Sfoglia per Matematica e Informatica
Zero-noise solutions of linear transport equations without uniqueness: an example
2009 Attanasio, Stefano; Flandoli, Franco
Zilber fields and complex exponentiation
2013 Mantova, Vincenzo
Zipf law and the firm size distribution: a critical discussion of popular estimators
2015 Bottazzi, Giulio; Pirino, DAVIDE ERMINIO; Tamagni, Federico
Łojasiewicz inequalities near simple bubble trees
2020 Rupflin, Melanie; Sharp, Ben; Malchiodi, Andrea
Γ-convergence for a class of action functionals induced by gradients of convex functions
2021 Ambrosio, L.; Baradat, A.; Brenier, Y.
ρ -White noise solution to 2D stochastic Euler equations
2019 Flandoli, F.; Luo, D.
Titolo | Data di pubblicazione | Autori | Tipo | File |
---|---|---|---|---|
Zero-noise solutions of linear transport equations without uniqueness: an example | 2009 | Attanasio, StefanoFlandoli, Franco | 1.1 Articolo in rivista | |
Zilber fields and complex exponentiation | 2013 | Mantova, Vincenzo | Doctoral Thesis | |
Zipf law and the firm size distribution: a critical discussion of popular estimators | 2015 | PIRINO, DAVIDE ERMINIO + | 1.1 Articolo in rivista | |
Łojasiewicz inequalities near simple bubble trees | 2020 | Sharp BenMalchiodi Andrea + | 5.12 Altro | |
Γ-convergence for a class of action functionals induced by gradients of convex functions | 2021 | Ambrosio L.Brenier Y. + | 1.1 Articolo in rivista | |
ρ -White noise solution to 2D stochastic Euler equations | 2019 | Flandoli F.Luo D. | 1.1 Articolo in rivista |
Legenda icone
- file ad accesso aperto
- file disponibili sulla rete interna
- file disponibili agli utenti autorizzati
- file non ad Accesso aperto
- file sotto embargo
- nessun file disponibile