVQKAEAMAQS

GGAAFWGSALGLQTQGAEMLAAGPPTRARQPALPGELRGAEVPGEAAPGARALPD

LGNRQSGAPGSKS 

Figure 71. GATA3-AS1 ORF showing the identified peptides (red).  
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We validated multiple peptides from an N-terminally extended novel isoform of STARD10 

protein (Figure 72). STARD10 protein is over-expressed in breast cancer 109 and the MCF7 

breast cancer cell line used here110,111.  STARD10 functions as a phospholipid transporter, and 

a loss of expression has been reported as indicative of poor prognosis 112.  The 77 amino acid 

extension identified here represents an extension of 26% over the normal length protein.  

 

MEEELALGPRGQGGASLAGRDGRSAGAGSYGALANSAWGGPRKVASASAAASTLS

EPPRRTQESRTRTRALGLPTLPMEKLAASTEPQGPRPVLGRESVQVPDDQDFRSFRSE

CEAEVGWNLTYSRAGVSVWVQAVEMDRTLHKIKCRMECCDVPAETLYDVLHDIEY

RKKWDSNVIETFDIARLTVNADVGYYSWRCPKPLKNRDVITLRSWLPMGADYIIMN

YSVKHPKYPPRKDLVRAVSIQTGYLIQSTGPKSCVITYLAQVDPKGSLPKWVVNKSS

QFLAPKAMKKMYKACLKYPEWKQKHLPHFKPWLHPEQSPLPSLALSELSVQHADS

LENIDESAVAESREERMGGAGGEGSDDDTSLT 

 

Figure 72. Peptides detected from a GNOMON predicted N-terminal extended isoform of 

STARD10. The N-terminal extended part is shown in black and the reference STARD10 

protein is shown in grey. The 6 non-canonical peptides identified by the proteogenomics 

search, namely “MEEELALGPR.G”, “R.SAGAGSYGALANSAWGGPR.K”, 

“R.SAGAGSYGALANSAWGGPRK.V”, “R.KVASASAAASTLSEPPR.R”, 

“R.KVASASAAASTLSEPPRR.T”, and “K.VASASAAASTLSEPPR.R”, were all identified 

from the extended N-terminal region (peptides underlined for clarity).  

  

 

The peptide “R.SPPDSPTDALMQLAK.A” mapped onto a novel exon situated between exons 

17 and 18 in the gene TLN1. This isoform of TLN1 gene has 17 amino acids 

“ICASRGAGVRSPPDSPT” coded by the novel exon, which is inserted at amino acid position 

666 in the reference TL1 protein. TLN1 codes for a cytoskeletal protein that is concentrated in 

areas of cell-substratum and cell-cell contacts 113,114.  

The peptide “K.NSVTPDM-EEMYK.K” was validated from an isoform of the protein RPL5 

due to non-canonical splicing of exon 6 and 7. The variant was not detected in NGS 

experiments but was identified from the GNOMON database. The splicing caused deletion of 

a methionine residue at the start of exon 7. RPL5 protein is a component of the large ribosomal 

subunit. Mutations in RPL5 have been associated with defects in the maturation of ribosomal 

RNAs in the small or large ribosomal subunit production pathways 115.  
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The peptide “R.ASAAEGVGEPGASAGR.A” was validated from an upstream extension of 

exon 1 within the gene WDR26. The peptide spans the boundary of 5’-UTR and the genomic 

region upstream of 5’-UTR, suggesting the expression of a novel CDS in this region. The 

protein belongs to the WD repeat protein family, and is involved in a variety of cellular 

processes including cell cycle progression, signal transduction, apoptosis and gene regulation 

116,117 . It has been shown that WDR26 is overexpressed in highly malignant breast cancers and 

has been proposed as a potential therapeutic target for breast cancer 118.  

We performed a comprehensive proteogenomics analysis of MCF7 cells with customized 

protein sequence database searches. In addition to confirming the protein forms of variants 

identified by next-generation sequencing, multiple novel proteoforms were also validated. 

Bottom-up LC-MS/MS is widely used for profiling of proteomic landscape of complex 

biological samples. It is well known that a large proportion of the acquired spectra in LC-

MS/MS experiments cannot be assigned. Some of these spectra remain unassigned due to 

absence of the proteoforms in the compact reference proteome databases utilized in proteomics 

data analysis pipelines. Our results demonstrates that a subset of these unassigned spectra 

originate from genomic mutations and pervasive translations from outside of the known protein 

coding regions of the genome. The results demonstrated how the reference databases 

commonly utilized in proteomics workflows do not fully capture the complexity of the 

oncoproteome space, and if possible should be supplemented with sample specific variant and 

novel proteoforms.  

 

5. Conclusions 

In this work I have developed a comprehensive proteogenomics identification and validation 

pipeline. The pipeline was utilized to discover and validate proteogenomics peptides in MCF7 

cells (Figure 73). I used the Python programming language to develop scripts for: construction 

of customized databases, noise-detection in MS/MS spectra, comprehensive annotation of 

matched MS/MS spectra, proteogenomic mapping of all classes of peptides, and the 

quantitative comparison of endogenous non-canonical peptides with their isotopically labeled 

analogues (SIS peptides).  
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Figure 73. Proteogenomics analysis and validation pipeline. 

 

First several customize databases were generated and used to analyze the LC-MS/MS data to 

discover novel proteoforms. Variants detected in Exome-seq, RNA-seq and publicly available 

in COSMIC were utilized to identify SNVs and InDel peptides. Exon-skipped peptides were 

identified by generating a database of novel exon-skipped proteins from reference transcripts. 

Peptides from uORFs, dORFs and alt-frame translations were identified using a database of 

ORFs generated from a reference transcriptome. Peptides spanning exon-intron boundaries 

were identified using a database of ORFs generated from 100 base-pair extensions of CDS and 

gene sequences. Peptides from non-coding transcripts were identified using a database of ORFs 

generated from non-coding transcript sequences. Peptides from novel protein isoforms were 

identified using a database of Gnomon proteins.  

The LC-MS/MS data was first interrogated with all common reference proteomes from 

UniProt, GENCODE and RefSeq. I demonstrated that the choice of reference proteome 

database can affect the identification of non-canonical peptides. This problem was avoided by 

utilizing non-redundant protein sequences from all common reference proteomes. A merged 
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reference proteome database was created incorporating the reference proteomes in UniProt, 

GENCODE and RefSeq.   

Peptides that were identified exclusively from the proteogenomics searches were subjected to 

rigorous quality control. First I applied a noise detection algorithm to filter out PSMs whose 

MS/MS spectra were of low signal-to-noise, and which did not contain sufficient signal peaks. 

Then, I developed a spectrum annotation tool to ensure the non-canonical peptides could 

account for the majority of fragment ions contained in their MS/MS spectra. These QC steps 

ensured all reported non-canonical peptides were identified using high quality MS/MS spectra 

that could describe the full MS/MS spectrum, and thus reduced the likelihood of false-positive 

identifications.  

I performed genomic mapping of the QC controlled peptides. I was able to successfully map 

all classes of peptides to their genomic co-ordinates. I assigned a genomic context to the 

peptide based on their mapping which was later used for their classification.  

Finally I validated many of the non-canonical peptides with SIS peptides. I developed a two 

tier validation scheme: in tier 1 I compared the fragmentation pattern of endogenous and SIS 

peptides. Peptides that had a similarity score greater than 0.9 were subjected to tier 2 validation, 

in which I compared their elution profiles. To guard against co-eluting ions, profile similarity 

was also computed for each peptide isotope (monoisotopic, 1C13 and 2C13). Peptides that had 

elution profile similarity and isotopic composition similarity greater than 0.9 were considered 

validated at tier 2.     
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