In this computational study, we illustrate a method for computing phosphorescence and circularly polarized phosphorescence spectra of molecular systems, which takes into account vibronic effects including both Franck-Condon and Herzberg-Teller contributions. The singlet and triplet states involved in the phosphorescent emission are described within the harmonic approximation, and the method fully takes mode-mixing effects into account when evaluating Franck-Condon integrals. Spin-orbit couplings, which are responsible for these otherwise forbidden phenomena, are accounted for by means of a relativistic two-component time-dependent density functional theory method. The model is applied to two types of chiral systems: camphorquinone, a rigid organic system that allows for an extensive benchmark, and some members of a class of iridium complexes. The merits and shortcomings of the methods are discussed, and some perspectives for future developments are offered.

Computational simulation of vibrationally resolved spectra for spin-forbidden transitions

Egidi, Franco;Fusè, Marco;Baiardi, Alberto;Bloino, Julien;Barone, Vincenzo
2018

Abstract

In this computational study, we illustrate a method for computing phosphorescence and circularly polarized phosphorescence spectra of molecular systems, which takes into account vibronic effects including both Franck-Condon and Herzberg-Teller contributions. The singlet and triplet states involved in the phosphorescent emission are described within the harmonic approximation, and the method fully takes mode-mixing effects into account when evaluating Franck-Condon integrals. Spin-orbit couplings, which are responsible for these otherwise forbidden phenomena, are accounted for by means of a relativistic two-component time-dependent density functional theory method. The model is applied to two types of chiral systems: camphorquinone, a rigid organic system that allows for an extensive benchmark, and some members of a class of iridium complexes. The merits and shortcomings of the methods are discussed, and some perspectives for future developments are offered.
2018
camphorquinone; circularly polarized phosphorescence; iridium complexes; phosphorescence; vibronic spectroscopy; Analytical Chemistry; Catalysis; Pharmacology; Drug Discovery3003 Pharmaceutical Science; Spectroscopy; Organic Chemistry
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11384/75934
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 13
  • ???jsp.display-item.citation.isi??? 13
social impact