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SUMMARY

Perineuronal nets (PNNs) surround specific neurons in the brain and are involved in various forms of plasticity
and clinical conditions. However, our understanding of the PNN role in these phenomena is limited by the lack
of highly quantitative maps of PNN distribution and association with specific cell types. Here, we present a
comprehensive atlas ofWisteria floribunda agglutinin (WFA)-positive PNNs and colocalization with parvalbu-
min (PV) cells for over 600 regions of the adult mouse brain. Data analysis shows that PV expression is a good
predictor of PNN aggregation. In the cortex, PNNs are dramatically enriched in layer 4 of all primary sensory
areas in correlation with thalamocortical input density, and their distribution mirrors intracortical connectivity
patterns. Gene expression analysis identifies many PNN-correlated genes. Strikingly, PNN-anticorrelated
transcripts are enriched in synaptic plasticity genes, generalizing PNNs’ role as circuit stability factors.

INTRODUCTION

PNNs are specialized reticular structures of the extracellular

matrix (ECM) that ensheath neurons in the entire mouse and hu-

man brain.1–4 These structures aggregate progressively during

postnatal development, in parallel with the closure of critical pe-

riods for developmental plasticity.5–9 Although their precise

composition may vary between different brain regions, PNNs

are known to share four essential molecular constituents: hyal-

uronic acid, glycosylated proteins called chondroitin sulfate

proteoglycans (CSPGs), link proteins such as hyaluronan and

proteoglycan link protein 1 (Hapln1), and Tenascin-R.10–12 The

N-acetylgalactosamine moiety of chondroitin sulfate glycos-

aminoglycans is the binding target of the lectin Wisteria flori-

bunda agglutinin (WFA), the most widely used marker to visu-

alize PNNs in histological analyses.13,14

The precise contribution of PNNs in regulating brain function is

a strongly active area of research. Many roles have been pro-

posed, but a key overarching theme is that PNNs tightly control

the plasticity and stability of neuronal circuits.15,16 This function

has been studied throughout many cortical and subcortical re-

gions of the brain. For example, PNNs are known to control

ocular dominance plasticity in the visual cortex,7,10,17–19 fear

memory extinction in the amygdala,20,21 spatial representation

stability of grid cells in the entorhinal cortex,22 associative motor

learning in the cerebellum,23 and social memory in the hippo-

campus.24,25 Enzymatic digestion of PNNs has been shown to

promote plasticity and improve recovery after damage to the

central nervous system.26 Additionally, PNNs are thought to sta-

bilize neuronal circuitry by protecting fast-spiking neurons

against oxidative stress,27 a risk factor for psychiatric diseases.

Abnormalities in PNNs that make PV cells more susceptible

to oxidative damage have been reported in patients with

schizophrenia.28

Despite these general features, PNNs also show a remark-

able degree of variability between different brain regions both

in terms of structure and function.29 In the isocortex, several

studies showed that PNNs primarily surround fast-spiking

GABAergic PV interneurons. However, in the hippocampal

CA2 and in other areas, they also ensheath excitatory pyramidal

neurons, suggesting a different biological function in these re-

gions.30 At the functional level, the enzymatic removal of

PNNs can have different effects.31 For example, it enhances

long-term depression (LTD) in the perirhinal cortex,32 while it

impairs both early-phase long-term potentiation (LTP) and

LTD in the hippocampus.33 The lack of understanding of the

principles of PNN organization throughout the brain hinders

our comprehension of their functional role and possible
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therapeutic implications. Furthermore, the link between PNNs

and PV cells has not been systematically studied across brain

areas.

Here, we present a systematic brain-wide analysis of PNNs

and PV neurons in the mouse brain. We provide multiple quanti-

tative measurements for PNNs, PV cells, and their interaction for

more than 600 different brain areas. We also release two deep-

learning models, pre-trained on a dataset of approximately 0.8

million manually annotated PNNs and PV cells, for their auto-

matic detection. Finally, we demonstrate that, thanks to our da-

taset, it is possible to detect connectivity and gene expression

patterns that correlate with the presence of PNNs. We believe

that these resources will have a significant impact on facilitating

research on PNNs.

RESULTS

PNN and PV cell quantification in the mouse brain
We performed immuno-/lectin histochemistry on serially

collected whole-brain coronal slices of seven adult mice, stain-

ing sections with both WFA and an anti-PV antibody (Figure 1A).

We then acquired fluorescence images and registered them to

the Allen Institute CCFv3-2017.

To automatically detect the (x,y) coordinates of PNNs and PV

cells, we trained two deep convolutional neural networks with a

dataset comprising roughly 0.67 million manually annotated

PNNs and 0.16 million PV cells (Figure 1B). To deal with annota-

tion biases inherent to manual cell count, we implemented a sec-

ond stage whereby we assigned a confidence score to each ob-

ject detected by the two deep neural networks.34 This scorer

module consisted of other twomodels trained on two smaller da-

tasets (4,727 PNNs and 5,738 PV cells) labeled by seven inde-

pendent expert raters. The aim was to produce scores for

each putative object that maximally correlate with the raters’

agreement.

In our multi-rater dataset, the average agreement (Jaccard in-

dex) between pairs of expert raters was 64% for PNNs and 72%

for PV cells, demonstrating relevant individual differences in

counting strategies (Figure S1A). Our scoring models produced

detection scores that strongly correlated with the number of

raters that detected each object (Figures S1B and S1C). Overall,

when tested on objects located by at least three raters, our

models proved to be reliable in the detection of PNNs and PV

cells (see section ‘‘deep-learning models for cell counting’’ in

STAR Methods). We release the pre-trained four models used

in this study to allow performing predictions on new images or

to fine-tune them based on different experimental setups.

To quantify PV and WFA staining, we defined a set of metrics

describing either ‘‘general’’ or ‘‘cellular’’ aspects of the staining

signal (Figure 1C). To quantify general staining intensity in a

A

B C

Figure 1. Image registration and analysis pipeline

(A) Schematic of the pipeline for slice registration to the Allen Institute CCFv3-2017 reference volume.

(B) Schematic of the strategy for cell counting. Two different modules were used, a larger convolutional neural network for localization and a smaller one for

scoring. Scale bar, 200 mm.

(C) Diagram showing a graphical explanation of the four metrics used to quantify PNN and PV staining.
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region, we defined ‘‘diffuse fluorescence’’ as the average pixel

intensity value in that region. This measure includes the signal

coming from both interstitial CSPGs diffusely present in the

ECM and from CSPGs aggregated in PNNs. To quantify cellular

aspects (either single PV cells or cell-ensheathing PNNs), we first

defined ‘‘density’’ corresponding to the number of objects per

unit of surface area. We then measured the intensity of each in-

dividual PNN and PV cell by averaging the values of the pixels

belonging to the object, segmented from a small (803 80 pixels)

patch centered on its (x,y) coordinates. Based on this measure-

ment, we defined ‘‘cell intensity,’’ expressing the average stain-

ing intensity of individual PNNs or PV cells in a region. PNN inten-

sity has been found to be co-modulated with circuit plasticity

during postnatal development,35 after environmental enrich-

ment,36 and after manipulation of the levels of microRNA-29.37

Finally, we reasoned that the functional relevance of PNNs or

PV cells might be better represented by a single metric that inte-

grates both the density and the intensity of cells. We thus defined

‘‘energy’’ as the density weighted by intensity, a metric analo-

gous to the one used by the Allen Institute gene expression data-

set38 (Figure 1C, see section ‘‘staining metrics definitions’’ in

STAR Methods for details). Diffuse fluorescence and energy

were normalized within each mouse by dividing them by their

respective value calculated on the entire brain. As a result, a

value of 1 equals the brain’s average and, importantly, the two

metrics have the same scale. In the rest of the paper, we will

use the metrics diffuse fluorescence and energy respectively

as a general and cellular measurement.

Distribution of PNNs across the mouse brain
To describe the distribution of PNNs in the entire brain, we first

aggregated data in 12 major brain subdivisions (Figure 2A).

These regions had highly different values of WFA diffuse fluores-

cence with particular enrichment in the cortex and in posterior

areas of the brain (Figures 2A and 2B; see Table S1). We then

analyzed PNN energy, representing PNNs in a region. Using

this metric, the differences between the studied areas were

more pronounced than those observed in measurements of

diffuse fluorescence (Figures 2A and 2B).

We then grouped data in a set of 316 mid-ontology brain re-

gions (Figures 2B and S2, see Table S3 for area acronyms).

The profile of both metrics was consistent across individual

mice and it showed that individual brain areas have remarkably

diverse values for both diffuse fluorescence and PNN energy

even within the same major subdivision (Figures 2C and 2F).

To visualize the results at this granularity, we plotted the average

of both metrics across mice in a series of brain heatmaps coro-

nally sliced at 12 anteroposterior locations (Figure 2C).

Intriguingly, both the diffuse and cellular measurements of

PNNs often varied together. However, some areas showed strik-

ing differences between the two metrics (Figure 2C). Thus, we

asked whether the presence of PNNs in an area is always asso-

ciated with a high level of diffuse WFA staining in all brain re-

gions. To answer this question, we plotted WFA diffuse fluores-

cence versus PNN energy for all the major brain subdivisions

(Figure 2D). Isocortex, midbrain, pons, and medulla were

skewed toward the top-left side of the plot, indicating that they

are characterized by strong individual aggregated PNNs, but

relatively weak diffuseWFA signal. Conversely, all the other brain

subdivisions showed the opposite effect. Notably, for the olfac-

tory areas, we measured the highest difference between the two

metrics, with a strong level of diffuse fluorescence but almost ab-

sent aggregated PNNs. This pattern was not due to background

staining because negative control sections in which WFA was

omitted (n = 3 mice from a separate cohort) showed that the

contribution of background fluorescence was negligible

(Figures S1D and S1E). We then split the 12 subdivisions into

mid-ontology regions and explored the relationship between

the two metrics within each group of brain areas (Figure 2E).

We found that WFA diffuse fluorescence and PNN energy were

significantly correlated in all subdivisions except for olfactory

areas and the cortical subplate, although the strength of such

correlation was not uniform. Striatum had the lowest correlation

(rs = 0.62), while midbrain and pallidum showed the highest cor-

relation between metrics (rs = 0.96 and 0.95 respectively). These

results demonstrate that PNN abundance is not defined at the

macrostructure level and that diffuse WFA staining is not neces-

sarily correlated with numerous and strongly labeled PNNs.

Overall, these data represent a systematic and highly quanti-

tative description of the distribution of WFA-positive PNNs in

the entire mouse brain. Raw measurements for individual

mice at three levels of anatomical granularity are available in

Data S1.

Brain-wide analysis of the colocalization between PNNs
and PV cells
In the same brain slices used for PNN analysis, we also quanti-

fied PV-positive neurons (Figure 3A) using the same procedures

andmetrics used for PNNs (Figure S3 and Table S2; Data S2). PV

cell distribution has been analyzed in previous studies and our

results show an overall analogous profile despitemethodological

differences.39,40 To explore the relationship between PNNs and

PV cells in the entire brain, we quantified their colocalization as

the percentage of PNNs containing a PV cell (PV+ PNNs) or as

the percentage of PV cells that are surrounded by a PNN

(WFA+ PV cells). On average, in the entire brain, 59.1% ± 1.0%

of PNNs were located around a PV cell, while about one-third

of all PV cells in the brain (30.4% ± 1.4%) were surrounded by

a PNN. After splitting the data into 12 brain subdivisions, we

found that the relationship between PNNs and PV cells was high-

ly heterogeneous (Figure 3B). In the isocortex, PNNs surrounded

PV cells in more than 70% of the cases, reaching, for example,

81.1% ± 0.7% in the retrosplenial cortex (RSPv), 80.8% ±

0.4% in layer 4 of the primary visual cortex (VISp4), and

77.4% ± 0.3% in the anterior cingulate area (ACAv). In all the

other major subdivisions, at least one-third of the PNNs sur-

rounded PV cells.

Conversely, analyzing the percentage of PV cells surrounded

by a PNN, we observed that in most brain areas, only between

20% and 30% of the PV cells are enwrapped by a PNN.

A different pattern was present in the isocortex, hippocampal

formation, and striatum, where colocalization was much higher

(between 40% and 50% of PV cells, reaching for example

71.9 ± 0.4% in VISp4), while in the cerebellum only few PV-pos-

itive cells had a PNN, likely due to the high number of Purkinje

cells in the cerebellar cortex that lack PNNs.41,42 As before, we
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also aggregated data in mid-ontology brain regions and

measured colocalization metrics at finer granularity (Figures 3C

and S4). Colocalization data are available in Data S3.

We next asked whether PNN and PV staining were correlated

across brain regions. We found that, throughout all areas of the

brain, WFA and PV staining metrics were significantly corre-

lated (Figures 3D and 3F, rs = 0.38 for WFA diffuse vs. PV en-

ergy, rs = 0.58 for PNN energy vs. PV energy). When performing

the same analysis at a finer resolution, however, only a subset

of brain subdivisions (isocortex, thalamus, hypothalamus,

midbrain, and medulla) showed a high degree of correlation be-

tween WFA diffuse staining and PV (Figures 3E and 3G). When

we compared PNN and PV energy, correlation coefficients

increased in some areas, with isocortex showing the most strik-

ing trend (Figure 3G). Here, PV energy alone was highly predic-

tive of the presence of PNNs (rs = 0.91). Few specific areas

deviated from the expected correlation pattern (for example,

the arcuate nucleus and the lateral mammillary nucleus in the

hypothalamus).

Our data also revealed that a substantial percentage of PNNs

do not enwrap PV-positive cells (PV� PNN). Thus, we explored

the energy distribution of PV� PNNs in the brain (Figure S5).

The data indicate that they are present at particularly high levels

in the pons, medulla, and midbrain.

A C

D E

B

F

Figure 2. Distribution of WFA-positive PNNs throughout the mouse brain

(A) Diffuse fluorescence and PNN energy for 12 major brain subdivisions. Asterisks indicate subdivisions significantly different from the brain average (Table S1).

(B) Heatmaps showing staining metrics for mid-ontology brain regions in individual mice. Grayed-out cells represent regions where data are not available.

(C) Heatmaps showing coronal sections of the brain sliced at different anteroposterior locations. Left hemisphere (blue colormap), average diffuse WFA fluo-

rescence; right hemisphere (red colormap), average PNN energy.

(D) PNN energy versus WFA diffuse fluorescence for each of the 12 major brain subdivisions.

(E) Same as in (D) but data are split in each region of the 12 major brain subdivisions.

(F) Representative WFA staining in a selection of brain areas. Scale bar, 1 mm. Error bars in (A) and (D) represent SEM across mice. Dots in (A) represent mice, in

(D) and (E) represent brain regions. In (E), text insets indicate the Spearman correlation coefficient (rs) and the corresponding p value, the gray line indicates the

X-Y bisector, and, for significant correlations (highlighted in red), the blue line shows the best linear fit.
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It has been previously reported that two distinct network

configurations of PV cells might exist, one more permissive to-

ward plasticity and characterized by weak expression of PV

(low PV) and another that limits plasticity and with strong PV

expression (high PV).43 These two subpopulations likely

reflect distinct timing of neurogenesis and connectivity.44

Thus, we decided to further explore the relationship between

PNNs and PV staining intensity at the level of single cells

(Figures 4A and 4B). To do this, we grouped all PV cells in

four intensity classes of equal width and measured the proba-

bility of being surrounded by a PNN as a function of PV cell in-

tensity. Overall, we found that, as PV intensity increased, the

probability of having a PNN increased (Figure 4C). Repeating

the analysis for each brain subdivision, we found that the ef-

fect was present in all 12 brain macrostructures except for

the hypothalamus, which showed a similar but not statistically

significant trend, and the cerebellum (Figure 4D). However, the

magnitude of such dependency appears to follow three

distinct patterns (Figure 4E). In isocortex, striatum, and hippo-

campal formation, PNN aggregation was strongly and robustly

A B C

D

F

E

G

Figure 3. Brain-wide interactions between PNNs and PV cells

(A) Representative image (WFA, red; PV, cyan). Arrowheads show examples of PV cells without a PNN (white) and colocalized PV-PNNs (green). Scale bar,

100 mm.

(B) Colocalization percentages across 12 major brain subdivisions (on the left, the fraction of PNNs containing a PV cell; on the right, the fraction of PV cells

surrounded by a PNN).

(C) Heatmaps showing coronal sections of the brain at different anteroposterior locations. Left hemisphere, the percentage of PNNs containing a PV cell; right

hemisphere, the percentage of PV cells surrounded by a PNN.

(D) WFA diffuse fluorescence versus PV energy for all brain areas at a mid-ontology level.

(E) Same as in (D), but areas are split in each major brain subdivision.

(F) WFA energy versus PV energy for brain areas at a mid-ontology level.

(G) Same as in (F), but areas are split in each major brain subdivision. Error bars in (B) represent SEM across mice. Dots in (B) represent mice, while in (D–F) and

(G) they represent brain areas. Text insets in (D–F) and (G) indicate the Spearman correlation coefficient (rs) and the corresponding p value, gray line indicates the

X-Y bisector, and, for significant correlations highlighted in red, the blue line shows the best linear fit.
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dependent on PV expression. The relationship was inverse in

the cerebellum, likely due to the presence of PV-expressing

Purkinje cells, and its strength was only moderate for all the

other brain areas.

Overall, these data indicate the existence of a mechanism

coupling PV expression with PNN formation. However, the

strength of this regulatory mechanism is variable across the

brain.

Primary sensory areas share high levels of PNNs
The precise functional role of PNNs in the cerebral cortex is

intensely studied.13We reasoned that, by analyzing their expres-

sion pattern throughout this anatomical district, we could high-

light principles of organization that might explain the spatially

inhomogeneous distribution of PNNs. Furthermore, the cerebral

cortex is divided into layers with different functional properties

and PNN expression. We thus plotted WFA diffuse fluorescence

andPNNenergy in all cortical regions divided by layer (Figure 5A).

We noticed that four main groups of regions were characterized

by a stronger diffuse WFA staining: somatosensory, visual, and

auditory areas, and the retrosplenial cortex (Figure 5A). When

analyzing PNN energy, this pattern was much sharper and

more localized in layer 4 (Figure 5A, bottom heatmap). Interest-

ingly, while PNN energy was particularly high in primary sensory

areas (VISp, AUDp, and all SSp areas) the same enrichment was

milder for PV energy (Figure 5B). To further investigate this

pattern, we compared, for each sensory system, the aggregated

data of primary versus associative cortical regions. In the visual

cortex, both diffuse fluorescence and PNN energy were lower in

associative (VISpor, VISli, VISl, VISpl, VISpm, VISal, VISam,

VISrl, VISa) than in primary (VISp) areas (Figure 5C). This effect

was prominent in layer 4 but also present in layers 5 and 6

(Figures 5D and S6A). An analogous difference was present in

auditory (Figures 5E, 5F, and S6B) primary (AUDp) versus asso-

ciative (AUDv, AUDd, AUDpo), and somatosensory areas

(Figures 5G, 5H, and S6C) primary (SSp-n, SSp-bfd, SSp-Il,

SSp-m, SSp-ul, SSp-tr, SSp-un) versus associative (SSs) with

the exception of diffuse fluorescence in the somatosensory re-

gions of the cortex (Figure 5G).

These results indicate that layers 4–5 of primary cortical re-

gions are privileged sites of PNN expression acrossmultiple sen-

sory systems.

Determinants of cortical expression of PNNs: Role of PV
cells and area connectivity
Considering the intimate relationship between PV cells and

PNNs in the cortex (Figures 3G and 4D), the high expression of

PNNs in primary areas could mirror the distribution of PV cells.

However, PV energy was only slightly increased in primary visual

and auditory, but not somatosensory, cortices (Figures 5B, S6D,

S6G, and S6J). Accordingly, splitting data by layers did not

reveal any difference between primary and associative regions

for all the metrics with the exception of PV energy in deep layers

of the visual cortex (Figures S6E, S6F, S6H, S6I, S6K, and S6L).

Intriguingly, we observed that PV cells in primary sensory

cortices were more likely to have PNNs than in secondary areas

(Figures S7A, S7C, and S7E). This effect was not due to a higher

proportion of high-PV cells in primary versus associative areas

(Figures S7B, S7D, and S7F), suggesting that the mechanism

by which PNNs are increased in primary regions could not solely

involve PV expression levels.

The high levels of PNNs in layer 4 of primary sensory cortices

could be related to the control of feedforward sensory thalamic

inputs that densely innervate layer 4 of primary sensory re-

gions.45 If this hypothesis were true, one should expect PNN en-

ergy to scale with thalamic innervation density across sensory

areas. Thus, we used published data from the mouse brain con-

nectivity atlas of the Allen Institute46 to measure thalamic input

A

B

C D E

Figure 4. PNN aggregation depends on PV expression levels

(A) Probability density function of the intensity of all PNNs. The thick line represents the average, while shading represents SEM across mice (n = 7mice, 69,926 ±

5,235 PNNs per mouse).

(B) Same as in (A) but for PV cells (n = 7 mice, 136,479 ± 11,839 PV cells per mouse).

(C) Probability that a PV cell is surrounded by a PNN as a function of PV intensity class (1, low; 2, intermediate-low; 3, intermediate-high; 4, high) calculated for the

whole brain.

(D) Same as in (C) but split in each major brain subdivision.

(E) Same as in (D) but all regions are plotted on the same axis. Text insets indicate the result of a one-way RM ANOVA (F statistics and the corresponding p value)

and the estimated parameters of the best first-degree linear fit. Thin lines in (C) and (D) represent single mice. Error bars in (C–E) represent SEM across mice.
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Figure 5. Organization of PNNs in cortical areas

(A) Heatmaps representing average WFA diffuse fluorescence and PNN energy (area acronyms in Table S3). Layer 4 of brain regions that do not have layer 4 is

grayed out.

(B) Same as in (A) but for PV energy.

(C) WFA diffuse fluorescence and PNN energy in the primary visual cortex versus higher-order associative visual areas.

(D) PNN energy in primary versus associative visual cortical areas split by layer.

(E) Same as in (C) but for auditory areas.

(F) Same as in (D) but for auditory areas.

(G) Same as in (C) but for somatosensory areas.

(H) Same as in (D) but for somatosensory areas.

(I) Correlation between WFA diffuse fluorescence (top) and PNN energy (bottom) with thalamic input strength in sensory-related areas of the cortex (all so-

matosensory, visual, and auditory cortices, see STARMethods) split by layer. Text insets indicate the Pearson’s correlation coefficient (r) and the corresponding p

value. For significant correlations, highlighted in red, the blue line shows the best linear fit.

(J) Scatterplot of PNN energy vs. WFA diffuse fluorescence for all cortical areas colored by their cortical subnetwork. The transparent shading represents the

convex hull of all points in a subnetwork. Regions cluster into two groups: highWFA and lowWFA. The inset shows the average thalamic input strength of regions

divided into high- and low-WFA groups.

(K) Silhouette score calculated for eachmouse by grouping cortical areas in two groups (low-highWFA), five groups (cortical Subnet.), or two groups but randomly

shuffled (shuffle). In (C–H) and (K), dots represent mice. In (I) and (J), dots represent brain areas. Error bars in (C–H), (J), and (K) represent SEM across mice. Error

bars in (J) (inset) represent SEM across brain regions. See Table S1 for statistical comparisons.
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strength for all somatosensory, visual, and auditory areas (total

inputs from the sensory-motor cortex-related portion of the thal-

amus, DORsm in the CCFv3 nomenclature, see section ‘‘correla-

tionwith thalamic afferent connectivity’’ in STARMethods). Strik-

ingly, we found that both WFA diffuse fluorescence and PNN

energy in cortical layers 2/3, 4, and 5 were highly correlated

with thalamic input strength, and this effect was most prominent

in layer 4 where thalamic afferents could explain respectively

53% and 46% of the variance in the two PNN metrics (r = 0.73

and 0.68) (Figure 5I). As a control, we performed the same anal-

ysis with connections originating from the associative cortex-

related regions of the thalamus (DORpm) and we found no cor-

relation with PNNs in any cortical layer (Figures S7I and S7J).

Thus, thalamic connectivity represents another determinant of

PNN abundance, independent from PV expression. Further-

more, these data corroborate the possibility that PNNs could

be important for the regulation of sensorimotor thalamic inputs

acrossmultiple sensorymodalities, and theymay provide a basis

to investigate the role of PNNs on feedforward functional

signaling in sensory cortices.

If connections represent a determinant factor for PNN abun-

dance, it could be that groups of highly interconnected cortical

regions have co-regulated levels of PNNs. Recent work clus-

tered the cerebral cortex in five distinct functional subnetworks

based on their intracortical connections.40,47 We used this clas-

sification to explore whether PNNs were differentially expressed

in these subnetworks. We found that cortical subnetworks were

clustered in two groups, with no overlap: a low-WFA group

comprising the lateral and medial prefrontal subnetworks and a

high-WFA group comprising audiovisual, motor-somatosensory,

and medial association networks (Figure 5J). To quantify cluster

separation, we grouped brain regions using three strategies: the

high/low WFA as described above, the original five cortical sub-

networks, and high/low-WFA regions randomly shuffled. For

each grouping, we calculated the silhouette score, a metric rep-

resenting the separation and quality of data clustering.48 We

found that grouping cortical regions in high and low WFA re-

sulted in the highest score (Figure 5K). The subdivision in high-

and low-WFA-region groups could not be explained simply by

different thalamic input density, since we did not observe any

significant difference in the overall thalamocortical connectivity

between these two groups of regions in the Allen Institute data-

set (Figure 5J, inset). Conversely, we noticed that high-WFA

areas also displayed increased PV energy and an increased pro-

portion of high-PV cells (Figure S7G and S7H), suggesting that

the different PNN distribution across cortical subnetworks might

be instructed by PV cells. These results show that each cortical

network displays a typical and homogeneous PNN aggregation

and that PV cells and PV expression level contribute to gener-

ating cortical PNN distribution.

In summary, these data indicate that two independent regula-

tory factors, i.e., thalamic input and PV expression, contribute to

generate the pattern of PNN expression in the cortex.

Gene expression correlates of PNNs
Finally, we asked whether PNN abundance could be correlated

with gene expression patterns. To answer this question, we

analyzed the whole-brain gene expression data published by

the Allen Institute.38 This dataset describes region-specific

expression levels for about 18,000 genes. For each gene, we

correlated its expression in all the brain areas with a metric for

PNN staining to detect geneswhose pattern of expression is pre-

dictive of PNN presence. We found about 5,000 genes positively

correlated and about 1,000 negatively correlated withWFA (false

discovery rate [FDR] <0.01, Benjamini-Hochberg; see section

‘‘correlation with gene expression and gene set overrepresenta-

tion analysis’’ in STAR Methods, and Data S4). It is important to

note that this analysis reflects gene expression and PNNs at the

level of brain areas and not single cells. To validate our approach,

we selected a few genes known to be related to PNN structure

and function: Aggrecan (Acan), a major proteoglycan core pro-

tein present in PNNs11,13,29,49–51; Hapln1, coding for a link pro-

tein essential for PNNs structure10; hyaluronan synthase 3

(Has3), a necessary component for PNN aggregation12; matrix

metallopeptidase 9 (Mmp9), an enzyme known to regulate

PNN and PV development52; A disintegrin andmetalloproteinase

with thrombospondin motifs (Adamts5 also known as

Adamts11), an aggrecan-degrading protease53 that is expressed

by PV interneurons with a PNN54; and parvalbumin (Pvalb). All

these genes were significantly correlated with both PNN energy

andWFAdiffuse fluorescence (Figures 6A and 6B). Strikingly, out

of 17,639 genes, Acan was respectively the second and fifth

most correlated gene with WFA diffuse fluorescence (rs = 0.58)

and PNN energy (rs = 0.57). Consistently, when we repeated

this analysis for PV energy, we found that the most correlated

gene was Pvalb itself (rs = 0.81). Other markers associated

with PV neurons were also positively correlated (Figure 6C).

These included the genes encoding the fast voltage-gated po-

tassium channels Kv3.1 and Kv1.1 (Kcnc1 and Kcna1)55,56 and

the sodium channel Nav1.1 (Scn1A)57; synaptotagmin 2 (Syt2),

a protein that ensures fast calcium sensing and vesicle release58;

and Acan. These results validated our approach, allowing us to

provide lists of positively and negatively correlated genes that

might highlight molecular regulators of PNNs. A detailed list of

all 17,639 genes and their correlation with PNN and PV staining

is available in Data S4.

To obtain insight into the biological processes of the corre-

lated genes, we performed a Gene Ontology analysis separately

on the lists of the top 1,000 most correlated and anticorrelated

genes with PNN energy, ranked by their correlation coefficient

(Figures 6D and 6E). Genes related to processes of axon en-

sheathment, myelination, mitochondrial function, and cellular

respiration were enriched in the pool of the positively correlated

transcripts. Conversely, we found that anticorrelated genes were

related to processes involved in synaptic plasticity, including

postsynaptic density organization, regulation of synapse struc-

ture, and learning andmemory. This is consistent with the known

inhibitory role of PNNs toward synaptic plasticity.13 Finally, we

performed a similar overrepresentation analysis on a smaller

gene set, the ‘‘matrisome,’’59 containing about 1,000 genes

related to different categories of ECM structure and function.

Only the category proteoglycans was strongly overrepresented

in the set of positively correlated genes (Figure 6F).

Taken together, these data show that we can reliably identify

gene expression correlates of PNN abundance with the

approach described above. Moreover, this analysis and the
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Figure 6. Gene expression correlates of PNNs

(A) Correlation between PNN energy and gene expression for six marker genes: Acan, Hapln1, Has3, Mmp9, Adamts5, and Pvalb. Red text insets indicate the

Spearman correlation coefficient (rs), and p value. To visualize datapoint density, we included blue contour lines representing kernel density estimations.

(B) Same as in (A) but for WFA diffuse fluorescence.

(C) Correlation between PV energy and gene expression for six marker genes: Pvalb, Kcnc1, Kcna1, Syt2, Scn1a, and Acan. To visualize datapoint density, we

included blue contour lines representing kernel density estimations.

(D) Biological process terms enriched in genes positively correlated with PNN energy (FDR < 0.1). Data in (D–F) are presented in descending order of enrichment

ratio, colored based on the FDR value with darker red shades corresponding to more significant values. The dot size represents the percentage of genes of each

category present in the experimental gene list.

(E) Biological process terms enriched in genes negatively correlated with PNN energy. Other conventions as in (D).

(F) The matrisome category Proteoglycans was significantly enriched in the list of genes positively correlated with PNN energy. Other categories not significant

(n.s.). Other conventions as in (D).
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resulting gene lists could prove useful for designing experiments

to investigate the molecular biology underlying PNN develop-

ment and regulation.

DISCUSSION

Our study reports a whole-brain dataset of PNNs and PV cells in

the adult mouse brain. We provide several quantitative measure-

ments of the abundance of PNNs and PV cells and their colocal-

ization in over 600 brain regions. The atlas was built using a

shared spatial framework that facilitates replication studies and

allows analyzing PNN data together with publicly available con-

nectomics46,47 and gene expression38 datasets, which enabled

us to identify potential principles of PNN organization and gene

expression profiles that are correlated or anticorrelated with

PNN abundance. Previous studies have analyzed PNNs in multi-

ple brain regions11,29; however, they have been limited by their

focus on only a subset of areas, their use of a more qualitative

approach, or their use of a non-standard reference volume. In

contrast, our atlas addresses all these aspects.

Our public resources (Data S1–4) will help researchers to

generate hypotheses and questions and to design experiments

to better understand the function of PNNs and their involvement

in pathological conditions. One of the challenges in studying

PNNs is the difficulty of automatically detecting them due to their

highmorphological variability. To address this issue, we released

two deep-learning models for the detection of PNNs and PV

cells, pre-trained on about 0.8 million manually annotated

PNNs/cells. Themodels can also be fine-tuned to specific exper-

imental needs and image qualities with additional training. We

have alsomade all of the raw and processed data from this study

freely available (raw dataset, Zenodo link60; prediction images;

Zenodo link61; processed data, Data S1–4), and developed a

web app to browse the data (www.pnnatlas.sns.it).

Diffuse CSPGs and aggregated PNN distributions
CSPGs are large, complex molecules that are widely distributed

throughout the brain, whereas PNNs are aggregated around

specific neurons.13 While most research on PNNs has focused

on telencephalic structures, our analysis revealed that PNNs

are highly abundant in the midbrain and hindbrain (pons andme-

dulla). These areas are important for vital processes such as

heartbeat and breathing control, basic reflexes, motor control,

and sleep.62,63 However, the role of PNNs in the neural circuits

underlying these functions is largely unknown.

We also found that CSPG aggregation in PNNs may be differ-

entially regulated across brain areas. While, in most of the brain,

the amount of non-aggregated CSPGs (diffuse WFA fluores-

cence) was a good predictor of the presence of aggregated

PNNs (PNN energy), some areas showed no relationship be-

tween the two metrics. For example, all olfactory areas had

very intense diffuse staining but contained very few and thin

PNNs (Figures 2A, 2C, and 2E),64 indicating that the high amount

of CSPGs present in these areas did not aggregate into PNNs.

This pattern was also observed in the cortical subplate (Fig-

ure 2E). The region-specific regulatorymechanisms of CSPG ag-

gregation into PNNs and the functional implications are currently

unknown and require further investigation.

PV levels are associated with the presence of PNNs
A commonly observed property of cortical PNNs is that they

preferentially aggregate around GABAergic PV-positive inter-

neurons.13 We measured that, on average, this was the case

for about 60% of PNNs in the entire brain, a much higher per-

centage than expected from chance. Moreover, across the

whole brain, both PNN metrics were correlated with PV energy.

Despite this clear association, slightly less than half of the PNNs

in the brain do not surround PV neurons, leaving the still-unan-

swered question of whether theymight serve to regulate different

circuit properties.

The link between PNNs and PV cells also varied between brain

subdivisions with themost striking pattern in the isocortex. Here,

70% of all PNNs were around PV cells and half of all PV cells had

a net. This intimate association was also evident in the relation

between staining metrics. Indeed, cortical areas had a very tight

(rs = 0.91) correlation between PNN and PV energy.

Our analysis showed that the probability of being surrounded

by a PNN for a PV cell is highly dependent on its PV expression

level. This is consistent with previous reports in the prelimbic

cortex showing a positive correlation between PV and WFA

staining intensity.65 Given that PV neurons differentiate before

birth66 and PNNs aggregate much later during postnatal devel-

opment,8 this association suggests that the developmental in-

crease in PV expression enhances the probability to develop

a PNN.

The magnitude of the association between PV levels and the

probability of having a PNN, however, varies across brain

structures, suggesting that the mechanism that couples PV

expression to PNN aggregation can be fine-tuned. For

example, in the isocortex, hippocampal formation, and stria-

tum, PV-PNN coupling was particularly strong. Intriguingly, in

all three of these brain regions, PV cells have been previously

divided, based on their intensity, into two distinct subpopula-

tions of early-born high-PV cells and late-born low-PV cells

with different roles in plasticity and learning.43,44 Our data are

consistent with the interpretation that PNNs might aggregate

more onto early-born high-PV neurons contributing to the inhib-

itory role of this subpopulation toward plasticity. In summary, it

is currently unknown how perineuronal nets and parvalbumin

are co-regulated. Previous evidence suggests that Otx2 may

act as a mediator of this coupling, promoting the maturation

of PV cells and PNNs.67,68 Further research is needed to

confirm this hypothesis.

PNN expression in the cortex is correlated with specific
connectivity patterns
Our study demonstrated that strong PNNs are a common feature

of layer 4 in all primary sensory cortices. This enrichment was

evident also when we directly compared the labeling of primary

and associative cortices within each sensory modality. Interest-

ingly, this pattern cannot be explained solely by an increase in

the number of PV cells or in the proportion of high-PV cells that

are more likely to have a PNN. At a functional level, the high

expression of PNNs in primary sensory areas could be related

to their action on thalamic afferents. Previous research in the

mouse primary visual cortex showed that PNNs can selectively

control thalamic excitation onto PV cells.45 Our data suggest
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that the control of feedforward thalamo-cortical sensory inputs

on PV neurons may be one important function across all sensory

cortices. This is supported by the observation that the abun-

dance of PNNs correlates with the density of thalamic innerva-

tion in all sensory areas. This hypothesis is also in accordance

with the findings that plasticity in L4 of the visual cortex is lower69

and might rely on separate molecular mechanisms.70

The relationship between thalamic inputs and PNN levels rai-

ses the possibility that the type of connections may be a deter-

mining factor in PNN expression. This idea was further sup-

ported by the observation that regions of the cortex with

strong PV and PNN expression tend to have similar intracortical

connectivity patterns (Figure 5J). This finding suggests that cir-

cuitry within these areas requires a certain level of stability, which

could be achieved through the expression of PNNs. This concept

merits further investigation to fully understand how this relation-

ship functions.

Gene expression correlates of PNNs
The search for a gene expression signature of PNN-enwrapped

cells is hampered by the fact that PNNs are extracellular multi-

molecular structures and that there is currently no means to

tag the PNN-positive neurons.

To overcome this problem, we performed a correlational anal-

ysis between the dataset by the Allen Institute38 and PNN

expression. This approach was validated by the overrepresenta-

tion analysis on the matrisome gene set, which showed that

PNN-correlated genes are strongly enriched in the proteoglycan

category, and by finding key constituents of the PNN ranking in

the top positions of the list of genes positively correlated with

PNN energy. However, this approach also revealed many other

genes with positive and negative correlations with PNNs.

A Gene Ontology analysis strikingly showed that categories

related to synaptic function and synaptic plasticity were signifi-

cantly downregulated in brain areas enriched with PNNs.

Furthermore, PNNs were found to be correlated with genes

involved in myelination, another plasticity brake,71,72 and genes

related to cell metabolism, which may be due to the high energy

demands of fast-spiking PV cells.73,74

These results not only support the hypothesis that PNNs serve

as plasticity brakes in the visual cortex13 but also demonstrate

that this functional signature emerges from an unbiased compre-

hensive analysis of all brain regions.

Our work adopts an approach based on a brain-wide com-

parison of very large datasets of cellular structures with public

resources. This type of analysis has the advantage of being

unbiased and data driven, which is typical of omics tech-

niques. It can also be applied to the study of many other extra-

cellular matrix components. We envision that the advent of

spatial transcriptomics will further enhance this type of

approach.

Limitations of the study
In interpreting our results, it is important to note that we used

WFA as a marker for PNNs. While WFA is a commonly used

method for visualizing PNNs,13 it does not equally bind to all

structures of aggregated CSPGs. Therefore, the use of other an-

tibodies that specifically target different proteoglycans may be

necessary to fully reveal the presence of these struc-

tures.1,29,75,76 Our approach can be easily adapted to count

these different types of PNNs, creating brain atlases of all the

major components of PNNs. Additionally, colocalization with

other cell types could also be studied. For example, PV-positive

neurons are a heterogeneous population77 that cannot be distin-

guished using our immunofluorescence approach. However,

specific promoters and enhancers could be used to label PV-

cell subtypes in a brain-wide manner, allowing the study of their

colocalization with PNNs and a more detailed understanding of

PNN expression regulation.

Another limitation of our study is that the number of subjects

was not sufficient for stratification of our data by sex. However,

we ensured general validity by analyzing a balanced number of

male and female mice. Additionally, as our atlas is highly stan-

dardized, any new sex-specific data can be easily added to

the existing datasets.
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14. Härtig, W., Derouiche, A., Welt, K., Brauer, K., Grosche, J., Mäder, M.,
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

Animals
All experiments were carried out in accordance with the European Directives (2010/63/EU), and were approved by the ItalianMinistry

of Health (authorization number 723/ 2020 PR). A total of 7 adult C57BL/6J (RRID:IMSR_JAX:000664)mice, 3males (mouseID: CC3A,

CC4A, CC4B) and 4 females (mouseID: AL1A, CC1A, CC1B, CC2B), at approximately postnatal day (P)150 were used in this study.

Female animals were not sacrificed at a specific phase of their estrous cycle.Weaning was performed at P21–23. Animals weremain-

tained at 22�C with a standard 12-h light-dark cycle. No running wheels were present in the cage. During the light phase, a constant

illumination below 40 lux from fluorescent lamps was provided. Mice were housed in conventional cages (365 x 207 x 140 mm, 2-3

animals per cage) with nesting material, and had access to food and water ad libitum. During the first 12-14 weeks of life, mice were

fed a standard diet (standard diet Mucedola 4RF25). Then, animals were fed a balanced purified diet (Research Diets, Inc., New

Brunswick, NJ, USA, cat. no. D12450Ji) for 6 weeks before the sacrifice.

METHOD DETAILS

Immunofluorescence staining
Mice were anesthetized with chloral hydrate (20 ml/Kg BW) and perfused via intracardiac infusion with cold PBS and then 4% para-

formaldehyde (PFA, w/vol, dissolved in 0.1 M phosphate buffer, pH 7.4). All perfusions were carried out between 10:00 and 12:00.

Brains were extracted and post-fixed overnight in PFA 4%at 4 �C, then transferred to a 30% (w/vol) sucrose solution for 48 hours. For

each brain, 50 mm coronal sections, spanning from the main olfactory bulbs (MOB) to the cerebellum (CB), were cut on a freezing

microtome (Leica). One out of every 3 sections was collected for further processing, leading to a sampling of one slice every

150 mm. For a small subset of sections that did not match our quality standards due to deformations during the cutting process

(on average 3.7±0.5 slices per animal), an adjacent section was collected instead. For each animal, slices were assigned a unique

ID and pooled in 9-10 wells of a 24-well plate for free-floating staining. Each well contained 5-6 sections that sampled the brain at

equally spaced points in the anterior-posterior axis.

Sliceswere blocked for 2h at room temperature (RT) in a solution containing 3%bovine serumalbumin (BSA, A7906 Sigma-Aldrich)

in PBS. Then, slices were incubated overnight at 4 �Cwith a solution containing biotinylatedWisteria floribunda Lectin (WFA, B-1355-

2, Vector Laboratories, 1:200) and 3% BSA in PBS. On the following day, sections were rinsed 3 times in PBS (10 min each) at RT,

incubated with a solution of red fluorescent streptavidin (Streptavidin, Alexa FluorTM 555 conjugate, S21381, Thermo Fisher, 1:400)

and 3%BSA in PBS for 2h at RT, and rinsed again 3 times in PBS. On the same day, slices were incubated with a blocking solution for

parvalbumin staining containing 10%BSA and 0.3% Triton in PBS for 30 minutes, then washed 3 times (10min each) and finally incu-

bated overnight at 4�Cwith primary antibody solution containing anti-parvalbumin (Parvalbumin antibody, 195004, Synaptic System

1:1000, RRID: AB_2156476) 1% BSA and 0.1% Triton in PBS. Then, sections were rinsed 3 times (10 min each) in PBS; incubated

with a secondary antibody solution containing secondary antibody (anti-Guinea Pig IgG Alexa FluorTM 488, A11073, Invitrogen,

1:500, RRID: AB_2534117), 1%BSA. plus 0.1% Triton for 2h at RT, and washed again 3 times in PBS. Finally, sections weremounted

onmicroscopy slideswith amountingmedium (VECTASHIELD� antifademountingmedium, H-100, Vector Laboratories), and stored

at 4�C. All sections in each staining well were mounted on the same slide.

Image acquisition
All imageswere acquired using the acquisition software ZEN blue (RRID:SCR_013672) with a Zeiss Apotome.2microscope and a 10x

objective and digitized by an AxioCam MR R3 12-bit camera, resulting in a pixel size of 0.645 mm. For the WFA channel, excitation

light passed through a 538-562 nm bandpass filter and a 570 nm dichroic mirror, while emitted light was filtered with a 570-640 nm

bandpass filter. For the PV channel, filters were a 450-490 nm bandpass for excitation, a 495 nm dichroic mirror, and a 500-550 nm

bandpass for emission. All images were acquired with the same intensity of excitation light andwith an exposure time of 80ms for the

WFA channel and 850 ms for the PV channel. For all sections, we acquired 3 apotome images for optical sectioning. Each brain slice

was acquired as a tiledmulti-image experiment on a single z-plane selected at the depth ofmaximal staining intensity, typically on the

side of the brain slice in direct contact with the microscope slide.

Coronal sections of the entire mouse brain span a relatively large area and even small irregularities in themicroscope slide can lead

to artifacts in image intensity due to the tissue section not sitting exactly perpendicular to the optical path. To account for this, we

acquired each slice with a tilted z-plane linearly interpolated between 4 manually selected focus points at the edges of each section.

After the acquisition, multi-image tiles were stitched in ZEN and exported as 8-bit TIFF files for further processing. The resulting data-

set consisted of 842 single channel, 8-bit, TIFF images ranging from 7 to 165 MB in size and from 2646 to 17631 px (width) in

resolution.

Image registration to the Allen Brain Atlas CCFv3-2017
Image preprocessing

For each mouse, all the images were ordered along the anterior-posterior axis according to their unique ID in either the anterior-to-

posterior or the posterior-to-anterior direction. Images were manually inspected and, based on irregularities in the fixed brain and

16 Cell Reports 42, 112788, July 25, 2023

Article
ll

OPEN ACCESS



anatomical landmarks, aminority of themweremirrored vertically tomake surematching hemispheres were always on the same side

for the whole image sequence.

All the following steps of preprocessing and image registration were carried out on a downsampled (20% of the original size) TIFF

dataset. For each downsampled experimental image, we created a matching binary mask of the same size, encoding whether each

pixel belongs to brain tissue or not. Masks were automatically generated for the entire subsampled dataset by using a machine

learning model (random decision forest) interactively trained with Ilastik80 on a subset of 57 image crops (width ranging from 344

px to 526 px). Masks were used in the quantification steps to restrict fluorescence analysis only to portions of the images that con-

tained biological tissue. All themasks were visually inspected through a customMATLAB graphical user interface (GUI) and, if neces-

sary, manually adjusted to correct for misclassification of small areas or to exclude parts of the tissue containing experimental arti-

facts from further analysis.

Image registration

We aligned our dataset to the Allen Mouse Brain Common Coordinate Framework (CCFv3-2017)81 with a multi-step workflow: first,

we used the software QuickNII v2.2 (RRID:SCR_016854)82 to interactively assign each experimental image to a specific plane in the

reference atlas based on anatomical landmarks. The software allows the selection of an arbitrary 2D plane out of the CCFv3 volume,

thus improving accuracy for samples where sections were not cut on a perfectly coronal plane, but with a slight angle. In the same

software, we also performed rigid transformations (i.e., rotations and translations) and uniform horizontal or vertical stretch in order to

match the reference plane to each experimental image. In a second step, we used the software VisuAlign v0.9 (RRID: SCR_017978,

VisuAlign) to manually apply local, non-rigid transformations to the planes selected in QuickNII in order to match the experimental

images.

We then used a custom set ofMATLAB functions to load the output file fromVisuAlign and to generate a displacement field for each

experimental image. Each displacement field defines the local non-rigid transformation as a couple of values (Dx, Dy ) for each pixel,

defining the displacement in the image on the X and Y axes. By using the coordinates of the 2D plane defined in QuickNII and the local

transformations defined in the displacement field it is possible to match each pixel position in our experimental images (Xe, Ye) to a

voxel position in the reference atlas (Xa, Ya, Za).

Deep learning models for cell counting
The deep learning models used in this work are based on a published counting strategy34 specifically designed to account for the

variability between experimenters when counting non-trivial, overlapping, or low-contrast objects like PNNs in histological prepara-

tions. Briefly, cell counting for both PNNs and PV cells was done through a two-step pipeline. In the first step, we performed cell

detection by using the Faster-RCNN network83 with a Feature Pyramid Network module and a ResNet-50 backbone. The goal of

this stage is to produce a collection of putative object locations with high recall. The training dataset of this network is large but

labeled by a single rater, thus it is assumed to be ‘‘weakly labeled’’, i.e., it may contain spurious (false positives) and missing anno-

tations (false negatives). In the second step, we scored each detected object to assign it an ‘‘objectness’’ value designed tomaximize

its correlation with the raters’ agreement. To do this, we trained a small convolutional network to rank samples with increasing agree-

ment values and produce an increasing score for objects with increasing raters’ agreement (Figures S1B and S1C). In this stage, we

employed a smaller training dataset labeled by multiple raters for which the agreement between experimenters on each object was

computed (see Training Datasets below).

Following this strategy, we employed four different models: a localization model for PNNs and PV cells, and a scoring model for

PNNs and PV cells. From now on, we will refer to these models respectively as PNNloc, PVloc, PNNscore, and PVscore. We first localized

and scored PNNs using PNNloc and PNNscore and PV cells using PVloc and PVscore on separate image channels. Then, we removed

PNNs with a score lower than 0.4 and PV cells with a score lower than 0.55.

As a performance metric for this counting pipeline, we computed the mean absolute relative error (MARE) as follows:

MARE =

PN
n = 1

�
�
�Cn

gt � Cn
pred

�
�
�

PN
n = 1C

n
gt

whereN is the number of test images, andCn
gt andCn

pred are the ground-truth and the predicted count of the n-th image, respectively.

On the test split of our multi-rater dataset, our counting approach achieves aMARE of 0.048 and 0.080 respectively for PNNs and PV

cells when considering samples located by at least 3 raters. As a final quality check, we visually inspected all the images andmanually

removed cases of artefactual cell detection. The source code for training models or making predictions with a pre-trained model can

be found at this link.

Training Datasets

Here we describe the training dataset used for each model.

The dataset used for the PNNloc model consists of 580 8-bit grayscale TIFF images (width ranging from 2646 to 17631 px) dot-an-

notated with the (x,y) position of each PNN for a total of 678556 PNNs. The dataset used for the PVloc model consists of 53 8-bit gray-

scale TIFF images (width ranging from 5157 to 16389 px) dot-annotated with the (x,y) position of each cell for a total of 101348 PV

cells. PNNs were annotated by looking for distinctive circular patterns of WFA staining around cell somata and proximal dendrites.
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Finer PNN-like structures exclusively present in the neuropil, like those found in the olfactory bulbs,64 were not annotated in our

training dataset due to the magnification factor in our images not allowing for consistent detection of such structures.

The datasets used for the two scoringmodels both consist of a collection of 25 8-bit grayscale TIFF images (2000 x 2000 px). Seven

expert experimenters independently dot-annotated each image for a total of 4727 PNNs and 5833 PV cells that vary in the agreement

between raters from 1/7 to 7/7. Pre-trained models, ready for making predictions on new images, are available at this link.

Brain structure sets
Throughout the paper we aggregated data in three sets of brain structures differing by their level of spatial resolution or granularity.

The first structure set (structure_set_id: 687527670) has a low level of resolution and is composed of 12 coarse-ontology major

brain divisions (see Table S3). The second structure set (structure_set_id: 167587189) has a medium level of resolution (e.g., it

comprises distinct cortical areas) and is composed of 316 mid-ontology brain regions (see Table S3).

These two structure sets were defined by the Allen Institute in their API and can be accessed using the StructureTree object.

Lastly, for the analysis of cortical layers, we maintained the finest level of resolution present in the CCFv3-2017, where individual

cortical layers are segmented (see Table S3 for the definition of cortical areas). Please note that, for the visualizations in

Figures 5A and 5B, we included the lateral and medial parts of the entorhinal cortex (ENTl and ENTm, that actually belong to the hip-

pocampal formation) given their layered structure. For all the analyses in the paper, we dropped data of any structure belonging to, or

descending from the fiber tracts (areaID:1009) and the ventricular system (areaID:73).

QUANTIFICATION AND STATISTICAL ANALYSIS

All data analysis was done using custom software written in MATLAB 2021b (RRID:SCR_001622) and Python (3.8,

RRID:SCR_008394). We used the following additional Python libraries for data analysis: NumPy (1.23.5, RRID:SCR_008633),84

Pandas (1.5.2, RRID:SCR_018214),85 Scikit-learn (1.1.3, RRID:SCR_002577)86 and SciPy (1.9.3, RRID:SCR_008058).87 The descrip-

tion of all the statistical comparisons are listed in Tables S1 and S2. The results of correlation and overrepresentation analyses, and

the definition of center and dispersion measures are reported in figure legends.

Measurement of single-cell staining intensity
Quantification of the staining intensity of individual cells (PNNs or PV cells) was performed on 80x80 pixels image tiles centered on the

(x,y) center positions of each PNN/cell. Within each tile, we segmented pixels belonging to the cell or the background, and the in-

tensity of each PNN/cell was defined as the average value of the pixels belonging to that cell. The segmentation was performed

by using a random forest pixel classifier implemented with the MATLAB Treebagger class with the support of additional custom

MATLAB functions from the literature.88 This approach allows the classification of single pixels as background or foreground, based

on a collection of features of that pixel. Classifying all the pixels in an image tile results in a binary segmentation mask.

The features considered for pixel classification were the contrast-adjusted pixel intensity (using the imadjustMATLAB function),

the position of the pixel relative to the center of the tile in the horizontal and vertical axes, and the pixel intensity in 16 versions of the

image tile filtered with 16 Gabor filters. The wavelength and orientation of each Gabor represented one of the possible combinations

of four different wavelength values (2.8, 5.6, 11.3, 22.6 pixels/cycle) and four different orientations (0�, 45�, 90�, 135�). Wavelengths

were sampled in increasing powers of 2 starting from 4ffiffi
2

p up to the hypotenuse length of the input image tile, while orientations were

sampled from 0� to 135� with a step of 45�.89 Each random forest model for segmentation of PNNs and PV cells was trained on 69600

pixels from 1160 tiles (60 pixels randomly chosen for each tile).

Staining metrics definitions
We defined four metrics to quantitatively analyze the staining for PNNs and PV cells.

First, diffuse fluorescence represents the amount of average fluorescence signal in a brain region. It is defined as the average in-

tensity of all the pixels belonging to that region across all the slices of each mouse. These values were then normalized within each

mouse by dividing themby themean pixel intensity of all the brain. This normalization removes global differences in intensity between

mice (due to for example perfusion quality and post-fixation) while highlighting how staining intensity is differentially distributed

across brain regions. As a result, a region with diffuse fluorescence of 1 would have a staining intensity equal to the brain average.

Second, density represents the number of cells or PNNs per unit of area in a brain region. It was defined as the total number of cells

or PNNs belonging to that region across all the slices of each mouse, divided by the total area belonging to that region in mm2.

Third, cell intensity represents the staining intensity of cells or PNNs in a brain region. Each cell was assigned a value of staining

intensity (see section Measurement of single-cell staining intensity). For each region, cell intensity was defined as the average inten-

sity of all the cells belonging to that region. These valueswere then normalized to the range 0–1 by dividing by 255 (maximum intensity

value for 8-bit images).

Last, we defined a combined, more abstract metric, that takes into account both the number and the intensity of cells/PNNs, called

energy. Cell energy can be thought of as ameasure of cell density, weighted on intensity meaning that in the calculation of density, the

weight of each cell/PNN is a value between 0 and 1 that depends on its intensity. For a region of area A, containing c cells:
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Energy =

Pc
i = 113 intensityi

A

These values were then normalized within each mouse by dividing them by energy calculated on the entire brain. As a result, a

region with an energy value of 1 would be equal to the brain’s average energy. This definition of energy is analogous to the one

used by the Allen Institute38 for the analysis of in-situ hybridization data (see the technical paper on the informatics data processing

here). It is important to note that the brain of each mouse in this study has been sampled in its entire anterior-posterior axis with the

same sampling rate (1 every 3 slices) thus ensuring that the normalization step for diffuse fluorescence and energy measurements

does not introduce biases due to differential sampling of areas with extreme staining intensity values.

Colocalization PNN-PV
PV cells and PNNs were counted with two distinct deep learning models on separate channels. We defined a PNN and a PV cell to be

colocalized based on their (x,y) position in the original image using the following criteria. We selected one cell/PNN at a time as a

reference object. For each reference object, we selected only objects in the other channel with a distance equal to or smaller

than 15 pixels (9.675mm). If multiple objects satisfied this criterion, we picked the closest one as a colocalized object. Otherwise,

if no objects were close enough to the reference one, we defined the reference object as non-colocalized (either a PV-negative

PNN or a WFA-negative PV cell).

We computed two metrics to describe PNNs and PV colocalization: first, the percentage of PV+ PNNs, that is the fraction of PNNs

that are around a PV-positive cell; second, the percentage of WFA+ PV cells, that is the fraction of PV-positive cells that are sur-

rounded by a net. Colocalization metrics at the coarse level of resolution (see section Brain structure sets for definition) were calcu-

lated independently for each mouse and the results averaged across mice. For the same analysis at higher levels of resolution (mid-

ontology in Figures 3C and S4), we adopted a different strategy. At higher resolutions, brain subdivisions are much smaller and some

areas contain a limited number, or even no, of PNN or PV-cells (e.g., layer 1 of cortical areas). As a result, the percentage of coloc-

alization can vary dramatically depending on a few, or even a single cell, thus not providing a robust measure for that area (e.g., an

area with 3 PV cells can vary from 0% to 100% depending on the state of PNNs on only 3 neurons). To solve this issue, we calculated

colocalization metrics on a dataset of cells pooled from all animals except one, in a manner similar to the leave-one-out cross-vali-

dation approach used in machine learning.90 We repeated this process for all mice and considered each repetition an ‘‘experimental

unit’’. We then averaged across experimental units. For the analysis of the colocalization of PNNs and PV cells (Figures 3C and S4),

we included only brain regions that contained at least 3 PNN and 3 PV cells in at least 4 mice.

PV intensity classes
PV cells were divided into four intensity classes of equal width based on their cell intensity levels. The classes were defined as 1: low

PV (PV intensity in the range [0, 0.25)); 2: intermediate-low PV (range [0.25, 0.5)); 3: intermediate-high PV (range [0.5, 0.75)); 4: high PV

(range [0.75, 1]). The probability of being surrounded by a net was estimated by dividing the total number of PV cells in that class by

the number of colocalized PV-PNN cells. This analysis was done independently for each mouse. We fit data to a first-degree linear

equation by using the numpy function np.polyfit. The estimated first- and zero-order parameters are displayed in the text insets for

each plot.

Correlation between staining metrics
The analysis of correlations between staining metrics in all the figures (Figures 2E, 3D–3G, and S3E) was done by computing the

Spearman’s rank correlation coefficient using the SciPy function stats.spearmanr. In each graph, we reported the value of the

correlation coefficient (rs) and the associated p-value. We highlighted in red significant (p <0.05) correlations. For significantly corre-

lated metrics we also reported in blue a linear fit obtained using a Huber regressor robust to outliers91 using the implementation in

sklearn.linear_model.HuberRegressor.

Correlation with thalamic afferent connectivity
To measure thalamic input strength we used connectomics data from Table S3 of Oh et al., 2014.46 In that dataset, we selected the

connections that originated from the thalamus and that terminated in sensory-related cortical regions (SSp-n, SSp-bfd, SSp-ll, SSp-

m, SSp-ul, SSp-tr, SSp-un, SSs, VISal, VISam, VISl, VISp, VISpl, VISpm, VISli, VISpor, AUDd, AUDp, AUDpo, AUDv). For Figure 5I we

selected only thalamic inputs originating from the sensory-motor cortex related part of the thalamus (DORsm, area ID: 864, according

to the CCFv3 nomenclature, https://atlas.brain-map.org/). For Figures S7I and S7J we selected only thalamic inputs originating from

the polymodal-association cortex related part of the thalamus (DORpm, areaID: 856). Input strength for each cortical area was

measured as the sum of connection strength from all brain regions belonging to either the DORsm or the DORpm to both the ipsi-

lateral and contralateral parts of that cortex. To uniform the scale of PNNmeasurements and thalamic connectivity, we z-scored each

set of data. For the correlation analysis (Figure 5I), we computed Pearson’s correlation coefficient and the associated p-values. To

estimate connection strength in high-WFA and low-WFA region clusters (Figure 5L inset), we averaged thalamic input strength

values, obtained in the same way, of all the areas in each cluster.
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Correlation with gene expression and gene set overrepresentation analysis
We correlated the distribution of PNN energy, WFA diffuse fluorescence and PV energy with the pattern of expression of approxi-

mately 18,000 genes, published by the Allen Institute.38 The Allen Institute gene expression data were accessed through the Allen

Brain Atlas API. The detailed query to the Allen Institute database is reported in the figure_06_downloadGeneExprABA.ipynb note-

book in the wholeBrain_PNN_analysis github repository. We also provided the preprocessed gene expression data in the same gi-

thub repository (filename: ‘‘gene_expression_ABA_energy.csv’’). In this dataset, levels of expression of each gene are derived from

the signal intensity of whole-brain in situ hybridization essays and quantified as expression energy, a metric defined in an analogous

way to PNN and PV energy. For correlation analysis, both gene expression data and PNN or PV staining parameters were expressed

at mid-ontology resolution (see Table S3). The five areas showing the largest standard deviation in PNN or PV staining metrics were

excluded from the analysis. We computed Spearman’s rank correlation coefficient between each of the 3 staining metrics and the

pattern of expression of each of the genes mapped by the Allen Institute. Correction for multiple testing was performed with

Benjamini-Hochberg method. For all the analyses, we considered genes with FDR-adjusted p value<0.01 (Benjamini-Hochberg

method) as significantly correlated (if Spearman’s correlation coefficient was positive) or anticorrelated (if Spearman’s correlation

coefficient was negative) with the staining metric considered.

For the genes correlated and anticorrelated with PNN energy and WFA fluorescence, we performed gene ontology analysis using

WebGestalt platform.92 Overrepresentation of gene ontology terms (biological process domain) was tested separately for the 1,000

genes most correlated (with the largest correlation coefficient) and the 1,000 genes most anticorrelated (with the most negative cor-

relation coefficient) with each of the twometrics. The list of all the genes present in the Allen ISH dataset was used as the background

for all the analyses. Overrepresented gene ontology terms were filtered to ensure a false discovery rate<0.1 (Benjamini-Hochberg

method) and clustered via affinity propagation to reduce redundancy.

We then tested for overrepresentation of gene sets related to ECMbiology, defined by59 asmatrisome categories, in the 200 genes

most correlated with PNN energy. As for gene ontology, the entire list of genes of the Allen ISH dataset was used as the background.

To assess statistical significance, we performed hypergeometric test and corrected for multiple testing using Benjamini-Hochberg

method. For each matrisome category, the enrichment ratio was calculated as the number of genes observed in both the matrisome

category and the 200-gene list divided by the number of genes expected assuming independence of the matrisome set and the

gene list.

Data visualization
Data visualization for all the figures was done in Python (3.8). Heatmaps, bar plots, and scatterplots were created using the libraries

Seaborn (0.12.1)93 and Matplotlib (3.4.2).94 Rendered heatmaps of coronal brain slices were done by using BrainRender95 and

bg-heatmaps.96
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