We present a theoretical framework to tackle quantum non-Markovian dynamics based on a microscopic collision model (CM), where the bath consists of a large collection of initially uncorrelated ancillas. Unlike standard memoryless CMs, we endow the bath with memory by introducing interancillary collisions between next system-ancilla interactions. Our model interpolates between a fully Markovian dynamics and the continuous interaction of the system with a single ancilla, i.e., a strongly non-Markovian process. We show that in the continuous limit one can derive a general master equation, which, while keeping such features, is guaranteed to describe an unconditionally completely positive and trace-preserving dynamics. We apply our theory to an atom in a dissipative cavity for a Lorentzian spectral density of bath modes, a dynamics which can be exactly solved. The predicted evolution shows a significant improvement in approaching the exact solution with respect to two well-known memory-kernel master equations. DOI: 10.1103/PhysRevA.87.040103

Collision-model-based approach to non-Markovian quantum dynamics

GIOVANNETTI, VITTORIO
2013

Abstract

We present a theoretical framework to tackle quantum non-Markovian dynamics based on a microscopic collision model (CM), where the bath consists of a large collection of initially uncorrelated ancillas. Unlike standard memoryless CMs, we endow the bath with memory by introducing interancillary collisions between next system-ancilla interactions. Our model interpolates between a fully Markovian dynamics and the continuous interaction of the system with a single ancilla, i.e., a strongly non-Markovian process. We show that in the continuous limit one can derive a general master equation, which, while keeping such features, is guaranteed to describe an unconditionally completely positive and trace-preserving dynamics. We apply our theory to an atom in a dissipative cavity for a Lorentzian spectral density of bath modes, a dynamics which can be exactly solved. The predicted evolution shows a significant improvement in approaching the exact solution with respect to two well-known memory-kernel master equations. DOI: 10.1103/PhysRevA.87.040103
2013
SPIN
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11384/38610
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 129
  • ???jsp.display-item.citation.isi??? 126
social impact