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Abstract Motivated by the fact that realized measures of volatility are affected by
measurement errors, we introduce a new family of discrete-time stochastic volatility
models having two measurement equations relating both the observed returns and
realized measures to the latent conditional variance.
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1 Introduction

In this paper we introduce a new family of discrete-time Stochastic Volatility (SV)
models, for the joint modelling of returns and realized measures of volatility. The
proposed model is characterized by having two measurement equations for the latent
volatility: (i) a Normal density for the daily returns and (ii) a Gamma density for
the RV measure. We then term the general version of the proposed model as SV-
ARG. A salient feature of the SV-ARG is that it allows for analytical filtering
and smoothing recursions for the latent factor that guides the dynamics of daily
returns. This permits us to develop an effective Bayesian inference procedure for
both parameters and latent factor.

Giacomo Bormetti
University of Bologna, e-mail: giacomo.bormetti@unibo.it

Roberto Casarin
University Ca’ Foscari of Venice, e-mail: r.casarin@unive.it

Fulvio Corsi
University Ca’ Foscari of Venice, e-mail: corsi@unive.it

Giulia Livieri
Scuola Normal Superiore, Pisa, e-mail: giulia.livieri@sns.it

205

Alessandra Petrucci, Rosanna Verde (edited by), SIS 2017. Statistics and Data Science: new challenges, new generations. 
28-30 June 2017 Florence (Italy). Proceedings of the Conference of the Italian Statistical Society 
ISBN (online) 978-88-6453-521-0 (online), CC BY 4.0, 2017 Firenze University Press



206 Giacomo Bormetti, Roberto Casarin, Fulvio Corsi and Giulia Livieri

2 The model

Consider a financial log-return process rt , a realized variance process yt and a latent
volatility process ht . Let Ft

.
= σ (rt ,yt) be the σ -algebra containing the information

about observable quantities (log-return and realized variance yt ) available at time t,
and F̃ H

t
.
= σ (Ft−1,ht). We assume the following model for the dynamics of the

log-returns:
rt = µ + γht +

√
htεt , εt

i.i.d.∼ N (0,1), (1)

t = 1, . . . ,T , where µ is the risk-free rate and γ is the market price of risk. N (m,σ2)
indicates the univariate normal distribution with mean m and variance σ2. The dy-
namics in Equation (1) differs from that employed in Corsi et al. (2013); Majewski
et al. (2015) for daily log-returns inasmuch in these works authors consider as driv-
ing process for returns a realized measure of volatility. Specifically, they employ
the continuous part of the realized variance, hereafter RV, defined as the sum of
squared returns over non-overlapping intervals within a sampling period. We refer
to Equation (1) as return equation.
Since the RV contains information on the latent volatility process, we follow au-
thors in Hansen and Lunde (2006); Engle and Gallo (2006); Shephard and Sheppard
(2010); Takahashi et al. (2009) and introduce another measurement equation, termed
realized variance equation, which relates the observed RV to the latent process ht .
Specifically, we assume that the realized variance yt is sampled from a Gamma dis-
tribution

yt |F̃ H
t

i.d.∼ G (α,ht) , (2)

where α ∈ R+ is constant. In the previous equation, G (k,ϑ) denotes a Gamma
distribution with positive shape, k, and scale parameter, ϑ .
We assume that ht follows an autoregressive gamma process with transition distri-
bution (see Gouriéroux and Jasiak, 2006):

ht |F̃ H
t−1,rt−1,yt−1

d∼ Ḡ (ν , φ
c

ht−1,c). (3)

In the previous equation, Ḡ (ν , φ
c ht−1,c) denotes the non-central gamma distribution

with shape ν > 0, scale c > 0 and non-centrality φ
c ht−1. Using the Poisson mixture

representation for the non-central gamma distribution (see Gouriéroux and Jasiak,
2006, for more details), we rewrite Equation (3) as

ht |zt
i.d∼ G (ν + zt ,c) ,

zt |ht−1
i.d∼ P (ϕht−1) ,

where, in general, Po(v) indicates the Poisson distribution with intensity parameter
v. The latter representation is useful for both the characterization of ht and the in-
ference procedure. The stationarity conditions, the conditional moment generating
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function of this process and its risk neutral dynamics are given in (Bormetti et al.,
2016).

3 Analytical filtering and smoothing

Applying similar argument as in Creal (2015), we are able to provide analytical
expressions for the: (i) conditional likelihood, (ii) Markov transition, (iii) initial dis-
tribution of zt , (iv) filtering and the smoothing of the latent process ht . In particular,
the following two propositions hold.
Proposition 1. For the SV-ARG model described in Equation (1), (2) and (3) the
conditional likelihood, p(rt ,yt |zt ,θ), the Markov transition, p(zt |zt−1,rt−1,yt−1,θ),
and the initial distribution of zt , p(z1;θ), are respectively given by:

p(rt ,yt |zt ;θ) = 2η(zt ,yt ;θ)Kλ(zt )

(√
ψχ(t)

)⎛

⎝
√

χ(t)

ψ

⎞

⎠
λ(zt )

,

p(zt |zt−1,rt−1,yt−1;θ) ∝ S

(
λ(zt−1),χ(t−1) φ (d)

c
,ψ c

φ (d)

)
,

p(z1;θ) ∝ N B
(

ν ,φ (d)
)
,

with

η(zt ,yt ;θ) = exp(γµ1t)√
2π

yαt−1
t

Γ (αt)

1
Γ (ν + zt)cν+zt

,

µ1t = rt −µ,
αt = α,

λ(zt) = ν + zt −αt −1/ 2,

χ(t) = µ2
1t +2µ2t ,

µ2t = yt ,

ψ = γ2 +
2
c
.

Proof. See Bormetti et al. (2016).

Proposition 2. Let λ(zt), χ(t) and ψ be the quantities defined in Proposition 1. The
marginal filtered, p(ht |r1:t ,y1:t ,z1:t , x 1:t ;θ), and smoothed, p(ht |r1:T ,y1:T ,z1:T , x 1:T ;θ)
distributions are

p(ht |r1:t ,y1:t ,z1:t , x 1:t ;θ) ∝ G ig
(

λ(zt),χ(t),ψ
)
,

p(ht |r1:T ,y1:T ,z1:T , x 1:T ;θ) ∝ G ig

(
λ(zt)+ zt+1,χ(t),ψ +2

φ (d)

c

)
,

t = 1, · · · ,T .

Proof. See Bormetti et al. (2016).
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4 Simulation results

For the SV-ARG model we simulate 50 data-series of 1,000 observations. For each
data-series we run the Gibbs sampler in Bormetti et al. (2016) for 100,000 itera-
tions, discard the first 20,000 draws to avoid dependence from initial conditions,
and finally apply a thinning procedure to reduce the dependence between consec-
utive draws. We test the efficiency of the algorithm in three different scenarios:
LOW-PERSISTENCE (β = 0.3), MEDIUM PERSISTENCE (β = 0.6), and finally, HIGH
PERSISTENCE (β = 0.9). The true values for the other parameters used in the sim-
ulations are reported in Table 1together with the grand average of the parameter
posterior means along with their robust standard deviations. The results in Table 1
indicates the accuracy of the MCMC scheme is remarkable for all the scenarios
(LOW PERSISTENCE, MEDIUM PERSISTENCE, HIGH PERSISTENCE). As regards
the efficiency, the magnitudes of the inefficiency factor after applying a thinning
procedure are below ten.

Table 1 SUMMARY OUTPUT OF THE PARAMETER ESTIMATES FOR THE SV-ARG MODEL

LOW PERSISTENCE MEDIUM PERSISTENCE HIGH PERSISTENCE
θ TRUE ESTIMATE STD ESTIMATE STD ESTIMATE STD

µ 0.0 0.0018 0.0118 -0.0051 0.0177 -0.0074 0.0358
γ 1.0 1.0552 0.0738 1.0523 0.0720 1.0685 0.0784
α 0.8 0.8428 0.0572 0.8327 0.0575 0.8474 0.0647
ν 0.8 0.8033 0.0371 0.7981 0.0394 0.8182 0.0576
c 1.0 0.9654 0.0938 0.9706 0.0909 0.9395 0.0790

β 0.3 118 0.0595 0.6376 0.0746 0.9702 0.0839

5 Conclusions

Motivated by the presence of measurement errors in the empirically computed re-
alized volatility measures we introduce a new family of discrete-time models. We
derive the analytical filtering and smoothing and show that they can be used for
efficient inference on the parameters and the latent volatility process.
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