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Abstract
We consider compact hypersurfaces with boundary in R

N that are the critical points
of the fractional area introduced by Paroni et al. (Commun Pure Appl Anal 17:709–
727, 2018). In particular, we study the shape of such hypersurfaces in several simple
settings. First we consider the critical points whose boundary is a smooth, orientable,
closed manifold � of dimension N − 2 and lies in a hyperplane H ⊂ R

N . Then we
show that the critical points coincide with a smooth manifold N ⊂ H of dimension
N − 1 with ∂N = �. Second we consider the critical points whose boundary consists
of two smooth, orientable, closedmanifolds�1 and�2 of dimension N−2 and suppose
that �1 lies in a hyperplane H perpendicular to the xN -axis and that �2 = �1 + d eN
(d > 0 and eN = (0, · · · , 0, 1) ∈ R

N ). Then, assuming that �1 has a non-negative
mean curvature, we show that the critical points do not coincide with the union of two
smoothmanifoldsN1 ⊂ H andN2 ⊂ H+d eN of dimension N−1with ∂Ni = �i for
i ∈ {1, 2}. Moreover, the interior of the critical points does not intersect the boundary
of the convex hull in R

N of �1 and �2, while this can occur in the codimension-one
situation considered by Dipierro et al. (Proc Am Math Soc 150:2223–2237, 2022).
We also obtain a quantitative bound which may tell us how different the critical points
are fromN1 ∪ N2. Finally, in the same setting as in the second case, we show that, if
d is sufficiently large, then the critical points are disconnected and, if d is sufficiently
small, then �1 and �2 are in the same connected component of the critical points
when N ≥ 3. Moreover, by computing the fractional mean curvature of a cone whose
boundary is �1 ∪ �2, we also obtain that the interior of the critical points does not
touch the cone if the critical points are contained in either the inside or the outside of
the cone.

Keywords Fractional area · Zero fractional mean curvature · Hypersurfaces with
boundary

Mathematics Subject Classification 49Q05 · 53A10 · 35R11

B Fumihiko Onoue
fumihiko.onoue@tum.de

1 Technische Universität München, Boltzmannstrasse 3, 85748 Garching, Germany

0123456789().: V,-vol 123

The Journal of Geometric Analysis (2024) 34:294

/ Published online: 16 July 2024

http://crossmark.crossref.org/dialog/?doi=10.1007/s12220-024-01741-3&domain=pdf
http://orcid.org/0000-0002-4031-7681


Contents

1 Introduction

Fractional minimal surfaces without boundary were first investigated by Caffarelli,
Roquejoffre, and Savin in [6] and, since then, this topic has attracted many authors to
study their geometric properties as an analogy of classical minimal surfaces. Roughly
speaking, a fractional (or nonlocal) minimal surface without boundary is given as the
boundary of a set which minimizes an energy functional defined by the pointwise
interaction of a set and its complement. The typical interaction taken into account is
scaling and translation invariant with some polynomial decay. Precisely, if s ∈ (0, 1)
and � is an open set with smooth boundary, one of such standard energies of a set
E ⊂ R

N relative to � is the so-called fractional perimeter in � and is defined by

Ps(E;�):=
∫
E∩�

∫
Ec

dx dy

|x − y|N+s
+

∫
E∩�c

∫
Ec∩�

dx dy

|x − y|N+s
(1.1)

where we denote by Ec the complement of E . With this notion, we say that a set
E ⊂ R

N is a minimizer of Ps relative to � if it holds that

Ps(E;�′) ≤ Ps(F;�)

for any open bounded set�′ ⊂ � and any F ⊂ R
N with F\�′ = E\�′. The existence

and regularity of such minimizers was shown by Caffarelli, Roquejoffre, and Savin in
[6]. The regularity theory of the minimizers were later strengthened in, for instance,
[8, 29]. Moreover, they showed in [6] that if a set E ⊂ R

N is a minimizer of Ps , then
the following Euler-Lagrange equation holds in the viscosity sense:

∫
RN

χEc(y) − χE (y)

|y − x |N+s
dy = 0 (1.2)

for x ∈ ∂E . The integral in (1.2) is intended in the Cauchy principal value sense. This
can be regarded as a nonlocal counterpart of the classical minimal surface equation and
the left-hand side in (1.2) is the so-called fractional mean curvature on the boundary
∂E . Dipierro, Savin, and Valdinoci in particular have revealed many properties which
classical minimal surfaces cannot possess (see, for instance, [15, 16] for the details).
In addition, many authors have studied the fractional(nonlocal) minimal surfaces or
minimal graphs formore than a decade since the fractional(nonlocal) minimal surfaces
appear inmany other topics inwhich a long-range interaction is involved (see [10, 28]).
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For further discussions about the geometric features of fractional(nonlocal) minimal
surfaces without boundary, we refer to [2, 4, 5, 7, 8, 11–14, 17, 18].

Quite recently,motivated by somemathematicalmodelling of thin elastic structures,
Paroni, Podio-Guidugli, and Seguin in [25] introduced a new notion of fractional area
and fractional mean curvatures for smooth manifolds which are not necessarily closed
in the following way: let � ⊂ R

N be a bounded domain and let M ⊂ � be any
(N − 1)-dimensional compact smooth manifold with or without boundary. Here we
mean by “a manifold without boundary” a closed manifold. Then the fractional area
of M relative to � is defined by

Areas(M;�):=cN

∫∫
X (M)

max{χ�(x), χ�(y)}
|x − y|N+s

dx dy (1.3)

where cN is some positive dimensional constant andX (M) is a set of all pairs (x, y) ∈
R

N ×R
N such that the segment [x; y]with two end points x and y has an odd number

of cross intersections withM and [x; y] is not tangent toM. Note that the presence of
the termmax{χ�(x), χ�(y)} in (1.3) is necessary to ensure that the integral converges
whenever ∂M 	= ∅.

As is explained in [25], if a (N − 1)-dimensional smooth manifold M satisfies
M = ∂E for some set E ⊂ R

N , then the two notions (1.1) and (1.3) are equivalent,
i.e., it holds that

Areas(M;�) = Ps(E;�).

Interestingly, Paroni, Podio-Guidugli, and Seguin also proved in [25, Theorem 3.3]
that (1− s)Areas(M;�) → HN−1(M) as s ↑ 1 for a compact (N − 1)-dimensional
C1 manifold M contained in a bounded domain �, as it happens for Ps in (1.1) (see
[1, 7]). See [23, 26, 30] for further discussions on Areas .

This manuscript is devoted to develop the theory of the fractional area Areas for
manifolds with boundary. In particular, we aim to investigate the shape and topology
of critical points of Areas . Here the critical points of Areas are defined as a smooth
manifold such that the first variation of Areas vanishes with respect to a perturbation
associated with the unit normal vector of that manifold (in the sequel, we will call
these perturbations “normal variations”). The authors in [25] obtained a necessary and
sufficient condition for the vanishing of the first variation for manifolds as follows: let
M be an orientable compact smooth manifold with or without boundary and assume
that M is contained in a bounded domain � ⊂ R

N . Then it holds that

δAreas(M;�) = 0 ⇐⇒ HM,s(z) = 0 for anyz ∈ M. (1.4)

Here we denote by δAreas(M;�) the first variation of M under normal variations
and HM,s is the fractional mean curvature associated with Areas which is defined by

HM,s(z):=cN

∫
RN

χAi (z)(y) − χAe(z)(y)

|y − z|N+s
dy
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for any z ∈ M where cN is as in (1.3) and the sets Ai (z) and Ae(z) are defined by

Ai (z):={y ∈ R
N | either(z, y) ∈ X (M)& (z − y) · νM(z) < 0

or(z, y) /∈ X (M)& (z − y) · νM(z) > 0} (1.5)

Ae(z):={y ∈ R
N | either(z, y) ∈ X (M)& (z − y) · νM(z) > 0

or(z, y) /∈ X (M)& (z − y) · νM(z) < 0} (1.6)

where νM is the unit normal vector ofM. The setsAi (z) andAe(z) can be regarded
as the “interior” and “exterior” of M relative to the point z, respectively, and these
sets are determined uniquely once the unit normal vector of M at z is specified. See
[25] for more discussions on the notions. Note that if a manifold is not orientable,
then the unit normal vector of the manifold cannot be determined uniquely and neither
can the “interior”Ai and “exterior”Ae. Moreover, in this paper, we require the C1,α-
regularity with α > s of hypersurfaces so that the fractional mean curvatures are finite
everywhere.

The study of critical points or fractional minimal surfaces with boundary can be
related to the classical problem on free boundary minimal surfaces in differential
geometry. One of themain topics in the problem is to determine the shape of amanifold
	 (embedded or immersed) in another smooth manifold S such that 	 minimizes its
area in S and ∂	 ⊂ ∂S with some topological constraints. The study of this classical
problem was first considered by Courant in [9] in 1940 and, since then, a lot of authors
have been intensively working on this topic. See, for instance, [20, 22, 24, 27, 31] for
the details. We also refer the readers to two surveys: [19] for classical works and [21]
for more recent results. The references here are obviously not exhaustive.

As an analogy of the classical free boundary minimal surfaces, it is natural to
consider a fractional(nonlocal) version of free boundary minimal surfaces; however,
the nonlocal version is not understood so far because, to our knowledge, suitable
notions of fractional area for manifolds with boundary had not been considered until
Paroni, Podio-Guidugli, and Seguin in [25] introduced the notion of Areas in (1.3).
To tackle the nonlocal version of the free boundary minimal surface problem, it is
important to understand the geometric properties of critical points of Areas .

Given the importance of critical points of Areas from the above perspective, it is
desirable to develop some intuition about their geometric features. To do this, since
it is quite difficult to have explicit solutions which entirely describe critical points
or minimizers of Areas , it is often convenient to study simplified cases in which the
boundary of the critical points has some special characteristics. In this paper, we
basically consider three cases: the first is when the boundary of critical points in
R

N lies in a hyperplane and is homeomorphic1 to S
N−2. The second is when the

boundary is the union of two distinct parallel and co-axial manifolds each of which
lies in a hyperplane, is homeomorphic to S

N−2, and the distance between the co-axial
manifolds is d. The last is when the distance d is sufficiently large or sufficiently small.

1 Our result (Theorem 1.1) can be also true even if the boundary of the critical point is not always home-
omorphic to S

N−2. For instance, Theorem 1.1 holds true if the boundary has more than one connected
components and lies in some hyperplane. The proof is the same as the one of Theorem 1.1.
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Our first goal in this paper is to determine the shape of critical points of Areas
whose boundary lies on a hyperplane. Precisely, we first define a set C ⊂ R

N as

C:=G × R (1.7)

where G is a non-empty bounded open subset of R
N−1 with a smooth boundary. Then

we define an (N − 2)-dimensional smooth manifold � as

�0:=∂C ∩ {xN = 0} (= ∂G × {0}). (1.8)

Assume thatM ⊂ R
N is an orientable compact (N − 1)-dimensional C1,α manifold

with ∂M = �0 and that M is a critical point of Areas . Note that the orientability
of M implies the orientability of ∂M = �0. Then, as our first theorem, we aim to
rigorously prove thatMmust coincide with C∩{xN = 0}, as we can intuitively expect
this to be true.

Theorem 1.1 Let s ∈ (0, 1). Let �0 be as in (1.8). Let M be an orientable compact
(N − 1)-dimensional C1,α manifold with ∂M = �0. IfM is a critical point of Areas
under normal variations, then M is a hyperplane lying on {xN = 0}, i.e.,

M = C ∩ {xN = 0} (= G × {0}).

Our second goal in this paper is to study the shape of critical points of Areas whose
boundary consists of two disjoint components. The problem setting in the second
theorem is as follows: we define two distinct compact (N − 2)-dimensional smooth
manifolds �1 and �2 by

�1:=∂C ∩ {xN = h1} and �2:=∂C ∩ {xN = h2}, (1.9)

where C is as in (1.7) and h1 and h2 are given constants with h2 < h1. Then a critical
point exhibits a different shape from a hyperplane. Precisely we prove

Theorem 1.2 Let s ∈ (0, 1). Let �1 and �2 be as in (1.9) and letM be an orientable
compact (N − 1)-dimensional C1,α manifold with ∂M = �1 ∪ �2. Assume that C is
convex where C is as in (1.7). IfM is a critical point of Areas under normal variations,
then M ⊂ {h2 ≤ xN ≤ h1} and any connected component of M is neither C1 nor
C2 where we define

C1:=C ∩ {xN = h1} and C2:=C ∩ {xN = h2}.

In particular, M 	= C1 ∪ C2. Moreover, M\∂M does not intersect ∂C = ∂G × R.

We remark that, by using a cone whose boundary is �1 ∪ �2 as in Theorem 1.2 with
h1 = 1 and h2 = −1, we can further detect how the critical points behave. See Sect.
3.2 of Sect. 3 for the details.

Our third goal is to further study the shape and, in particular, the topology of critical
points of Areas in the same situation as the one in Theorem 1.2. Precisely, taking �1
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Fig. 1 Two possible situations in dimension 2 in Lemma 1.3 in which the “interior” or “exterior” of the
critical point M = γ with ∂γ = �1 ∪ �2 contains two half-balls

and �2 as in Theorem 1.2 with d:=h1 − h2 > 0, we will see what critical points of
Areas under normal variations look like in terms of connectedness if d is sufficiently
large or sufficiently small.

To reach the third goal, we first show the following lemma which somehow tells us
how different critical points are from hyperplanes.

Lemma 1.3 Let s ∈ (0, 1) and d > 0. Let �1 and �2 be as in (1.9) with h1 = 0 and
h2 = −d. Assume that C is convex where C is as in (1.7). Then there exists a constant
ε0 > 0, depending only on N, s, and d, such that the following holds: let M be an
orientable compact (N − 1)-dimensional C1,α manifold with ∂M = �1 ∪ �2. If M
is a critical point of Areas under normal variations, then the set enclosed by M and
the union of C ∩ {xN = 0} and C ∩ {xN = −d} contains two half-balls

B−
ε0

(0):={x ∈ Bε0(0) | xN < 0} and B+
ε0

(pd):={x ∈ Bε0(pd) | xN > −d}

where pd :=(0, −d) ∈ R
N−1 × R.

Here, thanks to Theorem 1.2, we can precisely define the set enclosed by M and
C ∩ ({xN = 0} ∪ {xN = −d}) as the collection of x ∈ R

N such that the line segment
[x, P(x)] where P(x) realizes the minimum distance between x and C ∩ ({xN =
0} ∪ {xN = −d}) intersects M even number of times and (x − P(x)) · ν > 0 where
ν = −eN if P(x) ∈ C ∩ {xN = 0} and ν = eN if P(x) ∈ C ∩ {xN = −d}.

To help with the intuition, a sketch of possible critical points is given in Fig. 1.
As a result of Lemma 1.3, we prove that, if the distance d between two parallel

and co-axial boundaries is sufficiently small, then any critical point is connected in
the sense that the two boundaries are in the same connected component when N ≥
3. Moreover, when N = 2, any critical point is disconnected and its two distinct
connected components should look like the right-hand side of Fig. 1 with 0 < d � 1.

Precisely, our third theorem is as follows.

Theorem 1.4 Let s ∈ (0, 1). Let�1 and�2 be as inLemma1.3. Assume thatC is convex
where C is as in (1.7). Then there exists d0 = d0(N , s) > 0 such that the following
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Fig. 2 Possible critical points of
Areas when N ≥ 3 in Theorems
1.2 and 1.4 on the left and in
Theorem 1.5 on the right

holds: for any d ∈ (0, d0), we take any orientable compact (N −1)-dimensional C1,α

manifold M ⊂ R
N with ∂M = �1 ∪ �2. If M is a critical point of Areas under

normal variations, then �1 and �2 are in the same connected component of M if
N ≥ 3 and M is disconnected if N = 2.

Moreover, when N = 2, there exist two distinct connected components M1 and
M2 of M such that dist (M1,M2) ≥ c with some constant c > 0, depending only
on N and s, and ∂Mi intersects both �1 and �2 for each i ∈ {1, 2}.

As a counterpart of Theorem 1.4, we prove that, if the distance d between two paral-
lel and co-axial boundaries is sufficiently large, then any critical point is disconnected
in any dimension and it should look like the left-hand side of Fig. 1 with d � 1.

Our last theorem is as follows.

Theorem 1.5 Let s ∈ (0, 1). Let �1 and �2 be as in Lemma 1.3. Assume that C
is convex where C is as in (1.7). Then there exists d1 = d1(N , s) > 0 such that the
following holds: for any d > d1, we take any orientable compact (N −1)-dimensional
C1,α manifoldM ⊂ R

N with ∂M = �1 ∪ �2. IfM is a critical point of Areas under
normal variations, then M is disconnected.

Moreover, there exist two disjoint connected components M1 and M2 of M such
that ∂Mi = �i for any i ∈ {1, 2}.
To help with the intuition, a sketch of possible critical points shown in Theorems 1.2,
1.4, and 1.5 is given in Fig. 2

The topological properties in Theorems 1.4 and 1.5 could be expected to be true
becauseDipierro,Valdinoci, and the author of this paper obtained similar results in [13]
on the topology of fractional minimal surfaces without boundary in similar situations.
On one hand, they showed that minimizers of Ps in a given cylinder coincides with
the cylinder itself for sufficiently small d where d is the distance between two disjoint
parallel and co-axial external(boundary) data. On the other hand, they showed that
minimizers of Ps in the cylinder are disconnected for sufficiently large d.

Interestingly, however, we show in Theorem 1.2 that the critical points (not nec-
essarily fractional area-minimizing) cannot touch the boundary of the cylinder C no
mater what distance two parallel and co-axial boundaries have, while it is shown in
[13] that minimizers of Ps in a cylinder favorably stick to the boundary of the cylinder
if N = 2 and d is large or if N ≥ 2 and d is small. Moreover, our results together with
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Remark 4.1 of Sect. 4 possibly indicate that critical points of Areas with two nearby
parallel and co-axial compact boundaries might develop necks of catenoids, while this
is not the case with fractional minimal surfaces considered in [13]. We remark that
the existence of fractional minimal catenoids without boundary in R

3 was shown by
Dávila, Del Pino, and Wei in [12] if s is close to 1.

The organization of this paper is as follows: in Sect. 2, we prove Theorem 1.1 by
“sliding” a hyperplane until it touches critical points (see the proof of Theorem 1.1
for the details). In Sect. 3, we first give the proof of Theorem 1.2 and then we study
further properties of critical points of Areas , computing the fractional mean curvature
of a cone passing through the boundary of critical points. In Sect. 4, we first give the
proof of Lemma 1.3 by constructing a suitable barrier and then, by using this lemma,
we prove Theorem 1.4. Moreover, in Sect. 4, we also prove Theorem 1.5 by means of
the “sliding method” (see Sect. 4 for the details).

2 Proof of Theorem 1.1

In this section, we prove Theorem 1.1. The idea of the proof is inspired by the so-called
sliding method introduced by Dipierro, Savin, and Valdinoci in [15]. They developed
this method in order to investigate the shape of fractional(nonlocal) minimal surfaces
(see also [13, 14, 16] for further discussions).

We proceed with the proof in the following way: we slide a hyperplane, parallel to
C∩{xN = 0}, frombelow or above until it touchesM and assume by contradiction that
there exists a touching point in (C∩{xN = 0})c. At the touching point q, we obtain the
Euler-Lagrange equation (1.4). Then, taking into account all the contributions from the
“interior”Ai (q) and the “exterior”Ae(q) ofM, we can observe that the contribution
from either Ai (q) or Ae(q) turns out to be strictly larger than that from the other
region. This contradicts the Euler-Lagrange equation.

Proof of Theorem 1.1 We first define a hyperplane Hλ:={(x ′, xN ) | xN = λ} and two
half-spaces

H+
λ :={(x ′, xN ) | xN > λ} and H−

λ :={(x ′, xN ) | xN < λ} (2.1)

for λ ∈ R. We set Pλ : R
N → R

N as the reflection map with respect to Hλ for λ ∈ R

and set xλ:=Pλ(x) for any x ∈ R
N . Moreover, we define a (filled) cone C�0(q) with

vertex q by

{x ∈ R
N | ∃ λ > 0such thatq + λ(x − q) ∈ G × {0}} ∪ {q}

where G is as in (1.7). Note that ∂C�0(q) ∩ {(x ′, xN ) | xN = 0} = �0. We further set
Cλ

�0
(q):=Pλ(C�0(q)).

Now let M ⊂ R
N be the critical point chosen in Theorem 1.1. The minimizer M

is bounded. Hence, we can slide the hyperplane Hλ from below until it touches the
minimizer M. Our result in Theorem 1.1 states that this touching does not occur in
H−
0 ∪ H+

0 and thus, we assume by contradiction that there exist a constant λ0 < 0
and a point q ∈ M ∩ � such that
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Fig. 3 The situation in dimension 2 in which the critical point M = γ is a C1,α curve with ∂γ = �0 =
{(a, 0), (−a, 0)}. The setAe(q) is shown in dark gray, the set Ai (q) in white. The dashed lines represent
the boundary of the cone C(a,0)∪(−a,0)(q)

TqM = Hλ0 and H−
λ0

∩ M = ∅

where TqM is the tangent space of M at q. Due to the symmetry of our setting, we
can conduct the same argument that we will show below in the case when we slide the
hyperplane from above and the touching occurs in H+

0 . Hence, it is sufficient to show
the proof in the case when the touching occurs in H−

0 . See also Fig. 3 for the situation
that we consider in dimension 2.

SinceM is an orientable compact critical point ofAreas , whichmeans the vanishing
of the first variation of Areas at M, and since q ∈ M, we obtain, from (1.4), that

0 = HM,s(q):=cN

∫
RN

χAi (q)(y) − χAe(q)(y)

|y − q|N+s
dy (2.2)

where the sets Ae(q) and Ai (q) are defined as in (1.5) and (1.6). We consider all the
contributions from Ae(q) and Ai (q) in detail and show that the singular integral on
the right-hand side of (2.2) is strictly positive, which is a contradiction.

Indeed, sinceC�0(q) ⊂ H+
λ0
andHλ0 is tangential toM,wehave that Pλ0(Ae(q)) ⊂

H−
λ0

⊂ Ai (q). This implies that R
N = Ae(q) ∪ Pλ0(Ae(q)) ∪Ai (q)\Pλ0(Ae(q)), up

to negligible sets, and thus we can compute the fractional mean curvature HM,s at q
as follows:

c−1
N HM,s(q) =

∫
Ae(q)

χAi (q)(y) − χAe(q)(y)

|y − q|N+s
dy +

∫
Pλ0 (Ae(q))

χAi (q)(y) − χAe(q)(y)

|y − q|N+s
dy

+
∫
Ai (q)\Pλ0 (Ae(q))

χAi (q)(y) − χAe(q)(y)

|y − q|N+s
dy

=
∫
Ae(q)

−1

|y − q|N+s
dy +

∫
Pλ0 (Ae(q))

1

|y − q|N+s
dy

+
∫
Ai (q)\Pλ0 (Ae(q))

1

|y − q|N+s
dy. (2.3)
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Fig. 4 The same situation as in
Fig. 3. The reflection
Pλ0 (Ae(q)) ofAe(q) is shown
in dark gray, the setAe(q) in
light gray

From the change of variables y �→ Pλ0(y) and the definition of Pλ0 , we have

∫
Pλ0 (Ae(q))

1

|y − q|N+s
dy =

∫
Ae(q)

1

|y − q|N+s
dy. (2.4)

Moreover, we have that the volume of the setAi (q)\Pλ0(Ae(q)) is not zero because

Ai (q) \ Pλ0(Ae(q)) ⊃ {x ∈ R
N | |x ′| > |p′|/2} ∩ H+

λ0
∩ C�0(q)c ⊃ B+

λ0
100

(p),

where p:=(p′, λ0) ∈ R
N−1 × R for some p′ ∈ R

N−1 with |p′| � |λ0| +
maxx,y∈�0 |x − y| sufficiently large and B+

r (q):={x = (x ′, xN ) ∈ Br (q) | xN > qN }.
See also Fig. 4 for illustration in dimension 2. From (2.3) and (2.4), we obtain

0 =
∫
Ae(q)

−1

|y − q|N+s
dy +

∫
Ae(q)

1

|y − q|N+s
dy +

∫
Ai (q)\Pλ0 (Ae(q))

1

|y − q|N+s
dy

=
∫
Ai (q)\Pλ0 (Ae(q))

1

|y − q|N+s
dy > 0,

which is a contradiction. ��

3 Shape of Critical Points with Two Disjoint Compact Boundaries

In this section,wefirst give the proof of Theorem1.2 and thenwe show someproperties
of the critical points of Areas and compute the fractional mean curvature of cones.

3.1 Proof of Theorem 1.2

In this subsection, we prove Theorem 1.2. The idea of the proof is basically the same
as the one in the proof of Theorem 1.1. The convexity assumption on C is necessary
for us to use the sliding method.

123

294 Page 10 of 30 F. Onoue



Fig. 5 The situation in
dimension 2 in which each
componentMi = γi of the
critical point M = γ for
i ∈ {1, 2} is a C1,α curve with
∂γi = �i where
�1 = {(a, h1), (−a, h1)} and
�2 = {(a, h2), (−a, h2)}. The
set Ae(q) is shown in gray, the
set Ai (q) in white

Proof of Theorem 1.2 We first define

H+
�i

:={(x ′, xN ) | xN > hi }, H−
�i

:={(x ′, xN ) | xN < hi }

for each i ∈ {1, 2}. Notice that

∂H+
�i

∩ ∂C = ∂H−
�i

∩ ∂C = �i and ∂H+
�i

∩ C = ∂H−
�i

∩ C = Ci

for each i ∈ {1, 2}.
Let M ⊂ R

N be the critical point chosen in Theorem 1.2. By using the same
argument as in the proof of Theorem 1.1, we obtain thatM cannot exist in the regions
H−

�2
and H+

�1
, that is,M ∩ (H−

�2
∪ H+

�1
) = ∅.

We now show that any connected component ofM cannot be eitherC1 orC2. To see
this, we assume by contradiction that there exists a connected component M1 of M
such that M1 coincides with C1. Taking any q ∈ M1, we have that the cone C�2(q)

of vertex q whose boundary passes through �2 is contained in H−
�1
. By choosing a

proper orientation ofM, we can have that H+
�1

⊂ Ae(q) andAi (q) ⊂ H−
�1

where the
setsAe(q) and Ai (q) are defined as in (1.5) and (1.6), respectively. See Fig. 5 for the
situation in dimension 2.

Since M is a critical point of Areas , from (1.4), we have that

0 = HM,s(q) = cN

∫
RN

χAi (q)(y) − χAe(q)(y)

|y − q|N+s
dy. (3.1)

123

294Page 11 of 30On the Shape of Hypersurfaces...



Now, by employing the same argument we used in the proof of Theorem 1.1, we obtain
that

c−1
N HM,s(q) =

∫
Ae(q)∩H+

�1

−1

|y − q|N+s
dy +

∫
Ae(q)∩H−

�1

−1

|y − q|N+s
dy

+
∫
Ai (q)

1

|y − q|N+s
dy

≤
∫
B1/2(−λeN )

−1

|y − q|N+s
dy < 0

because B1/2(−λeN ) ⊂ Ae(q)∩ H−
�2

where λ > max{|x − z| | x ∈ C2, z ∈ M}+1.
This contradicts (3.1). Therefore, we conclude that the first claim is valid.

To prove the rest of the claim, we can argue in the same way as in the proof of
the first claim. Indeed, we slide any hyperplane parallel to the xN -axis from right to
left or from left to right until it touches the boundary of the cylinder C. If there is
no touching point, from the convexity of C, we obtain that the critical point M is
strictly contained in C except for its boundary. Thus, we assume by contradiction that
there exists a touching point q of M in the complement of C. Then, by choosing a
proper orientation ofM, we can show that the contribution fromAe(q) relative to the
touching point q is strictly larger (or smaller) than that fromAi (q), respectively, as we
see in the proof of the first claim. This contradicts that the fractional mean curvature
vanishes at the touching point q. Therefore, we conclude the proof of Theorem 1.2. ��

3.2 Further Study on Critical Points and Cones

In this subsection, we further study the shape of critical points of Areas under the same
assumptions as in Theorem 1.2 with h1 = 1 and h2 = −1.

First, we investigate the shape of critical points in dimension 2. To begin, we divide
R
2 into four regions, that is, we define four regions Ct

0, C
b
0 , C

r
0, and C


0 by

Ct
0:={(x1, x2) ∈ R

2 | x2 > |x1|},
Cb
0 :={(x1, x2) ∈ R

2 | x2 < −|x1|},
Cr
0 :={(x1, x2) ∈ R

2 | −|x1| < x2 < |x1|, 0 < x1},
and C

0 :={(x1, x2) ∈ R
2 | −|x1| < x2 < |x1|, x1 < 0},

respectively. Moreover, we set

C0:=(∂Ct
0 ∪ ∂Cb

0 ) ∩ {(x1, x2) | |x2| ≤ 1}. (3.2)

Notice that ∂C0 = �1 ∪ �2 where �1 and �2 are given in Theorem 1.2 with h1 = 1
and h2 = −1 in R

2. From the definition of �1 and �2, we have that �1 = {(±1, 1)}
and �2 = {(±1, −1)}.

123

294 Page 12 of 30 F. Onoue



Nowwe prove that the fractional mean curvature of the cone C0 vanishes at regular
points, i.e.,

HC0,s(z) = 0 (3.3)

for any z ∈ C0 \ {0, (±1, 1), (±1, −1)}. Indeed, let z ∈ C0 \ {0, (±1, 1), (±1, −1)}
and, by symmetry, we may assume that z = (z1, z2) satisfies −1 < z1 < 0 and
0 < z2 < 1. Then, from the definition of the “interior”Ai (z) and the “exterior”Ae(z)
of the cone C0 and by taking a suitable orientation of C0\{0}, we may obtain that

Ai (z) =
(
([z, (1, 1)]− ∩ [z, (1, −1)]+) \ Ct

0

)

∪
(
([z, (−1, 1)]− ∩ [z, (−1, −1)]+) ∪ C

0

)

and

Ae(z) = (
([z, (−1, 1)]+ ∩ [z, (1, 1)]+) ∪ Ct

0

) ∪ (
([z, (−1, −1)]−

∩[z, (1, −1)]−) \ C
0

)

where we denote by [p, q] the straight line passing through p, q ∈ R
2 with p 	= q

and we define [p, q]+ and [p, q]− by the upper part and the lower part of the region
separated by the straight line [p, q], respectively.

Now, because of the symmetry of the coneC0, we readily observe that, in dimension
2, the sets Ai (z) and Ae(z) are equivalent to each other in the sense that T (Ai (z)) =
Ae(z) where T : R

2 → R
2 is an isometric map such that x+T (x)

2 ∈ {(x1, x2) | x2 =
x1} for any x ∈ R

2. By definition, we notice that T (z) = z.
Therefore, from the change of variables x �→ T (x), we obtain that

c−1
N HC0,s(z) =

∫
Ai (z)

1

|y − z|2+s
dy −

∫
Ae(z)

1

|y − z|2+s
dy

=
∫
Ai (z)

1

|y − z|2+s
dy −

∫
Ai (z)

1

|T (y) − T (z)|2+s
dy

= 0.

By combining this fact with Theorem 1.2, we can prove the following proposition.

Proposition 3.1 Let N = 2 and s ∈ (0, 1). Let �1 and �2 be as in Theorem 1.2
with h1 = 1 and h2 = −1. Let γ ⊂ R

2 be an orientable compact C1,α curve with
∂γ = �1 ∪ �2. Assume that C = {(x1, x2) | |x1| < 1} where C is as in (1.7). If γ

is a critical point of Areas under normal variations, then γ is not contained in either

Ct
0 ∪ Cb

0 or Cr
0 ∪ C

0 whenever (γ \∂γ ) ∩ (C0\{0}) 	= ∅.
Remark 3.2 We may observe, by combining Proposition 3.1 with Theorem 1.2, that
the possible shapes of minimizers of Areas in dimension 2 whose boundary is �1 ∪�2
are depicted in Fig. 6.
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Fig. 6 Possible minimizers γ of Areas in dimension 2 with ∂γ = �1 ∪ �2 is shown with dashed lines. On
the right, γ does not intersect with C0 except at their boundaries �1 and �2

Proof Let γ ⊂ R
2 be as in Proposition 3.1 and assume that (γ \∂γ ) ∩ (C0\{0}) 	= ∅.

We argue by contradiction that either γ ⊂ Ct
0 ∪ Cb

0 or γ ⊂ Cr
0 ∪ C

0 holds. Due to the

symmetry of C0, it is sufficient to consider the case that γ ⊂ Ct
0 ∪ Cb

0 holds. From
this assumption, we can choose a point z ∈ (γ \∂γ ) ∩ (C0\{0}).

Now, by choosing a proper orientation, we consider the “interior” and “exterior” of
γ and C0 at the touching point z. To see this, we set the interior and exterior at q ∈ η

of a curve η ⊂ R
2 asAη

i (z) andAη
e (z), respectively. Then, from the smoothness of the

critical point γ and the assumption that γ ⊂ Ct
0 ∪Cb

0 , we obtain, by taking a suitable
orientation of γ and C0, that

|AC0
e (z) \ Aγ

e (z)| = |Aγ

i (z) \ AC0
i (z)| 	= 0 (3.4)

and

|Aγ
e (z) \ AC0

e (z)| = |AC0
i (z) \ Aγ

i (z)| = 0. (3.5)

Here, from Theorem 1.2, we have used the fact that all the critical points of Areas in
our situation are contained in the box {(x1, x2) | |x1| < 1, |x2| < 1}. See also Fig. 7
for our situation.

Hence, since γ is a critical point of Areas , we have that

Hγ,s(z) = 0.

From (3.3), (3.4), and (3.5), we have

0 = c−1
2 Hγ,s(z) = c−1

2 (Hγ,s(z) − HC0,s(z))

=
∫
R2

χAγ
i (z)(y) − χAC0

i (z)
(y) + χAC0

e (z)
(y) − χAγ

e (z)(y)

|y − z|2+s
dy

=
∫
Aγ

i (z)\AC0
i (z)

1

|y − z|2+s
dy −

∫
AC0

i (z)\Aγ
i (z)

1

|y − z|2+s
dy
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Fig. 7 The situation of the
critical point γ and the touching
point z in which γ is included in
Ct
0 ∪ Cb

0 with ∂γ = �1 ∪ �2.

The set Aγ
e (z) is shown in light

gray, the set AC0
i (z) in white,

and the set AC0
e (z)\Aγ

e (z) in
dark gray

+
∫
AC0

e (z)\Aγ
e (z)

1

|y − z|2+s
dy −

∫
Aγ

e (z)\AC0
e (z)

1

|y − z|2+s
dy

=
∫
Aγ

i (z)\AC0
i (z)

1

|y − z|2+s
dy +

∫
AC0

e (z)\Aγ
e (z)

1

|y − z|2+s
dy > 0,

(3.6)

which is a contradiction. Therefore we obtain the claim. ��
Remark 3.3 We briefly consider the situation of Theorem 1.2 with h1 = d and h2 =
−d for d 	= 1 and d > 0 and see what kind of shape the critical points in dimension
2 look like. Notice that we have treated the case of d = 1 in Proposition 3.1.

Assume that h1 = d and h2 = −d for d > 0. We define a cone Cd with vertex 0
by

Cd :={(x1, x2) ∈ R
2 | |x2| = d|x1|, |x2| ≤ d}. (3.7)

Notice that ∂Cd = �1 ∪ �2. By slightly modifying the argument for showing that
HC0,s = 0 on C0\(∂C0 ∪ {0}) and taking a proper orientation, we can show that
the fractional mean curvature HCd ,s(z) of Cd is either positive or negative for any
z ∈ Cd\∂Cd with z 	= 0. Then, again by slightly modifying the argument in the proof
of Proposition 3.1, we obtain the same result as in Proposition 3.1 even for any d 	= 1.

We next prove the same result as Proposition 3.1 in higher dimensions. To see this,
we also show that the fractional mean curvature of a cone passing through �1 ∪ �2 is
either positive or negative everywhere except at its vertex in higher dimensions. The
idea of the proof is the same as that in the proof of Proposition 3.1. We first introduce
some notations. We define a bounded tube D0 and a unbounded (open) cone C̃0 by

D0:={(x ′, xN ) ∈ R
N−1 × R | |x ′| < 1, −1 < xN < 1}
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C̃0:={(x ′, xN ) ∈ R
N−1 × R | |xN | > |x ′|}.

Moreover, we setCN
0 :=∂C̃0∩{(x ′, xN ) | |xN | ≤ 1} and decompose C̃0 into two parts

C̃+
0 and C̃−

0 which are defined by

C̃+
0 :={(x ′, xN ) ∈ R

N−1 × R | xN > |x ′|}
C̃−
0 :={(x ′, xN ) ∈ R

N−1 × R | xN < −|x ′|}.

Notice that CN
0 coincides with C0 given in (3.2) if N = 2 and ∂CN

0 = �1 ∪ �2.

Proposition 3.4 Let N ≥ 3 and s ∈ (0, 1). Let �1 and �2 be as in Theorem 1.2 with
h1 = 1 and h2 = −1. Let M ⊂ R

N be an orientable compact C1,α manifold with
∂M = �1 ∪�2. Assume that C = {(x ′, xN ) | |x ′| < 1} where C is as in (1.7). IfM is
a critical point of Areas under normal variations, then M is not contained in either

C̃+
0 ∪ C̃−

0 or D0\(C̃+
0 ∪ C̃−

0 ) whenever (M\∂M) ∩ (CN
0 \{0}) 	= ∅.

Proof The proof is similar to that of Proposition 3.1 and we here show a rough sketch
of the proof. Let M be the critical point selected in Proposition 3.4. We assume that
(M\∂M)∩(CN

0 \{0}) is not empty andwe choose a point z ∈ (M\∂M)∩(CN
0 \{0}).

Suppose by contradiction that either

M ⊂ C̃+
0 ∪ C̃−

0 or M ⊂ D0 \ (C̃+
0 ∪ C̃−

0 )

holds. First, by choosing an orientation, we show that

HCN
0 ,s(z) > 0. (3.8)

Indeed, if we take the unit normal vector νCN
0
(z) of the cone CN

0 at z in such a way

that the direction is towards C̃0, then the “interior”ACN
0

i (z) and “exterior”ACN
0

e (z) are
given by

ACN
0

i (z) = R
N \

(
ACN

0
e (z) ∪ CN

0

)

and

ACN
0

e (z) = (C̃0 ∩ {(x ′, xN ) | |xN | ≤ 1}) ∪ (
(C�1(z) ∪ C�2(z)) ∩ {(x ′, xN ) | |xN | ≥ 1})

where C�i (z) is defined by a (filled) cone of vertex z passing through �i for each
i ∈ {1, 2}. Now we take a hyperplane Hz which is tangent to ∂C̃0 and passes through
z and define the reflection map THz with respect to Hz . From the definitions of CN

0 ,

ACN
0

i (z), and ACN
0

e (z), we have

THz (A
CN
0

e (z)) ⊂ ACN
0

i (z) and

∣∣∣∣ACN
0

i (z) \ THz (A
CN
0

e (z))

∣∣∣∣ 	= 0.
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Since THz is an isometry and THz (z) = z, we obtain the following:

c−1
N HCN

0 ,s(z) =
∫
ACN

0
i (z)\THz (A

CN
0

e (z))

dx

|x − z|N+s
+

∫
THz (A

CN
0

e (z))

dx

|x − z|N+s

−
∫
ACN

0
e (z)

dx

|x − z|N+s

=
∫
ACN

0
i (z)\THz (A

CN
0

e (z))

dx

|x − z|N+s
+ 0 > 0, (3.9)

which implies (3.8).
Now, since M is a critical point of Areas , we have the Euler-Lagrange equation

HM,s(z) = 0.

Thus, taking the unit normal vector νM(z) of M at z as νCN
0
(z), we can have the

following computation:

0 = c−1
N (HM,s(z) − HCN

0 ,s(z) + HCN
0 ,s(z))

= 2
∫
ACN

0
e (z)\AM

e (z)

1

|x − z|N+s
dx − 2

∫
AM

e (z)\ACN
0

e (z)

1

|x − z|N+s
dx + HCN

0 ,s(z).

(3.10)

From the assumption, we can observe that

∣∣∣∣ACN
0

e (z) \ AM
e (z)

∣∣∣∣ > 0 and

∣∣∣∣AM
e (z) \ ACN

0
e (z)

∣∣∣∣ = 0.

Therefore, from (3.8) and (3.10), we reach a contradiction. ��

4 Topology of Critical Points

In this section, we investigate the topology of critical points with two parallel and
co-axial boundaries and prove Theorems 1.4 and 1.5.

Before proving our main theorems of this section, we establish Lemma 1.3. The
idea of the proof is to construct a small barrier, whose fractional mean curvature is
strictly positive or negative, and to “slide” the barrier until it touches the critical point.
The construction of the barrier is inspired by the one shown in [17]. See also [13,
Proof of Proposition 4.1]. In the sequel, without loss of generality, we may assume
that C = {(x ′, xN ) | |x ′| < 1} where C is as in (1.7) for simplicity.
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Proof of Lemma 1.3 We first fix ε ∈ (0, 1) so small that δ = δ(ε):=(− log ε)−1/2 < 1
2

and we define a smooth bump function wε : R
N−1 → R by

wε(x
′):=

{
− exp

(
− 1

δ2−|x ′|2
)

for|x ′| < δ

0 otherwise.

Notice that wε ∈ C∞(RN−1), wε(x ′) = 0 for |x ′| = δ, wε(0) = −ε, and

lim
ε↓0 φ(ε):= lim

ε↓0 ‖∇′2wε‖C0 = 0. (4.1)

where ∇′ = (∂x1, · · · , ∂xN−1). If necessary, we may choose ε in such a way that
φ(ε) < 1. Note that, since φ is an increasing function in a neighborhood Iφ ⊂ [0, 1)
of the origin, its inverse function φ−1 exists in a neighborhood Jφ ⊂ [0, 1) of the
origin. We then set

r(ε):= (2(N − 1)φ(ε))−1 and d(ε):=2r(ε). (4.2)

Moreover, we define a positive constant εd as

εd :=
{

φ−1((2(N − 1)d)−1) if(2(N − 1)d)−1 ∈ Jφ
(any positive constant inJφ) if(2(N − 1)d)−1 /∈ Jφ.

By definition, we observe that r(εd) ≥ d and εd can be chosen independently of d if
d < (2(N − 1))−1 since Jφ ⊂ [0, 1).

In addition, we choose a smooth function vε : R
N−1 → R such that vε is radially

symmetric, 0 ≤ vε(x ′) ≤ 1 for x ′ ∈ R
N−1, and spt vε ⊂ B ′

1/8(0) where we denote

by B ′
r (0) an open ball centered at the origin of radius r in R

N−1. In particular, we
choose vε in such a way that its subgraph {(x ′, xN ) | 0 ≤ xN ≤ vε(x ′)} of vε contains
a cylinder of height φ(ε)β < 1 for β ∈ (0, s) with the base of radius 1

16 . Then we
define a function w̃ε : R

N−1 → R by

w̃ε(x
′):=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

wε(x ′) for|x ′| < δ

0 forδ ≤ |x ′| < 5
8

vε

(
x ′ − b′) for 58 ≤ |x ′| < 7

8

0 for|x ′| ≥ 7
8

where b′ ∈ R
N−1 is any point with |b′| = 3

4 . Notice that w̃ε is smooth in R
N−1.

Now we construct a barrier against M̃ε,t , i.e., an orientable compact (N − 1)-
dimensional piecewise smooth manifold M̃ε,t in the following way: first, taking any
t ∈ (0, ε], we define two sets

Mε,t
1 :={(x ′, xN ) | |x ′| ≤ 1, xN = w̃ε(x

′) + t},
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Fig. 8 The barrier
M̃ε,t = Mε,t

1 ∪ Mε,t
2

associated with a function w̃ε in
dimension 2. The graph of w̃ε in
{|x ′| < 1} is depicted with black
lines and the cylinders in dark
gray

and Mε,t
2 :={(x ′, xN ) | |x ′| ≤ 1, xN = −d(ε) + t}

where d(ε) is as in (4.2). Then we define our barrier as M̃ε,t :=Mε,t
1 ∪ Mε,t

2 . See
Fig. 8 for the illustration of the barrier by construction, we can easily see that M̃ε,t is
an orientable compact (N − 1)-dimensional smooth manifold with ∂Mε

1 = �
ε,t
1 and

∂Mε,t
2 = �

ε,t
2 where we define

�
ε,t
1 :=C ∩ {xN = t} and �

ε,t
2 :=C ∩ {xN = −d(ε) + t}.

We next construct another barrier in which the small bump associated with vε is
removed from M̃ε,t . First, for any t ∈ (0, ε], we define a manifoldMε,t

3 as the graph
of wε, i.e.,

Mε,t
3 :={(x ′, xN ) | |x ′| < 1, xN = wε(x

′) + t}

and, then, define the second barrier as Mε,t :=Mε,t
3 ∪ Mε,t

2 . Notice that ∂Mε,t =
�

ε,t
1 ∪ �

ε,t
2 Fig. 8.

We now show, up to orientation, that the fractional mean curvature of M̃ε,t is
negative on the graph of wε. Let q ∈ Mε,t

1 be any point such that |q ′| < δ(ε) where
we set q = (q ′, qN ). We now define C�

ε,t
i

(q) to be a (filled) cone of vertex q whose

boundary passes through �
ε,t
i for i ∈ {1, 2}. Then, up to orientation, the interior and

exterior of M̃ε,t at q are

AM̃ε,t

i (q) = R
N \

(
AM̃ε,t

e (q) ∪ M̃ε,t
)

and

AM̃ε,t

e (q) =
(
C�

ε,t
2

(q) ∩ {(x ′, xN ) | xN < −d(ε) + t}
)

∪ {(x ′, xN ) | xN > w̃q
ε (x ′)},
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respectively, where we define a function w̃
q
ε : R

N−1 → R by

w̃q
ε (x ′):=

{
w̃ε(x ′) for|x ′| < 1

(the graph function of ∂C�
ε,t
1

(q)) for|x ′| ≥ 1.

We now compute the fractional mean curvature HM̃ε,t ,s(q) at q of M̃ε,t . From the
definition of the fractional mean curvature and by a change of variables, we have

−c−1
N HM̃ε,t ,s(q) =

∫
RN

χAM̃ε,t
e (q)

(q − x) − χAM̃ε,t
i (q)

(q − x)

|x |N+s
dx

=
∫
B′
r (0)×(−r , r)

χAM̃ε,t
e (q)

(q − x) − χAM̃ε,t
i (q)

(q − x)

|x |N+s
dx

+
∫

(B′
r (0)×(−r , r))c

χAM̃ε,t
e (q)

(q − x) − χAM̃ε,t
i (q)

(q − x)

|x |N+s
dx

=:(I ) + (I I ) (4.3)

where we set r :=r(ε) where r(ε) is as in (4.2).
We first compute (I ). Thanks to the choice of r and the construction of M̃ε,t , we

observe that

(B ′
r (q) × (−r , r)) ∩

(
C�

ε,t
2

(q) ∩ {(x ′, xN ) | xN < −d(ε) + t}
)

= ∅.

Thus we can represent the set ∂AM̃ε,t

e (q) in B ′
r (0) × (−r , r) as the graph of w̃

q
ε . By

doing a computation similar to the one in [3, Sect. 3], we obtain

(I ) = −2
∫
B′
r (0)

F

(
w̃

q
ε (q ′) − w̃

q
ε (q ′ − x ′)

|x ′|
)

dx ′

|x ′|N−1+s

= −
∫
B′
r (0)

F

(
w̃

q
ε (q ′) − w̃

q
ε (q ′ − x ′)

|x ′|
)

dx ′

|x ′|N−1+s

−
∫
B′
r (0)

F

(
w̃

q
ε (q ′) − w̃

q
ε (q ′ + x ′)

|x ′|
)

dx ′

|x ′|N−1+s

=
∫
B′
r (0)

F

(−w̃
q
ε (q ′) + w̃

q
ε (q ′ − x ′)

|x ′|
)

dx ′

|x ′|N−1+s

−
∫
B′
r (0)

F

(
w̃

q
ε (q ′) − w̃

q
ε (q ′ + x ′)

|x ′|
)

dx ′

|x ′|N−1+s
(4.4)

where we set

F(t):=
∫ t

0

1

(1 + σ 2)
N+s
2

dσ
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for any t ∈ R. Note that we have used the change of variables x ′ �→ −x ′ in the second
equality of (4.4) and the fact that F is odd in the last equality of (4.4). By definition,
we have that w̃

q
ε (q ′) = wε(q ′) and w̃

q
ε ≥ wε in R

N−1. Since F is increasing, we
derive from (4.4) that

(I ) ≥
∫
B′
r (0)

F

(−wε(q ′) + wε(q ′ − x ′)
|x ′|

)
dx ′

|x ′|N−1+s

−
∫
B′
r (0)

F

(
wε(q ′) − wε(q ′ + x ′)

|x ′|
)

dx ′

|x ′|N−1+s
. (4.5)

Now, by using the fundamental theorem of calculus in (4.5), we obtain

(I ) ≥ −
∫
B′
r (0)

∫ 1

0
F ′ (a(x ′, q ′, λ)

)
dλ

2wε(q ′) − wε(q ′ + x ′) − wε(q ′ − x ′)
|x ′|N+s

dx ′

(4.6)

where we set a(x ′, q ′, λ) as

a(x ′, q ′, λ):=λ
wε(q ′) − wε(q ′ + x ′)

|x ′| + (1 − λ)
−wε(q ′) + wε(q ′ − x ′)

|x ′|
for x ′, q ′ ∈ R

N−1 andλ ∈ [0, 1]. By using again the fundamental theoremof calculus,
we have

|2wε(q
′) − wε(q

′ + x ′) − wε(q
′ − x ′)|

=
∣∣∣∣−

∫ 1

0
∇wε(q

′ + ρx ′) · x ′ dρ +
∫ 1

0
∇wε(q

′ − ρx ′) · x ′ dρ

∣∣∣∣
≤

∫ 1

0

∣∣∇wε(q
′ + ρx ′) − ∇wε(q

′ − ρx ′)
∣∣ |x ′| dρ. (4.7)

Hence, combining (4.7) with (4.6), we obtain that

(I ) ≥ −
∫
B′
r (0)

∫ 1

0

|∇′wε(q ′ + ρx ′) − ∇′wε(q ′ − ρx ′)|
|x ′|N−1+s

dρ dx ′.

Here we have used that F ′(t) = (1 + t2)− N+s
2 ≤ 1. Since wε is smooth in R

N−1, we
then have

(I ) ≥ −2‖∇′2wε‖C0

∫
B′
r (0)

dx ′

|x ′|N−2+s
= −2ωN−2

1 − s
‖∇′2wε‖C0 r1−s . (4.8)

Now we compute (I I ) in the following way: since Br (0) ⊂ B ′
r (0) × (−r , r) ⊂ R

N ,
we have

(I I ) ≥ −
∫
Bc
r (0)

dx

|x |N+s
= −ωN−1

s
r−s . (4.9)
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Therefore, from (4.8) and (4.9), we obtain

− HM̃ε,t ,s(q) ≥ −
(
c1 ‖∇′2wε‖C0 r1−s + c2 r

−s
)

(4.10)

where c1 and c2 are defined as

c1:=2ωN−2

1 − s
and c2:=ωN−1

s
,

respectively. From (4.2), it holds that the right-hand side of (4.10) takes the maximum
at r = r(ε) ∈ (0, d(ε)). Hence we finally obtain, from (4.10), that

− HM̃ε,t ,s(q) ≥ −c ‖∇′2wε‖sC0 = −c φ(ε)s (4.11)

where we set the constant c = c(N , s) > 0 as

c = c(N , s):= (2(N − 1))sωN−1

s(1 − s)
.

Next we compute the fractional mean curvature HMε,t ,s(q) at q by using Estimate
(4.11) of the fractional mean curvature HM̃ε,t ,s(q) at q. Indeed, from the construction

of Mε,t and M̃ε,t , we have that, by choosing a proper orientation, AM̃ε,t

e (q) ⊂
AMε,t

e (q) and thus we obtain

−c−1
N HMε,t ,s(q) = −c−1

N HM̃ε,t ,s(q)

+
∫
RN

χAMε,t
e (q)

(x) − χAM̃ε,t
e (q)

(x) + χAM̃ε,t
i (q)

(x) − χAMε,t
i (q)

(x)

|x − q|N+s
dx

= −c−1
N HM̃ε,t ,s(q)

+
∫
RN

χAMε,t
e (q)\AM̃ε,t

e (q)
(x) + χAM̃ε,t

i (q)\AMε,t
i (q)

(x)

|x − q|N+s
dx

= −c−1
N HM̃ε,t ,s(q) + 2

∫
AMε,t

e (q)\AM̃ε,t
e (q)

1

|x − q|N+s
dx . (4.12)

Recalling that AMε,t

e (q)\AM̃ε,t

e (q) contains the subgraph {0 ≤ xN ≤ vε(x ′ − b′)}
and the subgraph contains the cylinders of height φ(ε)β with the base of radius 1/16,
we have

∣∣∣AMε,t

e (q) \ AM̃ε,t

e (q)

∣∣∣ ≥ c′ φ(ε)β.

where a constant c′ = c′(N ) > 0 depends only on N . Moreover, we observe that the
distance between q and the cylinder is less than, at most, 2+φ(ε)β and this is bounded
from above by some constant depending only on N , s, and β. Hence from (4.11) and
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Fig. 9 The critical point γ
depicted with dashed lines and
the barrier γ ε,t1 with black line.
γ touches γ ε,t1 at qε,t1 from
above. The exterior

Aγ ε,t1
e (qε,t1 ) of γ ε,t1 is

depicted in light gray and the
exterior Aγ

e (qε,t1 ) of γ in both
light and dark gray

(4.12) and by recalling the choice of φ, we obtain

−c−1
N HMε,t ,s(q) ≥ −c φ(ε)s + 2c′

(2 + φ(ε)β)N+s
φ(ε)β

≥ −c φ(ε)s + c′′φ(ε)β

= φ(ε)β
(−c φ(ε)s−β + c′′) (4.13)

where c′′ > 0 is a constant depending only on N , s, and β. Since 0 < β < s and
φ(ε) ↓ 0 as ε ↓ 0, we choose ε1 = ε1(N , s, β) ∈ Iφ ∩ (0, 1

100 ) so small that the
right-hand side of (4.13) is positive for any ε ∈ (0, ε1]. Therefore, from (4.13), we
obtain that HMε,t ,s(q) < 0 for ε ∈ (0, ε1].

Now we set ε2:=min{ε1, εd}. Since r(εd) ≥ d and δ(ε2) < 1
2 , we may observe

that d(ε2) ≥ d and Mε2,t
3 ∩ �1 = ∅ for any t ∈ (0, ε2]. For our convenience, we

denote ε2 by ε in the sequel.
We then slide the barrierMε,t from above, i.e., we vary the parameter t stating at ε

untilMε,t touches the critical pointM. Toprove the claim,weassumebycontradiction
that there exists t1 ∈ (0, ε] such that M ∩ Mε,t1

3 	= ∅ and M ∩ Mε,t
3 = ∅ for any

t ∈ (t1, ε]. We pick up a point qε,t1 ∈ M ∩ Mε,t1
3 . Notice that

{(x ′, xN ) | −d < xN < 0} ∩ Mε,t1
2 = ∅

since d(ε) ≥ d. See Fig. 9 to favor the intuition in dimension 2.
Since M is a critical point of Areas under normal variations, we obtain

HM,s(qε,t1) = 0.

From Theorem 1.2 and the above argument, we obtain that the touching point
qε,t1 :=(q ′

ε,t1 , q
N
ε,t1) ∈ R

N−1 × R satisfies |q ′
ε,t1 | < δ(ε) and thus HMε,t1 ,s(qε,t1) < 0.

Moreover, from the construction ofMε,t1
1 , we have, by choosing a proper orientation,
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that

|AM
e (qε,t1) \ AMε,t1

e (qε,t1)| > 0 and |AMε,t1
e (qε,t1) \ AM

e (qε,t1)| = 0.

Therefore, we obtain

0 = c−1
N (HM,s(qε,t1) − HMε,t1 ,s(qε,t1) + HMε,t1 ,s(qε,t1))

<

∫
RN

χAM
i (qε,t1 )

(x) − χAMε,t1
i (qε,t1 )

(x) + χAMε,t1
e (qε,t1 )

(x) − χAM
e (qε,t1 )(x)

|x − qε,t1 |N+s
dx + 0

= −2
∫
AM

e (qε,t1 )\AMε,t1
e (qε,t1 )

1

|x − qε,t1 |N+s
dx < 0, (4.14)

which is a contradiction. We thus conclude that we can slide the barrierMε,t until the
boundary �

ε,t
1 = ∂Mε,t

3 coincides with the boundary �1 = ∂M1. By symmetry, we
can slide the barrier from below and do the same argument. ��

Therefore we obtain that two open half-balls of radius ε2 are contained in a set
enclosed by M and the union of C ∩ {xN = 0} and C ∩ {xN = −d}.

As a consequence of Lemma 1.3, we now prove Theorem 1.4.

Proof of Theorem 1.4 Assume that ε2 and M̃ε,t are given in the proof of Lemma 1.3
for ε ∈ (0, ε2] and t ∈ (0, ε]. From the definition of ε2, we can choose d ′ > 0 so
small that d ′ < (2(N − 1))−1 and that ε2 can be chosen independently of d for any
d ∈ (0, d ′). Moreover, if necessary, we may assume that ε2 φ(ε2) < (2(N − 1))−1,
which is still independent of d.

LetM be the critical point chosen in Theorem 1.4. We set d0:=min{d ′, ε2}. From
the choice of φ and ε2, we have that d0 φ(d0) < (2(N − 1))−1. Then we observe that
d(ε2) − t = ((N − 1)φ(ε2))

−1 − t > d for any t ∈ (0, ε2] and thus we have that

�
ε2,t
2 ∩ {(x ′, xN ) | −d < xN < 0} = ∅

for any t ∈ (0, ε2] and any d < d0.
Now, by Lemma 1.3, we find that we can slide the barrierMε2,t until the parameter

t reaches 0. Thus, by combining this with Theorem 1.2, we obtain that

M ⊂ (C \ {(x ′, xN ) | |x ′| < ε2}
) ∩ {(x ′, xN ) | −d ≤ xN ≤ 0}

= {(x ′, xN ) | ε2 ≤ |x ′| ≤ 1, −d ≤ xN ≤ 0}

for any d < d0.
If N = 2, then, since �i consists of two distinct points for i ∈ {1, 2}, by a simple

geometric argument, we conclude that the critical point M is disconnected for any
d ∈ (0, d0). Moreover, from the construction of the barrier, we obtain that there exist
two connected components M1 and M2 of M such that dist (M1,M2) ≥ ε2 and
Mi intersects both �1 and �2 for each i ∈ {1, 2} at its boundary (see also Remark
4.1).
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Fig. 10 Two possible critical points γ of Areas in dimension 2 with ∂γ = �1 ∪ �2 are shown with dashed
lines and the cone Cd defined in (3.7) is shown with crossed lines. On the right, γ does not intersect with
Cd except at their boundaries �1 and �2. In both figures, two distinct connected components γ1 and γ2 of
γ are placed at mutually positive distance of at least ε2 > 0

If N ≥ 3, then, by using homology theory, we conclude that �1 and �2 are in the
same connected component of the critical point M for any d ∈ (0, d0) (see [32]).
Indeed, we assume by contradiction that there exists a connected component M0 of
M with ∂M0 = �1. Taking the fundamental class [�1] ∈ HN−2(�1) where Hk(S)

is the k-th homology group of S, we may have that the image in HN−2(M0) of [�1]
by the induced map of homology from the inclusion i : �1 → M0 does not vanish
because M0 ⊂ M ⊂ Aε2 and Aε2 deformation-retracts to �1 � S

N−2 where

Aε2 :={(x ′, xN ) | ε2 ≤ |x ′| ≤ 1,−d ≤ xN ≤ 0}.

However, since [�1] is the boundary of [M0] and byusing an exact homology sequence
of the pair (M0, �1), we obtain the contradiction. ��
Remark 4.1 Combining Remark 3.3 with Lemma 1.3 and Theorem 1.4, we may
observe that two possible critical points of Areas in dimension 2 whose boundary
is �1 ∪ �2 = {(±1, d), (±1, −d)} are depicted in Fig. 10.

Finally in this section, we prove Theorem 1.5. The idea of the proof is basically
the same as the one in [13, Theorem 1.2], i.e., we use the “sliding method” that is
developed by Dipierro, Savin, and Valdinoci in [14–16].

Proof of Theorem 1.5 Let M be the critical point selected in Theorem 1.5 and we set
�:=�1 ∪ �2.

Given t ∈ R and α ∈ (0, 1), we consider the open ball Bdα/2(pt,d) where
pt,d :=(te′

1,
−d
2 ) ∈ R

N−1 × R and e′
1:=(1, 0, · · · , 0) ∈ R

N−1. Here we take d
conveniently large so that d − dα > 100. Then we slide the ball from left to right
until it touches the critical point M, which means that we vary t from t = −∞ to
t = +∞. Note that Bdα/2(pt,d) ⊂ Cc for |t | > 1+dα/2 and Bdα/2(pt,d)∩� = ∅ for
any t . To prove the claim, we suppose by contradiction that there exists t0 ∈ R such
that Bdα/2(pt,d) ∩ M = ∅ for t < t0 and ∂Bdα/2(pt0,d) ∩ M 	= ∅.

We choose a point q ∈ ∂Bdα/2(pt0,d) ∩ M. Note that, due to Theorem 1.2, q ∈ C.
By the Euler-Lagrange equation, we have that

HM,s(q) = 0. (4.15)
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Moreover, by choosing a proper orientation, we can choose the interior AM
i (q) and

exterior AM
e (q) at q of M in such a way that

Bdα

2
(pt0,d) ⊂ AM

i (q) and AM
e (q) = R

N \
(
AM

i (q) ∪ M
)

. (4.16)

We now consider the symmetric ball of Bdα/2(pt0,d) with respect to q and we denote
it by B̃:=Bdα/2( p̃t0,d) where p̃t0,d :=pt0,d + 2(q − pt0,d).

We define a cylinder Sd as

Sd :={(x ′, xN ) | |x ′| < 2, −d < xN < 0}.

Notice that C ∩ {(x ′, xN ) | −d < xN < 0} ⊂ Sd and M ⊂ Sd thanks to Theorem
1.2. From the symmetry of the balls, we have

∫
Sd∩B dα

2
(pt0,d )

dx

|x − q|N+s
=

∫
Sd∩B̃

dx

|x − q|N+s

and therefore, from (4.16),

∫
Sd

χAM
i (q)

(x) − χAM
e (q)(x)

|x − q|N+s
dx =

∫
Sd∩B dα

2
(pt0,d )

χAM
i (q)

(x) − χAM
e (q)(x)

|x − q|N+s
dx

+
∫
Sd∩B̃

χAM
i (q)

(x) − χAM
e (q)(x)

|x − q|N+s
dx

+
∫
Sd\

(
B dα

2
(pt0,d )∪B̃

)
χAM

i (q)
(x) − χAM

e (q)(x)

|x − q|N+s
dx

≥
∫
Sd∩B dα

2
(pt0,d )

dx

|x − q|N+s
−

∫
Sd∩B̃

dx

|x − q|N+s

−
∫
Sd\

(
B dα

2
(pt0,d )∪B̃

) dx

|x − q|N+s

≥ −
∫
Sd\

(
B dα

2
(pt0,d )∪B̃

) dx

|x − q|N+s
. (4.17)

By employing the result in [14, Lemma 3.1] with R = dα/2 and λ = d− α
2 , we obtain

∫
B
d

α
2

(q)\
(
B dα

2
(pt0,d )∪B̃

) dx

|x − q|N+s
≤ C0 d

− 1+s
2 α

where C0 > 0 is a constant depending only on N and s. As a consequence, we obtain

∫
Sd\

(
B dα

2
(pt0,d )∪B̃

) dx

|x − q|N+s
≤

∫
B
d

α
2

(q)\
(
B dα

2
(pt0,d )∪B̃

) dx

|x − q|N+s
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+
∫
Sd\B

d
α
2

(q)

dx

|x − q|N+s

≤ C0 d
− 1+s

2 α +
∫
RN \B

d
α
2

(q)

dx

|x − q|N+s

≤ C0 d
− 1+s

2 α + C1 d
− s

2α ≤ C2 d
− s

2α (4.18)

whereC2:=C0 +C1 is a constant depending only on N and s. From (4.17) and (4.18),
we have

∫
RN

χAM
i (q)

(x) − χAM
e (q)(x)

|x − q|N+s
dx =

∫
Sd

χAM
i (q)

(x) − χAM
e (q)(x)

|x − q|N+s
dx

+
∫
Scd

χAM
i (q)

(x) − χAM
e (q)(x)

|x − q|N+s
dx

≥ −C2 d
− s

2α +
∫
Scd

χAM
i (q)

(x) − χAM
e (q)(x)

|x − q|N+s
dx .

(4.19)

Nowwe consider the contributions fromAM
i (q) andAM

e (q) in Scd . We now define
C�(q) by a (filled) cone of vertex q whose boundary passes through �. Moreover we
define CSd (q) by a (filled) cone of vertex q whose boundary passes through

∂Sd ∩ {(x ′, xN ) | xN = 0} and ∂Sd ∩ {(x ′, xN ) | xN = −d}.

From the definitions of Sd and �, we observe that

C�(q) ⊂ CSd (q).

We now set Ĉ�(q):=C�(q) ∩ {(x ′, xN ) | xN > 0 or xN < −d}. We then rotate
Ĉ�(q) by angle π/2 or −π/2 with respect to the straight line parallel to the x1-axis
passing trough q (if N = 2, then we just rotate Ĉ�(q) by angle π/2 or −π/2 with
respect to q). Since we choose d so large that d − dα > 100, we obtain that

R(Ĉ�(q)) ⊂ Scd ∩ AM
i (q) ∩ CSd (q)c

where R(Ĉ�(q)) is an image of Ĉ�(q) by the rotation map R : R
N → R

N in the
above. See Fig. 11 for an intuitive understanding. Then, observing that R(q) = q and

Scd ∩ AM
e (q) = Ĉ�(q)

and by a change of variables, we have

∫
R(Ĉ�(q))

dx

|x − q|N+s
=

∫
Ĉ�(q)

dx

|x − q|N+s
=

∫
Scd∩AM

e (q)

dx

|x − q|N+s
.
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Fig. 11 The touching between
the ball Bdα/2(pt0,d ) and its
symmetric ball B̃ at q. The
image of the set Ĉ�(q) by the
rotation map R is depicted in
dark gray and the set Aγ

e (q) in
light gray

From the definitions of Sd and the rotation map R, we can choose an open ball
outside Sd and R(Ĉ�(q)) but close to q, i.e., we have

B1(q + 5e1) ⊂
(
Scd ∩ AM

i (q)
)

\ R(Ĉ�(q))

where we set e1:=(1, 0, · · · , 0) ∈ R
N . Thus, we obtain

∫
Scd

χAM
i (q)(x) − χAM

e (q)(x)

|x − q|N+s
dx =

∫
Scd∩AM

i (q)

dx

|x − q|N+s
−

∫
Ĉ�(q)

dx

|x − q|N+s

≥
∫
Scd∩AM

i (q)∩R(Ĉ�(q))

dx

|x − q|N+s

+
∫

(
Scd∩AM

i (q)
)\R(Ĉ�(q))

dx

|x − q|N+s

−
∫
Ĉ�(q)

dx

|x − q|N+s

≥
∫
B1(q+5e1)

dx

|x − q|N+s

=
∫
B1(5e1)

dx

|x |N+s
=:C3 > 0

where C3 depends only on N and s. This with (4.19) leads to

c−1
N HM,s(q) =

∫
RN

χAM
i (q)(x) − χAM

e (q)(x)

|x − q|N+s
dx ≥ −C2 d

− s
2α + C3.
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Therefore, there exists d1 = d1(N , s) > 0 such that HM,s(q) > 0 for any d > d1
and this contradicts the Euler-Lagrange equation (4.15). ��
Remark 4.2 From Lemma 1.3 and the choice of ε2 in the proof of Lemma 1.3, we also
obtain that, for sufficiently large d, a set enclosed byM and the union of C∩{xN = 0}
and C ∩ {xN = −d} contains two half-balls of radius ε2 ≈ φ−1(d−1) where φ−1 is as
in the proof of Lemma 1.3.
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