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Introduction 

1. The Human Immunodeficiency Virus 1 (HIV-1)  

1.1 HIV-1 Life Cycle and host factors functions 

Human Immunodeficiency virus (HIV) is a retrovirus, classified into the 

Lentivirus genus, which is the causative agent of the Acquired 

Immunodeficiency Syndrome (AIDS). A hallmark of all members of the 

Retroviridae family is to produce DNA from an RNA genome via the enzyme 

reverse transcriptase. The DNA is incorporated into the host genome by the 

integrase enzyme (IN), then it replicates as part of the host cell DNA. In 

1983 Dr. Montagnier isolated from lymphonodes of an asymptomatic 

individual, who presented a generalized lymphadenopatia, an agent 

containing a reverse transcriptase activity that was highly cytopathic in 

human peripheral blood mononuclear cells (Barré-Sinoussi et al., 1983).  

In the same period, Dr. Gallo and Dr. Levy isolated a retrovirus from both 

immunodeficiency patients and healthy individuals from the various risk 

groups! (Gallo et al., 1984; Popovic et al., 1984). This new retrovirus was 

originally named LAV by the French group and HTLV-III by the US group, 

and later called Human Immunodeficiency virus (HIV); the new disease 

was named Acquired Immunodeficiency Syndrome (AIDS). In 1986 a 

related virus was isolated from African individuals and was named HIV-2, 

which is less pathogenic than HIV-1 (Clavel et al., 1986). In the last 25 

years therapeutic strategies have been successful to control viral spread, 

however AIDS is still considered a devastating and incurable disease. There 

are several reasons for the impossibility to cure HIV-1 infection, that relate 

to both the HIV-1 cellular targets and its life cycle. First HIV-1 mainly 

infects CD4" T cells and macrophages causing catastrophic effects on the 

immune system such as CD4" T cell depletion and destruction of lymphoid 

organs. Moreover the emergence of viral strains that are resistant to 
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currently available drugs is a crucial feature of the infection. One of the 

major reasons for the emergence of resistant strains is that both RNA 

Polymearse II and in particular Reverse Transcriptase, the two enzymes 

that synthesize viral genomes during the infection cycle are an error prone 

enzymes, lacking exonucleolytic proof-reading activity. In addition, during 

reverse transcription template switching occurs, causing deletions, 

insertions and mutations; these variations allow the virus to evade the 

immune response. Besides immune escape, a major reason why HIV-1 

infection cannot be eradicated by the current therapies is due to the 

remarkable property of the virus to establish latent infection in resting 

CD4" T cells: since these cells do not express viral proteins, they remain 

completely unseen by the immune system and untouched by current 

antiretroviral therapies (Chun et al., 1995; Lassen et al., 2004; Williams 

and Greene 2007). 

The HIV-1 genome is composed of two copies of positive single-stranded 

RNA that codes for the viral genes (Alizon et al., 1984). These two copies 

of the viral genome are enclosed by a conical capsid composed of 2,000 

copies of the viral protein p24; single-stranded RNA is bound to 

nucleocapsid proteins. The virion contains two enzymes needed for the 

early steps of infection: Reverse Transcriptase (RT) and Integrase (IN), 

and Protease (PR), which ia important for virion maturation. A matrix 

composed of the viral protein p17 surrounds the capsid ensuring the 

integrity of the virion particle. This is, in turn, surrounded by the viral 

envelope, which is composed by phospholipid bilayer derived from the cell 

membrane when a newly formed viral particle buds from it. Two viral 

proteins that derive from the Env gene are embedded in the viral envelope: 

the glycoprotein 120 (gp120) and the glycoprotein 41 (gp41). These 

molecules are responsible for the recognition, attachment and fusion with 

the target cell.  



 3 

The RNA genome consists of at least nine genes (gag, pol, and env, tat, 

rev, nef, vif, vpr, vpu) encoding 19 proteins. Two of these genes, gag and 

env, contain informations needed to make the structural proteins for new 

viral particles. Env codes for a polyprotein called gp160 that is cleaved by a 

viral enzyme to form gp120 and gp41 and gag is translated into a p55 

polyprotein that is cleaved to form p17 matrix (MA), p24 capsid (CA), p7 

nucleocapsid (NC) and p6. Pol codifies for RT, IN and PR, while the six 

remaining genes, tat, rev, nef, vif, vpr, and vpu are regulatory genes 

(Figure 1) (Martin et al., 2000). The Tat protein (p16 and p14) is a 

transcriptional transactivator for the LTR promoter acting by binding the 

TAR RNA element (Berkhout et al., 1989). The Rev protein (p19) is 

involved in shuttling RNAs from the nucleus to the cytoplasm by binding to 

the RRE RNA element (Rev Nekhai and Jeang 2006). A role for Vif (p23) 

has only recently been uncovered. This protein is necessary for an efficient 

infection of certain cells types, while other cells support infection in the 

absence of it (Sakai et al., 1991). Now it has been demonstrated that Vif 

prevents the action of the restriction factor APOBEC3G (Stopak et al., 2003; 

Sheehy et al., 2003). The Vpr protein (p14) seems to play a role in the 

translocation of the PIC from cytoplasm to nucleus and has been shown to 

arrest cell division at G2/M phase when transcription from LTR promoter is 

more efficient (He et al., 1995). The Nef protein (p27) downregulates both 

CD4 and MHC molecules probably through the recruitment of lck 

(leukocyte-specific protein tyrosine kinase) and PACS-1 (Phosphofurin 

acidic cluster sorting protein 1) (Piguet et al., 2000; Salghetti et al., 1995). 

A number of studies suggests that Nef may control the activation status of 

infected cells and their survival responses as it interacts with p21-activated 

kinase, Src-family kinases (PAK), Phosphoinositide 3-kinases (PI3-Kinase) 

and apoptosis signal-regulating kinase (ASK) (Nunn et al., 1996; Wolf et 

al., 2001; Geleziunas et al., 2001; Graziani et al 1996; Blagoveshchenskaya 

et al., 2002). However its role in signal transduction pathways still re mains 
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controversial (Marsh, 1999). The Vpu protein (p16) is an integral 

membrane phosphoprotein. Early studies have demonstrated that it is 

necessary for an efficient release of the viral particles (Klimkait et al., 

1990). The mechanisms by which Vpu influences particle release was 

disclosed only recently by two different groups. Biesniasz and colleagues 

discovered a new cellular factor (Tetherin) that blocks viral particle release 

and is antagonized by Vpu (Neil et al., 2008) and Freed laboratory found 

that Calcium-modulating cyclophilin ligand (CAML), which restricts HIV-1 

release, is also a Vpu-interacting factor (Varthakavi et al., 2008).  

 

 

Figure 1. Schematic representation of the HIV-1 genome. (Standford 
University Web Site). 
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1.1.1 Cellular proteins regulating HIV-1 infection 

 

HIV-1 is a very sophisticated virus despite its simple genomic structure. 

Virtually all steps of its viral replication cycle involve cellular factors, 

suggesting a very complex dynamic relationship between the virus and the 

infected cell. Cellular proteins seem to have either pro-viral or anti-viral 

functions. Over the past several years, many cellular proteins involved in 

HIV-1 infection have been discovered, nevertheless the complexity of HIV-1 

viral cycle suggests that presence of several other cellular partners. In 

2008 three different large scale RNA interference screenings were 

performed to identify these partners (Brass et al., 2008; König et al., 2008; 

Zhou et al., 2008). Hundreds of proteins have been found to be involved in 

HIV-1 infection unlocking a broad range of possible future investigations. 

 

Cellular 
Factor 

Viral Phase Activity Reference 

CD4 Entry Binding with Env Dalgleish et al., 
1984 

CXCR4 Entry Binding with Env Endres et al 1996 
CCR5 Entry Binding with Env Choe et al., 1996  
DC-SIGN Entry Virion 

Internalization in 
DC cells 

Geijtenbeek et al., 
2000 

Dynamins Entry Necessary for 
virions endocytosis 

Miyauchi et al., 
2009 

Trim5 alpha Early Phase Interferes with the 
uncoating process 
RESTRICTION 
FACTOR 

Hatziioannou et al., 
2004 
Keckesova et al., 
2004 

Cyclophilin A Early Phase Protects HIV-1 from 
an unknown 
antiviral factor 

Luban et al., 1993 
Braaten and Luban 
1996 

APOBEC3 Reverse 
Transcription 

Induces mutations 
in viral cDNA 
RESTRICTION 
FACTOR 

Sheeny et al 2002 
Harris et al., 2003 

Uracil-DNA Reverse Controls dUTP Bouhamdan et al., 
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glycosylase Transcription misincorporation in 
viral cDNA 

1996 
Priet et al., 2005 

Cofilin Post-Entry 
Migration 

Actin 
depolymerizing 
factor 

Yoder et al., 2008 

Transportin-
SR2 (TRN-
SR2) 

Nuclear 
Translocation 

PIC entry Chirst et al., 2008 

Importin7 Nuclear 
Translocation 

PIC entry Fassati et al., 2003 

BAF Integration Prevents 
autointegration 

Lee and Craigie, 
1994 

INI1/hSNF5 Integration IN interactor 
involved in virion 
production 

Kalpana et al., 1994 
Sorin et al., 2006 

LEDGF Integration Tethering factor Cherepanov et al., 
2003 
Maartens et al., 
2003 

Emerin Integration Bridges together 
chromatin and 
viral cDNA  

Jacque and 
Stevenson 2006 
Shun et al., 2007 

p300/CBP Integration/ 
Transcription 

Positively 
modulates 
integration and 
transcription  

Cereseto et al., 
2005 
Marzio et al., 1998 
Benkirane et al., 
1998 

Cyclin T1 Transcription Regulation of HIV-1 
transcription 

Fujinaga et al., 
1998 
Bieniasz et al., 1999 

NAP-1 Transcription Regulation of HIV-1 
transcription 

Vardabasso et al., 
2007 

CRM-1 Nuclear 
export 

Nuclear export 
receptor for 
unspliced viral RNA 

Askjaer et al., 1998 

TSG 101 
 

Assembly and 
Budding 

Interaction with 
ESCRT machinery 

Garrus et al., 2001 

Tetherin 
 

Assembly and 
Budding 

Inhibits Budding 
RESTRICTION 
FACTOR 

Neil et al., 2008 

Calcium-
modulating 
cyclophilin 
ligand 

Assembly and 
Budding 

Inhibits Budding 
RESTRICTION 
FACTOR 

Varthakavi et al., 
2008 
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(CAML) 
PACS-1 
 

Host-Virus 
Interaction 

Down-regulation of 
MHC 

Piguet et al., 2000 

lck 
 

Host-Virus 
interaction 

Down-regulation of 
CD4 

Salghetti et al., 
1995 

PAK  
 

Host-Virus 
interaction 

Anti-apoptotic 
signals 

Nunn et al., 1996 
Wolf et al., 2001 

ASK 
 

Host-Virus 
interaction 

Anti-apoptotic 
signals 

Geleziunas et al., 
2001 

PI3-Kinase Host-Virus 
interaction 

Anti-apoptotic 
signals/ Down-
regulation of MHC 

Graziani et al., 1996 
Wolf et al., 2001 
Blagoveshchenskaya 
et al., 2002 

Table I. Some of the most relevant and validated cellular partners for HIV-1 
infection; restriction factors are indicated in red. 

 

1.1.2 Regulation of HIV-1 infection early phase by cellular 

proteins: a balance between restriction and permissivity 

factors 

 

ADSORPTION AND INTERNALIZATION 

HIV-1 is an enveloped virus. The envelope, formed during budding, is a 

lipid bilayer carrying phospholipids and both viral and cellular proteins. 

Cellular components, which constitute a significant fraction of the envelope, 

represent particular areas of the plasma membrane from which budding 

occurred. The HIV-1 envelope is rich in cholesterol, indicating its 

preferential derivation from lipid rafts, as well as in MHC molecules. Two 

viral proteins are present in the envelope: gp120 or the surface env subunit 

(SU) and gp41, the transmembrane subunit (TM); these proteins are 

products of proteolytic cleavage of the gp160 precursor . 

The sequence of gp120 is highly variable and heavily glicosylated: the most 

variable domains, termed hypervariable loops, are exposed at the surface 

of the virion while the conserved domains are folded to form the core of 

the protein (Fennie et al., 1989). gp120 interacts with specific cellular 
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receptors, the CD4 molecule and two different chemokine receptors 

(Dalgleish et al., 1984; Klatzmann et al., 1984; Alkhatib et al., 1996; Choe 

et al., 1996; Endres et al., 1996; Deng et al., 1996, Feng et al., 1996).!The 

CCR5 protein functions as a receptor for chemokines belonging to the CC 

group, including RANTES, MIP-1! and MIP-1". This receptor is 

predominantly expressed on T cells, macrophages, dendritic cells and 

microglia. The CXCR4 molecule, also called fusin, is an alpha-chemokine 

receptor specific for stromal-derived-factor-1 (SDF-1), a molecule 

possessing a potent chemotactic activity for lymphocytes. Both CCR5 and 

CXCR4 belong to the family of G-protein-coupled chemokine receptors and 

share a seven transmembrane-spanning alpha-helix structure that mediates 

signal propagation from biological membranes (rev: Lodowski et al., 2009). 

Based on its ability to bind these chemokine receptors, HIV-1 can be 

divided into different strains: CCR5 (R5 strain) or CXCR4R (X4 strains) or 

both (R5X4 strains). R5 strains can be isolated throughout the natural 

course of human infection and reflects the capability of HIV-1 to infect 

macrophages and monocytes. X4 and R5X4 strains appear in the late 

stages of infection, when the immune system is impaired; appearance of 

strains possessing this receptor specificity is an aggravating factor because 

it reflects the ability of HIV-1 to infect a larger spectrum of cells including 

resting T lymphocytes. The adhesion of HIV-1 to cells is mediated by the 

aspecific interaction between gp120 and charged groups on the cell 

surface. These interactions are important for the subsequent binding 

between gp120 and its specific receptors (Brelot and Alizon, 2001). HIV-1 

has long been assumed to fuse directly with the plasma membrane (Stein 

et al., 1987; McClure et al 1988; Melikyan 2008). This fusion occurs after 

the induction of a conformational change in TM (Chan and Kim, 1998). 

Recent work entailing live cell imaging demonstrates that HIV-1 entry also 

occurs after virion endocytosis and shows that the cellular protein dynamin 

plays a pivotal role in this process (Figure 2) (Miyauchi 2009).  
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Adhesion of HIV-1 to the cell surface is particularly important for the 

mucosal transmission of the infection. It has been shown that dendritic 

cells present in the skin and mucosae can uptake virions thorough the 

mannose-binding C-type lectin domain of a type II membrane protein 

named DC-SIGN (Geijtenbeek et al., 2000). The virions are retained in 

dendritic cells for extended periods of time in an infectious state and are 

presented to permissive T cells. The sites of contact and HIV-1 

presentation between DC and CD4+ T cells, called immunological synapses 

or virological synapses, were visualized by high resolution microspcopy. 

The authors showed that, in these contact sites, the viral receptors cluster, 

thus allowing highly efficient infection (Stoll at al., 2002; McDonald et al., 

2003). 

 

 

Figure 2. The new model of HIV-1 entry. Fusion events that occur at the 
plasma membrane and proceed at least to the stage of hemifusion and 
subsequent endocytosis (A). Fusion events at the plasma membrane that 
do not result in any subsequent content mixing (B) (Uchil and Mothes 
2009).  
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UNCOATING 

Following entry, the uncoating steps take place; removal of the CA and 

release of the viral genome into the cytoplasm are necessary for the 

initiation of reverse transcription. 

The early steps of viral replication seems to be the main targets for host 

proteins that elicit an innate antiviral response. These factors are generally 

termed as “Restriction Factors”. The existence of retroviral restriction 

factors was discovered by Lilly and colleagues in 1967. In particular these 

authors found a protein that confers resistance to the Friend’s murine 

leukemia virus in murine cells. This factor was named Fv1. This molecule 

probably exerts its restriction activity after the initiation of reverse 

transcription but before viral integration (DesGroseillers and Jolicoeur 

1983). Interestingly it was found that restriction can be blocked by 

saturation of target cells with non infectious viral particles and that 

resistance was abrogated by a single mutation in the CA protein. In human 

cells, the factor that conferred resistance to N-MLV at the early post-entry 

stages of viral infection was termed restriction factor 1 (Ref1) while, in 

primate cells, a group of factors restricting lentiviral infection was termed 

lentivirus susceptibility factor 1 (Lv1) (Towers et al., 2002; Hatziioannou et 

al., 2003). Lv1 was found to induce resistance to HIV-1 and numerous 

other lentiviruses in Old World and New World monkeys and to act in a 

dominant manner (Münk et al., 2002). A few years later, Tripartite motif 

protein 5 alpha (Trim5 !) was identified through a screening of a rhesus 

cDNA library, and was shown to confer resistance to HIV-1 infection in 

HeLa cells (Stremlau et al., 2004). Both Ref1 and Lv1 were shown to 

belong to the Trim5! family (Hatziioannou et al., 2004; Keckesova et al., 

2004). The antiviral mechanism of Trim5! action has not been completely 

elucidated, and seems to involve blockade of HIV-1 infection at several 

steps. The protein possesses three well defined domains, a RING finger, a 

B-box and a coiled coil domain, common for all the TRIM family members, 
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as well as an additional SPRY domain which is necessary for its binding 

with viral CA. Several proteins having a RING finger domain possess a E3 

ubiquitin ligase activity, thus it was initially hypothesized that TRIM5! 

might acta as an antiviral factor by inducing the degradation of the core 

proteins of the virions; despite that TRIM5! mutants in the RING finger 

domain still possess an antiviral activity, albeit lower than the wild type 

(see reviews Luban, 2007; Towers, 2007). Moreover, proteosomal 

inhibition induces accumulation of viral DNA in the cytoplasm, but the 

nuclear import remained impaired (Perez-Caballero et al., 2005; 

Javanbakht et al., 2005). Therefore it was proposed that TRIM5! acts 

through blocking the nuclear import of PICs (Wu et al., 2006). 

Interestingly, in New World owl monkeys, which are the only New World 

primates resistant to HIV-1 infection, Trim5! action was found to be 

dependent on Cyclophilin A (CypA), a cytoplasmatic peptidyl-prolyl 

isomerase that belongs to the family of Cyclosporin A (CsA)-binding 

cyclophilins. In particular the authors found that, in owl monkeys, three 

different short hairpin RNAs (shRNAs) against CypA were able to eliminate 

resistance; however reintroduction of CypA did not restore the antiviral 

activity. Only after a screen of owl monkey cDNAs, the existence of a 

mRNA coding a fusion protein between CypA and Trim5! was revealed. 

Hence, in these primates, the antiviral activity is determined by the 

presence of a fusion protein composed by 299 N terminal aminoacids of 

Trim5! and CypA (Sayah et al., 2004). The fact that CypA was required for 

Trim5! restiction against HIV-1 seems paradoxical, since it has been 

previously demonstrated that human CypA is required for the early steps of 

HIV-1 infection exerting its function on CA, the same protein targeted by 

Trim5! (Luban eal., 1993). CypA binds to CA protein in the producer cell 

and it is incorporated into the virions. Therefore, it was then proposed that 

CypA might play a role in viral assembly (Franke et al., 1994; Thali et al., 

1994). However, knockdown of CypA does not affect viral particle 
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formation and release. Additionally in the same period it was demonstrated 

that CypA was necessary for the early steps of viral life cycle (Braaten et al 

1996; Braaten and Luban 2001). In paricular, isomerization of CA by CypA 

seemed to protect the virion from TRIM5! antiviral activity. In closing, it 

should be emphasized that other studies have demonstrated that CypA 

protects HIV-1 from an unknown antiviral factor that is independent from 

TRIM5! (Keckesova et al., 2006; Sokolskaja et al., 2006). 

 

REVERSE TRANSCRIPTION 

Anotother mechanism that can suppress HIV-1 replication is mediated by 

the apolipoprotein B mRNA editing enzyme family (APOBEC3), also known 

as CEM-15, which most probably exerts its antiviral function during the step 

of reverse transcription. The first member of APOBEC to be isolated as a 

restriction factor was APOBEC3G (Sheehy et al., 2002). It was known that 

certain cells are not permissive to HIV-1 strains harbouring mutation in the 

vif gene, while other cell types remain permissive to HIV-1 lacking a 

functional Vif protein (Gabuzda et al., 1992). Through subtractive cloning 

between non-permissive and permissive cells it was discovered that the 

inhibitory factor for HIV-1 replication in non permissive cells was 

APOBEC3G. Later, its close relatives APOBEC3F, and to a lesser degree 

APOBEC3B, were found to posses similar antiviral activities (Zheng et al., 

2004). APOBEC3G from a producer cell is incorporated into new virions. 

Both virion-associated and cellular APOBEC3G play an antiviral function in 

the newly infected cell. Vif counteracts this antiviral activity recruiting a E3 

ubiquitin ligase complex that target APOBEC3G to proteosomal degradation 

(Stopak et al., 2003; Sheehy et al., 2003). APOBEC3G belongs to the family 

of polynucleotide cytosine deaminase (CDAs), that catalyzes the 

deamination of cytosine to uracil in DNAand/or RNA strands (Teng et al 
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1993). Hypermutation of viral genomes clearly is deleterious for the spread 

of HIV-1 infection by causing replication defects at multiple steps. 

Nonetheless there is still an ongoing discussion whether editing of the viral 

genome can explain completely the antiviral effect of APOBEC. In 

particular, it was shown that a catalytic inactive mutant of APOBEC still 

possessed antiviral effect. These authors observed that overexpression of 

inactive APOBEC3G reduced the accumulation of reverse transcripts similar 

to the wild type protein, and proposed that APOBEC3G interferes with the 

removal of tRNA primer and thus exerted antiviral effects independent from 

its enzymatic activity (Guo et al., 2006). Recent work however demonstrate 

that an enxymatically inactive APOBEC3G display less efficient resctriction 

activity, thus calling again into question the relevance of deamination 

(Miyagi et al., 2007; Browne et al., 2008; Aguiar and Peterlin, 2008).  

One possible mechanism explaining the antiviral activity of APOBEC is the 

degradation of uracilated viral cDNA through the activity of cellular DNA 

glycosylases, e.g. uracil-N-glycosidase (UNG) and Single-strand-selective 

monofunctional uracil-DNA glycosylase 1 (SMUG1). During reverse 

transcription, APOBEC proteins introduce C to U mutations in the newly 

synthetized minus strand viral cDNA. Since uracils are not tolerated in the!
DNA, they are removed by a cellular enzyme named (UNG) and the nicked 

DNA is further degraded in the cytoplasm or, once integrated, might lead to 

the production of aberrant mRNA and protein products (Lecossier et al., 

2003; Mangeat et al., 2003; Harris et al., 2003). Again, the interplay 

between APOBEC and UNG enzymes is still not clear. One report descirbed 

that the nuclear form of UNG (UNG2) is packaged into HIV-1 virions 

through an interaction with Vpr to modulate viral mutation rate (Mansky et 

al., 2000). In contrast, another study concluded that Vpr induces UNG and 

SMUG proteasomal degradation thus reducing their packaging into virions 

(Schrofelbauer et al., 2005). A third study did not observe any effect of Vpr 
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on UNG packaging (Kaiser et al., 2006). Consistent with this latter study, a 

fourth investigation reported that UNG packaging was, indeed, Vpr-

independent and instead involved an interaction with the HIV-1 IN (Willets 

et al., 1999). Thus, the mode of UNG packaging remains under discussion; 

however, most studies agree on the presence of UNG2 in HIV-1 virions 

(Rev Goila-Gaur and Strebel 2008). An additional interesting role of 

APOBEC3G is the regulation of the permissivity of CD4+ resting T cells to 

HIV-1 infection. Resting CD4+ T cells are highly resistant to HIV infection 

and, as demonstrated recently, in these cells APOBEC3G is associated with 

a low molecular weight complex in which it is enzymatically active and thus 

restricts HIV-1 infection. In activated T cells, APOBEC3G becomes 

associated with a high molecular mass complex (HMM) and its enzymatic 

activity is inhibited (Chiu et al., 2005). 

 

 

1.1.3 Interactions between cellular and viral proteins during 

HIV-1 integration and transcription 

 

NUCLEAR TRANSPORT OF VIRAL cDNA 

A hallmark of all retroviruses is the integration of the their genomes into 

the host DNA, however only lentiviruses have the capability to integrate 

into the genome of non-dividing cells. In the case of HIV-1, this feature is 

very important since non-dividing macrophages are fundamental reservoirs 

of the virus in infected individuals (Yamashita et al., 2006). Products of 

reverse transcription are transported through the cytoplasm and into the 

nucleus as a structure termed Pre-integration complex (PIC), which 

contains cDNA and viral proteins as well as some cellular proteins. The 
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mechanism by which PICs are transported through the nuclear pores into 

the nucleus is still poorly understood, and depends on both host and viral 

factors. Once in the nucleus, full length linear copies of reverse transcripts 

are integrated in to the host genome by the viral enzyme IN. Although 

each virion contains two RNA molecules, only one copy ends up integrated 

into the host cell genome (Suzuki et al., 2007). PICs consist of double 

stranded viral cDNA and both viral (IN, NC, MA, RT and Vpr) and cellular 

proteins (BAF, HMGs, LAP2a, Ku, LEDGF/p75). Nuclear pores (NP) allow the 

active transport of complexes and macromolecules, they have diameter of 

25 nm while the diameter of the PIC is about 56 nm, thus suggesting that 

HIV-1 PICs use active transport to reach the nucleus (Bukrinsky et al., 

2004). Studies using fluorescently labelled PICs indicate that they co-

localize with microtubules organizing centres (MTOC), which are located in 

cytoplasm close to the nuclear membrane (McDonald et al., 2002). The 

molecular processes of PIC entry into the nucleus are still poorly 

understood but it is possible that the virus uses a redundancy of 

mechanisms. In general, all the PIC components play a role in nuclear 

translocation. 

MA was the first viral protein to be implicated in nuclear translocation of 

the PIC (Bukrinsky et al., 1993). Early studies discovered that MA, although 

itself unable to localize in the nucleus, contains a nuclear localization signal 

(NLS). This peptide induced nuclear translocation of other proteins when 

fused to them (Depienne et al., 2000). Phosphorylation of Tyr 132 in the 

MA protein was also proposed to be important for nuclear entry, however 

in the absence of functional MA HIV-1 can still efficiently infect non dividing 

cells such as macrophages (Gallay et al., 1995 ; Reil et al., 1998). The 

accessory protein Vpr was also suggested to be involved in the nuclear 

import of the PIC since it possesses karyophilic sequences and localizes to 

the nucleus. The role of Vpr also remained unclear since some groups 
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reported that it is important for HIV-1 replication in resting macrophages 

(but not in cycling T cells), while others showed that it is not necessary for 

nuclear import of the PIC in growth arrested cell lines (Sherman and 

Greene 2002). An intriguing hypothesis regarding the function of Vpr was 

made by Greene and colleagues, who demonstrated that Vpr alters nuclear 

structure by causing the formation of herniations. These ruptures in the 

nuclear envelope provide an access for the PICs (de Noronha et al., 2001).  

The particular structure present in the viral DNA, named DNA-Flap, seems 

to participate in PICs nuclear import. DNA-Flap is a triple stranded 

intermediate created during reverse transcription and mutations in this 

sequence greatly impairs nuclear import (Zennou et al., 2000). However, 

the mechanism by which this DNA sequence functions as a nuclear 

localization signals remains unclear. 

Although PIC entry into the nucleus remains still poorly understood, it is 

clear that IN plays a leading role in the process. IN accumulates in the 

nucleus and contains several putative NLS, the most important of which 

seems to be the sequence present in the catalytic domain. When this 

sequence is mutated, the nuclear import is greatly impaired albeit IN 

catalytic activity remains intact (Bouyac-Bertoia et al., 2001). Some more 

recent studies propose that, even in the absence of a transferable NLS, IN 

still localizes in the nucleus due to its interaction with LEDGF/p75 

(Maertens et al., 2003; Vanegas et al., 2005).  

In general, the import of PICs into the nucleus also involves cellular 

proteins. Several components of the PIC interact with the family of importin 

alpha while Vpr also interacts with nucleoporins (Suzuki and Craigie 2007). 

A yeast two-hybrid screen recently revealed a new IN partner, named 

transportin-SR2 (TRN-SR2) involved in regulation of the nuclear import. By 

using fluorescently labeled HIV-1 particles, the authors demonstrated that, 
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under conditions of TRN-SR2 knockdown, nuclear import was impaired and 

that HIV-1 replication in macrophages was blocked (Christ et al., 2008). 

 

INTEGRATION 

Once in the nucleus, viral DNA stably interacts with chromosomal DNA. 

LEDGF/p75 seems to be the key factor that contributes to stable tethering 

of IN to chromatin (Maertens et al., 2003; Emiliani et al., 2005; Hombrouck 

et al., 2007). A role in tethering HIV-1 to chromatin has also been 

attributed to emerin, a component of the nuclear envelope. In particular, 

this protein was demonstrated to regulate HIV-1 integration in 

macrophages (Jacque and Stevenson 2006). However, subsequent studies 

failed to confirm the involvement of this protein in tethering HIV-1 to 

chromatin (Shun et al., 2007).  

HIV-1 integration is not site-specific and in vitro studies revealed that 

different primary DNA sequences can function as acceptor sites for viral 

integration (Bor et al., 1996). Early in vitro studies demonstrated that the 

presence of proteins bound to the acceptor DNA inhibits the integration 

reaction by steric hindrance (Bor et al., 1995). However, incorporation of 

histones does not inhibit integration but rather distorts the target DNA, 

thus creating hot spots that often favour integration (Pryciak and Varmus 

1992). 

Retroviral integration does not occur at random in the host DNA and a 

number of different studies suggest a role for chromatin in the site 

selection of HIV-1. It has been shown that centromeric heterochromatin is 

an unfavourable site for HIV-1 integration probably due to the poor 

accessibility of these regions (Carteau et al., 1998). Nevertheless, 

integrations into heterochromatic regions do occur and are proposed to be 
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tightly connected with a phenomenon of post-integration latency (Jordan et 

al., 2001 ; Jordan et al., 2003 ; Lewinski et al., 2005). Sequencing of more 

that 500 sites of HIV-1 integration in SupT1 T cell line revealed that gene 

regions were preferentially chosen by HIV-1 for its integration (Schroder et 

al., 2002). Moreover, comparative analysis of integration sites of HIV-1, 

MLV and ASLV showed that these retroviruses have different preferences 

for integration. In particular, MLV preferentially integrates into the so-called 

DNase I hypersensitivity regions, CpG island and promoters, whereas HIV-1 

preferentially integrates into the reading frames of active genes (often 

intronic regions). At the same time, high rate of transcription seems to 

inhibit ASLV integration (Vijaya et al., 1986; Bushman et al., 2005; Lewinski 

et al., 2006).  

In achieving efficient integration into the genome of infected cell, viral IN is 

assisted by cellular proteins, or co-factors. The barrier-to-autointegration 

factor (BAF) has been identified as a part of the PIC that binds IN and was 

suggested to have a role in preventing autointegration. Its ability to bridge 

DNA and the finding that the nuclear lamina-associated polypeptide-2alpha 

interacts with BAF suggest a role in nuclear structure organization (Lin et 

al., 2003). IN interactor 1 (INI1) was found to directly interact with HIV-1 

IN and to activate its DNA-joining activity, and the high mobility group 

chromosomal protein A1 (HMGA1) might approximate both long terminal 

repeat (LTR) ends and facilitate IN binding by unwinding the LTR termini 

(rev Van Maele et al., 2006).  

Recently, we shown that HIV-1 IN interacts and is acetylated by p300, a 

transcriptional co-activator and histone acetyl-transferase (HAT) that 

facilitates the access of the transcription machinery to DNA by acetylating 

histones. p300mediated acetylation increased the affinity of IN for its DNA 

template and suggested that this protein may also function as a tethering 

factor for an open chromatin structure (Cereseto et al., 2005).  
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TRANSCRIPTION 

Upon integration into the cellular DNA, the HIV-1 provirus adopts a 

chromatinized conformation with two nucleosomes that are precisely 

positioned in the 5# long terminal repeat (LTR). These two nucleosomes 

overlap binding sites for several transcription factors in the transcriptional 

initiation site; the modification status of these nucleosomes is a key 

modulator of HIV-1 transcriptional activity (Williams and Greene 2007). 

Transcription of the integrated viral DNA is critical for the establishment of 

efficient infection. This process is essentially regulated by a variety of host 

cell factors that act in concert with the viral protein Tat. Tat is a small 

nuclear protein of 86 to 101 amino acids (depending on the viral strain) 

and is encoded from two separate exons. Tat binds to an RNA sequence 

named transactivation-responsive region (TAR) that is located downstream 

of the initiation site for transcription. TAR RNA sequence forms a highly 

stable stem – loop structure (Berkhout et al., 1989). Mutations that 

destabilize the TAR stem - loop structure impair Tat – stimulated 

transcription. The interaction of Tat with TAR permits activation of HIV-1 

transcription by promoting the assembly of transcriptionally active 

complexes at the LTR by multiple protein–protein interactions (Marcello et 

al., 2001; Marcello et al., 2004). 

HIV-1 transcription is highly dependent on host proteins and consequently 

is influenced by the cellular activation status. The expression of viral genes 

is a complex balance that involves both trancriptional activators and 

repressors and it is also influenced by external stimuli. HIV transcription 

can be induced by a wide range of stimuli, including T-cell receptor ligation 

by anti-CD3 antibodies, cytokines, including IL-1$, IL-2 and TNF-%, and 

mitogens. Such signalling ultimately drives HIV-1 transcription through the 
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induction of activating cellular transcription factors, including NF-&B, NFAT 

and AP-1. The LTR contains also several additional transcription factors 

binding domains that recruit various cellular transcription factors, including 

Sp1, LEF-1, COUP-TF, YY1, Ets-1 and USF (Rohr et al., 2003). In addition 

to binding of different factors to the promoter/enhancer region in the LTR, 

different histone acetyltransferases were shown to be recruited to the viral 

promoter. These HATs (p300/CBP, P/CAF and GCN5) are recruited by the 

viral transactivator Tat protein and were shown to acetylate Tat and to 

induce changes in the histone hyperacetylation and remodeling of nuc-1 at 

the LTR (Marzio et al., 1998; Benkirane et al., 1998; Lusic et al., 2003). 

Recently in our lab, through a proteomic screening, we found that the 

human Nucleosome Assembly Protein-1 (hNAP-1), an histone chaperone 

that shuttles histones H2A/H2B into the nucleus, assembles nucleosomes 

and promotes chromatin fluidity, interacts and cooperates with Tat during 

trancription of the viral genes (Vardabasso et al., 2008). 

After initiation of transcription, expression of full-length HIV-1 transcripts 

requires the concerted action of several cellular proteins. Tat is necessary 

for an efficient elongation of the transcripts by RNA pol II. In particular, Tat 

is known to interact with the cyclin component of the cellular transcriptional 

kinase P-TEFb. This kinase is a heterodimer composed of CDK9 and CylinT1 

(CycT1). P-TEFb phosphorylates two serines in the eptad repeats present in 

the C-terminal domain (CTD) of the largest subunit of RNA polymerase II 

thus increasing its elongation activity. Chemical inhibition of CDK9 with DRB 

of flavopiridol or genetic inhibition with CDK9 dominant negative mutants 

strongly impairs Tat-mediated activation of HIV gene expression (Wei et 

al., 1998; Fujinaga et al., 1998; Bieniasz et al., 1998). It has been 

proposed, in some models of latency, that the limited expression of CycT1 

in resting CD4" T cells might be the responsible for the block in HIV-1 

expression in these cells (Liou et al., 2002). 
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It has been hypothesized that chromosomal location of integrated provirus 

may affect the transcription of HIV-1. In particular it has been proposed 

that latently infected cells harbour proviruses in disfavoured regions. 

Taking advantage of T cell line models of latency it has been found that, in 

latently infected cells, integration occurs in three different chromatin 

regions: centromeric heterochromatin, gene deserts and surprisingly highly 

transcribed genes. It is possible that a high rate of transcription of host 

genes might inhibit viral transcription (Lewinski et al., 2005). These 

findings suggest that chromatin status and environment can influence both 

HIV-1 integration and transcription. 

 

Figure 3. From cell entry to DNA integration. The virus enters the target 
cell by fusion between the cellular and viral membranes. The nucleoprotein 
core containing the genomic RNA is delivered into the cytoplasm where 
reverse transcription takes place. The viral cDNA with viral and cellular 
proteins form the pre-integration complex (PIC), that reaches the nuclear 
envelope by active transport along microtubules and then cross the intact 
nuclear envelope, presumably through the nuclear pore complex (NPC). 
The PIC gains access to chromatin and the viral protein IN catalyzes the 
integration reaction of the viral DNA into the host genome (Suzuki et al., 
2007).  
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HIV-1 encodes at least nine genes which must be expressed during viral 

life cycle in the correct temporal order. Early in the viral infection, small, 

multiply spliced transcripts (2 kb) encoding Tat, Rev and Nef predominate 

in the cytoplasm. During the late phase of HIV infection, genomic 

(unspliced, 9kb) RNAs and singly spliced RNAs (4 kb) become leading 

species in the infected cell. A key factor controlling late phase transition is 

the viral protein Rev. Rev is a small, positively charged RNA-binding protein 

that is approximately 116 amino acids in size. It is encoded from two exons 

which are joined by splicing to produce a monocystronic transcript early in 

the viral replication cycle. Rev contains both nuclear localization sequence 

(NLS) and nuclear export signal (NES). Hence, Rev is a shuttling protein. 

Rev permits export of unspliced/partially spliced transcripts from the 

nucleus to the cytoplasm, where they serve as templates for translation of 

the gag-pol open reading frame or as the full-length genomic RNA (Zapp 

and Green, 1989). Rev specifically recognizes an RNA element located 

within the coding sequence for Env. This sequence, called RRE (Rev-

responsive element), is present within the env-coding region and is about 

200 nucleotides in size and forms secondary RNA structure. Rev exports 

the intron-containing HIV-1 mRNA via a CRM1 shuttling system (Askjaer et 

al., 1998). CRM1 is a member of the karyopherin family of 

nucleocytoplasmic-transport factors and, like others karyopherins involved 

in nuclear export, binds its cargo in the nucleus in the presence of the GTP-

bound form of the Ran GTPase. After nuclear export, hydrolysis of the 

bound GTP to GDP causes a conformational shift that induces cargo release 

in the cytoplasm, thus providing the directionality of this export pathway. 

CRM1 also interacts with components of the nuclear pore complex (NPC) 

and this interaction is essential for nuclear RNA export. In the nucleus, 

Ran-GTP bound CRM1 binds the NES domain of Rev, which in turn is bound 

to RRE-containing HIV-1 transcripts. This interaction enables CRM1 to 

export the resulting RNA/protein complex into the cytoplasm. In the 
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cytoplasm, conversion from Ran-GTP to Ran-GDP releases the Rev/RNA 

cargo. Rev returns to the nucleus by binding to importin-$ and Ran-GDP for 

subsequent rounds of export (Suhasini and Reddy 2009). 

Although it is now clear that the primarily effect of Rev is in promoting the 

nuclear export of RRE- containing HIV RNAs the mechanism of Rev function 

is not fully understood. This protein functions through several cellular 

posttranscriptional mechanisms, such as mRNA splicing, RNA stability, 

nucleocytoplasmic transport, and translation. Nevertheless, numerous 

studies have provided insights on several posttranscriptional steps in viral 

gene expression regulated by Rev. Studies of Cochrane and co-workers 

indicate that Rev acts early in HIV biogenesis (Iacampo and Cochrane 

1996). In addition to influencing the fate of viral mRNA within the nucleus, 

Rev has been proposed to affect utilization of viral mRNA for translation. 

Rev efficiently loads RRE-containing mRNAs onto polysomes leading to high 

levels of structural proteins translation (D'Agostino et al., 1992). There are 

many lines of evidence which suggest the involvement of Rev in 

stabilization of unspliced HIV transcripts either by disassembly of 

spliceosomes or by overcoming the destabilization effect of cis-acting 

elements present in HIV RNAs.  
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1.1.4 Cellular proteins involved in the late phases of HIV-1 

infection 

The late phases of HIV-1 life cycle are characterized by the assembly of 

new viral particles, their release from the plasma membrane and their 

maturation. These steps are also highly dependent on cellular proteins.  

ASSEMBLY, BUDDING AND MATURATION 

Several groups have shown that HIV-1 recruits the cellular endocytosis 

machinery for assembly and budding (Martin-Serrano et al., 2003; von 

Schwedler et al., 2003; Pornillos et al., 2002). The HIV-1 envelope contains 

a high percentage of cholesterol suggesting that HIV may bud from specific 

membrane microdomains named lipid rafts (Campbell et al., 2001). The 

viral particles assemble at the plasma membrane, then are wrapped with 

the host membrane and bud out from the cell surface. The gag polyprotein, 

which is composed by the matrix domain (MA), the capsid domain (CA) and 

the nucleocapsid domain (NC), plays a pivotal role in driving all these 

processes. The MA domain targets gag to the site of assembly, where CA 

plays a role in gag multimerization and NC domain packages viral genomic 

RNA during assembly. In addition to these domains, the p6 domain 

positioned at the carboxyl terminus of gag is necessary for particle release 

from the host cell.  

The mature virion is generated during viral release upon cleavage of the 

gag precursor by the viral protease (PR). Different studies have suggested 

that HIV-1 viral particles recruit the high molecular weight endosomal 

sorting complexes (ESCRTI, ESCRTII, ESCRTIII) (Rev Demirov and Freed, 

2004). The ESCRT machineries are usually involved in the sorting of cargo 

proteins, such as activated receptors, to Multi Vesicular Bodies (MVB) 

before their degradation in the lysosomes (Fujii et al., 2007).  
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Independent studies have shown that p6 interacts with Tsg101, a 

component of ESCRTI machinery, and this interaction is necessary for viral 

particle release. Depletion of endogenous Tsg101 or disruption of Tsg101-

p6 interaction inhibits virus release (Garrus et al., 2001; VerPlank et al., 

2001). Another minor player in HIV-1 budding is the apoptosis-linked-gene 

2 interacting protein (Alix) protein. Strack and colleagues demonstrated 

that Alix was involved in EIAV (Equine Infectious Anemia Virus) release 

(Strack et al., 2003). However many observation suggest that Alix can also 

be used by HIV-1 as an alternative route when Tsg101 is not available 

(Fisher et al., 2007; Usami et al., 2007). All these findings suggest that, 

under particular circumstances, retrovirus assembly and budding can take 

place in the MVB. Additional electromicroscopy experiments describe virus 

positive intracellular compartments that also display MVB specific markers. 

After budding of the virus into the MVB lumen, particle release occurs via 

the endosomal pathway (Figure 4) (Sherer et al., 2003; Ono and Freed, 

2004).  

In certains types of human cells the absence of Vpu leads to inefficient HIV 

particle release due to the failure to detach from the plasma membrane 

and accumulation in large numbers at the cell surface (Klimkait et al., 

1990). Interestingly, in simian cells, Vpu is dispensable for efficient HIV 

release (Varthakavi et al 2003). Neil and colleagues found a new protein 

(Tetherin) that, in the absence of Vpu, inhibits viral particle release; this 

factor is induced by IFN-alpha. The mechanism by which Tetherin inhibits 

viral release is still unknown, but it has been shown that this factor also 

antagonizes the release of MLV and that its overexpression, induced by IFN 

alpha, blocks infection, thus suggesting that Tetherin could be a generic 

defence against enveloped viruses (Neil et al., 2008). 

A second release restriction factor is represented by calcium-modulating 

cyclophilin ligand (CAML-1), an integral membrane protein involved in T cell 
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development and regulation (Tran et al., 2004). In 2008 it was shown that 

CAML is a Vpu-sensitive human host restriction factor to HIV-1 release. 

Indeed, expression of human CAML rendered simian cells restrictive for 

viral release in the absence of Vpu, suggesting that CAML is a human host 

restriction factor blocking viral paricle release or budding, the action of 

which is counteracted by Vpu (Varthakavi et al 2008). 

 

 

Figure 4. Model for retrovirus release. On the left is a schematic 
representation of endocytosis and MVB sorting of an activated growth 
factor receptor. An Hrs- containing complex (dark purple) recognizes and 
sequesters ubiquitylated cargo (Ub, light purple) at clathrin-rich regions of 
the early endosomal membrane. On the right is depicted the hijacking of 
MVB sorting machinery for virus release. Virus particles are shown to 
assemble and bud at the plasma or to be released (e.g., from 
macrophages) through the exosome pathway following assembly in the 
MVB (Demirov and Freed, 2004). 
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1.1.5 Cellular MicroRNAs: novel partner for HIV-1 

 

In addition to cellular proteins that regulate HIV-1 infection, there is 

mounting interest in the regulatory roles served by non-coding RNAs 

(NcRNA) and by the RNAi cellular machinery. The best known subtype of 

NcRNAs are the small, 21–23 nucleotides long, single-stranded microRNA 

(miRNA) molecules, which are key modulators of eukaryotic gene 

expression and are involved in many cellular processes such as 

development oncogenesis, cell cycle control and immunity (Calin and Croce 

2006; Scaria and Jadhav 2007). Pri-miRNAs are encoded in introns, 

intergenic regions, and specific transcription units in both sense and 

antisense orientations and transcribed by RNA polymerase II. The pri-

miRNA is processed in the nucleus by the Drosha-DGCR8 complex (RNase 

III endonuclease complex), into a shorter 70 nucleotide RNA (pre-miRNA) 

containing a stem-loop structure (Han et al., 2006). The pre-miRNA is then 

transported into the cytoplasm where it is further processed by a second 

RNase III endonuclease complex, Dicer-TRBP, to generate a 21–23 

nucleotide imperfectly duplexed mature miRNA (Chendrimada et al., 2005; 

Haase et al., 2005; rev Bushati and Cohen 2007). A mature miRNA is 

assembled into an RNA-induced silencing complex (RISC). The miRNA-RISC 

(miRISC) complex recognizes the target mRNA via imperfect base pairing 

at the 3' -UTR region (Grimson et al., 2007). Since the base pairing is 

‘‘imperfect’’ a single miRNA could potentially recognize and downregulate 

up to 100 mRNAs (Brennecke et al., 2005).  

It has been shown that plants and lower eukaryotes use de novo 

synthesized virus-derived small interfering RNAs to regulate infecting 

viruses (Ding and Voinnet 2007). Although it remains unclear if mammals 

conserve an RNAi-based antiviral strategy, recent evidence indicate that 

this might be the case (Berkhout and Jeang 2007; Yeung et al., 2005). The 
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first finding of a cellular miRNA involvement in antiviral immunity describes 

a cellular miRNA (miR-32) as a inhibitor of primate foamy virus type 1 

(PFV-1) infection (Lecellier et al., 2005). 

Recently, it has been shown that cellular miRNAs are involved in the 

regulation of HIV-1 latency. In particular, Huang and colleagues found that 

the 3’ end of HIV-1 mRNA is targeted by miR-28, miR-125b, miR-150, miR-

223, miR-382, which are more abundant in resting primary CD4" T cells, 

and that inhibition of these miRNA induces HIV-1 expression in latently 

infected cells (Huang et al., 2007). Moreover, it has been recently reported 

that another miRNA (miR-198) functions to restrict HIV-1 replication in 

monocytes, by repressing Cyclin T1 expression (Sung et al., 2009). 

This restrictive role of microRNAs on HIV infection in part explains the 

reason why HIV-1 has evolved ways to affect the cellular RNAi machinery. 

First of all, it seems that HIV-1 can reshape the infected cell miRNA 

expression profile (Yeung et al., 2005; Houzet et al., 2008). Moreover it 

was demonstrated that HIV-1 actively suppressed the expression of the 

polycistronic miRNA cluster miR-17/92 and that this suppression is required 

for efficient viral replication (Triboulet et al., 2007). 

Since HIV-1 produces a large number of small viral RNA hairpins, it is 

probable that it evolved a strategy to avoid viral RNA processing by the 

RNAi machinery (Bennasser et al., 2006; Bennasser et al., 2006; Klase et 

al., 2007; Ouellet et al., 2008). However, miRNAs and RNAi are conserved 

factors/processes whose complete suppression is incompatible with cellular 

viability (Muljo et al., 2005). Most likely HIV-1 avoids RNAi antiviral 

mechanisms by mutating viral RNA-sequences to alter base-

complementarity with cellular miRNAs. Indeed, there is evidence that 

selective and evasive nucleotide changes in HIV-1 sequences can be 
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elicited rapidly by siRNA/shRNA induced RNAi (Dash et al., 2004; 

Westerhout et al., 2005). 

Finally, a large number of viral miRNAs (vmiRNAs) have been described to 

be encoded by viral genomes, in particular herpes and polyoma viruses 

(SV40) (Pfeffer et al., 2005; Sullivan et al., 2005). In the specific case of 

HIV-1, a vmiRNA encoded by the nef region of HIV-1 termed miRN367 was 

physically identified and isolated by Omoto and colleagues (Omoto et al., 

2005). The role of this vmiRNA in HIV-1 infection remains unclear. 

!
1.2 Lymphocytes activation status and HIV-1 infection 

HIV-1 replication is greatly influenced by the activation status of the target 

cell. Activated CD4" T lymphocytes are permissive to HIV-1 infection, 

whereas in resting T cells, despite the efficient entry of HIV-1, no viral 

progeny is produced. Since the early 1990s, different hypothesis have been 

made to explain this block. Initially, Zack and colleagues demonstrated that 

quiescent T cells can be infected by HIV-1 and that viral cDNA synthesis 

initiates at levels comparable with those of activated T cells. However, the 

viral genome remains incompletely reverse transcribed and may persist in 

an inactive state until subsequent mitogenic stimulation (Zack et al., 1990). 

In the same year, Stevenson and colleagues suggested that the block in 

resting T cells occurs at the level of integration. They found that, in resting 

T cells, viral cDNA was unable to integrate into the host cell genome and 

was maintained extrachromosomally for several weeks. Subsequent T cell 

activation allowed integration of extrachromosomal DNA that seemed to be 

transcriptionally active (Stevenson et al., 1990). However studies from 

different groups performed later on, suggested that, in resting T cells, a 

block to HIV-1 infection occurs at the level of reverse transcription and that 

a progression through the G1b phase was needed to achieve efficient 
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reverse transcription (Korin and Zack, 1998). Latest findings from Greene 

and colleagues better elucidated this mechanism of resting T cell resistance 

to HIV-1 infection: they demonstrated that APOBEC3G, in a form of a low 

molecular mass ribonucleoprotein complex present exclusively in resting 

CD4" T lymphocytes, blocks formation of late products of reverse 

transcription via the RNA binding ability of APOBEC3G. In activated T cells, 

the APOBEC-containing low molecular mass complex forms a larger 

complex that looses the capacity to restrict the viral infection thus allowing 

fully efficient reverse transcription (Chiu et al., 2005). Understanding the 

fate of HIV-1 in resting T cells is particularly important since the majority of 

T lymphocytes are in resting state (Tang et al., 1995). Siliciano and 

colleagues monitored the kinetics of HIV-1 decay in resting CD4" T cells 

and found that slow kinetics of reverse transcription and blocks at 

subsequent steps limit HIV-1 infection in these cells. They also showed that 

the reservoir of unintegrated HIV-1 in recently infected resting CD4" T cells 

is highly labile. By examining the decay of integration-competent HIV-1 

DNA, they found that this form of fully retrotranscribed HIV-1 has a half-life 

of 1 day in resting T cells. They proposed that degradation of either viral 

DNA and viral proteins that constitute the preintegration complex would 

lead to a functional decay of the virus (Zhou et al., 2005). Moreover, 

several studies suggest that inhibition of the proteasome increases the 

production of proviral DNA by blocking the degradation of the 

preintegration complexes (Butler et al., 2002; Schwartz et al., 1998). In 

2007, a work performed using immunofluorescence experiments on CA 

viral protein and FISH analysis on viral DNA in resting infected cells 

demonstrated that full length reverse transcribed HIV-1 cDNA together with 

CA localizes at the centrosomes 4 days post infection (Zamborlini et al., 

2007). Collectively, these data suggest that, in resting CD4" T cells, 

different blocks that impair viral replication may exist at multiple steps of 
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the early infection. It seems that reverse transcription is the most affected 

step as it resulted to be both impaired and delayed. However, when the full 

length transcripts accumulate in the infected cells, they are anyhow unable 

to reach the nucleus and stably integrate into the host genome. 

In addition to this pre-integration latency mechanisms, another typical 

characteristic of HIV-1 infection, that correlates with T cell activation 

status, is the establishment of a latent reservoir of infected cells (post-

integration latency). The major obstacle to HIV-1 eradication is the 

establishment of a latent infection. The formation of this latent reservoir is 

a natural consequence of the fact that the virus replicates in activated CD4" 

T cells (Persaud et al., 2003), while the vast majority of CD4"! T 

lymphocytes is in a resting G0 state. In adults, about half of the resting 

cells are naïve, having yet to encounter an appropriate antigen (Ag) and 

the other half is represented by memory cells, that have previously 

responded to an Ag. Ag-driven responses involve a burst of cellular 

proliferation and differentiation, giving rise to effector cells, most of which 

die quickly; a surviving subset reverts to the resting G0 state as memory. 

These cells are characterized by long-term survival and rapid responses to 

the Ag in the future (review ref. Kaech et al., 2002). The virus replicates 

preferentially in activated CD4" T cells with cytopathic effects (Ho et al., 

1995). Because it takes a few weeks for effector cells to revert to a resting 

state, most infected CD4" lymphoblasts die before becoming memory cells. 

Nevertheless, the presence of cells harbouring integrated provirus in 

patients under Highly Active Antiretroviral Therapy (HAART) suggests that 

some activated cells, after infection, can revert to a resting state. 

Otherwise it could be possible that HIV-1 might infect some of these cells 

in a state in which they are still permissive for early steps in the virus life 

cycle (up to integration), but not for virus gene expression (Stevenson 

1997).  
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HIV-1 gene expression has been clearly shown to be dependent on 

inducible host transcription factors that are transiently activated following 

exposure to Ag, and thus viral gene expression is automatically 

extinguished as cells return to a resting state (Tong-Starksen et al., 1987; 

Nabel and Baltimore 1987). The result is a stably integrated but 

transcriptionally silent form of HIV-1. The direct infection of resting cells 

does not generally proceed to integration (Zhou et al., 2005). However, 

resting CD4" T cells with integrated HIV-1 DNA can be detected in vivo and 

their phenotype suggests that they arise from infected CD4" T 

lymphoblasts that have reverted to a resting memory state (Chun et al., 

1995). Jordan and colleagues have suggested, as mechanism of latency, an 

integration into centromeric heterochromatin, that is known to be 

repressive (Jordan et al., 2003). However subsequent studies on CD4" 

isolatated from patients on HAART therapy hae demonstrated that, in the 

cell population carring latent HIV-1, integration into centromeric regions 

does not occur (Han et al., 2004).  

An additional potential explanation for latency is transcriptional interference 

(TI). TI is a cis-acting suppressive effect that is observed when 

transcriptional activity initiated from an upstream promoter suppresses the 

transcription from a downstream promoter (Greger at al., 1998). In 

activated CD4" T cells, HIV-1 gene expression might be efficient because 

the concentration of crucial host transcription factors is high enough to 

overcome TI, while in resting T cells these factors are less abundant and 

transcription from an unpstream promoter might interfere with the 

downstream promoter (Hogan et al., 2003; Weil et al., 2004). Furthermore, 

it has been shown that transcription factors and coactivators necessary for 

HIV-1 transcription are less abundant in resting T cells. For example, two of 

the key host transcription factors involved in HIV-1 expression (NFAT and 

NF-kB) are sequestered in the cytoplasm of resting T cells. Both factors are 
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only recruited to the nucleus following cellular activation. As a 

consequence, HIV-1 gene expression is stricktly dependent on to the 

activation state of the host cells. Tat-associated proteins could be one of 

the limiting factors for processive transcription in resting T cells: low levels 

of P-TEFb kinase activity (CDK9 and Cyclin T1), that have been observed in 

resting T cells, are increased in response to activating stimuli (Ghose et al., 

2001). Tat itself could be the main limiting factor being subject to tight 

post-translational modifications (Bres et al., 2002; Bres et al., 2003).  

Finally, RNAi-mediated pathways of transcriptional silencing have also been 

shown to be involved in the latency mechanism. As described above, 

cellular microRNAs (miRNAs) have been shown to potently inhibit HIV-1 

production in resting primary CD4"!T cells (Huang et al., 2007).  

The major obstacle to HIV-1 eradication is the establishment of a latent 

infection. Viral reservoirs established early during the infection remain 

unaffected by anti-retroviral therapy for a long time and are able to restore 

infection upon interruption of HAART, thus therapeutic targeting of viral 

latency is one of the most important goal in HIV-1 research (Lassen et al., 

2004; Persaud et al., 2003; Marcello 2006). 
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2. The IN protein 

2.1 IN structure and domains 

Integration into the host genome is a defining feature of all retroviruses. 

Once integrated, the viral DNA is replicated together with cellular DNA 

during the cell cycle. The viral enzyme that carries out this reaction is the 

viral protein IN. 

IN is a 32 kDa protein that is present inside the mature virion, and is 

encoded by the pol gene, which also encodes for viral protease (PR) and 

reverse transcriptase (RT). IN is translated as a part of the large 

polyprotein Gag-Pol and is processed by viral protease during virion 

maturation. The enzyme is supposed to work as a tetramer. 

IN is composed of three domains: the N-terminal domain (residues 1-50), 

the Core domain (residues 51-212) and the C-terminal domain (residues 

213-288) (Figure 5). The division of IN into these three domains is based 

on functional and protelolytic studies (Engelman and Craigie, 1992; 

Engelman et al., 1993; van Gent et al., 1993). 

The N-terminal domain is a bundle of three alpha-helices and it 

characterized by a two His and two Cys motifs named HHCC domain, and a 

SH3 fold domain (Craigie, 2001). This region is important for the activity of 

IN both in vitro and in vivo (Khan et al., 1991; Schauer and Billich, 1992). 

Mutations in these conserved residues block the integration mechanism 

(Cannon et al., 1994). This domain binds to a zinc ion and the conserved 

HHCC motif seems to be important for this interaction. N-terminal domain 

is important for the multimerization of IN; in the absence of zinc this 

domain has a disordered structure while in the presence of this ion it 

adopts an ordered secondary structure and the tetramerization occurs 

more rapidly (Zheng et al., 1996). 
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The Core domain is responsible for the catalytic activity of IN and is the 

most conserved among all retroviral INs (Kulkosky et al., 1992). It consists 

of a central five-stranded $-sheet with six surrounding helices. The catalytic 

region contains the invariant triad of acidic residues, the D,D-35E motif. 

Mutagenesis of these aminoacids greatly impairs IN enzymatic activity and 

viral replication as a consequence (LaFemina et al., 1992; Shin et al., 1994; 

Taddeo et al., 1994). The structure of the Core domain is very similar to 

the Rnase H domain of RT enzyme, the RuvC protein of E.Coli and the 

bacteriophage Mu transposase, all enzymes that catalyses substitution 

reactions involving phosphodiester bonds (Hostomska et al., 1991; Ariyoshi 

et al., 1994; Rice and Mizuuchi, 1995). In addition to its catalytic activity, 

the core domain has also been proposed to be involved in DNA binding 

(Drelich et al., 1993).  

The C-terminal domain is the most variable region among retroviral INs 

(Lutzke et al., 1994). This domain binds DNA in a non specific manner, and 

since integration into host DNA has been demonstrated to be non specific, 

the C-terminal domain was suggested to interact with the target DNA. 

However studies performed with chimeric INs demonstrated that the Core 

domain is responsible for targeted DNA binding (Katzman and Sudol, 

1995). It appears more likely that the C-terminal domain binds to the very 

ends of the viral DNA (Esposito and Craigie, 1998; Jenkins et al., 1997). 
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Figure 5. Schematic rapresentation of the Pol gene and the IN domains. 
IN (p32IN) is encoded at the 3'-end of the pol gene. HIV-1 IN is composed 
by three domains. The amino-terminal domain (NTD) that coordinate one 
zinc atom through H12, H16, C40 and C43. The catalytic core domain 
(CCD) containing the DDE motif: D64, D116 and E152. The carboxy-
terminal domain (CTD) is involved in DNA binding (Pommier et al., 2005). 
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2.2 IN enzymatic activity 

Integration is an essential step for all retroviruses and mutations that 

interfere with this process block their replication. 

The integration mechanism can be divided into two distinct steps: 3’ 

processing and strand transfer. 

The 3’ processing step occurs in the cytoplasm within the pre-integration 

complex. During this step, IN removes a GT dinucleotide from the 3’ end of 

each viral LTR. This dinucleotide is always adjacent to a highly conserved 

CA dinucleotide, and is crucial for recognition of viral DNA by IN. Mutations 

in this site cause severe defects in integration.  

Following the nuclear entry of the PIC, IN catalyses the strand transfer 

reaction that consists in a nucleophilic attack by the 3’-hydroxyl residues of 

the viral ends on phosphodiester bridges located on either side of the 

major groove in the host DNA. Then IN catalyses a transesterification 

reaction, the processed CA-3’-OH viral DNA ends are ligated to the 5’-O-

phosphate ends of the host DNA. At this point viral DNA is ligated to the 

cellular DNA by only one strand at each end. Through an unknown process, 

the gaps flanking the viral DNA are filled in by extending the free 3’ end of 

the target DNA, the mismatched viral 5’ end is trimmed and the resulting 

ends are ligated. 

The identity of the protein that performs the gap repair remains unknown;, 

it is possible that viral proteins direct cellular enzymes to the viral DNA or 

even act directly to repair the gap (Coffin J.M., Hughes S.H., Varmus H.E. 

Retroviruses). 
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Figure 6. Schematic representation of the integration reaction.  
(Modified from Field’s Virology). 
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In addition to integrated viral DNA, three classes of extrachromosomal viral 

DNA are present in the nucleus of acutely infected cells. 

All these forms are circular and are divided in 1-LTR circles, 2-LTR circles, 

and autointegration products. The 1-LTR circles are formed by homologous 

recombination between the two LTRs of a linear viral DNA. The 2-LTR 

circles derive from the ligation of the two ends of the linear precursor and 

the last product derives from an intramolecular integration (Figure 7). All 

these forms are a hallmark of inefficient viral integration. 

 

 

 

 

Figure 7. The different products of aberrant integration reactions 
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2.3 IN interactors 

Purified recombinant IN is sufficient to carry out both 3’ processing and 

strand transfer. Yet, a variety of cellular proteins that take part in HIV-1 

integration have been identified over the last years by yeast two hybrid 

screening, co-immunoprecipitation or reconstitution of enzymatic activity of 

salt-stripped PICs.  

IN interactor 1 (INI1) was the first cellular protein to be identified as an IN 

partner. This protein is the human homologue of yeast SNF5, a component 

of the chromatin remodelling SWI/SNF complex. INI1 was found through a 

two hybrid screening in 1994 (Kalpana et al., 1994). It was originally found 

that INI1 stimulates IN activity in vitro, however, subsequently, Yung and 

colleagues found that overexpression of the minimal IN-interaction domain 

of INI1 (S6) inhibits the late steps of HIV-1 infection (Yung et al., 2001). 

Moreover, INI1 was also involved in the production of virions, since it was 

demonstrated that the overexpression of this factor in MON cells, that lack 

this protein, increases virion production (Sorin et al., 2006). Recently, it has 

been reported that viral clones harbouring mutation in IN that impairs IN-

INI1 interaction replicates more efficiently (Maroun et al., 2006). Thus, the 

actual molecular mechanism by which INI1 influences a variety of viral 

steps remains contradictive and poorly understood. 

In 1994 Lee and Craigie demonstrated that the PIC of MoMLV contained a 

cellular protein that prevents suicidal autointegration; for that reason, this 

protein was named barrier-to-autointegration factor (BAF) (Lee and Craigie, 

1994). BAF was later found to be involved in restoring the salt-inactivated 

activity of HIV-1 PICs (Chen and Engelman, 1998). BAF does not influence 

IN enzymatic activity and the mechanism by which it prevents 

autointegration is still unknown, however the finding that BAF interacts 

with a protein associated with nuclear lamina and its ability to bridge DNA 

suggest a role in nuclear structure organization. 
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More recently, Jacque and Stevenson reported that emerin, an inner 

nuclear-envelope protein, was necessary for HIV-1 integration and that BAF 

contributed to the ability of emerin to support viral infection (Jacque and 

Stevenson, 2006). However, recent work by Engelman and colleagues have 

disputed the conclusion that both BAF and emerin are dispensable for HIV-

1 infection (Shun et al., 2007). 

Another protein that was found to restore PIC activity after salt stripping 

was the high mobility group chromosomal protein A1 (HMGA1), a protein 

that binds DNA and takes part in chromatin regulation and transcription 

(Farnet and Bushman, 1997). It has been suggested that HMGA1 could 

approximate both LTRs and facilitate IN binding by unwinding the LTR 

termini, however chicken cells that lack HMGA1 still sustain retroviral 

integration (Hindmarsh et al., 1999; Beitzel and Bushman, 2003). 

Henderson and colleagues proposed that HMGA1 could play a role in HIV-1 

transcription: it facilitates the binding of ATF3, which seems to be 

responsible for the recruitment of the SWI/SNF complex to the HIV-1 

promoter (Henderson et al., 2000; Henderson et al., 2004).  

Recently a new interactor of HIV-1 IN was identified: a protein of 76 kDa, 

containing a canonical NLS, named lens epithelium derived growth factor 

(LEDGF/p75) (Cherepanov et al., 2003). This protein is a member of the 

hepatoma-derived growth factor family and is involved in cell growth and 

protection against apoptosis via transcriptional activation of anti-apoptotic 

proteins. LEDGF/p75 is necessary for HIV-1 replication as shown by knock 

down experiments; moreover, an HIV-1 clone containing a mutation in IN 

(Q168A) that abolishes the interaction with LEDGF is defective for 

replication remaining blocked at the integration step (Emiliani et al., 2005). 

LEDGF has been suggested to tether IN to chromosomes since its knock 

down completely abolishes IN nuclear localization and its association with 

chromosomes (Maertens et al., 2003; Ciuffi et al., 2005). In addition, IN 



 42 

degradation, that occurrs trough the ubiquitin-proteasome proteolytic 

system, also involves LEDGEF/p75 protein. Namely, LEDGF acts to protect 

IN from proteosomal degradation and addition of proteosome inhibitors to 

cells defective for LEDGF restores IN nuclear localization (Llano et al., 

2004; Emiliani et al., 2005). In conclusion, LEDGEF/p75 exerts multiple 

roles in controlling IN by tethering it to the actively transcribed genes, by 

increasing the affinity of IN for DNA and by protecting it from proteosomal 

degradation in the cytoplasm (Van Maele et al., 2006).  

The integration reaction has been suggested to be targeted by cyclin-

dependent kinase inhibitor (CKI) p21Waf1/Cip1/Sdi1 (p21), as a new 

restriction factor. Namely, Zhang and colleagues suggested that the 

regulator of stem cell pool size, p21 restricts HIV-1 infection of primitive 

hematopoietic cells by complexing with HIV-1 IN and aborting 

chromosomal integration (Zhang et al., 2007).  

Post-translational modifications of proteins, widely studied in the last 

decade, have been described to be involved in regulating HIV-1 IN as well. 

As previuosly mentioned IN is degraded through the ubiquitin-proteasome 

proteolytic system. It has been shown that the IN N-terminal phenylalanine 

is recognized as a degradation signal by a ubiquitin-proteasome proteolytic 

system known as the N-end rule pathway (Mulder et al., 2000). More 

recently Emiliani and colleagues identified von Hippel–Lindau binding 

protein 1 (VBP1), a subunit of the prefoldin chaperone, as an IN cellular 

binding protein. They demonstrated that VBP1 and the Cul2/VHL ligase 

cooperate in the efficient polyubiquitylation of IN and its subsequent 

proteasome-mediated degradation (Mousinier et al., 2007). In addition we 

found that IN is post-translationally modified by acetylation through the 

action of cellular acetyltransferase p300 that acetylates IN at three lysines 

(K264, K266, K273) localized in the C-terminal domain of the protein. This 

modification increases both the strand transfer activity of IN and its affinity 
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for DNA. Moreover, inhibition of p300 enzymatic activity greatly impairs the 

integration of HIV-1 virus (Cereseto et al., 2005). 
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3. The Jun N-terminal Kinase (JNK) 

3.1 JNK structure and function 

Protein phosphorylation regulates almost all cellular processes such as cell 

cycle, apoptosis, movement, survival and metabolism. Protein kinases are 

grouped in 20 families based on their sequence similarities (Bogoyevitch 

and Kobe, 2006). The c-Jun N-terminal Kinases (JNKs), together with p38 

kinase and extracellular signal-regulated kinases (ERKs), belong to the 

family of the mitogen activated protein kinases (MAPK) which comprises of 

cyclin-dependent kinases (CDKs), glycogen syntase kinase 3 (GSK3) and 

casein 2-related protein kinases as well. MAPK are proline directed kinases, 

meaning that they phosphorylate serine or threonin residues followed by a 

proline. 

These evolutionary conserved enzymes connect stimuli from the external 

environment to intracellular functions, and are thus activated by a variety 

of external agents such as growth factors, nutrients, cytokines, mechanical 

stress and changes in pH or osmolarity. In particular, external stimuli that 

lead to potent activation of JNK kinase activity are tumour necrosis factor 

alpha (TNF-!), and interleukin 1. JNKs were originally identified as a stress 

activated protein kinases and subsequent studies revealed their capacity to 

phosphorylate and activate the transcription factor c-Jun (Kyriakis and 

Avruch, 1990; Derijard et al., 1994; Minden et al., 1994). 

The mammalian JNKs are encoded by three different genes (Jnk1, Jnk2, 

Jnk3) whereas ten different isoforms are generated by splicing processes. 

Jnk1 and Jnk2 gene each encodes for four splice variants while Jnk3 

encodes for two different proteins. Transcripts derived from all three genes 

encode both 54 kDa and 46 kDa proteins. The alternative splicing products 

of Jnk1 and Jnk2 were suggested to have different substrate specificity; 

however, the analysis of Jnk gene disruption in mice showed extensive 
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complementation between the Jnk genes. JNK1 and JNK2 are expressed in 

a variety of tissues while JNK3 is mainly expressed in brain, heart and 

testes (Figure 8). 

The structure of JNK1 and JNK3 is similar to other MAPK. They have the 

typical protein kinase fold, which consists in N-terminus rich in "-structure 

and C-terminus rich in !-helices. These two domains are connected by two 

segments where substrates and ATP are expected to bind. The non-

phosphorylated inactive form of JNK has the N- and C- terminal domains 

not correctly aligned. The kinase activity of JNK is regulated by 

phosphorylation of the two residues (Thr-Pro-Tyr) in the activation loop 

and is mediated by the MAPK kinases MKK4 and MKK7. Upon 

phosphorylation of these residues, JNK changes its conformation becoming 

enzymatically active (Bogoyevitch and Kobe, 2006). 

JNK substrates, as revealed by initial studies performed on c-jun, are 

characterized by the presence of a specific domain, named JNK-binding 

domain (JBD) or d-domain that mediates the interaction with the kinase. 

However, the site of JNK phosphorylation does not always reside within this 

domain (Adler et al., 1994; Dai et al., 1995).  

The precise role of JNK is still unclear and it seems to be dependent on the 

cellular context. Initial studies demonstrated that JNK plays a role in 

promoting apoptosis especially in neurons (Yang et al., 1997). In fact, JNK-

mediated phosphorylation of p53 induces its stabilization and subsequent 

activation of proapoptotic genes (Fuchs et al., 1998; Buschmann et al., 

2001). Yet the p53 mediated apoptotic pathway seems not to be the only 

apoptotic pathway that involves JNK. More recently, JNK was shown to be 

necessary for the stress induced release of mitochondrial cytocrome C 

suggesting a role of JNK in the apoptotic process involving mitochondria 

(Chen and Tan, 2000; Tournier et al., 2000). 
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Despite the established role of JNK in programmed cell death most stimuli 

inducing JNK activation do not cause apoptosis. It has been proposed that, 

in dependence of the time course of activation, JNK can have either pro-

apoptotic or pro-survival effects. Many cytokines and different forms of 

environmental stress cause a transient activation of JNK that cells interpret 

as a pro-survival signal while sustained activation may lead to apoptosis 

(Davis, 2000). 

 

Figure 8. Overview of the JNK pathway. The classical JNK pathway was 
considered to be activated following the exposure of cells to extracellular 
stresses. Subsequently, JNK activation was also demonstrated following the 
exposure of cells to some proinflammatory cytokines, including TNF-a!and 
interleukin-1 (IL-1), as well as following the activation of Toll-like receptors. 
This cascade is mediated by a large number of MAPK including MKK4 and 
MKK7 that activate JNK (left panel). ER stress can also activate JNKs (right 
panel). In mammalian cells JNK proteins are encoded by threee genes 
(jnk1, jnk2, and jnk3). These genes are subjected to alternative splicing 
process that leads to the formation of different isoforms of JNK (lower 
panel) (Bogoyevitch and Kobe, 2006). 
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3.2 JNK substrates 

Among different JNK substrates, transcription factors and nuclear hormone 

receptors are of special interest since their phosphorylation represents a 

direct link between external stimuli and gene expression.  

JNK phosphorylation increases the transcriptional activity of all the proteins 

that form the AP-1 (activator protein 1) complex, such as jun and fos 

family members as well as ATF2, that is also activated by this post 

translational modification (Leppa and Bohmann, 1999; Gupta et al., 1995). 

JNK also phosphorylates different transcription factors that are not involved 

in AP-1 complex formation. Elk1 is phosphorylated by JNK on Ser 383 and 

Ser 389 and this modification increases its transcriptional activity (Cavigelli 

et al., 1995). The tumour suppressor p53 is stabilized and activated by JNK 

and the absence of JNK greatly impairs p53 ability to elicit apoptosis in 

response to specific stimuli (Fuchs et al., 1998; Buschmann et al., 2001).  

It is known since many years that JNK plays a key role in regulating several 

functions of the immune system. In fact, many transcription factors that 

are involved in lymphocyte signalling are JNK substrates. Among them, two 

of the major transducers of cytokine signals, STAT1 and 3, are 

phosphorylated by JNK (Zhang et al., 2001; Zhao et al., 2005). Moreover 

JNK increases transcriptional activity of TCFb1, a key regulator during 

lymphocyte activation (Kasibhatla et al., 1999). 

Many cellular proteins that are not related to transcriptional events are also 

known to be regulated by JNK. For example JNK modulates the activity, 

stability and the localization of tau protein, synaptotagmin 4 (membrane 

trafficking protein) and AMPAR (!-amino-3-hydroxy-5-methyl-4-

isoxazolepropionic acid receptor). JNK, especially isoform 2 has been 

shown to phosphorylate tau protein thus greatly impairing its ability to 

promote microtubule assembly (Yoshida et al., 2004). Modification of 

synaptotagmin 4 by JNK mediates its translocation from immature to 
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mature secretory vesicles (Mori et al., 2008). Finally, JNK phosphorylation 

of AMPA receptors controls their reinsertion to the cell surface after NMDA 

treatment (Thomas et al., 2008). 

 

 

Figure 9. Summary of the substrates of JNKs.  

To be active, JNK requires double phosphorylation on a specific threonine 
and tyrosine within its activation loop. JNK can phosphorylate a range of 
substrates. Phosphorylation can modulate the substrate protein activity in a 
positive or negative fashion. Modified from (Bogoyevitch and Kobe, 2006). 
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3.3 JNK function in the immune system 

MAP kinases are very conserved proteins as they are involved in many 

important cellular processes, such as mediating signals triggered by growth 

factors, environmental stress and cytokines. As mentioned above, MAPK 

kinases can be divided into three families: the p38 family, the Erk family 

and the JNK family. All of these three groups are important in regulating 

the immune system starting from its early development. In particular, mice 

lacking JNK1 or JNK2 are not immuno-competent due to severe defects in 

T cell lineage. 

JNK has been implicated in T cell activation since it is rapidly activated in 

response to phorbol-12 myristate 12 acetate (PMA) or anti CD3 antibodies 

in Jurkat cells. Being AP-1 a trancription factor regulated by JNK 

phosphorylation, JNK is also involved in the regulation of IL-2 expression 

(Su et al., 1994; Matsuda et al., 1998). However, mice deficient for either 

jnk1 or jnk2 produce normal levels of IL-2 (Dong et al., 1998). 

In addition both JNK expression and enzymatic activity peak after 30-60 

hours of primary T-cell activation thus indicating that JNK is probably not 

involved in the early phases of T-cell activation but rather modulates in T-

cell function. Beside the phosphorylation of JNK mediated by MKK4 and 

MKK7, that control its activity, the levels of JNK expression are known to be 

tightly regulated exclusively in T lymphocytes (Weiss et al., 2000). It is 

possible that JNK is strictly regulated in T lymphocytes in order to avoid 

production of effector cytokines by naïve cells. In fact, it has been 

demonstrated that TCR signals are sufficient to induce JNK expression, but 

CD28 signals are required to activate the kinase (Weiss et al., 2000). On 

the basis of these findings an interesting question was raised: can JNK be 

involved in the selection of thymocytes. The development of T cells occurs 

in the thymus where the early precursors, that do not express either CD4" 
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or CD8" molecules and are named double negative cells (DN), differentiate 

in double positive cells (DP) and then in single positive (SP) CD4" or CD8". 

Before completing the differentiation from DP to SP state, thymocytes 

undergo positive and negative selection. Positive selection is characterized 

by recognition of self major histocompatibility complex (MHC) by a T cell 

receptor and rescue from apoptosis. Recognition of self antigens that leads 

to programmed cell death is a hallmark of negative selection. JNK is highly 

expressed in double positive thymocytes (CD4" and CD8") and its 

activation leads to depletion of autoreactive T cells thus underlining the 

role of JNK in negative selection of thymocytes (Rincon et al., 1998)'!

However, the mechanism by which JNK controls negative selection of DP 

cells is not completely understood. JNK has been demonstrated to 

phosphorylate the NFAT family of transcription factors, which are involved 

in the regulation of several cytokines genes (IL-2, IL-4, TNF, GM-CSF) and 

antiapoptotic proteins (Bcl-2). JNK mediated phosphorylation of NFAT-4, a 

transcription factor mainly expressed in the thymus, exerts a negative 

effect on its activity by increasing its nuclear export or cytoplasmic 

retention (Chow et al., 1997). Moreover, NFAT deficient mice show 

increased rate of thymocyte apoptosis, probably due to the inhibition of 

Bcl-2 expression. Thus, it has been hypothesized that during negative 

selection JNK prevents nuclear localization of NFAT, impedes its 

transcriptional activity and increases cell death susceptibility (Rincon et al., 

1998). 

Another possible role of JNK in the regulation of immune system is its 

involvement in the control of Th1/Th2 differentiation (Rincon, 2001). 

Studies involving mice deficient for JNK2 show that these animals had 

normal amounts of CD4" and CD8" cells and normal production of IL-2. 

However IFN-# production was very low compared with wild type animals 
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and, consequently, Th1 differentiation was impaired (Yang et al., 1998). 

Interestingly, Th2 cells deriving from JNK1-knock out mice produce normal 

levels of IFN-# but high amounts IL-4 and IL-5 compared to wild type, thus 

these animals display an exaggerated Th2 response (Dong et al., 1998; 

Constant et al., 2000). These results suggest a distinct role of JNK1 and 

JNK2 during Th1/Th2 differentiation (Figure 10). 

 

Figure 10. A schematic representation of JNK role in the Immune system 
development and regulation. 
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4. The Prolyl Isomerase Pin1 

4.1 Pin1 structure and enzymatic activity 

Pin1 is a member of the peptidyl-prolyl isomerase family of proteins and 

was discovered in a two-hybrid screening as an interactor of NIMA (never 

in mitosis gene A) in Apergillus nidulans (Lu et al., 1996). The peptidyl-

prolyl isomerases (PPIases) are ubiquitous proteins expressed in both 

eukaryotic and prokaryotic cells. These enzymes catalyze the cis/trans 

isomerization of peptidyl-prolyl peptide bonds. 

On the basis of drug sensitivity, the PPIases are divided into three different 

groups: Cyclophilins that bind Cyclosporin A, FK506 binding proteins, and 

parvulins that do not bind immunosupressants. 

Pin1 belongs to the parvulin group of isomerases and it is the only PPIase 

that specifically recognizes phosphorylated Ser/Thr Pro sequences.  

Serine or Threonine residues that precede a Proline are the major 

regulatory phosphorylated motifs in cells. The kinases that specifically 

phosphorylate these motifs belong to the family of Proline-directed Kinases, 

which include Cyclin-dependent Kinases (CDKs), stress activated kinases/c-

Jun-N-terminal kinases (SAPKs/JNKs), extracellular signal-regulated kinases 

(Erks), glycogen syntase kinase-3 (GSK3) and Polo-like Kinase (PLKs). 

These kinases are involved in almost all cellular processes such as cell 

cycle, apoptosis, differentiation and survival. The peculiar structure of 

Proline permits two different conformational states: the cis conformation or 

the trans conformation. The interconversion between these two states can 

occur naturally but is rather slow; Pin1 can increase the rate of 

interconversion by as much as 1000 fold (Lu et al., 2002) (Figure 11). 

Pro-directed kinases and phosphatases are conformation-specific and 

recognize substrates only in trans conformation. Moreover, phosphorylation 

decreases the rate of natural isomerization and renders the 

phosphopeptide more resistant to other PPIases; these characteristics 
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render Pin1 especially important in regulating the conformation of 

phosphorylated proteins. 

Pin1 is composed by two domains, an aminoterminal WW domain (1-39) 

and a carboxyterminal PPIase domain (45-163); the two domains are linked 

by a short flexible linker region. The WW domain (named after two 

conserved Tryptophan residues) binds specifically the pSer/Thr-Pro region 

on Pin1 substrates, while the PPIase domain isomerizes the target protein 

(Yeh and Means, 2007). 

Many targets of Pin1 contain only one pSer/Thr-Pro motif, suggesting that 

the WW domain and, subsequently, the PPIase domain acts on the same 

region. This implies that the WW domain has to dissociate from its 

consensus site and then the catalytic domain isomerizes the bond, but the 

detailed dynamic of the reaction remains unclear (Lu and Zhou, 2007). 

Pin1 primarily localizes in the nucleus of cells in culture but is detected also 

in the cytoplasm in many dividing cells and in normal or cancerous tissues 

(Lufei and Cao, 2009). Pin1 does not have a defined nuclear localization 

signal and, given it is a small protein, its distribution could be driven by the 

localization of its targets. 

In contrast to other PPIases, Pin1 function is tightly regulated inside the 

cell. In neurons, for example, Pin1 is induced upon differentiation 

(Hamdane et al., 2006); in other cell types, Pin1 is correlated with the 

proliferative status (Atchison et al., 2003). Moreover Pin1 expression is 

deregulated in many cancer tissues and transformed cell lines (Wulf et al., 

2003; Bao et al., 2004). 

Pin1 expression is dependent on E2F-mediated transcriptional regulation 

and thus is upregulated when cells progress from G0 to S phase of the cell 

cycle. Pin1 transcription is suppressed by BRCA1 (Lu and Zhou, 2007). 

Finally, Pin1 is also regulated at post-translational level in a cell cycle 

dependent manner (Eckerdt et al., 2005). It is known that phosphorylation 

on Ser16 in the Pin1 WW domain abolishes the capability of Pin1 to bind its 
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substrates while phosphorylation on Ser 65 by Polo-like Kinase (PLK) 

increases its stability (Eckerdt et al., 2005). Finally Pin1 enzymatic activity 

is inhibited by oxidative modifications (Sultana et al., 2006). 

 

Figure 11. Proline can adopt either the cis or trans state of the backbone 
torsion angle, due to its five-membered ring in the peptide backbone. 
Uncatalysed isomerization is a rather slow process but can be greatly 
accelerated by peptidyl-prolyl cis/trans isomerases (PPIases). Pin1 is the 
only PPIase that requires the phosphorylation of the Ser or Thr residue 
preceeding the Pro (Lu and Zhou, 2007). 
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4.2 Pin1 in the cell cycle 

Pin1 was originally discovered by its ability to bind a mitotic kinase (NIMA) 

involved in the mitosis of Aspergillus nidulans. Pin1 blocks the ability of 

NIMA to cause mitotic catastrophe in budding yeast. 

Pin1 has a crucial role in mitosis in Xenopus Laevis as well as in mammalian 

cells. Inhibition of Pin1 activity induces mitotic arrest and apoptosis in both 

budding yeast and tumour cell lines; moreover depletion of Pin1 affects 

DNA replication, mitotic checkpoint and the G2-M transition in Xenopus 

Laevis (Shen et al., 1998). 

Progression through the cell cycle is governed by activation and inactivation 

of different cyclin dependent kinases that belong to the group of Proline-

directed kinases. In particular, in S. pombe, Pin1 regulates the activity of 

the protein phosphatase Cdc25C and the kinase WEE1, that activates and 

inhibits respectively CDC2 kinase (Stukenberg and Kirschner, 2001).  

Several studies suggest that Pin1 acts mainly during G0/G1-S transition. 

Pin1 induces the increase of transcription and stability of cyclin D1 (a key 

regulator of G1-S transition) and affects the transcription of c-Myc and 

cyclin E, which are also important during G1-S progress in the cell cycle 

(rev in Boonstra 2003 and Obaya et al., 1999). 

Regulation of cyclin D1 by Pin1 is an interesting example highlighting how 

this isomerase is involved in multiple steps of protein function. c-Jun, a 

component of AP-1 transcriptional complex, is phosphorylated by JNK in 

response to various signals becoming a target for Pin1 (Wulf et al., 2001). 

Pin1 action on phosphorylated c-Jun increases its transcriptional activity 

towards cyclin D1. In addition, Pin1 interaction with $-catenin (another 

transcriptional factor that induces cyclin D1 expression) prevents its binding 

to APC (Anaphase Promoting Complex) that triggers $-catenin to 
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degradation (Ryo et al., 2001). Moreover Pin1 can bind directly to cyclin D1 

increasing its stability and nuclear accumulation. 

A recent study indicates that Pin1 has a role in the coordination of 

centrosome duplication and DNA synthesis during the cell cycle (Suizu et 

al., 2006). In addition, it has been demonstrated that Pin1 plays a role in 

controlling DNA damage response. In response to DNA damage, both p53 

and p73 are phosphorylated and become targets for Pin1; this results in 

their stabilization and nuclear accumulation that in turn increases the rate 

of apoptosis (Zacchi et al., 2002; Mantovani et al., 2004; Wulf et al., 2002).  

Finally, it has been proposed that Pin1 acts as a molecular timer during the 

cell cycle. Indeed, mouse embryo fibroblast (MEFs), deriving from Pin1 

knock out mice, show slower asynchronous growth than wild-type MEFs.  

A. nidulans, that has reduced expression of Pin1 homologous, needs a 

longer period to complete nuclear division than the wild type (Lu et al., 

1996). 
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Figure 12. Pin1 plays an important role both pro-proliferative and pro-
apoptotic pathways. Phosphorylation of proteins on certain Ser/ Thr-Pro 
motifs is an essential signalling mechanism in cell proliferation, 
differentiation and transformation, and genotoxic response. By binding and 
isomerizing these residues, Pin1 regulates signalling following 
phosphorylation. Pin1 activity is usually tightly regulated by multiple 
mechanisms. This isomerase is found to be both overexpressed and 
activated in many human cancer tissues and cells. Overexpression of Pin1 
can activate multiple oncogenic pathways at different levels. For example, 
Pin1 can stabilize cyclin D1 and increase its transcription by acting in three 
different pathways. Pin1 can increase c-Jun transcriptional activity. Pin1 
can inhibit the degradation of both "-catenin and NF-kB thus increasing 
their nuclear accumulation. Furthermore, Pin1 transcription is activated 
following oncogenic activation suggesting the existence of a positive 
feedback loop. Finally, Pin1 prevents Raf kinase from being inactivated 
after growth stimulation. All these Pin1 effects promote proliferative and 
oncogenic signalling. However, following genotoxic insult, Pin1 can increase 
the nuclear localization and protein half-life of p53 thus increasing its 
activity on cell-cycle arrest and apoptotic genes. It remains to be 
determined how Pin1 coordinates pro-proliferative and pro-apoptotic signal 
pathways (Wulf et al., 2005). 
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4.3 Pin1 in the immune system 

Recent studies have shown that Pin1 is involved in the regulation of GM-

CSF (granulocyte-macrophage colony-stimulating factor) contributing to the 

onset of allergic asthma (Shen et al., 2005). In patients suffering from 

allergic asthma, eosinophils migrate to the lung parenchyma and 

pulmonary airways and secrete GM-CSF, which is an essential survival and 

maturation factor. Pin1 is a component of a multi protein complex that 

stabilizes the GM-CSF mRNA. This mRNA is indeed very unstable in resting 

eosinophils because AUF1 proteins (RNA-binding proteins that regulate 

target mRNA molecules by enhancing their decay) bind to it and induce its 

degradation. Upon stimulation with matrix proteoglycans, resting 

eosinophils are activated and otherwise inactive Pin1 is dephosphorylated 

and than catalytically active. The same signal also induces the 

phosphorylation of AUF1 proteins that become Pin1 targets. Isomerization 

of AUF1 proteins causes their release from GM-CSF mRNA, which is in turn 

bound by hnRNP C and stabilized (Shen et al., 2005; Esnault et al., 2006). 

New evidence suggest that Pin1 may be also involved in the innate immune 

response against viral infections by influencing the Interferon-$ (IFN$) 

pathway.  

IFN$ controls the transcription of many genes that protect the cell from 

viral infection. IFN$ is induced by IRF3 (interferon-regulatory-factor 3), 

which is activated after the stimulation of TLR3 (Toll-Like receptor 3) by 

double strand viral RNA. As reported recently, Pin1 binds IRF3 inducing its 

degradation, and Pin1-/- macrophages secrete three times more IFN$ in 

response to viral RNA than the wild type ones (Saitoh et al., 2006). 

In addition it can be speculated that Pin1 might be involved in other 

aspects of the immune system since many of its targets control the 

immune response. 
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In general, lymphocytes are stimulated through engagement of MHC 

molecules and CD3, CD28 and CD40 receptors. These signals trigger a 

variety of phosphorylation events and involve many kinases such as MAPKs 

and CDKs. These signal transduction pathways induce the transcription of 

many genes and eventually cell division. Interleukin-2 (IL-2) is a critical 

signalling cytokine that controls mammalian immune system. The 

expression of IL-2 is governed by at least four families of transcription 

factors AP-1, NF-AT, NF-&B and Oct. Pin1 is known to be involved in the 

regulation of NF-AT, NF-&B, AP-1 by different mechanism. As mentioned in 

the previous chapter c-Jun (a component of AP-1) is positively regulated by 

Pin1. On the other hand it has been reported that overexpression of Pin1 

inhibits transcription of genes responsive to NF-AT by preventing its 

activation (Liu et al., 2001). Moreover, in response to cytokines, Pin1 

regulate both the activity and the stability of NF-kB, a well known factor 

involved in the regulation of immune system. Pin1 isomerises the 

phosphorylated form of p65, prevents its binding to IkB (inhibitor of NF-kB 

function) thus leading to an increase in NF-kB activity. In addition, Pin1 

inhibits NF-kB degradation by SOCS1 (suppressor of cytokine signalling-1) 

(Ryo et al., 2003).  

Given the importance of all themase factors in the immune system it is 

probable that Pin1 regulates many other aspects of the immune response. 

(Esnault et al., 2008).  

!!

!

!
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Materials and Methods 

1. In vitro binding assays and immunoprecipitation 

Binding of GST-IN and its truncated variants to 35S-JNK1 was performed as 

previously described (Marzio et al., 1998). In brief 1µg of recombinant 

proteins were incubated with 400 cpm of in vitro translated jnk in a 

solution containing 0,2 mg/ml ethidium bromide, following 6 washes the 

reaction mixture was resolved by SDS-PAGE electrophoresis and analyzed 

by PhosphoImager. 

For IN and JNK co-immunoprecipitation experiment, HEK 293T cells 

overexpressing IN-Flag were collected in RIPA buffer containing 100 mM 

NaF and 1 mM sodium orthovanadate and Protease inhibitor cocktail EDTA 

free (Roche). 

GST pull down assays with recombinant Pin1 were performed as previously 

described (Zacchi et al., 2002) briefly cells were lysed in a buffer containing 

50 mM Tris-HCl (pH 7.5), 150 mM NaCl, 10% glycerol, 0.5% NP-40, 100 

mM NaF 1 mM sodium orthovanadate and Protease inhibitor cocktail EDTA 

free (Roche) and incubated with recombinants GST-Pin1 proteins. In the 

case of CIP treatment 40U/ml of CIP (New England Biolabs) were added to 

the extracts and the reaction was continued for 30 min at 30°C. In the case 

of $-PPase treatment 5µl of $-PPase were added to the extracts and the 

reaction was continued fot 30 min at 30°C. Flag-IN and endogenous Pin1 

co-immunoprecipitation was performed as previously described (Zacchi et 

al., 2002) in brief HEK 293T cells overexpressig Flag-IN were lysed in PBS 

(pH 8.3), 0.1% Tween 20, 10 mM EDTA and inhibitors as above. 

Immunoprecipitation was performed with Anti-Pin1 antibody (Calbiochem). 
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2. Subtilisin Proteolysis 

35S-his-IN was produced using TNT kit (Invitrogen) purified on nickel 

column, and incubated with 100 ng of either GST, GST-Pin1 wt and GST-

Pin1(C113A) in a buffer containing 50 mM Hepes, pH 7.5, 100 mM NaCl, 1 

mM MgCl2, 1 mM dithiothritol and phosphatase inhibitors for 20 min at 

20°C, subtilisin (200 ng) was added for 20 min at 20°C and reaction was 

stopped by adding sample buffer containing 6 M UREA, the proteolitic 

samples were resolved by SDS-PAGE electrophoresis and analyzed by 

PhosphoImager. 

 

3. Kinase Assay 

his-IN wt and his-IN(S57A) mutant were produced in BL-21 and purified as 

follows: bacterial pellet was resuspended in a buffer containing 20 mM Tris-

HCl pH7.9, 5 mM imidazole, 1 M NaCl, bacterial suspension was centrifuged 

and Ni-NTA Quiagen Resin was added to the supernatant. 

his-IN fusion proteins were eluted in Elution buffer (1 M imidazole, 1 M 

NaCl, 20 mM Tris-HCl pH 7.9). Concentration was determined by SDS-PAGE 

and Coomassie staining. 

500 ng of either his-IN and his-IN(S57A) were incubated with recombinant 

JNK1 (Millipore) for 1 hour and 30 min at 30°C in JNK buffer (50 mM Tris-

HCl pH 7.5, 0,1 mM EGTA, 0,1% "-mercaptoethanol, 1 mM sodium 

orthovanadate, 5 mM NaF and 10 mM "-glycerolphosphate), 500 mM ATP 

and 25 mM MgCl2 was added or not to the reaction as a control. 

Proteins were resolved by SDS-PAGE electrophoresis and revealed by 

Western Blot using an affinity purified anti-phospho IN polyclonal antibody 

and an Antiserum anti IN (NIH). 
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4. Cell culture and treatments 

Primary lymphocytes are isolated from healthy donors obtained buffy coats 

by density gradient centrifugation (Ficoll Hystopaque Sigma), briefly the 

ficoll gradient was overlayed with diluted buffy coats and centrifuged for 15 

min at 950 g with the break off, the PBMC at the interface were collected 

and washed with RPMI. 

The PBMC suspension was layed onto hyper-osmotic Percoll solution 

(48,5% Percoll, 160 mM NaCl) and centrifuged 15 min at 580 g. The 

monocytes fraction at the interface was discarted and the pellet of 

lymphocytes was resuspended in RPMI and kept in culture. 

CD4" positive T cells were isolated by negative selection with a CD4" T cell 

isolation kit (Miltenyi). Cells were maintained in RPMI 1640 (Gibco) 

supplemented with 10% heat inactivated fetal bovine serum and 

gentamycine. The cells were activated with Phyto hemo agglutinin (PHA-P) 

(5 mg/ml) and Interleukin-2 (IL-2) (40 ng/ml) for 48 hours. 

PHA-P and human IL-2 were purchased by Sigma. SupT1 cells were 

cultured in RPMI 1640 supplemented with 10% fetal bovine serum and 

gentamycine. Both HEK 293T and HeLa cells were cultured in DMEM 

supplemented with 10% fetal bovine serum and gentamycine at 37°C. 

For cyclohexamide experiment HeLa cells were transfected with either Flag-

INwt or Flag-IN S57A mut and treated with Parvulin inhibitor (PiB, 

Calbiochem) 3µM for 18 hours, then the culture medium was supplemented 

CHX (Sigma) 30g/ml and cells were collected in RIPA at the indicated time 

points. All the inhibitors (PD98059, SB203580, SP600125) were used at a 

concentration of 40µM. Phorbol-myristate acetate (PMA) was purchased by 

Sigma and used at a concentration of 10 mg/ml. 
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5. Plasmids, SIRNA and Antibodies 

The pGEX-IN, pFlag-IN and pINSD-His mutated in S57 were constructed 

using recombinant PCR starting from each original vector. pFlag-IN codon-

optimized was kindly provided by Dr. A. Engelman. The HIV-1 mut viral 

clone was prepared by subcloning IN from the pGEX-IN mutated vector. All 

constructs were verified by DNA sequencing. pGEX-Pin1 wild type and its 

mutants were kindly provided by Dr. G. Del Sal, p-Cs2-JNK was kindly 

provided by Dr L. Collavin. 

SiRNA against Pin1 (5’-GCCAUUUGAAGACGCCUCG-3’) and RISC-Free 

control SiRNA were purchased by Dharmacom. 

Anti phosphorylated IN rabbit polyclonal antibody was raised against the IN 

phosphoS57 peptide (AMHGQVDCphosphoSPGIWQLDC) and purified with 

Immunopure igG Purification kit (Pierce). Purified IgG fraction was depleted 

from anti-total IN. 

The following primary antibodies were used: mouse monoclonal antibody 

anti-Flag (Stratagene), M2 mouse monoclonal anti-Flag beads (Sigma), 

rabbit polyclonal anti JNK-fl (Santa Cruz), rabbit polyclonal anti IN 

(purchased by NIH), rat anti-HA (Roche), 16b4 mouse monoclonal anti 

phospho serine-proline/anti phospho serine-lysine and anti-Pin1 antibody 

(Calbiochem), anti p38, anti-phospho-p38, anti Erk1/2, anti-phospho-

Erk1/2 ad anti-phospho-JNK were all purchased by Cell Signalling. 
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6. HIV-1 RT Assay 

To measure RT activity in HIV-1 infected cells, 10 µl of cell culture 

supernatants are incubated with 25 µl of RT Buffer (60 mM Tris-HCl pH 8, 

75 mM KCl, 5 mM MgCl2, 0.1% Triton X-100, 1 mM EDTA, 40 mM DTT), 5 

mg/ml PolyA-oligo dT (Boeringher) and 10 µCi/ml deoxythymidine 5’-[32P] 

triphosphate (Amersham). The reactions are incubated for 2 hours at 37°C 

and 15 µl are spotted onto a DEAE filter, washed tree times with SSC-

Buffer (150 mM NaCl, 15 mM Sodium Citrate) and once in ethanol. The 

filter is dried and quantified using PhosphoImager. 

 

7. Dot Blot 

Serial dilutions of IN-S57 and IN-phS57 peptides were blotted on a Protran 

BA79 membrane 0.1µM pore size. The membrane was air dried, blocked in 

5% BSA/TBS Tween 0.1% and incubated over night with the affinity 

purified a-ph-IN. the same membrane was stripped and incubated with IgG 

anti-ph-IN 2 hours at room temperature. 

 

8. Strand Transfer 

 

For the strand transfer reaction 5 pmol of His-IN wild and His-IN (S57A) 

were used. Recombinant proteins were incubated with 1pmol of 

radiolabeled oligonucleotide (5’-GTGTGGAAAATCTCTAGCA-3’) and 

(5’ACTGCTAGAGATTTTCCACAC-3’) for 1hour at 37°C in Strand transfer 

buffer (20 mM Hepes pH 7.5, 7.5 mM MnCl2, 0.05% NP-40, 10 mM DTT). 

The reaction mixture was analyzed on a 0.3 mm denaturing gel (15% 

polycarylamide, 6 M urea), and visualized by phosphoimaging (Cyclone). 
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9. Virus Production, Infection and Alu–PCR 

 
Viral stocks were prepared by the standard calcium-phosphate method of 

transfection, of the viral clones HIV-1BRU (Petit et al, 1999) and HIV-

1BRU(S57A) in HEK 293T cells. The supernatant containing virions were 

collected 48 hours after transfection, centrifuged 5 minutes at 1500 rpm 

and filtered with 45 µm Millipore filter. Before infection viral stocks were 

treated with DnaseI (Invitrogen) 40U/ml for 1 hour at room temperature, 

cells were infected for 4 hours in the presence of polybren.  

Genomic DNA of infected cells was extracted with Dnaeasy Tissue Kit 

(Quiagen) and quantified by spectrophotometric analysis. 

The integrated proviral DNA was evaluated by Alu-PCR as previously 

described (Tan et al, 2006) with minor modifications. Alu-LTR sequences 

were amplified from 300ng of genomic DNA in the first round PCR. In the 

second round Real Time PCR one fifth of the first round PCR was used as a 

template together with the l-specific primer $T , the internal LTR primer LR 

and the probe ZXF-P. 

Real time PCR amplifications were performed on an AbiPrism 7000 

machine, using the TaqMan technology (Applied Biosystem). The levels of 

Late transcripts were analyzed by Real time PCR using 250ng of genomic 

DNA as a template. Results were normalized by the amount of cellular DNA 

quantified by Real Time PCR of the lamin B2 gene. 

Primer Sequence Position 

 

LM667 TGGCTAACTAGGGAACCCACTGC 40-62 

LR TCCACACTGACTAAAAGGGCTTGA 145-168 
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ZXF-P probe TGTGACTCTGGTAACTAGAGATCCCTCAGACCC 120-152 

Alu1 TCCCAGCTACTGGGGAGGCTGAGG  

$-primer ATGCCACGTAAGCGAAACT  

MH 531 TGTGTGCCCGTCTGTTGTGT 103-122 

MH532 GAGTCCTGCGTCGAGAGAGC 226-246 

LRT probe CAGTGGCGCCCGAACAGGGA 179-198 

MH 535 AACTAGGGAACCCACTGCTTAAG 8888 

MH 536  TCCACAGATCAAGGATATCTTGTC 8888 

2LTR probe  ACACTACTTGAAGCACTCAAGGCAAGCTTT 9888 

ERT fw 
(Nuc1B177) 

CGTCTGTTGTGTGACTCTGGTAACT 111 

ERT rev 
(Nuc1B177) 

CACTGCTAGACATTTTCCACACTGA 158 

ERT probe  ATCCCTCAGACCCTTT 140 

 

 

 

 

 

 

 

 

 

!
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Results 

1. Cellular JNK activity is required for efficient HIV-1 infection and 
integration in primary human T-lymphocytes 

Activation of T cells is essential for an efficient HIV-1 infection (Zack et al., 

1990; Korin et al., 1998). Primary human CD4" T cells were purified from 

peripheral blood of three normal donors and either left untreated (>98% 

resting cells) (Tang et al., 1995) or stimulated with PHA/IL-2 under 

standard conditions (Terai et al., 1991). At 1, 18 or 48 hours after 

stimulation, cells were infected with a VSV-G-pNL4-Luc virus (vesicular 

stomatitis virus G psuedotyped NL4-3 expressing a luciferase reporter gene 

in lieu of Nef).  We used this virus in order to selectively study the events 

following entry of the virions into the cells and avoiding the possibility of 

re-infection. Similar to wt HIV-1, viral infection, as assessed by luciferase 

activity at 72 hours after infection, was remarkably dependent on cellular 

activation (>80 fold increase in luciferase activity in the PHA/IL-2-

stimulated CD4" cells at 48 hours compared to unstimulated controls) 

(Figure 1a). Under the same experimental conditions, the levels of 

expression and phosphorylation of the ERK1/2, p38 and JNK groups of MAP 

kinases (MAPKs) were assessed by Western Blotting both before and after 

48 hours PHA/IL-2 stimulation. As shown for a representative sample in 

Figure 1b, both ERK1/2 and p38 were constitutively expressed in resting 

conditions, and their overall levels remain unchanged at 48 hours. In 

contrast the amounts of the two JNK splicing isoforms (p52 and p46) 

significantly increased at the latter time point. All three MAPKs were found 

phosphorylated at 48 hours however not in the absence of stimulation. 

!

!
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!
Figure 1 a,b.  

(a) Efficient HIV-1 infection of primary CD4" T lymphocytes requires 
stimulation with PHA/IL-2. Primary human CD4" T cells were stimulated or 
not for 1, 18 or 48 hours with PHA/IL-2 and then infected with the VSV-G-
Luc virus. Relative luciferase activity of each sample was represented as a 
percentage of the value obtained for the sample stimulated for 48 hours 
prior to infection (mean ± sem of at least three experiments) (b) 
Treatment of primary human CD4" T lymphocytes with PHA/IL-2 activates 
all MAPKs. Cell lysates from primary CD4" T cells stimulated with PHA/IL-2 
for 48 hours were analyzed by Western-Blot with the indicated antibodies; 
Hsc70 protein was used as a control for total protein levels. 

 

To start investigating whether the activation of these MAPKs might impact 

on the early phases of HIV-1 infection, we infected primary CD4" T cells 

with VSV-G-pNL4-Luc in the presence of the chemical inhibitors SP600125, 

PD98059 and SB203580, which selectively block the activity of JNK, ERK/21 

and p38 respectively (Bennett et al., 2001; Alessi et al., 1995; Cuenda et 

al., 1995). Cell treatment with 40 µM SP600125, a compound specifically 
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inhibiting JNK, selectively impaired viral infection, while inhibitors of ERK1/2 

and p38, used at the same! concentration, had no observable effect 

(Figure 2a). Next we wanted to investigate which step of the viral life 

cycle, after viral internalization and including proviral transcription, might 

be affected by the JNK inhibitor SP600125. For this purpose, primary 

peripheral blood lymphocytes (PBLs) from healthy donors, either in resting 

conditions or after PHA/IL-2 activation, were infected with the HIV-1BRU-

Flag-IN viral clone (Petit et al., 1999; Cereseto et al., 2005) after treatment 

with the SP600125 inhibitor and the efficiency of reverse transcription was 

monitored by assessing the levels of the early and late HIV-1 reverse 

transcripts by a real-time PCR-based quantitative assay (Butler et al., 

2001). Reverse transcription is catalyzed by the reverse transcriptase (RT) 

enzyme and is mainly carried out in the cytoplasm soon after viral 

penetration into the cell; the process is generally completed in 8 to 

12 hours (Iordanskiy et al., 2006). In order to specifically amplify the early 

reverse transcripts, we collected PBLs 5 hours post infection and amplified 

the strong stop HIV-1 cDNA using specific primers (Iordanskiy et al., 2006). 

For the late reverse transcripts analysis, cells were collected 8 hours after 

infection and the viral cDNA was amplified with specific primers annealing 

between the U5 region and the gag gene (Butler et al., 2001). As shown in 

Figure 2b and consistent with previous observations, formation of the 

late, but not of the early, reverse transcripts was impaired in the absence 

of PHA/IL-2 stimulation (Zhou et al., 2005). In the activated cells, 

accumulation of both early and late transcripts were not affected by cell 

treatment with the JNK inhibitor SP500125. 
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Figure 2 a,b.  

(a) Inhibition of JNK leads to decreased HIV-1 infectivity. CD4"!
lymphocytes, stimulated with PHA/IL-2 and treated for 15 hours either with 
chemical inhibitors of MAPK activity (SP600125 for JNK1/2, PD98059 for 
Erk, and SB203580 for p38, all dissolved in DMSO) or with DMSO alone, 
and infected with VSV-G-Luc, were assayed for luciferase activity 72 hours 
post infection. Results are presented as a percent of the sample stimulated 
for 48 hours prior to infection. (b) JNK inhibition does not affect the levels 
of early or late reverse transcripts in Primary Blood Lymphocytes (PBLs). 
PBLs, stimulated as above and treated with the inhibitor of JNK activity 
(SP600125) for 15 hours prior to infection with the HIV-1BRU clone, were 
analyzed for the relative levels of Early Reverse Transcripts (Early RT, black 
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bars) and Late Reverse Transcripts (Late RT, white bars) by Real time PCR. 
Each sample, normalized for the amount of total genomic DNA, represents 
a mean value of at least three experiments ± sem. All the values were 
calculated with respect to the sample stimulated with PHA/IL-2 for 48 
hours prior to infection with the HIV-1BRU clone. 

 

In contrast, a major effect of the drug was noticed when the levels of 

integrated viral DNA were assessed using a real-time PCR integration assay 

based on Alu-LTR amplification (Tan et al., 2004). As expected, the extent 

of viral integration was highly dependent on cellular activation with PHA/IL-

2 (>80 fold increase of integrated DNA in the PHA/IL-2 stimulated cells 

compared to untreated controls). In activated cells treated with the JNK 

inhibitor, the levels of integrated provirus were markedly reduced (>6 fold 

compared to the untreated controls) (Figure 3a). 

Proviral integration as well as transport of viral cDNA into the nucleus are 

mediated by the functions of HIV-1 IN. Impaired enzymatic activity of this 

protein still allows nuclear import of the viral cDNA, however determines 

accumulation of 2LTR circles (Wiskerchen et al., 1995). Compared to 

activated PBLs, the levels of 2LTR circles were significantly reduced upon 

treatment with SP600125 (>3 fold compared to untreated controls), 

consistent with the conclusion that, preceding integration, nuclear transport 

of viral cDNA was also affected by JNK inhibition (Figure 3b). 
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!
Figure 3a,b 

(a) Inhibition of JNK in PBLs decreases HIV-1 integration. PBLs were 
treated and infected as previously described. Relative levels of integrated 
viral DNA were measured 24 hours post infection by Real Time PCR. (b) 
JNK inhibition affects HIV-1 nuclear entry, as measured from the formation 
of 2LTR circles. PBLs treated and infected as previously described, were 
analyzed by Real Time PCR with primers specific for the detection of 2LTR 
circles 24 hours post infection. Values are mean±sem of at least three 
different experiments. 

 

The strong inhibitory effect of SP600125 on HIV-1 proviral integration was 

further confirmed by the dose-dependent decrease in the levels of 

integrated viral DNA observed upon HIV-1 infection of purified CD4" T cells 

treated with increasing amounts of the inhibitor (Figure 4a). 

Taken together, these results indicate that the activity of JNK is essential to 

allow efficient viral infection acting at the level of viral cDNA integration, 

also involving nuclear transport of viral cDNA. Analogous findings were also 

detected by infecting PBLs with the VSV-G-Luc virus (Figure 4b). 
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To definitely support the notion that JNK plays a key role in the early steps 

of HIV-1 infection, a time-course experiment was performed by infecting 

primary CD4" T lymphocytes either in resting conditions or at different 

times (1, 18 and 48 hours) after activation with PHA/IL-2, followed by the 

measurement of the levels of integrated viral DNA after additional 24 hours 

post-infection. Efficient viral integration required 48 hours of PHA/IL-2 

stimulation, while it was highly ineffective (>10-fold less) upon shorter 

stimulation, Figure 4c upper part. Of notice, the levels of JNK were 

barely appreciable in unstimulated cells or in cells stimulated for 1 or 18 

hours, while the protein was clearly detectable at 48 hours (Figure 4c 

lower part). Thus, HIV-1 provirus integration into the genome of activated 

CD4" T cells positively correlated with the induction of JNK. 

!
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!
Figure 4a,b,c. 

(a) JNK inhibition blocks HIV-1 integration in a dose dependent manner. 
Primary human CD4" T cells, stimulated as previously described, were 
treated with indicated concentrations of SP600125 for 15 hours prior to 
infection with HIV-1BRU and assayed for relative levels of integrated viral 
DNA. (b) JNK requirement for efficient integration is not dependent on viral 
entry. PBLs, stimulated with PHA/IL-2, were infected with VSV-G-Luc virus 
and the relative levels of integrated viral DNA were determined 24 hours 
post infection by Real-Time PCR. (c) Levels of JNK kinases and levels of 
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HIV integration increase significantly at 48 hours post stimulation. CD4"!T 
lymphocytes stimulated with PHA/IL-2 for the indicated time points were 
infected with HIV-1BRU and the relative levels of integrated viral DNA were 
determined 24 hours post infection by Real-Time PCR analysis (upper 
panel). Values are mean±sem of at least three different experiments. 
Lysates from these cells were probed by Western Blot with either anti-JNK 
or anti-Tubulin antibody (lower panel). 

 

A schematic representation of the primers positions within the HIV-1 

genome is shown in Figure 5.  

 

Figure 5. Schematic representation of the PCR primers employed 
(modified from Butler et al., 2001).!
!
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2. HIV-1 IN is phosphorylated on Ser 57 by cellular JNK 

Our results indicated that JNK plays a major role in HIV-1 infection by 

acting at the levels of either PIC nuclear entry or provirus integration. Since 

both steps are known to be mediated by viral IN, we wondered whether IN 

itself was a substrate for JNK. HIV-1 IN is 32 kDa viral protein encoded by 

the Pol gene and translated as a part of Gag-Pol. It is composed by three 

domains: a N-terminal domain (aa 1-50) that binds to zinc ions, a core 

domain possessing catalytic activity (aa 51-212) and a C-terminal domain 

(aa 213-288) involved in DNA binding (Van Maele et al., 2006) Figure 6.  

!
Figure 6 

Schematic representation of HIV-1 IN Domains. HIV-1 IN is composed of 
three domains: an N-terminal domain, which is involved in the 
multimerization process and participates in specific recognition of DNA 
ends, a catalytic Core domain, and a C-terminal domain, which participates 
in non-specific DNA binding. 

 

JNK belongs to a family of proline-directed kinases, which only 

phosphorylate serine or threonine residues followed by a proline 

(Bogoyevitch et al., 2006). A thorough analysis of the IN sequence 

revealed only one possible consensus site for JNK phosphorylation, a serine 

at position 57 (S57) in the core domain of the protein. To verify whether 

S57 might effectively constitute a target for phosphorylation, HEK 293T 

cells were transfected with Flag-tagged wild type IN (Flag-IN) or with a 
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mutant in which S57 was substituted with an alanine IN(S57A) or with 

Flag-Luciferase (Flag-Luc) as a control and, after immunoprecipitation with 

anti-Flag beads, phosphorylation was revealed using a commercial antibody 

recognizing phospho-serine followed by either a proline or a lysine (S-P or 

S-K; antibody 16b4) (Cheung et al., 2008; LaFevre-Bernt et al., 2003); 

since no S-K sequence is present in IN, this antibody should only recognize 

IN phosphorylated on S57. A band corresponding to phosphorylated IN was 

clearly detected, while IN(S57A) scored negative for phosphorylation 

(Figure 7).  

 

Figure 7 

HIV-1 IN is phosphorylated on Ser57. HEK 293T cells were transfected with 
Flag-IN or Flag-IN(S57A) and Flag-Luc; cell lysates were subjected to 
immunoprecipitation with anti-Flag antibody. Immunoprecipitates were 
immunoblotted with a commercial anti Phospho-Serine antibody (16b4) 
(upper panel). The same membrane was reprobed with anti-Flag antibody 
(lower panel). 

!



 80 

On the basis of the above described result we raised a specific antibody 

that recognises IN phosphorylated on serine 57. To this aim we synthesized 

a peptide corresponding to IN amino acids 49-65 carrying phosphorylated 

S57, which was then coupled to KHL (Keyhole Limpet Hemocyanin). We 

used the coupled peptide to immunize rabbits. Total IgG was purified from 

rabbit antiserum with Immunopure IgG Purification. In order to deplete 

total IgGs from antibodies that recognize unmodified IN, we coupled an 

unmodified IN-S57 peptide (AMHGQVDCSPGIWQLDC) to SulfoLink Coupling 

Gel and the purified IgG fraction in PBS was loaded into the column. The 

flow through represented the total IgG anti-IN depleted. In order to further 

purify by affinity the total IgG anti-IN depleted, the phosphorylated IN-S57 

peptide (AMHGQVDCphosphoSPGIWQLDC) was coupled to SulfoLink 

Coupling Gel and total IgG anti-IN depleted was loaded into this affinity 

column and specific antibodies (anti-P-IN) were eluted with degassed IgG 

elution buffer. To test the specificity of the anti-P-IN antibody, a dot-blot 

experiment was performed using serial dilutions of IN-S57 and IN-phS57 

peptides. These peptides were blotted on a Protran BA79 membrane and 

the membrane was incubated with affinity purified anti-P-IN. The same 

membrane was reprobed with anti phospho-IN antiserum. As it is shown in 

Figure 8 after affinity purification, the anti-P-IN antibody specifically 

recognizes the phosphorylated, but not the unmodified, peptide. 
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!
Figure 8 

Sequence of the peptide corresponding to HIV-1 IN aminoacids 49-65 
either phosphorylated on not on serine 57 and Dot Blot experiment 
showing the specificity of anti-P-IN antibody. Serial dilutions of IN-S57 and 
IN-phS57 peptides blotted on a Protran BA79 membrane were probed with 
anti Phospho-IN antiserum (upper panel) and with affinity purified anti-P-IN 
antibody (lower panel). 

!
To further test the specificity of the anti-P-IN antibody, HEK 293T cells 

were transfected with Flag-IN and the lysate was either left untreated or 

incubated with $-phosphatase ($-PPase), prior to immunoprecipitation with 

anti-Flag beads and immunoblotting using anti-P-IN antibody. The antibody 

revealed the presence of a signal corresponding to phosphorylated IN, 

which almost disappeared upon phosphatase treatment (Figure 9a). Cell 

stimulation with phorbol 12-myristate 13-acetate (PMA), which is known to 

induce the MAPK pathways (Whitehurst et al., 1992; Jiang et al., 2003), 
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increased IN phosphorylation, whereas subsequent treatment with $-PPase 

removed the signal. Mutant IN(S57A) was not recognized by the anti-P-IN 

antibody even after cell treatment with PMA. The results so far reported 

provide a clear indication that JNK phosphorylates IN at position S57. To 

provide further support to this notion, we tested whether IN could also be 

phosphorylated in vitro by JNK. Functionally active histidine-tagged IN (His-

IN) (Cereseto er al., 2005) was incubated with commercial recombinant 

JNK1 and then probed for phosphorylation using the anti-P-IN antibody. 

Wild type IN scored clearly positive in this in vitro kinase assay, while no 

phosphorylation could be detected for the IN(S57A) mutant. 

Phosphorylation was strictly dependent on the addition of ATP and Mg2+ to 

the kinase incubation buffer, thus providing further support to the 

specificity of the reaction (Figure 9b). 
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Figure 9a,b 

(a) Our affinity purified anti-P-IN antibody detects wild type but not 
mutated S57A IN. Specificity of the antibody was confirmed upon Phorbol 
myristate acetate (PMA) induction and/or $-phosphatase treatment of HEK 
293T cells transfected with Flag-IN (upper panel). The levels of transfected 
IN were assayed by anti-Flag immunoblot (medium panel), while total 
protein levels were analyzed with anti-Tubulin Western Blot (lower panel). 
(b) wt IN and S57A mutant, carrying a histidine tag, were incubated with 
recombinant JNK1 with or without ATP and Mg2+. The reaction mixture was 
resolved by SDS-PAGE and analyzed by Western-Blotting using a polyclonal 
anti-phosphorylated IN antibody (upper panel). The same membrane was 
analyzed with anti-IN antiserum for total IN amounts (lower panel). 

!
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To further explore IN phosphorylation by JNK in vivo, cells transfected with 

wild type IN were treated with the different MAPK inhibitors PD98059 

(ERK1/2), SP600125 (JNK) and SB203580 (p38), and IN phosphorylation 

was then tested using the anti-P-IN antibody on immunoprecipitated IN. In 

the same cell extracts, the total levels of IN were also measured by direct 

Western Blotting. Phosphorylation of IN was found to be almost completely 

abolished using the JNK inhibitor, while was even increased upon p38 

inhibition (~1.5 fold); (cfr. Figure 10a for a representative blot and 

Figure 10b for quantification of the results of three different 

experiments). Of notice, the JNK and p38 inhibitors also exerted a 

significant effect on the total levels of IN in the cells, as quantified in 

Figure 10c. In particular, the total levels of IN were reduced of ~5 folds in 

cells treated with the JNK inhibitor, while they were even slightly increased 

after inhibition of p38. Taken together, these results provide evidence that 

HIV-1 is phosphorylated inside the cells on S57 and that JNK is a cellular 

kinase responsible for this modification.  
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Figure 10a,b,c!
(a) Inhibition of JNK kinase activity completely abolishes IN 
phosphorylation. Transfected Flag-IN was immunoprecipitated with anti-
Flag antibody from HEK 293T cells, treated with PD98059 (Erk1/2 
inhibitor), SP600125 (JNK inhibitor) and SB203580 (p38 inhibitor) and 
followed by anti-P-IN immunoblot. Levels of Flag-IN in the whole cell lysate 
where checked by immunoblot with anti-Flag antibody or with anti-tubulin 
antibody for total protein levels. (b) The graph shows the percentage of 
phosphorylated IN protein remaining after the cell treatment with the MAPK 
inhibitors. Samples are calculated with respect to control treated with 
DMSO only (mean ±sd of at least three experiments). (c) Graph shows the 
percentage of total IN protein respect to DMSO treated cells (n=3). 
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Since it is known that JNK interacts with its substrates through its 

interaction domain, we decided to explore whether IN might bind 

endogenous JNK. To this aim we transfected HEK 293T cells with a Flag-IN 

and a Flag-Luc as a control. The protein lysates were subjected to 

immunoprecipitation with anti-Flag antibody followed by immunoblot anti 

JNK1. As shown in Figure 11, we found that IN interacts with both the 

p46 and p52 isoforms of JNK1.  

 

Figure 11!
IN interacts with JNK in vivo. Extracts from HEK 293T cells transfected with 
Flag-IN or Flag-Luc as a control were immunoprecipitated with anti-Flag 
antibody and immunoblotted with anti-JNK1 and anti-Flag antibodies (left 
panel). The same lysates were run on an SDS-PAGE gel and immunoblotted 
with either anti-JNK or anti-Flag antibodies (right panel). 

!
To map the JNK interacting domain of IN, we purified from bacteria the 

single domains of IN and the full-length protein as GST fusion proteins. The 

single domains were incubated with an in vitro translated 35S JNK1 p46. 
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We found that GST-IN interacts with JNK also in vitro and that this 

interaction is mediated by the core domain of IN (Figure 12). 

!
Figure 12 

IN interacts with JNK1 in vitro through its Core domain. Radiolabeled 35S-
JNK p46 was incubated with IN full length, N-terminal domain, Core 
domain and C-terminal domain. The gel was exposed to Cyclone screen. 
Coomassie blue staining of purified GST proteins is shown. The graphs 
show the amounts of bound proteins as percentages of the input, 
radiolabeled protein. The quantification shows mean±sd of three 
independent binding experiments.!
 
We previously reported that HIV-1 IN interacts with the human 

acetylatransferase p300 and is acetylated on three lysines (positions 264, 

266, 273) in the C-terminal domain (Cereseto et al., 2005). We therefore 

investigated the possibility that these two modifications may crosstalk. To 
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explore this hypothesis, we first performed a co-immunoprecipitation 

experiment to verify whether the mutation at position 57 might affect IN 

binding to p300. As it shown in Figure 13a, the IN (S57A) mutant 

interacted with p300 as well as the wild type protein. Moreover this mutant 

was still acetylated and the levels of acetylation increase when p300 was 

overexpressed Figure 13b. We finally asked whether acetylation of lysines 

264, 266 and 273 was necessary for the phosphorylation of serine 57. To 

answer this question, we checked the levels of phosphorylation of the 

mutant IN(K3R), in which lysines 264, 266, 273 were substituted with 

arginines using the anti-P-IN antibody. The Western Blot analysis in Figure 

13c clearly shows that the IN(K3R) mutant was phosphorylated at the 

same extent as the wild type protein. Taken together, these experiments 

indicate that there is no evident crosstalk between the two post-

translational modifications. 
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 Figure 13a,b,c 

(a) IN (S57A) mutant interacts with p300 in vivo. Extracts from HEK 293T 
cells transfected with Flag-IN, Flag-IN (S57A) or with an empty vector as a 
control were immunoprecipitated with anti-Flag antibody and 
immunoblotted with anti-p300 and anti-Flag antibodies (left panel). The 
same lysates were run on an SDS-PAGE gel and immunoblotted with either 
an anti-p300 or an anti-Flag antibody (right panel). (b) IN(S57A) is still 
acetylated on lysines 264, 266, and 273. HEK 293T cells were transfected 
with Flag-IN, Flag-IN(K3R), Flag-IN (S57A) and with or without p300. The 
whole cell lysates were immunoprecipitated with anti-Flag antibody and 
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immunoblotted with anti-acetylated IN. The same lysates were run on SDS-
Page and immunoblotted with anti-Flag antibody to verify protein 
expression levels.! (c) Extracts prepared from HEK 293T cells transfected 
with Flag-IN, Flag-IN(K3R) mutant and Flag-IN (S57A) mutant were 
subjected to immunoprecipitation with anti-Flag antibody and 
immunoblotting with anti-P-IN. Protein expression levels were verified by 
western-blot on total cell lysates with anti-Flag antibody.!
 

!
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3. The cellular prolyl-isomerase Pin1 interacts with HIV-1 IN 

depending on JNK-mediated phosphorylation 

Next we wondered whether mutation of S57, the residue essential for IN 

phosphorylation, might affect the catalytic activity of the protein. This was 

assessed by the strand-transfer assay, which evaluates the capacity of IN 

to produce DNA fragments of different sizes as a result of multiple 

integration events, when a short oligonucleotide is used as a substrate. 

However we found that the recombinant IN(S57A) mutant was 

enzymatically as active as its wt counterpart (Figure 14).  

Figure 14!
In vitro strand transfer activity of His-IN wt or His-IN (S57A). In the first 
lane the substrate without His-IN was loaded as a control. 

 

Proteins that are phosphorylated on Ser-Pro motif represent potential 

targets for the prolyl-isomerase Pin1, an enzyme that acts to change the 

conformation of its substrates through the isomerization of the peptidyl-

prolyl bound (Lu et al., 2007; Lu et al., 2002). Phosphorylated serine 57 of 
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IN, followed by a proline, represents a potential target for Pin1-mediated 

isomerization. The possibility that IN and Pin1 might interact was explored 

by a modified pull-down assay in which IN, produced and phosphorylated 

in HEK 293T cells, was incubated with GST-Pin1. IN was readily detected 

bound to Pin1 but not to the control beads. Of interest, binding was 

dependent on IN phosphorylation, since incubation of the IN-containing cell 

lysate with calf intestinal phosphatase (CIP) completely abrogated binding 

(Figure 15a). To further demonstrate that phosphorylation of IN by JNK is 

a prerequisite for Pin1 binding, cell lysates obtained from cells expressing 

IN and treated with the JNK inhibitor SP600125 were subjected to Pin1 

pull-down. As shown in Figure 15b, this treatment greatly impaired 

binding of IN to GST-Pin1 beads. The specificity of this interaction was 

further confirmed by incubating GST-Pin1 with the mutant IN(S75A), which 

scored negative for binding (Figure 15c). Next we probed binding of IN to 

two Pin1 mutants, namely Pin1(Y23A), harbouring a substitution of tyrosine 

23 to alanine in the WW domain of the protein, that impairs binding to its 

phoshorylated targets, and Pin1(C113A), in which cysteine 113 in the 

catalytic domain is converted to alanine; the latter mutant still recognizes 

its substrates, but its enzymatic activity is abolished (Lu et al., 1999; Zhou 

et al., 2000). Pin1(Y23A) resulted incapable of binding to IN, while binding 

was still preserved with mutant Pin1(C113A) (Figure 15d). 

!
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!
!
Figure 15a,b,c,d 

(a) Pin1 binds HIV-1 IN in a phosphorylation-dependent manner. Cell 
extracts of HEK 293T cells transfected with Flag-IN and treated or not with 
Calf Intestinal Phosphatase (CIP) were incubated with GST or GST-Pin1. 
(b) Binding of Pin1 to IN depends on the catalytic action of JNK. Lysates of 
HEK 293T cells transfected with Flag-IN were treated or not with SP600125 
and subjected to GST or GST-Pin1 pull down followed by immunoblot 
analysis with anti-Flag antibody. (c) Integrity of S57 is essential for binding 
of IN to Pin1. Lysates of HEK 293T cells expressing either Flag-IN or Flag-
IN(S57A) were probed for binding to GST or GST-Pin1. (d) A wild type WW 
domain of Pin1 is required for its binding to IN. Lysates of HEK 293T cells 
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overexpressing Flag-IN were probed for binding to GST, GST-Pin1 wt, GST-
Pin1(Y23A) mutant and GST-Pin1(C113A) mutant.  

 

To prove that IN also interacts with endogenous Pin1 in vivo, extracts from 

IN-expressing cells were immunoprecipitated with an anti-Pin1 antibody; in 

the immunoprecipitate, wild type IN was readily detected. In contrast, 

binding was almost abolished when using the IN(S57A) mutant, further 

emphasizing the importance of this phosphorylated residue for the 

interaction (Figure 16a). Finally, we wanted to investigate whether the 

interaction of IN to Pin1 might determine a conformational change of IN. 

For this purpose, 35S-labeled, histidine-tagged IN, purified after in vitro 

translation from a reticulocyte lysate using a nickel column was incubated 

with recombinant Pin1 or with the catalytically inactive mutant Pin1(C113A) 

prior to the addition of subtilisin, a protease specifically sensitive to 

substrate conformation (Stukenberg et al., 2001). As already demonstrated 

for other Pin1 substrates (Zita Moretto et al., 2007; Mantovani et al., 2004; 

Zacchi et al., 2002), Pin1 significantly protected IN from proteolytic 

degradation, while the Pin1(C113A), despite binding IN, was completely 

ineffective (Figure 16b). Collectively, these results indicate that IN, 

phosphorylated on S57 by JNK, is a substrate for cellular Pin1 binding and 

enzymatic activity.  
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Figure 16a,b 

(a) Pin1 binds to HIV-1 IN in vivo. Lysates of HEK 293T cells transiently 
expressing Flag-IN or Flag-IN(S57A), were immunoprecipitated with anti-
Pin1 antibody and analyzed by Western Blot with anti-Flag antibody. The 
same extracts were analyzed for proteins expression levels either with anti-
Pin1 and anti-Flag antibody (lower panel). (b) Wild type Pin1 can isomerize 
HIV-1 IN. 35S- histidine IN was purified on a nickel column and incubated 
with GST, GST-Pin1 and GST- Pin1 (C113A), followed by incubation with 
subtilisin. The gel was resolved by SDS-PAGE and visualized on a 
PhosphoImager. 
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4. Pin1 regulates HIV-1 IN stability 

It has been demonstrated that the conformational changes catalysed by 

Pin1 affect the stability of several of its substrates (see refs. Ryo et al., 

2003; Ryo et al., 200 and citations therein). To understand whether this 

might also be the case for IN, HeLa cells expressing Flag-IN were treated 

with cyclohexamide (CHX) to block protein synthesis either in the presence 

or absence of PPIase-parvulin inhibitor (Pib), a compound specifically 

inhibiting the enzymatic activity of Pin1 (Rustighi et al., 2009; Uchida et al., 

2003). In the absence of treatment the half-life of IN was <80 min (Figure 

17a, gels in the left panel and quantification in the right panel). 

Remarkably, cell treatment with Pib determined a marked decrease in the 

total levels of IN at time 0 of CHX treatment (<4 fold of the wt) and in the 

stability of the protein afterwords. In sharp contrast, the levels of the 

IN(S75A) mutant were already highly reduced in the absence of CHX and 

remained unmodified after treatment with Pib (Figure 17b). 
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Figure 17a,b 

(a) Pin1 inhibition affects IN stability, but has no effect on IN(S57A) 
mutant. HeLa cells were transfected with Flag-IN or Flag IN(S57A) (b) and 
treated with Pin1 inhibitor (3 µM) or left untreated, after 17 hours CHX was 
added to block protein synthesis, cells were harvested at the indicated time 
points. The amount of Flag-IN was analyzed by Western Blot with anti-Flag 
antibody, while total protein levels were controlled by immunoblot with 
anti-Tubulin antibody. The results are represented in the graphs (right 
panels a,b) where the amount of IN at time 0 was set as 100%. 

 

Stability of HIV-1 IN is known to be regulated by the ubiquitin-proteasome 

pathway (Llano et al., 2004; Mousnier et al., 2007; Emiliani et al, 2005). 

Since the results so far obtained suggested that either mutation of S57 or 

cell treatment with Pib affected stability of the protein, we assessed the 

levels of wild type IN and IN(S57A), after treatment with CHX for 2 hours, 

in the presence of MG132, a well known inhibitor of the proteasome. As in 

the previous experiments, the IN(S57A) mutant proved to be less abundant 

and less stable than the wild type protein (Figure 18a), while cell 

treatment with MG132 determined a marked increase of both wt IN and 

IN(S57A) and, most notably, no significant difference in the overall levels of 

the two proteins. These observations clearly indicate that the IN(S57A) 

mutant is degraded to a higher extent than the wild type protein. 
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Figure 18a 

(a) IN(S57A) is less stable than the wild type protein. HeLa cells ectopically 
expressing Flag-IN and Flag-IN(S57A) were treated or not with the 
proteosome inhibitor MG132 and assayed for stability with CHX. Cell lysates 
were analyzed by Western Blot with anti-Flag or anti-Tubulin antibodies 
and the results were quantified densitometrically.!The graph below shows 
samples treated or not with MG132 (white and black bars respectively): 
protein levels were calculated with respect to the amount of IN wt at time 
0. 

 

The differential degradation of wt IN and IN(S57A) was further explored by 

analyzing the ubiquitination levels of the two proteins. For this purpose, 

HeLa cells were transfected with plasmids expressing either of the two 

proteins together with increasing amounts of a plasmid coding for HA-

ubiquitin, followed by recovery of the IN ubiquitinated forms on anti-Flag 

beads and immunoblotting with an anti-HA antibody; total protein levels 

were controlled with anti-Flag antibody. Consistent with the observation 

that the IN(S57A) mutant is less stable than the wild type protein, it also 

proved to be more ubiquitinated (gels in Figure 19a and quantification of 
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the ubiquitinated forms of IN in Figure 19b). Collectively, these results 

indicate that the ultimate effect of JNK-phosphorylation followed by Pin1 

isomerization of IN is to substantially increase the stability of the protein by 

preventing its proteasome-mediated degradation. 

 

 

Figure 19a,b 

(a) The IN(S57A) mutant is more ubiquitinated than IN wt. HeLa cells were 
transfected with Flag-IN or Flag-IN(S57A) and HA-Ubi (5, 7.5 and 10 µg), 
and treated with MG132 or DMSO prior to lysis. Equal amounts of cell 
lysates were immunoprecipitated using anti-Flag antibody. The levels of 
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ubiquitination were assayed using anti-HA antibody, cell lysates were 
tested for IN levels with anti-Flag antibody and for total protein levels with 
anti-tubulin antibody (*IgGH, #IgG). (b) The histogram shows the 
amounts of ubiquitinated wt IN (black bars) and mutant IN(S57A) (white 
bars). 

 

 

 

5.  Inhibition of Pin1 activity and mutation of IN serine 57 impair HIV-

1 integration 

Finally, we wanted to ascertain what the biological significance of the 

observed Pin1 modification might be in the context of HIV-1 infection. A 

first experiment was performed by infecting SupT1 T-cells with HIV-1BRU-

Flag-IN viral clone after treatment with the Pin1 inhibitor. Under these 

conditions, we found that the levels of integrated HIV-1 DNA detected in 

the cells at 24 hours after infection by quantitative Alu-PCR was remarkably 

diminished (<10% of control infected cells; Figure 20a). Additionally, we 

also found that silencing of Pin1, with a Pin1-specific siRNA, in HOS CCR5" 

CD4" cells markedly impaired cell infection with a HIV-1BALpNL4-luciferase 

virus while transfection with a RISC-free siRNA control has no effect on Luc 

activity (Figure 20b).  
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Figure 20a,b 

(a) Pin1 activity is necessary for HIV-1 integration. SupT1 cells were 
treated with 1µM Pin Inhibitor (Pib) 15 hours prior to infection with HIV-
1BRU virus; real time Alu-PCR was performed on total genomic DNA 
extracted 24 hours post infection. The graph summarizes the results of 
three independent experiments. (b) Silencing of Pin1 negatively affects 
HIV-1 infectivity. Anti-Pin1 siRNA or control RISC-free siRNA were 
transfected into HOS CCR5" CD4" cells, that were subsequently infected 
with HIV-1BALpNL4-luciferase viral clone, and luciferase activity (arbitrary 
units) was measured 72 hours late. Values are mean±sem of at least three 
different experiments. Pin1 silencing was detected by Western Blotting 
analysis with anti-Pin1 antibody; total protein levels were verified with anti-
Tubulin antibody. 

 

The relevance of the serine 57 for JNK mediated phosphorylation and 

subsequent Pin-1 mediate isomerization for viral infectivity was assessed by 

obtaining an HIV-1BRU mutant clone bearing the IN(S57A) substitution. 

Production and maturation of the mutated virus was as efficient as wt HIV-

1BRU-Flag-IN, as concluded by the levels of IN and matrix proteins in the 
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virions (representative experiment shown in Figure 21a). However, we 

found that the HIV-1BRU IN(S57A) virus was remarkably less infectious than 

wild type HIV-1BRU, as detected by RT activity assays on the supernatants 

of SupT1 T cells infected with the same amount of each virus and 

monitored over a 9 day period (Figure 21b).  

Figure 21a,b 

(a) HIV-1BRU wt and HIV-1BRU IN(S57A) mutant produce comparable 
amounts of viral proteins. Supernatants of HEK 293T cells transfected with 
HIV-1BRU wt or HIV-1BRU IN(S57A) mutant, containing viral particles, were 
assayed by WB using either anti-Flag (upper panel) or an anti-MA antibody 
(lower panel). (b) Integrity of Ser57 in HIV-1 IN is indispensable for 
efficient HIV-1 infectivity. SupT1 cells were infected with the same amounts 
of wild type HIV-1BRU and HIV-1BRU IN(S57A) viruses. Replication kinetics 
were monitored by RT activity analysis at the indicated time points after 
infection. 

 

Of notice, when genomic DNA was extracted from the infected cells at 1 

day after infection, the levels integrated DNA, as detected by quantitative 

Alu-PCR, were markedly decreased (>5 fold) in cells infected with HIV-1BRU 

IN(S57A); no integration by this assay was detected when using an VSVG- 

pseudotyped HIV-1BRU mutant, not expressing functional IN (HIV-1BRU %IN), 
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as expected (Figure 22a). Finally, we also monitored the extent of viral 

replication of the wt virus and of the HIV-1BRU IN(S57A) mutant in primary 

CD4"! T cells, purified from healthy donors and stimulated with PHA/IL-2 

prior to infection, over a period of 15 days. As shown in the graph 

presented in Figure 22b, replication of the wt virus peaked at day 3 after 

infection, while replication of the mutant remained severely impaired 

throughout the whole observation period. Taken together, these results are 

consistent with the conclusion that the modification introduced by Pin1 on 

phosphorylated IN is essential for efficient HIV-1 replication. 

 

Figure 22a,b 

(a) Integration of an HIV-1 clone containing mutant IN(S57A) is impaired. 
SupT1 cells infected with equal amounts of HIV-1BRU wt, HIV-1BRU IN(S57A) 
or with VSVG-pseudotyped HIV-1 %IN virus as a control, were assayed for 
proviral integration by Real Time Alu PCR on total genomic DNA extracted 
24 hours post infection. The graph summarizes the results of three 
independent experiments. (b) Ser57 in HIV-1 IN is indispensable for 
efficient infectivity of primary CD4+ T cells. Replication kinetics of wild type 
HIV-1Bru and HIV-1BRU IN(S57A) mutant in stimulated primary CD4+ T cells 
was assessed by measuring RT activity of the supernatants in a 2-week 
periods. 
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Discussion  
One of the peculiar characteristics of the HIV-1 life cycle is that viral 

replication is efficient in activated peripheral blood T cells, while resting 

cells are resistant to infection. In these cells, the predominant form of the 

HIV-1 DNA is full-length, linear, and, most remarkably, unintegrated 

(Bukrinsky et al., 1991; Chun et al., 1997). It is known that a potent block 

of reverse transcription in resting CD4+ T cells exists, however the Siliciano 

and Malim groups demonstrated that RT in resting CD4+ T cells was 

completed despite a delayed kinetics (Zhou et al., 2005). These findings 

suggest the presence, in resting T lymphocytes, of further blocks in HIV-1 

infection.  

In this thesis we demonstrate that efficient integration of the HIV-1 

provirus in primary CD4+ T cells requires the concerted functions of the 

cellular kinase JNK and the prolyl-isomerase Pin1 and that these functions 

essentially restrict viral infection to activated cells. More specifically, we 

show that the HIV-1 IN is phosphorylated by JNK and that this modification 

is a prerequisite for its isomerization by Pin1. Both post-translational 

modifications occur sequentially on IN S57. These concerted modifications 

increase IN stability and are a requisite for efficient integration and 

infection. JNK protein kinases are essential for normal T-cell function, and 

mouse resting T cells do not express JNK unless stimulated with anti-CD3 

and anti-CD28 antibodies or by prolonged (at least 24 hours) stimulation 

with PMA and ionomycin (Weiss et al., 2000). we confirm that, also in 

primary human CD4+ T cells, JNKs are expressed only after prolonged 

stimulation with IL-2 and PHA and correlate this kinetics with the 

susceptibility of T-cells to HIV-1 infection. In essence, we found that one of 

the essential blocks that restricts viral integration, and thus replication, in 

resting T cells is the absence of JNK activity and the consequent lack of 
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Pin-1-mediated IN isomerization, followed by IN degradation and inability 

of the viral cDNA to become integrated. 

A role for JNK in determining permissivity to HIV-1 infection 

HIV-1 replication is greatly influenced by the activation status of the target 

cell. While activated CD4+ T lymphocytes are permissive to HIV-1 infection, 

resting T cells are highly resistant. HIV-1 can efficiently enter into resting 

cells, however no progeny is produced. A sustained stimulation with PHA, 

IL-2 or ionomycin is required for an efficient infection (Oswald-Richter et 

al., 2004). To further confirm this notion we performed a time course 

stimulation of primary CD4+ T cells with PHA/IL-2 followed by infection with 

a VSVG-Luc virus. We found that a 48 hour-stimulation was required for 

efficient expression of the Luc gene. Shorter times of stimulation were not 

sufficient for the establishment of a productive infection (Figure 1a). 

All of the three groups of MAP Kinases, p38 family, Erk family and JNK 

family, are important in regulating the immune system from its early 

development and participate in the cascade that triggers lymphocyte 

activation (Dong et al., 2002). In particular, JNK has been implicated in T-

cell activation and IL-2 expression as it was rapidly activated in response to 

PMA or anti CD3 antibodies in Jurkat cells (Su et al., 1994). JNK protein 

kinases are essential for normal function of T cells and mice deficient in 

either JNK1 or JNK2 exhibit severe defects in T cell mediated response 

(Dong al., 1998; Dong et al., 2000). The cascade of signaling events that 

JNK kinases trigger need to be strictly controlled to ensure accurate cellular 

response to specific stimuli (Dong et al., 2001). It has been demonstrated 

that JNK is implicated in both negative selection of thymocytes, and in T 

helper cell differentiation (Rincon, et al. 2001; Rincon and Pedraza-Alva 

2003). Additionally, JNK expression by CD4+ T cells increases after 

prolonged (at least 24 hours) stimulation with PMA and ionomycin (Weiss 
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et al., 2000). By measuring the levels of phosphorylated proteins, we 

confirmed that all the three groups of MAPK were activated in human 

primary CD4+ T cells after prolonged stimulation with PHA/IL-2; 

interestingly, we found that the levels of total JNK - but not of the other 

kinases - were selectively increased upon prolonged stimulation of CD4+ T 

cells. The regulation of JNK expression represents an additional mechanism 

that controls its activity besides phosphorylation by MKK4 and MKK7, and it 

seems specific for T lymphocytes. Thus, it appears plausible that JNK is not 

necessary for the rapid activation of T lymphocytes, which requires 

minutes, however the kinase is most likely induced and activated after T 

cell stimulation and required for subsequent regulation of T cell function. 

Taking into consideration that a prolonged stimulation of CD4+ T cells is 

required for an efficient infection by HIV-1 and that a sustained stimulation 

results in an increase of JNK expression besides its activation, we 

investigated the possibility that there might be a crosstalk between HIV-1 

susceptibility and the levels and activity of JNK in CD4+ T lymphocytes. To 

this aim we purified primary CD4+ T cells and treated these lymphocytes 

with the three specific inhibitors of JNK, Erk and p38 before infection with a 

VSVG-Luc virus. We noticed that unstimulated cells were not efficiently 

infected, as previously reported; more interestingly, by inhibiting the JNK 

enzymatic activity, we observed a significant decrease in HIV infection.  

We then asked which step of HIV-1 infection was affected by JNK activity 

inhibition. Analysis of the early steps in viral infection led us to conclude 

that neither viral entry nor reverse transcription were affected. Of notice, 

we found that, in unstimulated CD4+ T cells, the formation of early reverse 

transcripts was normal while the formation of late reverse transcripts was 

highly inefficient as previously reported (Zhou et al., 2005). In 1990, Zack 

and colleagues proposed that, in resting T cells, reverse transcription is 

blocked, thus precluding the establishment of productive HIV-1 infection. 
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Subsequently, the same authors suggested that the low concentration of 

dNTPs was the limiting factor in a productive infection of resting T 

lymphocytes (Korin et al., 1999). However, addition of dNTPs, allowing the 

completion of reverse transcription, did not result in successful HIV-1 

infection, suggesting the presence of additional blocks in resting CD4+ T 

cells. In particular, transition of the cell cycle from G1a to G1b seemed to 

be necessary for the completion of reverse transcription (Korin and Zack 

1998). The Greene’s group further confirmed that reverse transcription is a 

main block of the viral life cycle. In particular, these authors proposed that 

the inability of HIV-1 to successfully complete reverse transcription in 

resting CD4+ cells circulating in blood was due to the activity of the 

restriction factor APOBEC3G. More precisely, in stimulated CD4+ T cells, 

APOBEC3G exists in a high molecular mass ribonuclear complex that is 

enzymatically inactive, while a low molecular mass (LMM) form of 

APOBEC3G present in resting CD4+ T lymphocytes functions as a highly 

active post-entry restriction factor for HIV (Chiu et al., 2005). 

To better understand the fate of HIV-1 genome inside resting T 

lymphocytes, Siliciano and colleagues monitored the kinetics of HIV-1 

decay in these cells. They again found that resistance of CD4+ T cells to 

HIV-1 infection was due to a slow kinetics of reverse transcription and 

blocks at subsequent steps (Zhou, et al. 2005). In their work, they also 

monitored the decay of integration-competent DNA and, interestingly, 

found that this form of fully reverse transcribed HIV-1 has a half-life of 1 

day in resting T cells. The authors proposed that degradation of either viral 

DNA and/or viral proteins, that form the preintegration, complex would 

lead to a functional decay of the virus (Zhou, et al. 2005). Additional work 

performed in 2007 by immunofluorescence experiments aimed at detecting 

localization of the CA protein of HIV-1 and by FISH analysis on viral cDNA 

in resting infected cells showed that full length reverse transcribed viral 
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genome, together with CA, localizes at the centrosomes 4 days post 

infection (Zamborlini et al., 2007). 

Taken together, all the above mentioned findings suggest that 

unstimulated T lymphocytes may restrict HIV-1 infection at different steps. 

Reverse Transcription seems to be the most affected step; however a 

molecular explanation is still lacking why the full length cDNAs that are 

formed in resting T-cell despite the reverse transcription slow down do not 

get eventually integrated into the genome. In this respect, in 1990 

Stevenson and colleagues showed and that resting T cells showed a block 

at the level of integration and that viral DNA was maintained extra 

chromosomally (Stevenson et al., 1990). Consistent with this observation, 

we investigated the integration step the conditions of JNK inhibition and 

observed a decrease in the levels of integrated provirus. 

In the context of viral replication cycle HIV-1 IN regulates both nuclear 

entry of the PIC and integration of the viral cDNA into the host genome 

(Suzuki and Craigie 2007). It is known that, besides efficient integration, 

into the host genome, viral cDNA can undergo aberrant modifications in the 

nucleus of infected cells, with 2LTRs circles being the most common 

products (Coffin et al., 1997). IN mutations that affect enzymatic activity 

but not PIC entry into the nucleus are kwnown to cause an increase in the 

formation of these aberrant products (Cereseto at al., 2005; Maroun et al., 

2006; Svarovskaia et al., 2004). Real Time analysis of the formation of 

2LTR circles in cells in which JNK was inhibited revealed that the formation 

of this particular species of viral cDNA was affected, thus indirectly 

indicating that the integration defect could at least in part be ascribed to 

the diminished nuclear import of PICs. Of notice, in unstimualated cells, 

2LTR circles were not detected at all. This finding is in agreement with 

findings published by Wu and Marsh in 2008, in which resting T cells are 

reported to show an impairment in PIC nuclear entry. The authors of this 
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work ascribe this block to an effect on the static cortical actin of quiescent 

T lymphocytes and propose that signaling downstream of CXCR4 activates 

cofilin, a cellular factor critical for actin dynamics and viral nuclear 

migration. In the absence of CXCR4 activation, there is no downstream 

signaling and HIV-1 is unable to reach the nucleus (Yoder et al., 2008). 

Interestingly, JNK activity is also triggered after CXCR4 binding to its 

targets (Tokiwa et al., 1996).  

 

HIV-1 IN is a substrate of JNK activity 

Here we demonstrated for the first time that IN is also modified by 

phosphorylation on serine 57 in the catalytic/core domain of the protein 

and that JNK is the kinase responsible for this modification. These data 

were further confirmed by using the MAPK inhibitors (SP600125, PD98059 

and SB203580). Chemical inhibition of Erk had no effect on IN 

phosphorylation and inhibition of p38 caused a slight increase, while block 

of JNK activity completely abolished IN phosphorylation. Interestingly, 

when JNK was inhibited the total levels of IN decreased (Figure 10a middle 

panel), thus suggesting a role for JNK in regulating IN stability. 

It has been previously reported that JNK mediated phosphorylation plays a 

role in regulating the half life of crucial JNK targets, such as p53, ATF2 and 

SP1, by preventing their ubiquitination and subsequent proteasomal 

degradation (Fuchs et al., 1998; Fuchs 2000; Chuang et al., 2008). JNK is 

able to bind its targets through a so called JNK binding domain or d-domain 

(Adler et al., 1994; Dai et al., 1995). We therefore investigated whether 

JNK also binds IN. A co-immunoprecipitation assay confirmed that IN was 

indeed able to interact with endogenous JNK in vivo. Moreover, we 

discovered that the core domain of IN was the region involved in the 

interaction with JNK. 
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We have previously reported that IN was also acetylated in lysines 264, 

266, 273 by p300 and that these two proteins interacted (Cereseto et al., 

2005). A large number of proteins, such as CDC6, STAT1 and histone H3, 

are post-translationally modified at multiple residues by kinases and 

acetyltransferases; in several instances, these modifications are 

interconnected (Paolinelli et al., 2009; Kramer et al., 2009; Edmondson et 

al., 2002). We then wondered whether there is a crosstalk between 

phosphorylation and acetylation of IN. Initially, we investigated the 

possibility that IN phosphorylation might affect its binding to p300, 

however we found that IN(S57A) bound p300 as well as the wt protein. 

Next we tried to correlate these two modifications of IN by investigating 

the acetylation status of the S57A mutant, however we found that this 

mutant was acetylated to the similar extent as the wt protein. In addtion, 

we also demonstrated that the triple mutant, in which lysines 264, 266 and 

273 were substituted with arginines, was still phosphorylated in vivo. These 

findings suggested that, in the case of IN, acetylation and phosphorylation 

are two independent, apparently not correlated post-translational 

modification. How to reconcile these two modifications? One possibility is 

that they occur in two different cellular compartments such as the cytosol 

and the nucleus. Another other possibility is that these two events occur at 

two different time points of infection and that the first modification is not 

required for the second to occur. In this respect, it might be hypothesized 

that, after infection, the phosphorylated form of IN is stabilized by 

isomerization and can reach the nucleus where it becomes acetylated by 

p300, thus increasing its DNA affinity and enzymatic activity. The IN 

mutant in Ser 57 is rapidly degraded, as discussed below, and does not 

reach the nucleus efficienctly. Thus, acetylation is not dependent on 

phosphorylation, however, in the context of viral replication, the IN(S57A) 

mutant is not acetylated because it does not reach the right compartment 

for acetylation. This view predicts that most of the acetylated IN is also 
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phosphorylated on Ser 57, a prediction that might be experimentally 

assessed by mass spectrometry experiments. 

We also analyzed whether the mutation of Ser 57 might affect the strand 

transfer activity of IN and found that the enzymatic activity of IN(S57A) 

was similar to the wt protein. This result was in agreement with the finding 

that SP600125 caused a reduction, rather than an increase, in 2LTR circles 

formation, suggesting that JNK inhibition does not affect IN enzymatic 

activity, but most likely affects a step of IN regulation prior to nuclear entry 

or impact on the overall levels of IN in the cells after infection. 

A careful analysis of the IN proteins revealed that the sequence S-P at 

positions 57-58 is highly conserved in the various subtypes of HIV-1, as it is 

in the IN of the Simian Immonudeficiency Virus (SIV) and Equine 

Immonudeficiency Anemia Virus (EIAV). The IN of the Feline 

Immonudeficiency Virus (FIV) conserves the proline at position 58 while IN 

from HIV-2 does contain neither Ser 57 nor Pro 58 (Table I). The 

observation that these residues are very conserved among HIV-1 subtypes 

and that they are also present in other lentiviruses further indicates their 

relevance.  
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A role for the prolyl-isomerase Pin1 in HIV-1 infection 

JNKs, like other MAPKs, are Proline directed Ser/Thr protein kinases and 

the consensus sequence (Pro)-X-Ser/Thr-Pro [(P)-X-S/T-P] is present in c-

Jun as the archetypical substrate of JNKs (Bogoyevitch and Kobe 2006). In 

recent years, several studies on phosphorylated proteins revealed that a 

key component of signal transduction pathways is the prolyl-isomerase 

Pin1. This isomerase specifically binds phosphorylated serines/threonines 

followed by a proline and isomerizes the peptidyl bond between the 

phosphorylated aminoacid and the proline residue. Conformational changes 

catalyzed by Pin1 greatly influence the stability, localization and enzymatic 

function of the protein targets (Lu and Zhou 2007). In our study we 

present evidence that IN phosphorylated at serine 57 is recognized and 

isomerized by Pin1. We found that IN and Pin1 interact in a GST pull-down 

assay and that this interaction was dependent on phosphorylation. We 
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discovered that JNK inhibition greatly impairs IN binding to Pin1, 

suggesting that JNK phosphorylation is upstream Pin1 recognition of IN. 

Moreover, the IN(S57A) mutant does not interact with the prolyl-

isomerase, further confirming the importance of the residue at position 57. 

Finally, we validated the binding between Pin1 and IN by using the Pin1 

mutants. 

Pin1 consists of two domains: a WW domain, which recognizes the Pin1 

targets, and a catalytic domain. IN is not recognized by the Pin1(Y23A) 

mutant, which contains a mutation in the WW domain, while it is still able 

to bind the catalytically inactive mutant of Pin1 (C113A) which possesses a 

wt WW domain. Co-immunoprecipitation experiments corroborate the 

conclusion that Pin1 and IN also interact also in vivo. It has been previously 

published by different groups that Pin1-mediated isomerization protects 

proteins from subtilisin digestion, as a mean to demonstrate that the 

enzyme induces a conformational change in its targets (Zacchi et al., 2002; 

Mantovani et al., 2004; Zita et al., 2007). Indeed, we proved that IN was 

protected by subtilisin activity by co-incubation with Pin1, while IN was 

degraded when co-incubated with that catalytically inactive mutant 

Pin1(C113A).  

Conformational changes may affect many aspects of protein regulation. 

Taking into consideration that JNK inhibition decreases the total levels of 

IN, we investigated the possibility that Pin1, being downstream of JNK 

action, was also involved in controlling IN stability. We confirmed that Pin1 

plays a role in IN stability by using a chemical compound that specifically 

inhibits Pin1 catalalytic activity (Pib) (Uchida et al., 2003; Rustighi et al., 

2009). We found that Pin1 inhibition impaired wt IN stability, while having 

no significant effect on the IN(S57A), which however was itself intrinsically 

less stable. 
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Pin1 is already known to also regulate stability of other proteins, 

determining stabilization of several of its targets, including NF-kB, p73, 

Emi1 and b-catenin (Ryo et al., 2003; Mantovani et al., 2004, Bernis et al., 

2007; Ryo et al., 2001). Interestingly, it has been recently shown that Pin1 

also stabilizes the human T-cell leukemia virus type 1 (HTLV-1) protein Tax 

(Jeong et al., 2009). Since cellular proteins are mainly degraded by the 

proteasome, we investigated the possibility that IN was degraded by this 

pathway. To this aim, we blocked the proteasome system by treating cells 

with the proteasome inhibitor MG132 and checked for the recovery of IN 

levels. We found that MG132 treatment led to an increase in the levels of 

both wt IN and IN(S57A). Polyubiquitination is a well known signal that 

targets proteins to degradation. Therefore, we investigated the possibility 

that Ser 57 might be a crucial residue for this modification (Hunter 2007). 

We found that the IN(S57A) mutant, which is not phosphorylated by JNK 

and thus cannot be recognized by Pin1, was also more ubiquitinated in 

vivo, suggesting that phosphorylation and consequential isomerization 

might prevent IN ubiquitination and subsequent proteasomal degradation. 

It has been demonstrated that IN is degraded by the ubiquitin-proteasome 

pathway probably via interaction with the Cul2-based VHL ubiquitin ligase 

(Mulder and Muesing 2000; Mousnier et al., 2007). Moreover it has been 

proposed that LEDGF/p75, besides its role in tethering IN to chromatin, 

prevents its proteasomal degradation (Llano et al., 2004). However the 

mechanisms upstream IN degradation are still unclear. Since Pin1 affects 

on the stability of other targets by preventing or enhancing their interaction 

with ubiquitin ligase complexes (Ryo et al., 2001; Saitoh et al., 2006), it is 

plausible that Pin1-mediated isomerisation might either affect binding with 

Cul2-based VHL ubiquitin ligase or could increase IN affinity for 

LEDGF/p75.  
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In the context of viral replication, Pin1 inhibition led to a decrease in HIV-1 

integration and infection. We further confirmed the importance of Ser 57 

by mutating this residue in the HIV-1BRU viral clone. The mutated virus, 

despite containing normal levels of IN inside its virions, had impaired 

capacity of integration in the SupT1 T cell line. This impairment in 

integration determined the inability to establish a productive infection in 

primary CD4+ T cells over a period of 15 days. 

Several studies have suggested that inhibition of the proteasome increases 

the production of proviral DNA by blocking the degradation of the pre-

integration complexes (Butler et al., 2002; Schwartz et al., 1998). In 

addition a recent paper by Naldini and colleagues showed that the 

proteasome also limits lentiviral gene transfer in stem cell (Santoni de Sio 

et al., 2008). The observation that Pin1 inhibition reduced HIV-1 integration 

and that substitution of IN Ser57 with Ala in the context of and HIV-1 viral 

clone greatly impaired viral DNA integration and infection is fully consistent 

with this notion. This is not the first evidence of Pin1 involvement in 

regulating the function of viral proteins. It has been demonstrated that 

Pin1 regulates HTLV-1 Tax half-life by suppressing its ubiquitination and 

subsequent degradation as well as regulates Tax-induced NF-kB activation 

(Bernis et al., 2008; Peloponese et al., 2009). A role for Pin1 has also been 

proposed in the context of HBV-related hepatocellular carcinoma, where 

Pin1 increases the stability of the oncogenic HBV protein HBx and enhances 

HBx-mediated transactivation (Pang et al., 2007). Recent work from the 

Jeang group showed that Pin1 is also indirectly involved in HIV-1 infection. 

In particular, these authors proposed that Pin1 affects the expression levels 

of APOBEC3G, which is a well known restriction factor for HIV-1 infection. 

They demonstrated that Pin1 reduces APOBEC3G expression and its 

incorporation into new formed virions, thus limiting its antiviral function. In 

the same paper, these authors also showed that HIV-1 infection can 
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positively modulate Pin1 activity hence enhancing its pro-viral action 

(Watashi et al., 2008).  

Pin1 activity in stimulated PBMC, which are more susceptible to HIV-1 

infection, is known to be increased (Esnault et al., 2006). Intriguingly, in 

2006 a paper was published in which Pin1 was correlated to the stability of 

interferon-regulatory factor 3 (IRF3) and the consequent production of 

IFNb and establishment of innate immunity in response to either viral or 

bacterial infection. In particular, the Yamaoka group demonstrated that 

Pin1 affects IRF3 stability and that exogenous expression of Pin1 increased 

the production of infectious vesicular stomatitis virus (VSV) or 

encephalomyocarditis virus (EMCV) in the culture supernatants of infected 

cells (Saitoh et al., 2006). Although no immunological phenotype was 

described for Pin1-/- mice (Fujimori et al., 1999; Liou et al., 2002), it would 

be interesting to investigate the involvement of Pin1 in the general 

suceptibilty to viral infection (Esnault et al., 2008). 

Finally, it is worth discussing that, in the past years, it has already been 

demonstrated that HIV-1 takes advantage of another cellular isomerase, 

Cyclophylin A (CypA). This peptidyl-prolyl isomerase was found in a yeast 

two-hybrid screen for HIV-1 CA interactors by Luban and colleagues (Luban 

et al., 1993). It has been shown that CypA is able to isomerize CA and 

promotes an early step in HIV-1 infection (Braaten et al., 1996; Braaten et 

al., 2001; Bosco et al., 2002). The role of CypA catalytic activity on CA is 

still unknown. Interestingly in non-human primates CypA promotes an anti-

HIV-1 restriction activity (Towers et al., 2003; Sayah et al., 2004).  

The detected post-translational modifications that regulate IN stability after 

infection are likely to be essentially involved in the phenomenon known as 

pre-integration latency, a form of non-productive infection due to the 

persistence of unintegrated viral genomes. In this respect, it has been 
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shown a complete activation of T cells is not necessary for the 

establishment of infection, and that signaling through the CD4 or CXCR4 

might be sufficient for infection to be established (Stevenson 2003). 

Consistent with this notion, recent work by Wu and colleagues has shown 

that CXCR4 signaling is necessary for the infection of quiescent T cells; if 

signaling is block, PIC transport to the nucleus is selectively impaired 

(Yoder et al., 2008) This effect can be ascribed to cofilin, which cannot in 

turn depolimerize actin. Interestingly, it has also been found that signaling 

from CXCR4 also leads to JNK activation (Tokiwa et al., 1996), thus 

suggesting the intriguing possibility that JNK might play a dual role in 

permitting infection of CD4+ T lymphocytes, on one side by acting on the 

cofilin/actin pathway while, on the other side, increasing IN stability.  

It has been recently demonstrated that, in contrast to CD4+ T cells from 

peripheral blood, HIV-1 can infect resting CD4+ T cells residing in lymphoid 

tissues (Eckstein et al., 2001; Kreisberg et al., 2006). Kreisberg and 

colleagues proposed that the peculiar microenviroment in which these cells 

reside, guarantees a status of partial activation that allowing efficient 

infection. In particular, these authors found that endogenous IL-2 and IL-

15 played a key role in rendering resident naive CD4+ T cells susceptible to 

HIV-1 infection. It will be interesting to investigate also JNK status in 

resident resting T cells from lymphoid tissues, since it is well possible that 

cytokines produced by stromal cells and other resident cells may be 

sufficient to increase JNK expression and trigger its activation, thus 

facilitating HIV-1 infection. 
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A model to explain the poor susceptibility of resting CD4+ T cells 

to HIV-1 infection 

Taking our data and those from the literature together, we wish to propose 

a new model explaining the poor susceptibility of resting CD4+ T cells to 

HIV-1 infection. In resting T cells, reverse transcription proceeds at a 

slower rate with respect to activated lymphocytes, requiring 2-3 days to 

reach the peak levels, whereas in activated T cells only 8 hours are needed 

(Chiu et al. 2005; Zhou et al. 2005). In resting cells, HIV-1 fails to progress 

quickly to integration even after the completion of fully reverse transcribed 

viral cDNA (Swiggart et al.,2004). We propose that the viral cDNAs that are 

formed in resting T cells fail to eventually become integrated due to the 

lack of IN phosphorylation and the subsequent degradation of this enzyme. 

In activated CD4+ T cells, JNK is both highly expressed and active, thus 

allowing an efficient IN phosphorylation. Phosphorylated IN becomes in 

turn a substrate for Pin1, which binds this viral protein and changes its 

conformation, thus increasing its half-life and allowing efficient PIC nuclear 

entry and integration of the HIV-1 cDNA into the host genome. In contrast, 

in resting T cells, the absence of JNK kinases and the levels of of Pin1 

render IN more susceptible to ubiquitination and to consequent 

proteosomal degradation. The increase rate of IN degradation impairs both 

nuclear entry of the complete full-length viral cDNA and its integration into 

the cellular genome. Our findings disclose a new mechanism that could 

help in understanding the cellular barriers to viral infection and the means 

that the virus found to avoid them. Moreover, our data might in part 

explain the resistance of lentiviral gene transfer in resting cells such as non 

replicating stem cells and the possibility to increase the efficiency of 

transduction of these cells by inhibiting proteosomal activity or by 

enhancing JNK function. 
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