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We analyze the capability of discriminating the statistical nature of a thermal bath in the presence of three
different types of side resources: prior entanglement between the probing system and an external (dynamically
neutral) memory element, the interaction between the probe and an auxiliary bath, and the continuous monitoring
of the system mediated by real-time measurements of the auxiliary bath. We discuss in detail how to obtain
improved performances in the discrimination by considering different kinds of interactions, i.e., different jump
operators, and different monitoring strategies corresponding to continuous homodyne detection and photodetec-
tion. We find that the presence of the auxiliary environment can be beneficial, allowing bath discrimination in
regimes where in the standard scenario discrimination is not possible. We then show how additionally monitoring
this environment, via either continuous homodyne detection or photodetection, is naturally advantageous for
quantum bath tagging, in particular in the long-time limit where a large improvement in the discrimination
performance is indeed observed. Our approach can in principle be implemented in a circuit QED setup and
paves the way to further developments of quantum probing via continuous monitoring.

DOI: 10.1103/PhysRevA.106.042609

I. INTRODUCTION

In quantum metrology and quantum sensing [1–6] a quan-
tum probe is any physical system that allows one to assess
the value of an unknown classical parameter that has been
“attached” to its state via some dedicated dynamical process.
For instance, quantum probes have been used to estimate pa-
rameters related either to their Hamiltonian (e.g., a frequency
or a coupling constant) or to their unitary evolution (say, a
dynamical phase accumulated while moving along a certain
trajectory). Quantum probes have also been exploited in order
to reconstruct the properties of the surrounding environment
[7]; examples are protocols of quantum thermometry [8–18]
or aimed to characterize the spectrum of the environment itself
[19,20]. More recently, it has been proposed to use a quantum
probe to discriminate between thermal baths characterized
by different thermal [21] or statistical [22,23] properties. In
particular in the latter scenario, a quantum probe S is exploited
to determine whether the thermal bath E obeys bosonic or
fermionic statistics, a task which hereafter will be referred to
as quantum bath tagging (QBT). In such a scheme, S is let
to weakly interact with E for some time t and then measured
using optimal detection procedures identified by solving the
associated quantum hypothesis testing problem [24]. The aim

of the present paper is to present a collection of different
techniques that can be used to improve the performances
reported in [22,23]. The first of such techniques is to allow
joint measurements on a compound system SA1 obtained by
adding an external memory element A1 which, while being
dynamically decoupled from the bath E and from the original
S, is initially correlated (entangled) with the latter. Similar
entangled-assisted detection improvements have been exten-
sively studied in the past (see, e.g., [2,25–31]); here we show
that such effects can also be witnessed in the context of QBT
procedures. The other two techniques we analyze assume that,
while coupled with E and possibly initially correlated with A1,
the probe S can interact with a second auxiliary bath A which,
at variance with what happens with E , is assumed to have
known statistical and thermodynamic properties. Specifically,
we will take A to be a zero-temperature multimode electro-
magnetic field. Besides allowing us to refer more closely to
realistic experimental setups, the role of such an extra envi-
ronment is twofold: On one hand, the presence of A is used
as a way to positively interfere with the S-E coupling in an
effort to increase the distinguishability among the quantum
trajectories associated with the two hypotheses of the problem
(we call this procedure a noise-assisted QBT scheme); on
the other hand, A can also be employed to set up an indirect
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continuous monitoring of the evolution of S, hence allowing
us to acquire information about E in real time and not just at
the end of the interaction interval (we call this a monitoring-
enhanced QBT scheme). Continuous monitoring of quantum
systems [32,33] has indeed been proven useful in the context
of quantum metrology: In particular, several works have ei-
ther discussed the fundamental statistical tools to assess the
precision achievable in this framework [34–41] or presented
practical estimation strategies [42–57]. The theoretical frame-
work needed to assess hypothesis testing protocols was put
forward first by Tsang [58] and then by Kiilerich and Mølmer
[59]. We exploit these techniques for our specific aim and we
discuss how and when continuous monitoring can be useful
for QBT.

In Sec. II we introduce the QBT problem, presenting the
physical setup and discussing how to assess hypothesis testing
in continuously monitored quantum systems. In Sec. III we
show our main results and the modifications we introduce with
respect to the original works [22,23] are presented gradually.
Considering the elements E , S, and A1, in Sec. III A we first
show that the QBT precision can be enhanced by performing
joint measurements on SA1 under the assumption that the two
systems were initialized into a quantum correlated state. Then
in Sec. III B we show how the mere presence of the bath A
can also help in boosting the QBT procedure. In Sec. III C we
finally analyze the advantages one can obtain by using the ex-
tra bath A as a method for continuously monitoring the probe
dynamics. In Sec. IV we discuss possible implementations of
our protocol and draw our conclusions.

II. MODEL

The QBT model we study is schematically sketched in
Fig. 1. Apart from E (the thermal environment whose statis-
tical nature we wish to determine) and S (the quantum probe
that is put in interaction with E ), it includes two extra elements
which were not present in the original QBT scheme discussed
in Refs. [22,23], namely, an auxiliary bath A whose statistical
and thermodynamic properties are assumed to be known and
which is also attached to S, and an external quantum memory
A1 that is dynamically decoupled from all the other compo-
nents of the setup. As in Refs. [22,23], our goal is to decide
whether E is a bosonic bath with assigned inverse temper-
ature βB (hypothesis B) or fermionic with assigned inverse
temperature βF (hypothesis F ), the initial priors of these two
alternatives being flat. To solve such a task we are allowed
to prepare S (which for simplicity we assume to be a qubit)
in any desired input configuration, possibly correlated with
the memory A1, let it evolve for some time t , and perform
measurements during and/or at the end of the process. The
possibility of employing correlated states of S and A1 was
not exploited in Refs. [22,23] and as we will see allows for
some useful technical improvements. The main difference of
our proposal, however, is the presence of the auxiliary bath
A, which we schematize as a zero-temperature multimode
electromagnetic (hence bosonic) field. Its role is to induce
positive interference effects on the S-E coupling and to permit
continuous monitoring in time of the system evolution via
photodetection or homodyne measurements (a configuration

FIG. 1. Schematic representation of the QBT setup. The statisti-
cal nature (bosonic or fermionic) of the thermal bath E is determined
by studying the modifications it induces on a quantum probe S (a
qubit) that has been put in thermal contact with it while interacting
with a zero-temperature bosonic auxiliary bath A that is continuously
monitored in time via photodetection or homodyne measurements.
In the picture γ and κ are the two decay rates of the unconditional
evolution of S for the interaction with E and A, respectively, while η

is the quantum efficiency of the continuous detection on A. Here A1

represents a quantum memory that is dynamically decoupled from
all the other components of the setup; it can be used to create initial
correlations with S which can be monitored via joint measurements
on the compound SA1.

which may physically correspond to the case where we put S
into a dispersive QED cavity).

A. Dynamical evolution

In this section we derive the dynamical equations that
determine the temporal evolution of the system. Let us start
by considering the case where the probe interacts with E
and A in the absence of continuous monitoring of the latter.
Following Ref. [22], we model the S-E and S-A couplings via
a Gorini-Kossakowski-Sudarshan-Lindblad (GKSL) master
equation [60,61], a situation realized under the weak-coupling
and Markovian hypotheses [62]. Accordingly, defining D[θ̂ ] to
be the dissipative superoperator

D[θ̂]• := θ̂ • θ̂† − 1
2 {θ̂†θ̂ , •}, (1)

we write the dynamical evolution of the joint density matrix
�̂q(t ) of the probe S and the memory A1 as

d�̂q(t )

dt
= Lq�̂q(t ) + κD[ĉ]�̂q(t ), (2)

where the index q ∈ {B, F } is used to specify which hypoth-
esis has been selected for the statistical nature of E . In this
equation Lq is the GKSL dynamical generator which accounts
for the free evolution and for the S-E coupling, i.e.,

Lq• := − i[ĤS, •] + γ [1 + sqNq(βq)]D[σ̂−]•
+ γ Nq(βq)D[σ̂+]•, (3)

where ĤS := ω0σ̂+σ̂− is the Hamiltonian of the probe, γ is
a positive coupling constant that fixes the timescale of the
S-E interaction, and, having set sq=B = 1 and sq=F = −1,
Nq(β ) := 1/(eβω0 − sq) is the Bose-Einstein factor (when
q = B) or Fermi-Dirac factor (when q = F ): Notice that h̄
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has been set equal to 1 and that no free Hamiltonian has been
assumed for A1, which effectively participates in the process
only through initial correlations with S that have been possibly
established at the beginning of the dynamical evolution. The
second term on the left-hand side of Eq. (2) represents instead
the S-A coupling with the operator ĉ selected depending on the
type of interaction one has engineered and with κ � 0 being
a parameter that gauges its intensity: In particular, setting
κ = 0, we recover the model discussed in Refs. [22,23]. In
the following we will consider the two cases ĉ = σ̂− and ĉ =
σ̂x/2: The first one corresponds to a purely dissipative model
where S loses energy to A via spontaneous emission, while the
second choice can be obtained via dispersive coupling that can
be engineered, e.g., in circuit-QED systems [63–65].

As already mentioned, Eq. (2) does not include effects
associated with a continuous monitoring of A. To account
for continuous monitoring we resort to the stochastic master
equation (SME) approach of Refs. [32,33]. In particular, we
focus on two kinds of measurements, photodetection and ho-
modyne detection with a fixed monitoring efficiency η. In the
case of photodetection, under hypothesis q, the corresponding
SME for the conditional state of SA1 reads

d�̂c
q(t ) =Lq�̂

c
q(t )dt + (1 − η)κD[ĉ]�̂

c
q(t )

− ηκ

2
H[ĉ† ĉ]�̂

c
q(t )dt +

(
ĉ�̂c

q(t )ĉ†

Tr[ĉ�̂c
q(t )ĉ†]

− �̂c
q(t )

)
dNt ,

(4)

where dNt ∈ {0, 1} corresponds physically to the number of
photons detected at each time t and mathematically to a
Poisson increment defined by its probability of taking value
equal to one, p(dNt = 1) = ηκTr[�̂c

q(t )ĉ†ĉ]dt , and we have
introduced the superoperator

H[θ̂ ]• := θ̂ • + • θ̂† − Tr[(θ̂† + θ̂ )•] • . (5)

Similarly, in the case of homodyne detection we obtain the
SME

d�̂c
q(t ) = Lq�̂

c
q(t )dt + κD[ĉ]�̂

c
q(t )dt + √

ηκH[ĉ]�̂
c
q(t )dWt ,

(6)

where the state is conditioned on the continuous output pho-
tocurrent

dyt := √
ηκTr[�̂c

q(t )(ĉ + ĉ†)]dt + dWt (7)

and dWt , denoting the difference between the measurement
output dyt and the expected results, mathematically corre-
sponds to a Wiener increment such that the relation dW 2

t =
dt holds deterministically. We remark that by choosing as
jump operators the ones defined before, i.e., either ĉ = σ̂− or
ĉ = σ̂x/2, we obtain photocurrents (7) with the same form,
yielding information on the average value of the operator σ̂x.
However, the two operators will induce different dynamics,
described by the corresponding SME (6).

For both photodetection and homodyne detection strate-
gies, the associated SMEs (4) and (6) can be numerically
integrated following the method based on Kraus operators
suggested in [66,67] that we review in brief in Appendix A.
This results in a collection of quantum trajectories for the
conditional density matrix �̂c

q(t ), each identified by a string

of records

Dt := (xt0+dt , xt0+2dt , . . . , xt−dt , xt ), (8)

where we have assumed to perform measurements every in-
finitesimal time interval dt starting from the initial time t0
(which we set to zero hereafter) and stopping at time t and
for the photodetection and homodyne detection scenarios the
xt correspond to recorded values of either dNt or dyt , respec-
tively. It is worth pointing out that, in principle, by averaging
over all such solutions, i.e., by averaging �̂c

q(t ) over all the
obtained measurement results (8) up to a time t or equiva-
lently by fixing the monitoring efficiency η = 0, we obtain an
unconditional state solution that coincides with the standard
master equation (2) of the problem, i.e.,

E[�̂c
q(t )] = �̂c

q(t )|η=0 = �̂q(t ). (9)

B. Quantum hypothesis testing in continuously monitored
quantum systems

In this section we review the methods that allow us to char-
acterize how efficiently one can solve the QBT problem we
are facing. To begin with, consider first the simple case where
the data from the continuous monitoring in time are neglected,
e.g., by averaging them away or setting η = 0, a regime in
which, due to (9), the evolution of the system is provided by
the master equation (2). Having hence selected an input state
�̂(0) for the SA1 system and a total evolution time t , what we
have to do is determine whether at the end of the process the
state of SA1 is better described by the density matrix �̂B(t )
or by the density matrix �̂F (t ) obtained by solving Eq. (2)
under the two alternative QBT hypotheses. This problem can
be easily framed as a special instance of quantum hypothesis
testing [24]. Accordingly, we can bound the error probability
associated with the selected strategy through the Helstrom
inequality

perr[t ; �̂(0)] � ε[t ; �̂(0)],

ε[t ; �̂(0)] := 1 − ‖PB�̂B(t ) − PF �̂F (t )‖1

2
, (10)

where ‖ • ‖1 denotes the trace norm and PB and PF correspond
to the prior probabilities for the two events B and F . The
threshold value ε, conventionally called the Helstrom error
probability (HEP), can always be attained via a projective
measurement on SA1 that at time t distinguishes the posi-
tive and negative eigenstates of the operator � = PB�̂B(t ) −
PF �̂F (t ). In the following we will always consider the scenario
where the prior probability distribution is flat, that is, for
PB = PF = 1

2 , leading to

ε[t ; �̂(0)] = 1

2

(
1 − ‖�̂B(t ) − �̂F (t )‖1

2

)
. (11)

In Refs. [22,23] the ε[t ; �̂(0)] was used as a bona fide quality
factor for the QBT efficiency one can achieve with the selected
choice of t and �̂(0). Note, however, that in such works �̂B(t )
and �̂F (t ) referred to the local states of S (i.e., the presence
of the external quantum memory A1 was not allowed) and,
most importantly, the auxiliary bath A was not included in the
picture [a condition which in our modelization corresponds
to setting κ = 0 in Eq. (2)]. As we will see in the next
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section, even without resorting to continuous monitoring in
time, lifting these two constraints already allows one for some
nontrivial improvements on the minimum error probability
value.

Let us now address the QBT problem and continuous-
monitoring assumptions. As described in [59], in this case
the hypothesis testing can follow two different approaches:
In order to discriminate between the two hypotheses, one may
exploit the continuous experimental data Dt only or one can
also implement a final direct measurement on S and A1 on
the corresponding conditional states. We now start to assess
the first scenario. In this case one can resort to a Bayesian
analysis, by first observing that each trajectory Dt is character-
ized by a probability P(Dt |q), when conditioned on the initial
assumption that the bath is defined by a statistics associated
with the QBT hypothesis q. Hence, introducing a likelihood
L(Dt |q) = P(Dt |q)/p0(Dt ), with p0(Dt ) denoting a positive
function of Dt only [59], and by resorting to Bayes theorem,
it is possible to compute the a posteriori probability as

P(q|Dt ) = P(Dt |q)∑
q′ P(Dt |q′)

= L(Dt |q)∑
q′ L(Dt |q′)

, (12)

which we present here exploiting the fact that the prior dis-
tribution on q is flat [the specific definition of L(Dt |q) and
the method to efficiently compute it is discussed in detail
in Appendix A]. Observe next that as (12) is normalized
for each value of the QBT hypothesis index q we have two
possibilities, namely, P(q|Dt ) > 1

2 , in which case the bath is
most likely to be of q nature, and P(q|Dt ) < 1

2 , in which the
opposite hypothesis is more plausible. However, the inher-
ent stochasticity of the measurement outcomes can result in
P(B|Dt ) � 1

2 [P(F |Dt ) � 1
2 ] even if the statistics of the bath is

fermionic (bosonic), i.e., there are measurement records that
may lead to a wrong inference process. The goal is thus to
quantify the probability of occurrence of such wrong tagging
events. In the spirit of a thought experiment, we consider a
sample of Ntraj trajectories Dt , supposing that half of them
are generated by indirectly probing a bosonic environment
(DB

t ), while the rest are fermionic (DF
t ). A wrong tagging

event is triggered every time we have a trajectory Dq
t such that

P(q|Dq
t ) < 1

2 . Counting the number Nwrong of such trajectories
leads to the first way to quantify the error probability as the
ratio

p(cont)
err [t ; �̂(0)] := Nwrong

Ntraj
, (13)

where the notation stresses the implicit dependence upon the
specific choice of the input state �̂(0) of SA1 and on the total
evolution time t .

As mentioned before, a discrimination capability higher
than (13) can in principle be achieved by improving our
continuous-monitoring scheme with the addition of a Hel-
strom projective measurement on S and A1 at the final time
t . In this case the ultimate bound for the error probability is
given by the general Helstrom bound in Eq. (10), for the two
quantum states �̂c

B,F (t ), solutions of the SME (4) or (6) for the
data set Dt , and obtained numerically via Eq. (A1), with prior
probabilities P(q|Dt ). We obtain the nonlinear functional of

the detector records

εc[t ; �̂(0)] := 1 − ‖P(F |Dt )�̂c
F (t ) − P(B|Dt )�̂c

b(t )‖1

2
. (14)

We remark that, apart from influencing the dynamics of the
density matrices �̂c

B(t ) and �̂c
F (t ), the knowledge coming from

continuous monitoring updates the two prior probabilities
[59] and in general identifies the optimal Helstrom projective
measurement. An average over all the Ntraj trajectories of our
sample returns the figure of merit

p(cont+proj)
err [t ; �̂(0)] := E{εc[t ; �̂(0)]}, (15)

which thus takes into account the average information gained
from both the continuous monitoring and a final Helstrom
projective measurement for each trajectory.

III. ANALYSIS AND RESULTS

In this section we present our main results. We start
in Sec. III A by discussing the entanglement-assisted QBT
scheme obtained by adding the (dynamically neutral) mem-
ory element A1 to the setup of Ref. [22]. In Sec. III B we
characterize the advantages one can get by noise-assisted QBT
schemes associated with the presence of interaction between
S and the auxiliary bath A. Finally, in Sec. III C we address
the continuous-monitoring QBT scenario, where part of the
information dissipated by S into A is detected in real time via
homodyne or photocounting measurements.

A. Advantage of initial entanglement

From the results of Refs. [2,25–31] we expect that the
performances of the QBT scheme could benefit by allowing
initial correlations between S and the external memory ele-
ment A1 and by performing joint measurement on SA1. The
aim of the present section is to verify this expectation. For this
purpose let us introduce Eq,t , the linear, completely positive,
trace-preserving channel [68,69] that allows us to express the
solution of Eq. (2) as �̂q(t ) = Eq,t �̂(0). Observe hence that,
for fixed t , the minimal value that the HEP of Eq. (11) can
attain can be expressed as

ε[t ; �̂(0)] � ε�(t ) := 1

2

(
1 − ‖EB,t − EF,t‖�

2

)
, (16)

with

‖EB,t − EF,t‖� := max
�̂(0)∈SSA1

‖EB,t �̂(0) − EF,t �̂(0)‖1 (17)

the diamond-norm distance [70,71] obtained by maximizing
over the set SSA1 of the input joint density matrices of S and
A1. According to Eq. (10), the term ε�(t ) of (16) represents the
minimal QBT error probability we can get when performing
joint measurements on SA1 after the probe S has interacted
with E for a time t . This term should be compared with the
quantity

ε1(t ) := 1

2

(
1 − ‖EB,t − EF,t‖1

2

)
, (18)

with

‖EB,t − EF,t‖1 := max
�̂(0)∈SS

‖EB,t �̂(0) − EF,t �̂(0)‖1, (19)
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which represents instead the optimal QBT error probability
one can get by restricting the analysis to only local density
matrices of S as assumed in Refs. [22,23]. The fact that using
A1 can provide better QBT performances then follows simply
by the natural ordering between the diamond-norm distance
and the corresponding trace-norm distance [68], which im-
plies ‖EB,t − EF,t‖� � ‖EB,t − EF,t‖1, and hence

ε1(t ) � ε�(t ). (20)

It is worth stressing that the above inequality applies irrespec-
tive of the presence of the coupling with the extra bath A. To
quantitatively evaluate the advantages implied by this effect,
we now focus on the special scenario where A is discon-
nected (i.e., κ = 0) and the temperatures of E in the two QBT
hypotheses are the same, i.e., βB = βF = β, and sufficiently
large, i.e., β → 0. Under these conditions, the rescaled rate
constants corresponding to the bosonic hypothesis, i.e., q = B,
diverge, while those for the fermionic hypothesis, i.e., q = F ,
remain finite. As a consequence, the bosonic channel EB,t will
imply immediate thermalization of S, in the sense that it leads
to thermalization of the probe system on timescales τ where
the fermionic channel EF,t has not significantly affected the
dynamics yet, i.e., formally

EB,τ• � �̂β ⊗ TrS[•], EF,τ• � I•, (21)

where

�̂β := exp(−βĤS )/tr[exp(−βĤS )] (22)

is the Gibbs thermal state of the probe, TrS[•] represents the
partial trace with respect to S, and I is the identity superop-
erator. Choosing hence the initial state �̂(0) of S and A1 to be
the maximally entangled state

|
+〉 := (|11〉SA1
+ |00〉SA1

)/
√

2, (23)

from (11) we get

‖EB,τ �̂(0) − EF,τ �̂(0)‖1 �
∥∥∥�̂(0) − �̂β ⊗ 1

2

∥∥∥
1

�
∥∥∥|
+〉 〈
+| − 1

2
⊗ 1

2

∥∥∥
1

= 3

2
,

(24)

where in the second line we invoke the limit β → 0 to approx-
imate �̂β � 1/2. Substituting this into Eq. (11) gives finally

ε(τ ; |
+〉) � 1
8 , (25)

which by construction provides an upper bound for the op-
timal entanglement-assisted minimal QBT error probability
ε�(τ ), i.e.,

1
8 � ε�(τ ). (26)

Consider next what happens if we eliminate A1 from the
problem, i.e., force �̂(0) to be a local density matrix of just
S. Under this circumstance, Eq. (24) gets replaced by

‖EB,τ �̂(0)−EF,τ �̂(0)‖1 � ‖�̂(0)−�̂β‖1 �
∥∥∥�̂(0) − 1

2

∥∥∥
1

� 1,

(27)

with the last inequality being reachable by taking �̂(0) pure,
e.g., the vector |1〉. Accordingly, we can write

ε1(τ ) = ε(τ ; |1〉) � 1
4 , (28)

which is twice the upper bound (26) on the entanglement-
assisted minimal QBT error probability ε�(τ ) attainable by
using correlated input for S and A1. Finally, we note that the
bound (27) applies to any separable input state too, proving
the usefulness of the initial entanglement.

B. Noise-assisted QBT

In this section we show how the mere presence of the aux-
iliary bath A can improve the QBT performances. In order to
exclude spurious effects associated with the auxiliary memory
element A1 we focus on the steady-state regime (t → ∞)
where the details of the initial state of S and A1 are not
relevant. Since no continuous monitoring of the system is con-
sidered at this level, as in the preceding section the equation of
motion of the model is still provided by Eq. (2), which we
study in the two alternative scenarios where the coupling with
A is active (κ 
= 0) or switched off (κ = 0). As we will see, the
QBT advantages we get in the first case can be traced back to
the fact that adding A to the picture [i.e., passing from κ = 0
to κ 
= 0 in Eq. (2)] modifies the dynamical process which is
responsible for the encoding of the statistical nature of E on
the SA1 system. While in a generic metrology setting there is
no guarantee that such interference will have positive effects,
the theory does not preclude this for some special tasks: The
QBT problem we present here is one such special example.

To help explain the possibility of exploiting the mere
presence of A to boost the QBT performances it is useful
to consider the scenario where the two QBT hypotheses are
characterized by the same temperature (i.e., βB = βF = β):
Under this condition for t sufficiently large, the contact with E
alone (κ = 0) will lead S to the Gibbs state (22), regardless of
the nature of the bath, hence making the QBT discrimination
impossible [22]. Yet there is a chance that by taking κ 
= 0
the simultaneous interactions of S with E and A will interfere,
leading to departures from such dead-end behavior paving the
way for improvements of the discrimination efficiency even
for large t (it is also clear, however, that one could also expect
that in order to be beneficial, such deviations should not be too
strong so that the S-E coupling gets completely dominated
by the S-A interaction). To see this explicitly, let us study
the values that the HEP figure of merit ε[t ; �̂(0)] of Eq. (11)
attains in the asymptotic regime of t → ∞ as a function of κ ,
considering the scenario where the S-A interaction is mediated
by the operator ĉ = σ̂− (dissipative coupling). In this case,
irrespective of the choice of the initial state �̂(0) of S and A1,
we obtain the steady-state HEP value

ε(t → ∞) = 1

2
− 1

2ω0κ

∣∣Q̇(EB⇒A) − Q̇(EF ⇒A)
∣∣, (29)

which by construction coincides with ε�(∞) and ε1(∞).
In the above expression Q̇(Eq⇒A) denotes the heat flows
from E to A associated with the QBT hypotheses
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FIG. 2. Plot of the noise-assisted Helstrom bound ε(t → ∞)
reported in Eq. (29), as a function of κ/γ , considering the jump op-
erator ĉ = σ̂−. No continuous monitoring of the system is considered
at this level (η = 0). The blue solid line shows the isothermal QBT
scenario βB = βF = β with NB(β ) = 2 and the red dashed line is an
example of an asymmetric temperature QBT scenario with NB(βB) =
1 and NB(βF ) = 2. Here we notice that ε(t → ∞) is smaller than 1

2
for κ = 0, reaching instead the zero discrimination threshold at an
intermediate critical value determined by Eq. (32).

q = B, F , i.e., the quantities

Q̇(EB⇒A) = ω0κ
NB(βB)

1 + 2NB(βB) + κ/γ
,

Q̇(EF ⇒A) = ω0κ
NB(βF )

1 + 2NB(βF ) + [1 + 2NB(βF )]κ/γ
, (30)

which we report here for arbitrary choices of βB and βF .
The result (29) holds also for the case ĉ = σ̂x/2, up to a
numerical factor and different expressions for the heat flows
(see Appendix B for the derivation of all the results). As
anticipated, we note that for βB = βF = β and κ = 0, one
gets ε(t → ∞) = 1

2 , signaling the impossibility of solving
the QBT problem [22]. We observe also that for κ � γ one
has ε(t → ∞) = 1

2 , signaling that the large disturbance orig-
inated by A nullifies the sensitivity to the statistics of the bath
E . Most interestingly, however, when κ is finite we get a clear
advantage with respect to the κ = 0 case (see Fig. 2). The
physical interpretation of such noise-assisted QBT improve-
ment is that since A is a zero-temperature bath there is finite
average heat flowing from the hot bath E with q = B, F that
can be monitored by the probe; the nonzero discrimination
capability hence follows due to the fact that a fermionic E
implies a slower heat transfer from E to S than a bosonic
E . Figure 2 also makes evident that there exists in particular
an optimal coupling constant κ minimizing (29), which for
ĉ = σ̂− can be analytically evaluated as

κbest/γ =
√

2NB(β ) + 1 (31)

[when the S-A is mediated by the operator ĉ = σ̂x/2 the opti-
mal value is twice that above (see Appendix B)].

A similar analysis can also be conducted for the case
of asymmetric temperatures (βB 
= βF ); here, however, the
model naturally allows also for discrimination at steady state
also in the case κ = 0, as already studied in [23]. Accordingly,

while in some regimes one can still get improvements by
working with κ 
= 0, the study become slightly more involved
and possibly less interesting. Instead, considering again ĉ =
σ̂− coupling, we would like to report the fact that in this
unequal temperature scenario there can be critical κ values

κc

γ
= NB(βF ) − NB(βB)

NB(βB)[1 + 2NB(βF )] − NB(βF )
(32)

where QBT discrimination is made impossible [i.e., ε(t →
∞) = 1

2 ] by the presence of A (see the dashed line in Fig. 2).
This is actually happening if and only if we have either

1
2 < NB(βB) < NB(βF ) (33)

or

NB(βB) < NB(βF ) <
NB(βB)

1 − 2NB(βB)
. (34)

This last property marks a difference of the noise-assisted
QBT with ĉ = σ̂x/2, where a nonzero discrimination capabil-
ity at steady state for κ finite may occur but the critical points
appear only for NB(βB) � NB(βF ) (see Appendix B). In sum-
mary, the additive noise implied by an engineered additional
environment can on the one hand open the discrimination win-
dow for two baths at the same temperature or on the other hand
prevent discrimination of two baths at different temperatures
when choosing “unlucky” values of the loss coefficient.

C. Monitoring-enhanced QBT

We now discuss the performance in the QBT protocol
when the additional environment can be continuously mon-
itored, by considering the two scenarios corresponding to
either fluorescence or dispersive monitoring corresponding
to the jump operators ĉ = σ̂− or ĉ = σ̂x/2, respectively. We
recall that under these circumstances the system dynamics is
described by the SME (4) or (6), depending on the type of
measurements we have selected and that the attainable mean
error probability can be evaluated either in terms of the func-
tional p(cont)

err [t ; �̂(0)] of Eq. (13) or in terms of its improved
version p(cont+proj)

err [t ; �̂(0)] of Eq. (15), depending on whether
or not we allow for a final Helstrom measurement on SA1.
In an effort to simplify the study in what follows we will
fix as input state for SA1 the maximally entangled state (23),
the only exception being for the data reported in Fig. 3(a),
where we assume S to be uncorrelated with A1. While in
principle for given t this is possibly not the optimal choice
in terms of the diamond-norm requirement, the choice is an
educated guess as its evolved counterpart is nothing but the
Choi-Jamiołkowski state [68,69] of the associated dynamical
map that is known to provide a faithful representation of the
map itself.

1. Purely dissipative S-A coupling regime

Here we focus on the case where S and A interact through
the jump operator ĉ = σ̂−. The usefulness of exploiting the
knowledge deriving from the continuous monitoring of A is
highlighted in Fig. 3, where for brevity we only focus on
homodyne detection. In this figure the quantity p(cont+proj)

err (t )
is plotted as a function of t for different choices of the
quantum efficiency η. As intuitively expected, increasing η
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FIG. 3. Plot of p(cont+proj)
err [Eq. (15)] in the case of homodyne

detection for the different values of the efficiency η given in the
legend. (a) The input state of S is the ground state of its local Hamil-
tonian. (b) Maximally entangled state |
+〉 as the input of S and A1.
All data in the figure are obtained in the isothermal QBT scenario
βB = βF = β for βω0 = 1/5.5 and κ/γ = 1 and considering the
jump operator ĉ = σ̂−.

leads to better discrimination performance. In particular, the
worst-case scenario is obtained for η = 0 (blue curves in the
plot, corresponding to the noise-assisted strategy where we do
not monitor A), while the best case is associated with η = 1
(black dash-dotted curve, corresponding to perfect detection
efficiency).

We then fix the monitoring efficiency to its maximum value
η = 1 and turn our attention to the coupling κ that gauges
the S-A coupling, which in this framework can be interpreted
also as a measurement strength. The results are depicted
in Figs. 4(a), 4(b), 4(d), and 4(e), where in Figs. 4(a) and
4(b) [Figs. 4(d) and 4(e)] we show the behavior of p(cont)

err (t )
[p(cont+proj)

err (t )] for different values of κ . The first thing one
may notice is that for low values of κ photodetection is less
efficient than homodyne in reducing p(cont)

err (t ), while for large
values of κ it becomes the preferable choice [see Figs. 4(a)
and 4(b)]. Regarding p(cont+proj)

err (t ) independently of the type
of detection on A, we can make two relevant observations:
(i) At short timescales the monitoring of A does not lead
to a better discrimination as indeed the optimal value still

corresponds to the case κ = 0 (blue curves in the figure); (ii)
on the other hand, at long timescales the cumulative informa-
tion acquired by continuous monitoring definitely improves
discrimination for increasing values of κ . In particular, we
have numerical evidence that both p(cont)

err (t ) and p(cont+proj)
err (t )

go to zero in the long-time limit and thus that in general
the minimum error probability obtainable for κ = 0 can be
overcome by considering either κ and/or time long enough
(see Fig. 5).

2. Dispersive S-A coupling

Consider next the possibility of coupling dispersively the
system to the environment A represented by taking ĉ = σ̂x/2
as the jump operator of the model [63]. We start by observ-
ing that, as ĉ†ĉ = σ̂ 2

x /4 = 1/4, the probability for continuous
photodetection is independent of the state and thus it cannot
contain any information on the bath E . For this reason, for the
photodetection unraveling one would obtain p(cont)

err (t ) = 1
2 at

any time t . We thus show the result of p(cont)
err (t ) for homodyne

detection only [see Fig. 4(c), with the corresponding case of
final projective measurement on SA1 in Fig. 4(f)]. Also in
this case we find that at short timescales the coupling with
A and the monitoring are not helpful, as the best perfor-
mances are observed for κ = 0. On the other hand, we find
that p(cont+proj)

err (t ) decreases towards zero at long timescales
and that, as in the previous case, better results are obtained
by increasing the coupling κ . We do not provide results for
continuous photodetection with a final projective measure-
ment as, while error probabilities below 1

2 are observed, the
performances are definitely worse with respect to the other
cases we have considered.

3. Comparison of strategies

We compare the three different strategies, continuous
homodyne detection and photodetection with ĉ = σ̂− and con-
tinuous homodyne detection with ĉ = σ̂x/2 in Fig. 5. We
observe that in the long-time limit the two best strategies cor-
respond to performing either continuous homodyne detection
on an environment coupled dispersively via the jump operator
ĉ = σ̂x/2 or continuous photodetection with jump operator
ĉ = σ̂−. Moreover, the first strategy is also the best one in the
short-time limit (we remark that similar results are obtained
numerically for different values of the parameters).

As regards the difference between the two homodyne
strategies for the dissipative jump operator σ− and for
the dispersive jump operator σx/2, we provide the follow-
ing interpretation in terms of the generation of coherences
in the density operator. First we observe that for both cases,
the unconditional evolution we are considering does not create
elements of the density operator that are off-diagonal in the
σz basis. However, for homodyne continuous monitoring to
be effective, these components are fundamental: The pho-
tocurrent in fact bears information on the average value of
the Pauli operator σx and thus on those density operator’s
elements. Referring to Eqs. (5) and (6), we understand that
these coherences are indeed created in both the dispersive
and the dissipative cases over each trajectory. However, while
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FIG. 4. Setting |
+〉 as the initial state of the SA1 system, we plot (a)–(c) p(cont)
err (t ) and (d)–(f) p(cont+proj)

err (t ) for different detection strategies:
for ĉ = σ̂−, (a) and (d) photodetection and (b) and (e) homodyne detection, and for ĉ = σ̂x/2, (c) and (f) homodyne detection. Different curves
refer to different values of κ as indicated in the figure, with κ = 0 referring to the case where A is decoupled from the probe. All data in this
figure are obtained in the isothermal QBT scenario βB = βF = β, setting βω0 = 1/5.5 and η = 1.

with the dissipative coupling σ− only the part of the density
matrix corresponding to the excited state gives a contribution,
with the dispersive coupling σx/2, both the ground state and
the excited part generate coherences, and the ground state is
generally more populated in the trajectories we are consid-
ering. In conclusion, dispersive coupling is more effective in
creating coherences that are necessary in order to get use-
ful information from the homodyne photocurrent obtained
via continuous monitoring, leading to a better discrimination
power.

IV. CONCLUSION

In this work we have investigated the possibility of im-
proving the performance of the QBT task originally presented
in [22,23] using extra auxiliary resources such as an extra
memory element A1 that could be initially entangled with the
original probe S and an extra environment A that is allowed to
interact with S while possibly being monitored continuously
in time. In particular, we noted that the QBT task can benefit
even when A is monitored very inefficiently (η = 0), an effect
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FIG. 5. Long-time behavior of p(cont+proj)
err (t ) for different

continuous-monitoring strategies (see the legend). All data are
obtained in the isothermal QBT scenario βB = βF = β, setting
βω0 = 1/5.5, η = 1, and κ/γ = 1 and considering |
+〉 as the
initial state.

that is observed, for instance, in the equal-temperature case
which for a long interaction time would not allow for QBT
discrimination in the original proposal [22,23]. We finally
compared the performances associated with different realiza-
tions of continuous monitoring of A via photodetection or
homodyne detection, proving that a finite detection efficiency
is naturally beneficial to the QBT task. More specifically,
numerical simulations show that while for small times the
monitoring setup slightly deteriorates the precision given by
the sole Helstrom projective scenario (i.e., where the coupling
with the bath A is set to zero), by waiting for a long enough
time one can achieve a large improvement in the discrimina-
tion performance.

Before concluding we would like to comment that the
reported results, while derived in the specific QBT setting
of [22,23], can be generalized to improve the performances
of arbitrary quantum hypothesis tasks, in particular in all
those problems where an agent is asked to use an external
probe to discriminate between alternative quantum trajectories
associated with different dynamical quantum generators. We
also would like to mention that experimental realizations for
the specific setup we have analyzed in this paper are feasi-
ble, e.g., in the context of superconducting qubits [63,72].
In these models, assuming S and A1 to be superconducting
transmon qubits, the initial entanglement configuration be-
tween them can be reached, for example, with the use of
a common bus resonator [73]. Note also that configurations
where S is capacitively coupled with two baths E and A (the
latter being continuously monitored) are now experimentally
under control, e.g., interpreting the S as a quantum valve
[74]. In particular, in our case the engineered environment A
may consist in a cavity where this time only S is embedded
and the initial coupling with A1 is now off-detuned, and the
transmission of input microwave fields is used for quadrature
and dispersive measurements [75]. Specifically, either a fluo-
rescence measurement [72], corresponding to a jump operator
ĉ = σ̂−, or a dispersive measurement [63], corresponding, for
example, to a jump operator ĉ = σ̂x/2, is performed by using

a resonant field. The output for homodyne measurement is in-
stead recorded via a Josephson parametric amplifier or, in the
case of heterodyne measurements, via a Josephson parametric
converter [72]. The final Helstrom measurement on SA1 can
be generally achieved in these experiments by applying a
strong dispersively coupled probe field [59,75,76].
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APPENDIX A: NUMERICAL INTEGRATION OF
STOCHASTIC MASTER EQUATIONS

We describe here the method proposed in [66,67] in order
to efficiently integrate numerically SMEs, such as Eqs. (4) and
(6). The quantum state solution of these SMEs can be written
after each time step dt as

�̂c
q(t + dt ) =

∑
k M̂ (k)

xt
[�̂c

q(t ) + Lq�̂
c
q(t )dt]M̂ (k)

xt

†

Tr
{∑

k M̂ (k)
xt

[
�̂c

q(t ) + Lq�̂c
q(t )dt

]
M̂ (k)†

xt

} ,

(A1)

where we have introduced the Kraus operators M̂ (k)
xt

that de-
scribe the effect of the measurement, with outcome xt , on
the quantum state at each time t . The form of these operators
depends on the kind of measurement that is performed. In the
case of photodetection, the two Kraus operators correspond-
ing to the two possible measurement outcomes xt = {0, 1} are

M̂ (1)
0 = 1̂ − κ

2
ĉ†ĉdt,

M̂ (2)
0 =

√
(1 − η)κdt ĉ,

M̂ (1)
1 =

√
ηκdt ĉ,

(A2)

which are applied according to the Poisson increment prob-
abilities p0 = 1 − ηκTr(�̂c

qĉ†ĉ)dt and p1 = ηκTr(�̂c
qĉ†ĉ)dt .

As regards continuous homodyne detection, the continuous
outcome corresponds to the photocurrent xt = dyt and the
corresponding Kraus operators have the form

M̂ (1)
dyt

= 1̂ − κ

2
ĉ†ĉdt + √

ηκ ĉdyt ,

M̂ (2)
dyt

=
√

(1 − η)κdt ĉ,
(A3)

where the randomness of the process is originated by the
Wiener increment entering the formula for the photocurrent
(7).
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This numerical method also allows us to evaluate straight-
forwardly the likelihood of each trajectory. In fact, at each
time step, the likelihood of obtaining the measurement out-
come xt can be evaluated by taking the trace of the operator at
the numerator in Eq. (A1), i.e.,

lxt = Tr[�̃c
q(t + dt )], (A4)

where

�̃c
q(t + dt ) =

∑
k

M̂ (k)
xt

[
�̂c

q(t ) + Lq�̂
c
q(t )dt

]
M̂ (k)

xt

†. (A5)

As remarked in the main text, by assuming that the monitoring
starts and stops at times t0 and t , respectively, each trajectory
can be identified by the string of records Dt of Eq. (8). The
corresponding likelihood can thus be evaluated as

L(Dt |q) =
t∏

t ′=t0

lxt ′ =
t∏

t ′=t0

Tr
[
�̃c

q(t ′ + dt )
]
. (A6)

APPENDIX B: STEADY STATE FOR A MULTICHANNEL
MASTER EQUATION

When we are not continuously monitoring the bath A,
the dynamical evolution of S is described by the master
equation (2) whose dynamical generator is given by the su-
peroperator

L(ext)
q • := Lq • +κD[ĉ] •

= −i[ĤS, •] + γ −
q D[σ̂−] • +γ +

q D[σ̂+] • +γ x
q D[σ̂x/2]•,

where for two cases considered in the main text ĉ =
{σ̂−, σ̂x/2} we have

γ −
q = γ (1 + sqNq(βq)) + κ, γ +

q = γ Nq(βq),

γ x
q = 0 for ĉ = σ̂−,

γ −
q = γ (1 + sqNq(βq)), γ +

q = γ Nq(βq),

γ x
q = κ for ĉ = σ̂x

2
. (B1)

To discuss the statistics tagging in the long-time limit we solve
the equation L(ext)

q �̂SS
q = 0 which, irrespective of the input

state of the system, provides the steady-state �̂SS
q solution of

the system dynamics, i.e.,

lim
t→∞ �̂q(t ) = �̂SS

q . (B2)

Writing hence �̂SS
q = pq |1〉 〈1| + (1 − pq) |0〉 〈0| +

cq |0〉 〈1| + c∗
q |1〉 〈0|, we obtain the conditions

pq = γ +
q + γ x

q /4

γ +
q + γ −

q + γ x
q /2

, cq = 0. (B3)

Notice that irrespective of the selected QBT hypothesis, the
off-diagonal elements are always null. On the other hand, the
associated conditions for the populations at steady state are
obtained by plugging (B1) into Eq. (B3):

pB = γ NB(βB)

γ (2NB(βB) + 1) + κ
,

pF = γ NF (βF )

γ + κ
for ĉ = σ̂−,

pB = γ NB(βB) + κ/4

γ (2NB(βB) + 1) + κ/2
,

pF = γ NF (βF ) + κ/4

γ + κ/2
for ĉ = σ̂x

2
. (B4)

With the above expressions we can now express the asymp-
totic limit of the HEP functional (11)

lim
t→∞ ε[t ; �̂(0)] = ε[t → ∞]

:= 1

2

(
1 − ‖�̂SS

B − �̂SS
F ‖1

2

)

= 1

2
(1 − |pB − pF |). (B5)

We can also represent the figure of merit in terms of the heat
flowing between the two environments at steady state. The
heat flowing in A is characterized in terms of the equation [77]

Q̇(Eq⇒A) = −κ Tr
(
ĤSD[ĉ]�̂

SS
q

)
, (B6)

which in the case of ĉ = σ̂− gives ω0κ pq. Combining Eq. (B6)
with the first of Eqs. (B4), it is straightforward to obtain the
results (29) and (30) of the main text, after expressing the
Fermi function in terms of the Bose function for uniforming
the notation NF (βF ) = NB(βF )

1+2NB (βF ) . Also in the case of ĉ = σ̂x/2
we are able to establish a connection between the modulus of
the population difference and the heat flow. Using the defi-
nition (B6), we have −κ Tr(ĤSD[σ̂x/2]�̂

SS
q ) = −ω0κ

4 (1 − 2pq),
from which we derive

|pB − pF | = 2

ω0κ
|Q̇(EB⇒A) − Q̇(EF ⇒A)|, (B7)

and hence

ε[t → ∞] = 1

2

(
1 − 2

ω0κ

∣∣Q̇(EB⇒A) − Q̇(EF ⇒A)
∣∣). (B8)

Finally, we discuss how the tagging procedure can be influ-
enced by the coupling with the bath A, gauged through the
parameter κ . Choosing the value of κ for which Eq. (29) is
equal to 1

2 allows us to find κc in Eq. (32). The same analysis
for the case with ĉ = σ̂x

2 leads to the critical value

κc

γ
= 2

NB(βB)

NF (βF )
− 1. (B9)

The optimal value for the discrimination at steady state when
βF = βB = β instead is obtained by optimizing the figures of
merit with respect to κ . In this way the results in (31) and

κbest

γ
= 2

√
2NB(β ) + 1 (B10)

are found for ĉ = σ̂− and ĉ = σ̂x/2, respectively.
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