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Compactness of solutions to some geometric
fourth-order equations

By Andrea Malchiodi at Trieste

Abstract. We prove compactness of solutions to some fourth order equations with
exponential nonlinearities on four manifolds. The proof is based on a refined bubbling
analysis, for which the main estimates are given in integral form. Our result is used in a
subsequent paper to find critical points (via minimax arguments) of some geometric func-
tional, which give rise to conformal metrics of constant Q-curvature. As a byproduct of our
method, we also obtain compactness of such metrics.

1. Introduction

Consider a compact four-dimensional manifold (M, g) with Ricci tensor Ric, and
scalar curvature R,. The Q-curvature and the Paneitz operator, introduced in [7], [41] and
[42], are defined respectively by

1 .
(1) QQZ_E(AgRg_R§+3|R1Cg|2)7

2
(2) P)(p) = Ajgo + div <§ Ryg—2 Ricg) do,
where ¢ is any smooth function on M, see also the survey [19].

The Q-curvature and the Paneitz operator arise in several contexts in the study of
four-manifolds and of particular interest is their role, and their mutual relation, in con-
formal geometry. In fact, given a metric § = ¢>"g, the following equations hold:

(3) Py=e P, Pw+20,=20z".

A first connection to the topology of a manifold is a Gauss-Bonnet type formula. If ¥,
denotes the Weyl’s tensor of M, then one has

2
I<Qg+ o )dVg = 4wy (M),
M
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138 Malchiodi, Solutions to some geometric fourth-order equations

where dV, stands for the Volume element in (M, g) and y(M) is the Euler characteristic of
M. In partlcular since |W| is a pointwise conformal invariant, it follows that f Q,dVy,is
a global conformal invariant.

To mention some geometric applications we recall three results proven by Gursky,

[31], and by Chang, Gursky and Yang, [13], [14] (see also [30]). If a manifold of pos-

itive Yamabe class satisfies | Q,dV, > 0, then its first Betti number vanishes. More-
M

over there exists a conformal metric with positive Ricci tensor, and hence M has fi-
nite fundamental group. Furthermore, under the additional quantitative assumption

1 . . .
[ 0ydv, > 3 IR Wg|2 dV,, M must be diffeomorphic to the four-sphere or to the projective
M M

space. In particular the last result is a conformally invariant improvement of a theorem by
Margerin, [39], which assumed pointwise pinching conditions on the Ricci tensor in terms
of W,.

Finally, we also point out that the Paneitz operator and the Q-curvature (together
with their higher-dimensional analogues, see [5], [6], [27], [29]) appear in the study of
Moser-Trudinger type inequalities, log-determinant formulas and the compactification of
locally conformally flat manifolds, see [4], [7], [8], [15], [16], [17].

As for the uniformization theorem, one can ask whether every four-manifold (M, g)
carries a conformal metric g for which the corresponding Q-curvature Q; is a constant.
Writing § = g, by (3) the problem is equivalent to finding a solution of the equation

(4) Pyw+20, = 2Q34W7

where Q is a real constant. In view of the regularity results in [47], solutions of (4) can be
found as critical points of the following functional:

(5)  (u) = {Pu,ud+4 [ QudV, —kplog [ e*dV,, ueH*(M),
M M
where we are using the notation

2
{Pyu,vy = | <AguAgv +§Rngu - Vyo — 2(Ricy Vyu, V, v)) o u,ve HAX (M),
M

and where
(6) kP = f Qg dV.;i‘
M

Problem (4) has been solved in [17] for the case in which P, is a positive operator and
kp < 8n? (877 is the value of kp on the standard sphere). Under these assumptions by the
Adams inequality, see (16), the functional II is bounded from below and coercive, hence
solutions can be found as global minima. The result has also been extended in [9] to higher-
dimensional manifolds (regarding higher-order operators and curvatures) using a geometric
flow. A first sufficient condition to ensure these hypotheses was given by Gursky in [31]. He

proved that if the Yamabe invariant is positive and if kp > 0, then P, is positive definite
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Malchiodi, Solutions to some geometric fourth-order equations 139

and moreover kp < 872, with the equality holding if and only if M is conformally equiva-
lent to S*. Other more general sufficient conditions are given in [32]. The solvability of (4)
also turns out to be useful in the study of some interesting class of fully non-linear equa-
tions, as it has been shown in [14], with the remarkable geometric consequences mentioned
above.

We are interested here in the more general case when P, has no kernel and kp + 8kn?
fork =1,2,... . These conditions are generic, and in particular include manifolds with neg-
ative curvature or negative Yamabe class, for which kp can be bigger than 87°.

In the case under investigation the functional II can be unbounded from below, and
hence it is necessary to find extrema which are possibly saddle points. As we shall explain
later, in order to find these critical points it is useful to study compactness of solutions to
perturbations of (4).

Therefore we consider the following sequence of problems:
(7) Py +20; = 2%k in M,
where (k;), are constants and where

(8) 01— Qo in C'(M).

Without loss of generality, we can assume that the sequence (u;), satisfies the volume nor-
malization

9) [e*adv,=1, foralll,
M
which implies that we must choose k; = [ Q;dV,.
M

Our main result is the following.

Theorem 1.1.  Suppose ker P, = {constants} and that (u;), is a sequence of solutions of
(7), (9), with (Qy), satisfying (8). Assume also that

(10) ko := [ QodV, # 8kn*, fork=1,2,....
M

Then (up), is bounded in C*(M) for any o € (0,1).

The main application of Theorem 1.1 concerns the case Oy = Q,. Indeed, if a se-
quence of solutions to (7)—(9) can be produced, its weak limit will be a critical point of the
functional II and a solution of (4). This is indeed verified in [26] under the assumptions of
Theorem 1.1 (with Qp = Q,). As a consequence one finds conformal metrics with constant
QO-curvature for a large class of four manifolds. We have indeed the following result, an-
nounced in the preliminary note [25] with some sketch of the ideas of the proof.

Theorem 1.2 ([26]). Suppose ker P, = {constants}, and assume that kp + 8kn* for

k=1,2,.... Then equation (4) has a solution.
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140 Malchiodi, Solutions to some geometric fourth-order equations

The proof requires a minimax scheme which becomes more and more involved as
k increases and when P, possesses negative eigenvalues. This scheme extends the one in
[24], which in our case would correspond to P, = 0 and ko € (872, 1672).

The way we use Theorem 1.1 in [26] is the following. First, for p in a neighborhood of
1, we introduce the modified functional

10, (u) = CPyu,uy +4p [ QuudVy —kpplog [ ™ dVy, ue H*(M),
M M

and, using the minimax scheme, we prove existence of Palais-Smale sequences at some level
c,. It turns out that the function p — ¢, is a.e. differentiable and, following an idea in [45]
(used also in [24], [33], [46]), we prove existence of critical points of II, for those values of p
at which ¢, is differentiable. Then we are led to consider (7) for Q; = p;Q,, where (p;), is a
suitable sequence tending to 1.

Theorem 1.1 applies also to any sequence of smooth solutions of (4). Therefore, as an-
other application, we have the following result, which extends a compactness theorem in [17].

Corollary 1.3.  Suppose ker P, = {constants} and that k, # 8kn* for k =1,2,....
Suppose (u;); is a sequence of solutions of (4) satisfying (9). Then, for any m e N, (u;), is
bounded in C"(M).

Corollary 1.3 has a counterpart in [35] (see also [21]), where compactness of solutions
is proved for a mean field equation on compact surfaces.

The case when kp is an integer multiple of 872 is more delicate, and should require an
asymptotic analysis as in [3], [20], [21], [35] (see also the references therein). An interesting
particular case of this situation is the standard sphere. Being an homogeneous space, the
Q-curvature is already constant and indeed all the solutions of (4) on S*, which have been
classified in [18], arise from conformal factors of Mébius transformations. Henceforth, a
natural problem to consider is to prescribe the Q-curvature as a given function f on S*.
Some results in this direction are given in [10], [38] and [48]. Typically, the methods are
based on blow-up or asymptotic analysis combined with Morse theory, in order to deal
with a possible loss of compactness.

The Paneitz operator and the Q-curvature can be considered as natural extensions to
four-manifolds of, respectively, the Laplace-Beltrami operator A, and the Gauss curvature
K, on two-dimensional surfaces. In fact, similarly to P, and Q,, these transform according
to the equations

(11) Aj=e A, —Aw+ K, = Kge®,

2w

where, again, § = ¢®g. Hence, in the case of a flat domain Q < R?, one is led to study

equations of the form
(12) —Av; = Kj(x)e* in Q.

In [12] the authors proved, among other things, that if (K;), are non-negative, uni-
formly bounded in L*(Q) and if [ e* < C, then either (v;), stays bounded in L (Q), or
Q

loc
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Malchiodi, Solutions to some geometric fourth-order equations 141

vy — —oo on the compact subsets of Q, or K;e?” concentrates at a finite number of points
J
in Q, namely K;e?” — " a;6,, (0, stands for the Dirac mass at x;). In the latter case, they
i=1

also proved that each o; is greater or equal than 4z. This result was specialized in [36] where,

assuming that K; — Ko in C°(Q) and using the sup-+inf inequalities in [11], [44], the authors
proved that each o; is indeed an integer multiple of 47. Chen showed then in [23] that the
case of a multiple bigger than 1 may indeed occur. On the other hand, if Q is replaced by a
compact surface (subtracting a constant term to the right-hand side, to get solvability of the
equation), then each w; is precisely 47, see [35]. The same result is obtained in [40] for ap-
proximate solutions in domains, but with an extra assumption on the L* norm of the error
terms.

Our argument for the proof of Theorem 1.1, which we outline below, relies on prov-
ing a quantization result for the volume of blowing-up solutions as in [36]. The main idea is
to show that at every blow-up point the volume is a multiple of 872 /k¢. Then, proving also
that there is no residual volume amount, we reach a contradiction with (9) since we are as-
suming that kg is not an integer multiple of 87%. However, instead of using pointwise esti-
mates on the solutions, as in [12] or [36], our results are mainly given in integral form, see
Remark 1.4.

Except for the last subsection, we work under the assumption
(13) ko € (8kn?,8(k + 1)n*), keN,
since this case contains most of the difficulties.

The plan of the paper (and the strategy of the proof) is the following. In Section 2 we
collect some preliminary facts including a modified version of the Adams inequality, to deal
with the presence of negative eigenvalues, and some L” estimates on the first, second and
third derivatives of the solutions.

In Section 3 we derive a compactness criterion based on the amount of concentration
of the nonlinear term, see Proposition 3.1, and then we study the asymptotic profile of
near the concentration points. In particular we prove that the minimal volume accumula-
tion is 872 /ko, see (39).

In Section 4, which is the core of our analysis, we introduce the notion of simple blow-
up (adopting the terminology used by R. Schoen) and we show in Proposition 4.2 that at
such blow-ups the accumulation is exactly 872 /ko. In order to prove this we use some inte-
gral form of the Harnack inequality, see in particular Subsection 4.1, combined with a care-
ful ODE analysis for the function r — i, ;. Here ii, ; denotes, naively, the average of u; on
an annulus A4, of radii » and 2r centered near a concentration point.

Finally, in Section 5 we show how a general blow-up situation can be essentially re-
duced to the case of finitely-many simple blow-ups. In particular, we prove that at any gen-
eral blow-up point the amount of concentration is an integer multiple of 872 /k¢. Recalling
the normalization (9) and that ko % 8kzn” for any integer k, we reach then a contradiction
to the fact that (1), is unbounded in some C* norm. In Subsection 5.2 we consider the case

ko < 87%, which is easier and requires only the analysis of Section 3.
Brought to you by | Princeton University Library
Authenticated
Download Date | 3/15/17 11:31 AM



142 Malchiodi, Solutions to some geometric fourth-order equations

In our proof we exploit crucially the fact that we are working on a compact manifold,
since we often make use of the Green’s representation formula. We also point out that our
assumptions on M are generic and do not require the metric to be locally conformally flat
or Einstein.

Remark 1.4. It is an open problem to understand whether the functional II itself (see
(5)) possesses bounded Palais-Smale sequences, or equivalently if it is possible to find solu-
tions of (4) without introducing the perturbed functional II,.

The reason why we kept most of our estimates in integral form is that many of them
could be applied to functions of class H? only (not necessarily smooth or bounded) and we
hope that some could be useful to understand the question. At the moment, in particular,
the counterpart of Proposition 4.2 is missing for Palais-Smale sequences and we need the
full rigidity of equation (7). For related topics see [40].

Acknowledgements. This work was started when the author was visiting IAS in
Princeton, and continued during his stay at ETH at Ziirich, Laboratoire Jacques-Louis
Lions at Paris, Sissa at Trieste and IMS at Singapore. He is very grateful to all these insti-
tutions for their kind hospitality. The author has been supported by M.U.R.S.T. under the
national project Variational methods and nonlinear differential equations, and by the Euro-
pean Grant ERB FMRX CT98 0201.

2. Notation and preliminaries

In this brief section we collect some useful preliminary facts, and in particular we state
a version of the Moser-Trudinger inequality involving the Paneitz operator. In the follow-
ing B,(p) stands for the metric ball of radius r and center p. We also denote by |x — y| the
distance of two points x, y € M. H*>(M) is the Sobolev space of functions on M which are
in L2(M) together with their first and second derivatives. Large positive constants are al-
ways denoted by C, and the value of C is allowed to vary from formula to formula and also
within the same line.

As already mentioned, throughout most of the paper we will work under the assump-
tion (13). When the operator P, is positive definite, by the Poincaré inequality the /> norm
is equivalent to the following one:

(14) HuH2:<Bqu,u>+A£u2dV;, ue H*(M).

Being M four-dimensional, H*(M) — L?(M) for all p > 1. We have indeed the following
limit-case embedding, proved in [1] and [8] for the operator A® and extended in [17] for the
Paneitz operator.

Proposition 2.1. If P, = 0, there exists a positive constant C depending on M such
that

3212 (u—i1)2

(15) }J{e @ dV, < C,  for every ue H*(M),

Brought to you by | Princeton University Library
Authenticated
Download Date | 3/15/17 11:31 AM



Malchiodi, Solutions to some geometric fourth-order equations 143

1
where it = ————— [ udV) denotes the average of u on M. The last formula implies
Vol(M) i,

Z 1
(16) logAJ/;e“(”*”) dvy, < C+ o2 (Pyu,uy, for everyue H*(M).

Here we are interested in the case in which P, might possess some negative eigen-
values. We denote by V' < H?(M) the direct sum of the eigenspaces corresponding to neg-
ative eigenvalues of P,. Of course the dimension of V" is finite, say k, and since P, has no
kernel and is self-adjoint we can find an orthonormal basis of eigenfunctions oy, . .., oy of V'
with the properties

(17)  Py=Ady, i=1,... .k WS- Sl<0<i, <

where the 4;’s are the eigenvalues of P,. Having introduced the subspace V', we need a
modified version of the Adams inequality.

Lemma 2.2. Suppose P, possesses some negative eigenvalues, that
ker P, = {constants},

and let V denote the direct sum of the negative eigenspaces of P,. Then there exists a constant
C such that

3272 (u—it)?
(18) [ e @ dV, < C,  for every function u € H?(M) with it = 0.
M

Here u denotes the component of u in V. As a consequence one has

(19) logﬁj/;e“(“*a) dv, < C+ # {Pyu,uy,

for every function u e H*(M) with it = 0.

Proof. The proof is a variant of the arguments of [8] and [17]. If #,...,; and
A1,..., A are asin (17), we introduce the following positive-definite pseudo-differential op-
erator P

i
P;_u = Pgu — 22&,(]”@,0’%)&,
i M

i=1

Basically, we are reversing the sign of the negative eigenvalues of P,. The operator P; ad-
mits the following Green’s function:

k
G (x,y) = G(x,y) — 2; A:i0;(x)0:(y),

where G(x, y) corresponds to P,. Then the arguments of [17] (see also [1], [8]), which are
based on representations for pseudo-differential operators, can be adapted to the case of
P, yielding
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144 Malchiodi, Solutions to some geometric fourth-order equations

327:2(11—17)2

fe <Bfuuy dVg <C, foreveryuce HZ(M)'
M

Applying the last formula to functions for which # = 0, we obtain (18). Finally, from the
1
elementary inequality 4ab < 327°a® + —— b, applied with a = (u — i) and b = {P,u, u),
872
we also deduce (19). [J

Theorem 1.1 is proved by contradiction. We claim that unboundedness in some C*
norm is equivalent (under the assumption (13), which implies k; > 0 for / large) to the fol-
lowing condition:

(20) lus — || — +o00 asl — +oo.

In order to prove this we first notice that, by (9) and the Jensen inequality, #; is uniformly
bounded from above. Assuming that ||u; — || is uniformly bounded (which implies, in the
above notation, that also ||u; — #; — ]| is uniformly bounded), then by (19) the right-hand
side of (7) is also uniformly bounded in L?(M) for every p > 1. By elliptic regularity, then
(u;), would be uniformly bounded in W*?(M), and hence in C*(M) for any « € (0,1) by
the Sobolev embeddings.

Hence from now on we assume that there exists a sequence (1), satistfying (7)—(9) and
(20).

We prove now a preliminary integrability result on the first, second and third deriva-
tives of u;.

Lemma 2.3. Let (u;); be a sequence of solutions of (7)—(9), with (Qy), satisfying (8),
and let p = 1. Then there is a constant C depending only on p, M and ky such that, for r
sufficiently small and for any x € M there holds

| |V3u1|pdVg < ot | V2P dv, < cr=, [ |Vu|?dv, < Crir,
B B B

where, respectively, p < 4/3, p <2 and p < 4.
Proof. We write
Py = fi,
where
(21) fi = 2ke™ — 20
We have the following representation formula:

(22) u(x) = I/_l[—|—AuLG(X, »ii(y)dVy(y), forae xeM,

where, by the results in [17], G : M x M\diag is symmetric and satisfies
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1
(23) G(X,y)—@logm éc; xvyeva:’:yv
while for its derivatives there holds
1 1
IVG(x,y)| = C ., VPG(x, y)| £ C—,
|x — ¥l |x — y\z

(24)

IV G(x,y)| £ C—

=
The last two estimates in (24) are not shown in [17] but they can be derived with the same

approach, by an expansion of G at higher order using the parametrix, see also [2]. Similarly
(this formula will be used later in the paper), one also finds that

_ L

1
= g Vxlog——+ 0(1).

(25) ViG(x, y) Xy

Recalling the definition of f; in (21), we obtain

Vil < C [—2

sIi)[dVy(y), forae xe M.
M |x =yl

Then, from the Jensen’s inequality it follows that

P
Vu |’ (x) £ C | ”ﬁ””“? Al dv,(y), forae xeM.
m\ |x— /1l L1 ar)

The Fubini’s Theorem implies

1 1
dVy(x) = C | ———=,dVy(x).
B ¥ = X

A

[ IVul?(x)dVy(x) < Csup | ———
B.(X) veM gz |x — y|

The last integral is finite provided 3p < 4, as in our assumptions, and can be estimated using
polar coordinates, giving

| VPwlP(x)dVy(x) < C(p, M)
B,(%)
This concludes the proof of the first inequality in the statement of the lemma. The remain-
ing two follow similarly. []

3. The bubbling phenomenon

In this section we study the local behavior of unbounded sequences of solutions at a
concentration point. In Subsection 3.1 we give compactness criteria when the amount of con-
centration is below a certain threshold. Then, in Subsection 3.2, we reduce ourselves to the
preceding situation using a scaling argument. As a byproduct we describe the asymptotic
profile of u;, proving that it has the form of a standard bubble, and we show that the amount

of volume concentration at any blow-up point is greater or equal than 872 /k.
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146 Malchiodi, Solutions to some geometric fourth-order equations

3.1. Concentration-compactness. In this subsection we give a concentration-
compactness criterion for solutions of the equation P,v = & on M. In the case of the sphere
a similar result has been shown in [9], and our proof basically goes along the same line.
However we prefer to write the details, since some of them will be needed in the following.

Proposition 3.1. Ler (h), < LY(M) be a sequence of functions satisfying
f || dV, < C for every I. Let v; be solutions of Py = hy on M. Then, up to a subsequence,

elther for every [

fe“(”’*a’) dVy, < C, for some C > 0 and some o > 4,

M
or there exist points xi,...,x; € M such that, for any r >0 and any i€ {1,... L} there
holds
(26) 11m1nf [ || dv, = 8x*.
=40 B )

Proof- Assume the second alternative does not occur, namely

(27) for every x € M there exists r, > 0 such that [ || dV, < 8z* — oy,
B’x (X)

for some J, > 0 and for / sufficiently large.~ We cover M with j balls B; := B (x;),
i=1,...,j. Using (22) and setting B, (x;) = B;, for a.e. x € B; we can write :

(28)  w(x) b= [ (»)G(x,p)dVy(y) + [ l(»)G(x,p)dVy(y).
B; M\B;

Hence if « > 0, for a.e. x € B; we have

(29) explo(vi(x) — 1) ] = exp [ J oG (x, y)hi(y) dVg(y)}

B;

X exp[ | oG(x, »)u(y) dVg(J’):|

M\B;
Since G is smooth outside the diagonal, and since [ || dV, is uniformly bounded, there
M

exists a positive constant C (independent of /) such that

exp| | aG(x,y)(y) dVg(y)] < C, foranyxeB,.
M\B;

Then by (29) we have

(30)  [expla(vi(x) — )] dVy(x) = C J"GXP[ J oGO, p)HAi(Y) g, dVy(y)| dVy(x).

B; B; M

Now, as in [12], we can use the Jensen’s inequality to get

x| ()
exp| [ |G (x, )| ()5 Vi ] T explalza i) | G y>|1h37dv< )
M | 043 ”Ll
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and hence, by the Fubini Theorem and (30)

IJGXP[ a(vi(x) = B1)] dVy(x) < Cysllp J explallhug, |l 11| GOx, ) dVy(x).

By (23), there holds

O‘Hh/ZgiHLl(M)

872
[ explillngs, o |Gx, 9) ] V() < € J( ! ) 4V, ().
M M |x J’|

The last integral is finite if

o|| iy s
(31) W<4 s a [V, < 3272
)

By (27), this is satisfied for some o > 4 provided we take / sufficiently large. We have shown

that | e*v=) qV, < +oo for every i = 1,..., L. Since M is covered by finitely many B;’s,
B;
the conclusion follows. []

Remark 3.2. Using the same proof, it is possible to extend Proposition 3.1 to the case
in which also the metric on M depends on /, and converges to some smooth g in C”'(M) for
any integer m. We have to use this variant in the next subsection.

3.2. Asymptotic profile. We consider now the alternative in Proposition 3.1 for
which compactness does not hold, applied to the case h; = 2k;e* — Q;. We assume that
there exist p € (0,72 /ky), radii (r/),, (7), and points (x;); £ M with the following properties:

2

(32) B0, L0, [ emdv,=p, [ eMav, <k

A

! Br[ (X[) Br,(y
for every y € B, (x;).

Remark 3.3. If the second alternative in Proposition 3.1 holds, an example of the
situation described in (32) is the following. Choose r;, x; satisfying

(33) [ e*dV,=sup [ e*dV,=p
Br/(xl) xGMBr/(x)

1
Then r; — 0 as [ — +o0, and we can take #; = r;.

Given a small 6 > 0, we consider the exponential maps
exXpy : B — M, exp)(0) = x,

where B(s = {x e R*: |x| < 5}. We also define the metric §, on Bé by g, := (exp;)”g, and
the functions # : BF' — R by

i) = uj o exp;.

Now in R* we consider the dilation 7} : x — r;x, and we define another sequence
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~ - 4
(34) w(x) = a(Tix) +logr, xeBY.
l']

Using a change of variables, one easily verifies that the function #; solves the equation
Py ity (x) 4 20(x) = 2k x e B(5R4.

Hence, setting g, = r;27,°g, and using the conformal properties of the Paneitz operator we
obtain that #; satisfies

(35) Py iig(x) + 25} Qi(Tyx) = 2kie®™ ™) x e BE'.
r

" (R*) to the flat metric (dx)* for any integer m. Also,
since (Q;), are uniformly bounded functions on M, one also finds

Note that the metrics g; converge in C|”

11Q5(Tir) — 0 in CP(RY).
By (32), using a change of variables we obtain

(36) p= et dv, = | P dvy,,
B, (x) Lexp)) ™ By ()

1
where 0;(1) — 0 as / — +o00. Note also that the sets . (exp;) ' B,,(x;) < R* approach the
I

unit ball B{R4 as [ — +o0. Moreover, by the last inequality in (32) and by our choice of p, it
is easy to derive that

7Z2

(37) [ ey, < o for every y € BEA.
BE(y) 0 i

Regarding the functions #;, we have the following convergence result.

Proposition 3.4.  Suppose p € (0,7%/ko), (1), (71);, (x1), and (w;), satisfy (32), and let
(i), be defined by (34). Then there exists A > 0, xo € R* and o€ (0, 1) such that

W — G in CF(RY) and in HY (R*)

for some o € (0,1), where the function i, is given by

22 1 1
38 o (x) =log——=——————log(=ko ), xeR*%
(39) (9 =tog 3 1og( 50
Moreover, if by — +oo sufficiently slowly, one has
2
(39) i e“”’dVg—>8i as | — +oo.

ko

Bb,rl (XI)

Proof.  Given R > 0, we define a smooth cut-off function Wy satisfying

Yr(x) =1, for|x| < R/2,
Wr(x) =0, for|x| = R.
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We also set

wdVy, v =Yriy+ (1 —Yr)a; = a;+ Yr(i; — ay),
|Bg |B,ﬂ§4

ﬁ] =0 —da.

We notice that the functions v; coincide with a; outside B * and that oy 1s identically zero
outside BR By Lemma 2.3 and some scaling argument one finds

4

@0 TVl VR Vil v, = Cro Ten. pe (1)
By

and hence by the Poincaré inequality (recall that the 9;’s have a uniform compact support)

it follows that

4
(41) | |o)? dv;, < Cr, leN,pe(1,§>.

B

By (35) there holds
(42) Py = (Ag,)*[Wr(iy — ar)] + Li[¥r(d — ar)]
= ‘PRPg[ﬂ/ + il(f{/ —aq) = Zk[‘PR€4ﬁl + ﬁ,
where

£ = Li(iy — a) — 24 Qi(T7-).

Here (L), are linear operators which contain derivatives of order 1 and 2 with uniformly
bounded and smooth coefficients. Also, (L), are linear operators which contain derivatives

of order 0, 1, 2 and 3 with uniformly bounded and smooth coefficients. As a consequence,
by (40) and (41) one has

) Ul dv = oo 1o, pe(15).

B
Hence using (37) and Remark 3.2 one finds

(44) [ e*dv; < C, forsomeq > 1
By

and for some fixed constant C. Remark 3.2 applies indeed to the case of a compact mani-
fold while in the present situation we are working in R* (endowed with the metric g,). But
since all the functions o; vanish identically outside B}? , we can embed a fixed neighborhood
of (BY > R .d1) 1nto a compact manifold, a torus for example, such that its metric (coinciding
with g, on B; R) converges to the flat one.

On the other hand, from (37) we deduce
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1 1 )
Judvg £ — [ eMdV; < C,
4BE e

. A 4
and from (36), since v; = @ in BY

C71 é J‘ e4v] d%[ é e4a1 J‘ e4ﬁ/ dVb[ é Ce4a,.

R4 R4
By By

This implies @; = —C, and hence we find

la/| < C.

As a consequence of this estimate and (44) we get the following uniform improved integra-
bility for #; (recall the definition of v; and ¥;)

[ e*™dv;, < C, for some g > 1.
B
This estimate, joint Wittl (40), (42), (43) and standard elliptic regularity results, yields that
is bounded in W*4(BY"). Hence, by the arbitrarity of R, (&), converge strongly in C_(R*)

for some o € (0, 1) and strongly in HZ (R to a function @, € Cf_(R*) U H2 (R*).

Now we prove that #,, has the form in (38). First of all, we test equation (35) on a
smooth function ¢ with compact support. Integrating by parts we obtain

Py, o) + 2r) LQ;(T,.)MV@ =2k £e4ﬂ’(pdVgl.
R R

As [ tends to infinity we get

<PR4ﬁOO,¢> = 2k j e‘m‘”q)dVth + 01(1).
R

Hence the limit function ., satisfies
(45) Alsiie = 2koe*™  in RY,
and, by semicontinuity

(46) [ ¥ dVgs <1,
R4
since by (9) and some scaling there holds [ e* dV < 1.
BY
7
The solutions of (45)—(46), with ko > 0, have been classified in [37], and one of the
following two possibilities occur:

(a) 1y, is of the form (38), or
(b) Agstis, has the following asymptotic behavior:

(47) —Apsti,(x) — a >0, for|x| — 4.
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Following [43], we show that the second alternative does not happen. In fact, assuming (b),
for R large we have

I=+o0 g

By

(48) lim [ (=Agi)dVy, = [ (—Agsit) dVigs ~ %aR“,
BR*

where w3 = |S?| = 272, Scaling back to M (recall that the dilation factor is r;), we obtain

(49) lim [ (—Aw)dV, ~ CaR%7},

=+ BR,A/ (x))

for some C > 0. On the other hand, by Lemma 2.3 we get

(50) [ (=Aw)dV, < Cor?R>.

BRr, (X[)

Taking R sufficiently large, from (49) and (50) we reach a contradiction.

Hence the alternative (a) holds and #., arises as a conformal factor of a stereographic
projection of S* onto R*, which must satisfy

2
(51) [ et qyr, = 5
ko

R4

This concludes the proof. []

4. Simple blow-ups

In this section we consider an unbounded sequence of solutions (u;), and we examine
a particular class of blow-up points, which we call simple, in analogy with a definition in-
troduced by R. Schoen. In Proposition 4.2 below we give some quantitative estimate on the
concentration at simple blow-up points. Then in the next section we show that every gen-
eral blow-up phenomenon can be essentially reduced to the study of finitely many simple
blow-ups. In the following /(M) denotes the injectivity radius of M.

Definition 4.1.  If (1), satisfies (7) and (9), we say that the three sequences (x;), = M,
r1— 0, (s1); € Ry, |s;| < i(M) are a simple blow-up for (u;), if the following properties hold:

2 1 1
u—log— — - log| =k
T A g<3 °>

(53) Vp>03C,>0s.t.if [ e™dV, = pwith By(y) < By, (x/)\Bry(%),
By(y)

— 0,

(52) 2 4o0,3R — o0 st
& HYBE)nC*(B')

then s > Cp‘l\y — x1l,
where #; is defined in (34).

The main result of this section is the following proposition.
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152 Malchiodi, Solutions to some geometric fourth-order equations

Proposition 4.2.  Suppose (x;),, (r1);, (s1); are a simple blow-up for (u;),. Then there
exists a fixed C > 0 such that

4 8n?
(54) | eMdvy=—+o(1),
B\, (x) ko

Cly

where 0;(1) — 0 as | — +o0.

Remark 4.3. (a) We notice that, if #; satisfies the assertion in Proposition 3.4, it is
always possible to modify (x;), and (r;), in order to get xo =0 and A = 1.

(b) Proposition 4.2 is basically an improvement of formula (53) to a sequence of sets
with larger size.

The proof of Proposition 4.2 is based on the analysis of the next two subsections.
In the first we prove some Harnack inequality in integral form while in the second, de-
fining

(55) Ay={xeM:r<|x—x/|<2r},
we study the average of «; on A4, ; as a function of r.

4.1. Integral Harnack-type inequalities. In this subsection we prove some integral
Harnack-type inequalities for the functions (), near simple blow-ups. Although it is maybe
possible to get pointwise estimates on the solutions, for our purposes it is sufficient to ob-
tain integral volume estimates. We need first a preliminary result involving the average of
the Green’s function G on annuli. Given p € (0,72 /ko), let C, be the corresponding con-
stant in (53) (which we can suppose bigger than 1), and we define the following sets:

5 7
(56) A,"J = {xeM:Zr <|lx—x< Zr} S A1, re(Rr,s),

(57) B.(x) =B__(x) < A;),, B.(x) = B-_(x) A;’l, Xe A;J.

16C, 8C)

Lemma 4.4.  Suppose (x;); = M, (s;); = Ry, |si)| < i(M), and let A,, 4], B, (x) be
defined respectively in (55), (56) and (57). Then there exists a positive constant C = C(C,),
independent of v and | such that, setting

1
fra(y) = |A—M|A{1G(27 y)dVy(z),

there holds

1 1 ~
(58) Sra(y) — ) log; < C, foreveryxe Ay, ye€ % (x),

\fri(y) = G(x, ¥)| = C,  foreveryxed], ye M\%,(x),

r<i(M).

Proof. We first notice that the following inequality holds:
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(59)

T
)—togy| < C, bl 4

where

A ={xeR*:r<|x|<2r}, f(y)=

[ log dVgs.

[Arlge 4, 12 = Ve
Here |A4,|g+ stands for the Lebesgue measure of 4, and |z — y|g+ denotes the Euclidean dis-
tance.

The inequality is indeed trivial for r = 1 since £;(y) is bounded on B‘”S‘t, while for a
general r it is sufficient to use a scaling argument. We use (23), the exponential map and
standard geometric estimates on M (see (69) below for the volume element) to write

1
87Z2ﬁ’1( ) |A, I|AI 10g| Z|dV;](Z) + 0(1)
(1+0(r?)) |Ar|R4f{10g|y —— (1+0(r%)) dVis + O(1)

= (14 0(™) /() + 0(1),  ye By(x).
Jointly with (59), this proves the first estimate in (58).

The second one is trivial for y € By (x;)\%,(x), by the preceding argument. For
¥ € M\ By, (x;), we notice that

—1< |Z_y| < /
= = b ) r.l?
C Xy C, forzed,; xed,,

and we use again (23). This concludes the proof. [

Next, we prove some inequality involving the integral of the function e* and the av-
erage of 1 on small annuli. We recall the definitions of 4, and 4/, in (55) and (56), and
those of %,(x), %,(x) in (57).

Lemma 4.5. Suppose that (x;), € M, r; — 0, (s1); € Ry, |si| S i(M) are a simple
blow-up for (u;),. Suppose R; — +0, and define

iy = j u;qu, Rirp <r<sy.
| r, l| Ayl
Then, if | is sufficiently large, there exists a positive constant C (independent of | and r) such
that

fe4”’ dVy < ClA, le*r, R <r<s.
A/
Y
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Proof.  Using (22) and recalling the definition of f; (see (21)) and that of f.; (see
Lemma 4.4), we have

iy, = Ul + Agfr,z(y)fz(y) avy(y).

For x € A’ ,, we divide the last integral into 4,(x) and its complement, to obtain

rD>

exp(4(a ) =exp (4 [ LA Jep( [ LU 0)).

B,(x) M\%,(x)

Using Lemma 4.4 and the fact that (f;), is bounded in L' (M), we then find

1 1
exp(d(a — 1) = €' expl 515 og, [ 1) W) exo <4M\f Gl ) d7,()

B (x)

Hence, integrating on 4, ; we obtain
oy
gafrj(x)l Vg
o N\ 22
o) fem ez e la(s) T en(s | GaAm o).

Ari M\%,(x)

On the other hand, again by (22), for x € 4;; and a.e. z € %,(x) we have also

w(z)—wm= | Gy iy)dVy(y)+ [ G p)fi(y)dVy(y).
M\ %, (x) Br(x)

Then, exponentiating and integrating on %,(x) we get

(61) | M (2) =) dv,(z)
Br(x)

= Jew(4 [ GENAN) ) ew(4 | GENAOAM) e

B (x) M\%,(x) B, (x)

< swp ew(4 [ GENA) [ ew(4 | GEn i) ) ).

ze%(x) M\Z,(x) B;(x) 2%,(x)

J 1)

Now we write

J G dVy(y)= | Gl p)fi(y)dVy(y)
M\%B,(x) M\ %, (x)

+ [ (G(z9) = Glx, ) fily) dVy().
M\B, (3

Using (23), for z € 4,(x) and y € M\%,(x), we have

1 2=yl
G(z,5) = G(x,y) = O(1) + ¢ log Xy o(1).
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As a consequence we deduce

(62) J éCexp<4 J G(x,y)fz(y)d%(y))-
M\

B (x)

We now turn to JJ. Since z € %,(x) and y € %,(x), G(z, y) is positive (for r sufficiently
small), and hence

| G dvy(y) £ [ G »Ifil(y) dVy(y).
B, (x) B (x)

Using the Jensen inequality, as in the proof of Proposition 3.1, we obtain

exp(4 f G<z,y>ﬁ<y>dv.;<y>) < T (Gl ) T — V)

4% 4 fill L1, )

Again (23) implies

W [ e [ en(6E DAl P ar )

B,(x) %, (x) /il 21 (%

LY (3, )

LT o)
€ dv@ | (\z—y\) Tl )

#,(x) %,(v)

lIA

Now, the Fubini theorem and some elementary computations yield
11 i)

1 22 4 I L1 ()
(63) JJ<Csup [ dVy(z) (—) <Cr T .
yeM z,(x) |z — ¥l

In the last inequality we have used the fact that || fi[| 114, v i uniformly small since we are
dealing with a simple blow-up, see (53), and since we have chosen 4, (x) suitably. This im-
plies that the last constant C is independent of r and /. From (61), (62) and (63) it follows
that

B HleLl(gZ,(X))
[ e gy () < o2 exp<4 J G(x,y)f;(y)dVg(y)).

#,(x) M\G, (x)

Now the assertion of the lemma follows from the last formula, (60) and the observation
that, since f; = 2kie™ =20y, it is |fill 1z, = | fidVy+ O(r*), and hence

L

11 Gy &)

() 7
T < ClA, <%> independently of r and /.

This concludes the proof. []

Next we show some further estimates involving the Laplacian of ;. Recall that we

have set f; = 2ke® — Q, see (21).
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Lemma 4.6. Suppose that (x;); € M, (%)), (S1); € Ry, i(M) = S; > %; > 0, and that
(up), satisfies (7) and (9). Suppose also that

[ eM™dv, <e

BS[(X/)\B?:l ()C/)
Then, for any R > 0 sufficiently large and any r € [£; + R, S; — R], one has
15
| lx— x1|2(—Au;(x)) dVy(x) = (§ [ fidV, +or(1) + O(eR?) + or(1)>r4,
A Bi(x[)
R

where og(1) — 0 as R — +o0 and 0,(1) — 0 as r — 0.

Proof.  We can write (7) in the following form:
—A(=Au) = fi + Fi(w),

where F; is a linear expression in Vu; and Vu; with uniformly bounded coefficients. If G is
the Green’s function for the (negative) Laplacian on M, then it is a standard fact that

(64) G(x,») = (1 +o(1)) m, (x,y) € M x M\diag,

where o(1) — 0 as |x — y| — 0, see for example [2]. Hence, using the representation for-
mula, for a.e. x € 4,; we obtain

(65) — Auy(x) IG x, ) fi(y) dVy(y) + IG(X Y)Fi(ur)(y) dVy(y)

=vy,1(x) + v2,1(x).

Given R > 0 large but fixed and for |x — x;| = r € [¥; + R, S; — R], we write

vi(x) = [ G, AW AV,(»)+ [ Gl ) fi(y) dV(y)

Br(x1) Bre(x1)\Br(x1)

+ [ G, ) fiy)dvy(y).

M\BR,-<X[)

From the asymptotics in (64) and some scaling argument we obtain (for x € 4, ;)

j GA(X,y)f](y)qu(y) = (1 +0r(1)+0R(1 )4 2,2 JnfldVl]v

Br(x;)

L
R

G(x,y)fi(y)dVy(y)| < :
M\B‘,[,.<x,) (e ) fi(y)dVy(p)| £ &)

where 0,(1) — 0 as r — 0 and og(1) — 0 as R — +o0. Moreover, by our assumptions and
(21), we have

I ) dvy(y) £ Cer filx) =2 -
Bre(x1)\Br(x1)
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where C is independent of r, and /. Using the Fubini theorem and reasoning as in the proof
of Lemma 2.3 it follows that

[aVyx) [ Gx,»)A(y)dVy(y)| < CeRP.

A1 BR:-(XI)\B%(XI)

The last formulas imply

(66) [ b= xfon(x) ¥y (x) = (1 LG | v+ 0’ + 0(%)) Ao

2
A dr

= (5§ AV or(1) + 0GR +01))1*
Br(x))

R

To study the integral of v, ;, we use again the representation formula and we write

i sc [ !

S (IV2u|(v) + [Vur| () dVy(»)
B (x1) |x - J/|

1
+C [ (IVul(y) + [Vurl () dVy ()
MA\B, /:(x1) |x — ¥

+C |

S (IV2ul(p) + [V () dVy(y) -
B(x)\B2 () [X — V|

~~

JJJ

To estimate the first and the second integral, we notice that |x— y| = C~!r and
|x — y| = C~'/r for respectively y € B,2(x;) and y € B ;(x;) (recall that x € 4, ;). Hence
using Lemma 2.3 it follows that

o o (Vl0) + V) an ) < 6
(V2ul () + Vual(2) ¥4 () <

2
M\B, /;(x1) |x — ¥l
. . . . 1 1
To estimate the third integral we use the Holder’s inequality to find, for —+— =1,
p P

1 1

1 » ’ »!
mze( ) (Vule)+ vul) dv)
B s (x1)\B,2(x1) X — | B z(x1)\B,2 (x1)

Again by and Lemma 2.3 it follows that for p > 2 (and hence for p’ < 2)itis JJJ < Cri 4,

6 e
If we choose p € (2,3), then e 4 > —2, which implies JJJ < o,(1)r?, and hence also

2
(67) J"vz?;dVg:o,(l)r .
Ah/
Brought to you by | Princeton University Library
Authenticated
Download Date | 3/15/17 11:31 AM



158 Malchiodi, Solutions to some geometric fourth-order equations

Then, choosing first R sufficiently large and then / sufficiently large, (65), (66) and (67) con-
clude the proof. [

4.2. Radial behavior. The next step consists in studying the dependence on r of the
function i, ; defined in Lemma 4.5. It is well known that in geodesic coordinates the metric
coefficients g; have the expression

1
(68) gij(x) =6 — gR,-,g,xkxf + 0(|x]?),

where R;j; are the components of the curvature tensor, see for example [34], and the volume
element satisfies

(69) dV, = \/detgdVgs = (1 + O(|x]*)) dVpps

with Vy/detg = O(|x|) and V*\/detg = O(1).

Using the exponential map at x;, we can use coordinates r, § in a neighborhood of x;, where
r=|x| > 0and 6 € S*. In these coordinates the volume element dV;, and the surface element
do, take the form

dv, = r*f(r,0)drdo, do,= f(r,0)do,

where f is a smooth bounded function on {r > 0}. Using these coordinates, considering a
regular function /4, and letting A7 = Bo;(x;)\Bs(x;), one has

ar oh oh
fhd%:fr3drfh(r,0)f(r,0)d0, —(r,0) = —(r,0),
A; r S3 @V ar

where v denotes the exterior unit normal to 0B;(x;).

We also use the coordinates z, 0, where z =logr. In these new coordinates we
obtain

dV, = e*f(z,0)dzd0, do, = e*f(z,0)do,
where f(z,0) = f(e?,0), and

s+p
[hdV,= [ d= [ h(z,0)/(z0)¢* do, %(z, o)== 0)
Ar

s S3 0z

Here we have set f = log2 and s = log7. From (69) we also find

2
10) S0 =100, Leo=0e), L= o)

Now we can write
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(1) %ithg = [z 00"/ (z.0) o)t
sth 9
= J 5 (= 00e%f(z,0) dodz
= Tﬁ j Oh 4Zf(z do d-
N S3
+ Tﬁfh(z (4f z,0)e* + af(z,@)) d0 dz.
s S3 62

Taking a second derivative with respect to s, from the above formulas we obtain

62 oh 4z s+
i [V = [ 5 GO0 do +4—jth

z=s

L9 (fﬁ [tz 0e= L (2, 0)d0 dz>

0s\ 5 & 0z
2:0h o 40
= fe dog+4 fth+ | [ h(z,0) a—( z,0)d0dz |.
s S3

Using the coordinates (r, 0) and integrating by parts we derive

fez“ da(: fr—hda—jrzAth thr dV—l—Jha
0A; 04

= J"rzAth —8]"th +2 fhe““daq—kf r? —8)hdV,.
0A5

By the last two formulas we finally get the following equation:

0? 0
(72) o5 [ hdVy=6-[hdV,—8 [hdV,+ [ PAhdY,
Ai Af A; A;

+ [(Ar = 8)hdV, + <Tﬂjh( 0)c* a—f(z,H)dez).

Aj s 83

Next we want to apply (72) to the case of & = u;, and derive a differential equation involv-
ing the average i, ; of u; on the annuli 4, ;.

Lemma 4.7. Suppose that (x;), =€ M, (s;1), € Ry, i(M) = s; > 0, and that (u;), satis-
fies (7) and (9). Then, for every I and every r < s; we let

Wi(z) = [ wdVy, z=logr,

1
Vo 1( r, I)A
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160 Malchiodi, Solutions to some geometric fourth-order equations

where A, is defined in (55). Then the functions W(z) solve the following equation:
[ A dv,

(73) W(2) +2(1 + 0(¥) W) (z) =

2z
Voi(a,) o)

forze (log(am), log sl).

We first notice that Wj(z) coincides with #.; up to the change of variables
r— z=logr.

Proof.  We first let

Wiz)= [wadV, Yi(z)= [dV, z=logr.

We have clearly | |
o _ (W)Y _ W () Yi(e) = YO Wi(z)
w0 =(Yig) = Y76 ’
and
W(z) = Y)W/ (2)Yi(z) = Y/ (@) Wi(2)] = 2Yi(2) Y/ (2)[W](2) Yi(2) = Y/ (2) W;(z)]‘

Y14(Z)
Using the last two formulas and (72) with 4; = 4, ; and h = u;, after some calculation

(which also uses (71) with / replaced by ; %) we obtain

[ A dv,

W) = () - 291 W) +
e AV TN R
+ [ J(Agr —8)u1+f&< TG >e f+fu17(4fe +e E) "G
3 o o .
— [JAP =)+ % (%)e‘”f + % <4fe42+e4zg—/;> j;j’(ez)'{ .

We notice that, adding and subtracting the average of i, ; to u;, some cancellation occurs.
Moreover, from (70) and (71) we get

4z 4zg
Y/() G

Z>_ eZz
5 R 71 R

Therefore, using these remarks we obtain
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f r2A9u1 dVg

W}'(2) = =2(1 + O W/ () + s
_ o
(g — ttr.1) =~
+ I(Agr2—8)(u;—ar,1)+j%<_ul jil az>ezf
of o
a2 (e s | S
+ [(wr — @y, 1) 7 <4fe +e 62) EE
0 7 7z o\ | S = 1)e®sf
oz z oz z z Up—urg)e
— |J(A? = 8) + [ = <7>e4f+f7 <4fe4 + e &) TP

We next estimate the terms in the last three lines of this expression. We begin by noticing
that (Ar? — 8) = O(r?), which can be deduced from elementary computations in local co-
ordinates. This and the Poincaré inequality imply

‘J"(Agr2 —8)(wy — @y,1) dV,| < Ce* [ |Vuy|dV,, z=logr.

A/‘.I

From Lemma 2.3 then one finds

’J"(Agr2 —8)(wy — @1, ;) dV,| < Ce®.
. . Oouw;  Ouy Or . .
Similarly, using (70) and also the fact that il O(e”|Vuy|), we obtain
_ 0
0 (s —tr.1) 67]; 4z 2z = 3z
I\ ——F—= || = [ OeD)u — il dVy+ [ O(e)|Vui|dV
aZ f Ar,/ Ar,l

< Ce%.
Reasoning in the same way for the remaining terms we finally deduce

[ r*AzhdvV,
VV//(Z) + 2(1 + O(ezz)) VV}/(Z) — A/‘JW_’_ 0(622).

Then the last four estimates imply the first equation in (73). [

Remark 4.8. Using (71) with 4; = 4, ;, and with &7 = u; (or with 7 = 1 to compute
Y/), we obtain
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162 Malchiodi, Solutions to some geometric fourth-order equations

_[ T/l[(4fe4‘ +e4é f 4kf) j aul:| Jﬂf‘L _|: J‘ 4e4zf+e4zz—j;
Ar A1

Ar1
2
(1)
Ayl

If we denote again by i, ; the average of #; in the annulus 4, ;, adding and subtracting i, ;
from u; in the last formula we get some cancellations and we are left with

J’ ulfe4z
Wy (2) = o

e ) g 3] g [ 8] fousire

IJ/l/(Z) _ _ Ay rl

<Aﬁf (1)

As a byproduct of this formula and the Poincaré inequality we deduce

J =@, dV, J Vu|av, I V| av,

|I/I/l/(z)| é CArJ —’—C}"AH S CrAr.l

Y](Z) Y](Z) - Y](Z)

Then, applying Lemma 2.3, we find
(74) W/ (=)l = C.

In the next lemma we study the solutions of (73) in the case of a simple blow-up.
When xp = 0 and 4 = 1, the function #,,, see (38), is of the form

i (x) =1lo 2 +110 3
0 g 1+|x|2 4 gko.

From straightforward computations one finds

. 15 1 15 3 1
Afu Vis = 27 {4r410g2+4r410§:,f<1 +4r2)+8 4 —Zr2+110g(1 + 4r?)

1 1 )
- 10g(1+r2>—zlog(1+r )]

Scaling back to u;, using (52) and some elementary estimates one deduces (for 7 > 0 large
and fixed)

W (logr;+t) = =2t + C —logr; + O(e ) 4+ 0,(1),

(75) |
W/(logr;+t) = =2+ O(e ) + 0/(1),

where C is some explicit positive constant.

Now we prove some upper bounds for the function W;. Notice from (75) that W, at

z = logr; + ¢ (¢ large and fixed) has slope close to —2. Given y € (1,2), we consider an affine
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function hty ; which coincides with W; for z ~ logr; and which has slope —y > —2. The next
lemma asserts that indeed W;(z) < ! (z) until z gets close to logs;. This is helpful to get in-
tegral estimates on e** which is done at the end of the section.

Lemma 4.9. Suppose (x;),;, (1), (s1); are a simple blow-up for (u;),, and let (W), be
given by Lemma 4.7. Given y € (1,2) and t > 0, consider the following functions:

h}(z) = —y(z —logr, — 1) + Wi(logr; + 1).
Then there exist t; — +oo arbitrarily slowly and C, > 0 such that for | large
Wi(z) £ h (2), zellogr +1,logs — C,).
Proof. Recall that (W), are solutions of (73) satisfying the initial conditions (75) for

any large and fixed . If #; — +oo sufficiently slowly, we can also replace ¢ by # in (75),
namely we can also assume that

(76) Wi(logr; + 1) = =21+ C —logr; + o/(1), W/ (logr; + t;) = =2+ o/(1).

Suppose by contradiction that there exist § € [logr;,logs;], with logs; — §; — + o0
such that W intersects ht} ; for the first time. We notice that, by the asymptotics in (75), it
must also be §; — logr; — t; — +oo if 7 — 400 sufficiently slowly. Then we have

Wi(s) = hy (5, W/ (51) = —.

We now choose a sequence of real numbers (H;), by means of the following condition:

y+2

72
H =sup{HeR: h)+H < W in [logr; + t1,5]}.

By (75) it must be H; — —o0 as [ — +oo (provided #; — + oo sufficiently slowly), and there
exist §; such that

e y—|—2

(77) Wis) = hy ) + Hi, W) = ===, W'G)z0.

Moreover, by (74) and (75), §; satisfies
(78) I5) — 8| = 400 asl— +oo, |§—logr—t| — 400 asl— +oo.
Next we claim that, for C > 0 sufficiently large, the following property holds:

(79) | eMdVy, —0 asl— +oo.
Bi Y/)\B '/l Y/)
T

In order to prove this claim, let us recall that by our choice of 5, it is W(z) < ] ,(z) for
every z € [logr; + 1;,5]. Dividing the region Bj; (x;)\B,u,(x;) into concentric annuli 4,
(see (56)) of suitable radii, we get <
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164 Malchiodi, Solutions to some geometric fourth-order equations

| et dv, < 21’: [ e*ay,
g = 9>

B (x)\B,y,, (x1) J= OA,'”J
el :

PP 7y Zj’e 5 et 5 e
Li=35%"\5) \5 4 Celir;’2 Celiry)

Given y € (1,2), from Lemma 4.5 it follows that

where

4 . 24 4 (og#,
| e dvy, < Cld;,  le*" s < Cif 1o < CFf e 110875)

A
’1/1

)

From the expression of /] ; and (76) we deduce

“f 4 (l0g 1) < Cf;fj exp[4(—y(logi’;,_i —logr;— 1) — 2t + C— logr; + 01(1))]

= C#}} jexp[—4ylogh,; + 4(y — 1) logri + 4(y = 2)1; + C + 0/(1)]

4(y—1) 4(y-1) 4(y-1)j
<C A eH-2u — ¢ S ’ eA0=2u é ’ ].
Frj 4eti 7

Hence it follows that

4 5 4(y—1) M) © /5 4(y—-1)j
| 1dv, <C<4e/> e 'Z<?> — 0,

By (0)\B,u, (x) j=
C

since y € (1,2) and since #; — +oo. This proves (79).

e’
E B
and (79), we can choose ¢ = & — 0 and R = R; — + oo sufficiently slowly. Therefore, from
Lemma 4.6 and Proposition 3.4 (see in particular (39)) we deduce that

We can now apply Lemma 4.6 with X; = e'r), S) = and logr = §;. Also, by (78)

J Ix—mlz(—Auz(X))d%(x)=<%B j( )f;dV +o,(1)>e4ffg (3072 + 0s(1)) e*".

R/

On the other hand, from (73) and the last two conditions in (77) we find

Aegl‘l

| x—= x1|2(—Au1(x)) dV,(x) = [— w/"(5) — 2(1 + O(ezg’)) W/ (s1) + 0(625’)] Y(5))

Aejl,[

2

S[y+2+o0i(1)) (1527'5 + 01(1))645’.

Since y < 2, from the last two inequalities we get a contradiction. This concludes the proof
of the lemma. []

We are finally in position to prove Proposition 4.2.
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Proof of Proposition 4.2. It is sufficient to apply Lemma 4.9 and to reason as for the
proof of (79). In fact, in this way we get

| e4“’dVg—>O as | — 4o0.
By (0)\B,y, (x1)
i

Moreover, choosing b; = e in (39) and #; — + oo sufficiently slowly, we also have

The last two formulas yield the conclusion. []

5. Proof of Theorem 1.1

We prove first the theorem under the assumption (13), and we postpone the remain-
ing cases to a second subsection.

5.1. Proof under the assumption (13). In this subsection we show how a general
blow-up phenomenon can be essentially reduced to the case of finitely-many simple
blow-ups. We divide the proof into three steps, and we always assume that (u;), is a
sequence satisfying (9) and (20). We recall that the integer k is defined by the condition
ko € (8kn?,8(k + 1)n?).

Step 1. There exist an integer j < k, sequences (x1;),...,(x;;); € M and radii
(ri,0)ps -5 (i) (F10)ps - - -, (Fj0); — O satistying the properties (for some o € (0, 1))

(80) :’—j — +oo (slowly) as I — o0, By, N B, =0fori=+h,

(81) VR>0 ﬁz,ielog%‘xﬁ—%log(;ko) in H*(B¥') ~ C*(B¥') as | — + oo,

J
(82) Vp>013C,>0s.t.if [ e*dV, = pwith By(y) € M\U By, (i),
By(y) i=1

then s = Cp‘ldl(y),

where d;(y) = nllin | — xi4]. Here 4 ; denotes the function obtained using the procedure

i=l,..,j
in Section 3, but scaling around the point x; ; with dilation factor r; ;.

In order to prove Step 1, we consider a small number p > 0, say p € (0,7%/k), and
we define sequences (x1;); € M, (r1,;); € R, satisfying

[ e*™dV,=max [ e*dV,=p.
By (1) XEMB"L/(X)
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166 Malchiodi, Solutions to some geometric fourth-order equations
If (20) holds, it must be r1; — 0 as / — +oco. In fact, if it were 1 ; = C~!, we could apply

Proposition 3.1 to get uniform L? bounds on e*®~%) for some p > 1. This fact and the
Jensen inequality would yield

1= e [ gy, < Ce*, i < C,
M

and hence uniform bounds on ¢* in L?(M). This would imply, by elliptic regularity results,
uniform bounds in H?(M) on (u;),, which is a contradiction to our assumptions.

Then, if 7 ;/r ; tends to infinity sufficiently slowly, (r ), and (7 ), satisfy (32), so
Proposition 3.4 applies yielding the existence of a bubble, giving (81) for i = 1 and

8 2
[ eMav, = ki+ oi(1).
By (x1,0) 0

If (82) holds for j = 1, Step 1 is proved.

If (82) does not hold, there exists p; > 0, which can be assumed belonging to
(0,72 /ky), and there exist sequences (y;) ; € M, i < Ry such that

(83) [ e™dv,=p, B;(y)< M\B (x1.1), ———0 asl— +oo.
B;, (1) ‘ 1= x|
Now we define r, ; and x» ; such that
[ eMav, = max [ eMdv,=p,.

By, \(x2.1) By (()SM\Br, ,(41.0) B, (3)

By Proposition 3.4 it is easy to see that if 7, ;/r; ; — +o0o sufficiently slowly, then we have

Z
(84) Lo, L0 asi— +oo,
1,1 — X2, |x1,1 — X2,

which in particular implies 75 ; — 0 as / — +co. Therefore, by the last formula we can find
72,1 < R such that

21

[ e™dV, <p, forevery ye B, (x2), —0 as/— +oo.

By, () |x1,1 — x2,/]

Then Proposition 3.4 applies yielding the existence of a second bubble.

Continuing in this way, we see immediately that j cannot exceed k, since every bubble
contributes an amount of 872 /ky to the volume and since we are assuming (9). This con-
cludes the proof of Step 1.

Step 2. Ifin Step 1 itis j = 1, then there holds
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8 2
(85) [ e av, :ki—i—m(l).
M 0

In this case, if we choose s; = Ei(M ) for every /, where i(M) is the injectivity radius of M,

then by (82), (x1.1);, (r1.1);, (s1); are a simple blow-up for ;. Therefore Proposition 4.2 ap-
plies and, since (s;); is uniformly bounded from below, there exists C > 0 such that for /
large

2
(86) [ e =3 o),
Bei o) ko
We prove first the following property:
(87) i — —oo asl— +oo.

In fact, using the Green’s representation formula, for a.e. x € M we obtain
w(x) =+ [ G(x,p)(2kie™ (y) = 201) dVy(y) Z w1 — C+ [ G(x, y)2kie™ (y) dV,y(y).
M M

By (81) and (51), given any small & > 0, there exists R; such that, for / sufficiently large

[ 2kie* = 16n% — 2%,
Bryry (x1,1)

Hence the last two formulas and (23) imply

e4u,(x) = C71€4ﬁl for |x — X1,1| = 2R5V171,

|x — X1,1|87§,
from which it follows that
(88) Jetrav, = I M dv,
M Biar) (x1,)\Borgry ; (X1.1)
_iM) _ N
> C et | s5ds = C_1€4MI(R§7’1’1)8_4.
2Rgr

If & is sufficiently small, the last factor tends to +o0 as / — +oo. Therefore (87) follows from

9).

Now, by (82), we can cover M\Bc-i(x;;) with a finite number of balls B, (y;),
i=1,...,/ such that for every i there holds [ e* dV, < n?/ko. Reasoning as in the

proof of Proposition 3.1 one then finds Bayy (3i)

4u
4le M1
11, (3

_ 1 T sz _
J‘ e4u1 < Ce4u; sup I<7> 8 < Ce4"1 0.
M\B_i (x1.1) veM,i=1,...t it \|X = |

Then (86) and the last formula conclude the proof of Step 2.

Step 3. If jin Step 1 is arbitrary, there holds
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8 2
(89) [ e av, :kij+o,(1).
M 0

If j > 1 we reason as in [36], and we analyze the clustering of accumulation points. By re-
labelling the indices, we can assume that

(90) |x1,7 — x2,1] :igg|xi,1_xh,l| —0 as/— +oo.
1

Of course, if ing |x; 1 — xn,1| 7 0, then we could reason as in Step 2 a finite number of times.
i+

Assuming (90), we consider the set X7 ; = {x1,...,x;} of accumulation points for which
the distance from x;; is comparable to |x; ; — x3 |, namely for which there exists C > 0
(independent of /) such that

|x,~71 —X1’]| é C|x17/ — x21/|, 1= 2,. . .,h = card(XL/).

By our choices of the points x; j,...,x;; and by (90), one easily checks that the three se-
quences (x;;);, (ri7); and CYxyy—xa4|, i=1,...,h, are a simple blow-up if C is suffi-
ciently large, and Proposition 4.2 applies yielding

du 87[2 A
(91) J. e IdI/g:k——‘y-O](l), l:1,...,h.
0

BC’l\»Vl.lfxz.l\(Xi‘]>

Our next claim is that there is no further concentration in a neighborhood of X ; of size
comparable to |x; ; — X2 ;|. More precisely we have the following result.

Lemma 5.1. In the above notation, for any large and fixed C there holds

o

52) [ ey, =
¢ kO

Bejy j-xy 1 (x1,0)

card(X1 ;) + o0:(1).

Proof. In order to prove this claim we use a variant of the argument in Step 2. First
of all, for p small and fixed, we can cover the set Bejy, —x, [(¥1.)\ U Beijx, ,—x  (Xi1)
i=1,...,h

i=1,...,

with /; balls B, (y,1),n=1,...,¢, with the following properties:

64=C, Clxi—x20 £ puy < Clxn — x2),
93
©3) [ etmdV,<p, n=1,...,4.
BZ/)n_' ! (yn.l)

Reasoning as in the proof of Proposition 3.1 one finds

[ e*tav,<C [ dVy(x)exp {4 [ G(x,y)2ke™ ) dv,(y)

B/’n,l(y”=’) B/)"_l(yn.l) M\Bz/;n',(yn‘l)

kip

22 .-
) e ).

x (
B2/7,,‘](yn,l) ’x o y’

From (23) and (91), after some computation we get
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(94) [ etmav,<Cc | [4
By, (yu1) By, (yn1) M\(BZp,,‘,(yn./)UBC—l‘,\.lvl,xz‘]‘(xl,z))
kil

G(x, y)2kie™l) dV.q(y)]

ke,
X |x1. — x2,1|_8+01(1)|x1,1 _ x2,1|4 7 o4l v, (x)

<C sup [8 i G(x, y)ket ) dVg(y)]
XEB/)’I7,(yn.1) M\(Bzﬂn,’(y”'[)UBC’l\'\‘1,1*X2,1\(x1’/))
Sl W Y1
~ L roi(1) 47
X |x1,0 — X2, * e,

since p,, ; is bounded from above by C|x;; — x2,|.
On the other hand, if £ and R; are as in Step 2, we also have

w(x) 2 —C+i + J G(x, y)2ke™Y) dvy(y)

M\B-1 ‘xl.l""Z./‘(xl'l)
i AL

+ J‘ G(x, y)zkle4u[(y) dVg(y)v a.c. x e BC’I\«\‘L/*Vz,/\(le)\BZREI‘]_/(le)'
)

BRérl_[(xl./)
Reasoning as for (88), we then deduce that

1

1\

_1 43 4

M dv, = C e (Ryry )
B(y—l‘.\,lj,xl]|(xl-,l)\BZR§r1.1(xl,l)
)

X inf 8 | G(z, y)kie™ ) avy(y)|.
ZEBM(XI.[) MN\(Bay,, , (yn1)UBe1yy oy (510))
4 B

Now we notice that by (93) and (23) one has

|G(z,y) = G(x, y)| = C,

xeB, (yui1), yeM\ (szw(yn’;) U B(—l|xl‘1,xzvl|(x1’[)), and for z € B -, (X1,1)-

2 4

From (94) and the last two formulas it follows that

_kir o1 i
j €4u' dV;/ < C|X171 —XZ,1| n2+0/( >(R,§7'1,1)8 4 0 as/— —+ 00,
B/)"'](yn,l)

ﬁ — 0 by (84). Then the conclusion follows from (91) and the fact that
11— X2,/

By - (X1.)\ U Beoijx, —x, ,(Xi1) is covered by a finite (and uniformly bounded)
i=1,...,h

number of balls Bipn, J(vnn). O

since

Now we let
Brought to you by | Princeton University Library
Authenticated
Download Date | 3/15/17 11:31 AM



170 Malchiodi, Solutions to some geometric fourth-order equations

di g =inf{|x;; —x; 4| - xi0 ¢ X1}

dy
|X1,1 — X2,
the following result, which improves the estimate in formula (92) to a larger set.

Note that, by our definition of X ;, we have — +o0 as [ — +oo0. We prove next

Lemma 5.2. There exists C > 0 such that for [ large

8 2
(95) [ eay, = klo card(X,.)) + os(1).
Bty (¥11)

Proof. The proof follows closely the arguments of Proposition 4.2, hence we will be
sketchy. We use the same notation as in Section 4 for the functions (W;), and the annuli
A, 1, except for the fact that now we take x; ; as centers, hence replacing the points x;.

First of all we notice that, by the arbitrarity of C in Lemma 5.1, there exists Z; — +oo
such that

(96) | eMdv, —0 asl— +oo.

3842,”/%2‘”(xl,1)\36\\»1.,7.@_,\()61‘/)

Using the Jensen inequality in the annulus B
that

1 x1 x| (le)\Bezl\xl,I—xz,[\ (XIJ): it follows

(97) sup (z+ Wi(2)) - =0 asl — +o0.
ze[Z+log|xy, ;1 —x2,1],4Z+log|x1 1 —x2 1]

Our next goal is to prove that also
(98) W/(z) = =2 card(X1 ) + o/(1),
for z € [2Z; + log|x1,; — x2.4|,3Z; + log|x1,; — x2,4|].

In order to show this, we notice that by the second formula in Remark 4.8 and by some
manipulation (reasoning as in the proof of Lemma 4.7), there holds

5u; -
b=
VV/(Z) = '[‘J,W + 0(622), forze [Z] + 10g|x1_,1 — xz71|, 47, + 10g|x17/ — x2,1|], r=e".
Ar,l
Using the Green’s representation formula we obtain
ou 0xG(x,) , 0xG(x,) ,
Y= B anp e 2O g
r B2, jony 10 4 M\Baz, . (x10) 4
s s 1,17%2,1
axG(x7 y)
+ J Tfl(y) dVy(y).
Bz, \«\’1_142,/I(xl”)\li’z’m,z*xz‘/\(xl'l)

From (25), Lemma 5.1 and (96) it follows that, for Z; — + oo sufficiently slowly
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2 card(X; ;)
dv, =+
‘(XI‘,) r .ﬁ(y) g(y) |X—X1,1|

0xGx, 7) G(gx, Y) o/(1).

Bz 1, 1=%2,1
Also, reasoning as in the proof of Lemma 2.3 and using (96) one finds that

O] (1) av,09] = oD — il

J dx J

A, B 2 B )
i e4z,h1'17x271‘(‘€1‘1)\ l’Z’\«\’l_er,zl(Yl'l)

Finally, since Z; — 400 one also derives

axG('x7 y) 1
—— 1) dVy(y) = (1) ——.
M\Bﬁz’\xl.l*xz‘/\(xl'l) or |X - xl’l|
. (3141 (31/[1 . . )
Recalling that == =r—", with r = dist(x, x1,/), the last three formulas yield (98).

Now, for y € (1,2) we consider the following sequence of functions
hj(z) = —y(z = log|x1,1 — x2.1| = 2Z;) + Wi(log|x1,1 — x2.1| + 2Z)).
Exactly as in the proof of Proposition 4.2 one can show that
Wi(z) £ h/(z), zellog|xi;— x|+ 2Z;logd; — C,).

As above, we define

; ~—4—1e22’|x ) zj zj’e é dy é di
b3 LTINS ) 5 4 CZi|x1; — x24'2 Ce?Zi|x1) — x24])’

and we obtain

4u, . diiy 5, . ~4 _4w,(log# ~4  4h!(log# ; . .
| e dv, < Cld;, " < CFfe?iloens) < Cfetilloen) - j=1, . j.
!
bl

From the expression of /] and (97) we deduce

f;t_;e%’y(logf"") =< Cf'?:j exp[4(—y(log#y,; — log|x,; — x2,1| — 2Z;) + Wi(log|x1,; — x| +2Z;))]

lIA

ol(l)f"jfj exp[—4ylog?; ; +4(y — 1) log|x1,; — x2.1| + 8(y — 2)Z)]

4(y—1) 4(y-1)j

X1 — X 5

01(1)(| lJiﬁl- 2,1|> —0,(1)<?) .
7.]

As before we then find

lIA

© /5 4(-1)j
et dv, §0;(1)Z<7> — 0.
Bdl_[(xn\BC\xl_l—xz‘/\(x/) j:O
<

This formula, joint with (92), yields the conclusion of the lemma. []
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The proof of Step 3 follows from the arguments of Lemmas 5.1, 5.2, repeating the
procedure for all the clusters of the points of {xy ;,...,x;;}\X1 ;.

The proof of the theorem is now an easy consequence of (9) and (85), since kj is not
an integer multiple of 872

5.2. The case kg < 8n%. In this final subsection we consider the cases in which P,
possesses some negative eigenvalues and ko < 87°. We prove first the following result,
which regards boundedness of the }'-component of sequences of solutions.

Lemma 5.3. Suppose P, possesses some negative eigenvalues, and suppose that
ker P, = {constants}. Let (u;); = H*(M) be a sequence satisfying (7)—(9). Let us write
w=1u+u withw eV and a; LV, where V denotes the direct sum of the negative eigen-
spaces of P,. Then there holds

Hﬁle(M) =C,
for some positive constant C independent of I.

Proof.  Let oy,..., 0 be as in (17). Then, by standard elliptic regularity theory, each
v; is smooth on M. Testing (7) on #; we obtain

<Pgﬁ/,ﬁ/> +4 f Q]lfl]dVg + 4k; J‘€4u’fl/dVg =0.
M M

Using (9), the fact that on ¥ the L*-norm is equivalent to the H?-norm, and the Poincaré
inequality, from the last formula we deduce that

— Byt wry = Ol 2 (ary-
Since P, is negative-definite on V/, the conclusion follows. []

Next, we consider separately the following three possibilities, one of which will always
occur for ko < 8n% and for / sufficiently large.

Case 1: k; < 0. First of all, using the Jensen inequality we find immediately that
i < C, for some constant C independent of /. Then, multiplying (7) by #; and integrating
on M, using the Poincar¢ inequality and Lemma 5.3, we find

<Pgu1, u;) = 2k1 I e4”lu1dVg — 2k117l[ —+ 0(<Pgu1, l/l1>%) + C
M

< C+ (=2k)i; + O({Pyup, ud?) < C + O({ Py, upH2).

Again by Lemma 5.3, this implies uniform bounds on ||u; — /|| and hence, by (19), uniform
L? bounds on e* for any p > 1. Then the conclusion follows from standard elliptic regu-
larity results.

Case 2: 0 < k; < 272, Since we are assuming (9), we easily see that the alternative
(26) in Proposition 3.1 cannot occur. Therefore, reasoning as in the previous case, we ob-
tain uniform L” bounds on e¢* for some p > 1.
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1 . o .
Case 3: 272 < k; < 3 (ko + 877:2) < 87%. In this case it is ko > 0. Assuming (u7); un-

bounded, Proposition 3.4 applies, and (39) gives a contradiction to (9), since ko < 87°.
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