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A B S T R A C T 

The 21-cm signal from neutral hydrogen in the early universe will provide unprecedented information about the first stars and 

galaxies. Extracting this information, ho we ver, requires accounting for many unknown astrophysical processes. Seminumerical 
simulations are key for exploring the vast parameter space of said processes. These simulations use approximate techniques such 

as excursion-set and perturbation theory to model the 3D evolution of the intergalactic medium, at a fraction of the computational 
cost of hydrodynamic and/or radiative transfer simulations. Ho we v er, e xploring the enormous parameter space of the first galaxies 
can still be computationally e xpensiv e. Here, we introduce 21CMFISH , a Fisher-matrix wrapper for the seminumerical simulation 

21CMFAST . 21CMFISH facilitates efficient parameter forecasts, scaling to significantly higher dimensionalities than MCMC 

approaches, assuming a multi v ariate Gaussian posterior. Our method produces comparable parameter uncertainty forecasts to 

previous MCMC analyses but requires ∼10 

4 × fewer simulations. This enables a rapid way to prototype analyses adding new 

physics and/or additional parameters. We carry out a forecast for HERA using the largest astrophysical parameter space to date, 
with 10 free parameters, spanning both population II and III star formation. We find X-ray parameters for the first galaxies could 

be measured to sub-per cent precision, and, though they are highly degenerate, the stellar-to-halo mass relation and ionizing 

photon escape fraction for population II and III galaxies can be constrained to ∼ 10 per cent precision (logarithmic quantities). 
Using a principal component analysis, we find HERA is most sensitive to the product of the ionizing escape fraction and the 
stellar-to-halo mass fraction for population II galaxies. 

Key words: galaxies: high-redshift – dark ages, reionization, first stars. 
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 I N T RO D U C T I O N  

he cosmic 21-cm signal will soon open a new window on the
arly universe. The signal is a net absorption or emission of 21-
m photons relative to the cosmic microwave background (CMB) 
y neutral hydrogen gas in the intergalactic medium (IGM) that 
epends sensitively on the formation redshift and properties of the 
niverse’s first stars and galaxies, (see e.g. re vie ws by Furlanetto
006 ; Morales & Wyithe 2010 ; Pritchard & Loeb 2012 ; Mesinger
019 ). When the first stars form ( z ∼ 30), their ultraviolet (UV)
adiation couples the spin temperature of neutral hydrogen to the 
ooler kinetic temperature of the gas, via the Wouthuysen–Field 
ffect (e.g. Hirata 2006 ), driving a net absorption of CMB photons
t 21-cm wavelengths. Later, as the galaxy population builds up, 
-ray emission from the first galaxies is expected to heat the IGM,
 E-mail: charlotte.mason@nbi.ku.dk 
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riving the 21-cm signal into emission ( z � 15), and eventually,
s hydrogen reionizes, the signal decays to zero ( z � 10). As the
ormation redshift and abundance of the first stars is highly sensitive
o the build up of low mass dark-matter haloes ( M h ∼ 10 6–8 M �)
nd astrophysical feedback effects which go v ern star formation, 
he redshift evolution of the 21-cm signal can be used to constrain
strophysical and cosmological properties in the early universe. This 
ill be an exciting way to see beyond the limits of optical and near-

nfrared telescopes. 
In the coming decade, a number of experiments will reach the

xpected sensitivity required to measure the 21-cm power spectrum 

t z > 6, including e.g. the Hydrogen Epoch of Reionization Array
HERA; DeBoer et al. 2017 ; The HERA Collaboration et al. 2022b )
nd the Square Kilometer Array (SKA; Koopmans et al. 2015 ), while
urrent instruments have set strong upper limits: the Murchison 
idefield Array (MWA Tingay et al. 2013 ; Trott et al. 2020 ) and

he Low Frequency Array (LOFAR; van Haarlem et al. 2013 ; Gehlot
t al. 2019 ; Mertens et al. 2020 ), and a claimed first measurement
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f the 21-cm global signal has been made at z ∼ 18 (Bowman et al.
018 though cf. Hills et al. 2018 ; Singh et al. 2022 ). To interpret these
pcoming data, it is imperative to compare observations to models
hich encompass as much of the unknown physics of the early
niverse as possible. In recent years, there has been a particular effort
o create parametric models which describe the key astrophysical
nd cosmological mechanisms which could affect the 21-cm signal
e.g. 21CMFAST 1 ; Mesinger & Furlanetto 2007 ; SIMFAST21 ; Santos
t al. 2010 ; Visbal & Loeb 2010 ; Mesinger, Furlanetto & Cen 2011 ;
REION ; Battaglia et al. 2013 ; ARES ; Mirocha 2014 ; REIONYUGA ;
ajumdar et al. 2014 ; GRIZZLY ; Ghara, Choudhury & Datta 2015 ;

CRITDRAGONS ; Mutch et al. 2016 ; Mondal, Bharadwaj & Majumdar
017 ; Choudhury & Paranjape 2018 ; Murray et al. 2020 ; ASTRAEUS

 Hutter et al. 2021 ). 
Unknown physics in the early universe determines the formation

f the first stars and galaxies and the heating and ionization of
he IGM which in turn sets the amplitude and spatial structure
f the 21-cm signal. For example: the strength of star formation
eedback in low-mass haloes; Lyman–Werner feedback; the impact
f streaming velocities between baryons and dark matter; the typical
-ray emission of early galaxies; and the escape fraction of hydrogen

onizing photons from galaxies all contribute to the strength of the
1-cm signal via their impact on the formation redshifts and typical
ias of the first galaxies, the level of inhomogeneous heating of
he IGM during cosmic dawn, and the rate at which hydrogen is
eionized (e.g. Mu ̃ noz et al. 2022 ). The degeneracies between some
f these effects have been explored (e.g. Park et al. 2019 ; Qin et al.
020 , 2021a ) but due to computational inefficiencies there has not
een a thorough investigation of the degeneracies between effects
hat go v ern population II and population III star formation. It is
urthermore unclear how much the astrophysical effects will hamper
ur efforts to understand the underlying cosmology: for example,
itwell et al. ( 2014 ), Mu ̃ noz, Dvorkin & Cyr-Racine ( 2020 ), and
ones et al. ( 2021 ) have explored the impact of warm, fuzzy, and
elf-interacting (ETHOS) dark-matter models on the 21-cm signal,
espectively, but did not carry out a full exploration of the degen-
racies with astrophysical parameters. Only a few key observables,
ike the shape of the velocity-induced acoustic oscillations (VAOs;

u ̃ noz 2019b ) are immune to astrophysical uncertainties. 
Once 21-cm detections are available, one would ideally map out

he multidimensional posterior of astrophysics and cosmology using
ayesian inference techniques such as MCMC or Nested sampling

e.g. 21CMMC 

2 ; Greig & Mesinger 2015 , 2017 ). Ho we ver, mapping
ut the full posterior is extremely expensive in the high dimensional
arameter space of generalized galaxy and cosmological models.
efore having a detection, ho we ver, decisions on observational

trategies, telescope design, synergies, etc. can be guided by much
aster (albeit more approximate) forecasting techniques, such as
isher-matrix analyses 3 

In this paper, we use a Fisher-matrix analysis to explore an
nprecedentedly large 21CMFAST astrophysical parameter space. We
emonstrate that the Fisher-matrix analysis produces comparable
arameter uncertainties to an MCMC with 21CMMC (which was
NRAS 524, 4711–4728 (2023) 

 https:// github.com/21cmfast/ 21cmFAST 

 https:// github.com/21cmfast/ 21CMMC 

 Fisher-matrix analyses assume a ‘fiducial’ (i.e. maximum likelihood) param- 
ter set, and computes a multi v ariate Gaussian posterior around that point. 
hese are reasonable approximations, given that we already have a decent 
stimate of a ‘fiducial’ model using current data, and previous inference 
esults suggest that the posterior is likely only weakly multimodal/non- 
aussian (e.g. Qin et al. 2021a , b ; The HERA Collaboration et al. 2022a ). 
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estricted to population II galaxy parameters only), reco v ering the
ame degeneracies and very comparable error bars. Having validated
ur approach, we carry out a Fisher-matrix analysis for the largest
arameter set to date in 21CMFAST : 10 free parameters, including both
opulation II and population III galaxies o v er z ∼ 5–30. Our method
educes the computational cost significantly compared to a typical
1CMMC run: requiring a factor ∼10 4 fe wer indi vidual simulations.
e carry out a principal component analysis of our Fisher matrix

o determine which combinations of parameters will be most easily
onstrained by observations. We provide a public release of our code
1CMFISH . 4 , which is a PYTHON wrapper for 21CMFAST to perform
isher-matrix analyses. 
This approach will enable us to easily add new parameters, e.g.

osmological and dark-matter parameters, to quickly assess how well
pcoming 21-cm experiments will be able to constrain them, which
ill be the topic of a future work (Verwohlt et al. in preparation). The
isher matrix could also be used for prototyping instrument designs
nd instrumental noise estimates. 

This paper is structured as follows. Section 2 describes our method
or generating the 21-cm signal with 21CMFAST , the astrophysical
odel and our Fisher-matrix formalism in 21CMFISH . Section 3

escribes our results of the comparison between the Fisher-matrix
nalysis and MCMC, and our exploration of the extended model
arameter space. We discuss our results in Section 4 and summarize
ur conclusions in Section 5 . 
In this work, we fix the cosmological parameters to the best fit

rom Planck 2018 data (TT,TE,EE + lowE + lensing + BAO from
lanck Collaboration VI 2020 ), and all distances are comoving unless
pecified otherwise. 

 M E T H O D S  

ere, we provide a brief overview of the astrophysical model
Section 2.1 ) and the 21-cm signal (Section 2.2 ), our Fisher-matrix
nalysis approach (Section 2.3 ), and the generation of simulated
bservations (Section 2.4 ). The parametric 21CMFAST astrophysical
odel we use is described by Park et al. ( 2019 ), Qin et al. ( 2020 ,

021a , b ), and Mu ̃ noz et al. ( 2022 ) and we refer readers there for
ore details. 

.1 The astrophysical model 

e use the public code 21CMFAST (Mesinger & Furlanetto 2007 ;
esinger et al. 2011 ; Murray et al. 2020 ) to model the 21-cm signal.
e use version 3.1.0 5 which includes a parametric model for galaxy

ormation in both atomic cooling galaxies and molecular cooling
alaxies, accounting for all major feedback mechanisms on these
alaxies, as well as detailed IGM physics such as inhomogeneous
ecombinations. The model is fully described by Park et al. ( 2019 ),
in et al. ( 2020 ), and Mu ̃ noz et al. ( 2022 ) and we refer the reader

here for more details. Park et al. ( 2019 ) describe the halo-mass
ependent star formation prescription for population II galaxies, Qin
t al. ( 2020 ) added a prescription for population III galaxies, and
u ̃ noz et al. ( 2022 ) self-consistently included feedback effects on

opulation III star formation – Lyman–Werner feedback and relative
elocities between dark matter and baryons. Here, we provide a brief
 v erview of the astrophysical model. 
 ht tps://github.com/charlot tenosam/21cmfish 
 https:// github.com/21cmfast/ 21cmFAST/releases/ tag/ 3.1.0 

https://github.com/21cmfast/21cmFAST
https://github.com/21cmfast/21CMMC
https://github.com/charlottenosam/21cmfish
https://github.com/21cmfast/21cmFAST/releases/tag/3.1.0
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As haloes form hierarchically, we assume that the first generation 
f stars (population III) form out of pristine gas in molecular 
ooling galaxies, where gas can cool via transitions in H 2 ( T vir �
0 3 K, M h � 10 6 M �, e.g. Barkana & Loeb 2001 ), whereas later
enerations of stars (population II) form in more massive atomic 
ooling galaxies, where gas cools through atomic transitions ( T vir �
0 4 K, corresponding to M h � 10 8 M �), as haloes grow and the
alaxies’ ISM is enriched. 21CMFAST models these two galaxy 
opulations separately, as described below. Throughout this work, 
e use PopII or superscript ‘II’ to refer to atomic cooling galaxies
ith population II stars, and PopIII or superscript ‘III’ to refer to
olecular cooling galaxies with population III stars. 
The number densities of these galaxies are given by: 

d n g 
d M h 

= 

d n 

d M h 
× f duty ( M h ) , (1) 

here d n 
d M h 

is the halo mass function 6 , and f duty accounts for the
uppression of galaxy formation in haloes below a certain mass scale 
ue to a combination of cooling and feedback processes: 

 duty = 

⎧ ⎪ ⎨ 

⎪ ⎩ 

exp 
(
−M 

II 
turn 

M h 

)
PopII 

exp 
(
−M 

III 
turn 

M h 

)
exp 

(
− M h 

M atom 

)
PopIII . 

(2) 

ere, the second term for population III galaxies produces a smooth 
ransition between the two galaxy populations. The characteristic 

ass scales where galaxy formation is suppressed, M 

II 
turn , M 

III 
turn , may

e set as a free parameter to be inferred (e.g. Park et al. 2019 ) or
odelled physically as a function of redshift and local radiative 

ackground strength (e.g. Mu ̃ noz et al. 2022 ). 
For population II atomic cooling galaxies, the suppression is 

etermined by atomic cooling and photoionization feedback, and 
as a characteristic mass scale 

 

II 
turn = max [ M atom 

, M ion ] (3) 

here M atom 

is the minimum mass scale of atomic cooling (cor-
esponding to a virial temperature of ∼10 4 K, e.g. Barkana & Loeb
001 ; Oh & Haiman 2002 ), M ion is the mass scale where photoheating
eedback from inhomogeneous reionization becomes important (e.g. 
obacchi & Mesinger 2014 ). 
For molecular cooling population III galaxies, in addition to the 

hotoionization feedback, we follow Mu ̃ noz et al. ( 2022 ) (see also
ialkov et al. 2013 ; Mu ̃ noz 2019a ) and include the two dominant
ources of feedback that reduce the efficiency of star formation 
n molecular cooling haloes: (i) Lyman–Werner feedback, due to 
tellar emission at 11.2–13.6 eV which ef fecti vely photodissociates 
olecular hydrogen, stalling the cooling of gas in population III 

alaxies and thus impeding star formation; and (ii) dark matter–
aryon streaming velocities which reduce the accretion of gas into 
ark-matter haloes, which both slows the formation of haloes, due 
o the lower gravitational potential, and reduces the gas available to 
orm stars. 

The strength of these two effects depends on the Lyman–Werner 
ackground flux ( J 21 , in units 10 −21 erg s −1 cm 

−2 Hz −1 sr −1 ) and the
elativ e v elocity between dark matter and baryons ( v cb in km s −1 ) as
 function of redshift. Therefore, 

 

III 
turn = max [ M mol , M ion ] , (4) 
 Halo mass functions are created using the Extended Press-Schechter for- 
alism (e.g. Sheth, Mo & Tormen 2001 ) using a top-hat window function. 

w  

i  

a

here we use the parametrization of Mu ̃ noz et al. 
 2022 ) 

 mol ( z, v cb , J 21 ) = 

M mol , crit 

(1 + z) 3 / 2 
f v cb ( v cb ) f LW 

( J 21 ) , (5) 

here M mol , crit = 3 . 3 × 10 7 M � is the (no feedback) molecular
ooling threshold, corresponding to T vir ≈ 10 3 K (e.g. Barkana & 

oeb 2001 ), and f LW 

and f v cb are the strength of Lyman–Werner and
elativ e-v elocity feedback, respectively. 

The strength of the Lyman–Werner feedback is parametrized as 
Machacek, Bryan & Abel 2001 ; Visbal et al. 2014 ): 

 LW 

( J 21 ) = 1 + A LW 

× ( J 21 ) 
βLW , (6) 

here A LW 

and βLW 

are free parameters. In the following, we set
LW 

= 0.6, as simulations predict a small range for this parameter
e.g. Skinner & Wise 2020 ; Kulkarni, Visbal & Bryan 2021 ; Schauer
t al. 2021 ) and leave A LW 

free, and study whether it can be
etermined from observations. We model the LW intensity, J 21 , in the
ame way as Qin et al. ( 2020 ), using the PopII- and PopIII-dominated
pectral energy distributions (SEDs) from Barkana & Loeb ( 2005 )
o calculate the LW emissivity. 

The strength of the relativ e-v elocity feedback is modelled 
s 

 v cb ( v cb ) = 

(
1 + A v cb 

v cb 

σcb 

)βv cb 

, (7) 

here σ cb ≈ 30 km s −1 is the rms v elocity (Tseliakho vich &
irata 2010 ). We follow Mu ̃ noz et al. ( 2022 ) and use A v cb = 1

nd βv cb = 1 . 8, as these values have been recovered consistently
n independent simulations (Kulkarni et al. 2021 ; Schauer et al.
021 ). 
The stellar mass ( M � ) to halo mass ratio is described by a power

aw (e.g. Moster, Naab & White 2013 ; Behroozi & Silk 2015 ; Mutch
t al. 2016 ; Sun & Furlanetto 2016 ; Tacchella et al. 2018 ; Yung et al.
020 ; Sabti, Mu ̃ noz & Blas 2022a , b ) 

M � 

M h 

= 

�b 

�m 

× min 

⎡ 

⎢ ⎢ ⎣ 

1 , 

⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

f II �, 10 

(
M h 

10 10 M �

)αII 
� 

PopII 

f III �, 7 

(
M h 

10 7 M �

)αIII 
� 

PopIII 

⎤ 

⎥ ⎥ ⎦ 

, (8) 

ith four free parameters ( f II �, 10 , α
II 
� , f 

III 
�, 7 , α

III 
� ) which set the normal-

zation at the pivot mass and low mass slope for galaxies forming
opulation II and population III stars, respectively. We note that 
lthough the stellar massn – halo mass relation turns o v er at high
asses ( M h ∼ 10 12 M �; e.g. Behroozi et al. 2013 ; Mason, Trenti &
reu 2015 ), the radiation fields at these high redshifts are determined
y the vast majority of haloes which have much lower masses; thus
 single power-law slope suffices for our purposes. This power-law 

lope encapsulates additional mass-dependent feedback processes, 
uch as supernovae feedback. 

We assume the star-formation rate in haloes is related to their
ynamical time, which during matter domination scales as H 

−1 , to
ive us 

d M � 

d t 
= 

M � 

t � H ( z) −1 
, (9) 

here t � can be a free parameter, but as SFR has the ratio f � / t � there
s a strong de generac y between these parameters (Park et al. 2019 ),
nd t � can typically be set to a constant. 
MNRAS 524, 4711–4728 (2023) 
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M

Table 1. 21CMFAST parameters and their fiducial values for our two runs. For a detailed description, see Section 2.1 . 

Park et al. ( 2019 ) EOS21 (Mu ̃ noz et al. 2022 ) 
Parameter Description Population Fiducial Vary? Fiducial Vary? 

αII 
� Stellar–halo mass power-law slope II 0.50 � 0.50 � 

log 10 f 
II 
�, 10 Stellar–halo mass normalization (at M h = 10 10 M �) II −1.30 � −1.25 � 

t � SFR timescale as a fraction of the Hubble time both 0.50 � 0.50 –
log 10 M turn Halo mass turno v er for atomic cooling haloes [M �] II 8.7 � – –
αIII 

� Stellar–halo mass power-law slope III – – 0.0 � 

f III �, 7 Stellar–halo mass normalization (at M h = 10 7 M �) III – – −2.50 � 

αesc Ionizing escape fraction–halo mass power-law slope both −0.50 � −0.30 � 

log 10 f 
II 
esc , 10 Ionizing escape fraction normalization (at M h = 10 10 M �) II −1.00 � −1.35 � 

log 10 f 
III 
esc , 7 Ionizing escape fraction normalization (at M h = 10 7 M �) III – – −1.35 � 

log 10 L 

II 
X / Ṁ � X-ray luminosity per SFR [erg s −1 M 

−1 
� yr] II 40.5 � 40.5 � 

log 10 L 

III 
X / Ṁ � X-ray luminosity per SFR [erg s −1 M 

−1 
� yr] III – – 40.5 = log 10 L 

II 
X 

E 0 minimum X-ray energy which escapes galaxies [eV] both 500 � 500 � 

A v cb Amplitude of DM-baryon relative velocity feedback III – – 1.00 –
A LW 

Amplitude of Lyman-Werner feedback III – – 2.00 � 
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Galaxies hosting population II and population III stars can also
ave different hydrogen ionizing photon escape fractions 

 esc = 

⎧ ⎪ ⎨ 

⎪ ⎩ 

f II esc , 10 

(
M h 

10 10 M �

)αesc 

PopII 

f III esc , 7 

(
M h 

10 7 M �

)αesc 

PopIII , 
(10) 

here f II esc , 10 and f III esc , 7 set the normalization of the escape fractions
nd αesc their power-law slopes. Note that, for simplicity, we take
esc to be the same for each population of galaxies as we assume it

s a function of halo mass only. 
These early populations of galaxies are also expected to produce

-rays, most likely from high mass X-ray binaries (e.g. Furlanetto
006 ; Mineo, Gilfano v & Sun yaev 2011 ; McQuinn 2012 ; Fragos
t al. 2013 ). We assume the specific X-ray luminosity is proportional
o the galaxy SFR and the X-ray SED is a power law with energy
pectral index = −1, such that the specific X-ray luminosity per unit
FR is 

d L X / Ṁ � 

d E 

= 

E 

−1 ∫ 2 keV 
E 0 

d E E 

−1 
×

{ 

L 

II 
X ,< 2 keV / Ṁ � PopII 

L 

III 
X ,< 2 keV / Ṁ � PopIII , 

(11) 

here L 

II 
X ,< 2 keV / Ṁ � and L 

III 
X ,< 2 keV / Ṁ � are the total soft-band X-ray

uminosity per unit SFR in atomic cooling and molecular cooling
alaxies, respectively. In the following, we refer to these as L 

II 
X / Ṁ � 

nd L 

III 
X / Ṁ � and assume the y hav e the same value = L X / Ṁ � ,

oti v ated by simulations of high mass X-ray binaries in metal-poor
nvironments in the early universe (Fragos et al. 2013 ) – though
t is possible to vary them independently. E 0 is the cutoff in X-ray
nergies which can escape galaxies (e.g. X-rays with energy < E 0 are
bsorbed by the ISM of the host galaxies and thus do not interact
ith the IGM (e.g. Das et al. 2017 ). X-rays at higher energies ( E >

 keV) have a mean free path greater than the Hubble length and thus
lso do not efficiently heat the IGM. 

The astrophysical model described abo v e has a total of 14 free
arameters. A summary of these parameters and which ones we vary
n our analyses is given in Table 1 . 

.2 Modelling the 21-cm signal 

ydrogen atoms have heavily disallowed hyperfine transitions, key
mongst them is the 21-cm line between the singlet and triplet states
NRAS 524, 4711–4728 (2023) 
f the 1 S orbital. The rate of these ‘spin-flip’ transitions is determined
y the relative population of atoms in either states 

n 1 

n 0 
= 

g 1 

g 0 
e 

− T ∗
T S (12) 

here g i are the spin de generac y factors of each state (with g 1 / g 0 =
 for 21-cm transitions), T ∗ = E 10 / k B = 68 mK corresponding to the
ransition energy E 10 , and T S � T ∗ is the spin temperature . In the
arly universe, T S is coupled to the kinetic temperature of the IGM
hrough collisional excitations (Loeb & Zaldarriaga 2004 ), but by
 ∼ 30 collisions become rarer and interactions with CMB photons
ominate, driving a thermal equilibrium between T S and T CMB ,
esulting in no net absorption or emission of 21-cm photons relative
o the CMB blackbody. Ho we ver, once the first stars form ( z ∼ 20–
0), this thermal equilibrium is broken due to the injection of Ly α
hotons (the Wouthuysen–Field effect; e.g. Hirata 2006 ) and the
pin temperature couples to the lower temperature of the IGM gas,
esulting in a net absorption of CMB photons at 21-cm wavelengths.
ater, as the IGM is heated by X-rays from the first galaxies ( z ∼
0–15), the spin temperature exceeds the CMB temperature resulting
n a net emission of 21-cm photons. Once hydrogen is reionized ( z

6–10), the density of neutral hydrogen drops dramatically and the
osmological 21-cm signal is negligible (see e.g. Furlanetto, Oh &
riggs 2006 ; Morales & Wyithe 2010 ; Pritchard & Loeb 2012 , for 

e vie ws). 
The goal of Cosmic Dawn 21-cm experiments is to measure the

1-cm brightness temperature, T 21 , the offset of the 21-cm signal
elative to the temperature of the cosmic microwave background,
 CMB (e.g. Furlanetto et al. 2006 ): 

 21 = 

T S − T CMB 

1 + z 
(1 − e −τ21 ) (13) 

≈ 27 x HI (1 + δ) 
H ( z) 

d v t / d r + H ( z) 

(
1 − T CMB 

T S 

)

×
(

1 + z 

10 

0 . 15 

�m 

h 

2 

)1 / 2 (
�b h 

2 

0 . 023 

)
mK . (14) 

here the second line is the τ 21 � 1 Taylor expansion. Here, x HI is
he neutral hydrogen fraction, T S is the spin temperature of the gas,
= ρ/ ρ − 1 is the o v erdensity of the gas, and d v t /d r is the gradient
f the line-of-sight velocity component. All quantities are computed
t z = ν0 / ν − 1, where ν0 = 1420 MHz is the 21-cm rest-frame
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7 Simulation data available at: https:// www.dropbox.com/ sh/dqh9r6wb0s68j 
fo/AACc9ZCqsN0SQ JJN7GRVuqDa?dl = 0 
8 The variation is in either linear or logarithmic quantities corresponding to 
the parameters in Table 1 , i.e. we vary log 10 f 

II 
�, 10 ± 3 per cent of its fiducial 

value. 
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requency. This Taylor expansion is useful for physical intuition, 
hough we note that 21CMFAST computes the full exp ( − τ 21 ) 
erm. 

To create the neutral fraction, spin temperature, density, and 
elocity fields required to find T 21 , we use the public code 21CMFAST

Mesinger et al. 2011 ; Park et al. 2019 ; Murray et al. 2020 ), using
he astrophysical model described abo v e in Section 2.1 and we refer
he reader to these works and references therein. In Section 2.4 , we
escribe the parameters and setup for our 21CMFAST simulations. 

.3 Fisher-matrix formalism 

iven a posterior distribution P ( θ | data) for model parameters θ , the
isher-matrix components are given by 

 ij = −
〈 

∂ 2 ln P 

∂ θi ∂ θj 

〉 

, (15) 

he Cram ́er–Rao theorem states that any unbiased estimator for the 
arameters will produce a covariance matrix that is no more accurate 
han F 

−1 : thus the Fisher matrix can be used to estimate the minimum
ncertainties of parameters given observations (e.g. Albrecht et al. 
009 ). 
Here, we focus on the 21-cm power spectrum but the same analysis

an be done with the 21-cm global signal (e.g. Liu et al. 2013 ;
u ̃ noz et al. 2020 ), or any other observ able. Pre vious works have

sed Fisher-matrix analyses of simulated 21-cm observations with 
1cmfast to forecast constraints, for example, on reionization and 
osmological parameters, and small-scale dark-matter structure (e.g. 
ober et al. 2014 ; Ewall-Wice et al. 2016 ; Liu & Parsons 2016 ;
himabukuro et al. 2017 ; Mu ̃ noz et al. 2020 ; Shaw, Bharadwaj &
ondal 2020 ; Greig, Ting & Kaurov 2022 ). Ho we ver, these works

ll used a restricted parameter space, with most using the 3 parameter
strophysical model of 21CMFAST V1 . Here, we will use the extended
1CMFAST V3 parameter space (with 14 total degrees of freedom), 
hich characterizes the UV and X-ray emission from both population 

I and III star formation, as detailed in Section 2.1 . 
Given a list of parameters θ i , and assuming the posterior distribu-

ion can be described as Gaussian (i.e. ln P ∝ − χ2 ), we define the
isher matrix for the 21-cm power spectrum  

2 
21 ( k, z) as 

 ij = 

∂ 2 χ2 

∂ θi ∂ θj 

= 

∑ 

i k ,i z 

∂  

2 
21 ( k, z) 

∂ θi 

∂  

2 
21 ( k, z) 

∂ θj 

1 

σ 2 
 

2 ( k, z) 
, (16) 

here σ 2 
 

2 is the measurement error in the power spectrum with k 
in i k and z bin i z , and we have assumed uncorrelated errors between
 and z bins (in principle, we can compute the full measurement
ovariance matrix but we follow the assumption of uncorrelated 
rrors to more easily compare to previously published MCMC 

esults, e.g. Park et al. 2019 ). Our code 21CMFISH calculates the
eri v ati ves with respect to a set of input parameters to produce the
isher matrix (equation 16 ). 
The inverse of the Fisher matrix is the covariance matrix C = F 

−1 ,
nd with this definition, it is easy to see that the forecasted uncertainty
n the i th parameter is simply σ ( θi ) = 

√ 

C ii . 

.4 Simulated 21-cm obser v ations and uncertainties 

s described in Section 2.3 abo v e, we can use the Fisher matrix to
erive the lowest possible estimate of the parameter uncertainties 
i ven observ ations. In this work, we generate parameter constraints
rom two sets of mock observations, each serving a specific purpose 
(i) We validate our Fisher-matrix approach by comparing to 
he MCMC posterior of Park et al. ( 2019 ). We use their fiducial
arameters, which only includes population II star formation in 
tomic-cooling galaxies. Simulation boxes have a comoving volume 
f (250 Mpc) 3 on a 128 3 grid from z = 5.9–28 following Park et al.
 2019 ) to match the HERA observing bandwidth. 

(ii) An exploration of the updated ‘Evolution of Struc- 
ure’(EOS21) simulation presented by Mu ̃ noz et al. ( 2022 ) 7 . The
OS21 parameters include star formation in minihaloes, and the 

mpact of Lyman–Werner feedback and relativ e v elocities between 
aryons and dark matter. The PopII parameters are based on those
nferred by Qin et al. ( 2021b ), who used the Planck Collaboration
LVII ( 2016 ) electron scattering optical depth, rest-frame UV 

uminosity functions (LFs; Bouwens et al. 2015 ), dark pixel fraction
McGreer, Mesinger & D’Odorico 2015 ), and Ly α forest optical 
epth (Bosman et al. 2018 ) in their likelihood. On the other hand, the
opIII parameters are difficult to constrain with current observations, 
nd so were chosen fairly arbitrarily. We note that PopIII star
ormation in their fiducial model only dominates the total SFRD 

t z � 15. The simulation boxes we use have a comoving volume of
400 Mpc) 3 on a 200 3 grid from z = 5–30. 

The fiducial parameters for these runs are given in Table 1 . Our
oti v ation for choosing these sets of fiducial parameters is that they

roduce UV LFs, a reionization history and CMB scattering optical 
epth that are consistent with current observations at z ∼ 6–10, 
nd so are thus likely to represent a reasonable parameter space
or high redshift galaxy properties. We use ≥(250 Mpc) 3 to ensure
onvergence of the power spectrum in the range ∼0.1–1 Mpc −1 

hich we will consider belo w, follo wing Kaur, Gillet & Mesinger
 2020 ). Our resolution of ≈2 Mpc per voxel should also provide a
onverged power spectrum: Greig et al. ( 2022 ) demonstrated that
his resolution, with a similar volume to our simulations, provides 
onv erged wav elet scattering transformation coefficients (a non- 
aussian probe, complementary to the power spectrum) for the 21- 

m signal. 
21-cm power spectra are generated by dividing light-cones into 

chunks’ following Greig & Mesinger ( 2018 ). For our comparisons
ith Park et al. ( 2019 ), we follow their approach and divide the light-

ones into 12 chunks of equal comoving volume. For our EOS21
un, we divide the light-cone into chunks corresponding to 8 MHz
andwidths, which more closely resembles what would be done with 
ata. The 21-cm global signal, reionization history and power spectra 
t a few redshifts for the two models are plotted in Fig. 1 . 

To calculate the Fisher matrices, we vary each parameter 
3 per cent of its fiducial value and calculate two-sided deriva- 

i ves 8 , finding the v ariation step-size such that the deri v ati ves were
on verged. We tested con vergence of the deri v ati ves and found
3 per cent w ork ed in all cases with the exception of log 10 L X / Ṁ � 

hich we varied by ±0 . 1 per cent and log 10 M turn which we vary by
1 per cent , as these parameters have narrower likelihoods in the 

1-cm signal. We verified that one-sided deri v ati ves produced almost
dentical values. 

Thus, to create a deri v ati ve ∂  

2 
21 ( k, z) / ∂ θi for each parameter, we

se 3 simulated power spectra: the fiducial, one setting the parameter
o θ i (1 + X ) and one with θ i (1 − X ), where X is the variation (usually
MNRAS 524, 4711–4728 (2023) 

https://www.dropbox.com/sh/dqh9r6wb0s68jfo/AACc9ZCqsN0SQ_JJN7GRVuqDa?dl=0
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Figure 1. Comparison of our two fiducial models, with Park et al. ( 2019 ) in orange, EOS21 in blue. Top left: Global 21-cm signal. Top right: reionization 
history. We also plot reionization history constraints derived from observations of the Ly α equi v alent width distribution (star, Mason et al. 2018 ; Hoag et al. 
2019 ; Mason et al. 2019 ; Whitler et al. 2020 ); the Ly α luminosity function (hexagon; Morales et al. 2021 ), the clustering of Ly α emitting galaxies (square; 
Ouchi et al. 2010 ; Sobacchi & Mesinger 2015 ); Ly α and Ly β forest dark pixel fraction (circle; McGreer et al. 2015 ); and QSO damping wings (diamond, Greig 
et al. 2017 ; Davies, Becker & Furlanetto 2018 ; Greig, Mesinger & Ba ̃ nados 2019 ; Wang et al. 2020 ). Lower: example power spectra of our two fiducial models 
at four redshifts. We show our fiducial ‘moderate’ HERA noise estimates for each case as the filled regions, and the ‘pessimistic’ noise as dashed blue line, 
including Poisson noise and a 20 per cent modelling error added in quadrature. We show the errors only in the k -space window, where we calculate the likelihood 
(0.1–1 Mpc −1 ). Note that, due to a spline interpolation of the power spectra errors by Park et al. ( 2019 ), the low k noise estimates are smooth, unlike those in 
the EOS21 model. For comparison, we also plot the 95 per cent confidence upper limit at z = 10.4 from HERA Phase I observations (The HERA Collaboration 
et al. 2022b ). 
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 per cent as described). As we only need to create one fiducial
imulation, for N parameters, we create a total of 2 N + 1 simulations
o calculate the Fisher matrix (equation 16 ). 

To make forecasts for upcoming observations with HERA, we
se the PYTHON package 21CMSENSE 9 (Pober et al. 2014 ). We run
hree different setups, which we now describe. For the comparison
ith Park et al. ( 2019 ), we use the same noise as their study, which

s essentially identical to the ‘pessimistic’ case described below.
he noise was calculated assuming 1000 h of observation using 331
ntennae. 

For our EOS21 forecasts (with PopIII stars in molecular cooling
alaxies), we find the noise in two cases, with moderate and
essimistic fore grounds, respectiv ely. The dominant sources of noise
or 21-cm observations are the instrumental noise of the antennae
nd large foreground contamination, from both our Galaxy and
he atmosphere. The combination of these noise sources can be
arametrized by a ‘system temperature’, T sys ( ν) which is the total
bserved 21-cm brightness temperature (e.g. Morales & Wyithe
010 ). The foregrounds substantially contaminate the signal in the
ourier plane, particularly in the so-called ‘wedge’ (e.g. Liu et al.
009 ; Pober et al. 2013 ; Liu & Shaw 2020 ), within wavenumbers k � 
NRAS 524, 4711–4728 (2023) 

 https:// github.com/jpober/ 21cmSense 

F  

t  

c  
a + bk ⊥ 

. Here, k � and k ⊥ 

are the wavenumbers in the line-of-sight
nd perpendicular direction, and a (called the super -horizon b uffer
n 21CMSENSE ) and b are constants that parametrize the severity of
he foregrounds and thus which regions of k -space will be discarded
n the analysis. 

In the moderate foregrounds case, we use the ‘moderate’ fore-
rounds model in 21CMSENSE , with a wedge superhorizon buffer
 = 0 . 1 h Mpc −1 and a HERA system temperature (DeBoer et al.
017 ) of 

 sys ( ν) = 100 K + 120 K ( ν/ 150MHz ) −2 . 55 . (17) 

n the pessimistic case, we increase the wedge horizon buffer to a =
 . 15 h Mpc −1 , and use the default system temperature in 21CMSENSE ,
hich is ∼3 × larger than that of equation ( 17 ) (Pober et al. 2014 ).

n both cases, the antennae temperature is the same but this larger
ystem temperature is moti v ated by the sky temperature measured
y LOFAR (van Haarlem et al. 2013 ). In the pessimistic case, the
ignal-to-noise ratio of the power spectrum is lower by nearly an
rder of magnitude, and consequently increases the error bars on
ach parameter by approximately a factor of three, as we will see
igs 3 and 5 . This pessimistic case is comparable to that used in

he forecasts by Park et al. ( 2019 ). In both moderate and pessimistic
ases for EOS21, we assume 1 yr (1080 h) of data using 331 antennae

https://github.com/jpober/21cmSense
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cross the 50–250 MHz range (corresponding to the redshifts z ∼ 5–
8), divided in equal-width bands of 8 MHz. 
In all cases, we follow Park et al. ( 2019 ) and add Poisson noise

from the finite-size simulations) and a 20 per cent modelling error
o the power spectra in quadrature in addition to the Poisson noise
or the mock observations. We calculate the likelihood only in the k -
pace window 0.1–1 Mpc −1 , corresponding roughly to limits on the 
oreground noise and the shot noise, respectively. For the Park et al.
 2019 ) comparison, we calculate the likelihood o v er the redshift
ange z = 5.9–28.0 to match their analysis, and for EOS21, we
alculate the likelihood o v er z = 5.0–28.0 

 RESULTS  

ection 3.1 describes the validation of our Fisher-matrix approach by 
omparison to an MCMC by Park et al. ( 2019 ). Section 3.2 presents
orecasted constraints on the population II and population III galaxy 
ormation parameter space expected with HERA 1 yr observations, 
ssuming the EOS21 model from Mu ̃ noz et al. ( 2022 ). Section 3.3
resents the principal components of the Fisher matrix, providing 
nsight into the best constrained linear combinations of parameters. 
n Section 3.4 , we e v aluate whether the Fisher matrix can be used
or inference. 

.1 Comparison with Park et al. ( 2019 ) population II-only 
CMC 

o verify our Fisher-matrix approach, we compare with the MCMC 

nalysis by Park et al. ( 2019 ). Park et al. ( 2019 ) carried out
n inference on mock HERA observations to infer properties of 
opulation II galaxies. The parameters varied in this analysis are 
isted in Table 1 . 

To compare with Park et al. ( 2019 ), we construct simulations using
he same dimensions and redshift range, as described in Section 2.2 ,
nd with the same fiducial parameters, though with different initial 
onditions. We then divide light-cones into 12 chunks of equal 
omoving volume to create power spectra, replicating their approach, 
nd calculate the deri v ati ves of the po wer spectrum with respect to the
arameters of interest as described in Section 2.3 . To create the Fisher
atrix (equation 16 ) we use the same HERA noise estimate σ [  

2 ( k ,
)] as Park et al. ( 2019 ), which was obtained using 21CMSENSE .
o obtain the total uncertainty on the power spectrum, we add in
uadrature the HERA thermal noise plus the cosmic variance plus 
 20 per cent ‘modelling uncertainty’ on the power spectrum, again 
ollowing Park et al. ( 2019 ). 

The resulting 1, 2 σ error ellipses obtained using our Fisher matrix 
re shown in Fig. 2 , along with the 21cm-only 10 MCMC posteriors
y Park et al. ( 2019 ). We note that we plot the MCMC chains
roduced by Park et al. ( 2019 ), but do not exactly reproduce their
ublished posteriors and 68 per cent credible intervals due to some 
mall differences in burn-in steps and removal of local minima in the
osterior between that work and ours. The chains have 229 steps and
5 w alk ers. We remo v e the first 50 per cent of steps as burn-in and
lso remo v e ∼ 24 per cent of the chains which we identify as falling
nto local minima. The median maximum likelihood for the MCMC 

as L max ∼ 10 −4 and we remo v e chains in local minima –where the
ikelihood in the final step is < 10 −10 . 
0 Park et al. ( 2019 ) also show posteriors obtained by combining existing UV 

F observations with the mock 21 cm power spectra in the likelihood. 

a  

i
t
l  

a

Our Fisher-matrix approach clearly reco v ers the inferred degen- 
racies between parameters in all cases, and produces comparable 
ncertainties to those estimated using the MCMC. The MCMC con- 
ours and the Fisher ellipses are oriented similarly and have similar
llipticities demonstrating that the correlations between parameters 
re well captured by the Fisher matrix analysis. The marginalized 
8 per cent credible intervals on each parameter obtained with 
he Fisher matrix are within 40 per cent of those obtained with
he MCMC (with the exception of E 0 where the Fisher error is

50 per cent of the MCMC value). These results do not change 
ignificantly if we use the median inferred parameters obtained 
y Park et al. ( 2019 ), implying any difference in uncertainties is
ominated by the approximation of the posterior as Gaussian, rather 
han the position of the posterior peak. As noted in Section 2.3 ,
he Fisher matrix will give the minimum uncertainties, so we do
xpect our technique to slightly underestimate the errors compared 
o a full mapping of the posterior. Nevertheless, this remarkable 
greement validates our Fisher matrix approach as an efficient tool 
o explore 21-cm observational constraints on cosmology and astro- 
hysics, providing the parameter degeneracies remain approximately 
aussian, dramatically reducing the need for e xpensiv e MCMC runs.
or comparison, the MCMC run by Park et al. ( 2019 ) required 70 000

ndividual simulations, whereas our Fisher-matrix approach required 
nly 17. 
The parameter where the Fisher-matrix constraints are most 

ifferent from the MCMC is αII 
� . This is because Park et al. ( 2019 )

et a uniform prior on αII 
� = [ −0 . 5 , 1], whereas in the Fisher-matrix

pproach, we do not set any bounding conditions and make the
ssumption of a Gaussian likelihood, so the confidence ellipse can 
xtend to αII 

� > 1, making it broader than the MCMC posterior. 
Due to using the ‘pessimistic’ foreground model assumed (see 

ection 2.4 ), these forecasts find most parameters will be measured
t the 20 –30 per cent error level, with the exception of X-ray
arameters and M turn which can be measured to < 10 per cent
recision, whereas αII 

� and αesc are more difficult to measure precisely. 
s discussed by Park et al. ( 2019 ), the inclusion of independent
bservations that can constrain galaxy formation properties, for 
xample the UV luminosity function, can break degeneracies and 
educe parameter uncertainties to � 10 per cent precision. 

.2 Extended parameter space forecast 

iven that our Fisher-matrix approach recovers the same degenera- 
ies and very similar confidence intervals as an MCMC, we now
ake a forecast in an unexplored regime: 10 free astrophysical 

arameters go v erning both population II and population III galaxy
ormation, and the impact of streaming velocities and Lyman–

erner feedback on the formation of minihaloes, o v er the full
edshift range of the Cosmic Dawn 21-cm signal ( z ∼ 5–30).
ue to computational expense and current instrumental sensitivity, 
revious works have performed MCMC or Nested sampling in a more
imited parameter space, varying only PopII or PopIII parameters 
t a time (e.g. Qin et al. 2021a ; The HERA Collaboration et al.
022a , explored 7 and 9 parameters, respectively, roughly requiring 
10 5 individual simulations and ∼100 k CPUh). Our 21CMFISH 

alculation, by contrast, required only 21 individual simulations (as 
e fixed L 

II 
X / Ṁ � = L 

III 
X / Ṁ � ). Although the Fisher matrix assumes

 multi v ariate Gaussian posterior and the setting of physical priors
s less straightforward, these are reasonable approximations when 
he posterior is unimodal and narrowly peaked around the maximum 

ikelihood value (e.g. Trotta 2008 ). Indeed, we expect future HERA
nd SKA observations to be highly constraining, making Fisher 
MNRAS 524, 4711–4728 (2023) 
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Figure 2. Validation of our Fisher-matrix technique by comparison with the MCMC runs of Park et al. ( 2019 ). We plot parameter constraints from Park et al. 
( 2019 ) (grey line) and our results (orange filled). The top right plots show 1D marginalized posteriors and the lower triangle plots show the 2D marginalized 
posteriors. The contours show 1, 2 σ confidence intervals for the posteriors. Our Fisher-matrix approach reco v ers the same degeneracies as the MCMC and 
comparable uncertainties, while requiring ∼10 4 fewer simulations. 
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orecasts useful approximations of the true posterior for futuristic
ata sets. 
Fig. 3 shows the forecasted parameter constraints from our

isher-matrix approach for 10 EOS21 fiducial free parameters
Mu ̃ noz et al. 2022 ). The contours show 1, 2 σ confidence inter-
als for the parameters. For this forecast, we assume one year
i.e. 1080 h) of HERA data, and show the forecasts for mod-
NRAS 524, 4711–4728 (2023) 
rate and pessimistic foreground noise levels, as described in 
ection 2.4 . 
The fractional error estimated for each parameter is plotted in Fig.

 . With moderate foreground noise it would be possible to infer nearly
ll parameters to � 10 –30 per cent precision, with the exception of
he amplitude of Lyman–Werner feedback, A LW 

, which is much more
oorly constrained–due to its smaller impact on the amplitude of the
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Figure 3. Parameter constraints for the fiducial EOS21 run, using the parameters defined by Mu ̃ noz et al. ( 2022 ) for moderate (blue solid) and pessimistic 
(gre y dashed) fore grounds in HERA 1-yr observations, as described in Section 2.4 . The contours show 1 and 2 σ confidence intervals and the quoted confidence 
interval for the 1D constraint is 1 σ . 
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1-cm signal (Mu ̃ noz et al. 2022 ), and X-ray parameters which can be
onstrained to < 10 per cent . This demonstrates 21-cm observations 
ill be a powerful tool to learn about the formation of the first
alaxies. As expected, parameter constraints would be substantially 
orse in the case of ‘pessimistic’ foreground noise, particularly on 
opulation III parameters. This is because the foreground noise is 
 strong function of frequency and thus redshift, with the lowest 
oise in the z < 10 – Epoch of Reionization – window, which is
ominated by population II-hosting galaxies. This can be seen clearly 
n the signal-to-noise ratio of our fiducial 21-cm power spectrum as
 function of redshift for the two noise models, which we plot in Fig.
 . 
We find that most parameters for both population II and III galaxies

ould be measured at < 10 per cent precision under the assumption 
f moderate instrumental noise. This is due to the relative redshift
ependence of the parameters and the wide frequency/redshift range 
f the HERA observations. In Fig. 6 , we plot the redshift dependence
f the fractional error on each parameter, calculated in rolling 
MNRAS 524, 4711–4728 (2023) 
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Figure 4. Fractional 1 σ error in each parameter as estimated from the Fisher 
matrix, for the moderate (blue solid line) and pessimistic (grey dashed line) 
foreground noise models (see Section 2.4 ). In both cases, the thick lines show 

the HERA-only constraints and the thin solid lines in the same colour and 
style show the fractional error estimate after including a prior on αII 

� from the 
UV LF using Hubble data. The αII 

� prior reduces the uncertainty on population 
II parameters by approximately a factor of three. We mark the 10 per cent 
fractional uncertainty with a solid horizontal line for ease of comparison. 

Figure 5. Signal-to-noise ratio of our fiducial EOS21 21-cm power spectrum 

as a function of redshift, using the moderate (blue solid) and pessimistic 
(grey dashed) expected noise from 1 yr of HERA data, as described in 
Section 2.4 . Due to the frequency/redshift dependence of the noise, the 
pessimistic noise level would only enable high S/N measurements during 
the Epoch of Reionization, thus constraints on population III galaxies would 
be very limited, as seen in Fig. 3 . 
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edshift bins corresponding to two adjacent HERA frequency 8 MHz
andwiths. From this figure, we see the lowest errors on population
I parameters are obtained during the later stages of the Epoch of
eionization, z ∼ 5–7 (see Figs 6 and B1 ), when they strongly affect

he 21-cm signal. At these redshifts, the observational noise is lowest
Fig. 5 ) and the redshift resolution due to our sampling of the light-
one in fix ed frequenc y bins is highest, which will naturally increase
he signal to noise for population II parameters. But by z � 10, the
rrors on population II parameters become comparable to the errors
n population III parameters, though the measurements are obtained
n sparser redshift bins, and by z � 15 the errors on population III
arameters are lower than the population II parameters – as lower
NRAS 524, 4711–4728 (2023) 
ass galaxies start to dominate the star formation rate density and
hus the 21-cm signal (e.g. see fig. 6 by Mu ̃ noz et al. 2022 ). Due
o the wide frequency range of HERA, the redshift dependence of
he uncertainties of the parameters is captured, thus the population
II parameters can be well constrained. We can also see from fig. 6
hat, as expected, the lowest errors on X-ray parameters are obtained
uring the Epoch of Heating ( z ∼ 10–18 for the EOS21 model). 
The Fisher forecast demonstrates there are strong degeneracies

etween the normalization and low-mass slope of the stellar-halo
ass relation for both population II and III galaxies. There is also
 very strong degeneracy between f II �, 10 and f II esc , 10 as noted by Park
t al. ( 2019 ). L X / Ṁ � is most strongly degenerate with population
I parameters, but not as strongly with population III parameters.
his stronger de generac y is likely because population II galaxies
re expected to dominate the star-formation rate density during the
poch of Heating ( z � 15, see e.g. Mu ̃ noz et al. 2022 ) and so the

elative abundance of these galaxies is thus degenerate with their
-ray emission, whereas population III galaxies dominate the SFR
ensity at higher redshifts, where X-ray heating has a smaller effect
n the 21-cm signal. 
In terms of an interplay between population II and III parameters,

he strongest degeneracies are between f III esc , 7 and population II
arameters ( αII 

� , f 
II 
�, 10 , αesc , f II esc , 10 ), attributed to the uncertainty of

he relative role of population III-hosting galaxies in reionization.
opulation III star formation parameters are also degenerate with
 LW 

, which is expected as it sets the strength of Lyman–Werner
eedback which suppresses star formation in molecular cooling
aloes. 
We also produce forecasts for HERA observations adding a

rior on αII 
� . Park et al. ( 2019 ) demonstrated that adding other

strophysical observations to the 21-cm signal, in their case, the
V luminosity function (LF), provides independent constraints on

he model parameters. In their case, they found uncertainties in
opulation II star formation: f II �, 10 and αII 

� , were reduced by a factor
f three when adding UV LF data to their likelihood, as the UV
F provides important information to constrain the stellar-to-halo
ass relation (equation 8 ). Here, we use the LF-only constraint
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n αII 
� inferred by Park et al. ( 2019 ) from Hubble Space Telescope

bservations, σ ( αII 
� ) = 0 . 07, as a prior, by adding 1 /σ 2 ( αII 

� ) to the
iagonal element corresponding to αII 

� in the Fisher matrix (e.g. Coe 
009 ). The impact on the total uncertainties in each parameter is
hown in Fig. 4 . Using the moderate foreground noise model, the
mpact of the αII 

� prior is negligible, as population II parameters can 
lready be measured to similar precision to the prior, but the prior
ignificantly reduces uncertainties on population II parameters in the 
ase of the pessimistic foreground noise. 

Our forecasts demonstrate that observations of the 21-cm power 
pectrum could be able to determine the efficiency of both population 
I and population III star formation, if the foreground noise follows
he ‘moderate’ prescription, and determine the strength of X-ray 
roduction by the first galaxies to sub- per cent precision even under
pessimistic’ noise. Ho we ver, an understanding of the observ ational 
oise level is crucial. We note that although the ‘pessimistic’ 
oreground model is comparable to the noise model used by Park 
t al. ( 2019 ) our forecasted uncertainties for the EOS21 model can
e higher because the fiducial parameters are different, and the 
ncreased number of free parameters adds additional uncertainty due 
o degeneracies between parameters. 

.3 Principal Components of the 21-cm power spectrum 

iven the parametric model for galaxy formation in 21CMFAST , we 
ay ask which combination of parameters can be best constrained by 

pcoming data. To obtain the most important linear combinations of 
arameters in the 21-cm signal, we carry out a principal component 
nalysis of the Fisher matrix (e.g. Efstathiou 2002 ; Munshi & 

ilbinger 2006 ). 
To ensure all parameters are compared at approximately the same 

rder of magnitude, we rescale E 0 from eV to keV. Thus, we rescale
he Fisher elements corresponding to E 0 by a factor 10 3 . 

We can diagonalize our adjusted Fisher matrix F 

′ 

 

′ = U � U 

T (18) 

here � is a diagonal matrix with elements λi and U is the matrix
f principal component eigenvectors, from which we can obtain the 
rthogonal linear combinations of the parameters θ

 = U 

T θ (19) 

nd the variance of the principal component (PC) X i is 1/ λi (e.g.
fstathiou 2002 ). 
Fig. 7 shows each PC and its associated uncertainty ( σi = λ

−1 / 2 
i ) as

 function of the PC number i , in order of decreasing accuracy (lowest
ariance is the first PC). The first 7 out of 10 principal components
an be measured to < 10 per cent accuracy, and only one, dominated 
y A LW 

, to > 100 per cent . 
These principal components demonstrate which combinations of 

arameters can be best constrained by HERA-like 21-cm power 
pectra. We obtain the principal components for the entire redshift 
ange of HERA ( z ∼ 5–28) and note that, the lowest variance
omponents detectable in the full redshift range are mainly set by the
requency range with the lowest noise – i.e. the PCs that contribute 
he most at z � 8 are heavily upweighted due to the much lower noise
n that frequency range relative to the Cosmic Dawn window at z �
2. We explore the PCs in a few redshift windows in Appendix B . 
Several of the PCs have intuitive physical interpretations 

(i) PC1 is dominated by f II �, 10 and f II esc , 10 . As these two quantities
re constrained in log-space, this tells us that the product f II �, 10 ×
 

II 
esc , 10 will be well constrained by HERA. This is unsurprising as 
his product determines the number of ionizing photons which are 
vailable for reionization and these quantities are v ery de generate 
see Fig. 3 ). 

(ii) PC2 is dominated by a combination of population II and X-ray
arameters, as these parameters have a strong impact on the signal
uring the Epoch of Reionization. 
(iii) PC3 is dominated by E 0 , which will be easily measured to

igh precision with minimal degeneracies with other parameters as 
t determines the hardness of the X-ray spectrum that emerges from
arly galaxies. Values of E 0 below ∼1 keV have a strong impact on
he inhomogeneity of X-ray heating (and thus the associated 21-cm 

ower spectrum) since the mean free path is a strong function of the
hoton energy (e.g. Pacucci et al. 2014 ; Fialkov & Loeb 2016 ; Das
t al. 2017 ). 

(iv) PC4 is dominated by L X / Ṁ � , which go v erns the relative
iming of the X-ray heating epoch. 

(v) Higher principal components have combinations of population 
I and population III parameters, with the combinations of popula- 
ion III parameters having the highest variance. As discussed in 
ppendix B , the principal components are dominated by which 
arameters can be measured in the redshift windows with lowest 
oise – thus when looking at the data o v er the full HERA observing
indow z ∼ 5–28 population II reionization parameters will be best 
easured. 
(vi) PC10 is dominated by A LW 

. As discussed in Section 3.2 , this
arameter is least constrained by 21-cm power spectra observations 
s it has a relatively low impact on the signal (see also fig. 17 by
u ̃ noz et al. 2022 ). 

We have tested the dependence of our results on the choice of
ducial model in Appendix A , where we use the EOS OPT model,
hich has an enhanced population III contribution to star formation 

nd X-ray production (see Mu ̃ noz et al. 2022 for details). In the OPT
odel, we change the following parameters: f II �, 10 = −1 . 25 , f II esc , 10 =
1 . 2 , f III �, 7 = −1 . 75 , f III esc , 7 = −2 . 35 and E 0 = 200 eV. We find our
MNRAS 524, 4711–4728 (2023) 
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ain results are unchanged: the product of f II �, 10 × f II esc , 10 is still
he first principal component, the first four principal components
re dominated by population II and X-ray parameters, and PC10 is
ominated by A LW 

. 

.4 Inference using the Fisher matrix 

o far we have focused on the ability of the Fisher-matrix formalism
o forecast errors with mock data. This can potentially save the run-
ing of computationally e xpensiv e MCMCs for enlarged parameter
paces (for instance, if new parameters such as ETHOS are included,

u ̃ noz et al. 2020 ; Verwohlt et al. in preparation), and reuse the same
isher matrix as abo v e. Ho we ver, the same formalism could be used
or parameter inference from real data. We now explain the method
or inference and its limitations. 

The Fisher formalism assumes that the likelihood is Gaussian
ithin the parameter range under consideration. For that, a re-
uirement is that the observable (  

2 
21 ) changes linearly with the

arameters, i.e.  

2 
21 ( k, z) ≈ ∑ 

i θi f i ( k, z), where f i ( k , z) are not
ecessarily linear. Under that assumption, we can infer shifts δθ i 

n parameters of a given data set, when compared to our fiducial
e.g. Mu ̃ noz et al. 2016 ). A major caveat is that this assumption of
inearity is likely to break down when the observed parameters are a
ufficient distance from the fiducial parameters. 

We start by writing the observed 21-cm power spectrum as a linear
unction of the fiducial model power spectrum and the parameter
hifts 

 

2 
21 , obs ( k, z; { θ ′ } ) =  

2 
21 , fid + 

∑ 

i 

∂  

2 
21 , fid 

∂ θi 

( θ ′ 
i − θi, fid ) , (20) 

or a set of parameters { θ ′ } which differ from the fiducial param-
ters, { θfid. } . This formula will be exact only for small parameter
ifferences ( θ ′ 

i − θi, fid � 1), but can allow us to quickly test the
eviation between the parameters of an observation and those of our 
ducial. 
Given the difference  

2 
21 , diff =  

2 
21 , obs ( θ

′ ) −  

2 
21 , fid . between the

bserved 21-cm PS with parameters θ ′ , and that of the fiducial, we
efine the difference vector as 

 j = 

∑ 

i k ,i z 

 

2 
21 , diff ( k , z) 

∂  

2 
21 , fid ( k , z) 

∂ θj 

1 

σ 2 
 

2 ( k , z) 
, (21) 

kin to equation ( 16 ) (which defined the Fisher matrix), but with one
f the deri v ati ves swapped for  

2 
21 , diff . 

Then, taking into account the covariance matrix C = F 

−1 between
arameters, we can find the shifts between the fiducial parameters
nd the observed ones as 

θi = θ ′ 
i − θi, fid = 

∑ 

j 

C ij D j . (22) 

e test this formalism by comparing two different choices of mock
bservations against our baseline (EOS21) fiducial one. 

(i) In the first, we only slightly modified the parameters, randomly
ampling the parameters from within 1 σ of our expected errors for
he EOS fiducial with moderate noise (i.e. they fall within the blue
llipses in Fig. 3 ). In this case, we expect the likelihood to be roughly
aussian, and the shifts to be consistent with the inputs. 
(ii) In the second, we aim to infer the OPT EOS model, which

as an enhanced population III contribution to star formation and
-ray production (see Mu ̃ noz et al. 2022 for details). In the OPT
odel, we change the following parameters: f II �, 10 = −1 . 25 , f II esc , 10 =
1 . 2 , f III �, 7 = −1 . 75 , f III esc , 7 = −2 . 35 and E 0 = 200 eV. These are
NRAS 524, 4711–4728 (2023) 
ignificantly different from our EOS21 fiducial (see Table 1 ), so
hey will test how far from the fiducial the parameters can be before
he formalism breaks down. 

In both cases, we generate the new mock observed 21-cm power
pectra,  

2 
21 , obs ( θ

′ ), using identical settings as for our fiducial EOS
un, changing only the astrophysical parameters. 

A subtlety in this analysis is that, as well as the Poisson noise in
he power spectrum – due to measuring the power spectrum from
 finite number of k -space modes in the simulation boxes – both
ur fiducial and ‘observed’ mocks have sample (cosmic) variance
s they are each independent realizations of the initial conditions.
oth the Poisson noise and cosmic variance depend on the volume
f the simulations (see e.g. Iliev et al. 2014 ; Kaur et al. 2020 for
he power spectrum and Mu ̃ noz & Cyr-Racine 2021 for the global
ignal). Thus, the total noise on the power spectrum is the Poisson,
osmic variance and instrumental noise terms added in quadrature:
2 
tot ( k, z) = σ 2 

poiss . ( k, z) + σ 2 
c . v . ( k, z) + σ 2 

instr. ( k, z). As such, using the
isher matrix as defined abo v e undercounts the error bars on our
ock observation, as we have assumed the mock has the cosmic

ariance from a HERA-like cosmic observation (approximately
50 Gpc 3 ; DeBoer et al. 2017 ), rather than the much smaller volume
f our mock simulation (0.064 Gpc 3 , see Section 2.4 ). 
To circumvent the issue of cosmic variance, we first run the

wo cases with the same initial conditions as our EOS fiducial.
sing simulations with the same initial conditions as the fiducial,
e find that we can reco v er the ‘observ ed’ parameters within 2 σ

7/10 parameters reco v ered within 1 σ ) for case (i), but the inferred
arameters are not well reco v ered for case (ii), with only 1/10
arameters reco v ered within 1 σ . The biggest offset between the
nferred and true values are for parameters where the shift δθ i 

s greater than the 1 σ errors on the fiducial value. We surmise
hat the inference approach outlined abo v e only works well when
he assumption that the power spectrum varies linearly with the
arameters holds – i.e. when the likelihood is most like a Gaussian,
nd the ‘true’ parameters are within 1 σ of the peak likelihood for
ur specific fiducial. 
When varying the initial conditions, we find a worse reco v ery of the

arameter shifts for both cases. This is ameliorated when increasing
he instrumental error bars (using our ‘pessimistic’ noise case), as
hat increases the variance of each k number, which partially accounts
or the undercounted cosmic v ariance. Gi ven that we cannot ‘match’
he initial conditions of a real power spectrum detection in the sky,
e conclude that using the Fisher matrix for inference is challenging

n our formalism, even if the likelihood is approximately Gaussian.
hus a dedicated variance analysis may be required but is beyond

he scope of this paper. We note that as our simulation volumes are
onverged for the power spectrum on the scales we consider (see
ection 2.4 and e.g. Kaur et al. 2020 ), the cosmic variance noise
hould be subdominant to other sources of noise. Thus, the poor
erformance of the Fisher matrix interference is likely dominated
y the non-linearity of the power spectrum as a function of the
arameters. 

 DI SCUSSI ON  

.1 Computational efficiency 

he key advantage of using Fisher matrices o v er MCMC is the
educed computational time, due to requiring far fewer individual
imulation runs. For the Fisher-matrix calculation, we require 2 N +
 simulations, where N is the number of free parameters, whereas
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or an MCMC with 21CMMC of order ∼10 5 simulations are required 
o reach convergence (Greig & Mesinger 2017 ). 

For comparison, the MCMC run by Park et al. ( 2019 ) required
0 000 individual simulations, including burn-in steps, whereas our 
isher-matrix calculation using the same fiducial parameters required 
nly 17 individual simulations. While the simulation generation 
an be parallelized, we still expect the Fisher-matrix approach can 
reatly reduce the computation time compared to an MCMC. The 
isher matrix also has the advantage that additional parameters can 
e varied by just running a couple of new simulations, rather than
aving to rerun an MCMC to explore the joint posterior. While an
CMC should be the gold standard for analysis of observations 

e.g. Ghara et al. 2020 , 2021 ; Greig et al. 2021a , b ; The HERA
ollaboration et al. 2022a , 2023 ), we have demonstrated that a
isher-matrix analysis can accurately reco v er the same parameter 
egeneracies and uncertainties. 
This means a Fisher-matrix approach could be useful for testing 

nd prototyping analyses to forecast parameter uncertainties. Po- 
ential applications could be: adding new parameters – for example 
osmological and dark-matter parameters, which will be the topic of 
 future work (Verwohlt et al. in preparation); or testing the impact
f instrument/observing designs (described more below). 
The limitations of the Fisher-matrix approach are that, as described 

n Section 3.4 , it is difficult to use the Fisher-matrix approach for
ctual inference, thus MCMC or nested sampling will still be required 
o map full posterior when we have 21-cm observations. But, for
orecasting, the Fisher-matrix approach is extremely efficient for 
stimating parameter uncertainties assuming a fiducial model (e.g. 
sing the maximum a posteriori model from current, non-21-cm 

bservations (e.g. Park et al. 2019 ; Qin et al. 2021b ). Additionally,
arameter estimates from Fisher matrices are al w ays optimistic, as
he Fisher matrix will al w ays produce the lower bound on the possible
bserv ed co variance matrix due to the assumption of a multi v ariate
aussian posterior (see Section 2.3 ), so it is possible that some of

he uncertainties will be underestimated. 

.2 Importance of understanding obser v ational noise 

s demonstrated in Section 3.2 , assumptions about the noise level of
he 21-cm observations can have order of magnitude effects on the 
nferred parameter constraints. Fig. 4 shows the fractional error in 
ach parameter under the assumption of the moderate and pessimistic 
oreground noise models, with and without the inclusion of the UV 

F prior on αII 
� . 

An advantage of the Fisher-matrix approach is that it is very 
fficient to rerun the forecast analysis under different assumptions of 
he foreground noise model, whereas using an MCMC, this would 
equire recalculating the likelihood for every simulation. As a good 
nderstanding of the noise is crucial to measuring astrophysics 
nd cosmology from 21-cm observations, our approach provides 
n efficient way to assess the impact of assumptions in instrumental 
oise and foreground models. 

 C O N C L U S I O N S  

e have created a Fisher-matrix wrapper for the public code 
1CMFAST , 21CMFISH , enabling rapid parameter forecasts from the 
osmic 21-cm signal. Our conclusions are as follows 

(i) We verify that our Fisher-matrix analysis recovers the same 
arameter degeneracies and produces comparable uncertainties as 
he 21cm-only MCMC of Park et al. ( 2019 ), requiring only ∼
 . 03 per cent of the individual simulations. This means that, under
he assumption of a multi v ariate Gaussian posterior, a Fisher matrix
an be used to rapidly explore parameter constraints with 21-cm 

bservations (see also e.g. Pober et al. 2014 ; Liu & Parsons 2016 ;
himabukuro et al. 2017 ; Mu ̃ noz et al. 2020 ; Jones et al. 2021 ),
ignificantly reducing the requirement for e xpensiv e and energy 
ntensive computation when prototyping analyses (and does not 
equire training, cf. emulator approaches e.g. Kern et al. 2017 ). 

(ii) Using our Fisher-matrix approach, we perform the first joint 
nalysis of population II and population III galaxy parameters as 
ell as those characterizing feedback from radiative backgrounds. 
e find that under the assumption of a ‘moderate’ foreground 

oise floor (using the ‘moderate’ foregrounds model in 21CMSENSE , 
ith a superhorizon buffer a = 0 . 1 h Mpc −1 and expected HERA

ystem temperature; DeBoer et al. 2017 ), both population II and
opulation III parameters can be constrained by future HERA data 
o � 10 per cent precision, due to the relative importance of the
arameters as a function of redshift and the wide frequency coverage
f HERA. 
(iii) Adding priors on parameters from independent measurements 

f the UV luminosity function from HUBBLE SPACE TELESCOPE data 
o 21-cm observations impro v es constraints on population II param-
ters by approximately a factor of three in the case of pessimistic
oreground noise, but does not significantly improve estimates in the 
ase of moderate foreground noise as those constraints are already 
omparable to the UV LF information. 

(iv) A principal component analysis demonstrates that at least 7 
ombinations of the parameters could be well measured by HERA. 
he first four principal components are dominated by f II esc , 10 f 

II 
�, 10 

nd combinations of population II and X-ray emission properties, as 
hese are the most important features in determining the strength of
he 21-cm signal at z � 10 where the signal will be best measured.
ur analysis shows the ionizing photon escape fraction and stellar-to- 
alo mass fraction are highly degenerate using 21-cm observations 
lone (see also Park et al. 2019 ). 

(v) We attempt to use our Fisher-matrix approach to perform an 
nference of simulated data and find that it is only possible to reliably
eco v er parameters that were within 1 σ of the fiducial simulation and
hen using the same initial conditions for the fiducial and mock data

imulations. Thus, we caution that while the Fisher matrix is useful
or forecasting, within our formalism, it is not a good choice for
nference: Bayesian inference techniques such as MCMC or Nested 
ampling are more appropriate for mapping out the full posterior for
nknown parameters, once detections are available. 

Our results show that Fisher-matrix analyses provide a fast and 
ealistic way to estimate parameter uncertainties from future 21-cm 

bservations, under the assumption the posterior is a multi v ariate
aussian and also assuming the noise is separable from the cosmic

ignal. This greatly reduces the requirement for e xpensiv e MCMC
uns when prototyping new analyses or adding additional parameters. 
his framework enables us to more easily explore the effects of

oreground noise and the degeneracies between astrophysical and 
osmological, e.g. dark-matter, parameters, which will be the topic 
f a future work. 

OFTWARE  

1CMFAST (Mesinger et al. 2011 ; Park et al. 2019 ; Murray et al.
020 ; Qin et al. 2020 ; Mu ̃ noz et al. 2022 ), 21CMSENSE (Pober et al.
014 ), CORNER (F oreman-Macke y 2016 ), IPYTHON (P ́erez & Granger
007 ), MATPLOTLIB (Hunter 2007 ), NUMPY (Van Der Walt, Colbert &
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Figure A1. Same as Fig. 5 but for the EOS OPT fiducial model. 
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PPENDIX  A :  D E P E N D E N C E  O N  C H O I C E  O F  

I D U C I A L  M O D E L  

e do not know the model that best describes the data a priori . In
he abo v e, we hav e used a fiducial model which uses constraints
rom existing observations (e.g. the cosmic SFR density and the 
eionization timeline) to inform the astrophysical parameters of our 
odel. The exact precision with which we can measure astrophysical 

arameters (Section 3.2 ) and the combination of parameters which 
an be best constrained (Section 3.3 ) will depend on the fiducial
odel, as the relative strength of the population II and III galaxy

omponents and of X-ray heating will all change the 21-cm signal.
o we ver, because these effects change the signal in different ways

as demonstrated by our PCA analysis in Section 3.3 ), we expect our
esults will not be strongly affected qualitatively by the choice of
ducial model. 
To assess this in more detail, we carry out the same analysis as

n Sections 3.2 and 3.3 for a second fiducial model, the EOS OPT
odel (also used in Section 3.4 , see Mu ̃ noz et al. 2022 ) which has an

nhanced contribution of population III galaxies to star formation and 
nhanced X-ray emission compared to our original model. In the OPT 

odel, we change the following parameters: f II �, 10 = −1 . 25 , f II esc , 10 =
1 . 2 , f III �, 7 = −1 . 75 , f II esc , 7 = −2 . 35 and E 0 = 200 eV. We find our

esults are qualitatively unchanged. 
We show the signal-to-noise ratio of this 21-cm power spectrum 

n Fig. A1 , where we see an increased S/N, particularly during the
poch of Heating due to the higher X-ray heating, compared to our
OS fiducial model (Fig. 5 ). The parameter constraint forecast is
lotted in Fig. A2 and the fractional error on each parameter in Fig.
3 . Because the S/N ratio is higher for this model, we find less
f a difference between the moderate and pessimistic foregrounds. 
ecause of the increased population III galaxy contribution to 

he cosmic SFR density, we find population III galaxy parameters 
ould be slightly better constrained than in our original fiducial, 
hile population II galaxy parameters would be slightly less well 

onstrained because there are degeneracies between parameters 
o v erning the two galaxy populations 
Finally, we show the principal components of the 21-cm power 

pectrum in Fig. A4 . The principal components are very similar to
hose of the EOS model (Fig. 7 ). The product of f II �, 10 × f II esc , 10 is still
he first principal component, the first four principal components 
re dominated by population II and X-ray parameters (with X-ray 
arameters contributing slightly more to the PCs compared to in the
OS model), and A LW 

is still the last principal component. 
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Figure A3. Same as Fig. 4 but for the EOS OPT fiducial model. 

Figure A4. Same as Fig. 7 but for the EOS OPT fiducial model. 
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PPENDI X  B:  PRI NCI PA L  C O M P O N E N T  

NALYSI S  IN  REDSHIFT  W I N D OW S  

ur principal component analysis in Section 3.3 demonstrates the 
ombinations of parameters that will be best constrained by the full
ERA data set. Ho we v er, due to the strong frequenc y and therefore

edshift dependence of the noise (see Fig. 5 ), where the background
s higher at lower frequencies (e.g. DeBoer et al. 2017 ), the principal
omponents are dominated by the parameters most important for the 
poch of Reionization – at z � 10 where the noise is lowest. 
To provide more insight into the redshift dependence of the prin-

ipal components, we do a PCA in three redshift bins, corresponding
o: the Epoch of Reionization ( z ∼ 5–10), where the global 21-
m signal peaks and declines to zero); the Epoch of Heating ( z ∼
0–15), the signal goes from absorption to emission as the IGM is
eated (likely by X-ray emission from the first galaxies); and early
osmic Dawn ( z ∼ 15–30), where the global signal starts to drop
ue to feedback from the first stars, until it reaches the trough before
eating dominates. 
We plot the principal components from these three redshift bins in

ig. B1 . These plots demonstrate which combinations of parameters 
he observed redshift windows are most sensitive to. For the Reion-
zation redshift window, we see the first principal component is very
imilar to the one obtain for the whole redshift range: f II �, 10 × f II esc , 10 .
he following principal components are dominated by population II 
nd X-ray parameters, as expected during the Reionization epoch. 
n the Epoch of Heating, the primary principal components are 
ominated by X-ray parameters, as expected, as in the model, X-
ays are the dominant driver of IGM heating. For the Cosmic Dawn
edshift window, the first principal components are dominated by 
-ray parameters and a combination of population III parameters. 
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Figure B1. (Upper Left) Eigenvectors associated with each principal component, in order of decreasing importance/increasing uncertainty, in the Epoch of 
Reionization redshift window z ∼ 5–10. (Upper Right) Eigenvectors associated with each principal component, in order of decreasing importance/increasing 
uncertainty, in the Epoch of Heating redshift window z ∼ 10–15. (Lower) Eigenvectors associated with each principal component, in order of decreasing 
importance/increasing uncertainty, in the early Cosmic Dawn redshift window z ∼ 15–30. 
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