The electron effective g factor tensor in asymmetric III-V semiconductor quantum wells (AQWs) and its tuning with the structure parameters and composition are investigated with envelope-function theory and the 8 x 8k . p Kane model. The spin-dependent terms in the electron effective Hamiltonian in the presence of an external magnetic field are treated as a perturbation and the g factors g(perpendicular to)* and g(parallel to)*, for the magnetic field in the QW plane and along the growth direction, are obtained analytically as a function of the well width L. The effects of the structure inversion asymmetry (SIA) on the electron g factor are analyzed. For the g-factor main anisotropy Delta g = g(perpendicular to)*-g(parallel to)*. in AQWs, a sign change is predicted in the narrow well limit due to SIA, which can explain recent measurements and be useful in spintronic applications. Specific results for narrow-gap AlSb/InAs/GaSb and AlxGa1-xAsGaAs/AlyGa1-yAs AQWs are presented and discussed with the available experimental data; in particular InAs QWs are shown to not only present much larger g factors but also a larger g-factor anisotropy, and with the opposite sign with respect to GaAs QWs.

Electron g factor anisotropy in asymmetric III-V semiconductor quantum wells

LA ROCCA, Giuseppe Carlo
2016

Abstract

The electron effective g factor tensor in asymmetric III-V semiconductor quantum wells (AQWs) and its tuning with the structure parameters and composition are investigated with envelope-function theory and the 8 x 8k . p Kane model. The spin-dependent terms in the electron effective Hamiltonian in the presence of an external magnetic field are treated as a perturbation and the g factors g(perpendicular to)* and g(parallel to)*, for the magnetic field in the QW plane and along the growth direction, are obtained analytically as a function of the well width L. The effects of the structure inversion asymmetry (SIA) on the electron g factor are analyzed. For the g-factor main anisotropy Delta g = g(perpendicular to)*-g(parallel to)*. in AQWs, a sign change is predicted in the narrow well limit due to SIA, which can explain recent measurements and be useful in spintronic applications. Specific results for narrow-gap AlSb/InAs/GaSb and AlxGa1-xAsGaAs/AlyGa1-yAs AQWs are presented and discussed with the available experimental data; in particular InAs QWs are shown to not only present much larger g factors but also a larger g-factor anisotropy, and with the opposite sign with respect to GaAs QWs.
2016
Settore FIS/03 - Fisica della Materia
electron g factor; semiconductor quantum wells; spin-orbit interaction
File in questo prodotto:
File Dimensione Formato  
Toloza_Sandoval_2016_Semicond._Sci._Technol._31_115008.pdf

Accesso chiuso

Tipologia: Published version
Licenza: Non pubblico
Dimensione 992.15 kB
Formato Adobe PDF
992.15 kB Adobe PDF   Richiedi una copia
tolozasandovaletal.pdf

accesso aperto

Tipologia: Accepted version (post-print)
Licenza: Creative Commons
Dimensione 458.82 kB
Formato Adobe PDF
458.82 kB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11384/65372
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 9
social impact