We discuss in detail a modified variational matrix product state algorithm for periodic boundary conditions, based on a recent work by Pippan et al (2010 Phys. Rev. B 81 081103(R)), which enables one to study large systems on a ring (composed of N ~ 100 sites). In particular, we introduce a couple of improvements allowing us to enhance the algorithm in terms of stability and reliability. We employ such a method to compute the stiffness of one-dimensional strongly correlated quantum lattice systems. The accuracy of our calculations is tested in the exactly solvable spin-1/2 Heisenberg chain.
Titolo: | Stiffness in 1D matrix product states with periodic boundary conditions |
Autori: | |
Data di pubblicazione: | 2011 |
Rivista: | |
Digital Object Identifier (DOI): | http://dx.doi.org/10.1088/1742-5468/2011/05/P05021 |
Handle: | http://hdl.handle.net/11384/10469 |
Appare nelle tipologie: | 1.1 Articolo in rivista |
File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.