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Abstract. We prove compactness of solutions to some fourth order equations with
exponential nonlinearities on four manifolds. The proof is based on a refined bubbling
analysis, for which the main estimates are given in integral form. Our result is used in a
subsequent paper to find critical points (via minimax arguments) of some geometric func-
tional, which give rise to conformal metrics of constant Q-curvature. As a byproduct of our
method, we also obtain compactness of such metrics.

1. Introduction

Consider a compact four-dimensional manifold ðM; gÞ with Ricci tensor Ricg and
scalar curvature Rg. The Q-curvature and the Paneitz operator, introduced in [7], [41] and
[42], are defined respectively by

Qg ¼ � 1

12
ðDgRg � R2

g þ 3jRicgj2Þ;ð1Þ

PgðjÞ ¼ D2
gjþ div

2

3
Rgg � 2 Ricg

� �
dj;ð2Þ

where j is any smooth function on M, see also the survey [19].

The Q-curvature and the Paneitz operator arise in several contexts in the study of
four-manifolds and of particular interest is their role, and their mutual relation, in con-
formal geometry. In fact, given a metric ~gg ¼ e2wg, the following equations hold:

P~gg ¼ e�4wPg; Pgw þ 2Qg ¼ 2Q~gge4w:ð3Þ

A first connection to the topology of a manifold is a Gauss-Bonnet type formula. If Wg

denotes the Weyl’s tensor of M, then one has

Ð
M

Qg þ
jWgj2

8

 !
dVg ¼ 4p2wðMÞ;
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where dVg stands for the volume element in ðM; gÞ and wðMÞ is the Euler characteristic of
M. In particular, since jWgj2 is a pointwise conformal invariant, it follows that

Ð
M

Qg dVg is
a global conformal invariant.

To mention some geometric applications we recall three results proven by Gursky,
[31], and by Chang, Gursky and Yang, [13], [14] (see also [30]). If a manifold of pos-
itive Yamabe class satisfies

Ð
M

Qg dVg > 0, then its first Betti number vanishes. More-

over there exists a conformal metric with positive Ricci tensor, and hence M has fi-
nite fundamental group. Furthermore, under the additional quantitative assumptionÐ
M

Qg dVg >
1

8

Ð
M

jWgj2 dVg, M must be di¤eomorphic to the four-sphere or to the projective

space. In particular the last result is a conformally invariant improvement of a theorem by
Margerin, [39], which assumed pointwise pinching conditions on the Ricci tensor in terms
of Wg.

Finally, we also point out that the Paneitz operator and the Q-curvature (together
with their higher-dimensional analogues, see [5], [6], [27], [29]) appear in the study of
Moser-Trudinger type inequalities, log-determinant formulas and the compactification of
locally conformally flat manifolds, see [4], [7], [8], [15], [16], [17].

As for the uniformization theorem, one can ask whether every four-manifold ðM; gÞ
carries a conformal metric ~gg for which the corresponding Q-curvature Q~gg is a constant.
Writing ~gg ¼ e2wg, by (3) the problem is equivalent to finding a solution of the equation

Pgw þ 2Qg ¼ 2Qe4w;ð4Þ

where Q is a real constant. In view of the regularity results in [47], solutions of (4) can be
found as critical points of the following functional:

IIðuÞ ¼ hPgu; uiþ 4
Ð

M

Qgu dVg � kP log
Ð

M

e4u dVg; u A H 2ðMÞ;ð5Þ

where we are using the notation

hPgu; vi ¼
Ð

M

DguDgv þ 2

3
Rg‘gu � ‘gv � 2ðRicg ‘gu;‘gvÞ

� �
dVg; u; v A H 2ðMÞ;

and where

kP ¼
Ð

M

Qg dVg:ð6Þ

Problem (4) has been solved in [17] for the case in which Pg is a positive operator and
kP < 8p2 (8p2 is the value of kP on the standard sphere). Under these assumptions by the
Adams inequality, see (16), the functional II is bounded from below and coercive, hence
solutions can be found as global minima. The result has also been extended in [9] to higher-
dimensional manifolds (regarding higher-order operators and curvatures) using a geometric
flow. A first su‰cient condition to ensure these hypotheses was given by Gursky in [31]. He
proved that if the Yamabe invariant is positive and if kP > 0, then Pg is positive definite
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and moreover kP e 8p2, with the equality holding if and only if M is conformally equiva-
lent to S4. Other more general su‰cient conditions are given in [32]. The solvability of (4)
also turns out to be useful in the study of some interesting class of fully non-linear equa-
tions, as it has been shown in [14], with the remarkable geometric consequences mentioned
above.

We are interested here in the more general case when Pg has no kernel and kP 3 8kp2

for k ¼ 1; 2; . . . : These conditions are generic, and in particular include manifolds with neg-
ative curvature or negative Yamabe class, for which kP can be bigger than 8p2.

In the case under investigation the functional II can be unbounded from below, and
hence it is necessary to find extrema which are possibly saddle points. As we shall explain
later, in order to find these critical points it is useful to study compactness of solutions to
perturbations of (4).

Therefore we consider the following sequence of problems:

Pgul þ 2Ql ¼ 2kle
4ul in M;ð7Þ

where ðklÞl are constants and where

Ql ! Q0 in C0ðMÞ:ð8Þ

Without loss of generality, we can assume that the sequence ðulÞl satisfies the volume nor-
malization Ð

M

e4ul dVg ¼ 1; for all l;ð9Þ

which implies that we must choose kl ¼
Ð

M

Ql dVg.

Our main result is the following.

Theorem 1.1. Suppose ker Pg ¼ fconstantsg and that ðulÞl is a sequence of solutions of

(7), (9), with ðQlÞl satisfying (8). Assume also that

k0 :¼
Ð

M

Q0 dVg 3 8kp2; for k ¼ 1; 2; . . . :ð10Þ

Then ðulÞl is bounded in C aðMÞ for any a A ð0; 1Þ.

The main application of Theorem 1.1 concerns the case Q0 ¼ Qg. Indeed, if a se-
quence of solutions to (7)–(9) can be produced, its weak limit will be a critical point of the
functional II and a solution of (4). This is indeed verified in [26] under the assumptions of
Theorem 1.1 (with Q0 ¼ Qg). As a consequence one finds conformal metrics with constant
Q-curvature for a large class of four manifolds. We have indeed the following result, an-
nounced in the preliminary note [25] with some sketch of the ideas of the proof.

Theorem 1.2 ([26]). Suppose ker Pg ¼ fconstantsg, and assume that kP 3 8kp2 for

k ¼ 1; 2; . . . : Then equation (4) has a solution.
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The proof requires a minimax scheme which becomes more and more involved as
k increases and when Pg possesses negative eigenvalues. This scheme extends the one in
[24], which in our case would correspond to Pg f 0 and k0 A ð8p2; 16p2Þ.

The way we use Theorem 1.1 in [26] is the following. First, for r in a neighborhood of
1, we introduce the modified functional

IIrðuÞ ¼ hPgu; uiþ 4r
Ð

M

Qgu dVg � kPr log
Ð

M

e4u dVg; u A H 2ðMÞ;

and, using the minimax scheme, we prove existence of Palais-Smale sequences at some level
cr. It turns out that the function r 7! cr is a.e. di¤erentiable and, following an idea in [45]
(used also in [24], [33], [46]), we prove existence of critical points of IIr for those values of r
at which cr is di¤erentiable. Then we are led to consider (7) for Ql ¼ rlQg, where ðrlÞl is a
suitable sequence tending to 1.

Theorem 1.1 applies also to any sequence of smooth solutions of (4). Therefore, as an-
other application, we have the following result, which extends a compactness theorem in [17].

Corollary 1.3. Suppose ker Pg ¼ fconstantsg and that kp 3 8kp2 for k ¼ 1; 2; . . . :
Suppose ðulÞl is a sequence of solutions of (4) satisfying (9). Then, for any m A N, ðulÞl is

bounded in C mðMÞ.

Corollary 1.3 has a counterpart in [35] (see also [21]), where compactness of solutions
is proved for a mean field equation on compact surfaces.

The case when kP is an integer multiple of 8p2 is more delicate, and should require an
asymptotic analysis as in [3], [20], [21], [35] (see also the references therein). An interesting
particular case of this situation is the standard sphere. Being an homogeneous space, the
Q-curvature is already constant and indeed all the solutions of (4) on S4, which have been
classified in [18], arise from conformal factors of Möbius transformations. Henceforth, a
natural problem to consider is to prescribe the Q-curvature as a given function f on S4.
Some results in this direction are given in [10], [38] and [48]. Typically, the methods are
based on blow-up or asymptotic analysis combined with Morse theory, in order to deal
with a possible loss of compactness.

The Paneitz operator and the Q-curvature can be considered as natural extensions to
four-manifolds of, respectively, the Laplace-Beltrami operator Dg and the Gauss curvature
Kg on two-dimensional surfaces. In fact, similarly to Pg and Qg, these transform according
to the equations

D~gg ¼ e�2wDg; �Dgw þ Kg ¼ K ~gge2w;ð11Þ

where, again, ~gg ¼ e2wg. Hence, in the case of a flat domain WLR2, one is led to study
equations of the form

�Dvl ¼ KlðxÞe2vl in W:ð12Þ

In [12] the authors proved, among other things, that if ðKlÞl are non-negative, uni-
formly bounded in LyðWÞ and if

Ð
W

e2ul eC, then either ðvlÞl stays bounded in Ly
locðWÞ, or

140 Malchiodi, Solutions to some geometric fourth-order equations

Brought to you by | Princeton University Library
Authenticated

Download Date | 3/15/17 11:31 AM



vl ! �y on the compact subsets of W, or Kle
2vl concentrates at a finite number of points

in W, namely Kle
2vl *

Pj

i¼1

aidxi
(dxi

stands for the Dirac mass at xi). In the latter case, they

also proved that each ai is greater or equal than 4p. This result was specialized in [36] where,
assuming that Kl ! K0 in C0ðWÞ and using the supþinf inequalities in [11], [44], the authors
proved that each ai is indeed an integer multiple of 4p. Chen showed then in [23] that the
case of a multiple bigger than 1 may indeed occur. On the other hand, if W is replaced by a
compact surface (subtracting a constant term to the right-hand side, to get solvability of the
equation), then each ai is precisely 4p, see [35]. The same result is obtained in [40] for ap-
proximate solutions in domains, but with an extra assumption on the Ly norm of the error
terms.

Our argument for the proof of Theorem 1.1, which we outline below, relies on prov-
ing a quantization result for the volume of blowing-up solutions as in [36]. The main idea is
to show that at every blow-up point the volume is a multiple of 8p2=k0. Then, proving also
that there is no residual volume amount, we reach a contradiction with (9) since we are as-
suming that k0 is not an integer multiple of 8p2. However, instead of using pointwise esti-
mates on the solutions, as in [12] or [36], our results are mainly given in integral form, see
Remark 1.4.

Except for the last subsection, we work under the assumption

k0 A
�
8kp2; 8ðk þ 1Þp2

�
; k A N;ð13Þ

since this case contains most of the di‰culties.

The plan of the paper (and the strategy of the proof ) is the following. In Section 2 we
collect some preliminary facts including a modified version of the Adams inequality, to deal
with the presence of negative eigenvalues, and some L p estimates on the first, second and
third derivatives of the solutions.

In Section 3 we derive a compactness criterion based on the amount of concentration
of the nonlinear term, see Proposition 3.1, and then we study the asymptotic profile of ul

near the concentration points. In particular we prove that the minimal volume accumula-
tion is 8p2=k0, see (39).

In Section 4, which is the core of our analysis, we introduce the notion of simple blow-

up (adopting the terminology used by R. Schoen) and we show in Proposition 4.2 that at
such blow-ups the accumulation is exactly 8p2=k0. In order to prove this we use some inte-
gral form of the Harnack inequality, see in particular Subsection 4.1, combined with a care-
ful ODE analysis for the function r 7! ur; l . Here ur; l denotes, naively, the average of ul on
an annulus Ar of radii r and 2r centered near a concentration point.

Finally, in Section 5 we show how a general blow-up situation can be essentially re-
duced to the case of finitely-many simple blow-ups. In particular, we prove that at any gen-
eral blow-up point the amount of concentration is an integer multiple of 8p2=k0. Recalling
the normalization (9) and that k0 3 8kp2 for any integer k, we reach then a contradiction
to the fact that ðulÞl is unbounded in some C a norm. In Subsection 5.2 we consider the case
k0 < 8p2, which is easier and requires only the analysis of Section 3.
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In our proof we exploit crucially the fact that we are working on a compact manifold,
since we often make use of the Green’s representation formula. We also point out that our
assumptions on M are generic and do not require the metric to be locally conformally flat
or Einstein.

Remark 1.4. It is an open problem to understand whether the functional II itself (see
(5)) possesses bounded Palais-Smale sequences, or equivalently if it is possible to find solu-
tions of (4) without introducing the perturbed functional IIr.

The reason why we kept most of our estimates in integral form is that many of them
could be applied to functions of class H 2 only (not necessarily smooth or bounded) and we
hope that some could be useful to understand the question. At the moment, in particular,
the counterpart of Proposition 4.2 is missing for Palais-Smale sequences and we need the
full rigidity of equation (7). For related topics see [40].

Acknowledgements. This work was started when the author was visiting IAS in
Princeton, and continued during his stay at ETH at Zürich, Laboratoire Jacques-Louis
Lions at Paris, Sissa at Trieste and IMS at Singapore. He is very grateful to all these insti-
tutions for their kind hospitality. The author has been supported by M.U.R.S.T. under the
national project Variational methods and nonlinear di¤erential equations, and by the Euro-
pean Grant ERB FMRX CT98 0201.

2. Notation and preliminaries

In this brief section we collect some useful preliminary facts, and in particular we state
a version of the Moser-Trudinger inequality involving the Paneitz operator. In the follow-
ing BrðpÞ stands for the metric ball of radius r and center p. We also denote by jx � yj the
distance of two points x; y A M. H 2ðMÞ is the Sobolev space of functions on M which are
in L2ðMÞ together with their first and second derivatives. Large positive constants are al-
ways denoted by C, and the value of C is allowed to vary from formula to formula and also
within the same line.

As already mentioned, throughout most of the paper we will work under the assump-
tion (13). When the operator Pg is positive definite, by the Poincaré inequality the H 2 norm
is equivalent to the following one:

kuk2 ¼ hPgu; uiþ
Ð

M

u2 dVg; u A H 2ðMÞ:ð14Þ

Being M four-dimensional, H 2ðMÞ ,! L pðMÞ for all p > 1. We have indeed the following
limit-case embedding, proved in [1] and [8] for the operator D2 and extended in [17] for the
Paneitz operator.

Proposition 2.1. If Pg f 0, there exists a positive constant C depending on M such

that Ð
M

e
32p2ðu�uÞ2

hPgu; ui dVg eC; for every u A H 2ðMÞ;ð15Þ
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where u ¼ 1

VolðMÞ
Ð

M

u dVg denotes the average of u on M. The last formula implies

log
Ð

M

e4ðu�uÞ dVg eC þ 1

8p2
hPgu; ui; for every u A H 2ðMÞ:ð16Þ

Here we are interested in the case in which Pg might possess some negative eigen-
values. We denote by V LH 2ðMÞ the direct sum of the eigenspaces corresponding to neg-
ative eigenvalues of Pg. Of course the dimension of V is finite, say k, and since Pg has no
kernel and is self-adjoint we can find an orthonormal basis of eigenfunctions v̂v1; . . . ; v̂vk

of V

with the properties

Pgv̂vi ¼ liv̂vi; i ¼ 1; . . . ; k; l1 e l2 e � � �e l
k
< 0 < l

kþ1
e � � � ;ð17Þ

where the li’s are the eigenvalues of Pg. Having introduced the subspace V , we need a
modified version of the Adams inequality.

Lemma 2.2. Suppose Pg possesses some negative eigenvalues, that

ker Pg ¼ fconstantsg;

and let V denote the direct sum of the negative eigenspaces of Pg. Then there exists a constant

C such that Ð
M

e
32p2ðu�uÞ2

hPgu; ui dVg eC; for every function u A H 2ðMÞ with ûu ¼ 0:ð18Þ

Here ûu denotes the component of u in V. As a consequence one has

log
Ð

M

e4ðu�uÞ dVg eC þ 1

8p2
hPgu; ui;ð19Þ

for every function u A H 2ðMÞ with ûu ¼ 0:

Proof. The proof is a variant of the arguments of [8] and [17]. If v̂v1; . . . ; v̂vk
and

l1; . . . ; lk
are as in (17), we introduce the following positive-definite pseudo-di¤erential op-

erator Pþ
g :

Pþ
g u ¼ Pgu � 2

Pk
i¼1

li

� Ð
M

uv̂vi dVg

�
v̂vi:

Basically, we are reversing the sign of the negative eigenvalues of Pg. The operator Pþ
g ad-

mits the following Green’s function:

Gþðx; yÞ ¼ Gðx; yÞ � 2
Pk
i¼1

liv̂viðxÞv̂viðyÞ;

where Gðx; yÞ corresponds to Pg. Then the arguments of [17] (see also [1], [8]), which are
based on representations for pseudo-di¤erential operators, can be adapted to the case of
Pþ

g , yielding
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Ð
M

e

32p2ðu�uÞ2

hPþ
g u; ui dVg eC; for every u A H 2ðMÞ:

Applying the last formula to functions for which ûu ¼ 0, we obtain (18). Finally, from the

elementary inequality 4abe 32p2a2 þ 1

8p2
b2, applied with a ¼ ðu � uÞ and b ¼ hPgu; ui,

we also deduce (19). r

Theorem 1.1 is proved by contradiction. We claim that unboundedness in some C a

norm is equivalent (under the assumption (13), which implies kl > 0 for l large) to the fol-
lowing condition:

kul � ulk ! þy as l ! þy:ð20Þ

In order to prove this we first notice that, by (9) and the Jensen inequality, ul is uniformly
bounded from above. Assuming that kul � ulk is uniformly bounded (which implies, in the
above notation, that also kul � ul � ûulk is uniformly bounded), then by (19) the right-hand
side of (7) is also uniformly bounded in L pðMÞ for every p > 1. By elliptic regularity, then
ðulÞl would be uniformly bounded in W 4;pðMÞ, and hence in C aðMÞ for any a A ð0; 1Þ by
the Sobolev embeddings.

Hence from now on we assume that there exists a sequence ðulÞl satisfying (7)–(9) and
(20).

We prove now a preliminary integrability result on the first, second and third deriva-
tives of ul .

Lemma 2.3. Let ðulÞl be a sequence of solutions of (7)–(9), with ðQlÞl satisfying (8),
and let pf 1. Then there is a constant C depending only on p, M and k0 such that, for r

su‰ciently small and for any x A M there holds

Ð
BrðxÞ

j‘3ul jp dVg eCr4�3p;
Ð

BrðxÞ
j‘2ul jp dVg eCr4�2p;

Ð
BrðxÞ

j‘ul jp dVg eCr4�p;

where, respectively, p < 4=3, p < 2 and p < 4.

Proof. We write

Pgul ¼ fl ;

where

fl ¼ 2kle
4ul � 2Ql :ð21Þ

We have the following representation formula:

ulðxÞ ¼ ul þ
Ð

M

Gðx; yÞ flðyÞ dVgðyÞ; for a:e: x A M;ð22Þ

where, by the results in [17], G : M � Mndiag is symmetric and satisfies
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Gðx; yÞ � 1

8p2
log

1

jx � yj

����
����eC; x; y A M; x3 y;ð23Þ

while for its derivatives there holds

j‘Gðx; yÞjeC
1

jx � yj ; j‘2Gðx; yÞjeC
1

jx � yj2
;

ð24Þ

j‘3Gðx; yÞjeC 1

jx�yj3 :

The last two estimates in (24) are not shown in [17] but they can be derived with the same
approach, by an expansion of G at higher order using the parametrix, see also [2]. Similarly
(this formula will be used later in the paper), one also finds that

‘xGðx; yÞ ¼ 1

8p2
‘x log

1

jx � yj þ Oð1Þ:ð25Þ

Recalling the definition of fl in (21), we obtain

j‘3ul jðxÞeC
Ð

M

1

jx � yj3
j flðyÞj dVgðyÞ; for a:e: x A M:

Then, from the Jensen’s inequality it follows that

j‘3ul jpðxÞeC
Ð

M

k flkL1ðMÞ

jx � yj3

 !p
j flðyÞj

k flkL1ðMÞ
dVgðyÞ; for a:e: x A M:

The Fubini’s Theorem implies

Ð
BrðxÞ

j‘3ul jpðxÞ dVgðxÞeC sup
y AM

Ð
BrðxÞ

1

jx � yj3p
dVgðxÞeC

Ð
BxðxÞ

1

jx � xj3p
dVgðxÞ:

The last integral is finite provided 3p < 4, as in our assumptions, and can be estimated using
polar coordinates, giving Ð

BrðxÞ
j‘3ul jpðxÞ dVgðxÞeCðp;MÞr4�3p:

This concludes the proof of the first inequality in the statement of the lemma. The remain-
ing two follow similarly. r

3. The bubbling phenomenon

In this section we study the local behavior of unbounded sequences of solutions at a
concentration point. In Subsection 3.1 we give compactness criteria when the amount of con-
centration is below a certain threshold. Then, in Subsection 3.2, we reduce ourselves to the
preceding situation using a scaling argument. As a byproduct we describe the asymptotic
profile of ul , proving that it has the form of a standard bubble, and we show that the amount
of volume concentration at any blow-up point is greater or equal than 8p2=k0.
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3.1. Concentration-compactness. In this subsection we give a concentration-
compactness criterion for solutions of the equation Pgv ¼ h on M. In the case of the sphere
a similar result has been shown in [9], and our proof basically goes along the same line.
However we prefer to write the details, since some of them will be needed in the following.

Proposition 3.1. Let ðhlÞl LL1ðMÞ be a sequence of functions satisfyingÐ
M

jhl j dVg eC for every l. Let vl be solutions of Pgvl ¼ hl on M. Then, up to a subsequence,

either for every l Ð
M

eaðvl�vlÞ dVg eC; for some C > 0 and some a > 4;

or there exist points x1; . . . ; xL A M such that, for any r > 0 and any i A f1; . . . ;Lg there

holds

lim inf
l!þy

Ð
BrðxiÞ

jhl j dVg f 8p2:ð26Þ

Proof. Assume the second alternative does not occur, namely

for every x A M there exists rx > 0 such that
Ð

Brx ðxÞ
jhl j dVg e 8p2 � dx;ð27Þ

for some dx > 0 and for l su‰ciently large. We cover M with j balls Bi :¼ Brxi
2

ðxiÞ,
i ¼ 1; . . . ; j. Using (22) and setting Brxi

ðxiÞ ¼ ~BBi, for a.e. x A Bi we can write

vlðxÞ � vl ¼
Ð
~BBi

hlðyÞGðx; yÞ dVgðyÞ þ
Ð

Mn ~BBi

hlðyÞGðx; yÞ dVgðyÞ:ð28Þ

Hence if a > 0, for a.e. x A Bi we have

exp
�
a
�
vlðxÞ � vl

��
¼ exp

� Ð
~BBi

aGðx; yÞhlðyÞ dVgðyÞ
	

ð29Þ

� exp

� Ð
Mn ~BBi

aGðx; yÞhlðyÞ dVgðyÞ
	

Since G is smooth outside the diagonal, and since
Ð

M

jhl j dVg is uniformly bounded, there

exists a positive constant C (independent of l) such that

exp

� Ð
Mn ~BBi

aGðx; yÞhlðyÞ dVgðyÞ
	
eC; for any x A Bi:

Then by (29) we have

ð30Þ
Ð
Bi

exp
�
a
�
vlðxÞ � vl

��
dVgðxÞeC

Ð
Bi

exp

� Ð
M

ajGðx; yÞj jhlðyÞjw ~BBi
dVgðyÞ

	
dVgðxÞ:

Now, as in [12], we can use the Jensen’s inequality to get

exp

� Ð
M

ajGðx; yÞj jhlðyÞjw ~BBi
dVgðyÞ

	
e
Ð

M

exp½akhlw ~BBi
kL1ðMÞjGðx; yÞj�

jhlw ~BBi
jðyÞ

khlw ~BBi
kL1ðMÞ

dVgðyÞ;

146 Malchiodi, Solutions to some geometric fourth-order equations

Brought to you by | Princeton University Library
Authenticated

Download Date | 3/15/17 11:31 AM



and hence, by the Fubini Theorem and (30)Ð
Bi

exp
�
a
�
vlðxÞ � vl

��
dVgðxÞeC sup

y AM

Ð
M

exp½akhlw ~BBi
kL1ðMÞjGðx; yÞj� dVgðxÞ:

By (23), there holds

Ð
M

exp½akhlw ~BBi
kL1ðMÞjGðx; yÞj� dVgðxÞeC

Ð
M

1

jx � yj

� �akhlw ~BBi
k
L1ðMÞ

8p2

dVgðxÞ:

The last integral is finite if

akhlw ~BBi
kL1ðMÞ

8p2
< 4 , a

Ð
~BBi

jhl j dVg < 32p2:ð31Þ

By (27), this is satisfied for some a > 4 provided we take l su‰ciently large. We have shown
that

Ð
Bi

eaðvl�vlÞ dVg < þy for every i ¼ 1; . . . ;L. Since M is covered by finitely many Bi’s,

the conclusion follows. r

Remark 3.2. Using the same proof, it is possible to extend Proposition 3.1 to the case
in which also the metric on M depends on l, and converges to some smooth g in C mðMÞ for
any integer m. We have to use this variant in the next subsection.

3.2. Asymptotic profile. We consider now the alternative in Proposition 3.1 for
which compactness does not hold, applied to the case hl ¼ 2kle

4ul � Ql . We assume that
there exist r A ð0; p2=k0Þ, radii ðrlÞl , ðr̂rlÞl and points ðxlÞl LM with the following properties:

r̂rl ! 0;
rl

r̂rl

! 0;
Ð

Brl
ðxlÞ

e4ul dVg ¼ r;
Ð

Brl
ðyÞ

e4ul dVg <
p2

k0
;ð32Þ

for every y A Br̂rl
ðxlÞ:

Remark 3.3. If the second alternative in Proposition 3.1 holds, an example of the
situation described in (32) is the following. Choose rl , xl satisfyingÐ

Brl
ðxlÞ

e4ul dVg ¼ sup
x AM

Ð
Brl

ðxÞ
e4ul dVg ¼ r:ð33Þ

Then rl ! 0 as l ! þy, and we can take r̂rl ¼ r
1
2

l .

Given a small d > 0, we consider the exponential maps

expl : BR4

d ! M; explð0Þ ¼ xl ;

where BR4

d ¼ fx A R4 : jxj < dg. We also define the metric ~ggl on BR4

d by ~ggl :¼ ðexplÞ
�
g, and

the functions ~uul : BR4

d ! R by

~uul ¼ ul � expl :

Now in R4 we consider the dilation Tl : x 7! rlx, and we define another sequence
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ûulðxÞ ¼ ~uulðTlxÞ þ log rl ; x A BR4

d
rl

:ð34Þ

Using a change of variables, one easily verifies that the function ~uul solves the equation

P~ggl
~uulðxÞ þ 2QlðxÞ ¼ 2kle

4~uulðxÞ; x A BR4

d :

Hence, setting ĝgl ¼ r�2
l T �

l ~ggl and using the conformal properties of the Paneitz operator we
obtain that ûul satisfies

Pĝgl
ûulðxÞ þ 2r4

l QlðTlxÞ ¼ 2kle
4ûulðxÞ; x A BR4

d
rl

:ð35Þ

Note that the metrics ĝgl converge in C m
locðR4Þ to the flat metric ðdxÞ2 for any integer m. Also,

since ðQlÞl are uniformly bounded functions on M, one also finds

r4
l Q~ggl

ðTl �Þ ! 0 in C0
locðR4Þ:

By (32), using a change of variables we obtain

r ¼
Ð

Brl
ðxlÞ

e4ul dVg ¼
Ð

1
rl
ðexplÞ

�1
Brl

ðxlÞ
e4ûul dVĝgl

;ð36Þ

where olð1Þ ! 0 as l ! þy. Note also that the sets
1

rl

ðexplÞ
�1

Brl
ðxlÞLR4 approach the

unit ball BR4

1 as l ! þy. Moreover, by the last inequality in (32) and by our choice of r, it
is easy to derive that

Ð
BR4

1
2

ðyÞ
e4ûul dVĝgl

<
p2

k0
; for every y A BR4

r̂rl
2rl

:ð37Þ

Regarding the functions ûul , we have the following convergence result.

Proposition 3.4. Suppose r A ð0; p2=k0Þ, ðrlÞl , ð~rrlÞl , ðxlÞl and ðulÞl satisfy (32), and let

ðûulÞl be defined by (34). Then there exists l > 0, x0 A R4 and a A ð0; 1Þ such that

ûul ! ûuy in C a
locðR4Þ and in H 2

locðR4Þ

for some a A ð0; 1Þ, where the function ûuy is given by

ûuyðxÞ ¼ log
2l

1 þ l2jx � x0j2
� 1

4
log

1

3
k0

� �
; x A R4:ð38Þ

Moreover, if bl ! þy su‰ciently slowly, one has

Ð
Bbl rl

ðxlÞ
e4ul dVg ! 8p2

k0
as l ! þy:ð39Þ

Proof. Given R > 0, we define a smooth cut-o¤ function CR satisfying

CRðxÞ ¼ 1; for jxjeR=2;

CRðxÞ ¼ 0; for jxjfR:
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We also set

al ¼
1

jBR4

R j
Ð

BR4

R

ûul dVĝgl
; vl ¼ CRûul þ ð1 �CRÞal ¼ al þCRðûul � alÞ;

v̂vl ¼ vl � al :

We notice that the functions vl coincide with al outside BR4

R and that v̂vl is identically zero
outside BR4

R . By Lemma 2.3 and some scaling argument one finds

Ð
BR4

2R

ðj‘3ûul jp þ j‘2ûul jp þ j‘ûul jpÞ dVĝgl
eCR; l A N; p A 1;

4

3

� �
;ð40Þ

and hence by the Poincaré inequality (recall that the v̂vl ’s have a uniform compact support)
it follows that

Ð
BR4

R

jv̂vl jp dVĝgl
eCR; l A N; p A 1;

4

3

� �
:ð41Þ

By (35) there holds

Pĝgl
v̂vl ¼ ðDĝgl

Þ2½CRðûul � alÞ� þ Ll ½CRðûul � alÞ�ð42Þ

¼ CRPĝgl
ûul þ ~LLlðûul � alÞ ¼ 2klCRe4ûul þ f̂fl ;

where

f̂fl ¼ ~LLlðûul � alÞ � 2r4
l QlðTl �Þ:

Here ðLlÞl are linear operators which contain derivatives of order 1 and 2 with uniformly
bounded and smooth coe‰cients. Also, ð~LLlÞl are linear operators which contain derivatives
of order 0, 1, 2 and 3 with uniformly bounded and smooth coe‰cients. As a consequence,
by (40) and (41) one has

Ð
BR4

2R

j f̂fl j
p

dVĝgl
eCR; l A N; p A 1;

4

3

� �
:ð43Þ

Hence using (37) and Remark 3.2 one findsÐ
BR4

R

e4qv̂vl dVĝgl
eC; for some q > 1ð44Þ

and for some fixed constant C. Remark 3.2 applies indeed to the case of a compact mani-
fold while in the present situation we are working in R4 (endowed with the metric ĝgl). But
since all the functions v̂vl vanish identically outside BR4

R , we can embed a fixed neighborhood
of ðBR4

2R ; ĝglÞ into a compact manifold, a torus for example, such that its metric (coinciding
with ĝgl on BR4

2R ) converges to the flat one.

On the other hand, from (37) we deduce
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al ¼
1

jBR4

R j
Ð

BR4

R

ûul dVĝgl
e

1

4jBR4

R j
Ð

BR4

R

e4ûul dVĝgl
eC;

and from (36), since vl ¼ ûul in BR4

R

C�1
e

Ð
BR4

R

e4vl dVĝgl
e e4al

Ð
BR4

R

e4v̂vl dVĝgl
eCe4al :

This implies al f�C, and hence we find

jal jeC:

As a consequence of this estimate and (44) we get the following uniform improved integra-
bility for ûul (recall the definition of vl and v̂vl)Ð

BR4

R

e4qûul dVĝgl
eC; for some q > 1:

This estimate, joint with (40), (42), (43) and standard elliptic regularity results, yields that ûul

is bounded in W 4;qðBR4

R

2

Þ. Hence, by the arbitrarity of R, ðûulÞl converge strongly in C a
locðR4Þ

for some a A ð0; 1Þ and strongly in H 2
locðR4Þ to a function ûuy A C a

locðR4ÞWH 2
locðR4Þ.

Now we prove that ûuy has the form in (38). First of all, we test equation (35) on a
smooth function j with compact support. Integrating by parts we obtain

hPĝgl
ûul ; jiþ 2r4

l

Ð
R4

QlðTl �Þj dVĝgl
¼ 2kl

Ð
R4

e4ûulj dVĝgl
:

As l tends to infinity we get

hPR4 ûuy; ji ¼ 2k0

Ð
R4

e4ûuyj dVR4 þ olð1Þ:

Hence the limit function ûuy satisfies

D2
R4 ûuy ¼ 2k0e4ûuy in R4;ð45Þ

and, by semicontinuity Ð
R4

e4ûuy dVR4 e 1;ð46Þ

since by (9) and some scaling there holds
Ð

BR4

d
rl

e4ûul dVĝgl
e 1.

The solutions of (45)–(46), with k0 > 0, have been classified in [37], and one of the
following two possibilities occur:

(a) ûuy is of the form (38), or

(b) DR4 ûuy has the following asymptotic behavior:

�DR4 ûuyðxÞ ! a > 0; for jxj ! þy:ð47Þ
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Following [43], we show that the second alternative does not happen. In fact, assuming (b),
for R large we have

lim
l!þy

Ð
BR4

R

ð�Dĝgl
ûulÞ dVĝgl

¼
Ð

BR4

R

ð�DR4 ûuyÞ dVR4 @
o3

4
aR4;ð48Þ

where o3 ¼ jS3j ¼ 2p2. Scaling back to M (recall that the dilation factor is rl), we obtain

lim
l!þy

Ð
BRrl

ðxlÞ
ð�DulÞ dVg @CaR4r2

l ;ð49Þ

for some C > 0. On the other hand, by Lemma 2.3 we getÐ
BRrl

ðxlÞ
ð�DulÞ dVg e ĈC0r2

l R2:ð50Þ

Taking R su‰ciently large, from (49) and (50) we reach a contradiction.

Hence the alternative (a) holds and ûuy arises as a conformal factor of a stereographic
projection of S4 onto R4, which must satisfy

Ð
R4

e4ûuy dVR4 ¼ 8p2

k0
:ð51Þ

This concludes the proof. r

4. Simple blow-ups

In this section we consider an unbounded sequence of solutions ðulÞl and we examine
a particular class of blow-up points, which we call simple, in analogy with a definition in-
troduced by R. Schoen. In Proposition 4.2 below we give some quantitative estimate on the
concentration at simple blow-up points. Then in the next section we show that every gen-
eral blow-up phenomenon can be essentially reduced to the study of finitely many simple
blow-ups. In the following iðMÞ denotes the injectivity radius of M.

Definition 4.1. If ðulÞl satisfies (7) and (9), we say that the three sequences ðxlÞl LM,
rl ! 0, ðslÞl LRþ, jsl je iðMÞ are a simple blow-up for ðulÞl if the following properties hold:

ð52Þ sl

rl

! þy; bRl ! þy s:t: ûul � log
2

1 þ j � j2
� 1

4
log

1

3
k0

� ������
�����

H 4ðBR4

Rl
ÞXC aðBR4

Rl
Þ

! 0;

Er > 0 bCr > 0 s:t: if
Ð

BsðyÞ
e4ul dVg f r with BsðyÞLBsl

ðxlÞnBRlrl
ðxÞ;ð53Þ

then sfC�1
r jy � xl j;

where ûul is defined in (34).

The main result of this section is the following proposition.
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Proposition 4.2. Suppose ðxlÞl , ðrlÞl , ðslÞl are a simple blow-up for ðulÞl . Then there

exists a fixed C > 0 such that

Ð
B

C�1sl
ðxlÞ

e4ul dVg ¼ 8p2

k0
þ olð1Þ;ð54Þ

where olð1Þ ! 0 as l ! þy.

Remark 4.3. (a) We notice that, if ûul satisfies the assertion in Proposition 3.4, it is
always possible to modify ðxlÞl and ðrlÞl in order to get x0 ¼ 0 and l ¼ 1.

(b) Proposition 4.2 is basically an improvement of formula (53) to a sequence of sets
with larger size.

The proof of Proposition 4.2 is based on the analysis of the next two subsections.
In the first we prove some Harnack inequality in integral form while in the second, de-
fining

Ar; l ¼ fx A M : r < jx � xl j < 2rg;ð55Þ

we study the average of ul on Ar; l as a function of r.

4.1. Integral Harnack-type inequalities. In this subsection we prove some integral
Harnack-type inequalities for the functions ðulÞl near simple blow-ups. Although it is maybe
possible to get pointwise estimates on the solutions, for our purposes it is su‰cient to ob-
tain integral volume estimates. We need first a preliminary result involving the average of
the Green’s function G on annuli. Given r A ð0; p2=k0Þ, let Cr be the corresponding con-
stant in (53) (which we can suppose bigger than 1), and we define the following sets:

A 0
r; l ¼ x A M :

5

4
r < jx � xl j <

7

4
r


 �
LAr; l ; r A ðRlrl ; slÞ;ð56Þ

BrðxÞ ¼ B r

16Cr
ðxÞLA 0

r; l ;
~BBrðxÞ ¼ B r

8Cr
ðxÞLA 0

r; l ; x A A 0
r; l :ð57Þ

Lemma 4.4. Suppose ðxlÞl LM, ðslÞl LRþ, jsl je iðMÞ, and let Ar; l , A 0
r; l ,

~BBrðxÞ be

defined respectively in (55), (56) and (57). Then there exists a positive constant C ¼ CðCrÞ,
independent of r and l such that, setting

fr; lðyÞ ¼ 1

jAr; l j
Ð

Ar; l

Gðz; yÞ dVgðzÞ;

there holds

fr; lðyÞ � 1

8p2
log

1

r

����
����eC; for every x A A 0

r; l ; y A ~BBrðxÞ;

j fr; lðyÞ � Gðx; yÞjeC; for every x A A 0
r; l ; y A Mn ~BBrðxÞ;

8><
>: re iðMÞ:ð58Þ

Proof. We first notice that the following inequality holds:
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frðyÞ � log
1

r

����
����eC; jyje 4r;ð59Þ

where

Ar ¼ fx A R4 : r < jxj < 2rg; frðyÞ ¼ 1

jArjR4

Ð
Ar

log
1

jz � yjR4

dVR4 :

Here jArjR4 stands for the Lebesgue measure of Ar and jz � yjR4 denotes the Euclidean dis-
tance.

The inequality is indeed trivial for r ¼ 1 since f1ðyÞ is bounded on BR4

4 , while for a
general r it is su‰cient to use a scaling argument. We use (23), the exponential map and
standard geometric estimates on M (see (69) below for the volume element) to write

8p2 fr; lðyÞ ¼ 1

jAr; l j
Ð

Ar; l

log
1

jy � zj dVgðzÞ þ Oð1Þ

¼
�
1 þ Oðr2Þ

� 1

jArjR4

Ð
Ar

log
1

jy � zjR4

�
1 þ Oðr2Þ

�
dVR4 þ Oð1Þ

¼
�
1 þ Oðr2Þ

�
frðyÞ þ Oð1Þ; y A B4rðxlÞ:

Jointly with (59), this proves the first estimate in (58).

The second one is trivial for y A B4rðxlÞn ~BBrðxÞ, by the preceding argument. For
y A MnB4rðxlÞ, we notice that

C�1
e

jz � yj
jx � yj eC; for z A Ar; l ; x A A 0

r; l ;

and we use again (23). This concludes the proof. r

Next, we prove some inequality involving the integral of the function e4ul and the av-
erage of ul on small annuli. We recall the definitions of Ar; l and A 0

r; l in (55) and (56), and
those of BrðxÞ, ~BBrðxÞ in (57).

Lemma 4.5. Suppose that ðxlÞl LM, rl ! 0, ðslÞl LRþ, jsl je iðMÞ are a simple

blow-up for ðulÞl . Suppose Rl ! þy, and define

ur; l ¼
1

jAr; l j
Ð

Ar; l

ul dVg; Rlrl < r < sl :

Then, if l is su‰ciently large, there exists a positive constant C (independent of l and r) such

that Ð
A 0

r; l

e4ul dVg eCjAr; l je4ul; r ; Rlrl < r < sl :
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Proof. Using (22) and recalling the definition of fl (see (21)) and that of fr; l (see
Lemma 4.4), we have

ur; l ¼ ul þ
Ð

M

fr; lðyÞ flðyÞ dVgðyÞ:

For x A A 0
r; l , we divide the last integral into ~BBrðxÞ and its complement, to obtain

exp
�
4ður; l � ulÞ

�
¼ exp

�
4
Ð

~BBrðxÞ
fr; lðyÞ flðyÞ dVgðyÞ

�
exp

�
4

Ð
Mn ~BBrðxÞ

fr; lðyÞflðyÞ dVgðyÞ
�
:

Using Lemma 4.4 and the fact that ð flÞl is bounded in L1ðMÞ, we then find

exp
�
4ður; l � ulÞ

�
fC�1 exp

�
1

2p2
log

1

r

Ð
~BBrðxÞ

flðyÞ dVgðyÞ
�

exp

�
4

Ð
Mn ~BBrðxÞ

Gðx; yÞ flðyÞ dVgðyÞ
�
:

Hence, integrating on Ar; l we obtain

Ð
Ar; l

e4ður; l�ulÞ dVg fC�1jAr; l j
1

r

� � Ð
~BBrðxÞ

fl dVg

2p2

exp

�
4

Ð
Mn ~BBrðxÞ

Gðx; yÞ flðyÞ dVgðyÞ
�
:ð60Þ

On the other hand, again by (22), for x A A 0
r; l and a.e. z A BrðxÞ we have also

ulðzÞ � ul ¼
Ð

Mn ~BBrðxÞ
Gðz; yÞ flðyÞ dVgðyÞ þ

Ð
~BBrðxÞ

Gðz; yÞ flðyÞ dVgðyÞ:

Then, exponentiating and integrating on BrðxÞ we getÐ
BrðxÞ

e4ðulðzÞ�ulÞ dVgðzÞð61Þ

¼
Ð

BrðxÞ
exp

�
4

Ð
Mn ~BBrðxÞ

Gðz; yÞ flðyÞ dVgðyÞ
�

exp

�
4
Ð

~BBrðxÞ
Gðz; yÞ flðyÞ dVgðyÞ

�
dVgðzÞ

e sup
z ABrðxÞ

exp

�
4

Ð
Mn ~BBrðxÞ

Gðz; yÞ flðyÞ dVgðyÞ
�

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
J

Ð
BrðxÞ

exp

�
4
Ð

~BBrðxÞ
Gðz; yÞ flðyÞ dVgðyÞ

�
dVgðzÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

JJ

:

Now we writeÐ
Mn ~BBrðxÞ

Gðz; yÞ flðyÞ dVgðyÞ ¼
Ð

Mn ~BBrðxÞ
Gðx; yÞ flðyÞ dVgðyÞ

þ
Ð

Mn ~BBrðxÞ

�
Gðz; yÞ � Gðx; yÞ

�
flðyÞ dVgðyÞ:

Using (23), for z A BrðxÞ and y A Mn ~BBrðxÞ, we have

Gðz; yÞ � Gðx; yÞ ¼ Oð1Þ þ 1

8p2
log

jz � yj
jx � yj ¼ Oð1Þ:
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As a consequence we deduce

JeC exp

�
4

Ð
Mn ~BBrðxÞ

Gðx; yÞ flðyÞ dVgðyÞ
�
:ð62Þ

We now turn to JJ. Since z A BrðxÞ and y A ~BBrðxÞ, Gðz; yÞ is positive (for r su‰ciently
small), and hence Ð

~BBrðxÞ
Gðz; yÞ flðyÞ dVgðyÞe

Ð
~BBrðxÞ

Gðz; yÞj fl jðyÞ dVgðyÞ:

Using the Jensen inequality, as in the proof of Proposition 3.1, we obtain

exp

�
4
Ð

~BBrðxÞ
Gðz; yÞ flðyÞ dVgðyÞ

�
e

Ð
~BBrðxÞ

exp
�
4Gðz; yÞk flkL1ð ~BBrðxÞÞ

� j flðyÞj
k flkL1ð ~BBrðxÞÞ

dVgðyÞ:

Again (23) implies

JJe
Ð

BrðxÞ
dVgðzÞ

Ð
~BBrðxÞ

exp
�
4Gðz; yÞk flkL1ð ~BBrðxÞÞ

� j flðyÞj
k flkL1ð ~BBrðxÞÞ

dVgðyÞ

eC
Ð

BrðxÞ
dVgðzÞ

Ð
~BBrðxÞ

1

jz � yj

� �k flkL1ð ~BBrðxÞÞ
2p2 j flðyÞj

k flkL1ð ~BBrðxÞÞ
dVgðyÞ:

Now, the Fubini theorem and some elementary computations yield

JJeC sup
y AM

Ð
BrðxÞ

dVgðzÞ
1

jz � yj

� �k flkL1ð ~BBrðxÞÞ
2p2

eCr
4�

k flkL1ð ~BBrðxÞÞ
2p2 :ð63Þ

In the last inequality we have used the fact that k flkL1ð ~BBrðxÞÞ is uniformly small since we are

dealing with a simple blow-up, see (53), and since we have chosen ~BBrðxÞ suitably. This im-
plies that the last constant C is independent of r and l. From (61), (62) and (63) it follows
that

Ð
BrðxÞ

e4ðulðzÞ�ulÞ dVgðzÞeCr
4�

k flkL1ð ~BBrðxÞÞ
2p2 exp

�
4

Ð
Mn ~BBrðxÞ

Gðx; yÞ flðyÞ dVgðyÞ
�
:

Now the assertion of the lemma follows from the last formula, (60) and the observation
that, since fl ¼ 2kle

4ul � 2Ql , it is k flkL1ð ~BBrðxÞÞ ¼
Ð

~BBrðxÞ
fl dVg þ Oðr4Þ, and hence

r
4�

k flkL1ð ~BBrðxÞÞ
2p2 eCjAr; l j

1

r

� � Ð
~BBrðxÞ

fl dVg

2p2

independently of r and l:

This concludes the proof. r

Next we show some further estimates involving the Laplacian of ul . Recall that we
have set fl ¼ 2kle

4ul � Ql , see (21).

155Malchiodi, Solutions to some geometric fourth-order equations

Brought to you by | Princeton University Library
Authenticated

Download Date | 3/15/17 11:31 AM



Lemma 4.6. Suppose that ðxlÞl LM, ðSlÞl ; ðSlÞl LRþ, iðMÞfSl > Sl > 0, and that

ðulÞl satisfies (7) and (9). Suppose also thatÐ
BSl

ðxlÞnBSl
ðxlÞ

e4ul dVg e e:

Then, for any R > 0 su‰ciently large and any r A ½Sl þ R;Sl � R�, one has

Ð
Ar; l

jx � xl j2
�
�DulðxÞ

�
dVgðxÞ ¼

�
15

8

Ð
B r

R
ðxlÞ

fl dVg þ oRð1Þ þ OðeR2Þ þ orð1Þ
�

r4;

where oRð1Þ ! 0 as R ! þy and orð1Þ ! 0 as r ! 0.

Proof. We can write (7) in the following form:

�Dð�DulÞ ¼ fl þ FlðulÞ;

where Fl is a linear expression in ‘ul and ‘2ul with uniformly bounded coe‰cients. If ĜG is
the Green’s function for the (negative) Laplacian on M, then it is a standard fact that

ĜGðx; yÞ ¼
�
1 þ oð1Þ

� 1

4p2jx � yj2
; ðx; yÞ A M � Mndiag;ð64Þ

where oð1Þ ! 0 as jx � yj ! 0, see for example [2]. Hence, using the representation for-
mula, for a.e. x A Ar; l we obtain

� DulðxÞ ¼
Ð

M

ĜGðx; yÞ flðyÞ dVgðyÞ þ
Ð

M

ĜGðx; yÞFlðulÞðyÞ dVgðyÞð65Þ

:¼ v1; lðxÞ þ v2; lðxÞ:

Given R > 0 large but fixed and for jx � xl j ¼ r A ½Sl þ R;Sl � R�, we write

v1; lðxÞ ¼
Ð

B r
R
ðxlÞ

ĜGðx; yÞ flðyÞ dVgðyÞ þ
Ð

BRrðxlÞnB r
R
ðxlÞ

ĜGðx; yÞ flðyÞ dVgðyÞ

þ
Ð

MnBRrðxlÞ
ĜGðx; yÞ flðyÞ dVgðyÞ:

From the asymptotics in (64) and some scaling argument we obtain (for x A Ar; l)

Ð
B r

R
ðxlÞ

ĜGðx; yÞ flðyÞ dVgðyÞ ¼
�
1 þ orð1Þ þ oRð1Þ

� 1

4p2r2

Ð
B r

R

fl dVg;

���� Ð
MnBRrðxlÞ

ĜGðx; yÞ flðyÞ dVgðyÞ
����e C

ðRrÞ2
;

where orð1Þ ! 0 as r ! 0 and oRð1Þ ! 0 as R ! þy. Moreover, by our assumptions and
(21), we have Ð

BRrðxlÞnB r
R
ðxlÞ

flðyÞ dVgðyÞeCe; flðxÞf�C;
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where C is independent of r, and l. Using the Fubini theorem and reasoning as in the proof
of Lemma 2.3 it follows that

���� Ð
Ar; l

dVgðxÞ
Ð

BRrðxlÞnB r
R
ðxlÞ

ĜGðx; yÞ flðyÞ dVgðyÞ
����eCeR2r2:

The last formulas imply

Ð
Ar; l

jx � xl j2v1; lðxÞ dVgðxÞ ¼
 

1 þ orð1Þ þ oRð1Þ
4p2

Ð
B r

R

fl dVg þ OðeR2Þ þ O
1

R2

� �!
jAr; l jð66Þ

¼
�

15

8

Ð
B r

R
ðxlÞ

fl dVg þ oRð1Þ þ OðeR2Þ þ orð1Þ
�

r4:

To study the integral of v2; l , we use again the representation formula and we write

jv2; lðxÞjeC
Ð

B
r2 ðxlÞ

1

jx � yj2
�
j‘2ul jðyÞ þ j‘ul jðyÞ

�
dVgðyÞ

þ C
Ð

MnB ffirp ðxlÞ

1

jx � yj2
�
j‘2ul jðyÞ þ j‘ul jðyÞ

�
dVgðyÞ

þ C
Ð

B ffirp ðxlÞnB
r2 ðxlÞ

1

jx � yj2
�
j‘2ul jðyÞ þ j‘ul jðyÞ

�
dVgðyÞ

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
JJJ

:

To estimate the first and the second integral, we notice that jx � yjfC�1r and
jx � yjfC�1

ffiffi
r

p
for respectively y A Br2ðxlÞ and y A B ffiffi

r
p ðxlÞ (recall that x A Ar; l). Hence

using Lemma 2.3 it follows that

Ð
B

r2 ðxlÞ

1

jx � yj2
�
j‘2ul jðyÞ þ j‘ul jðyÞ

�
dVgðyÞeCr2;

Ð
MnB ffirp ðxlÞ

1

jx � yj2
�
j‘2ul jðyÞ þ j‘ul jðyÞ

�
dVgðyÞe C

r
:

To estimate the third integral we use the Hölder’s inequality to find, for
1

p
þ 1

p 0 ¼ 1,

JJJeC

� Ð
B ffirp ðxlÞnB

r2 ðxlÞ

1

jx � yj2p
dVgðyÞ

�1
p
� Ð

B ffirp ðxlÞnB
r2 ðxlÞ

�
j‘2ul jðyÞ þ j‘ul jðyÞ

�p 0
dVgðyÞ

� 1
p 0

:

Again by and Lemma 2.3 it follows that for p > 2 (and hence for p 0 < 2) it is JJJeCr
6
p�4.

If we choose p A ð2; 3Þ, then
6

p
� 4 > �2, which implies JJJ < orð1Þr2, and hence also

Ð
Ar; l

v2; l dVg ¼ orð1Þr2:ð67Þ
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Then, choosing first R su‰ciently large and then l su‰ciently large, (65), (66) and (67) con-
clude the proof. r

4.2. Radial behavior. The next step consists in studying the dependence on r of the
function ur; l defined in Lemma 4.5. It is well known that in geodesic coordinates the metric
coe‰cients gij have the expression

gijðxÞ ¼ dij �
1

3
Rikjlx

kxl þ Oðjxj3Þ;ð68Þ

where Rikjl are the components of the curvature tensor, see for example [34], and the volume
element satisfies

ð69Þ dVg ¼
ffiffiffiffiffiffiffiffiffiffi
det g

p
dVR4 ¼

�
1 þ Oðjxj2Þ

�
dVR4

with ‘
ffiffiffiffiffiffiffiffiffiffi
det g

p
¼ OðjxjÞ and ‘2

ffiffiffiffiffiffiffiffiffiffi
det g

p
¼ Oð1Þ:

Using the exponential map at xl , we can use coordinates r, y in a neighborhood of xl , where
r ¼ jxj > 0 and y A S3. In these coordinates the volume element dVg and the surface element
dsg take the form

dVg ¼ r3~ff ðr; yÞ dr dy; dsg ¼ ~ff ðr; yÞ dy;

where ~ff is a smooth bounded function on fr > 0g. Using these coordinates, considering a
regular function h, and letting A~rr ¼ B2~rrðxlÞnB~rrðxlÞ, one has

Ð
A~rr

h dVg ¼
Ð2~rr
~rr

r3 dr
Ð

S3

hðr; yÞ f ðr; yÞ dy;
qh

qn
ðr; yÞ ¼ qh

qr
ðr; yÞ;

where n denotes the exterior unit normal to qB~rrðxlÞ.

We also use the coordinates z, y, where z ¼ log r. In these new coordinates we
obtain

dVg ¼ e4zf ðz; yÞ dz dy; dsg ¼ e3zf ðz; yÞ dy;

where f ðz; yÞ ¼ ~ff ðez; yÞ, and

Ð
A~rr

h dVg ¼
Ðsþb

s

dz
Ð

S3

hðz; yÞ f ðz; yÞe4z dy;
qh

qn
ðz; yÞ ¼ e�z qh

qz
ðz; yÞ:

Here we have set b ¼ log 2 and s ¼ log ~rr. From (69) we also find

f ðz; yÞ ¼ 1 þ Oðe2zÞ; qf

qz
ðz; yÞ ¼ Oðe2zÞ; q2f

qz2
ðz; yÞ ¼ Oðe2zÞ:ð70Þ

Now we can write
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q

qs

Ð
A~rr

h dVg ¼
Ð

S 3

hðz; yÞe4zf ðz; yÞ dyjsþb
z¼sð71Þ

¼
Ðsþb

s

Ð
S 3

q

qz

�
hðz; yÞe4zf ðz; yÞ

�
dy dz

¼
Ðsþb

s

Ð
S 3

qh

qz
e4zf ðz; yÞ dy dz

þ
Ðsþb

s

Ð
S3

hðz; yÞ 4f ðz; yÞe4z þ e4z qf

qz
ðz; yÞ

� �
dy dz:

Taking a second derivative with respect to s, from the above formulas we obtain

q2

qs2

Ð
A~rr

h dVg ¼
Ð

S3

qh

qz
ðz; yÞe4zhðz; yÞ dyjsþb

z¼s þ 4
q

qs

Ð
A~rr

h dVg

þ q

qs

� Ðsþb

s

Ð
S3

hðz; yÞe4z qf

qz
ðz; yÞ dy dz

�

¼
Ð

qA~rr

e2z qh

qn
dsg þ 4

q

qs

Ð
A~rr

h dVg þ
q

qs

� Ðsþb

s

Ð
S3

hðz; yÞe4z qf

qz
ðz; yÞ dy dz

�
:

Using the coordinates ðr; yÞ and integrating by parts we derive

Ð
qA~rr

e2z qh

qn
dsg ¼

Ð
qA~rr

r2 qh

qn
ds ¼

Ð
A~rr

r2Dh dVg �
Ð

A~rr

hDr2 dVg þ
Ð

qA~rr

h
qr2

qn
dsg

¼
Ð

A~rr

r2Dh dVg � 8
Ð

A~rr

h dVg þ 2
Ð

qA~rr

he4z dsg þ
Ð

A~rr

ðDr2 � 8Þh dVg:

By the last two formulas we finally get the following equation:

q2

qs2

Ð
A~rr

h dVg ¼ 6
q

qs

Ð
A~rr

h dVg � 8
Ð

A~rr

h dVg þ
Ð

A~rr

r2Dh dVgð72Þ

þ
Ð

A~rr

ðDr2 � 8Þh dVg þ
q

qs

� Ðsþb

s

Ð
S3

hðz; yÞe4z qf

qz
ðz; yÞ dy dz

�
:

Next we want to apply (72) to the case of h ¼ ul , and derive a di¤erential equation involv-
ing the average ur; l of ul on the annuli Ar; l .

Lemma 4.7. Suppose that ðxlÞl LM, ðslÞl LRþ, iðMÞf sl > 0, and that ðulÞl satis-

fies (7) and (9). Then, for every l and every r < sl we let

WlðzÞ ¼
1

VolðAr; lÞ
Ð

Ar; l

ul dVg; z ¼ log r;
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where Ar; l is defined in (55). Then the functions WlðzÞ solve the following equation:

ð73Þ W 00
l ðzÞ þ 2

�
1 þ Oðe2zÞ

�
W 0

l ðzÞ ¼

Ð
Ar; l

r2Dgul dVg

VolðAr; lÞ
þ Oðe2zÞ;

for z A
�
logðalrlÞ; log sl

�
:

We first notice that WlðzÞ coincides with ur; l up to the change of variables
r 7! z ¼ log r.

Proof. We first let

~WWlðzÞ ¼
Ð

Ar; l

ul dVg; YlðzÞ ¼
Ð

Ar; l

dVg; z ¼ log r:

We have clearly

W 0
l ðzÞ ¼

~WWlðzÞ
YlðzÞ

� �0
¼

~WW 0
l ðzÞYlðzÞ � Y 0

l ðzÞ ~WWlðzÞ
Y 2

l ðzÞ
;

and

W 00
l ðzÞ ¼ Y 2

l ðzÞ½ ~WW 00
l ðzÞYlðzÞ � Y 00

l ðzÞ ~WWlðzÞ� � 2YlðzÞY 0
l ðzÞ½ ~WW 0

l ðzÞYlðzÞ � Y 0
l ðzÞ ~WWlðzÞ�

Y 4
l ðzÞ

:

Using the last two formulas and (72) with A~rr ¼ Ar; l and h ¼ ul , after some calculation

(which also uses (71) with h replaced by
h

f

qf

qz
) we obtain

W 00
l ðzÞ ¼ 6W 0

l ðzÞ � 2
Y 0

l ðzÞ
YlðzÞ

W 0
l ðzÞ þ

Ð
Ar; l

r2Dgul dVg

YlðzÞ

þ
Ð
ðDgr2 � 8Þul þ

Ð q

qz

 
ul

qf

qz
f

!
e4zf þ

Ð
ul

qf

qz
f

4fe4z þ e4z qf

qz

� �2
64

3
75 Ð e4zf

YlðzÞ2

�
Ð
ðDgr2 � 8Þ þ

Ð q

qz

 qf

qz
f

!
e4zf þ

Ð qf

qz
f

4fe4z þ e4z qf

qz

� �2
64

3
75 Ð ule

4zf

YlðzÞ2
:

We notice that, adding and subtracting the average of ur; l to ul , some cancellation occurs.
Moreover, from (70) and (71) we get

Y 0
l ðzÞ

YlðzÞ
¼

Ð
4e4zf þ e4z qf

qz

� �
YlðzÞ

¼ 4 þ Oðe2zÞ:

Therefore, using these remarks we obtain
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W 00
l ðzÞ ¼ �2

�
1 þ Oðe2zÞ

�
W 0

l ðzÞ þ

Ð
Ar; l

r2Dgul dVg

YlðzÞ

þ

2
664Ð ðDgr2 � 8Þðul � ur; lÞ þ

Ð q

qz

 ðul � ur; lÞ
qf

qz
f

!
e4zf

þ
Ð
ðul � ur; lÞ

qf

qz
f

4fe4z þ e4z qf

qz

� �3775
Ð

e4zf

YlðzÞ2

�
Ð
ðDgr2 � 8Þ þ

Ð q

qz

 qf

qz
f

!
e4zf þ

Ð qf

qz
f

4fe4z þ e4z qf

qz

� �2
64

3
75 Ð ðul � ur; lÞe4zf

YlðzÞ2
:

We next estimate the terms in the last three lines of this expression. We begin by noticing
that ðDr2 � 8Þ ¼ Oðr2Þ, which can be deduced from elementary computations in local co-
ordinates. This and the Poincaré inequality imply

����Ð ðDgr2 � 8Þðul � ur; lÞ dVg

����eCe3z
Ð

Ar; l

j‘ul j dVg; z ¼ log r:

From Lemma 2.3 then one finds����Ð ðDgr2 � 8Þðul � ur; lÞ dVg

����eCe6z:

Similarly, using (70) and also the fact that
qul

qz
¼ qul

qr

qr

qz
¼ Oðezj‘ul jÞ, we obtain

Ð q

qz

 ðul � ur; lÞ
qf

qz
f

!
e4zf

�������
�������e

Ð
Ar; l

Oðe2zÞjul � ur; l j dVg þ
Ð

Ar; l

Oðe3zÞj‘ul j dVg

eCe6z:

Reasoning in the same way for the remaining terms we finally deduce

W 00
l ðzÞ þ 2

�
1 þ Oðe2zÞ

�
W 0

l ðzÞ ¼

Ð
Ar; l

r2Dgh dVg

YlðzÞ
þ Oðe2zÞ:

Then the last four estimates imply the first equation in (73). r

Remark 4.8. Using (71) with A~rr ¼ Ar; l , and with h ¼ ul (or with h ¼ 1 to compute
Y 0

l ), we obtain
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W 0
l ðzÞ ¼

� Ð
Ar; l

ulð4fe4z þ e4zqf

qz
e4zf Þ þ

Ð
Ar; l

qul

qz

	 Ð
Ar; l

fe4z �
� Ð

Ar; l

4e4zf þ e4zqf

qz

	 Ð
Ar; l

ul fe4z

� Ð
Ar; l

fe4z

�2
:

If we denote again by ur; l the average of ul in the annulus Ar; l , adding and subtracting ur; l

from ul in the last formula we get some cancellations and we are left with

W 0
l ðzÞ ¼

� Ð
Ar; l

ðul � ur; lÞ e4z qf

qz

� �
þ
Ð

Ar; l

qul

qz
e4zf

	 Ð
Ar; l

fe4z

� Ð
Ar; l

fe4z

�2
�

� Ð
Ar; l

e4zqf

qz

	 Ð
Ar; l

ðul � ur; lÞ fe4z

� Ð
Ar; l

fe4z

�2
:

As a byproduct of this formula and the Poincaré inequality we deduce

jW 0
l ðzÞjeC

Ð
Ar; l

jul � ur; l j dVg

YlðzÞ
þ Cr

Ð
Ar; l

j‘ul j dVg

YlðzÞ
eCr

Ð
Ar; l

j‘ul j dVg

YlðzÞ
:

Then, applying Lemma 2.3, we find

jW 0
l ðzÞjeC:ð74Þ

In the next lemma we study the solutions of (73) in the case of a simple blow-up.
When x0 ¼ 0 and l ¼ 1, the function ûuy, see (38), is of the form

ûuyðxÞ ¼ log
2

1 þ jxj2

 !
þ 1

4
log

3

k0
:

From straightforward computations one finds

Ð
Ar

ûuy dVR4 ¼ 2p2

�
15

4
r4 log 2 þ 4r4 log

1

1 þ 4r2

� �
þ 15

8
r4 � 3

4
r2 þ 1

4
logð1 þ 4r2Þ

� 1

4
r4 log

1

1 þ r2

� �
� 1

4
logð1 þ r2Þ

	
:

Scaling back to ul , using (52) and some elementary estimates one deduces (for t > 0 large
and fixed)

ð75Þ
Wlðlog rl þ tÞ ¼ �2tþC � log rl þOðe�2tÞ þ olð1Þ;

W 0
l ðlog rl þ tÞ ¼ �2þOðe�2tÞ þ olð1Þ;

where C is some explicit positive constant.

Now we prove some upper bounds for the function Wl . Notice from (75) that Wl at
z ¼ log rl þ t (t large and fixed) has slope close to �2. Given g A ð1; 2Þ, we consider an a‰ne
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function h
g
t; l which coincides with Wl for z@ log rl and which has slope �g > �2. The next

lemma asserts that indeed WlðzÞ < h
g
t; lðzÞ until z gets close to log sl . This is helpful to get in-

tegral estimates on e4ul , which is done at the end of the section.

Lemma 4.9. Suppose ðxlÞl , ðrlÞl , ðslÞl are a simple blow-up for ðulÞl , and let ðWlÞl be

given by Lemma 4.7. Given g A ð1; 2Þ and t > 0, consider the following functions:

h
g
t; lðzÞ ¼ �gðz � log rl � tÞ þ Wlðlog rl þ tÞ:

Then there exist tl ! þy arbitrarily slowly and Cg > 0 such that for l large

WlðzÞe h
g
tl ; l
ðzÞ; z A ½log rl þ tl ; log sl � Cg�:

Proof. Recall that ðWlÞl are solutions of (73) satisfying the initial conditions (75) for
any large and fixed t. If tl ! þy su‰ciently slowly, we can also replace t by tl in (75),
namely we can also assume that

Wlðlog rl þ tlÞ ¼ �2tl þ C � log rl þ olð1Þ; W 0
l ðlog rl þ tlÞ ¼ �2 þ olð1Þ:ð76Þ

Suppose by contradiction that there exist sl A ½log rl ; log sl �, with log sl � sl ! þy
such that Wl intersects h

g
tl ; l

for the first time. We notice that, by the asymptotics in (75), it
must also be sl � log rl � tl ! þy if tl ! þy su‰ciently slowly. Then we have

WlðslÞ ¼ h
g
tl ; l
ðslÞ; W 0

l ðslÞf�g:

We now choose a sequence of real numbers ðHlÞl by means of the following condition:

Hl ¼ supfH A R : h
gþ2

2

tl ; l
þ H < Wl in ½log rl þ tl ; sl �g:

By (75) it must be Hl ! �y as l ! þy (provided tl ! þy su‰ciently slowly), and there
exist ~ssl such that

Wlð~sslÞ ¼ h
gþ2

2

tl ; l
ð~sslÞ þ Hl ; W 0

l ð~sslÞ ¼ � gþ 2

2
; W 00

l ð~sslÞf 0:ð77Þ

Moreover, by (74) and (75), ~ssl satisfies

jsl � ~ssl j ! þy as l ! þy; j~ssl � log rl � tl j ! þy as l ! þy:ð78Þ

Next we claim that, for C > 0 su‰ciently large, the following property holds:

Ð
B

e
sl
C

ðxlÞnB
e

tl rl
ðxlÞ

e4ul dVg ! 0 as l ! þy:ð79Þ

In order to prove this claim, let us recall that by our choice of sl , it is WlðzÞe h
g
tl ; l
ðzÞ for

every z A ½log rl þ tl ; sl �. Dividing the region B
e

sl

C

ðxlÞnBetl rl
ðxlÞ into concentric annuli A 0

r; l

(see (56)) of suitable radii, we get
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Ð
B

e
sl
C

ðxlÞnB
e

tl rl
ðxlÞ

e4ul dVg e
Pjl
j¼0

Ð
A 0

r̂rl; j ; l

e4ul dVg;

where

r̂rl; j ¼
4

5
etl rl

7

5

� �j

;
7

5

� �jl

A
5

4

esl

Cetl rl

;
5

2

esl

Cetl rl

� �
:

Given g A ð1; 2Þ, from Lemma 4.5 it follows thatÐ
A 0

r̂rl; j ; l

e4ul dVg eCjAr̂rl; j ; l je
4ul; r̂rl; j eCr̂r4

l; je
4Wlðlog r̂rl; jÞ eCr̂r4

l; je
4h

g

tl ; l
ðlog r̂rl; jÞ; j ¼ 1; . . . ; jl :

From the expression of h
g
tl ; l

and (76) we deduce

r̂r4
l; je

4h
g

tl ; l
ðlog r̂rl; jÞ

eCr̂r4
l; j exp

�
4
�
�gðlog r̂rl; j � log rl � tlÞ � 2tl þ C � log rl þ olð1Þ

��
¼ Cr̂r4

l; j exp½�4g log r̂rl; j þ 4ðg� 1Þ log rl þ 4ðg� 2Þtl þ C þ olð1Þ�

eC
rl

r̂rl; j

� �4ðg�1Þ
e4ðg�2Þtl ¼ C

5

4etl

� �4ðg�1Þ
e4ðg�2Þtl

5

7

� �4ðg�1Þ j

:

Hence it follows that

Ð
B

e
sl
C

ðxlÞnB
e

tl rl
ðxlÞ

e4ul dVg eC
5

4etl

� �4ðg�1Þ
e4ðg�2Þtl

Py
j¼0

5

7

� �4ðg�1Þ j

! 0;

since g A ð1; 2Þ and since tl ! þy. This proves (79).

We can now apply Lemma 4.6 with Sl ¼ etl rl , Sl ¼
esl

C
, and log r ¼ ~ssl . Also, by (78)

and (79), we can choose e ¼ el ! 0 and R ¼ Rl ! þy su‰ciently slowly. Therefore, from
Lemma 4.6 and Proposition 3.4 (see in particular (39)) we deduce that

Ð
A

e
~ssl ; l

jx � xl j2
�
�DulðxÞ

�
dVgðxÞ ¼

�
15

8

Ð
B

e
~ssl

Rl

ðxlÞ
fl dVg þ olð1Þ

�
e4~ssl f

�
30p2 þ olð1Þ

�
e4~ssl :

On the other hand, from (73) and the last two conditions in (77) we find

Ð
A

e
~ssl ; l

jx � xl j2
�
�DulðxÞ

�
dVgðxÞ ¼

�
�W 00

l ð~sslÞ � 2
�
1 þ Oðe2~ssl Þ

�
W 0

l ð~sslÞ þ Oðe2~sslÞ
�
Ylð~sslÞ

e ½gþ 2 þ olð1Þ�
15p2

2
þ olð1Þ

� �
e4~ssl :

Since g < 2, from the last two inequalities we get a contradiction. This concludes the proof
of the lemma. r

We are finally in position to prove Proposition 4.2.
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Proof of Proposition 4.2. It is su‰cient to apply Lemma 4.9 and to reason as for the
proof of (79). In fact, in this way we get

Ð
Be

sl
C

ðxlÞnB
e

tl rl
ðxlÞ

e4ul dVg ! 0 as l ! þy:

Moreover, choosing bl ¼ etl in (39) and tl ! þy su‰ciently slowly, we also have

Ð
Bbl rl

ðxlÞ
e4ul dVg ! 8p2

k0
as l ! þy:

The last two formulas yield the conclusion. r

5. Proof of Theorem 1.1

We prove first the theorem under the assumption (13), and we postpone the remain-
ing cases to a second subsection.

5.1. Proof under the assumption (13). In this subsection we show how a general
blow-up phenomenon can be essentially reduced to the case of finitely-many simple
blow-ups. We divide the proof into three steps, and we always assume that ðulÞl is a
sequence satisfying (9) and (20). We recall that the integer k is defined by the condition
k0 A

�
8kp2; 8ðk þ 1Þp2

�
.

Step 1. There exist an integer j e k, sequences ðx1; lÞl ; . . . ; ðxj; lÞl LM and radii
ðr1; lÞl ; . . . ; ðrj; lÞl ; ð~rr1; lÞl ; . . . ; ð~rrj; lÞl ! 0 satisfying the properties (for some a A ð0; 1Þ)

~rri; l

ri; l
! þy ðslowlyÞ as l ! þy; B~rri; l

XB~rrh; l
¼ j for i3 h;ð80Þ

ð81Þ ER > 0 ûul; i ! log
2

1 þ jxj2
� 1

4
log

1

3
k0

� �
in H 4ðBR4

R ÞXC aðBR4

R Þ as l ! þy;

Er > 0 bCr > 0 s:t: if
Ð

BsðyÞ
e4ul dVg f r with BsðyÞLMn

Sj
i¼1

B~rri; l
ðxi; lÞ;ð82Þ

then sfC�1
r dlðyÞ;

where dlðyÞ ¼ min
i¼1;...; j

jy � xi; l j. Here ûul; j denotes the function obtained using the procedure

in Section 3, but scaling around the point xi; l with dilation factor ri; l .

In order to prove Step 1, we consider a small number r > 0, say r A ð0; p2=k0Þ, and
we define sequences ðx1; lÞl LM, ðr1; lÞl LRþ satisfying

Ð
Br1; l

ðx1; lÞ
e4ul dVg ¼ max

x AM

Ð
Br1; l

ðxÞ
e4ul dVg ¼ r:
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If (20) holds, it must be r1; l ! 0 as l ! þy. In fact, if it were r1; l fC�1, we could apply
Proposition 3.1 to get uniform L p bounds on e4ðul�ulÞ for some p > 1. This fact and the
Jensen inequality would yield

1 ¼ e4ul
Ð

M

e4ðul�ulÞ dVg eCe4ul ; ul eC;

and hence uniform bounds on e4ul in L pðMÞ. This would imply, by elliptic regularity results,
uniform bounds in H 2ðMÞ on ðulÞl , which is a contradiction to our assumptions.

Then, if ~rr1; l=r1; l tends to infinity su‰ciently slowly, ðr1; lÞl and ð~rr1; lÞl satisfy (32), so
Proposition 3.4 applies yielding the existence of a bubble, giving (81) for i ¼ 1 and

Ð
B~rr1; l

ðx1; lÞ
e4ul dVg ¼ 8p2

k0
þ olð1Þ:

If (82) holds for j ¼ 1, Step 1 is proved.

If (82) does not hold, there exists r1 > 0, which can be assumed belonging to
ð0; p2=k0Þ, and there exist sequences ðylÞl LM, rl LRþ such that

Ð
Brl

ðylÞ
e4ul dVg f r1; Brl

ðylÞLMnB~rr1; l
ðx1; lÞ;

rl

jyl � x1; l j
! 0 as l ! þy:ð83Þ

Now we define r2; l and x2; l such that

Ð
Br2; l

ðx2; lÞ
e4ul dVg ¼ max

Br2; l
ðyÞLMnB~rr1; l

ðx1; lÞ

Ð
Br2; l

ðyÞ
e4ul dVg ¼ r1:

By Proposition 3.4 it is easy to see that if ~rr1; l=r1; l ! þy su‰ciently slowly, then we have

~rr1; l

jx1; l � x2; l j
! 0;

r2; l

jx1; l � x2; l j
! 0 as l ! þy;ð84Þ

which in particular implies r2; l ! 0 as l ! þy. Therefore, by the last formula we can find
r̂r2; l LRþ such that

Ð
Br2; l

ðyÞ
e4ul dVg e r1 for every y A Br̂r2; l

ðx2; lÞ;
r̂r2; l

jx1; l � x2; l j
! 0 as l ! þy:

Then Proposition 3.4 applies yielding the existence of a second bubble.

Continuing in this way, we see immediately that j cannot exceed k, since every bubble
contributes an amount of 8p2=k0 to the volume and since we are assuming (9). This con-
cludes the proof of Step 1.

Step 2. If in Step 1 it is j ¼ 1, then there holds
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Ð
M

e4ul dVg ¼ 8p2

k0
þ olð1Þ:ð85Þ

In this case, if we choose sl ¼
1

2
iðMÞ for every l, where iðMÞ is the injectivity radius of M,

then by (82), ðx1; lÞl , ðr1; lÞl , ðslÞl are a simple blow-up for ul . Therefore Proposition 4.2 ap-
plies and, since ðslÞl is uniformly bounded from below, there exists C > 0 such that for l

large Ð
B

C�1 ðx1; lÞ
e4ul ¼ 8p2

k0
þ olð1Þ:ð86Þ

We prove first the following property:

ul ! �y as l ! þy:ð87Þ

In fact, using the Green’s representation formula, for a.e. x A M we obtain

ulðxÞ ¼ ul þ
Ð

M

Gðx; yÞ
�
2kle

4ul ðyÞ � 2Ql

�
dVgðyÞf ul � C þ

Ð
M

Gðx; yÞ2kle
4ul ðyÞ dVgðyÞ:

By (81) and (51), given any small ~ee > 0, there exists R~ee such that, for l su‰ciently largeÐ
BR~eer1; l

ðx1; lÞ
2kle

2ul f 16p2 � 2p2~ee:

Hence the last two formulas and (23) imply

e4ulðxÞ fC�1e4ul
1

jx � x1; l j8�~ee
; for jx � x1; l jf 2R~eer1; l ;

from which it follows thatÐ
M

e4ul dVg f
Ð

BiðMÞðx1; lÞnB2R~eer1; l
ðx1; lÞ

e4ul dVgð88Þ

fC�1e4ul
ÐiðMÞ

2R~eer1; l

s~ee�5 dsfC�1e4ul ðR~eer1; lÞ~ee�4:

If ~ee is su‰ciently small, the last factor tends to þy as l ! þy. Therefore (87) follows from
(9).

Now, by (82), we can cover MnBC�1ðx1; lÞ with a finite number of balls Bri
ðyiÞ,

i ¼ 1; . . . ; l such that for every i there holds
Ð

B2ri
ðyiÞ

e4ul dVg e p2=k0. Reasoning as in the
proof of Proposition 3.1 one then finds

Ð
MnB

C�1 ðx1; lÞ
e4ul eCe4ul sup

y AM; i¼1;...;l

Ð
M

1

jx � yj

� �4ke
4ul k

L1ðB2ri
ð yi ÞÞ

8p2

eCe4ul ! 0:

Then (86) and the last formula conclude the proof of Step 2.

Step 3. If j in Step 1 is arbitrary, there holds
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Ð
M

e4ul dVg ¼ 8p2

k0
j þ olð1Þ:ð89Þ

If j > 1 we reason as in [36], and we analyze the clustering of accumulation points. By re-
labelling the indices, we can assume that

jx1; l � x2; l j ¼ inf
i3h

jxi; l � xh; l j ! 0 as l ! þy:ð90Þ

Of course, if inf
i3h

jxi; l � xh; l j != 0, then we could reason as in Step 2 a finite number of times.

Assuming (90), we consider the set X1; l L fx1; l ; . . . ; xh; lg of accumulation points for which
the distance from x1; l is comparable to jx1; l � x2; l j, namely for which there exists C > 0
(independent of l ) such that

jxi; l � x1; l jeCjx1; l � x2; l j; i ¼ 2; . . . ; h ¼ cardðX1; lÞ:

By our choices of the points x1; l ; . . . ; xh; l and by (90), one easily checks that the three se-
quences ðxi; lÞl , ðri; lÞl and C�1jx1; l � x2; l j, i ¼ 1; . . . ; h, are a simple blow-up if C is su‰-
ciently large, and Proposition 4.2 applies yielding

Ð
B

C�1 jx1; l�x2; l j
ðxi; lÞ

e4ul dVg ¼ 8p2

k0
þ olð1Þ; i ¼ 1; . . . ; h:ð91Þ

Our next claim is that there is no further concentration in a neighborhood of X1; l of size
comparable to jx1; l � x2; l j. More precisely we have the following result.

Lemma 5.1. In the above notation, for any large and fixed C there holds

Ð
BCjx1; l�x2; l jðx1; lÞ

e4ul dVg ¼ 8p2

k0
cardðX1; lÞ þ olð1Þ:ð92Þ

Proof. In order to prove this claim we use a variant of the argument in Step 2. First
of all, for r small and fixed, we can cover the set BCjx1; l�x2; l jðx1; lÞn

S
i¼1;...;h

BC�1jx1; l�x2; l jðxi; lÞ

with ll balls Brn; l
ðyn; lÞ, n ¼ 1; . . . ; ll , with the following properties:

ð93Þ
ll eC; C�1jx1; l � x2; l je rn; l eCjx1; l � x2; l j;Ð

B2rn; l
ðyn; lÞ

e4ul dVg e r; n ¼ 1; . . . ; ll :

Reasoning as in the proof of Proposition 3.1 one finds

Ð
Brn; l

ðyn; lÞ
e4ul dVg eC

Ð
Brn; l

ðyn; lÞ
dVgðxÞ exp

�
4

Ð
MnB2rn; l

ðyn; lÞ
Gðx; yÞ2kle

4ulðyÞ dVgðyÞ
	

�
Ð

B2rn; l
ðyn; lÞ

1

jx � yj

� �klr

p2

e4ul dVgðyÞ:

From (23) and (91), after some computation we get

168 Malchiodi, Solutions to some geometric fourth-order equations

Brought to you by | Princeton University Library
Authenticated

Download Date | 3/15/17 11:31 AM



Ð
Brn; l

ðyn; lÞ
e4ul dVg eC

Ð
Brn; l

ðyn; lÞ

�
4

Ð
MnðB2rn; l

ðyn; lÞWB
C�1 jx1; l�x2; l j

2

ðx1; lÞÞ
Gðx; yÞ2kle

4ulðyÞ dVgðyÞ
	

ð94Þ

� jx1; l � x2; l j�8þolð1Þjx1; l � x2; l j4�
klr

p2 e4ul dVgðxÞ

eC sup
x ABrn; l

ðyn; lÞ

�
8

Ð
MnðB2rn; l

ðyn; lÞWB
C�1 jx1; l�x2; l j

2

ðx1; lÞÞ
Gðx; yÞkle

4ulðyÞ dVgðyÞ
	

� jx1; l � x2; l j�
klr

p2
þolð1Þe4ul ;

since rn; l is bounded from above by Cjx1; l � x2; l j.

On the other hand, if ~ee and R~ee are as in Step 2, we also have

ulðxÞf�C þ ul þ
Ð

MnB
C�1 jx1; l�x2; l j

2

ðx1; lÞ
Gðx; yÞ2kle

4ulðyÞ dVgðyÞ

þ
Ð

BR~eer1; l
ðx1; lÞ

Gðx; yÞ2kle
4ulðyÞ dVgðyÞ; a:e: x A BC�1 jx1; l�x2; l j

4

ðx1; lÞnB2R~eer1; l
ðx1; lÞ:

Reasoning as for (88), we then deduce that

1f
Ð

B
C�1 jx1; l�x2; l j

4

ðx1; lÞnB2R~eer1; l
ðx1; lÞ

e4ul dVg fC�1e4ul ðR~eer1; lÞ~ee�4

� inf
z AB

C�1 jx1; l�x2; l j
4

ðx1; lÞ

�
8

Ð
MnðB2rn; l

ðyn; lÞWB
C�1 jx1; l�x2; l j

2

ðx1; lÞÞ
Gðz; yÞkle

4ulðyÞ dVgðyÞ
	
:

Now we notice that by (93) and (23) one has

jGðz; yÞ � Gðx; yÞjeC;

x A Brn; l
ðyn; lÞ; y A Mn

�
B2rn; l

ðyn; lÞWBC�1 jx1; l�x2; l j
2

ðx1; lÞ
�
; and for z A BC�1 jx1; l�x2; l j

4

ðx1; lÞ:

From (94) and the last two formulas it follows that

Ð
Brn; l

ðyn; lÞ
e4ul dVg eCjx1; l � x2; l j�

kl r

p2
þolð1ÞðR~eer1; lÞ~ee�4 ! 0 as l ! þy;

since
r1; l

jx1; l � x2; l j
! 0 by (84). Then the conclusion follows from (91) and the fact that

BCjx1; l�x2; l jðx1; lÞn
S

i¼1;...;h

BC�1jx1; l�x2; l jðxi; lÞ is covered by a finite (and uniformly bounded)

number of balls Brn; l
ðyn; lÞ. r

Now we let
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d1; l ¼ inffjx1; l � xi; l j : xi; l B X1; lg:

Note that, by our definition of X1; l , we have
d1; l

jx1; l � x2; l j
! þy as l ! þy. We prove next

the following result, which improves the estimate in formula (92) to a larger set.

Lemma 5.2. There exists C > 0 such that for l large

Ð
B

C�1d1; l
ðx1; lÞ

e4ul dVg ¼ 8p2

k0
cardðX1; lÞ þ olð1Þ:ð95Þ

Proof. The proof follows closely the arguments of Proposition 4.2, hence we will be
sketchy. We use the same notation as in Section 4 for the functions ðWlÞl and the annuli
Ar; l , except for the fact that now we take x1; l as centers, hence replacing the points xl .

First of all we notice that, by the arbitrarity of C in Lemma 5.1, there exists Zl ! þy
such that Ð

B
e

4Zl jx1; l�x2; l j
ðx1; lÞnBCjx1; l�x2; l jðx1; lÞ

e4ul dVg ! 0 as l ! þy:ð96Þ

Using the Jensen inequality in the annulus Be4Zl jx1; l�x2; l jðx1; lÞnBeZl jx1; l�x2; l jðx1; lÞ, it follows
that

sup
z A ½Zlþlogjx1; l�x2; l j;4Zlþlogjx1; l�x2; l j�

�
z þ WlðzÞ

�
! �y as l ! þy:ð97Þ

Our next goal is to prove that also

ð98Þ W 0
l ðzÞ ¼ �2 cardðX1; lÞ þ olð1Þ;

for z A ½2Zl þ logjx1; l � x2; l j; 3Zl þ logjx1; l � x2; l j�:

In order to show this, we notice that by the second formula in Remark 4.8 and by some
manipulation (reasoning as in the proof of Lemma 4.7), there holds

W 0
l ðzÞ ¼

Ð
Ar; l

qul

qz
fe4z

Ð
Ar; l

fe4z
þ Oðe2zÞ; for z A ½Zl þ logjx1; l � x2; l j; 4Zl þ logjx1; l � x2; l j�; r ¼ ez:

Using the Green’s representation formula we obtain

qu

qr
ðxÞ ¼

Ð
B

e
Zl jx1; l�x2; l j

ðx1; lÞ

qxGðx; yÞ
qr

flðyÞ dVgðyÞ þ
Ð

MnB
e

4Zl jx1; l�x2; l j
ðx1; lÞ

qxGðx; yÞ
qr

flðyÞ dVgðyÞ

þ
Ð

B
e

4Zl jx1; l�x2; l j
ðx1; lÞnB

e
Zl jx1; l�x2; l j

ðx1; lÞ

qxGðx; yÞ
qr

flðyÞ dVgðyÞ:

From (25), Lemma 5.1 and (96) it follows that, for Zl ! þy su‰ciently slowly
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Ð
B

e
Zl jx1; l�x2; l j

ðx1; lÞ

qxGðx; yÞ
qr

flðyÞ dVgðyÞ ¼ � 2 cardðX1; lÞ
jx � x1; l j

þ olð1Þ:

Also, reasoning as in the proof of Lemma 2.3 and using (96) one finds that���� Ð
Ar; l

dx
Ð

B
e

4Zl jx1; l�x2; l j
ðx1; lÞnB

e
Zl jx1; l�x2; l j

ðx1; lÞ

qxGðx; yÞ
qr

flðyÞ dVgðyÞ
����¼ oð1Þjx � x1; l j3:

Finally, since Zl ! þy one also derives

Ð
MnB

e
4Zl jx1; l�x2; l j

ðx1; lÞ

qxGðx; yÞ
qr

flðyÞ dVgðyÞ ¼ olð1Þ
1

jx � x1; l j
:

Recalling that
qul

qz
¼ r

qul

qr
, with r ¼ distðx; x1; lÞ, the last three formulas yield (98).

Now, for g A ð1; 2Þ we consider the following sequence of functions

h
g
l ðzÞ ¼ �gðz � logjx1; l � x2; l j � 2ZlÞ þ Wlðlogjx1; l � x2; l j þ 2ZlÞ:

Exactly as in the proof of Proposition 4.2 one can show that

WlðzÞe h
g
l ðzÞ; z A ½logjx1; l � x2; l j þ 2Zl ; log d1; l � Cg�:

As above, we define

r̂rl; j ¼
4

5
e2Zl jx1; l � x2; l j

7

5

� �j

;
7

5

� �jl

A
5

4

d1; l

Ce2Zl jx1; l � x2; l j
;
5

2

d1; l

Ce2Zl jx1; l � x2; l j

� �
;

and we obtainÐ
A 0

r̂rl; j ; l

e4ul dVg eCjAr̂rl; j ; l je
4ul; r̂rl; j eCr̂r4

l; je
4Wlðlog r̂rl; jÞ eCr̂r4

l; je
4h

g

l
ðlog r̂rl; jÞ; j ¼ 1; . . . ; jl :

From the expression of h
g
l and (97) we deduce

r̂r4
l; je

4h
g

l
ðlog r̂rl; jÞ eCr̂r4

l; j exp
�
4
�
�gðlog r̂rl; j � logjx1; l � x2; l j � 2ZlÞ þWlðlogjx1; l � x2; l j þ 2ZlÞ

��
e olð1Þr̂r4

l; j exp½�4g log r̂rl; j þ 4ðg� 1Þ logjx1; l � x2; l j þ 8ðg� 2ÞZl �

e olð1Þ
jx1; l � x2; l j

r̂rl; j

� �4ðg�1Þ
¼ olð1Þ

5

7

� �4ðg�1Þ j

:

As before we then find

Ð
Bd1; l

C

ðxlÞnBCjx1; l�x2; l jðxlÞ
e4ul dVg e olð1Þ

Py
j¼0

5

7

� �4ðg�1Þ j

! 0:

This formula, joint with (92), yields the conclusion of the lemma. r
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The proof of Step 3 follows from the arguments of Lemmas 5.1, 5.2, repeating the
procedure for all the clusters of the points of fx1; l ; . . . ; xj; lgnX1; l .

The proof of the theorem is now an easy consequence of (9) and (85), since k0 is not
an integer multiple of 8p2.

5.2. The case k0 H 8p2. In this final subsection we consider the cases in which Pg

possesses some negative eigenvalues and k0 < 8p2. We prove first the following result,
which regards boundedness of the V -component of sequences of solutions.

Lemma 5.3. Suppose Pg possesses some negative eigenvalues, and suppose that

ker Pg ¼ fconstantsg. Let ðulÞl LH 2ðMÞ be a sequence satisfying (7)–(9). Let us write

ul ¼ ûul þ ~uul with ûul A V and ~uul ? V , where V denotes the direct sum of the negative eigen-

spaces of Pg. Then there holds

kûulkH 2ðMÞ eC;

for some positive constant C independent of l.

Proof. Let v̂v1; . . . ; v̂vk
be as in (17). Then, by standard elliptic regularity theory, each

v̂vi is smooth on M. Testing (7) on ûul we obtain

hPgûul ; ûuliþ 4
Ð

M

Qlûul dVg þ 4kl

Ð
M

e4ul ûul dVg ¼ 0:

Using (9), the fact that on V the Ly-norm is equivalent to the H 2-norm, and the Poincaré
inequality, from the last formula we deduce that

�hPgûul ; ûuli ¼ Oð1ÞkûulkH 2ðMÞ:

Since Pg is negative-definite on V , the conclusion follows. r

Next, we consider separately the following three possibilities, one of which will always
occur for k0 < 8p2 and for l su‰ciently large.

Case 1: kl < 0. First of all, using the Jensen inequality we find immediately that
ul eC, for some constant C independent of l. Then, multiplying (7) by ul and integrating
on M, using the Poincaré inequality and Lemma 5.3, we find

hPgul ; uli ¼ 2kl

Ð
M

e4ul ul dVg � 2klul þ OðhPgul ; uli
1
2Þ þ C

eC þ ð�2klÞul þ OðhPgul ; uli
1
2ÞeC þ OðhPgul ; uli

1
2Þ:

Again by Lemma 5.3, this implies uniform bounds on kul � ulk and hence, by (19), uniform
L p bounds on e4ul for any p > 1. Then the conclusion follows from standard elliptic regu-
larity results.

Case 2: 0e kl e 2p2. Since we are assuming (9), we easily see that the alternative
(26) in Proposition 3.1 cannot occur. Therefore, reasoning as in the previous case, we ob-
tain uniform L p bounds on e4ul for some p > 1.
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Case 3: 2p2 e kl <
1

2
ðk0 þ 8p2Þ < 8p2. In this case it is k0 > 0. Assuming ðulÞl un-

bounded, Proposition 3.4 applies, and (39) gives a contradiction to (9), since k0 < 8p2.
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