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Abstract

There is a fast-growing literature in addressing the fairness of
AI models (fair-AI), with a continuous stream of new concep-
tual frameworks, methods, and tools. How much can we trust
them? How much do they actually impact society? We take
a critical focus on fair-AI and survey issues, simplifications,
and mistakes that researchers and practitioners often under-
estimate, which in turn can undermine the trust on fair-AI
and limit its contribution to society. In particular, we discuss
the hyper-focus on fairness metrics and on optimizing their
average performances. We instantiate this observation by dis-
cussing the Yule’s effect of fair-AI tools: being fair on average
does not imply being fair in contexts that matter. We conclude
that the use of fair-AI methods should be complemented with
the design, development, and verification practices that are
commonly summarized under the umbrella of trustworthy AI.

The Landscape of Fairness in AI
Fair-AI methods are designed with the purpose of con-
trolling biased decisions in algorithmic decision making1

(Schwartz et al. 2022; Ntoutsi et al. 2020). A highly rele-
vant case of bias is discrimination against protected-by-law
social groups (Altman 2020). Fairness, however, can imply
different meanings depending on the context as well as the
discipline (Mitchell et al. 2021; Mulligan et al. 2019). For
instance, equity requires that people are treated according
to their needs, which does not mean all people are treated
equally (Minow 2021). To formalize and measure the de-
gree of (un)fairness, quantitative metrics have been intro-
duced in philosophy, economics, and machine learning in
the last 50 years (Lee, Floridi, and Singh 2021; Hutchin-
son and Mitchell 2019; Binns 2018; Romei and Ruggieri
2014), amounting to more than 20 different definitions thus
far (Castelnovo et al. 2022; Mehrabi et al. 2021; Berk et al.
2021; Verma and Rubin 2018; Zliobaite 2017). Group fair-
ness metrics aim at measuring the statistical difference in
distributions of decisions across social groups. Individual
fairness metrics bind the distance in the decision space to
the distance in the feature space describing people’s charac-
teristics. Causal fairness metrics exploit knowledge beyond

Copyright © 2023, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1Due to the large body of literature, we prioritize survey papers,
where applicable, and recent works.

observational data to infer causal relations between features
and decisions, and to estimate interventional consequences.
As with other quality objectives, the choice of a fairness
metric is crucial for optimizing AI models. See the previ-
ous surveys and (Räz 2021; Wachter, Mittelstadt, and Rus-
sell 2021; Hertweck, Heitz, and Loi 2021; Binns 2020) for a
discussion of the moral/legal bases and relative merits of the
various fairness notions and metrics. Based on these fairness
metrics, methods and tools have been proposed for bias de-
tection (discrimination discovery or fairness testing) (Chen
et al. 2022), for data de-biasing and data processing (pre-
processing approaches) (Biswas and Rajan 2021), for train-
ing models and representations (in-processing approaches)
(Wan et al. 2022), for correcting existing models (post-
processing approaches), and for monitoring models’ deci-
sions (monitoring) (Kenthapadi et al. 2022). We also refer
to (Pessach and Shmueli 2022; Hort et al. 2022; Mehrabi
et al. 2021) and to (Fabris et al. 2022; Quy et al. 2022), re-
spectively, for surveys of the techniques and of the datasets
commonly used in the field.

Research in fair-AI originated from the supervised learn-
ing area, but it is rapidly expanding, e.g., to unsuper-
vised and reinforcement learning, natural language pro-
cessing (NLP), computer vision, and speech processing,
among others. Major AI conferences regularly include pa-
pers and workshops on the topic. A few global events (ACM
FAccT2, AAAI/ACM AIES3, ACM EAAMO4, and FoRC5)
are targeted at multidisciplinary aspects of fairness and
other ethical issues in AI and algorithmic decision mak-
ing. Similarly, several off-the-shelf software libraries are
available to practitioners, expanding at a fast pace, yet with
some critical gaps to be addressed (Richardson and Gilbert
2021; Lee and Singh 2021). A number of initiatives have
started to standardize, audit, and certify algorithmic fair-
ness, such as the IEEE P7003™ Standard on Algorithmic
Bias Considerations6, the IEEE Ethics Certification Program
for Autonomous and Intelligent Systems7, the ISO/IEC TR

2https://facctconference.org/
3https://www.aies-conference.com/
4https://eaamo.org/
5https://responsiblecomputing.org/
6https://standards.ieee.org/project/7003.html
7https://standards.ieee.org/industry-connections/ecpais.html
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24027:2021 - Bias in AI systems and AI aided decision
making8, and the NIST AI Risk Management Framework 9.
However, very few works attempt at investigating the prac-
tical applicability of fairness in AI (Madaio et al. 2022;
Makhlouf, Zhioua, and Palamidessi 2021b; Beutel et al.
2019), whilst several external audits of AI-based systems
have been conducted (Koshiyama et al. 2021), sometimes
with extensive media coverage.

The issue of engineering fairness is challenging (Scant-
amburlo 2021), and likely to require domain-specific ap-
proaches (Lee and Floridi 2021). For instance, individual
fairness metrics require to define (or to learn (Ilvento 2020))
a distance function to quantify how different two persons
are with respect to the characteristics that matter for the
decision. The distance function, if any, must be necessar-
ily specific of the application domain (e.g., by appropri-
ately weighting skills for job candidates, capacity to repay
for credit applicants, etc.). Finally, on the educational side,
bias and fairness have become common topics of univer-
sity courses on technology ethics (Fiesler, Garrett, and Beard
2020), albeit they are not sufficiently included in core techni-
cal courses (Saltz et al. 2019) nor sufficiently transversal and
interdisciplinary (Raji, Scheuerman, and Amironesei 2021).

Some Issues with Fair-AI
The AI community tends to self-correct recurring research
mistakes in cycles (Lipton and Steinhardt 2019; McDer-
mott 1976). Now it is the turn of reflecting on how fair-
ness in AI has been developing in the last fifteen years
since (Pedreschi, Ruggieri, and Turini 2008; Kamiran and
Calders 2009). Rather than discussing the frontiers of fair-
AI research (Chouldechova and Roth 2020), we focus on
a (necessarily incomplete) collection of issues that prevent
well-established fair-AI methods from being impactful. We
start by discussing a few theoretical limitations and practical
problems of fair-AI, and refer to the appropriate literature.

Hyper-focus on abstract metrics. Theoretical results state
that it is impossible to achieve different fairness notions at
the same time, such as for instance independence Ŷ ⊥⊥ R

and separation Ŷ ⊥⊥ R | Y in the case of group fairness
metrics (Chouldechova 2017; Kleinberg, Mullainathan, and
Raghavan 2017). Here, Ŷ is a (random) decision variable,
such as admission to university; R a socially sensitive fea-
ture, such as gender; and Y a ground truth decision. For
simplicity, we restrict our focus here to binary decisions
and binary sensitive groups. Independence requires that the
decision (whether by humans or machines) is statistically
independent from the sensitive feature. Separation requires
that they are independent conditionally on the ground truth,
i.e., on the merit of people (Barocas, Hardt, and Narayanan
2019). Further, fairness notions are in tension not only
among them, but also with other quality requirements, such
as predictive accuracy (Menon and Williamson 2018), cal-
ibration (Pleiss et al. 2017), and privacy (Cummings et al.
2019), for which Pareto optimality should be considered

8https://www.iso.org/standard/77607.html
9https://www.nist.gov/itl/ai-risk-management-framework

(Wei and Niethammer 2022). Nevertheless, a corollary of
the theoretical results is that the AI designers should opt for
one of the many fairness metrics. The choice, however, re-
quires to account for contrasting objectives: business utility,
human value alignment (Friedler, Scheidegger, and Venkata-
subramanian 2021), people’s actual perception of fairness
(Saha et al. 2020; Srivastava, Heidari, and Krause 2019),
and legal and normative constraints (Xenidis 2020; Kroll
et al. 2017). (Makhlouf, Zhioua, and Palamidessi 2021a)
provide a decision diagram for guiding practitioners, which
highlights the complexity of the choice. Based on how the
above constraints are formalized, the fairness metrics and,
a fortiori, their impact can be different (Passi and Barocas
2019) – an instance of the framing effect bias. For example,
in the famous case analysed by ProPublica10, the COMPAS
algorithm for recidivism prediction fails to meet equal false
positive rate among groups, but it achieves equal calibration
(Corbett-Davies et al. 2017). Even when restricting to a spe-
cific fairness notion, there is a problem on how to quantify
the degree of unfairness. In the case of independence, for in-
stance, association measures are typically adopted, such as
risk difference (a.k.a. statistical/demographic parity):

P (Ŷ = 1|R = 1)− P (Ŷ = 1|R = 0) (1)

or selective risk ratio11:

P (Ŷ = 1|R = 1)/P (Ŷ = 1|R = 0) (2)

possibly together with confidence intervals (Pedreschi, Rug-
gieri, and Turini 2009). We refer to (Maity et al. 2021) for
individual fairness confidence intervals, and to (Shah and
Peters 2020) for a characterization of the hardness of sta-
tistical tests of (conditional) independence. The apparently
innocuous choice between the algebraic operators (1) or (2),
however, has an enormous impact on how decisions are af-
fected. (Pedreschi, Ruggieri, and Turini 2012) show that the
top-k sub-populations with the highest risk difference and
with the highest selective risk ratio do not coincide. There-
fore, optimizing an AI model w.r.t. risk difference or selec-
tive risk ratio affects the relative impact of AI decisions for
a same sub-population.

The impossibility of fairness. In most cases, collecting
the ground truth Y is impossible, expensive, or even un-
ethical, as it would require to obtain counterfactual out-
comes, such as releasing potential criminals, not treating
sick patients, etc. In the analysis of the COMPAS algorithm,
ground truth was approximated by the actual recidivism out-
come of defendants in the two years period after they were
scored. However, we do not know whether or not a defen-
dant who was not released would have recidivated in case
she/he would have been released. Similarly, we do not know
whether an applicant with denied credit would have repayed
the credit if granted, a sample selection bias problem tackled
by reject inference in credit scoring (Ehrhardt et al. 2021).
An idea close to reject inference has been considered in (Ji,

10https://www.propublica.org/article/how-we-analyzed-the-
compas-recidivism-algorithm

11Sometimes wrongly referred to as “disparate impact”. See
(Watkins, McKenna, and Chen 2022).
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Smyth, and Steyvers 2020) for group fairness. Sampling bias
in collected ground truth Y has been called negative legacy
unfairness (Kamishima et al. 2012). In other contexts, such
as in NLP, the ground truth is obtained by human annota-
tion, typically aggregating annotators’s labels through ma-
jority voting. Here, the simplifying assumption of a single
ground truth is used. A perspectivist approach is emerging in
favor of granting significance to divergent opinions, by de-
signing methods over non-aggregated data (Cabitza, Cam-
pagner, and Basile 2023). In absence of unbiased ground
truth, however, practitioners set Y to the target feature used
for training an AI model. Any bias in the target feature risks
to be lifted to the AI model with a false claim of fairness.

Lack of source criticism. The sensitive feature R, also
known as grounds of discrimination (Romei and Ruggieri
2014), is a key input in the design of fair-AI systems.
Fairness metrics boil down to compare AI model’s perfor-
mances or decisions across (individuals from) different so-
cial groups. (Stewart 2022) shows that optimizing for a fair-
ness metric w.r.t. one way of classifying individuals can
make it impossible to optimize the same metric for another
way of dividing people up12. There are, however, inherent
problems in coding human identity in raw data, an issue
known as datafication (Mejias and Couldry 2019), which
can become even more complex once we allow for identity
to fluctuate (Lu, Kay, and McKee 2022), and care for the
representativeness of grounds of discrimination in data, i.e.,
representation bias (Shahbazi et al. 2022). For instance, if
gender is coded with a binary feature (male/female), then
any further discrimination analysis is limited to contrast-
ing only such two groups, excluding, e.g., non-binary peo-
ple. More elaborate representations of human identity could
benefit from ontologies for concept reasoning (Kronk and
Dexheimer 2020). The issue of source criticism (Koch and
Kinder-Kurlanda 2020), which is central in historical and
humanistic disciplines, is still in its infancy in the area of
AI. Source criticism attains at the provenance, authenticity,
and completeness of data collected, especially in social me-
dia platforms. The adoption of source criticism practices in
fair-AI would allow us to give a better picture of the data
being used and the individual instances it contains.

Insufficient robust modeling. Purely observational ap-
proaches rely on correlation among features, and hence they
are not able to account for spurious effects. A principled
way of tackling unfairness is to rely on causal reasoning
(Nogueira et al. 2022; Spirtes and Zhang 2016). Causal
fairness metrics (Makhlouf, Zhioua, and Palamidessi 2020;
Carey and Wu 2022b) overcome correlation shortcomings.
On the other side, causal approaches require to know the
structure of the causal relations among features, e.g., in
terms of a causal graph. While approaches for causal dis-

12Moreover, optimizing a fairness metric w.r.t. a collection of
grounds of discrimination does not necessarily lead to being fair
w.r.t. the intersection of such grounds (Stewart 2022) – the in-
tersectional fairness problem. E.g., being fair w.r.t. black people
and w.r.t. women does not necessarily imply being fair w.r.t. black
women. See (Kong 2022) for a critique of current approaches to
intersectional fairness, and (Wang, Ramaswamy, and Russakovsky
2022) for a few recommendations.

covery from data can be adopted, specifically in the context
of fairness (Binkyte-Sadauskiene et al. 2022), they defini-
tively need to be complemented with expert knowledge –
but, with no guarantee of an unanimous agreement among
experts (Rahmattalabi and Xiang 2022). Moreover, a num-
ber of assumptions are typically made which might not be
met in practice, such as sufficiency (all causes are known),
and faithfulness (the graph completely characterizes the con-
ditional independences among features) (Spirtes, Glymour,
and Scheines 2000). Overall, the causal fairness metrics may
suffer from the identifiability problem (Makhlouf, Zhioua,
and Palamidessi 2022), namely the impossibility to com-
pute them from observational data only. Finally, arguments
against the manipulability of the sensitive features, e.g.,
race, in counterfactual reasoning have been raised (Kohler-
Hausmann 2019; Hu and Kohler-Hausmann 2020).

Lack of compositionality. Every (small or big) apparently-
neutral technical decision in every step of the AI pipeline
can impact the fairness of the final AI system. Fair-
ness is affected by imputation of missing values (Caton,
Malisetty, and Haas 2022), by encodings of categorical fea-
tures (Mougan et al. 2022), by feature selection strategies
(Galhotra et al. 2022), and even by hyper-parameter settings
(Tizpaz-Niari et al. 2022), only to mention a few. Moreover,
the composition of data transformations and models that are
fair in isolation may not be fair in the end (Dwork and Il-
vento 2019). Observe that this does not only apply to the
compositions of AI systems, but also to the socio-technical
systems resulting from the composition of AI, algorithms,
people, and procedures. The lack of compositionality re-
quires that the fairness analysis of a socio-technical system
is conducted as a whole, not by pieces.

Can Fair-AI Be Unfair? The Yule’s Effect
[W]e cannot infer independence of a pair of attributes
within a sub-universe from the fact of independence
within the universe at large.

G. Udny Yule (Yule 1903, page 132)

One additional issue, the Yule’s effect, is introduced by the
incorrect use of fair-AI methods. We discuss such an issue
in detail in this section. First, we present a causal reason-
ing approach for correcting the unfairness of the decision
procedure Ŷ . Next, we describe a common approach to the
problem that adopts group fairness correction, possibly de-
parting from the procedure grounded on the causal reason-
ing approach. Finally, we discuss the consequences of the
common approach with an example, highlighting the Yule’s
effect of blindly correcting decision procedures.

Let us assume a scenario where we observe from historical
data that Ŷ ̸⊥⊥ R, substantiated by a large risk difference.

What should be done? Risk difference, also called Total
Variation in the causality literature, embeds direct, indirect,
and spurious effects of R on Ŷ (Plec̆ko and Bareinboim
2022). Spurious effects are introduced by confounding vari-
ables, which cause both R and Ŷ . From a causal perspective,
we are interested in measuring the direct and indirect effects
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Figure 1: Standard Fairness Model (Plec̆ko and Bareinboim
2022). Direct edges model possible causal dependencies.
The dashed edge models spurious correlation induced by un-
observed features. V is a confounder. W is a mediator.

only, whose sum is the Average Causal Effect (ACE):

P (Ŷ = 1|do(R = 1))− P (Ŷ = 1|do(R = 0))

Let us formalize the causal relations among R, Ŷ and
other observed variables as in the semi-Markovian DAG in
Figure 1, called the Standard Fairness Model (Plec̆ko and
Bareinboim 2022).

Consider now a third observed feature, called Z, which is
the only input, together with R, to the decision procedure Ŷ .
Let us develop a case-based reasoning on Z.

First, consider the case that Z is a mechanism through
which the causal effect of R propagates to Ŷ (it is a medi-
ator between R and Ŷ ), i.e., W = Z and V is removed in
Figure 1. Examples of mediators include legitimate business
requirements such as level of education or prior experience
in a job candidate selection. In this case, the ACE is equal to
the risk difference metric, and since Ŷ ̸⊥⊥ R, it is non-zero.
Therefore, the decision procedure leading to Ŷ is unfair, and
it should be corrected.

Now consider the case that Z is correlated with R, but
not causally (it is a confounder), i.e., V = Z and W is re-
moved in Figure 1. Examples of confounders include demo-
graphic and geographic features. In such a case, the ACE
can be calculated by averaging the stratified risk difference
on Z through the adjustment formula:∑

z(P (Ŷ = 1|R = 1, Z = z)− P (Ŷ = 1|R = 0, Z = z))P (Z = z).

Let us now distinguish two sub-cases. The first one assumes
Ŷ ⊥⊥ R | Z, and it is known as the Simpons’ paradox13;

Ŷ ̸⊥⊥ R ∧ Ŷ ⊥⊥ R | Z
It occurs when vanishing partial correlations in separate dis-
tributions do not produce a vanishing mixture. In such a
case, each term in the sum above is zero, and, a fortiori, the
ACE is zero. In summary, we should not correct the deci-
sion procedure leading to Ŷ . This reasoning extends to col-
lapsible association measures, such as the selective risk ra-
tio, for which the value in the mixture is a weighted average
of the values in the separate distributions (Pearl 2009; Huit-
feldt, Stensrud, and Suzuki 2019) For non-collapsible met-
rics, such as the odds-ratio, the value at the mixture can be

13The term has been improperly extended to include the Yule’s
effect, see (Spirtes, Glymour, and Scheines 2000, Sect. 3.5.2).

outside of the range of the values in the separate distribu-
tions. Hence, for non-collapsible metrics, the decision pro-
cedure should or should not be corrected based on the value
at the mixture (which can be computed from the adjusted
formula). The second sub-case assumes Ŷ ̸⊥⊥ R | Z. At
least one term of the sum above is non-zero. Also, terms can
be of opposite sign, which means that the overall sum can
be zero or non-zero. The decision procedure should not or
should be corrected based on the result of the sum.

What is typically done? In causal approaches, it can be
difficult to determine whether Z is a mediator or a con-
founder (Barocas, Hardt, and Narayanan 2019, Chapter 5).
This may lead to the wrong action with regard to the correc-
tion of the decision procedure. Non-causal approaches dis-
miss the above case-based reasoning altogether. They test
independence only (or separation only). As a consequence, a
typical approach after observing Ŷ ⊥⊥ R consists of blindly
correcting the decision procedure leading to Ŷ . With a few
exceptions that will be recalled next, research papers adopt-
ing non-causal approaches fall back to this.

What are the consequences? Assume now that the deci-
sion procedure is corrected and deployed. We would then
observe (close to) zero risk difference, which would sup-
port the conclusion Ŷ ⊥⊥ R. Is everything all right? Ac-
cording to the case-based reasoning above, the correction
of the decision procedure may have mitigated or may have
worsened fairness of the procedure14. Let us consider an ex-
ample based on the ACSIncome dataset – an excerpt of the
U.S. Census data (Ding et al. 2021). With reference to Fig-
ure 1, we set R to be the race of individuals, Ŷ the predicted
income (above 50K USD or not), W the number of work-
ing hours per week, and V the state of residence. Moreover,
let Y be the true income. We split the available data into
67% for training a classifier, and 33% for testing its predic-
tive performances and fairness metrics. An initial classifier
is built using LightGBM (Ke et al. 2017), a state-of-the-art
gradient boosting approach. We adopt the separation met-
ric of the Equality of Opportunity (EOP) (Hardt, Price, and
Srebro 2016):

P (Ŷ = 1|Y = 1)− P (Ŷ = 1|Y = 1, R = i)

which is the difference between the recall of positives (in-
come above 50K USD) at population-level and at the level
of the ith racial group. The larger the EOP, the worse is
the ability of the classifier to recall positives of the group
compared to the average recall. The EOPs observed over the
test set are reported in Figure 2 (left) in blue, from which
we clearly conclude R ̸⊥⊥ Ŷ | Y . Let us now correct the
decision procedure by a post-processing method that spe-
cializes the decision threshold for each racial group of R
(Hardt, Price, and Srebro 2016). The EOPs observed after
this (global) correction are shown in in Figure 2 (left) in or-
ange. They are clearly closer to the optimal value of zero.

14Interestingly, the graph in Figure 1 is not anymore faithful to
the new data. Since faithfulness is required by many approaches for
causal discovery (Binkyte-Sadauskiene et al. 2022), reconstructing
the causal structure of the new data (e.g., in an external audit study)
may become problematic.
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Figure 2: Left: EOPs for each racial group for classifiers with no correction, global correction, and clustered correction. Center:
EOPs for each state and race, with color denoting the loss in accuracy after global correction. Right: EOPs for each state
and race, with color denoting the loss in accuracy after clustered correction. Jupyter notebook available at https://github.com/
ruggieris/DD/blob/main/notebooks/dd ACSIncome Yule.ipynb.

We would expect the corrected classifier to be fair not
only at country level, but also at state level. However, the
state is a confounder, and the correction of the classifier has
not accounted for it. Figure 2 (center) shows that the EOPs
of racial groups at each state have been affected by the cor-
rection in different ways. For instance, “Other races” in MI
have a considerably lower EOP after correction. Asians in
AK, instead, have a higher EOP metric. “Other races” in ID
moved from being disfavored to being favored considerably,
i.e., they moved from a recall much lower than average to a
recall much higher than average. “Other races” in PR, which
were not disadvantaged (close to zero EOP), result now to be
advantaged (large negative EOP). Conversely, Asians in CT,
which were favored, become disfavored after correction. Fi-
nally, notice that the loss in accuracy at state level after the
correction, denoted by the color of dots, can be as high as
10% and it is not uniform across states, nor there is a clear
pattern for how it is distributed.

The Yule’s effect. The Yule’s effect occurs when vanishing
correlation in the mixture of a few distributions does not pro-
duce vanishing partial correlation in separate distributions:

Ŷ ⊥⊥ R ∧ Ŷ ̸⊥⊥ R | Z
The Yule’s effect can occur when positive and negative as-
sociations between Ŷ and R when conditioning on Z cancel
out. This is precisely what has been pointed out in the ex-
ample above. Whenever we aim at group fairness, such as
independence Ŷ ⊥⊥ R, but we wrongly disregard to con-
trol for Z, fair machine learning algorithms may result into
disparate effects on separate distributions, with some im-
pacted positively (higher fairness) and other impacted neg-
atively (lower fairness). The combined Simpson’s paradox
and Yule’s effect can be summarized in a well-known gen-
eral statement about conditional independence:

For W ⊂ Z, then Ŷ ⊥⊥ R | W neither implies nor is
implied by Ŷ ⊥⊥ R | Z.

As a consequence, independence fairness (Ŷ ⊥⊥ R) does
not imply nor is implied by conditional independence fair-
ness (Ŷ ⊥⊥ R | Z). Also, separation fairness (Ŷ ⊥⊥ R | Y )

does not imply nor is implied by conditional separation fair-
ness (Ŷ ⊥⊥ R | Y,Z). Moreover, when multiple confounders
are present, conditional independence/separation w.r.t. all of
them does not imply nor is implied by conditional indepen-
dence/separation w.r.t. a subset of them. It means we should
be aware of all the confounders in order to control for all
of them, or, alternatively, we should know a more detailed
structural causal model that allow for finer reasoning.

Conditional independence and conditional separation
metrics have been addressed by (Kamiran, Zliobaite, and
Calders 2013; Corbett-Davies et al. 2017). However, they
are rarely adopted, mainly for two reasons. The first one is
because it is difficult to determine whether a feature is a con-
founder or a mediator. Notice that by wrongly controlling
for a mediator, we only measure the direct causal effect of R
on Ŷ (assuming that we are controlling on all confounders),
hence we are ignoring the indirect effect. The indirect ef-
fect can be positive, if the mediator positively affects the ad-
vantageous decision and social groups have disproportionate
distributions over the mediator. This is the case, for instance,
of education level for job candidate selection, since social
groups have disproportionate acckess to education. The in-
direct effect can also be negative, if the mediator results from
the implementation of positive actions, e.g., quotas in favor
of disabled people. The second reason why conditional in-
dependence/separation is not used in practice, is because the
number of strata to control for can be very high. In the above
example, there are 51 states. In general, the number of strata
is equal to the product of the cardinalities of the domains
of the features to control for. As a partial solution, (Kami-
ran, Zliobaite, and Calders 2013) propose to cluster the strata
into a few groups to control for. Figure 2 (right) reports the
result of separately correcting the classifier for each of five
groups of states. The groups are obtained by clustering states
based on the probability distribution of races within them us-
ing the k-means algorithm. Compared to the global correc-
tion, the clustered one is beneficial with respect to both EOP
and accuracy loss. The mean absolute EOP is 0.258 for the
uncorrected classifier, 0.119 for the globally corrected one,
and 0.105 for the clustered corrected classifier.
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Trusting Fair-AI
The previous two sections highlighted a few issues with fair-
AI that may undermine the impact on society and ultimately
the trust in fair-AI. The Yule’s effect is only one example
of worsening-off protected groups as an unintended conse-
quence of fair-AI. Other worsening effects are described in
the literature, e.g., regarding the long-run effects of impos-
ing fairness constraints (Liu et al. 2018), or the impact of pa-
rameters in fair-AI methods (Ben-Porat, Sandomirskiy, and
Tennenholtz 2021). In this section, we discuss some reme-
dies and research pathways.

Accounting for multiple stakeholders. (Carey and Wu
2022a; Weinberg 2022) survey the existing critiques on the
hegemonic theory of fairness that draw from non-computing
disciplines, including philosophy, law, critical race and eth-
nic studies, and feminist studies. The hegemonic theory re-
duces the fairness problem to statistical parity or other met-
rics to be used in end-to-end optimization. Some of the
issues with fair-AI discussed earlier in this paper clearly
show this is insufficient. The usage of fair-AI methods does
not necessarily guarantee the fairness of AI-based complex
socio-technical systems (Kulynych et al. 2020). This is be-
cause the fairness objectives of the designers of AI, of the
users of AI, and of the population subject to the AI deci-
sions are unlikely to be the same. Fair-AI methods are cur-
rently not sufficiently robust and they can be incomplete in
modelling the complexity and dynamic of the deployment
scenario. Multi-stakeholders participatory design and policy
actions that take into account qualitative contextual informa-
tion and feedback from reality may be a valid alternative to
technological solutionism. For instance, (Scott et al. 2022)
adopt a participatory approach in the design of algorithmic
systems in support of Public Employment Services.

The need for trustworthy AI. We think that the use of fair-
AI methods should be complemented with design, devel-
opment, and verification practices that are commonly sum-
marized under the umbrella of trustworthy AI (Kaur et al.
2023). They include: human agency and oversight, account-
ability, explainability, robustness and safety, privacy, diver-
sity, reproducibility, and societal and environmental well-
being. The research on the interplay between fairness and
those other non-functional requirements has been devel-
oping at different speed. We refer to surveys on human-
centered algorithmic fairness (Wu and Liu 2022), differen-
tial privacy and fairness (Fioretto et al. 2022), fairness and
diversity constraints in ranking (Zehlike, Yang, and Stoy-
anovich 2023), trust and fairness (Knowles, Richards, and
Kroeger 2022), and fairness and robustness (Lee et al. 2021).

A large potential stems from the convergence of fairness
and eXplainable AI (XAI) (Balkir et al. 2022; Zhou, Chen,
and Holzinger 2020). XAI methods for model inspection,
such as variable importance, can be used to test the in-
fluence/independence of R on Ŷ (Grabowicz, Perello, and
Mishra 2022). Adding explanations to an AI system’s output
can increase users’ trust and fairness perception (Tal, Kuflik,
and Kliger 2022) and ultimately control for the exercise of
power (Lazar 2022). In particular, local explanation meth-
ods that describe why a specific output was produced (fac-

tual explanation) and what could have changed the output
(counterfactual explanation) can help to identify reasons of
discriminatory decisions (Manerba and Guidotti 2021).

Incorporating the option to reject. An underdeveloped re-
search line consists of rejecting the output of an AI system in
favor of escalating the decision to a human agent who could
possibly take into account additional (qualitative) informa-
tion. This is considered in the area of classification with a
reject option (or selective classification) (Hendrickx et al.
2021). There is a trade-off here between the performance
of an AI system on the accepted region, which should be
maximized, and the probability of rejecting, which should
be minimized (as human agents’ effort is limited). Standard
techniques for selective classification may worsen the fair-
ness metrics over the accepted region (Jones et al. 2021).
It would be interesting to explore methods specifically de-
signed for rejecting15 unfair predictions. For example, under
which conditions on states and races (and possibly other fea-
tures), a classifier in the examples in Figure 2 should abstain
in order to prevent the most unfair predictions? A promising
work adds risk difference constraints in the problem of deter-
mining the accepted region (Schreuder and Chzhen 2021).

Conclusions
The critiques to the hegemonic theory of fairness (Weinberg
2022), which reduces the fairness problem to a numeric op-
timization of some fairness metric, are not new to the AI
community. For instance, (Wagstaff 2012) questioned the
hyper-focus of Machine Learning on abstract metrics “in
that they explicitly ignore or remove problem-specific de-
tails, usually so that numbers can be compared across do-
mains” but the true significance and impact of the metrics
is neglected. We have covered this and other issues, sim-
plifications, and mistakes in fair-AI research and practice
such as the impossibility of fairness due to observational
ground truth, the lack of source criticism in data collec-
tion and representation, insufficient robust modeling, and the
lack of compositionality in fairness analysis. The Yule’s ef-
fect is an example of additional unfairness introduced by an
erroneous use of fair-AI methods. These and other issues
put fair-AI at risk of being untrusted and, a fortiori, of being
limited import to society. Pathways for research and prac-
tice include multi-stakeholders participatory design, integra-
tion with other trustworthy tools for AI, notably explanation
methods, and the option to reject unfair AI outcomes.
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