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Abstract
In this work we consider a finite dimensional approximation for the 2D Euler equations
on the sphere S2, proposed by V. Zeitlin, and show their convergence towards a solution to
Euler equations with marginals distributed as the enstrophy measure. The method relies on
nontrivial computations on the structure constants of S2, that appear to be new. In the last
section we discuss the problem of extending our results to Gibbsian measures associated with
higher Casimirs.

Keywords Euler equations · Invariant measures · Geometric quantization

1 Introduction

The 2D Euler equations are a fundamental model of ideal fluids, for which the dependence on
one spatial dimension can be ignored and the effect of viscosity can be neglected. In particular,
for barotropic incompressible fluids on some Riemannian surface (S, g) embedded in the
Euclidean space R3, the Euler equations take the simple form

ω̇ = ∇⊥ψ · ∇ω

�ψ = ω,
(1.1)

where ω and ψ are respectively the vorticity and the stream function, � is the Riemannian
Laplace–Beltrami operator on S and ∇,∇⊥ are defined in local coordinates by the formulas

∇ω = (∂iω)gi j∂ j , ∇⊥ψ = (∂iψ)g̃i j∂ j ,
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where g̃:=
(−g12 g11

−g22 g21

)
. One of the most intriguing aspects of these equations is the fact that

they possess an infinite amount of conserved quantities, i.e. the integrals∫
S
ψωdvolS,

∫
S

f (ω)dvolS,

where dvolS is the Riemannian volume form on S, expressed in local coordinates by dvolS =
|g|1/2dx1 ∧ dx2 for a positively-oriented local basis dx1, dx2 of the cotangent bundle of S,
and |g| is the absolute value of the determinant of the matrix representation of the metric
tensor (see for example [3, Chapter 1]). The first conserved quantity represents the total
kinetic energy and the second one the Casimir functions, defined for any f ∈ C1(R). These
conservation laws are crucial in understanding the long-time behaviour of the fluid. Indeed,
as Kraichnan showed in [17], the conservation of both energy and enstrophy (i.e. the Casimir
for f (x) = x2) is responsible for the remarkable phenomenon of the formation and the
persistence of large coherent vortices.

A first attempt to understand the statistical properties of 2D ideal fluids is due to Lars
Onsager [23], who showed that in the simplified point-vortex model the equilibrium statisti-
cal mechanics predicts the concentration of vortices with the same sign. More recently, the
theory of Miller, Robert and Sommeria [19, 25] extended the ideas of Onsager and Kraich-
nan taking into account all the invariants. Via a mean field approach, it is determined a
microcanonical variational problem, whose solutions are equilibrium average vorticity fields
functionally related with the average stream function [6]. Even though the MRS theory has
been quite recognized, several critical aspects and discrepancies with respect to experiments
and numerical simulations have been found [9, 21]. From a mathematical point of view, the
MRS theory involves measures that are not known to be Liouville measures of any finite
approximation of the Euler equations, making it hard to practically verify its predictions. At
the moment only energy and enstrophy invariant measures have been rigorously constructed,
and extending the existing results to other Casmirs is still an open problem. Albeverio and
Cruzeiro in [1] showed the existence of solutions to the 2D Euler equations as stochastic
processes limit of Galerkin approximation of the Euler equations with vorticity in H−1−α ,
such that the enstrophy and the (renormalized) energy Gibbs measures are invariant for the
flow. A basic question is the practical relevance of these invariant measures for the dynamics.
Euler equations have infinitely many invariant measures and which ones are visible for cer-
tain initial conditions is a main open problem. The answer may also change when we discuss
suitable finite dimensional truncations instead of the true PDE. We do not have any precise
conjecture but, based on numerical experiments reported in [4] and [22] we think that the true
Euler equations (not necessarily certain Fourier trucations) may display the superposition of
different scaling structures, some of them related to energy and enstrophy cascades, plus one
related to very small vortex structures which has a k−1 scaling law. It is a sort of weak but
visible background of "pointwise" vortices. This is the enstrophy measure. But we are not
able to perturb it "à la Gibbs" in order to incorporate the presence of the other scaling laws.
Whether the Gibbs weight based on Casimir’s C p (Sect. 5) would produce such scaling laws
is not clear, but the presence of a term like−C p in the exponent, selecting vorticity fields with
small C p , especially for very large p, could be an interesting constraint to be investigated.

In this paper, we consider a different finite dimensional approximation for the 2D Euler
equations, valid on any orientable compact surface. This model was derived by V. Zeitlin
[28, 29], based on the theory of geometric quantization of compact Kähler manifolds [5].
Given a truncation parameter N > 0, Zeitlin’s model has dimension N 2 − 1. One of its
main features is to posses an increasing number of conserved quantities, which goes like
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O(N ). It turns out that, for a sufficiently regular vorticity field, these conserved quantities
approximate the first N original Casimirs of the 2D Euler equations. In particular, for any
level of discretization, the Zeitlin’s model admits energy and enstrophy analogues, which are
simply a spectral truncation of the original ones.

The aim of this work is to show a new strategy to develop a rigorous statistical theory for
the Euler equations. Indeed, one of the main open problems is defining Gibbsian invariant
measures that take into account several conserved quantities, other than energy and enstrophy.
Since these measures have distributional support, it is not clear, even up to renormalization,
how to deal with higher order Casimirs of the Euler equations. In this paper, we show that it
is possible, starting from the Zetlin’s model, to recover the results of Albeverio and Cruzeiro
in [1], but also that the Zeitlin’s model gives new insights in the problem, that in the future
could allow to deal with the other Casimirs, too.

Furthermore, a main novelty of our work is that we perform explicit calculations on the
structure constants for the 2-sphere S2 (cfr. section A), which are technically more involved
than those on the flat 2-torus (recalled in section B for completeness). The interesting case
of a rotating sphere can be recovered from the non-rotating one applying the results of [30]
and [27, Sect. 3.1].

It is worth to mention that, for dissipative dynamics as the Navier–Stokes equations, it
may be necessary to perturb the systemwith an additive noise in order to produce statistically
relevant stationary solutions (see for instance [1, 8] on the Navier-Stokes system and [13]
on Primitive equations). Also, at the moment we are not able to produce out-of-equilibrium
solutions (not even at the discrete level). One possibility could be that of starting with mea-
sures with smooth density with respect to some Gibbsian measure associated with Casimirs,
and determine its evolution with respect to time. We hope to do so in following studies.

The paper is structured as follows. In Sect. 2 we present the geometric background neces-
sary to set up the quantized version of Euler equations onS2: we introduce isometries between
subspaces of functions on S

2 and spaces of matrices in the Lie algebra su(N ), as well as
suitable Sobolev norms on su(N ). In Sect. 3 we rigorously define a sequence of Gaussian
measure on su(N ) whose pull-back converges weakly towards the enstrophy measure, and
prove useful bounds on stationary solutions of quantized Euler equations. In Sect. 4 we show
the existence of a subsequence of solutions of quantized Euler equations converging towards
a limiting process ω̃ taking values in a space of distributions: as a consequence of previous
results, we are able to prove that ω̃ is a stationary process with marginals distributed as the
enstrophymeasure, and that it solves a symmetrized version of Euler equations on S2. Finally,
in Sect. 5 we discuss open problems, in particular concerning the difficulties encountered in
trying to solve Euler equations having as invariant measure a Gibbsian measure associated
to higher-order Casimirs, and we point out a tentative approach involving the evaluation of
line integrals and Kelvin Theorem.

2 Fundamental Concepts and Definitions

In this section, we introduce the fundamental concepts and notations that we employ through-
out the paper. In particular, in order to introduce the Zeitlin’s model, we observe that the right
hand side in the first equation of (1.1) defines a Poisson bracket denoted by:

{ψ,ω} := ∇⊥ψ · ∇ω. (2.1)
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The Poisson bracket notation highlights the infinite dimensional Lie–Poisson structure of the
Euler equations. The main idea of Zeitlin’s model is to define a finite dimensional approxi-
mation of the Euler equations, which retains the Lie–Poisson structure of the equations. The
functional space of vorticities is replaced, for any N ≥ 2, by the Lie algebra su(N ), defined as
the tangent at the identity of SU (N ), which is the real vector space of dimension dN := N 2−1
of skew-Hermitian matrices with zero trace and Lie brackets [W , V ]:=W V − V W , for
V , W ∈ su(N ). The Laplace–Beltrami operator is replaced by a linear operator �N defined
on su(N ), with the same spectrum (up to truncation) of �. In this paper, we perform our
calculations on the 2-sphere S2 embedded in the Euclidean space R3 (in section B we show
that the same results can be derived for the Zeitlin’s model on the 2D flat torus).

The Zeitlin’s model relies on the theory of geometric quantization of the Poisson algebra
(C∞(S2), {·, ·}), [5]. Let Y�,m ∈ C∞(S2) denote the standard spherical harmonics on the
sphere. The key idea is that it is possible to give a finite dimensional representation of
spherical harmonics in terms of matrices T N

�,m ∈ su(N ), for � ∈ N, m ∈ Z, |m| ≤ �, called
spherical matrices and defined in [15].

The actual coordinate entries of matrices T N
�,m are not important; what we shall use,

however, is the following: there exist linear projectors �N : C∞(S2) → su(N ), N ∈ N,
N ≥ 2 satisfying:

• for every f , g ∈ C∞(S2), if ‖�N f −�N g‖su(N ) → 0 as N →∞ then f = g;
• for every f , g ∈ C∞(S2), �N { f , g} = N 3/2[�N f ,�N g] + O(1/N );
• �N Y�,m = T N

�,m , � = 1, . . . , N − 1, |m| ≤ � is a basis of su(N ).

Let us denote L2
N (S2):=Span

{
Y�,m, � = 1, . . . , N − 1, |m| ≤ �

}
, immersed in C∞(S2)

with immersion ιN . The restriction of �N to L2
N (S2) is isometric: for every �, �′ =

1, . . . , N − 1, |m| ≤ �, |m′| ≤ �′

δ�,�′δm,m′ = 〈Y�,m, Y�′,m′ 〉L2(S2) = 〈T N
�,m, T N

�′,m′ 〉su(N ):=T r((T N
�,m)∗T N

�′,m′). (2.2)

In the following, we denote j̃N : su(N ) → L2
N (S2) the inverse of the restriction of �N to

L2
N (S2), and jN = ιN ◦ j̃N : su(N )→ C∞(S2). It is easy to check that �N ◦ jN = I dsu(N )

and jN ◦�N is the orthogonal projector from C∞(S2) onto L2
N (S2).

The discrete Laplacian �N : su(N )→ su(N ) acts on the basis T N
�,m as

�N T N
�,m = −�(�+ 1)T N

�,m .

Since also �Y�,m = −�(�+ 1)Y�,m , we deduce for every s ∈ R

�N (−�)s = (−�N )s�N ,

and thus we can define for ω = jN W

‖W‖Hs (su(N )):=‖ω‖Hs (S2) = ‖(−�)s/2ω‖L2(S2)

= ‖�N (−�)s/2ω‖su(N ) = ‖(−�N )s/2W‖su(N ), (2.3)

that is a good Sobolev norm on su(N ), in the sense that Aubin-Lions and Simon compactness
criteria hold.

The quantized Euler equations can be written as [21]:

Ẇ = [P, W ]N = N 3/2[P, W ], �N P = W . (2.4)

These equations have as conserved quantities the energy

H(W ):= − 1/2 Tr(P∗W ),
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the linear momentum

M :=(W1,1, W1,0, W1,−1), W�,m :=〈W , Y�,m〉su(N ),

and the Casimirs

Ck(W ):=T r(W k), k ∈ N.

Notice that for k = 2 it holds C2(W ) = −‖W‖2su(N ).

3 GaussianMeasures

In this section we introduce the Gaussian measure on su(N ) that permits us to prove the
existence of stationary solutions to quantized Euler equations (2.4). For this purpose, let
QN : su(N )→ su(N ) be the covariance operator defined for W , W ′ ∈ su(N ) as

〈QN W , W ′〉su(N ):= 1

2ZdN

∫
su(N )

〈W̃ , W 〉su(N )〈W ′, W̃ 〉su(N )e
− 1

2 ‖W̃‖2su(N )dW̃ ,

where Z = ∫
C

e− 1
2 |x |2dvolS is a suitable renormalization constant, and dN = N 2 − 1. The

covariance operator QN is just a convenient rewriting of the identity operator on su(N ),
which is the content of the following:

Lemma 1 It holds QN = I dsu(N ).

Proof For notational convenience, let us relabel the basis (T N
�,m)�=1,...,N−1,|m|≤� as

(T N
k )k=1,...,dN . Let W = ∑dN

k=1 ck T N
k , W ′ = ∑dN

k=1 c′k T N
k and W̃ = ∑dN

k=1 c̃k T N
k . We

have

〈QN W , W ′〉su(N ) = 1

2ZdN

∫
su(N )

〈W , W̃ 〉su(N )〈W̃ , W ′〉su(N )e
− 1

2 ‖W̃‖2su(N )dW̃

= 1

2ZdN

∫
C

dN

dN∑
k=1

ck c̃k

dN∑
h=1

c̃hc′h
dN∏
j=1

e−
1
2 |c̃ j |2dc̃ j

= 1

2ZdN

dN∑
k,h=1

∫
C

dN
ck c̃k c̃hc′h

dN∏
j=1

e−
1
2 |c̃ j |2dc̃ j .

Let us rearrange the product inside the integral in the following way. Denote {k, h} the set
with elements k and h, and let card{k, h} be its cardinality, so that card{k, h} = 1 if k = h
and card{k, h} = 2 if k �= h; since in the previous expression the integration with respect to
dc̃ j only produce a factor Z for j �= k, h, we can rewrite
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〈QN W , W ′〉su(N ) = 1

2Zcard{k,h}
dN∑

k,h=1

∫
Ccard{k,h}

ck c̃k c̃hc′h
∏

j∈{k,h}
e−

1
2 |c̃ j |2dc̃ j

= 1

2Z

dN∑
k=1

∫
C

ck c̃k c̃kc′ke−
1
2 |c̃k |2dc̃k

+ 1

2Z2

⎛
⎝ dN∑

k=1

∫
C

ck c̃ke−
1
2 |c̃k |2dc̃k

⎞
⎠

⎛
⎝ dN∑

h=1

∫
C

c̃hc′he−
1
2 |c̃h |2dc̃h

⎞
⎠

=
∑

k

ckc′k = 〈W , W ′〉su(N ),

where we deduce the last line from
∫
C

c̃ke− 1
2 |c̃k |2dc̃k = 0 and

∫
C

c̃k c̃ke− 1
2 |c̃k |2dc̃k = 2Z . ��

Corollary 2 Fix ω ∈ C∞(S2), and denote W (N )
ω :=�N ω. Then

lim
N→∞〈QN W (N )

ω , W (N )

ω′ 〉su(N ) =
∫
S2

ω(x)ω′(x)dvolS .

Proof It follows immediately from (2.2) and the identity 〈QN W (N )
ω , W (N )

ω′ 〉su(N ) =
〈W (N )

ω , W (N )

ω′ 〉su(N ), given by the previous lemma. ��

DenoteμN (dW ):= 1
ZdN

e−
1
2 ‖W‖2su(N )dW the Gaussianmeasure on su(N )with covariance

QN , and let νN be its pull-back on C∞(S2) given by νN :=( jN )∗μN . The covariance of νN is
given by Q̃N = jN ◦�N (the orthogonal projector from C∞(S2) to L2

N (S2)); equivalently,
the reproducing kernel of νN is L2

N (S2).
The enstrophy measure is defined as the centeredGaussianmeasureν on H−1−(S2):=∩s>0

H−1−s(S2) with covariance Q = I d , or equivalently with reproducing kernel L2(S2). The
previous corollary implies νN ⇀ν as measures on H−1−(S2).

Lemma 3 For every ε > 0 and p ∈ [1,∞) there exists a finite constant Cε,p such that∫
su(N )

‖W‖p
H−1−ε (su(N ))

μN (dW ) ≤ Cε,p.

Proof Let ω = jN W . By (2.3) and νN = ( jN )∗μN , change of variables yields∫
su(N )

‖W‖p
H−1−ε (su(N ))

μN (dW ) =
∫

C∞(S2)

‖ω‖p
H−1−ε (S2)

νN (dω).

For the measure νN the desired bound is classical, see for instance [2, Sect. 3]. ��
Corollary 4 Let W N

W0
: �N × R→ su(N ) be the solution of (2.4) with initial condition W0

distributed as μN . For fixed T > 0 denote Ŵ N
W0
: �N × [0, T ] → su(N ) the accelerated

process

Ŵ N
W0

(t) = W N
W0

(N 3/2t), t ∈ [0, T ].
Then for every ε > 0, p ∈ [1,∞) and κ sufficiently large there exists a finite constant Cε,p,κ

such that

sup
N∈N

E
μN

[∫ T

0
‖Ŵ N

W0
(t)‖p

H−1−ε (su(N ))
dt +

∫ T

0
‖ d

dt
Ŵ N

W0
(t)‖2H−κ (su(N ))

dt

]
≤ T Cε,p,κ .
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Similarly, let ωN
ω0
: �N × [0, T ] → C∞(S2) be given by ωω0 = jN Ŵ N

W0
. Then

sup
N∈N

E
νN

[∫ T

0
‖ωN

ω0
(t)‖p

H−1−ε (S2)
dt +

∫ T

0
‖ d

dt
ωN

ω0
(t)‖2H−κ (S2)

dt

]
≤ T Cε,p,κ .

Proof First of all, notice that there exists a unique stationary solution to (2.4) by a suitable
adaptation of non-explosion results in [7, Sect. 3]. The dynamics of Ŵ N

W0
is given by

˙̂W N
W0
= N 3/2[P N , Ŵ N

W0
], �N P N = Ŵ N

W0
.

Let us introduce the streamfunction ψ N := − (−�)−1ωN
ω0
. It holds

�N ψ N = −�N (−�)−1ωN
ω0
= −(−�N )−1�N ωN

ω0
= −(−�N )−1Ŵ N

W0
= P N ,

and therefore the dynamics of ωN
ω0

is given by

ω̇N
ω0
= jN

˙̂W N
W0
= jN N 3/2[�N ψ N ,�N ωN

ω0
] = jN �N {ψ N , ωN

ω0
} + jN r N , (3.1)

with r N : �N × [0, T ] → su(N ) given by

r N = N 3/2[�N ψ N ,�N ωN
ω0
] −�N {ψ N , ωN

ω0
}.

Writing ωN
ω0
=:∑�=1,...,N−1,

|m|≤�

ω̂�,mY�,m , by the previous formula we deduce

r N =
∑

�,�′=1,...,N−1,
|m|≤�,|m′|≤�′

ω̂�,mω̂�′,m′

�(�+ 1)

(
−N 3/2[T N

�,m, T N
�′,m′ ] +�N {Y�,m, Y�′,m′ }

)

=:
∑

�,�′=1,...,N−1,
|m|≤�,|m′|≤�′

ω̂�,mω̂�′,m′

�(�+ 1)
cN
�,�′,m,m′ (3.2)

with limN→∞ ‖cN
�,�′,m,m′ ‖su(N ) = 0 for every fixed �, �′, m, m′ by the properties of �N .

Having said that, by (2.3) and change of variables

E
μN

[∫ T

0
‖Ŵ N

W0
(t)‖p

H−1−ε (su(N ))
dt +

∫ T

0
‖ d

dt
Ŵ N

W0
(t)‖2H−κ (su(N ))

dt

]

= E
νN

[∫ T

0
‖ωN

ω0
(t)‖p

H−1−ε (S2)
dt +

∫ T

0
‖ d

dt
ωN

ω0
(t)‖2H−κ (S2)

dt

]
.

Let us consider the two terms separately. The first one is easy to control, indeed

E
νN

[∫ T

0
‖ωN

ω0
(t)‖p

H−1−ε (S2)
dt

]
= E

νN

[∫ T

0
‖ω0‖p

H−1−ε (S2)
dt

]
= T Cε,p;
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as for the second one, since r N is stationary as well

E
νN

[∫ T

0
‖ d

dt
ωN

ω0
(t)‖2H−κ (S2)

dt

]

≤ 2EνN

[∫ T

0
‖{ψ N (t), ωN

ω0
(t)}‖2H−κ (S2)

dt +
∫ T

0
‖ jN r N (t)‖2H−κ (S2)

dt

]

= 2TE
νN

[
‖{−(−�)−1ω0, ω0}‖2H−κ (S2)

+ ‖ jN r N (0)‖2H−κ (S2)

]

≤ T Cε,κ + TE
μN

[
‖r N (0)‖2H−κ (su(N ))

]
.

Writing

cN
�,�′,m,m′=:

∑
�=1,...,N−1,
|m|≤�

cN ,�,�′,m,m′
�,m T N

�,m,

we get

E
μN

[
‖r N (0)‖2H−κ (su(N ))

]

= E
μN

⎡
⎢⎢⎣

∑
�=1,...,N−1,
|m|≤�

(�(�+ 1))−κ

∣∣∣∣∣∣∣∣
∑

�,�′=1,...,N−1,
|m|≤�,|m′|≤�′

ω̂�,mω̂�′,m′

�(�+ 1)
cN ,�,�′,m,m′
�,m

∣∣∣∣∣∣∣∣

2⎤
⎥⎥⎦

= E
μN

⎡
⎢⎢⎣
∑
�,m

(�(�+ 1))−κ
∑

�,�′,h,h′,
m,m′,n,n′

ω̂�,mω̂�′,m′

�(�+ 1)

ω̂h,nω̂h′,n′

h(h + 1)
cN ,�,�′,m,m′
�,m cN ,h,h′,n,n′

�,m

⎤
⎥⎥⎦

=
∑
�,m

(�(�+ 1))−κ
∑

�,�′,h,h′,
m,m′,n,n′

E
μN

[
ω̂�,mω̂�′,m′ ω̂h,nω̂h′,n′

]
�(�+ 1)h(h + 1)

cN ,�,�′,m,m′
�,m cN ,h,h′,n,n′

�,m .

It holds that ω̂lm = (−1)mω̂l−m . Hence, by the Isserlis-Wick formula

E
μN

[
ω̂�,mω̂�′,m′ ω̂h,nω̂h′,n′

]
= (−1)m(−1)nδ�,�′δm,−m′δh,h′δn,−n′

+ δ�,hδm,nδ�′,h′δm′,n′

+ δ�,h′δm,n′δ�′,hδm′,n,

and therefore

E
μN

[
‖r N (0)‖2H−κ (su(N ))

]
=

∑
�,m

(�(�+ 1))−κ
∑

�,h,m,n

(−1)m(−1)ncN ,�,�,m,−m
�,m cN ,h,h,n,−n

�,m

�(�+ 1)h(h + 1)

+
∑
�,m

(�(�+ 1))−κ
∑

�,�′,m,m′

cN ,�,�′,m,m′
�,m cN ,�,�′,m,m′

�,m

�2(�+ 1)2

+
∑
�,m

(�(�+ 1))−κ
∑

�,�′,m,m′

cN ,�,�′,m,m′
�,m cN ,�′,�,m′,m

�,m

�(�+ 1)�′(�′ + 1)
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=
∑
�,0

(�(�+ 1))−κ

∣∣∣∣∣∣
∑
�,m

(−1)mcN ,�,�,m,−m
�,0

�(�+ 1)

∣∣∣∣∣∣
2

+
∑
�,m

(�(�+ 1))−κ

×
∑

�,�′,m,m−m

∣∣∣cN ,�,�′,m,m−m
�,m

∣∣∣2
�(�+ 1)

(
1

�(�+ 1)
− 1

�′(�′ + 1)

)
.

Where we have used the fact that m = m + m′. We have the following equality of the
3 j−symbols1:

∑
m

(−1)m
(

� � �

m −m 0

)
= √2l + 1δ�

0. (3.3)

Hence, the first term on the right hand side vanishes. Therefore, we have:

E
μN

[
‖r N (0)‖2H−κ (su(N ))

]

=∑
�,m(�(�+ 1))−κ

∑
�,�′,m,m−m

∣∣∣∣cN ,�,�′ ,m,m−m
�,m

∣∣∣∣
2

�(�+1)
(

1
�(�+1) − 1

�′(�′+1)
)

=∑
�,m(�(�+ 1))−κ

∑
�,�′,m,m−m

∣∣∣∣cN ,�,�′ ,m,m−m
�,m

∣∣∣∣
2

2

(
1

�(�+1) − 1
�′(�′+1)

)2

=∑N−1
�=1

∑�

m=−�(�(�+ 1))−κ
∑N−1

�=1
∑�

m=−�

∑min{N ,�+�}
�′=|�−�|+1

∣∣∣∣cN ,�,�′ ,m,m−m
�,m

∣∣∣∣
2

2

(
1

�(�+1) − 1
�′(�′+1)

)2
.

(3.4)

We split the sum in two parts. We say that � � � if � ≥ 2�(log(�) + 1), and � ≈ � if
� ≤ 2�(log(�)+ 1). Then, for �� � it holds �′ ≥ |�− �| + 1 = �− �+ 1 ≥ �/3 and:

∣∣∣∣ 1

�(�+ 1)
− 1

�′(�′ + 1)

∣∣∣∣
2

=
∣∣∣∣�
′(�′ + 1)− �(�+ 1)

�(�+ 1)�′(�′ + 1)

∣∣∣∣
2

≤ C

∣∣�′(�′ + 1)− �(�+ 1)
∣∣2

�4(�+ 1)4
.

The numerator also satisfies:∣∣�′(�′ + 1)− �(�+ 1)
∣∣2

≤ max
{∣∣(�+ �)(�+ �+ 1)− �(�+ 1)

∣∣2 ,
∣∣�(�+ 1)− (�− �+ 1)(�− �+ 2)

∣∣2} .

∣∣(�+ �)(�+ �+ 1)− �(�+ 1)
∣∣2 ≤ ∣∣2��+ �2 + �

∣∣2 ≤ C�2�2 + C�4.∣∣(�− �+ 1)(�− �+ 2)− �(�+ 1)
∣∣2 ≤ ... ≤ C�2�2 + C�4.

Hence, for �� �:
∣∣∣∣ 1

�(�+ 1)
− 1

�′(�′ + 1)

∣∣∣∣
2

≤ C
�2�2 + �4

�4(�+ 1)4
.

1 This can be directly derived from the relation of the 3 j−symbols with the Clebsch-Gordan coefficients and
the definition of the latter.
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By the Proposition 14, we get:

N−1∑
�=1

�∑
m=−�

(�(�+ 1))−κ
∑
���

�∑
m=−�

min{N ,�+�}∑
�′=|�−�|+1

∣∣∣cN ,�,�′,m,m−m
�,m

∣∣∣2
2

�2�2 + �4

�4(�+ 1)4

≤ C

N 4

N−1∑
�=1

�∑
m=−�

(�(�+ 1))−κ
∑
���

�∑
m=−�

min{N ,�+�}∑
�′=|�−�|+1

�8�4 + �6�6

�4(�+ 1)4

≤ C

N 4

N−1∑
�=1

�∑
m=−�

(�(�+ 1))−κ
∑
���

�∑
m=−�

�5 + �7

�2

≤ C
N−1∑
�=1

�∑
m=−�

(�(�+ 1))−κ

(
�5

N 2 +
�75 log(N )

N 4

)

≤ C

(
N 7−2κ

N 2 + N 9−2κ log(N )

N 4

)

= C N 5−2κ log(N ),

which goes to 0 for N →∞ for κ > 5/2.
For � ≈ �, �′ can be as small as 1. Hence:

∣∣∣∣ 1

�(�+ 1)
− 1

�′(�′ + 1)

∣∣∣∣
2

≤ C
�2�2 + �4

�2(�+ 1)2
≤ C

�4

�2(�+ 1)2
≤ C .

By the Proposition 14, we get:

N−1∑
�=1

�∑
m=−�

(�(�+ 1))−κ
∑
�≈�

�∑
m=−�

min{N ,�+�}∑
�′=|�−�|+1

∣∣∣cN ,�,�′,m,m−m
�,m

∣∣∣2
2

(
1

�(�+ 1)
− 1

�′(�′ + 1)

)2

≤ C

N 4

N−1∑
�=1

�∑
m=−�

(�(�+ 1))−κ
∑
�≈�

�∑
m=−�

min{N ,�+�}∑
�′=|�−�|+1

�6�2

≤ C

N 4

N−1∑
�=1

�∑
m=−�

(�(�+ 1))−κ
∑
�≈�

�∑
m=−�

�6�3

≤ C

N 4

N−1∑
�=1

�∑
m=−�

(�(�+ 1))−κ�11 log5(�)

≤ C
N 11−2κ log(N )

N 4

= C N 7−2κ log5(N ),

which goes to 0 for N →∞ for κ > 7/2. ��
Remark 5 One of the main obstacles in generalizing our results to arbitrary surfaces is the
absence of explicit expressions for the structure constants, thusmaking the previous estimates
hard to obtain. This is a specific drawback of our method; working in Fourier modes as in
[1] may be easier in general, although we lose Zeitlin’s geometric interpretation this way.
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4 Identification of the Limit

Proposition 6 Fix ε > 0. There exist a subsequence (Nm)m∈N, a common probability space
(�̃, F̃, P̃) and random variables ω̃m, ω̃ : �̃ → C([0, T ], H−1−ε(S2)), m ∈ N such that
ω̃m ∼ ω

Nm
ω0 for every m ∈ N and ω̃m → ω̃ almost surely with respect to P̃.

Proof Convergence in law up to a subsequence follows from Corollary 4, exploiting Simon
compactness criterion [26, Corollary 9] and Prokhorov Theorem. Almost sure convergence
in an auxiliary probability space is then a consequence of Skorokhod Theorem. ��

In the following we use the symbol 〈·, ·〉 for the duality between L2(S2)-based Sobolev
spaces Hs(S2) and H−s(S2), any s ∈ R, and the double bracket 〈〈·, ·〉〉 for the duality between
L2(S2×S

2) Sobolev spaces. Also, let G be the Green function of the Laplace operator on the
sphere S2 with zero mean, and define the Biot-Savart kernel K :=∇⊥G. For p ∈ (1,∞) and
ω ∈ L p(S2) with zero-mean, the convolution with K represents the Biot-Savart operator:

K ∗ ω(x):=
∫
S2

K (x, y)ω(y)dvolS(y) = ∇⊥(−�)−1ω(x).

Moreover, we shall say that a random variable taking values in H−1−ε(S2) is a white noise
if distributed as ν. We recall the following result from [10], here adapted in order to consider
functions defined on the sphere S2. A similar result for other geophysically-relevant domains
is contained in [12].

Proposition 7 [10, Theorem 8]. Let ω : �→ H−1−ε(S2) be a white noise, and for a fixed
test function φ ∈ C∞(S2) denote

Hφ(x, y):=1

2
K (x, y)(∇φ(x)− ∇φ(y)).

Assume to have a sequence of symmetric functions H N
φ ∈ H2+2ε(S2 × S

2), N ∈ N that
approximates Hφ in the following sense:

lim
N→∞

∫
S2

∫
S2
|H N

φ − Hφ |2(x, y)dvolSdy = 0; (4.1)

lim
N→∞

∫
S2

H N
φ (x, x)dvolS = 0. (4.2)

Then the sequence of random variables 〈〈ω ⊗ ω, H N
φ 〉〉, N ∈ N is a Cauchy sequence in

L2(�). Moreover, the limit is independent of the sequence H N
φ , that is: if H̃ N

φ , N ∈ N is
another sequence satisfying (4.1) and (4.2), then

L2(�)− lim
N→∞〈〈ω ⊗ ω, H N

φ 〉〉 = L2(�)− lim
N→∞〈〈ω ⊗ ω, H̃ N

φ 〉〉.

Remark 8 There exists a sequence H N
φ satisfying (4.1) and (4.2). It can be constructed by

mollification of the Biot–Savart kernel:

H N
φ (x, y):=1

2
K1/N (x, y)(∇φ(x)− ∇φ(y)),

see [10, Remark 9] for details.

Definition 9 Let ω : �→ H−1−ε(S2) be a white noise and take φ ∈ C∞(S2). We define the
random variable 〈ω � ω, Hφ〉 ∈ L2(�) as the L2(�)-limit of any sequence 〈〈ω⊗ ω, H N

φ 〉〉,
N ∈ N, with H N

φ satisfying properties (4.1) and (4.2).
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43 Page 12 of 25 F. Flandoli et al.

Wehave all the necessary tools to state and prove our main result, characterizing the law of
any accumulation point of the sequence (ω

Nm
ω0 )m∈N. In view of Proposition 7, we can interpret

(4.3) below as a symmetrized version of Euler equations.

Theorem 10 Fix ε > 0, and let ω̃ : �̃→ C([0, T ], H−1−ε(S2)) be given by Proposition 6.
Then for every test function φ ∈ C∞(S2) it holds P̃-a.s.

〈ω̃t , φ〉 = 〈ω̃0, φ〉 +
∫ t

0
〈ω̃s � ω̃s, Hφ〉ds, ∀t ∈ [0, T ]. (4.3)

Proof Let ω̃m, ω̃ be given by Proposition 6, and fix φ ∈ C∞(S2). Recalling (3.1), it is easy
to check for every m ∈ N and P̃-a.s.

〈ω̃m
t , φ〉 − 〈ω̃m

0 , φ〉 =
∫ t

0
〈〈ω̃m

s ⊗ ω̃m
s , Hφ〉〉ds

+
∫ t

0
〈〈ω̃m

s ⊗ ω̃m
s , HjNm �Nm φ − Hφ〉〉ds +

∫ t

0
〈r̃ Nm

s , φ〉ds

for every t ∈ [0, T ], where r̃ Nm is distributed as jNm r Nm .
Since ω̃m → ω̃ as m →∞ almost surely with respect to the C([0, T ], H−1−ε) topology,

we have

〈ω̃m
t , φ〉 − 〈ω̃m

0 , φ〉 → 〈ω̃t , φ〉 − 〈ω̃0, φ〉 as m →∞,

with probability one. Concerning the second summand on the right-hand-side, we notice that
HjNm �Nm φ − Hφ converges to zero in L2(S2 × S

2) and therefore

Ẽ

∣∣∣∣
∫ t

0
〈〈ω̃m

s ⊗ ω̃m
s , HjNm �Nm φ − Hφ〉〉ds

∣∣∣∣
≤ C Ẽ‖ω̃m

s ⊗ ω̃m
s ‖L2(S2×S2)‖HjNm �Nm φ − Hφ‖L2(S2×S2)

= CE
νNm

[‖ω0 ⊗ ω0‖L2(S2×S2)
] ‖HjNm �Nm φ − Hφ‖L2(S2×S2) → 0

as m → ∞, which implies the almost sure convergence up to a subsequence (that we still
denote m with a little abuse of notation):

∫ t

0
〈〈ω̃m

s ⊗ ω̃m
s , HjNm �Nm φ − Hφ〉〉ds → 0.

Similarly,

Ẽ

∣∣∣∣
∫ t

0
〈r̃ Nm

s , φ〉ds

∣∣∣∣ ≤ C Ẽ‖r̃ Nm
s ‖H−κ (S2)‖φ‖Hκ (S2)

= CE
μNm ‖r Nm

s ‖H−κ (su(N ))‖φ‖Hκ (S2) → 0

as m → ∞, which implies the almost sure convergence up to a subsequence (that we still
denote m with a little abuse of notation):

∫ t

0
〈r̃ Nm

s , φ〉ds → 0.

Finally, let us focus on the first term on the right-hand-side. Let H M
φ , M ∈ N, be a sequence

of H2+2ε(S2 × S
2) functions that approximates Hφ in the sense of Proposition 7 above, and
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exists by Remark 8. We can decompose, for fixed M ∈ N:

∫ t

0
〈〈ω̃m

s ⊗ ω̃m
s , Hφ〉〉ds =

∫ t

0
〈〈ω̃m

s ⊗ ω̃m
s , Hφ − H M

φ 〉〉ds

+
∫ t

0
〈〈ω̃m

s ⊗ ω̃m
s − ω̃s ⊗ ω̃s, H M

φ 〉〉ds

+
∫ t

0
〈〈ω̃s ⊗ ω̃s, H M

φ 〉〉ds.

Now, by condition (4.1) for every δ > 0 there exists M ∈ N such that

Ẽ

∣∣∣∣
∫ t

0
〈〈ω̃m

s ⊗ ω̃m
s , Hφ − H M

φ 〉〉ds

∣∣∣∣
≤ C Ẽ‖ω̃m

s ⊗ ω̃m
s ‖L2(S2×S2)‖Hφ − H M

φ ‖L2(S2×S2) ≤ δ;

moreover, since it is easy to check that ω̃ is a white noise by Corollary 2, by Proposition 7
and Definition 9 for every δ > 0 there exists M ∈ N such that

Ẽ

∣∣∣∣
∫ t

0
〈〈ω̃s ⊗ ω̃s, H M

φ 〉〉ds −
∫ t

0
〈ω̃s � ω̃s, Hφ〉ds

∣∣∣∣ ≤ δ.

Having fixed such M , we have

Ẽ

∣∣∣∣
∫ t

0
〈〈ω̃m

s ⊗ ω̃m
s , Hφ〉〉ds −

∫ t

0
〈ω̃s � ω̃s, Hφ〉ds

∣∣∣∣ ≤
Ẽ

∣∣∣∣
∫ t

0
〈〈ω̃m

s ⊗ ω̃m
s − ω̃s ⊗ ω̃s, H M

φ 〉〉ds

∣∣∣∣+ 2δ→ 2δ

as m →∞, since H M
φ ∈ H2+2ε(S2×S

2) and ω̃m → ω̃ in C([0, T ], H−1−ε(S2)), implying

ω̃m ⊗ ω̃m → ω̃ ⊗ ω̃ in C([0, T ], H−2−2ε(S2 ⊗ S
2)). Since δ is arbitrary, we deduce

Ẽ

∣∣∣∣
∫ t

0
〈〈ω̃m

s ⊗ ω̃m
s , Hφ〉〉ds −

∫ t

0
〈ω̃s � ω̃s, Hφ〉ds

∣∣∣∣→ 0

as m →∞, that yields the almost sure convergence

∫ t

0
〈〈ω̃m

s ⊗ ω̃m
s , Hφ〉〉ds →

∫ t

0
〈ω̃s � ω̃s, Hφ〉ds

up to subsequences. Putting all together we have shown

〈ω̃t , φ〉 − 〈ω̃0, φ〉 =
∫ t

0
〈ω̃s � ω̃s, Hφ〉ds, ∀t ∈ [0, T ],

and the proof is complete. ��
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5 Open Problems

5.1 Gibbs Measure Associated to Casimirs

The 2D Euler equations on a compact surface S have inifinitely many conservation laws. The
following integrals, when defined, are invariants for the dynamics:

H (ω) =
∫

S
ψωdvolS

C f (ω) =
∫

S
f (ω)dvolS,

where f : R → R can be any C1 function. In particular, for f (x) = x2, we have the
enstrophy E (ω) = ∫

ω2dvolS . The presence of these conservation laws comes from the fact
that 2D Euler equations are an infinite dimensional Lie–Poisson system on the dual of the Lie
algebra of smooth divergence-free vector fields on S [3]. This space can be identified with the
space of smooth functions on S. Therefore, because of the Hamiltonian nature of the Euler
equations, we formally have that the "flat measure" onC∞(S) is an invariant measure. Hence,
heuristically we can define the following family of invariant measures for α, β, γp ≥ 0:

μ (dω) = Z−1 exp

⎛
⎝−αE (ω)− β H (ω)−

∑
p>2

γpC p (ω)

⎞
⎠ [dω]

where

C p (ω) =
∫

S
ωpdvolS,

[dω] is the formal "flat measure" on C∞(S) and Z is the partition function. In order to
make this more rigorous, we cannot use the formal "flat measure" [dω]. Instead, we take the
enstrophy measure ν as reference measure on H−1−(S) = ∩ε>o H−1−ε(S) (cfr. Sect. 3). We
could then define μ as:

μ (dω) = Z̃−1 exp
(
−β H (ω)−

∑
p

γpC p (ω)

)
ν (dω)

where

Z̃ :=
∫

exp

(
−β H (ω)−

∑
p

γpC p (ω)

)
ν (dω) .

Wenotice that themeasureμ for γp = 0 can be defined using the theory ofGaussianmeasures
on H−1−(S). However, for instance, taking β = 0 and γp �= 0 only for p = 4, the measure

μ (dω) = Z̃−1 exp
(
−γ

∫
S
ω4dvolS

)
ν (dω)

Z̃ :=
∫

exp

(
−γ

∫
S
ω4dvolS

)
ν (dω)

it is not well defined, since we do not have a precise meaning of a power of an element in
H−1−(S). In order to make sense of this operation, one would like to use the renormalization
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theory, that allows to define the renormalized power

:
∫

S
ω4dvolS :

of a suitable Gaussian measure ω as the mean square limit of the renormalized power∫
ω4

εdvolS − 6Cε

∫
ω2

εdvolS + 3C2
ε

where ωε is a mollification of ω and Cε →∞ is a suitable renormalization constant. Unfor-
tunately, the current renormalization theory does not cover Gaussian measures associated
with Casimirs higher than the enstrophy.

The quantized Euler equations (2.4) in su(N ) have the following invariants:

H (W ) = Tr(PW )

C p (W ) = Tr(W p),

for p = 2, . . . , N . It is known that for smooth ω, we get [20]:

H (�N ω)→ H(ω)

C p (�N ω)→ C p (ω) ,

for N →∞. In Sect. 3, we have seen that νN ⇀ν as measures on H−1−(S2). Let, for instance
p = 4. Defining

ηN (dW ) = Z̃−1N exp
(−γ C p (W )

)
μN (dW )

Z̃ N :=
∫

exp
(−γ C p (W )

)
μN (dW ) ,

we would like to show that j∗N ηN has a weak limit in H−1−(S2).

5.2 Line Integrals and Kelvin Theorem

Developing themachinery needed to prove invariance theorems based on line integrals is also
an appealing question, having in mind especially Kelvin theorem, see [18]. In the generalized
setting of the enstrophy measure, where all fields are distributional, this looks a formidable
task, still open. However, we would like to emphasize that line integrals on deterministic
curves are well defined, in spite of an apparent difficulty. It is the generalization to random
curves which is open and, unfortunately, necessary to develop invariance properties, since
one should consider curves moving with the fluid, hence random.

Let us thus show that line integrals are well defined on deterministic closed curves. We
follow the approach developed for the definition of line integrals of the Gaussian Free Field,
see for instance [16]. Let us restrict ourselves for simplicity to curves which are boundaries
of bounded open connected sets A ⊂ S

2. Assume that ∂ A is a Lipschitz boundary and
assume that γ : [a, b] → S

2 is a Lipschitz continuous curve parametrizing ∂ A. Assume
that the parametrization is regular, namely that the derivative γ ′ (t), which exists a.s., has the
property

∣∣γ ′ (t)∣∣ ≥ c > 0 a.s., for some positive constant c. It is known that the map

f �→ f |∂ A

originally defined on W s,2
(
S
2
) ∩ C

(
S
2
)
, for some s > 1

2 , extends to a bounded linear map

from W s,2
(
S
2
)
to L2 (∂ A) (in fact it takes values in W s− 1

2 ,2 (∂ A)). Thanks to regularity of
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γ , we can say that the function

t �→ f (γ (t)) is of class L2 (a, b) , for every f ∈
⋂
s> 1

2

W s,2 (
S
2) . (5.1)

Moreover, for every s > 1
2 there is a constant Cs > 0 such that

‖ f ◦ γ ‖L2(a,b) ≤ Cs ‖ f ‖W s,2(S2) . (5.2)

Associated to the rectifiable curve γ we may define, for every s > 1
2 , the rectifiable

current

� : W s,2 (
S
2,R2)→ R

defined as

� (v) =
∫ b

a
v (γ (t)) · γ ′ (t) dt

for every v ∈ W s,2
(
S
2,R2

)
. Indeed notice that, by (5.1) the integral is finite and by (5.2)

the map � is bounded. Thus � is a bounded linear functional on W s,2
(
S
2,R2

)
, namely it is

an element of the dual of W−s,2
(
S
2,R2

)
, and this holds for every s > 1

2 :

� ∈
⋂
s> 1

2

W−s,2 (
S
2,R2) . (5.3)

Let nowμ be the enstrophymeasure onS2 defined in Sect. 3, namely the centeredGaussian
measure, supported on W−1−ε,2

(
S
2,R

)
with identity covariance

∫
W−1−ε,2(S2,R)

〈ω, ϕ〉 〈ω,ψ〉μ (dω) = 〈ϕ,ψ〉

for all ϕ,ψ ∈ W 1+ε,2
(
S
2,R

)
, where 〈·, ·〉 inside the integral is the dual pairing, outside

the scalar product in L2
(
S
2,R

)
. Let K be the Biot-Savart map from W−1−ε,2

(
S
2,R

)
to

W−ε,2
(
S
2,R2

)
and let (we use the notation K∗ interpreting K as a kernel)

ξ = K ∗ μ

be the centeredGaussian velocity field associated to the enstrophymeasure, namely a centered
Gaussian measure, supported on W−ε,2

(
S
2,R2

)
, such that

∫
W−ε,2(S2,R)

〈v,w〉 〈v, z〉 ξ (dv)

=
∫

W−1−ε,2(S2,R)
〈K ∗ ω,w〉 〈K ∗ ω, z〉μ (dω)

= 〈
K ′ ∗ w, K ′ ∗ z

〉 = 〈
K ∗ K ′ ∗ w, z

〉
for allw, z ∈ W ε,2

(
S
2,R2

)
, where K ′ denotes the dual of K . One can recognize that K ∗K ′∗

is (−�)−1, hence ∫
W−ε,2(S2,R)

〈v,w〉 〈v, z〉 ξ (dv) = 〈
(−�)−1 w, z

〉
.
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Formally we aim to define

〈ξ, �〉 =
∫ b

a
ξ (γ (t)) · γ ′ (t) dt .

The key remark is that the covariance property above of the measure ξ (dv) allows to extend
the definition of the Gaussian random variable 〈v,w〉, v selected by ξ (dv), from vector fields
w of class W ε,2

(
S
2,R2

)
to vector fields of class W−1,2

(
S
2,R2

)
, which includes the space

where � lives, see (5.3).

Proposition 11 Under the measure ξ (dv), if w ∈ W−1,2
(
S
2,R2

)
a centered Gaussian

random variable 〈v,w〉 is well defined, with variance
〈
(−�)−1 w,w

〉
. Since the rectifiable

current �, associated to a regular Lipschitz curve γ : [a, b]→ S
2 as done above, is of class

(5.3), the r.v. 〈v, �〉 is well defined and we take it as the definition of
∫ b

a ξ (γ (t)) · γ ′ (t) dt.

Let us explain why the Gaussian random variable 〈v,w〉 is well defined also for
w ∈ W−1,2

(
S
2,R2

)
. First, a fast but formal explanation: if w, z ∈ W−1,2

(
S
2,R2

)
, then

(−�)−1 w ∈ W 1,2
(
S
2,R2

)
and the dual pairing

〈
(−�)−1 w, z

〉
is well defined.

More rigorously, if θε (x) = ε−2θ
(
ε−1x

)
is a family if classical smooth symmetric

mollifiers on S2, if w ∈ W−1,2
(
S
2,R2

)
, standing that θε ∗ w ∈ W ε,2

(
S
2,R2

)
, we have∫

W−ε,2(S2,R)
(〈v, θε ∗ w〉 − 〈v, θε′ ∗ w〉)2 ξ (dv)

= 〈
(−�)−1 (θε − θε′) ∗ w, (θε − θε′) ∗ w

〉
= 〈

(θε − θε′) ∗ (θε − θε′) ∗ (−�)−1 w,w
〉

which implies (by the convergence properties of θε∗ in W 1,2
(
S
2,R2

)
) that the family

〈v, θε ∗ w〉 is Cauchy in L2 with respect to the measure ξ (dv). We call 〈v,w〉 its limit,
which is a centered Gaussian r.v. with variance equal to

〈
(−�)−1 w,w

〉
.

These properties are based on the fact that � is deterministic. As said at the beginning,
the extension to random curves is an open problem.

Within the quantized Euler equations (2.4) in su(N ), it is possible to identify the discrete
analogues of the line integrals of the velocity field. Alternatively to the usual choice for
the Casimirs C N

n (W ) = T r(W n), for n = 2, . . . , N , one can equivalently consider the
eigenvalues λi of W . Indeed it holds

T r(W n) =
N∑

i=1
λn

i .

The first choice of the Casimirs corresponds to a discrete version of the momenta of the
continuous vorticity Cn(ω) = ∫

S2
ωnd S, for n > 1, whereas the second one corresponds to

the conserved quantities given by the Kelvin circulation theorem. Indeed, we have that the
Kelvin circulation theorem implies that for any material domain A(t) ∈ S

2, i.e. a domain
A = A(t) evolving accordingly to the fluid motion, the integral

∫
A(t) ωd S = ∫

∂ A(t) u · ds is
invariant in time, where ∇ × u = ωn, for n normal vector on S2.

We now want to show the heuristic analogy among the eigenvalues of W and the integrals∫
A(t) ωd S. Let us consider then spectral decomposition of W :

W = E�E∗,
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for E unitary and � purely imaginary diagonal. Let ei , for i = 1, . . . , N be the columns of
E and the λi the eigenvalues of W . Then we can write:

W =
N∑

i=1
λi ei e

∗
i .

Thematrices ei e∗i are pairwise orthogonalwith respect to the Frobenius inner product. Hence,

T r(W ∗ei e
∗
i ) = λi .

The heuristic analogy with the Kelvin’s theorem reads as:

iT r(W ∗ei e
∗
i ) ≈

∫
A(t)

ωd S,

for somedomain A(t)which corresponds to the support of jN (iei e∗i ) ∈ C∞(S2), for N →∞.
Analogously for the other choice of Casimirs, we can define the invariant measure on

su(N ) as

ηN (dW ) = Z̃−1N exp
(−γ Tr(W ∗iei e

∗
i )2

)
μN (dW )

Z̃ N :=
∫

exp
(−γ Tr(W ∗iei e

∗
i )2

)
μN (dW ) ,

we would like to show that j∗N ηN has a weak limit in H−1−(S2).
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Appendix A. Structure Constants Estimates for the 2-Sphere

Let N be a positive integer. Let C
(N )�m
�m,�′m′ and C

�m
�m,�′m′ be respectively the structure constants

of su(N ) with respect to the T N
�,m basis and C∞(S2) with respect to the Y�,m basis and the
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Poisson bracket (2.1). In [24] the following explicit formulas are given:2

C
(N )�m
�m,�′m′ =(N + 1)3/2(1− (−1)�+�′+�)(−1)N+m

√
2�+ 1

√
2�′ + 1

√
2�+ 1·

·
(

� �′ �

m m′ −m

){
� �′ �
N
2

N
2

N
2

}

=(N + 1)(1− (−1)�+�′+�)
√
2�+ 1

√
2�′ + 1

√
2�+ 1·

·
(

� �′ �

m m′ −m

)
�!�′!�!�(�, �′, �)

�∏
p1=1

�′∏
p2=1

�∏
p3=1

(
1−

( pi

N + 1

)2)−1/2·

·
min{�+�′,�′+�,�+�}∑

k=max{�,�′,�}

(−1)k S(k, L, N )

R(�, �′, �, k)
,

where

�(�, �′, �) =
√

(�+ �′ − �)!(�− �′ + �)!(−�+ �′ + �)!
(l + �′ + �+ 1)!

S(k, L, N ) =
k−L∏
i=k

(
1+ i

N + 1

)

R(�, �′, �, k) =(k − �)!(k − �′)!(k − �)!(�+ �′ − k)!(�′ + �− k)!(�+ �− k)!
L =�+ �′ + �,

and

C
�m
�m�′m′ =(1− (−1)�+�′+�)(−1)m+1√2l + 1

√
2�′ + 1

√
2�+ 1·

·
(

� �′ �

m m′ −m

)
P(�, �′, �),

where, for odd values of L = �+ �′ + �,

P(�, �′, �) =(−1)(�+�′−�+1)/2�(�, �′, �)(�+ �′ + �+ 1)·
· ((�+ �′ + �− 1)/2)!
((−�+ �′ + �− 1)/2)!((�− �′ + �− 1)/2)!((�+ �′ − �− 1)/2)! .

Note that for even values of L = �+ �′ + �, P may be arbitrarily defined.

Developing C
(N )�m
�m,�′m′ with respect toμ = 1

N+1 , one finds that the even powers of the series
vanish. In fact, one can check the following identities:

S(k, L,−μ) = S(L − k, L, μ)

R(�, �′, �, k) = R(�, �′, �, L − k).

2 ( · · ·· · · ) are the Wigner 3j-symbols and { · · ·· · · } are the Wigner 6j-symbols.
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These imply, relabelling k with L − k, that:

min{�+�′,�′+�,�+�}∑
k=max{�,�′,�}

(−1)k S(k, L, μ)

R(�, �′, �, k)
=

min{�+�′,�′+�,�+�}∑
k=max{�,�′,�}

(−1)L−k S(k, L,−μ)

R(�, �′, �, k)

= (−1)L
min{�+�′,�′+�,�+�}∑

k=max{�,�′,�}

(−1)k S(k, L,−μ)

R(�, �′, �, k)

and so for even powers of μ only even L terms survive but because of the coefficient (1 −
(−1)l+�′+�) in C

(N )�m
�m,�′m′ , these can be ignored. Finally, since the term

�∏
p1=1

�′∏
p2=1

�∏
p3=1

(
1−

( pi

N + 1

)2)−1/2 = 1+O
(

1

(N + 1)2

)
,

the calculations above imply that the linear convergence proved in [24] is actually quadratic
for �, �′, � N , i.e. for �, �′, � fixed while N →∞:

C
(N )�m
�m,�′m′ = C

�m
�m,�′m′ +O

(
1

(N + 1)2

)
.

Lemma 12 (C
�m
�m,�′m′ bounds) There exists a constant C > 0 such that the structure constants

of the spherical harmonics in the usual basis satisfy the following bound:

|C�m
�m,�′m′ | ≤ C min{��′, ��, �′�},

for any �, �′, � = 1, 2, ..., satisfying the triangular inequality.

Proof We have seen that the structure constants C
�

�m�′m′ can be written in the following way

C
�m
�m�′m′ = (1− (−1)�+�′+�)(−1)m+1√2�+ 1

√
2�′ + 1

√
2�+ 1·

·
(

� �′ �

m m′ −m

)
P(�, �′, �).

Step 1Let’s first focus on P(�, �′, �). Let’s first rewrite it in terms of L, L1 = L−2�, L2 =
L − 2�′, L3 = L − 2�:

P(�, �′, �) = (−1)(L3+1)/2
√

L3!L2!L1!
(L + 1)! (L + 1)

((L − 1)/2)!
((L1 − 1)/2)!((L2 − 1)/2)!((L3 − 1)/2)!
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Using the Stirling approximation of the factorial we get:

P(�, �′, �) ≈ 4

√
L1L2L3

L + 1

e(L+1)/2

eL3/2eL2/2eL1/2

L L1/2
1 L L2/2

2 L L3/2
3

(L + 1)(L+1)/2 (L + 1)

√
L − 1

(L1 − 1)(L2 − 1)(L3 − 1)
·

· e(L3−1)/2e(L2−1)/2e(L1−1)/2

e(L−1)/2
((L − 1)/2)(L−1)/2

((L1 − 1)/2)(L1−1)/2((L2 − 1)/2)(L2−1)/2((L3 − 1)/2)(L3−1)/2

≈
√

(L − 1)(L1L2L3)
1/2

(L + 1)1/2(L1 − 1)(L2 − 1)(L3 − 1)
L1/2
1 L1/2

2 L1/2
3

L(L1−1)/2
1 L(L2−1)/2

2 L(L3−1)/2
3

(L + 1)(L−1)/2 ·

· (L − 1))(L−1)/2

(L1 − 1)(L1−1)/2(L2 − 1)(L2−1)/2(L3 − 1)(L3−1)/2
(1/2)(L−1)/2

(1/2)(L1−1)/2(1/2)(L2−1)/2(1/2)(L3−1)/2

≈ 4
√

L L1L2L3

wherewe have repeatedly used the equality: L1+L2+L3 = L . From this, using the definition
of the Li and the fact that the �, �′, � satisfy the triangular inequality, it is straightforward to
check that:

P(�, �′, �) ≤ C min{√�
√

�′,
√

�
√

�,
√

�′
√

�}.
Step 2 For any �∗ ∈ {�, �′, �}, we have (see [24]):

| √2�∗ + 1

(
� �′ �

m m′ −m

)
|≤ 1

Step 3 Finally, using the results in Step 1 and Step 2, we get:

|C�m
�m,�′m′ | ≤ C min{��′, ��, �′�},

for some constant C > 0.

Lemma 13 (C
(N )�m
�m,�′m′ bounds) The structure constants C

(N )�m
�m,�′m′ satisfy the following bounds.

There exists some constant C > 1 such that:

(1) C
(N )�m
�m,�′m′ ≤ CC

�m
�m,�′m′ , for �, �′, � fixed, for N →∞;

(2) C
(N )�m
�m,�′m′ ≤ C N, for only one index of {�, �′, �} fixed, while the other two diverge,

for N →∞;

(3) C
(N )�m
�m,�′m′ ≤ C

√
N, for �, �′, �→∞, for N →∞;

for any �, �′, � = 1, 2, ..., satisfying the triangular inequalities.

Proof (1) We have the classical result [24]:

C
(N )�m
�m,�′m′ = C

�m
�m,�′m′ +O

(
1

(N + 1)2

)
.

Moreover, C
�m
�m,�′m′ = 0 if and only if the 3j-symbol factor is zero or the triad �, �′, �

does not respect the triangular inequalities. Therefore, ifC
�m
�m,�′m′ = 0 thenC

(N )�m
�m,�′m′ = 0.

Hence, we can write

C
(N )�m
�m,�′m′ = C(�, �′, �, N )C

�m
�m,�′m′
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where C(�, �′, �, N ) → 1, for N → ∞. Therefore, for N sufficiently large we find
C > 1 for which the thesis is valid.

(2) Let us fix � and let �′, � going to infinity for N →∞. Using the the Edmonds asymptotic
formula for the 6j-symbols [11]:{

� �′ �

N/2 N/2 N/2

}
≤ C√

(2�′ + 1)(N + 1)
+O(1/N 2)

and the fact that

| √2�+ 1

(
� �′ �

m m′ −m

)
|≤ 1

find C > 0 such that:

C
(N )�m
�m,�′m′ ≤ C N .

Moreover, by the permutation properties of the 3j and 6j symbols, we obtain the same
result permuting the three indexes �, �′, �.

(3) When all the coefficients of the triad �, �′, � grow simultaneously, for N →∞, we can
use the Ponzano-Regge formula (see [14]):{

� �′ �

N/2 N/2 N/2

}
≤ C√

N 3(2�+ 1)(2�′ + 1)(2�+ 1)
+O(1/N 2)

Let � ∼ Nα1 , �′ ∼ Nα2 , � ∼ Nα3 , for 0 < α1, α2, α3 < 1. Then, there exists a constant
C such that

C
(N )�m
�m,�′m′ ≤ C

√
2�+ 1 ≤ C

√
N .

We can now derive the core result in the consistency proof.

Proposition 14 There exists a constant C such that, for any N odd and any set of admissible
indexes �, m, �′, m′, �, m ≤ N, it holds:

(1) |C (N )�m
�m,�′m′ − C

�m
�m,�′m′ | ≤ C min{��′, ��, �′�},

(2) N 2|C (N )�m
�m,�′m′ − C

�m
�m,�′m′ | ≤ C max{�2, �′2, �2} ·min{��′, ��, �′�}.

Proof (1) Using Lemmas 12 and 13, we have that

|C (N )�m
�m,�′m′ − C

�m
�m,�′m′ | ≤ |C (N )�m

�m,�′m′ | + |C�m
�m,�′m′ |

≤ C(max{N ,min{��′, ��, �′�}} +min{��′, ��, �′�}).
Since, for any set of admissible indexes, |C (N )�m

�m,�′m′ − C
�m
�m,�′m′ | → 0, for N → ∞,

and �, �′, � < N , the bound can be replaced with max{�, �′, �,min{��′, ��, �′�}} +
min{��′, ��, �′�}, and so with min{��′, ��, �′�}.

(2) We know that there exits a function C(�, �′, �, N ) such that

C(�, �′, �, N )

N 2 = |C (N )�m
�m,�′m′ − C

�m
�m,�′m′ |

and C(�, �′, �, N )→ C(�, �′, �) ∈ R, for N →∞. Moreover,

C(�, �′, �, N ) ≤ C N 2 min{��′, ��, �′�}.
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Hence, since C(�, �′, �, N )→ C(�, �′, �) ∈ R, for N →∞, C(�, �′, �, N ) can grow at
most as max{�2, �′2, �2} ·min{��′, ��, �′�}.

Appendix B. Structure Constants Estimates for the 2-Torus

In this section we show that the same calculations can be explicitly done also for the Zeitlin’s
model on the 2-torus (see [28]). Let ω(x, t) = ∑

k∈Z2
0
ωk(t)eik·x be the vorticity field on

T
2. From now on, all the sums are taken excluding the index 0. Then, for each n ∈ Z

2
0, the

equations of motion of ωn are:

ω̇n = Bn(ω) :=
∞∑

k1,k2=−∞

n× k
|k|2 ωn−kωk, (B.1)

where n × k = n2k1 − k2n1. Let W N (t) = ∑(N−1)/2
k1,k2=−(N−1)/2 ωk(t)T N

k be its projection in

su(N ). Then, for each n ∈ Z
2
0 such that |n1|, |n2| ≤ (N − 1)/2, the equations of motion of

ωn are:

ω̇n = B N
n (W N ) :=

(N−1)/2∑
k1,k2=−(N−1)/2

N

2π

sin

(
2π

N
n× k

)

|k|2 ωn−kωk, (B.2)

where the indices on the ωn are taken mod N .
Let us introduce the remainder r N (ω) = B N (�N ω) − �N B(ιN ◦ �N ω), where �N :

L2(S2) → su(N ) is the orthogonal projection and ιN : su(N ) → L2(S2) is the inclusion
such that ιN ◦�N correspond to the standard truncation of the Fourier series. In components,
we have that:

r N (ω) =
(N−1)/2∑

k1,k2=−(N−1)/2

⎡
⎢⎢⎣ N

2π

sin

(
2π

N
n× k

)

|k|2 − n× k
|k|2

⎤
⎥⎥⎦ωn−kωk. (B.3)

Then, let μN (dW ) = 1
ZdN

e−1/2‖W‖2dW be the Gaussian measure on su(N ) and let

W N := ιN (ω) : �N → su(N ) be distributed as μN . We want to estimate EμN [‖r N (ω)‖2−s],
for some s > 0. Let us call:

C N
n,k :=

N

2π
sin

(
2π

N
n× k

)
− n× k.

E
μN [‖r N (ω)‖2−s] = E

μN

⎡
⎣∑(N−1)/2

n1,n2=−(N−1)/2
1
|n|2s

∣∣∣∣∣
∑(N−1)/2

k1,k2=−(N−1)/2
C N
n,k

|k|2 ωn−kωk

∣∣∣∣∣
2
⎤
⎦

= E
μN

[∑(N−1)/2
n1,n2=−(N−1)/2

1
|n|2s

∑
k,k′

C N
n,k

|k|2
C N
n,k′

|k′|2 ωn−kωkωn−k′ωk′

]

=∑(N−1)/2
n1,n2=−(N−1)/2

1
|n|2s

∑
k,k′

C N
n,k

|k|2
C N
n,k′

|k′|2 E
μN

[
ωn−kωkωn−k′ωk′

]
.

(B.4)
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By the Isserlis-Wick formula:

E
μN

[
ωn−kωkωn−k′ωk′

] = δk
′

k + δk
′

n−k.

Hence, using the fact that C N
n,k = −C N

n,n−k, we get:

E
μN [‖r N (ω)‖2−s] =

∑(N−1)/2
n1,n2=−(N−1)/2

1
|n|2s

(∑
k

(C N
n,k)

2

|k|4 −∑
k

(C N
n,k)

2

|k|2|n− k|2
)

=∑(N−1)/2
n1,n2=−(N−1)/2

1
|n|2s

(∑
k(C

N
n,k)

2 |n− k|2 − |k|2
|k|4|n− k|2

)

≤∑(N−1)/2
n1,n2=−(N−1)/2

1
|n|2s

(∑
k(C

N
n,k)

2 |n|(|n− k| + |k|)
|k|4|n− k|2

)
.

(B.5)

Now, using the fact that | sin x − x | ≤ C |x |3, we get that:

|C N
n,k| ≤ C N | 1

N
n× k|3 = C

1

N 2 |n× k|3.
Therefore, we have that:

E
μN [‖r N (ω)‖2−s ] ≤ C

(N−1)/2∑
n1,n2=−(N−1)/2

1

|n|2s−1

(∑
k

|n× k|6(|n− k| + |k|)
N 4|k|4|n− k|2

)

≤ C

N 4

(N−1)/2∑
n1,n2=−(N−1)/2

1

|n|2s−7
∑
k

|k|2
|n− k| +

|k|3
|n− k|2

≤ C

N 4

(N−1)/2∑
n1,n2=−(N−1)/2

1

|n|2s−7
∑
k

|n− k|2 + |n|2
|n− k| + |n− k|3 + |n|3

|n− k|2

≤ C

N

(N−1)/2∑
n1,n2=−(N−1)/2

1

|n|2s−7 +
C

N 4

(N−1)/2∑
n1,n2=−(N−1)/2

|n|2N log N + |n|3 log N

|n|2s−7

≤ C

(
N 9−2s

N
+ N 12−2s log N

N 4

)
(B.6)

which goes to 0 for N →∞ for s > 9/2 .
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