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We present a computational study of static and dynamic linear polarizabilities in solution. We use dif-
ferent theoretical approaches to describe solvent effects, ranging from quantum mechanics/molecular
mechanics (QM/MM) to quantum embedding approaches. In particular, we consider non-polarizable
and polarizable QM/MM methods, the latter based on the fluctuating charge (FQ) force field. In
addition, we use a quantum embedding method defined in the context of multilevel Hartree-Fock
(MLHF), where the system is divided into active and inactive regions, and combine it with a third
layer described by means of the FQ model. The multiscale approaches are then used as reference
wave functions for equation-of-motion coupled cluster (EOM-CC) response properties, allowing for
the account of electron correlation. The developed models are applied to the calculation of linear
response properties of two organic moieties—namely, para-nitroaniline and benzonitrile—in non-
aqueous solvents—1,4-dioxane, acetonitrile, and tetrahydrofuran. The computed polarizabilities are
then discussed in terms of the physico-chemical solute-solvent interactions described by each method
(electrostatic, polarization and Pauli repulsion), and finally compared with the available experimental
references.

1 Introduction

The response of a molecular system to an external electric field
plays a fundamental role in a plethora of technological applica-
tions.1 In this context, theoretical chemistry can help understand
the underlying physics of the different phenomena. Among them,
linear response properties are the most basic quantities to be in-
vestigated, being the physico-chemical foundation of many dif-
ferent spectroscopic signals.2–6 Therefore, the theoretical model-
ing can have a pivotal role in gaining insight into how molecules
and complex systems behave in the presence of electromagnetic
radiation.2 Of particular interest are molecular systems embed-
ded in an external environment, being it a solvent or a biologi-
cal matrix.7,8 In fact, in such cases, the molecular properties of
the chromophore, which is usually the target of the study, can be
drastically perturbed by the presence of the environment.9

To face this kind of problems, the most widespread approach
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is to resort to the so-called focused models.10,11 In the specific
case of solutions, a high level of theory is used for the region of
interest—the solute—while the solvent is treated at a less sophis-
ticated level.12 Thus, within the focused model formalism, the
system is usually partitioned into two layers. In particular, the
solute is generally described at the quantum mechanical (QM)
level, while the treatment of the solvent can range from a con-
tinuum,11 to molecular mechanics (MM) approaches,10,13,14 to a
lower-level QM model.15–21 Each of these subcategories encom-
passes many different methods, where different solute-solvent
interactions—e.g. electrostatic effects, polarization, Pauli repul-
sion, dispersion—are taken into account, and different computa-
tional efforts are required. In order to correctly describe strong
and specific solute-solvent interactions, the atomistic nature of
the environment usually needs to be retained in the modeling.22

Among the atomistic models, the most commonly used belong to
the family of QM/MM approaches.23 In their basic formulation—
the so-called electrostatic embedding—the environment electro-
statically perturbs the QM density, but not vice versa.23 To include
mutual solute-solvent polarization effects, which might have a
huge influence on the QM properties and spectra, polarizable
QM/MM approaches are exploited.24–27 In this way, both elec-
trostatic and polarization contributions are taken into account.
However, non-electrostatic interactions such as Pauli repulsion
and dispersion are usually neglected, although they play a cru-
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cial role in many complex systems.28–30 To recover a theoreti-
cally consistent picture of such interactions, which are intrinsi-
cally of quantum nature, quantum embedding approaches can be
used.15–21,31 As mentioned above, these models are based on the
description at the QM level—although less sophisticated than the
one used for the solute—of at least a part of the environment.
This allows for the treatment of solute-solvent Pauli repulsion,
and in some cases of dispersion interactions too.32–34 Due to the
quantum description of a larger part of the system, quantum em-
bedding approaches are generally more computationally demand-
ing than QM/MM methods. This problem can be solved by three-
layer approaches, where the largest part of the environment, usu-
ally the farthest from the solute, is described by means of classical
force fields.21,35–39 In this way, within a small portion of the sys-
tem most interactions are treated at the QM level, whereas long-
range contributions are retained at the classical level only, pro-
viding a physically consistent picture. In this work, we present a
computational investigation of linear response properties of two
organic systems, namely para-nitroaniline (PNA) and benzoni-
trile (PhCN), dissolved in dioxane (DIO), acetonitrile (ACN), and
tetrahydrofuran (THF). To quantify the solvent effects on such
properties, we present a hierarchy of solvation approaches, rang-
ing from common QM/MM methods to three-layer quantum em-
bedding models. As for QM/MM approaches, we consider both
non-polarizable and polarizable frameworks. The latter is based
on the fluctuating charge (FQ) force field,22,40,41 which has been
recently parametrized for the selected solvents.42 The three-layer
quantum embedding, on the other hand, is based on the multi-
level Hartree-Fock (MLHF) method.16 Within MLHF, the molec-
ular orbitals (MOs) are partitioned into active and inactive by
means of Cholesky decomposition43–46 coupled with projected
atomic orbitals47,48 (PAOs) for the virtual space. The computa-
tional advantage of such a method lies in the fact that the active
MOs are optimized in the field of the inactive ones, which are
kept frozen, but orthogonal to the active space. Therefore, elec-
trostatic and Pauli repulsion (and part of the polarization) active-
inactive interactions are automatically taken into account at the
HF level. To refine the picture provided by the basic formulation
of MLHF, the active and inactive orbitals can be localized in their
pre-defined spatial regions by means of an energy-based proce-
dure that we have recently presented.49 The model obtained is
called MLHF-AB. If such a procedure is applied to an HF opti-
mized wave function, fully accounting for solute-solvent interac-
tions, the resulting MOs are denoted as fragment localized MOs
(FLMOs).50 To minimize its computational cost, MLHF(-AB) can
be coupled to an external MM layer (MLHF(-AB)/MM).39

To calculate the linear response properties, we use the afore-
mentioned two- and three-layer wave functions as the reference
for a post-HF description of the solute. In fact, electron correla-
tion has been proven particularly significant for the accurate mod-
eling of both static and dynamic (hyper)polarizabilities.51–56 If
the ground state is dominated by a single-determinant wave func-
tion, the coupled cluster (CC) hierarchy of methods arguably pro-
vides one of the most sophisticated descriptions of electron corre-
lation.57 For this reason, coupled cluster is often considered the
theoretical golden standard for the prediction of linear response

properties, although many other ab-initio methods, ranging from
density functional theory (DFT) to Møller-Plesset (MP) perturba-
tion theory, have been routinely used for this purpose.58–61 Note
that, when dealing with excited states and molecular properties,
coupled cluster methods typically follow one of two routes: re-
sponse theory62–64 (CCRT) or the equation-of-motion65,66 (EOM-
CC) formalism, which is exploited here. The two frameworks re-
sult in identical excitation energies, but differ in the molecular
properties, although with a generally small discrepancy.1

The manuscript is organized as follows. In the next section,
we detail the theoretical approaches with a focus on the solva-
tion modeling and the calculation of linear response properties
at the EOM-CC level of theory. Then, the computational proto-
col followed in the numerical analysis is presented and applied to
the calculation of static and dynamic polarizabilities of PNA and
PhCN dissolved in DIO, ACN, and THF. A summary and future
perspectives end the manuscript.

2 Theory

This section outlines the theoretical basis of the solvation meth-
ods employed to compute the polarizabilities at the EOM-CC2 and
EOM-CCSD levels, which are also briefly described. In particu-
lar, we briefly recall the theory of non-polarizable QM/MM and
polarizable QM/FQ, together with that of the three-layer MLHF-
AB/MM method.

2.1 Non-polarizable QM/MM and polarizable QM/FQ

As stated above, QM/MM methods rely on the partitioning of the
total energy of the system into a QM (EQM) and an MM (EMM)
contribution23

E = EQM +EMM +E int
QM/MM , (1)

where E int
QM/MM is the QM/MM interaction energy. In electrostatic

embedding, E int
QM/MM is limited to the purely electrostatic interac-

tion, whereas in polarizable embedding, a polarization contribu-
tion is also included. In the former, each MM atom is endowed
with a fixed charge. In the latter, if the FQ force field is exploited,
the charge assigned to each atom can vary as a response to the
QM potential. Since both the non-polarizable QM/MM and polar-
izable QM/FQ depend only on charges, the QM/MM interaction
energy reads22

E int
QM/MM = ∑

i
qiVi(D) , (2)

where Vi(D) is the QM potential due to the QM part acting on
the ith MM charge (qi). While in electrostatic embedding such
charges are fixed, in QM/FQ their values are obtained by solving
the following set of linear equations22,41

Mqλ =−CQ −V(D), (3)

where qλ collects the FQ charges q and suitable Lagrangian mul-
tipliers that ensure charge conservation and M is a matrix con-
taining charge-charge interactions and Lagrangian blocks. The
right hand side consists instead of CQ, which takes into account
atomic electronegativities and the total charge constraints, and
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V(D)—the QM potential. In both QM/MM approaches, the QM
Fock matrix Fµν (in the atomic orbital basis {χµ}) is modified by
the inclusion of the QM/MM interaction22

Fµν = hµν +Gµν (D)+∑
i

qiVi,µν , (4)

where hµν and Gµν are the one- and two-electron matrix ele-
ments. This additional term is fixed in non-polarizable QM/MM,
whereas it varies at each self consistent field (SCF) step in
QM/FQ, because the charges q depend on the QM density.

2.2 Multilevel Hartree-Fock

In the MLHF model,16 the total density matrix (D) of the system is
decomposed into an active (DA) and an inactive (DB) component.
Under this assumption, the total energy of a system described at
the HF level can be written as

ETOT = trhDA +
1
2

trDAG(DA)+ trDAG(DB)

+ trhDB +
1
2

trDBG(DB)+hnuc,

(5)

where h and G are the one- and two-electron matrices, and hnuc

is the nuclear repulsion energy. In MLHF, only DA is iteratively
optimized, whereas DB is kept fixed during the SCF optimization.
Thus, the last three terms in Eq. 5, i.e. the inactive energy and the
nuclear repulsion, are constant throughout the procedure. Addi-
tionally, the minimization is performed in the MO space of the ac-
tive part only, thus intrinsically reducing the computational cost
of a full HF description. As a consequence, the MLHF Fock matrix
elements take the following form

Fµν = hµν +Gµν (DA)+Gµν (DB), (6)

where Gµν (DB) describes the interaction between the active and
inactive parts, and is indeed a one-electron term in the Fock ma-
trix, because DB is fixed. Within the MLHF framework the elec-
trostatic, Pauli repulsion, and part of the polarization contribu-
tions between the active and inactive parts are described at the
HF level.

To further reduce the computational cost associated with an
MLHF description, MLHF can be coupled with an additional MM
layer, yielding the MLHF/MM method introduced in Ref. 39. Be-
tween the MLHF and MM parts, the interaction is described at the
purely electrostatic level, as in Eq. 2. In this case, D is obtained as
the sum of the active and inactive density matrices. The MM layer
can be equivalently treated at the non-polarizable or polarizable
FQ level. In the latter case, in Eq. 3 D refers to the total density
matrix (DA +DB). Finally, the MLHF Fock matrix is modified by
the coupling with the external MM layer as

Fµν = hµν +Gµν (DA)+Gµν (DB)+∑
i

qiVi,µν . (7)

After converging the MLHF(/MM) wave function, the active
and inactive MOs can be localized in their specific spatial regions
by using an energy-based localization of the MOs. In the resulting
MLHF-AB approach,49 the h contribution is separated in terms of

the kinetic operator and the A, B, and interaction (AB) electron-
nuclei potentials. Hence, the total energy can be rewritten as

ETOT = trhADA +
1
2

trDAG(DA)+hA
nuc︸ ︷︷ ︸

EA

+ trhBDB +
1
2

trDBG(DB)+hB
nuc︸ ︷︷ ︸

EB

+ trVBDA + trVADB + trDAG(DB)+hAB
nuc︸ ︷︷ ︸

EAB

.

(8)

The MOs of the A and B fragments are localized by means of a
minimization of the EA +EB energy in the space spanned by the
occupied MOs of the two fragments. This means that the total
density is not changed and that such a minimization is equiva-
lent to a maximization of the repulsion energy EAB. In this way,
the occupied MOs of both fragments are localized in their spe-
cific spatial regions. If a full HF optimization is performed be-
fore the localization procedure, FLMOs are obtained,50 yielding
the HFFLMOs approach. Note that, if an additional MM layer is
included in the modeling, it does not affect the minimization pro-
cedure: the total density matrix remains fixed, and so does the
MLHF-MM interaction. The localization procedure outlined here
makes MLHF-AB a promising tool for the calculation of local prop-
erties, such as dipole moments49 and polarizabilities.

2.3 EOM-CC2 and -CCSD linear polarizabilities

After the SCF convergence is reached with any of the aforemen-
tioned approaches (QM/MM, MLHF-AB/MM, and HFFLMOs/MM),
the polarizabilities are computed at the EOM-CC2 and -CCSD
level of theory by restraining the coupled cluster treatment to
the QM (in QM/MM) or to the active part (in MLHF-AB/MM and
HFFLMOs/MM) only.

The coupled cluster wave function is expressed as the exponen-
tial parametrization57

|CC⟩= eT |HF⟩ , (9)

where |HF⟩ is the reference Hartree-Fock wave function and T is
the cluster operator—i.e., the sum of all the excitation operators
τν weighted by their amplitudes tν

T =T1 +T2 + ...

=∑
ν1

tν1 τν1 +∑
ν2

tν2 τν2 + ...
(10)

Here, νn refers to the n-th electronic excitation. In the CC267 and
CCSD68 models, the cluster operator T is truncated after double
excitations. The difference between the two models lies in the
fact that in CC2 the double excitation component, T2, is treated
perturbatively. In CCSD, the doubles amplitudes are considered to
infinite order, while the CC2 doubles are considered through first
order only. The doubles amplitude equations of the two mod-
els (for a T1-transformed Hamiltonian, H̄ = e−T1 HeT1 ) take the
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form67

CCSD : ⟨ν2| H̄ +[H̄,T2]+
1
2
[[H̄,T2],T2] |HF⟩= 0 (11)

CC2 : ⟨ν2| H̄ +[F,T2] |HF⟩= 0 (12)

while the singles equations remain the same for CC2 as in CCSD:

⟨ν1| H̄ +[H̄,T2] |HF⟩= 0 (13)

where
|ν⟩= τν |HF⟩ , ⟨ν |= ⟨HF|τ†

ν . (14)

As a result, CC2 scales as N5 compared to CCSD which is a N6

model.
The CC2 model has a structure that is compatible with the ex-

act linear response functions, and the CC2 response properties of
a molecule can thus be computed within the same framework and
formalism as CCSD.67 Molecular response properties arise from
the perturbation of an unperturbed system by an external time-
periodic field, and can be expressed in terms of response func-
tions. The second-order (linear) response to an external electric
field gives rise to the frequency-dependent electronic polarizabil-
ity.

In the EOM-CC formalism,65,69 the ground and excited states
are explicitly parametrized as

|k⟩= eT
∑

ν≥0
Rk

ν |ν⟩ ,
〈
k̄
∣∣= ∑

ν≥0
⟨ν |Lk

ν e−T . (15)

Inserting the EOM states of eq.15 in the exact-state linear re-
sponse function,70 and considering the response of the compo-
nents of the dipole moment operator µ, the EOM-CC linear elec-
tronic polarizability, α, reads64,66

αXY (ω) =
1
2

PXY
(

ηηη
X tttY (ω)+ηηη

X tttY (−ω)
)
, (16)

where the permutation operator PXY performs an interchange of
the operators X and Y , ω is the frequency of the external field, X
and Y are cartesian components of µ and, for a generic operator
O,71,72

η
O
ν = (⟨HF|+ ⟨t̄|)Ōτν |HF⟩− t̄ν ⟨HF|Ō|HF⟩ (17)

= (⟨HF|+ ⟨t̄|) [Ō,τν ] |HF⟩+ ∑
µ>ν

t̄µ ⟨µ|τν Ō|HF⟩− t̄ν (t̄ ξ
O ),

(18)

where we have introduced the similarity transformed operator
Ō = e−T OeT , and ⟨t̄| = ∑µ t̄ ⟨µ| with t̄tt being the ground state La-
grangian multipliers. The amplitude response vectors tttO (ω) are
obtained by solving the linear equations

(A−ωI)tttO (ω) =−ξξξ
O , (19)

where
ξ

O
ν = ⟨ν |Ō |HF⟩ , (20)

and A is the coupled cluster Jacobian matrix with elements

Aνµ = ⟨ν | [H̄, τ̂µ ] |HF⟩ . (21)

Fig. 1 Molecular structures of the solutes (para-nitroaniline, PNA, and
benzonitrile, PhCN) and solvents (1,4-dioxane, DIO, acetonitrile, ACN,
and tetrahydrofuran, THF).

3 Computational details
In this work, we select different organic molecules dissolved in
non-aqueous environments, namely para-nitroaniline dissolved in
1,4-dioxane (PNA-in-DIO) and benzonitrile dissolved in both ace-
tonitrile (PhCN-in-ACN) and tetrahydrofuran (PhCN-in-THF)—
see Fig. 1. Such systems have been selected because their mea-
sured linear polarizabilities have been previously reported in the
literature.73,74

In order to correctly sample the solute-solvent phase-space,
classical molecular dynamics (MD) simulations are performed for
both PNA and PhCN dissolved in the different environments. In
the case of PNA-in-DIO, the MD simulation has been performed
by following the procedure recently proposed in Ref. 42. Simi-
larly, for both PhCN-in-ACN and PhCN-in-THF, the General Am-
ber Force Field (GAFF)75 is used to describe the solute and sol-
vents, for which charges and parameters are obtained by using
the RESP charge-fitting method76 and the Antechamber pack-
age,77 respectively. Optimized CAM-B3LYP/aug-cc-pVDZ geome-
tries are used to generate the force field parameters with the ini-
tial solvent effects incorporated by means of the polarizable con-
tinuum model.11 PhCN is kept frozen during the MD runs, simi-
larly to PNA (see Ref. 42). This choice is justified by their planar
and rigid structure, and also avoids any potentially poor descrip-
tion of dihedral distributions by the classical force field.78,79 All
simulations are performed using the GROMACS package.80 Fol-
lowing a similar methodology as in Ref. 42, our systems consist
of a single molecule of PhCN surrounded by thousands of solvent
molecules and enclosed in a simulation box of 7 nm size. They
are minimized for 500 steps, prior to a 2 ns equilibration in the
isothermal-isobaric ensemble, keeping the temperature (300 K)
and the pressure (1 atm) constant by means of a velocity-rescaling
method,81 with a coupling constant of 0.1 ps, and the Berendsen
barostat,82 with a coupling constant of 2.0 ps, respectively. Val-
ues of 9.7×10−5 and 9.6×10−5 bar−1 are used for the isothermal
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compressibilities of THF and ACN, respectively. Afterward, an
NVT production stage of 10 ns is performed in order to have a
well-equilibrated system before extracting representative config-
urations. The LINCS algorithm83 is used to constrain all bonds of
the solute molecule. The particle-mesh Ewald (PME) algorithm84

is employed to handle long-range electrostatic interactions. Van
der Waals and short-range electrostatic interactions are truncated
with a smoothed 1.4 nm spherical cutoff. The equations of motion
are integrated with a 2 fs time step.

A set of 20 snapshots is selected from the production stage of
each MD simulation. The time separation between them (100 ps
for PNA-in-DIO and 500 ps for PhCN-in-ACN and PhCN-in-THF) is
large enough to ensure that they are uncorrelated.85–88 A droplet
with a spherical shape of radius 20 Å centered on the solute is cut.
Note that the number of selected frames is enough to guarantee
the convergence of the results (see Fig. S1-S3 and S14-S15 in
the Electronic Supplementary Information – ESI†). The geome-
tries of all the frames studied in this work can be found in Ref.
89. For each extracted snapshot, the linear polarizability is then
calculated by describing the whole system at different levels of
theory, defined within a hierarchical ladder: (i) the solute is de-
scribed at the QM level, whereas the environment is described
by means of electrostatic (QM/EE) or polarizable embedding (by
exploiting the FQ force field – QM/FQ); (ii) The solute and the
closest solvent molecules are included in the MLHF-AB region,
while the remaining solvent molecules are described at the FQ
level. The solvent molecules within a range of 2.5 Å (PNA-in-
DIO), 2.75 Å (PhCN-in-THF) and 3.5 Å (PhCN-in-ACN) from any
atom of the solute are included in the inactive MLHF-AB calcu-
lations, whereas the solute molecule represents the active part.
Such an approach is called MLHF-AB/FQ in what follows. The
same solvent molecules and the solute represent the two regions
described at the HFFLMOs level in the HFFLMOs/FQ approach. The
partitioning of the spherical snapshots at the different levels of
theory is graphically depicted in Fig. 2, by taking PNA-in-DIO as
a representative example.

For MLHF-AB/FQ calculations, the protocol outlined in Ref. 39
is followed. A superposition of molecular densities90 is used as a
starting guess. While the active MO virtual space is constructed at
the beginning of the calculation by means of orthonormalized91

PAOs,47,48 the active occupied space is firstly determined by a
limited Cholesky decompositon algorithm,43–46 and then itera-
tively adjusted by maximizing the interaction energy EAB in Eq.
8. The number of active MOs is selected to be equal to the correct
number of occupied MOs of the active region.

In order to calculate the linear polarizability of each snapshot,
the solute is described at the EOM-CC2 or EOM-CCSD level with
the aug-cc-pVDZ basis set, by using the HF/EE, HF/FQ, MLHF-
AB/FQ, and HFFLMOs/FQ reference wave functions. The basis set
is selected by following Refs. 92–95. For the MLHF-AB/FQ and
HFFLMOs/FQ reference wave functions, the solvent molecules are
described with the cc-pVDZ basis set. In CC/EE, GAFF atomic
charges are used for the EE region.75,77 For the FQ layer in
CC/FQ, CC-in-MLHF-AB/FQ and CC-in-HFFLMOs/FQ, the atomic
electronegativity and chemical hardness parameters have been
taken from Ref. 42

Fig. 2 Graphical depiction of a snapshot of PNA-in-DIO as partitioned
in the CC/FQ and CC/EE (top) and CC-in-MLHF-AB/FQ and CC-in-
HFFLMOs/FQ (bottom) approaches. The atoms in blue are treated at the
CC level, by using HF as reference wavefunction; the atoms in orange are
treated either at the HF level—in HFFLMOs—or as the inactive MLHF
part—in MLHF-AB; the atoms in grey are treated at the MM level.
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For each snapshot, we calculate the static and dynamic
isotropic electronic part of the polarizabilities, which is given by

α
iso =

1
3
(αxx +αyy +αzz) (22)

In the static case, a reorientation term αµ is added to the purely
electronic term to yield the total static polarizability, α tot

0 :

α
tot
0 = α

iso
0 +αµ . (23)

αµ =
|µ|2

3kBT
, (24)

where µ is the molecular dipole moment, kB is the Boltzmann
constant and T is the temperature.7,96 The final isotropic polar-
izability is obtained by averaging the results computed for each
snapshot. It is worth noting that local field effects induced on the
active part by the polarization of solvent under external radiation
are not considered in this work, although they might affect com-
puted linear response properties.92,97,98 All the calculations are
performed with a locally modified version of the electronic struc-
ture program eT .99 The eT default thresholds are used for the
optimization of the reference and coupled cluster ground state
wave functions, as well as for the dipole moments and EOM-CC
polarizabilities. The threshold for the Cholesky decomposition of
the two-electron repulsion integrals is set to 10−4.

4 Numerical Results
All the aforementioned methods are used to calculate the linear
polarizabilities of PNA-in-DIO, PhCN-in-ACN and PhCN-in-THF.
In this section, the computed results are analyzed in terms of the
different physico-chemical solute-solvent interactions introduced
by the different methods. The accuracy and robustness of the
approaches are then tested by comparing the computed data with
the available experimental results.73,74

4.1 PNA-in-DIO

Let us discuss the case of PNA-in-DIO. PNA has been the focus of
a large variety of theoretical92,100–102 and experimental103–105

investigations. It is characterized by a push-pull electronic struc-
ture, presenting an electron-acceptor and an electron-donor func-
tional groups on the opposite sides of a π-conjugated aromatic
structure (see also Fig. 1). Such a feature implies that its opti-
cal properties are strongly influenced by solvent effects,7,106–110

making PNA a perfect candidate for studying the performances of
the different theoretical approaches.

In order to highlight the different solute-solvent physico-
chemical interactions taken into account by the different inves-
tigated approaches, we analyze the results computed for each
snapshot (see Fig. 3, 4 and 5). In Fig. 3a, the differences be-
tween the dipole moments computed at the CC/FQ and CC/EE
levels are graphically depicted. It can be noticed that CC/FQ
dipole moments are larger than CC/EE ones, independently of
the solute-solvent configurations, i.e. the snapshots. This is due
to the inclusion of polarization effects, described by means of the
FQ force field, which increase the magnitude of solute-solvent in-

Fig. 3 PNA-in-DIO snapshot-to-snapshot differences between CC-in-
HFFLMOs/FQ, CC-in-MLHF-AB/FQ, CC/FQ and CC/EE ground state
dipole moments results.

teractions, and consequently the computed dipole moments. Re-
markably, such an increase highly varies as a function of the snap-
shot, ranging from 1 to about 2.2 Debye, and yields an increase
of about 17-18% on average.

Moving to the three layers approaches, Fig. 3b depicts the CC-
in-HFFLMOs/FQ and CC-in-MLHF-AB/FQ ∆µ results as a function
of the snapshot. This case provides a different picture. In fact,
a variability both in magnitude and in sign is reported between
the two approaches. However, for most snapshots, the CC-in-
HFFLMOs/FQ approach predicts larger dipole moments as com-
pared to CC-in-MLHF-AB/FQ. Such a finding can be explained by
considering that within the HFFLMOs/FQ reference, all the solute-
solvent interactions are fully accounted for at the HF level. At
the MLHF-AB/FQ level, on the contrary, only part of the solute-
solvent polarization effects are taken into account, and the in-
active MOs—those belonging to the solvent—are not fully opti-
mized. As a consequence, for most snapshots, the full account of
polarization of CC-in-HFFLMOs/FQ yields large dipole moments.
The negative deviations can be instead related to the optimization
of the MOs of the inactive part, which enhances Pauli repulsion
effects.

Finally, we compare the results obtained by exploiting CC-in-
HFFLMOs/FQ and CC-in-MLHF-AB/FQ to the CC/FQ values, as re-
ported in Fig. 3c and d, respectively. While CC-in-MLHF-AB/FQ
generally yields a decrease of the dipole moment, a variability
in intensity and sign is reported for CC-in-HFFLMOs/FQ with re-
spect to CC/FQ. The numerical results can again be discussed in
light of the physico-chemical interactions included in the differ-
ent approaches. In the CC/FQ approach, the solute-solvent inter-
actions are limited to electrostatics and polarization, whereas in
both the three-layer methods Pauli repulsion effects are also taken
into consideration. On the one hand, this explains the average de-
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Fig. 4 PNA-in-DIO snapshot-to-snapshot differences between CC-in-
HFFLMOs/FQ, CC-in-MLHF-AB/FQ, CC/FQ and CC/EE results for the
electronic component of the static polarizability.

crease of the dipole moment reported for the two quantum em-
bedding methods. On the other hand, the variability depicted in
Fig. 3d can suggest that for some snapshots the CC/FQ approach
is not able to fully account for the solute-solvent polarization ef-
fects.

We now move to the differences in the static and dynamic po-
larizabilities, which are graphically depicted as a function of the
snapshot in Fig. 4 and 5, respectively. The above discussion
for the dipole moments is generally valid also for these linear-
response properties, but with some noticeable exceptions. In fact,
the differences between CC/FQ–CC/EE, and CC-in-HFFLMOs/FQ–
CC-in-MLHF-AB/FQ polarizabilities follow the same trends re-
ported for µ. In particular, the inclusion of polarization in CC/FQ
yields an increase of both static and dynamic polarizabilities, with
a larger effect on the dynamic one. The full account of polariza-
tion effects in HFFLMOs provides an overall increase of the com-
puted properties, albeit with some negative values. However, the
effect of using HFFLMOs in place of MLHF-AB is much smaller than
the effect of using FQ in place of EE (on average a 0.2-0.4% in-
crease vs. a 4-7% increase). The differences between the quan-
tum embedding models and QM/FQ (see Fig. 4c-d and 5c-d)
are negative for all the snapshots, showing that the inclusion of
Pauli repulsion effects provides a general confinement of the ac-
tive density. As a consequence, both the static and the dynamic
polarizability values decrease by 2-3%, on average.

Finally, let us move to comment on the averaged results, which
can be compared to the available experimental data. In Table 1
the averaged isotropic values of both the electronic static polariz-
ability (α iso

0 ) and the dipole moment obtained with the different
theoretical methods are reported, together with the experimental
value from Ref. 73. To better quantify the solvent effects on the
computed properties, Table 1 also lists the vacuo values calculated

Fig. 5 PNA-in-DIO snapshot-to-snapshot differences between CC-in-
HFFLMOs/FQ, CC-in-MLHF-AB/FQ, CC/FQ and CC/EE electronic dy-
namic polarizability results (589 nm).

at the CC2 and CCSD levels. The total static polarizability, α tot
0 , is

computed using Eq. 23, so it consists of an orientationally aver-
aged polarizability (αµ ) and of the purely electronic contribution
α iso

0 .
The CC2 and CCSD results mainly differ in two respects: while

CC2 α iso
0 is larger than the CCSD counterpart, the opposite holds

for the dipole moments in the gas phase. Solvent effects can
be appreciated by comparing the gas-phase results with those
obtained by including a description of the embedding. In par-
ticular, an overall increase of both the static polarizability (4-
8%) and the dipole moments (33-61%) is highlighted. Such a
trend is compatible with what has been reported in the litera-
ture for similar systems.108,111,112 While the CC/EE approaches
provide the smallest values of µ (∼ 1.5 D away from all other
methods) and α iso

0 , QM/FQ reports the largest α iso
0 , and CC-in-

HFFLMOs/FQ the largest µ. All the trends between the values
computed with different solvation approaches follow what has
already been pointed out for Fig. 3–5. Indeed, CC/FQ µ results
are larger than CC/EE µ, and a similar trend is reported for CC-in-
HFFLMOs/FQ as compared to CC-in-MLHF-AB/FQ. Such a result is
primarily due to the inclusion (in CC/FQ) and full accounting (in
CC-in-HFFLMOs/FQ) of polarization. When considering α iso

0 , the
aforementioned trends remain valid. In addition, we note that the
use of the multilevel wave function as a reference decreases α iso

0
with respect to the CC/MM data. This is in agreement with Fig. 4
and 5, and is due to the quantum confinement of the solute den-
sity as a result of the solute-solvent Pauli repulsion contributions
introduced by the multilevel modeling. The differences between
CC2 and CCSD dipole moment results are small, regardless of the
solvation model employed.

When comparing to the experimental reference in Ref. 73 (see
Table 1), it is worth remarking that the largest contribution to
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Method µ[D] α iso
0

[ cm3

mol
]

αµ
[ cm3

mol
]

α tot
0
[ cm3

mol
]

α
exp
0

[ cm3

mol
]

CC2 in vacuo 6.7 10.2 221.7 231.9
CCSD in vacuo 6.9 9.6 230.2 239.9
CC2/EE 9.1 10.7 403.8 414.5

404±6

CC2/FQ 10.8 11.1 565.5 576.6
CC2-in-MLHF-AB/FQ 10.5 10.8 536.4 547.2
CC2-in-HFFLMOs/FQ 10.8 10.8 573.9 584.8
CCSD/EE 9.1 10.0 406.1 416.1
CCSD/FQ 10.7 10.3 558.6 568.9
CCSD-in-MLHF-AB/FQ 10.4 10.1 532.4 542.5
CCSD-in-HFFLMOs/FQ 10.8 10.1 569.4 579.5

Table 1 Calculated PNA-in-DIO dipole moments (µ), isotropic electronic static polarizabilities (α iso
0 ), reorientation terms (αµ ), and total static

polarizabilities (αtot
0 ). The experimental reference73 is also provided, along with CC2 and CCSD in vacuo values.

Method α iso
ω

[ cm3

mol
]

α
exp
ω

[ cm3

mol
]

CC2 in vacuo 11.0
CCSD in vacuo 10.3
CC2/EE 11.9

14.1±0.4

CC2/FQ 12.6
CC2-in-MLHF-AB/FQ 12.2
CC2-in-HFFLMOs/FQ 12.3
CCSD/EE 10.9
CCSD/FQ 11.5
CCSD-in-MLHF-AB/FQ 11.2
CCSD-in-HFFLMOs/FQ 11.2

Table 2 Calculated PNA-in-DIO dynamic polarizabilities (589 nm). The
experimental reference73 is also provided, along with CC2 and CCSD in
vacuo values.

αtot
0 is given by αµ ∝ µ2. Hence, the computed values of the total

static polarizability strongly depend on the numerical values of
µ. Indeed, CC/EE reports the smallest αtot

0 , whereas the largest
αtot

0 values are given by CC-in-HFFLMOs/FQ, which has a similar
performance as CC-in-MLHB-AB/FQ, and CC/FQ. The differences
between CC/EE and the other solvation methods range between
34 and 45%. This is primarily due to the differences in the com-
puted dipole moments, as the α iso

0 only slightly affects the final
computed property. Since CC/EE αtot

0 is closest to the experimen-
tal value, the most important error source for the other methods
lies in the overestimation of µ, which is enhanced when the po-
larization is included in the modeling, and lowered by the Pauli
repulsion effects introduced in multilevel methods. A small differ-
ence in µ is reflected in large differences in αµ , and consequently
in α tot

0 . In fact, as commented above, α tot
0 is calculated as the sum

of α iso
0 and αµ , and our results show that αµ is approximately 50

times larger than α iso
0 .

To remove the dependency of the results on the computed
dipole moments, we move to dynamic polarizabilities, for which
αµ = 0. Therefore, the computed α iso

ω can be directly compared
to the experimental values, which are given in Table 2. Similar
trends as reported for the static electronic polarizability (see Table
1) can be observed also for the frequency-dependent case. The in-
clusion of solvent effects in the modeling increases the computed
values independently of the exploited method, ranging between
a 6% (CCSD/EE) and a 15% (CC2/FQ) shift. The gap between

CCSD and CC2 results is larger as compared to the static polariz-
ability, with the CCSD results being lower than CC2 by up to 9%
(CC/FQ). The trends between the different approaches directly
follow those discussed in the static case: CC/FQ α iso

ω are larger
than the corresponding CC/EE values, and the same is generally
valid between CC-in-HFFLMOs/FQ and CC-in-MLHF-AB/FQ, due
to the inclusion and the full accounting of polarization effects,
respectively. Similarly to the static case, CC-in-HFFLMOs/FQ and
CC-in-MLHF-AB provide very similar results, indicating that the
MLHF-AB/FQ method is able to account for most of the polar-
ization effects. On the contrary, by moving from CC/FQ to the
multilevel methods the value of the computed property decreases
(∼ 2-3%), because the Pauli repulsion yields a confinement effect
in the reference wave function.

Comparing the results in Table 2 with the experimental coun-
terpart, we first note that, differently from the static case, all
the computed values are smaller. The CC/EE results present
the largest deviations, while the CC/FQ ones are closest to ex-
periment. As commented above, CC2 polarizabilities are gen-
erally larger than CCSD ones, thus resulting in a better agree-
ment with the experimental reference. However, it is worth not-
ing that CC2 might reportedly overestimate linear polarizabili-
ties,113,114 probably due to an overestimation of the dispersion
interaction.115–117 Considering the high level of theory employed
in this work, the systematic underestimation of all methods could
be explained by the fact that our model discards the zero-point
correction and the pure vibrational contribution to the linear re-
sponse properties. While the latter plays a negligible role in deter-
mining dynamic polarizabilities (due to the unfavourable depen-
dence on the external frequency), studies at the DFT level have
shown that the former can increase the purely electronic contri-
bution by up to 6%.9 Considering that the discrepancies with
the experimental counterpart range between 1.5 (∼ 10%, with
CC2/FQ) and 3.2 (∼ 22%, with CCSD/EE) cm3/mol, an overall
agreement with the experiment can be reported for almost all
methods. Finally, it is worth noting that our modeling neglects
explicit terms arising from polarization contributions in response
equations, which may enhance the computed linear polarizabili-
ties, as reported in similar contexts.118–121
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Fig. 6 PhCN-in-ACN snapshot-to-snapshot differences between CC-in-
MLHF-AB/FQ, CC/FQ and CC/EE electronic dynamic polarizability re-
sults (1.696 µm−1).

4.2 PhCN-in-ACN and PhCN-in-THF
We now move to the case of PhCN-in-ACN and PhCN-in-THF
polarizabilities, which have been studied from the experimental
point of view in Ref. 74 as a function of the external frequency
(ranging from 1.553 to 2.295 µm−1). We again model solvent ef-
fects by means of CC/EE, CC/FQ and CC-in-MLHF-AB/FQ; the
CC-in-HFFLMOs/FQ methods have not been included in the com-
parison, as in the previous section the differences with CC-in-
MLHF-AB/FQ in the polarizabilities have been found to be neg-
ligible, but the method is associated with a higher computational
cost.

The snapshot-to-snapshot differences CC/FQ–CC/EE and CC-
in-MLHF-AB/FQ–CC/FQ are depicted in Fig. 6 and 7 for the
PhCN-in-ACN and PhCN-in-THF systems, respectively. The differ-
ences are presented for a specific frequency equal to 1.696 µm−1,
which corresponds to the experimental sodium D line. The plots
for all the other frequencies considered in this work are reported
in Fig. S4-S13 of the ESI†, and show similar trends.

For PhCN-in-ACN (see Fig. 6), the differences between CC/FQ
and CC/EE are negligible, ranging between ± 0.02 cm3/mol. Ad-
ditionally, the differences strongly depend on the specific solute-
solvent configurations and display a sign alternation, thus aver-
aging out in the final property. Note that, in contrast to what
has been discussed in the previous section (see Fig. 5), the sign
alternation indicates that the parametrization of the EE model-
ing overestimates electrostatics, similarly to other non-polarizable
force fields.122 The mutual polarization between PhCN and ACN
appears to play a minor role in the solute-solvent interaction, as
compared to PNA-in-DIO system. On the other hand, the intro-
duction of the intermediate MLHF-AB layer between the coupled
cluster and FQ regions lowers the polarizabilities results in all
the snapshots, with differences ranging from 0.2 to 0.4 cm3/mol.
This indicates once again the confinement effects provided by the
accounting for solute-solvent Pauli repulsion.

For PhCN-in-THF, the CC/FQ values are smaller than the CC/EE
values in all snapshots. Such a finding is opposite to the PNA-in-

Fig. 7 PhCN-in-THF snapshot-to-snapshot differences between CC-in-
MLHF-AB/FQ, CC/FQ and CC/EE electronic dynamic polarizability re-
sults (1.696 µm−1).

DIO case, and shows that the parametrization exploited in the
EE force field is including (overestimating) electrostatic effects.
However, the CC/FQ–CC/EE differences only reach the 1% of the
total value of the polarizability. Therefore the THF polarization,
albeit numerically more significant than that of ACN (see Fig. 6),
does not play a significant role for such systems. On the con-
trary, the Pauli repulsion interactions introduced by the MLHF-AB
layer have again a larger influence on the polarizabilities, lower-
ing the results by approximately 3% (and numerically by 0.1–0.25
cm3/mol).

The computed averaged values of the PhCN-in-ACN
static/dynamic polarizabilities are plotted as a function of
the external frequency in Fig. 8 (see Table S1 in the ESI† for
the numerical data), together with the in vacuo data and the
experimental results reproduced from Ref. 74. In particular, we
report two different experimental references, which are obtained
by applying the Lorentz (Expa) and Onsager (Expb) local field
corrections to the measured refractive indexes. Indeed, it is
worth remarking that the reported data are not the measured
quantities—that is, the refractive indexes—, but the electronic
part of the polarizability extracted from them. Therefore, the
reference data are associated with an intrinsic systematic error
related to the approach exploited to extrapolate a microscopic
quantity (the polarizability) from a macroscopic one (the
refractive index).

In Fig. 8, the averaged polarizabilities computed by all the dif-
ferent methods are shown to follow the same trend with respect
to the external frequency. In particular, CC/EE and CC/FQ re-
sults are almost identical, whereas the inclusion of the MLHF-AB
layer lowers the polarizabilities by approximately 3%. Indeed,
with respect to the in vacuo results, CC/EE and CC/FQ yield an
increase in the polarizabilities, albeit with a negligible deviation
(< 1%). On the other hand, the values obtained at the CC-in-
MLHF-AB/FQ level are 2 to 3% lower than the corresponding CC
results in vacuo. Thus, depending on how the environment is
treated, solvent effects shift the polarizabilities to opposite direc-

Journal Name, [year], [vol.], 1–13 | 9



Fig. 8 Calculated PhCN-in-ACN polarizabilities as a function of the
external frequency. Standard error bars at the 68% confidence interval
are plotted. PhCN in vacuo polarizabilities are also given, along with the
experimental benchmark from Ref. 74. Expa employs the Lorentz local
field correction, while Expb employs the Onsager local field correction.

Fig. 9 Calculated PhCN-in-THF polarizabilities as a function of the
external frequency. Standard error bars at the 68% confidence interval
are plotted. PhCN in vacuo polarizabilities are also given, along with the
experimental benchmark from Ref. 74. Expa employs the Lorentz local
field correction, while Expb employs the Onsager local field correction.

tions. As the main difference between the approaches lies in the
Pauli repulsion between PhCN and ACN being mostly taken into
account in CC-in-MLHF-AB/FQ, this contribution appears to have
a significant influence on the results. CCSD polarizabilities are ap-
proximately 4% smaller than the corresponding CC2 values with
all the multiscale methods, following the same trend observed in
vacuo.

We now move to the comparison with the experimental refer-
ence.74 Regardless of the choice of local field correction, being it
Lorentz or Onsager, the experimental results are lower than the
computed values. In particular, Expb and Expa polarizabilities
differ of about 1%, the former being the lowest. The best agree-
ment with the experiment is obtained by using CCSD-in-MLHF-
AB/FQ, which presents 1-3% and 2-4% deviations from Expa and
Expb, respectively. In particular, CCSD-in-MLHF-AB/FQ reports
its largest discrepancy with the experiment for the static polar-
izability. Here, the values in Ref. 74 are not recovered from the
experimental permittivity, but obtained by extrapolation with a
Cauchy-type dispersion curve fit, which might introduce further
inaccuracy. The worst agreement with the experiment is given by
CC2/EE and CC2/FQ, which deviate from the experiment by 9%
and 12%, respectively. Remarkably, among the considered meth-
ods, only the three-layer CC-in-MLHF-AB/FQ approaches shift the
computed polarizabilities from the corresponding in vacuo results
towards the experiment.

Fig. 9 depicts the averaged polarizability values (see Table S2
in the ESI† for the numerical data), the in vacuo reference, and
experimental benchmark74 for the PhCN-in-THF system, plotted
again as a function of the external frequencies. Similarly to the
previous case, CC/EE and CC/FQ results are very similar, with
CC/FQ providing computed polarizabilities less than 1% smaller
than CC/EE. This is in agreement with the results reported in Fig.
7. An additional decrease is given by CC-in-MLHF-AB/FQ, with
values 1-2% smaller than CC/FQ. The CC2 and CCSD values show
the same trend with respect to a different treatment of the envi-
ronment, with CCSD providing polarizabilities 4-5% smaller than
CC2. The same behaviour is observed for the in vacuo results.
When comparing to the in vacuo reference, the CC/FQ values are
almost identical, with deviations < 0.3%. While being very simi-
lar, the CC/EE polarizabilities are slightly larger, even if the differ-
ences fall below 1%. On the other hand, the CC-in-MLHF-AB/FQ
methods lower the polarizabilities by 2% with respect to the in
vacuo results.

Additionally, Fig. 9 shows that the experimental references are
once again smaller than the computed values. The comparison
between the methods follows the same trends as in PhCN-in-ACN,
with CCSD-in-MLHF-AB/FQ being the closest (with a 2-4% devi-
ation) and CC2/EE being the furthest (with a 9-11% deviation)
from the experiment. While starting from the in vacuo reference
CC/EE goes in the wrong direction with respect to the experi-
ment, both CC/FQ and CC-in-MLHF-AB/FQ lower the polarizabil-
ities towards the experiment.

5 Summary and conclusions
We have presented a computational investigation of linear polar-
izabilities of organic moieties embedded in non-aqueous solvents,
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employing different strategies to model solvent effects. We have
considered a hierarchy of solvation approaches, ranging from
common QM/MM methods to three-layer approaches based on
a multilevel partitioning of the reference wave function. In par-
ticular, we have considered both non-polarizable and polarizable
QM/MM approaches, the latter based on the FQ force field, suit-
ably parameterized for the selected solvents. The three-layer ap-
proaches are instead based on a partitioning of the system into
three portions: an active region (the solute), an inactive region
(the solvent molecules closest to the solute), and an MM region
(the rest of the solvent), treated by means of the FQ force field. In
this way, the external MM layer accounts for long range interac-
tions with an electrostatic and polarization nature. The MLHF-AB
reference wave function introduces the electron repulsion effects
between solute and solvent, as well as an approximated HF treat-
ment of the polarization.

The approaches have been applied to the calculation of static
and dynamic linear polarizabilities (at the CC2 and CCSD lev-
els) of the PNA-in-DIO, PhCN-in-ACN, and PhCN-in-THF systems.
To sample the solute-solvent phase-space, the calculations have
been run on various snapshots extracted from classical MD simu-
lations. Overall, this protocol gives a consistent physical descrip-
tion of the properties and interactions at work in a complex envi-
ronment. The computed results have been rationalized in terms
of the different solute-solvent physico-chemical interactions mod-
eled by each solvation approach and compared with the available
experimental data. In all cases, we have obtained an overall good
agreement with the reference measurements, in particular when
Pauli repulsion effects, which are introduced in the three-layer
approaches, are taken into account.

To further increase the agreement with experimental results,
the three-layer model could be further improved to include dis-
persion effects between the solute and the solvent. Also, the qual-
ity of long-range electrostatics and polarization effects can be in-
creased by including an additional source of polarization in the
FQ force field in terms of fluctuating dipoles (FQFµ) to account
for anisotropic interactions.123–125 Finally, the protocol can be ex-
tended to the treatment of higher-order properties, such as first-
hyperpolarizabilities (β).
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