Single-photon detectors and bolometers represent the bridge between different topics in science, such as quantum computation, astronomy, particle physics, and biology. Nowadays, superconducting bolometers and calorimeters are the most-sensitive detectors in the terahertz and subterahertz bands. Here, we propose and demonstrate a Josephson escape sensor (JES) that could find natural application in astrophysics. The JES is composed of a fully superconducting one-dimensional Josephson junction, whose resistance-versus-temperature characteristics can be precisely controlled by a bias current. Therefore, differently from traditional superconducting detectors, the JES sensitivity and working temperature can be in situ simply and finely tuned depending on the application requirements. A JES bolometer is expected to show an intrinsic thermal-fluctuation-noise noise-equivalent power on the order of 10-25W/Hz1/2, while a JES calorimeter could provide a frequency resolution of about 2 GHz, as deduced from the experimental data. In addition, the sensor can operate at the critical temperature (i.e., working as a conventional transition-edge sensor), with a noise-equivalent power of approximately 6×10-20W/Hz1/2 and a frequency resolution of approximately 100 GHz.

Hypersensitive tunable josephson escape sensor for gigahertz astronomy

Paolucci F.
;
Ligato N.;Giazotto F.
2020

Abstract

Single-photon detectors and bolometers represent the bridge between different topics in science, such as quantum computation, astronomy, particle physics, and biology. Nowadays, superconducting bolometers and calorimeters are the most-sensitive detectors in the terahertz and subterahertz bands. Here, we propose and demonstrate a Josephson escape sensor (JES) that could find natural application in astrophysics. The JES is composed of a fully superconducting one-dimensional Josephson junction, whose resistance-versus-temperature characteristics can be precisely controlled by a bias current. Therefore, differently from traditional superconducting detectors, the JES sensitivity and working temperature can be in situ simply and finely tuned depending on the application requirements. A JES bolometer is expected to show an intrinsic thermal-fluctuation-noise noise-equivalent power on the order of 10-25W/Hz1/2, while a JES calorimeter could provide a frequency resolution of about 2 GHz, as deduced from the experimental data. In addition, the sensor can operate at the critical temperature (i.e., working as a conventional transition-edge sensor), with a noise-equivalent power of approximately 6×10-20W/Hz1/2 and a frequency resolution of approximately 100 GHz.
2020
Settore FIS/03 - Fisica della Materia
File in questo prodotto:
File Dimensione Formato  
PhysRevApplied.14.034055.pdf

Accesso chiuso

Tipologia: Published version
Licenza: Non pubblico
Dimensione 1.49 MB
Formato Adobe PDF
1.49 MB Adobe PDF   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11384/110096
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 11
  • ???jsp.display-item.citation.isi??? 9
social impact