In this paper, we show that serotonin, via 5-HT2B receptor, is involved in Xenopus retinal histogenesis and eye morphogenesis by supporting cell proliferation and survival. To analyze the 5-HT2B function in retinal development, we performed a loss-of-function study using both a pharmacological and a morpholino antisense oligonucleotide approach. Gain-of-function experiments were made by microinjecting 5-HT2B mRNA. Misregulation of the 5-HT2B receptor activity causes alterations in the proliferation rate and survival of retinal precursors, resulting in abnormal retinal morphology, where lamination is severely compromised. Clones derived from lipofected retinoblasts that overexpress 5-HT2B show an increase in the relative percentage of ganglion cells, possibly due to protection from apoptosis. This effect is reversed in clones lipofected with a 5-HT2B-specific morpholino. We hypothesize that the survival of the correct number of ganglion cells is controlled by 5-HT/5-HT2B signaling. Serotonin, acting as a neurotrophic factor, may contribute by refining retinal connectivity and cytoarchitecture.

5-HT2B-mediated serotonin signaling is required for eye morphogenesis in Xenopus

DE LUCCHINI, STEFANIA;CREMISI, Federico;
2005

Abstract

In this paper, we show that serotonin, via 5-HT2B receptor, is involved in Xenopus retinal histogenesis and eye morphogenesis by supporting cell proliferation and survival. To analyze the 5-HT2B function in retinal development, we performed a loss-of-function study using both a pharmacological and a morpholino antisense oligonucleotide approach. Gain-of-function experiments were made by microinjecting 5-HT2B mRNA. Misregulation of the 5-HT2B receptor activity causes alterations in the proliferation rate and survival of retinal precursors, resulting in abnormal retinal morphology, where lamination is severely compromised. Clones derived from lipofected retinoblasts that overexpress 5-HT2B show an increase in the relative percentage of ganglion cells, possibly due to protection from apoptosis. This effect is reversed in clones lipofected with a 5-HT2B-specific morpholino. We hypothesize that the survival of the correct number of ganglion cells is controlled by 5-HT/5-HT2B signaling. Serotonin, acting as a neurotrophic factor, may contribute by refining retinal connectivity and cytoarchitecture.
2005
Serotonin; 5-HT2B, Retina, Xenopus
File in questo prodotto:
File Dimensione Formato  
De Lucchini et al., 2005.pdf

Accesso chiuso

Tipologia: Altro materiale allegato
Licenza: Non pubblico
Dimensione 830.79 kB
Formato Adobe PDF
830.79 kB Adobe PDF   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11384/9993
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 24
  • ???jsp.display-item.citation.isi??? 22
social impact