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Abstract

In an era where human activities are increasingly intertwined with technology,
electronic systems and devices are expected to be intelligent and capable of re-
sponding in the most human-like way possible. However, for artificial intelligence
systems to integrate seamlessly into human society, they must possess emotional
intelligence – the ability to identify, understand, and react to human emotions.
As interactions between humans and intelligent systems often rely on language,
a deeper comprehension of the link between language and human emotional re-
sponse becomes crucial for improving human-computer interactions. This thesis
aims to understand which aspects of language are connected to emotional re-
sponse and elicitation. Specifically, it applies an extensive array of linguistically
motivated features designed to capture the stylistic elements of language and in-
vestigates their relation to human emotions, both in isolation and in combination
with other features. Initially, the thesis explores how this broad set of linguistic
features correlates with perceived language complexity and the role of language as
an emotion elicitor. This same set of features is then used to understand the influ-
ence of third-party language on the emotions of a group of subjects. Lastly, this
work examines the impact of deliberately emotive language on bodily responses
and the relationship between such responses and the previously mentioned lin-
guistic features.
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Introduction

In both sci-fi cinematographic and literary works, it’s clear that a recurring theme
concerns Human-Computer Interactions, with a particular emphasis on the cre-
ation of intelligent machines capable of faithfully replicating human behavior and
seamlessly integrating into the human world. It is possible to recall different fic-
tional examples of human-resembling machines – either in appearance or behavior
– that are relevant for this discussion. These include the sentient computer HAL,
from “2001: A Space Odyssey”[60], which interacts and converses with the crew
of the Discovery One spaceship as if it were a crew member itself; the Replicants
from “Blade Runner”, androids designed to look like humans and capable of ac-
quiring emotions; and, in the more recent motion picture “Her”, an artificially
intelligent virtual assistant embedded in an Operating System develops an inti-
mate bond with the human protagonist, effectively becoming a surrogate for a
real romantic relationship. In the movie “Ex-Machina”, an Artificial Intelligence
with the exterior form of a beautiful woman interacts with the programmer that
is performing the Turing Test1 on her. She eventually manipulates the program-
mer into believing that she is in love with him, culminating in a surprising twist
in the plot.

An exceptional example of how human imagination conceives the interactions
between humans and machines can be found in the literary work of Isaac Asimov,
one of the most influential science fiction writers of the last century. In his “Robot
series”, Asimov crafts a world where highly intelligent robots, often exhibiting
humanoid features, coexist with humans. The behavior of the robot population
is guided by the Three Laws of Robotics2, a set of principles designed to ensure

1The Turing Test is a method of inquiry in Artificial Intelligence to determine whether or
not a computer is capable of thinking like a human being. According to the test, a computer
possesses artificial intelligence if it can mimic human responses under specific conditions. The
test is named after Alan Turing, an English mathematician, computer scientist, logician, crypt-
analyst, philosopher, and theoretical biologist. Turing is considered the father of theoretical
computer science and artificial intelligence.

2The Three Laws of Robotics in Isaac Asimov’s work: (1) a robot may not injure a human

1



2 Introduction

that the robots do not rebel against their creators.

As technology continues to evolve at a brisk pace, we are witnessing the cre-
ation of hyper-realistic robots that emulate human features and movements, con-
versational agents that provide assistance with a human-like touch, and smart
devices controllable with simple voice commands. However, despite their im-
pressive computational prowess and capabilities, these machines still fall short in
replicating the complexity of human behavior. The crucial element they lack is
the ability to comprehend and respond to emotions.

For machines to behave like humans, they need to possess what is called emo-
tional intelligence [108][246]. Emotional intelligence is defined as the collection
of skills that equip humans with the ability to have, express, and identify affec-
tive states, along with the capacity to use these states for constructive purposes,
regulate and manage them, and navigate the emotional states of others [218]. It
has been argued that emotional intelligence is perhaps the most important facet
of human intelligence for successful social interactions [108]. Moreover, it plays
a vital role in learning [37][246] and in various other functions such as percep-
tion and rational decision-making [225]. Therefore, it is reasonable to assert that
emotional intelligence is one of the fundamental components of human-human
interaction and that its presence is essential for an interaction to be considered
intelligently responsive [237]. Lacking these emotional aspects, human-computer
interaction is still far from the representations seen in works of fiction over the
years.

It is also important to highlight that not every computing system will require
emotional skills, and it is unlikely that any of them will ever need the same range
of emotional skills as humans. However, there are many instances where human-
computer interactions could be enhanced by machines capable of understanding
users and adapting to them. To achieve this, machines should also be able to
recognize the user’s affective state. This concept is tied to numerous psychologi-
cal studies that led researchers to conclude that humans interact with machines
(e.g., computers, televisions) in the same way they do with other humans [237].
Therefore, systems capable of perceiving and responding adequately to the user’s
affective state are expected to be perceived as more natural [208], trustworthy
[52] [158], and persuasive [237]. These findings, coupled with the increasing inte-
gration of technology into daily life and activities, have sparked a growing interest
in the field of Affective Computing and in methods to infer emotions and affective
states from various kinds of data.

Affective Computing, as an academic discipline, is relatively recent, as the
term made its first appearance in the late 90s, established by Rosalind Picard

being or, through inaction, allow a human being to come to harm; (2) a robot must obey the
orders given it by human beings except where such orders would conflict with the First Law;
(3) a robot must protect its own existence as long as such protection does not conflict with the
First and Second Laws.
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in her book “Affective Computing” [224]. Since then, Affective Computing has
blossomed as an interdisciplinary field, garnering attention and contributions from
various research areas, such as social science, cognitive science, psychology, en-
gineering, computer science, linguistics, physiology, and others. The primary
objective of Affective Computing is to develop systems and devices that can
automatically recognize and infer human emotions, leading to appropriate in-
terpretations and responses. Equipping a machine with these capabilities can
yield extensive benefits, such as enhancing the quality of the interaction between
humans and computers or creating devices that react according to the user’s
emotional states and reactions.

The importance of affect-aware computing stems from the fact that, in human
interactions, a significant amount of information is communicated implicitly. A
person’s state may be expressed through body language and gestures, facial ex-
pressions and eye movements, or the manner of speaking (e.g., intonation pattern,
pitch) – cues that are intuitively recognized and interpreted by humans. With-
out the appropriate tools and training, machines cannot infer these elements.
Overlooking the user’s comprehensive emotional state, by neglecting explicit and
implicit affective cues, eliminates a significant portion of the meaningful infor-
mation available during the interaction process, thereby diminishing the value of
human-computer interactions.

Affective computing is a broad field that encompassing a wide range of tech-
niques and approaches aimed at recognize affect from data, across various modal-
ities and at different levels of granularity [230]. Particularly, granularity is em-
ployed to differentiate among the diverse approaches to affect recognition. Ac-
cording to the granularity used to detect affection, there are two main branches
of study: Sentiment Analysis and Emotion Recognition.

Sentiment Analysis3 is the study of people’s opinions, appraisals, attitudes,
and emotions towards entities such as topics, services, products, events, and their
attributes [169]. It performs coarse-grained affect recognition, typically consider-
ing it as a binary classification task (positive sentiment vs. negative sentiment).
Sometimes, granularity is increased to three classes, including a neutral senti-
ment, or to five classes, incorporating two different degrees of positivity and
negativity along with the neutral class. Moreover, sentiment analysis solely fo-
cuses on identifying the valence of an opinion or sentiment (see Section 1.1 for
further explanations on valence). In contrast, Emotion Recognition4 carries out
fine-grained affect recognition, aiming to classify data according to a broad array
of emotion labels. A more in-depth discussion on the labels and how they are
chosen is provided in Section 1.1.

Modality refers to the type of data used for affect recognition, which can be
sourced from various channels: audio (e.g., speech), video (e.g., facial expressions,

3Sometimes also referred to as Opinion Mining, using the two names interchangeably.
4Also referred to as Emotion Detection.
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body gestures), textual (e.g., user-generated text, speech-to-text transcriptions),
plus, more recently, physiological signals (e.g., heart-rate variability, galvanic
skin response) and brain-generated data (e.g., collected with fMRI or EEG).
Traditional affective studies focused on single-modality approaches, examining
one type of data at a time. However, recent research suggests that integrating
multiple modalities can enhance the performance of affect detectors, thus leading
to a shift from unimodal to multimodal approaches (see Section 1.2.1 and Section
1.2.2 for details).

Objectives and contributions

The research presented in this thesis explores emotion recognition from a multi-
modal perspective, delving into various aspects related to emotion with natural
language as the consistent thread running throughout all the chapters. Each chap-
ter investigates the relationship between language and emotions from a unique
perspective, incorporating other modalities alongside language.

In every case study presented in this thesis, language is employed as the pri-
mary means for eliciting emotional responses in humans. However, the objective
of this work is not to establish a state-of-the-art approach in Affective Computing
and Natural Language Processing. Instead, the main goal is to deepen the un-
derstanding of the link between language and emotional response, to grasp why
specific emotional responses occur and identify the precise linguistic phenomena
that trigger these reactions. To achieve these goals, this research utilizes a wide
range of linguistically motivated features. These linguistic features capture vari-
ous levels of linguistic information and can be used to construct a textual profile.
This profile can show language variation within and across texts, highlighting
differences in genre, style, or register. The scope of this thesis is to demonstrate
how these linguistic aspects are associated with human emotions, specifically the
emotions a subject experiences when exposed to different textual stimuli. This
objective, in essence, underscores the power of language in shaping emotional
landscapes and the crucial role it plays in the broader field of affective comput-
ing. These aspects will be tackled in three different case studies.

The first case study explores the complexity of language as a tool to elicit emo-
tions that ensure a high level of engagement in interactions. While the concept
of language may seem far from the study of emotions, it is closely related. Given
that both human-human and human-computer interactions often rely on written
or spoken communication, efficiency is paramount. This efficiency means that the
recipient of a written of spoken message should be able to decode and understand
the message with minimal cognitive processing effort. If the recipient perceives
the message as complex, the cognitive load for processing increases, potentially
affecting the emotions they experience. High linguistic complexity can generate
feelings of frustration, boredom, sadness, or anger and can reduce the recipient’s



5

engagement. Conversely, a level of linguistic complexity that adequately tailored
to the recipient can facilitate and potentially increase engagement, producing
feelings of calmness, happiness, or interest.

In this case study, language complexity is assessed in two scenarios. One sce-
nario examines the complexity of sentences in isolation, while the other considers
the same sentences in the context of additional sentences, in order to determine
whether context influences human perception of linguistic complexity.

The second case study investigates how language from a third party, without
direct social interaction, influences the emotions of a group of subjects. It also
examines whether language can predict the emotions subjects were experiences
while hearing these sentences. Here, an ecological audiovisual stimulus, such as a
movie that reproduces real-life content, is used to elicit emotions. The language
is extracted from the movie characters’ speech transcription, meaning that it is
not directed explicitly towards the subjects. Emotion elicitation comes from the
subjects’ interpretation of the movie events and their resonance with personal
experiences.

The third case study examines how purposefully emotively encoded language
influences subjects’ bodily responses. The focus here is on how emotive images en-
coded in a text impact the subjects’ emotional responses. Subjects were exposed
to language by being asked to read texts aloud. Bodily signals (i.e., electroder-
mal activity) and voice features were recorded during the reading, as these are
closely tied to the emotions experienced by the subjects. The autonomic nervous
system, which regulates involuntary physiological processes, controls emotional
regulation, speech, and many bodily function. In this case study, linguistic as-
pects are used to predict the changes in subjects’ bodily responses, and changes
registered in electrodermal activity and voice are used to predict the linguistic
characteristics of the texts being read.

Structure of the thesis

The remainder of this work is structured in this way: Chapter 1 discusses the
State of the Art and how the study of emotions is tackled in the literature;
Chapter 2 presents more in detail the case studies, by also giving an overview
of the modalities applied in the studies and the features representations used to
describe each of the modalities; Chapter 3 introduces the statistical and machine
learning modeling approaches applied throughout this work; Chapter 4 studies
the complexity of language out of context and in context, and how complexity
relates to humans’ emotions; Chapter 5 studies the relationship between language
and the emotive response to an ecological audiovisual stimulus; Chapter 6 studies
how emotively encoded language influences bodily responses and voice features;
the last chapter lists the conclusions of this study.
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Chapter 1

State of the Art

This chapter provides an overview of how emotions are examined in exist-
ing literature. It begins by exploring different theories of emotions, addressing
how and why individuals experience emotions, and how these emotions can be
encoded, represented, and categorized. The chapter then delves into the method-
ology used in Affective Computing to detect emotions, drawing information from
a variety of sources, or modalities. Furthermore, it investigates the methods used
to combine these various sources to attain a comprehensive understanding of
emotions.

1.1 Theories of Emotions

Before diving into the current state-of-the-art research in this field, it is crucial
to establish clear definitions for the terms used in the study of emotions. In the
sphere of Affective Computing, there remains considerable ambiguity surrounding
the definition of affection. Often, terms like emotion, mood, or affect are used
interchangeably in this field, without making clear conceptual distinctions [82]. It
is worth noting that affection is a psychological construct that goes beyond just
emotions and moods [28][244], which are described as distinct phenomena with
different facets and attributes in literature. Emotions are generally regarded as
directed towards a specific object, while moods are characterized as broad states
without a defined cause or target [102]. Colloquially, the term affect is often used
to refer to all of the above concepts. However, for the purpose of this work, the
term emotion will serve as an umbrella term, covering a wide range of affective
phenomena pertinent to Affective Computing research, including feelings, moods,
attitudes, or temperament.

It is difficult to precisely define what an emotion is, and there is a lack of
consistency in definitions across literature [146]. Therefore, it is impossible to
encapsulate all definitions into a single concept [306]. Emotional processes and

9
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states are highly complex and can be analyzed from numerous perspectives. How-
ever, for machines to effectively process emotions, a clear categorization and set
of easily identifiable labels are needed. In response to this need, Affective Com-
puting relies on traditional emotion theories, established over decades, to provide
a proper categorization for emotions. Various models for representing emotions
have been developed based on these theories and are applied in numerous affective
detection applications.

Charled Darwin was the first scholar to adopt a scientific approach to studying
emotions, proposing an evolutionary theory of emotions. In his book The Expres-
sion of the Emotions in Man and Animals [68], Darwin reports anecdotal and
observational evidence regarding the expression of emotions in animals, infants,
preliterate human groups, and Western Europeans. During his studies about evo-
lution, Darwin noticed that some bodily and facial expressions of humans were
similar to those found in other animals. He concluded that emotions were the
result of some evolutionary process and that they evolved with definite functions.
An essential aspect of Darwin’s theories on emotions was his belief that emo-
tional expressions initially corresponded to basic communicative actions (e.g., a
face expressing disgust to reject an offensive object). These actions were vital for
survival and communication among animals. Only later did these communicative
actions evolve into pure emotional expressions (e.g., the disgusted face is used
even when the offensive object of the previous example is no longer present).

1.1.1 The categorical model

Building up on Darwin’s findings, the concept of basic emotions was introduced.
Research has demonstrated that a limited number of facial expressions associ-
ated with emotions are universally recognized, leading researchers to propose the
existence of innate emotions that have cross-culturally universal counterparts.

The theory that humans share a set of basic emotions was further explored
and expanded in the early 1970s when Ekman discovered through his research the
existence of universal facial expressions associated with six basic – prototypical
– emotions [85, 89]: happiness, sadness, anger, fear, surprise, and disgust. Ac-
cording to Ekman’s theory, certain facial muscle movements are associated with
specific emotions, transcending cultural boundaries to assume the same meaning
across diverse cultures. Additionally, each basic emotion possesses a unique set of
characteristics that distinguish it from the others [84]. Ekman acknowledges the
possibility of pan-cultural similarities for more than these six emotions. Still, he
emphasizes that these six emotional terms are not arbitrary, as they are the emo-
tional concepts researchers consistently found when studying facial expressions
across cultures [87].

The huge resonance obtained by Ekman’s theory has led to a majority of
existing affect recognition studies being based on a categorical model of represen-
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tation. This model employs a discrete set of categories that affective systems can
utilize as labels for emotion recognition. The use of discrete categories provides
several advantages in emotion recognition, largely because the discrete scheme is
intuitive and embedded in everyday language [88, 91]. The terms used for the six
basic emotions echo people’s experiences with emotions, and numerous studies
have utilized this scheme [46].

1.1.2 The dimensional model

Some researchers have challenged Ekman’s perspective and the categorical model,
arguing that it is insufficient for for describing the nuanced facets of the human
emotions complex. From this disagreement, more theories have subsequently
emerged.

Firstly, it is important to recognize that human emotions are often far more
multifaceted than what is depicted in the categorical model. Ekman himself
has stated that there are more than just six basic emotions. Indeed, there exist
“families of emotion” [84]. Members of an emotional family share certain charac-
teristics (such as commonalities in expression, physiological activity, or triggering
events) that distinguish one family from another. Among the primary emotions
that share a set of characteristics that make them basic, there are emotional
states that do not encompass all the features typically associated with basic emo-
tions [84]. Emotions like curiosity, frustration, engagement, boredom, fatigue,
and anxiety, fall under the category of non-basic emotions.

Thus, it becomes clear that a categorical model, with its few discrete cate-
gories, carries considerable limitations and cannot fully capture the multifaceted
world of emotions. An alternative to the categorical model for describing hu-
man affect is the dimensional model [113][245][293], where an affective state is
represented as coordinates in a multi-dimensional space. Although this model
could incorporate numerous latent dimensions, such as evaluation, activation,
control, and power, the most common approach uses no more than two or three
dimensions due to theoretical and practical considerations.

An early example of the dimensional model, derived from cognitive theory,
is Russel’s circumplex model [242][243]. This model employs the dimensions of
arousal and valence to plot up to 150 affective labels. Valence, a fundamental
aspect of emotional life, originates from the human mind’s ability to distinguish
between a pleasant, beneficial feelings and unpleasant, harmful ones [21]. Thus,
moving along the valence axis, it is possible to identify a range of emotional
states, from positive to negative. Arousal refers to the degree of activation of
the emotional state [242][243], i.e., the amount of energy required to express a
particular emotion. This can range from a state of high activation or tension to a
condition of drowsiness and deactivation. A representation of Russel’s model can
be seen in Figure 1.1. Here, the vertical axis signifies the dimension of arousal
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Figure 1.1: A representation of Russel’s circumplex model of affect. [Image source
Pennsylvania State University website]

(from activation to deactivation), while the horizontal axis signifies the dimension
of valence (from pleasant to unpleasant). The six basic emotions are positioned
along the circle, while the non-basic emotions are represented within the circle.

A similar model to the one proposed by Russel is the 2-dimensional model
proposed by Whissell, in which emotions lay in a continuous space whose di-
mensions are evaluation and activation. The evaluation dimension measures how
individuals feel on a continuous scale, from positive to negative. The activation
dimension measures the propensity for action under a particular emotional state,
on a continuous scale from passive to active. Whissell uses these two dimensions
to assign a score to over 4000 emotional words that constitute her Dictionary of
Affect in Language.

Another widely used bi-dimensional model is Plutchik’s wheel of emotions
[229], which recalls Darwin’s theories on the evolutionary role of emotions [228] –
according to which emotions have evolved for a particular function (functionalist
approach). According to Plutchik, the feeling states referred to as emotions are
part of a process encompassing both cognition and behavior, containing several

https://psu.pb.unizin.org/psych425/chapter/circumplex-models/


1.1. Theories of Emotions 13

Figure 1.2: Plutchik’s wheel of emotions. [Image source positivepsychology.com]

feedback loops. Accordingly, he designed his wheel of emotions, consisting of eight
basic and eight advanced emotions, where each advanced emotions is composed
of two basic ones. In this model, a vertical dimension represents intensity, and a
radial dimension represents degrees of similarity among emotions.

While bi-dimensional approaches are the most commonly used due to their
simplicity, models employing more than two dimensions also exist. A prevalent
approach for emotion representation is the arousal, valence, dominance set, known
by various names in literature [194]. Dominance is defined as a feeling of control
and influence over one’s environment and others, versus the feeling of being con-
trolled or influenced by situations and others. Some theories suggest that there
should also be a fourth dimension: unpredictability [100]. This dimension, related
to surprise, uncertainty, and unexpectedness, describes an urgent reaction to a
novel stimulus or an unfamiliar situation and appears necessary for adequately

https://positivepsychology.com/emotion-wheel/
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distinguishing emotions.
Dimensional models overcome the limitations of categorical ones, being bet-

ter equipped to handle non-discrete emotions and describe emotions beyond word
labels. However, dimensional approaches also have a few downsides. Although
the dimensional space allows comparison of affective words according to their
distance, it does not offer a method to study compound emotions or account for
the interaction between different emotions. Indeed, experiencing two or more
emotions simultaneously is relatively common. Additionally, most dimensional
approaches operate at a word level and are incapable of capturing emotions en-
coded in multiple-word concepts.

1.1.3 The Hourglass of Emotions

All limitations included in categorical and dimensional models are overcome by
the Hourglass of Emotions [47], inspired by Plutchik’s studies. The Hourglass
is also a brain-inspired and psychologically-motivated model based on the idea
that the mind is made of various independent resources and that emotional states
result from activating some of these resources while deactivating others. Thus,
each combination of resources changes our thinking by modifying and tuning our
brain’s activities. This proposition is supported by different fMRI experiments
that identify distinct brain activity patterns associated with different emotions
(e.g., [309]).

The Hourglass of Emotions reinterprets Plutchik’s model representing affec-
tive states through labels organized around four independent but concomitant
dimensions. These dimensions measure: how much the user is amused by the
interaction modalities (pleasantness), how much the user is interested in inter-
action contents (attention), how comfortable the user is with interaction dy-
namics (sensitivity), how confident the user is in the benefits of the interaction
(aptitude). For each of these affective dimensions, the model employs multiple
(polarised) activation levels, covering cases where up to four emotions can be
expressed simultaneously and allowing for algebraic reasoning on these emotions.
The model also enables reasoning on both single words and multiple-word expres-
sions. It provides a formula to calculate polarity based on emotions, representing
a preliminary attempt to bridge the gap between sentiment analysis and emotion
recognition.

1.2 Approaches for Emotion Detection

Humans interact with the world around them through an array of senses, which
include producing and interpreting sounds, observing visual cues, smelling var-
ious odors, and tasting different flavors. The term modality, in the context of
Affective Computing and Emotion Recognition literature, refers to these different
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Figure 1.3: The diagram representing the hourglass of emotions. [Image source Cambria
et al. [47]].
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channels of perception and interaction [19]. It signifies the distinct sources of data
that can be anlyzed to detect and interpret emotions. Single modalities serve as
fundamental components for emotion recognition. Over time, researches have in-
vestigated various modalities, generating interesting findings for affect detection.
This section proposes an overview of the most commonly studied modalities and
the techniques associated with them. Subsequently, the section delves into mul-
timodal approaches, which encompass research issues that incorporate multiple
modalities.

1.2.1 Unimodal approaches

Audio modality

Over the years, various trends have emerged in the study of the audio modal-
ity for emotion recognition. This field has recognized several audio features as
instrumental for this purpose. More recent trends include the examination of af-
fective reactions to everyday sounds [284], emotional responses triggered by music
listening [167], and efforts to decode emotions embedded in music audio signals
[170, 173, 269]. There has also been an interest in comprehending affect in natu-
ralistic videos, such as spontaneous dialogues or audio recordings from interviews
or call centers [25, 161].

Emotion recognition from speech represents one of the earliest and most en-
during trends in the audio modality, primarily due to the natural role of speech
in human-computer interactions. Indeed, as voice-based interactions with ma-
chines become more prevalent, speech systems are required to effectively process
the underlying emotions of a conversation to reach a high level of performance,
nearing human-level interaction [215]. Incorporating a component that processes
emotions into such system would render them more natural and effective.

However, the implementation of speech emotion recognition is not without its
challenges.

• Determining the most suitable acoustic features that can characterize and
differentiate between emotions remains a subject of exploration [92]. Early
research concentrated on the phonetic and acoustic properties of language.
Psychological studies relating to emotion have revealed that vocal parame-
ters, such as pitch, intensity, speaking rate, and voice quality, play a pivotal
role in emotion detection and sentiment analysis [207]. Consequently, var-
ious prosodic and acoustic features have been proposed to help machines
detect emotions from acoustic signals [206, 207, 302, 303].

• There are no standard speech corpora to compare the different approaches
used for speech emotion recognition [149]. Current emotional speech sys-
tem databases can be broadly categorized into: (i.) actor (simulated) emo-
tional speech database, (ii.) elicited (induced) emotional speech database,
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(iii.) natural emotional speech database. In the case of simulated emo-
tional speech corpora, the data is obtained from professional theater or
radio artists, which are asked to express sentences with different emotions.
Elicited speech corpora are collected by creating different contextual situ-
ations in which the conversation is constructed to elicit different emotions
from the subject without their knowledge. For example, natural emotions
may be collected from call center conversations and dialogues in public
places. Collecting these emotions is more complex than what happens in
the previous two settings, as they are usually milder, and their annotation
requires the knowledge of experts. The size of the databases also heavily
influences the generalizability and reliability of studies, with many datasets
considered to be too small [76].

• Speech emotion recognition systems shoudl be independent of speaker and
language, but they are often influenced by speaker-dependent and language-
dependent information [287].

• Lastly, these systems should have the robustness to process noisy and real-
life speech effectively.

Visual modality

Most studies in vision-based affect recognition primarily focus on analyzing facial
expressions, where visual features are detected from images and videos. No-
tably, Ekman and his colleagues were pioneers in this field, conducting extensive
research on human facial expressions in the 1970s [89]. They proposed the possi-
bility of identifying six basic emotions based on cues from facial expressions (refer
to Section 1.1.1). Building on this, Ekman and Firesen developed the Facial Ac-
tion Coding System (FACS) [86]. This sytem encodes facial expressions based
on muscle movements, where each muscular movement corresponds to an Action
Unit (AU). A combination of AUs thus represents a specific facial expression.

Inspired by Ekman’s work, numerous researches have used image and video
processing techniques to analyze facial expressions. The majority of studies in
automatic facial affect recognition are focused on detecting basic emotions [148].
There have been few attempts in detecting nonbasic affective states from fa-
cial expressions, such as fatigue [115], frustration [141], or other complex mental
states [94] (e.g., agreeing, disagreeing, interested, concentrated, thinking, unsure).
Moreover, earlier works on facial affect recognition largely relied on deliberate and
often exaggerated facial expressions. More recently, however, there has been a
growing interest in interpreting spontaneous facial expressions [24, 188].

Standard approaches to facial emotion recognition generally follow three sig-
nificant steps: (i) the detection of the face and facial components, (ii) the feature
extraction, and (iii) the expression classification [148]. The first two steps focus
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on the face region detection (face acquisition) and the extraction of either geo-
metric features [95, 217, 292], appearance features [23, 168, 177], or a combination
of both [75, 272, 273, 295, 312].

Geometric features describe the shape and location of the face and its com-
ponents, such as mouth, eyes, nose, eyebrows, and chin. The facial components
(or facial feature points) are extracted to form a feature vector that represents
the geometry of the face [134]. Appearance-based features, on the other hand,
detail the texture of and appearance of the skin. They focus on changes in the
appearance and expression of the face, such as wrinkles and furrows. With these
features, image filters are applied to either the entire face or specific regions to
extract a feature vector [134]. The final steps involves applying a pre-trained clas-
sifier for facial emotion, leveraging the features extracted in the previous steps to
produce recognition results.

In recent times, Deep Learning models have replaced traditional approaches
for face emotion recognition. The advantage of Deep Learning methods is that
they enable “end-to-end” learning directly from the input images. This elim-
inates the need for pre-processing stages and face-physics-based models [290].
Among the various Deep Learning models available, Convolutional Neural Net-
works (CNNs) are the most popular for face detection and emotion recognition.
In CNN-based approaches, the input image is convoluted through a collection of
filters in the convolution layers to produce a feature map. Each feature map is
then combined into fully connected networks, and the facial expression is recog-
nized as belonging to a specific class.

Face recognition poses numerous challenges, primarily due to the considerable
variability in facial appearances [134]. The appearance of a face is subject to
multiple factors, that affect inter-subjects and intra-subject variations. Among
the factors that influence face recognition are:

• pose: the face’s position within the frame of the video or image (camera
point of view);

• occlusion: whether the subject’s mouth is open or not, and to what extent;

• aging;

• facial expressions;

• accessories: glasses, hat, jewelry;

• technical factors: the position of the light source or the brightness of the
image.

Although most research has concentrated on facial expressions, a few studies
extract features from body movements, including movements of the limbs [236,
247], head movements [260], and posture [162]. Indeed, there is evidence in
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the communication of nonverbal behavior and psychology research that body
movements convey affective expressions [147][291].

Textual modality

Research on textual modality is divided into two main tasks: sentiment analysis
and emotion recognition.

Sentiment analysis targets the detection of valence (or polarity) in text, aiming
to discern if a text is positive, negative, or neutral. Nowadays, a myriad of
state-of-the-art sentiment analysis systems are available. They display impressive
performance on various types of text (e.g., product reviews, social media texts,
instant messages) and can accurately identify text polarity.

While sentiment analysis is a well-established task, emotion recognition and
categorization continue to evolve. More attention is required on emotion detection
from text [46, 50, 109, 251]. Despite the abundance of textual data, understanding
fine-grained emotions remains a challenge [3]. This issue is partially attributed
to the absence of other contextual and emotional cues in textual communication
(e.g., facial expressions, voice modulation) [54, 109]. Emotions in text may not
always be explicit, and it is necessary to interpret the meaning of the text. If
emotions cannot be directly extracted, they must be inferred by interpreting
the concepts expressed in the text and their interactions [153], also taking into
account that some texts may convey multiple emotional expressions at the same
time.

Several computational approaches have been proposed in the literature for
identifying emotions in text. Traditional approaches for text emotion recognition
are based on hand-crafted features engineering that attempt to map documents,
sentences, and words to a set of emotions. These methods include keyword-
based approaches, corpus-based approaches, and rule-based approaches. These
standard approaches aim to leverage hand-crafted features to identify keywords
in a sentence with explicit emotional or affective value (e.g., [264]). Following
text pre-processing stages (e.g., stopwords removal, tokenization, lemmatization),
words in a text are extracted via linguistic rules and matched against lexicons
carrying emotional labels.

To serve this purpose, various resources have been created. For instance,
WordNet-Affect [265], an extension of the WordNet database [201] with the rep-
resentation of affective concepts and labels. Another resource, Senti-WordNet
[96], describes the objectivity, positivity, and negativity of the terms within a
synset1.

The NRC Word-Emotion Association Lexicon [204] is another notorious affec-
tive lexicon, developed by the National Research Council of Canada. It comprises
lists associations of words with eight emotions (anger, fear, anticipation, trust,

1In WordNet a synset is a group of terms with similar meaning (synonyms).
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surprise, sadness, joy, and disgust) and two sentiments (negative, positive). This
lexicon was created through manual annotation on a crowdsourcing platform and
is available in 40 different languages.

EmoSenticNet [231] is a lexical resource that assigns six WordNet Affect emo-
tions labels to SenticNet [48] concepts. SenticNet is a knowledge base that pro-
vides a set of semantics, sentics, and polarity associated with natural language
concepts.

DepecheMood [259] is a high coverage and high precision emotion lexicon that
provides emotion scores for 37 thousand terms, constructed by extracting crowd-
sourced affective annotation from a social news network.

Among the conventional resources for emotion annotation and recognition,
there is also the Affective Norm for English Words (ANEWs) [38], a project that
develops a set of normative emotional ratings for English words that elicit emo-
tions. Other approaches relate to cues from emoticons and hashtags (if present
in the text), e.g., [97][125], or the extraction of statistical features, such as fre-
quent n-grams, negations, emoticons, hashtags, to generate representations for a
classification model, e.g., [164].

Thanks to recent advancements in Natural Language Processing, a new era
for textual emotion detection is emerging, with a focus on Machine Learning and
Deep Learning methods [3]. Machine Learning approaches solve the problem of
Emotion Detection by applying both supervised [9, 50, 59, 305] and unsuper-
vised [50, 59, 179, 185, 202] learning techniques to classify texts into the different
emotion categories. Frequently used Machine Learning models include Support
Vector Machine [8, 20, 118, 126, 137, 171], Naive Bayes [20, 126, 266, 298], or
Decision Tree [125, 171].

Although Machine Learning approaches are widely used and can deliver strong
performances, the current trend is to exploit the strength of Deep Learning ap-
proaches [3]. It has been shown that a simple deep learning framework outper-
forms most state-of-the-art approaches in several Natural Language Processing
tasks [63]. Thus, deep learning approaches are being evaluated for both senti-
ment analysis and emotion recognition from text. Some of the most applied Deep
Learning approaches in emotion recognition include the Long Short-Term Mem-
ory (LSTM) model [128]. The LSTM has been applied in its base form [124, 142]
and its variations, such as Nested LSTM [124, 142], hierarchical LSTM [132], or
Bi-directional LSTM [27, 55, 178]. Another commonly used Deep Learning model
is the Convolutional Neural Network [160], borrowed from studies on Computer
Vision and successfully applied in the context of Natural Language and emotion
recognition [4, 219]. More recently, there was a raise in the use of transformer-
based architectures, such as BERT (see Section 3.3), which has been successfully
applied in many emotion recognition tasks [2, 132, 153, 180].
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Physiological Signals modality

Humans express emotions not only through facial expressions and their speech,
but also through physiological changes in their bodies. Even when emotions are
not explicitly communicated, changes in emotional state are often accompanied
by alterations in physiological patterns [39]. In essence, emotional shifts are
reflected in the workings of the nervous system.

The human nervous system is composed by two parts, the central nervous
system (CNS) and the peripheral nervous system (PNS). The PNS consists of
the autonomic nervous system (ANS) and the somatic nervous system (SNS).
The ANS controls sensory and motor neurons and is the main responsible for
the regulation of various bodily functions and internal organs, such as the heart,
the lungs, the viscera, and the glands. The ANS is also involved in the mech-
anism of emotional regulation [45].When humans encounter specific situations,
the CNS and ANS respond to external stimuli by initiating specific physiological
changes. It is within these systems that emotional alterations occur [51]. Given
that changes in the CNS and ANS are largely involuntary and cannot be con-
sciously controlled, physiological signals offer a valuable source of authentic data
on emotional activation.

In recent years, the field of emotion recognition has embraced the use of
physiological signals. These signals circumvent some of the difficulties associated
with other modalities. For instance, techniques used for analyzing these signals
can collect vast amounts of data that can be later used for emotion recognition.
Conversely, obtaining large datasets using other modalities (such as audio, visual,
and textual) and techniques can be more challenging.

Common parameters monitored for applications related to affective detection
include [34, 78, 254]:

• Cardiovascular System – Heart Rate (HR) and Heart Rate Variability
(HRV), Respiratory Sinus Arrhythmia (RSA), Cardiac Output, Inter Beat
Interval (IBI), Blood Pressure (BP), Electrocardiogram (ECG);

• Electrodermal Activity – Skin Temperature Measurements, Skin Con-
ductance (SC), Galvanic Skin Response (GSR);

• Respiratory System – Breaths per minute, Respiration volume;

• Muscular System – Electromyography (EMG);

• Brain Activity – Electroencephalography (EEG), imaging (fMRI, PET).

Physiological signals are typically recorded with equipment and techniques
that may be more invasive than those used for facial recognition or vocal expres-
sion. This is primarily due to the necessity of physical contact with the subject.
However, recent advancements in wearable sensor technology, coupled with a
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growing interest in developing less invasive techniques (e.g., [12, 107]), ensure a
more accessible approach to this type of research.

While working with physiological data has its benefits, it also presents sig-
nificant challenges. For instance, to produce accurate predictions for emotion
recognition, the collection of meaningful data is essential. This process is rela-
tively straightforward for text, audio, or video modalities. However, for phys-
iological signals, specialist knowledge is required for collection and interpreta-
tion [226]. Furthermore, physiological signals are the body’s natural response to
events. Therefore, to obtain high-quality data, these signals must be naturally
elicited from subjects, adding another layer of complexity to the process.

1.2.2 Multimodal fusion

Even though unimodal approaches might perform well in many emotion recogni-
tion tasks, situations often arise where accurate emotion detection requires more
than a single modality. Consider, for instance, a speech recording suddenly inter-
rupted by a loud noise, or when the speaker falls silent for a considerable duration.
Retrieving the subject’s emotion from the audio signal in such a scenario would
prove extremely challenging, if not impossible. However, if systems were simulta-
neously recording the person’s facial expressions or monitoring their physiological
signals, determining that person’s emotional state could still be possible. This is
because emotional states typically trigger multiple physiological and behavioral
response systems, and integrating these different modalities can enhance emotion
recognition systems.

D’Mello and Kory [74] highlight several reasons why multimodal approaches
can ouperform unimodal ones. Firstly, multimodal approaches portray human
affective expressions with higher fidelity. Affective expressions are complex co-
ordination of signals that include involuntary, semi-voluntary, and voluntary re-
sponses [84, 85]. Therefore, the analysis of multiple signals and their interdepen-
dent relations likely provides a more accurate representation of the intricacies of
human affective expressions. Secondly, unimodal approaches can suffer from prob-
lems associated with missing data and noisy channels.Multimodal approaches can
help integrate data when they are missing in one modality and reduce inaccura-
cies caused by noise. However, D’Mello and Kory also caution that the interstudy
variance in multimodal affect detection complicates the proper evaluation of the
actual advantages of multimodality over unimodality.

Using features from multiple modalities to classify and recognize emotions
presents certain challenges. Different modalities provide heterogeneous data,
meaning they vary greatly in nature and form. Therefore, creating a multi-
modal representation that is both understandable for the model and leverages
the strengths and weaknesses of each modality is essential. The heart of the
challenge lies in finding an effective fusion method to integrate these various
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modalities into a single representation.
The fusion method, i.e., the method applied to integrate single modalities in

a multimodal representation, is the basis of any multimodal approach. It is a
challenging process due to the heterogeneity of data, for which researchers adopt
several common approaches:

• Feature-level or early fusion. Here, features from different modalities
are combined into a single feature vector, which is then analyzed. This
method is quite challenging due to the fact that features of different modal-
ities often come in different formats and shapes, thus it is necessary to
understand how to represent features in a univocal format.

• Decision-level or late fusion.This approach examines and classifies the
features each modality separately. The individual results are then fused
into a decision vector, which is used for the final decision.

• Hybrid fusion. As the name suggests, this method mixes the two previous
methods to take advantage of both while minimizing their disadvantages.
For instance, it can combine independent decisions of individual unimodal
classifiers with the decision of a feature-level fused multimodal classifier
[57].

• Model-level fusion. This approaches leverages the correlations and in-
terdependencies between different modalities during the fusion process. As
outlined by Atrey et al. [14] and Poria et al. [230], this fusion method can
be categorized into three groups, according to the basic nature of the meth-
ods and the problem space: rule-based, classification-based and estimation-
based fusion methods.

Another challenge in multimodal approaches regards which modalities to fuse.
Most approaches in the literature are bimodal [74], with a preference towards
audio-visual approaches (e.g., face and voice), the fusion of text and speech, or
a combination of different physiological signals. Approaches that combine more
than two modalities are rarer, as the complexity of fusing increases with the
number of modalities to be combined.
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Chapter 2

Case studies, Modalities,
and Representations

This work encompasses a diverse range of case studies, each highlighting a
unique way in which linguistic aspects interact with emotive response and emo-
tion elicitation. The case studies draw from three distinct modalities (refer to
Section 1.2 for a definition of modality): textual, audio, and physiological sig-
nals – in particular, the skin conductance signal from the electrodermal activity.
The modality are either employed by themselves (unimodal approach, see 1.2.1)
or combined together (multimodal approach, see 1.2.2). For these modalities
to be used in any kind of statistical analysis and to be applied as input to ma-
chine learning models, they need to be translated into a numerical representation.
This conversion involves extracting various sets of features (or different represen-
tations) from each modality.

This chapter provides an overview of the different case studies in this thesis,
focusing on their main points, and offers a detailed examination of the various
features extracted from each of the previously mentioned modalities. The Chap-
ter is structured in the following way. Section 2.1 outlines the three case studies
tackled in this work; Section 2.2 describes the set of linguistic features extracted
to analyze the textual modality, Section 2.3 describes the features used to rep-
resent the audio modality (speech), and Section 2.4 describes the features used
to represent the physiological signals modality (skin conductance response from
electrodermal activity).

2.1 Case studies

This work comprises three main case studies. Each of them places natural lan-
guage as the main protagonist, exploring its far-reaching implications on cognitive
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and emotional states, and physiological responses. In every case study, language
is represented by a wide range of linguistically driven features. As necessary,
these are correlated with other modalities and representations.

2.1.1 Case Study 1: The role of linguistic features on lan-
guage complexity and user engagement

The first case study dives deep into the subject of natural language complexity
and its impact on efficient communication. The central premise of this case study
is straightforward: the complexity of a message can either increase or decrease
user engagement, both in human-to-human and human-to-computer interactions.
A conversation filled with overly complicated phrases or a user interface riddled
with convoluted instructions are likely to trigger frustration and disinterest. Con-
versely, a linear and understandable language, that requires minimal cognitive
effort to be processed, is more likely to elicit a positive emotional response. By
understanding the linguistic aspects that cause a message to be perceived as
complex, it is possible to intervene on these elements and enhance interactions,
ultimately enriching the experience and making it more engaging.

However, defining complexity in natural language is a challenge due to the
lack of a unified understanding in the literature. The definition of complexity is
influenced by the different perspectives used to study this concept, including psy-
cholinguistic, historical, neuroscientific, and computational angles. To navigate
these intricacies, two main approaches can be applied to the study of language
complexity: absolute and relative. The absolute approach, driven by theory, mea-
sures complexity based on the number of parts in a linguistic system. The relative
approach, on the other hand, assesses linguistic complexity from the viewpoint
of language users and their experience of processing difficulty. This case study
is based on the relative approach, framing complexity as perceived complexity
difficulty and focusing on the subjectivity of perception.

Language complexity is not confined to individual words and sentences. The
broader context within which these words and sentences appear also plays a
critical role. Models of language comprehension emphasize the significance of
contextual cues, an aspect that this study takes into account. To analyze the
phenomenon of linguistic complexity, this study will first focus on the perceived
complexity of sentences taken in isolation, and then consider the perceived com-
plexity of the same sentences when presented within other contextual sentences.

The primary objectives of this case study are to understand the role of lin-
guistic phenomena in the perception of language complexity, to identify the key
phenomena involved in predicting complexity, to analyze the influence of con-
text on complexity perception, and to demonstrate the predictive superiority
of models using explicit linguistic features over those using implicit features. By
studying sentences in isolation and within context, this case study aspires to offer
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a comprehensive understanding of the nuanced subject of language complexity.

2.1.2 Case Study 2: The role of linguistic features in emo-
tion elicitation

This second case study delves into the topic of emotion elicitation from third-party
language and seeks to understand which linguistic features are associated with
different emotions. In the field of psychology, eliciting emotional states within
controlled environments for investigative purposes has been a long-standing tra-
dition. Numerous techniques have been employed for this purpose, encompassing
a wide variety of stimuli including, but not limited to, images, auditory cues,
facial and bodily gestures, imagined scenarios, and smells. Recent decades have
witnessed a paradigm shift toward understanding emotional responses through
the affective processing of images.

Affective images have gained widespread popularity due to their inherent
evocative potential and ease of implementation. These images are adaptable
to diverse experimental designs and are easy to catalog and edit. Addition-
ally, their static nature is particularly advantageous for studies where dynamic
changes might complicate the measurement and interpretation of affective re-
sponses. However, the static nature of images also presents a downside. It’s often
argued that the affective experiences they yield are not as potent or realistic as
those prompted by dynamic stimuli, such as movie clips.

Movies possess the standardization advantages of pictures, with the added
benefit of being dynamic, thereby more closely mirroring real-life scenarios. Films
provide a multimodal stimulation experience by engaging both the visual and au-
ditory senses of viewers. Over time, films have demonstrated their versatility as
emotion elicitors in studying diverse mood induction phenomena, with capabil-
ities ranging from inducing basic emotions like fear or disgust to more nuanced
feelings.

Movies also serve as a rich source of intensive longitudinal data through their
dialogue, which provides insights into the emotional and mental states of the
characters. Movie dialogues often contain an array of emotion-related words that
resonate with the audience and trigger emotional responses through empathy.

This case study seeks to trigger empathic reactions and emotional contagion
within a group of subjects using a naturalistic continuous stimulation paradigm,
exemplified by the movie “Forrest Gump”. This film, abundant in realistic sit-
uations and a wide array of emotions, fosters emotional resonance, i.e., the nur-
turing of empathic responses in viewers, influenced by the narrative decisions
in the movie. Specifically, this case study examines the correlation between the
language in the film’s dialogues and the emotional experiences of viewers. It
mainly focuses on testing the effectiveness of two different kinds of linguistic rep-
resentations, an explicit linguistic profile (refer to Section 2.2.2) and an implicit
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vectorial representation (refer to Section 3.3), in predicting the emotions elicited
in a group of subjects during the viewing of the movie.

2.1.3 Case study 3: The role of linguistic features on the
activity of the Autonomic Nervous System

The primary objective of this case study is to investigate the relationship between
the linguistic structure of a text and the physiological and acoustic features used
to evaluate Autonomic Nervous System (ANS) activity and speech production
prosody.

The ANS is responsible for the physiological aspects of emotional regula-
tion, as it manages bodily functions and plays a key role in initiating emotional
responses. Electrodermal activity, an extensively researched ANS correlate of
emotional arousal, quantifies variations in the skin’s electrical conductivity due
to sweat gland activity controlled by the sympathetic branch of the ANS. This
offers objective measurements of emotional states, providing vital insights into
the physiological expressions of emotions.

In addition to the ANS, the intricate process involving somatic regulation
also governs speech production. Producing human speech involves fine control of
multiple muscles from respiratory, laryngeal, pharyngeal, palatal, and orofacial
groups. Changes in respiratory activity induced by the ANS mirror changes in the
speaker’s emotional state by influencing voice spectrum characteristics. Hence,
the examination of speech prosody provides crucial insights into the emotional
context and intentions embedded within spoken communication.

With this in mind, this case study seeks to understand how the linguistic struc-
ture of spoken text influences speech prosody and ANS correlates. Examining
this influence allows for a deeper understanding of the dynamics of language and
emotions and their interconnectedness. The relationship between EDA-related
features, speech prosody, and the linguistic profile of a text is analyzed using
correlation and regression methods. Additionally, the study conducts a comple-
mentary analysis from a different perspective, examining the feasibility of using
speech and EDA features to predict the linguistic structure of the spoken text.

2.2 Textual Modality

Text data forms the backbone of myriad applications spanning diverse domains
of machine learning and artificial intelligence. Despite its immense utility, the id-
iosyncratic, unstructured nature of text data presents a unique set of challenges
when one attempts to use this form of data as input for machine learning models.
The biggest challenge is the development of effective methodologies to transform
raw, unprocessed texts into a structured format that can be readily consumed by
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machine learning algorithms. This necessity for transformation arises from the in-
herent discrepancy between the design of traditional machine learning algorithms
and the nature of text data.

Machine learning algorithms, in their conventional form, are crafted to han-
dle structured, numerical data. As such, transforming unstructured, free-flowing
text data into a numerical representation – a process frequently referred to as text
vectorization – becomes a pivotal step in the data preparation phase for analysis.
Over the years, numerous techniques have been proposed and developed to under-
take this crucial task, each bearing its own set of advantages and disadvantages.
This piece of work organizes the diverse array of text vectorial representations
into two major groups, namely, “explicit features” and “implicit features”. This
categorization is done based on the techniques employed for feature extraction
and the subsequent level of interpretability of the extracted features.

Explicit features have the advantage of being easily interpretable. Their pri-
mary focus lies on the grammatical function of words within a given piece of
text, shedding light on various levels of linguistic phenomena. However, a glaring
limitation of these features is their inability to sufficiently capture lexical and
semantic information encoded in a text. Furthermore, the extraction process of
these features necessitates additional pre-processing and parsing steps to be ex-
ecuted on the text. These steps typically involve breaking down the text into
smaller components (such as sentences, words, and tokens) and subsequently an-
alyzing them based on some syntactic formalism. The subsequent sections will
delve into different types of explicit features in more detail. In particular, Sec-
tion 2.2.1 will detail the traditional approaches for text vectorial representations,
while Section 2.2.2 will detail the linguistic profiling approach, which has been
used in all of the presented case studies to represent text.

On the other hand, implicit features are more challenging to interpret. They
represent each word in a text with a high-dimensional vector, typically featuring
anywhere from 50 to 300 components based on the task at hand and the dataset
being utilized. These vectorial representations are learned through mathematical
operations performed by a neural model. Despite the interpretation challenges
that these features pose, implicit features can offer a near approximation of re-
lationships between words (e.g., gender, verb tense) and take into account the
context and surrounding words that accompany an individual word. Such fea-
tures are capable of representing lexical and semantic relations between words,
offering insights that explicit linguistic features may struggle to capture. The
implicit features used in this work will be further described in Section 3.3.

2.2.1 Traditional text representations

One of the simplest and most straightforward methods for representing text in
a numerical format that algorithms can better understand is one-hot encoding.
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In this type of vectorization, each unique word in a given corpus is represented
as a distinct binary vector. Formally, given a corpus C with a vocabulary of
words V = {w1, w2, w3, ..., wn}, a unique word wi can be represented with an
n-dimensional vector v, where each dimension of wi is either 1 or 0:

wi =

{
1 if w = wi

0 otherwise.
(2.1)

In the vector w the value at the i-th position is 1, while all the other values are
0. The position that has the value 1 corresponds to the index of the word wi in
the vocabulary V . Each unique word in V has a corresponding one-hot encoded
vector.

Although straightforward and previously widely used, the one-hot encoding
method exhibits limitations. This approach can lead to large and sparse vector
space for large vocabularies, a phenomenon also known as the “curse of dimen-
sionality”, i.e., the exponential increase in computational complexity with each
additional dimension. Since each unique word requires a new dimension, the space
needed can quickly grow to be excessively large for big corpora [138]. Further-
more, it fails to capture the semantic relationships between words, as all words
are equally distant from one another in the vector space [200].

Another commonly used method to represent text as input features is the
Bag-of-Words approach (BoW). Originating from information retrieval science,
the BoW model reduces text data to a bag of its constituent words, disregarding
the order and context of the phrase, but maintaining their frequency [123]. In the
BoW model, a text corpus is first transformed into a vocabulary of unique words.
Subsequently, each document or piece of text is represented as a vector in a high-
dimensional space, where the dimensionality equals the size of the vocabulary.
The value in each dimension corresponds to the frequency of the word in the doc-
ument [184]. The feature vector computation of the BoW model can be improved
by substituting the simple word frequencies with the Term Frequency-Inverse
Document Frequency (TF-IDF) weighting [174, 239]. This technique weights
word frequency in a document against its frequency in the entire corpus, thereby
highlighting words that are particularly significant in the document of interest.

Despite its simplicity, the BoW model is highly effective in applications such
as information retrieval, spam filtering, or text classification. However, it can
incur the same limitations as the one-hot encoding approach, being subject to
high-dimensionality and sparsity of the vector space, leading to computational
challenges. Moreover, by disregarding the order and context of words, the model
loses the semantic structure of the language.

Besides the approaches that extract features from the text by looking at single
words, it is also possible to rely on approaches that take sequences of words into
consideration. It is the case of the n-gram model, that breaks a text corpus into
chunks of n consecutive words. The choice of n depends on the scope of the
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model and influences the balance between the model complexity and its ability
to capture context [56]. Indeed, n-gram models have the advantage of capturing
more complex sequences of words (e.g., San Francisco), and when n-grams contain
more than two words they can encode basic syntactic structures and gain more
contextual information.

2.2.2 Explicit linguistic profile

Apart from exploiting the statistical data that can be directly derived from the
words and sentences of a text, many Natural Language Processing and Machine
Learning applications can benefit from representations that encode information
about the syntactic and semantic framework of a text. Specifically, in this work,
this kind of information is encoded in a linguistic profile (henceforth referred to
also as “explicit features”).

The creation of a linguistic profile is based on various degrees of linguistic
annotation, through which it is possible to derive a large amount of features.
These features model lexical, grammatical, and semantic elements that encap-
sulate language variations in and across multiple texts. In this methodology, a
variety of linguistic features are enumerated to identify and quantify both dissim-
ilarities and resemblances among texts, which depict unique language types [120].
The linguistic composition of a text is analyzed to isolate significant features and
a representation of a text is then created based on the statistical occurrences
of these features, using either absolute or relative frequencies, or more detailed
statistics.

Currently, this methodology is employed in various contexts and research areas
with the common goal of recreating the linguistic profile innate to specific linguis-
tic productions. These may originate in distinct contexts such as socio-culturally
defined demographic groups or individual authors. Linguistic profiling facilitates
the extraction of “meta-knowledge” from text [67]. This implies understanding
which features are present and how they mix within a specific language variety
as opposed to another of a similar nature. Therefore, the process of extracting
meta-knowledge entails associating the feature-based representation of texts with
a functional context, a class of speakers or receivers, or individual authors.

In recent years, several studies have concentrated on creating profiling features
that encapsulate register, stylistic, and linguistic complexity attributes [210].
Some studies tackled features based on morphosyntactic and syntactic structures
[11, 216], while others select features based on context-free grammar rules [32].
Other studies develop more sophisticated systems that allow the derivation of ex-
tensive linguistic properties spread across different levels of linguistic annotation
[42].

The explicit linguistic features used in this work are extracted with Profiling-
UD [42], a web-based application that performs linguistic profiling of a text, or
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Figure 2.1: Example of linguistic annotation in CoNLL-U format as performed by the
UDPipe tool on the sentence “Director Jones on Sunday selected five artists to succeed
outgoing creators on design teams in the Boston area”.

a collection of text, for multiple languages. The tool extracts the features with a
two-process that involves first a linguistic annotation stage and then a linguistic
profiling stage.

Linguistic Annotation Stage

The linguistic annotation is automatically performed by UDPipe [262], a state-of-
the-art trainable pipeline tool that applies tokenization, morphological analysis,
part-of-speech tagging, and dependency parsing to the text. UDPipe is conceived
to be language-agnostic, producing annotations that use a taxonomy that stays
the same across different languages. Specifically, annotations follow the CoNLL-U
Format [212, 211], and consist of the following fields:

• ID – word index, starting at 1 for each new sentence. It can be a range in
the case of multi-word tokens.

• FORM – word form or punctuation symbol

• LEMMA – lemma or stem of the word form

• UPOS – Universal Part-Of-Speech (POS) tag

• XPOS – Language specific POS tag, underscore ( ) if not available.

• FEATS – List of morphological features.
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Figure 2.2: Graphical visualization of the linguistic annotation performed by the UD-
Pipe tool on the sentence “Director Jones on Sunday selected five artists to succeed
outgoing creators on design teams in the Boston area”.

• HEAD – Head of the current word. Either an ID value or zero (0).

• MISC – Any other annotation that does not fit into the preceding categories.

Linguistic Profiling Stage

In the linguistic profiling stage, the different levels of annotations produced in the
previous stage are automatically analyzed by a linguistic profiling component,
based on a set of scripts written in Python. The component captures a vast
number of linguistic phenomena, defining the rules to extract and quantify the
formal properties of the texts. It extracts over 140 features, each belonging to
one of the following categories: (1) raw text properties, (2) lexical variety, (3)
morphosyntactic information, (4) verbal predicate structure, (5) global and local
parse tree structures, (6) syntactic relations, (7) use of subordination.

Hereafter, each category is described in detail, along with the list of features
that belong to it. For each feature, there is a description of how it has been
extracted and quantified from the UD representation created in the annotation
stage. To exemplify some of the features, the following sentence will be taken as
a reference:
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“Director Jones on Sunday selected five artists to succeed outgoing
creators on design teams in the Boston area”.

The output the tool gives for this sentence is shown in Figures 2.1 and 2.2.
Figure 2.1 shows the linguistic annotation in CoNLL-U format as performed by
UDPipe, while Figure 2.2 shows the graphical visualization of the annotation and
the structure of the analyzed sentence. The complete list of features and their
acronyms and abbreviations as used in this work is reported in Appendix A.

1. Raw Text Properties

• Sentence length. Average length of sentences in a text, calculated as the
average number of tokens per sentence.

• Word length. The average number of characters per word, excluding the
punctuation.

2. Lexical Variety

• Type/Token Ratio (TTR). A standard metric to assess the lexical variety of
a text. It is computed as the ratio between the number of lexical types1 and
the number of tokens in a text. The higher the value, the more different
terms there are in a text. A lower value indicates the text contains many
repeated words. The tool calculates this feature for the first 100 and 200
tokens of a text.

3. Morpho–syntactic information

• Distribution of grammatical categories. The percentage distribution in the
text of the 17 core part-of-speech categories as defined in the Universal
POS tagset2. The tagset is subdivided into open class words (i.e. adjective,
adverb, interjection, noun, proper noun, verb), closed class words (adpo-
sition, auxiliary, coordinating conjunction, determiner, numeral, particle,
pronoun, subordinating conjunction), and a class ‘other’ used for punctua-
tion and symbols.

• Lexical density. The ratio of content words (verbs, nouns, adjectives, and
adverbs) over the total number of words in a text.

• Inflectional morphology. For each verb and auxiliary, calculates the distri-
bution of the following inflectional features: mood, number, person, tense,
and verb(al) form.

1A lexical type is the base form of a word, i.e., the form in which that word is listed in a
dictionary.

2https://universaldependencies.org/u/pos/ (retrieved 3 July 2023).

https://universaldependencies.org/u/pos/
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4. Verbal Predicate Structure

• Distribution of verbal heads. The average number of verbal heads in a sen-
tence. The number of verbal heads corresponds to the number of proposi-
tions appearing in a sentence, whether they are main or subordinate propo-
sitions.

• Distribution of verbal roots. The percentage of verbal roots out of the total
roots within a sentence.

• Verbal arity. The number of dependency links sharing the same verbal
head, excluding punctuation and copula UD dependencies, e.g. a value of
arity=2 for a verb, means that the verb is the head of two dependency links.
In the reference sentence, the average arity score is 2, since the main verb
‘selected’ has four dependents (Director, Sunday, artists, succeed), the first
embedded verb ‘succeed‘ has two dependents (to, creators), and the gerund
verb ‘outgoing’ has no dependents.

5. Global and Local Parsed Tree Structures

• Average depth of the syntactic tree. The mean of the maximum depths
extracted for each sentence in a text. The maximum depth of a sentence
is calculated as the longest path (in terms of dependency links) from the
root of the dependency tree to some leaf. In the reference sentence, this
feature is equal to 5. This number corresponds to the five intermediate
dependency links that are crossed in the path going from the root of the
sentence (‘selected’) to each of the equidistant leaf nodes, represented by
the words ‘in’, ‘the’, and ‘Boston’.

• Average clause length. Calculated as the average number of tokens per
clause. The number of clauses is the ratio between the number of tokens in
a sentence and the number of verbal or copular heads.

• Length of dependency links. Calculated as the number of words occur-
ring between the syntactic head and its dependencies. This information
is complemented with the feature Maximum dependency link correspond-
ing to the average length of the longest dependency link for each sentence
in a given text. In the reference sentence, there are 17 dependency links.
Hereafter all of them are reported, with the head of the link highlighted
in bold. Eight links have a one-token distance: [‘Director’, ‘Jones’], [‘on’,
‘Sunday’], [‘Sunday’, ‘selected’], [‘five’, ‘artists’], [‘to’, ‘succeed’], [‘out-
going’, ‘creators’], [‘design’, ‘teams’], [‘Boston’, ‘area’]. Four links have
a two-token distance: [‘selected’, ‘artists’], [‘succeed’, ‘creators’], [‘on’,
teams], [‘the’, ‘area’]. Two links have a three-token distance: [‘creators’,
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‘teams’], [‘in’, ‘area’]. Three links show the maximum four-token distance:
[‘Director’, ‘selected’], [‘selected’, ‘succeed’], [‘teams’, ‘area’]. The aver-
age value, calculated as the ratio between the sum of all distances over the
total number of links, is two.

• Average depth of embedded complement chains governed by a nominal head.
The average depth of embedded complement chains, i.e. a list of consecutive
complements (either prepositional complements or nominal and adjectival
modifiers) sharing the same nominal head. The value of this feature cor-
responds to the average depth of complex nominal chains extracted from
all sentences in a given text. In the reference sentence, the depth of the
nominal chain headed by the noun ‘creators’ is equal to 2; as visible in
the graphical representation in Figure 2.2, the chain covers two embedded
prepositional modifiers (‘on design teams’ and ‘in the Boston area’), which
are both governed by the noun ‘creators’.

• Word order phenomena. This feature applies only to the subject and the
object of the sentence. It captures the relative order of subject and object
with respect to the verb and captures the probability distribution of such
occurrence, i.e. the subject and the object can appear in pre-verbal (before
the verb) or post-verbal (after the verb) position. This feature is partic-
ularly useful for capturing word order variation across different languages
and, within the same language, across varieties of language use.

6. Syntactic Relations

• Distribution of dependency relations. The distribution (in percentage) of
the 37 universal relations in the UD dependency annotation scheme.

7. Subordination phenomena

• Distribution of subordinate and main clauses. The percentage distribution
of main clauses against subordinate clauses, as defined in the UD scheme3.

• Relative order of subordinates with respect to the verbal head.: The per-
centage distribution of subordinate clauses in post-verbal and pre-verbal
positions.

• Average depth of embedded subordinate clauses. Given the subordinate
clause sub–tree, a subordinate ‘chain’ is calculated as the number of sub-
ordinate clauses recursively embedded in the top subordinate clause. In

3https://universaldependencies.org/u/overview/complex-syntax.html#subordination
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addition to the average value of the chain depth, the percentage distribu-
tion of subordinate chains by depth is also provided. The reference sentence
is articulated into a main clause and a subordinate clause governed by the
verbal root ‘selected’. The adverbial subordinate clause headed by the verb
‘succeed’ occurs in a post-verbal position and does not contain embedded
subordinates.

2.3 Audio modality

So far, language as a means of communication has been described only in terms
of its textual representation. However, humans’ primary mode of communica-
tion is through speech and the ability to communicate through speech is what
differentiates humans from animals.

Speech is a complex activity that involves both neural and physical activation.
When a person wants to speak, their brain constructs a sentence with the desired
meaning and then maps the sequence of words into the movements required to
produce the sounds associated with the words. From a physical point of view,
speech relates to the activation of three components: the respiratory system,
the phonatory system, and the resonatory system, as illustrated in Figure 2.3.
The production of sounds begins in the respiratory system, or breathing appara-
tus, which acts as a compressor by activating the contraction of the lungs. The
lungs are supported by the diaphragm, a shelf of muscles and tendons extending
across the bottom of the ribcage. When air is inhaled, the diaphragmatic mus-
cles contract, shortening and tightening, and the diaphragm moves downward in
the body, allowing it to create a vacuum in the lungs that are then filled with
air. During exhalation, the diaphragm relaxes and rises, decreasing the volume
of the lungs and creating a positive pressure difference, pushing the air outside.
The air passes then through the throat, activating the phonatory system. In the
throat, the air encounters the vocal folds, that act as a sound generator: through
vibrations, they chop the airstream from the lungs into a sequence of air pulses.
Finally, the resonatory system is activated when the air passes the oral and nasal
cavities, that act as a resonator (or a filter) by shaping the sound generated by
the vocal folds.

Airflow by itself is not audible, as sound is the consequence of an oscillation
in air pressure. For airflow to produce a sound, it must be obstructed to obtain
an oscillation or turbulence. Oscillations are mainly produced in the phonatory
system when air passes through the vocal folds. Vocal folds (or vocal cords or
voice reeds) are folds of throat tissues that can be tensioned to reduce or augment
the space between them (the glottis). Oscillations that produce sounds can also
happen in other parts of the speech-production organs. For example, they can
be caused by the tongue’s movements or the oscillations of the uvula caused by
the airflow.
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Figure 2.3: The functioning of the voice organ. [Image source [227]].

The vocal tract (composed of the larynx, the pharynx, and the oral cavities)
has an essential effect on the timbre of the sound produced. In particular, the
shape of the vocal tract determines the acoustic space’s resonances and anti-
resonances, boosting or attenuating the different frequencies of the sound. The
resonances can be easily modified by the speaker, an act that is called articu-
lation. Instead, the structures used to arrange the shape of the vocal tract are
called articulators, e.g., the tongue or the mandible. Changes in resonance can be
easily perceived by the listener, contributing to conveying information in commu-
nication. These changes in resonances can be detected by acoustic signal analysis
and divided into different features.
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2.3.1 Speech-based features

Features that can be extracted from speech can be divided into four categories:

1. Teager Energy Operator (TEO) Based Features

2. Voice Quality Features

3. Spectral Features

4. Prosodic Features

Different combinations and selections of these features have been applied in
various studies where speech was used as a modality for emotion recognition
[1, 5, 144].

Teager Energy Operator Based Features

These features are reliant on the Teager Energy operator, a tool used for detecting
stress in speech, first introduced by Teager and Teager [270] and further detailed
by Kaiser [139, 140]. Teager’s theory suggests that speech is produced by a non-
linear interplay of vortex and airflow within the human vocal system. When
under stress, the speaker’s muscle tension changes, leading to adjustments in the
airflow during the creation of sound. The operator developed by Teager to gauge
the energy of speech through this non-linear method was captured by Kaiser in
the following formula

Ψ[X(n)] = x2(n) − x(n + 1)x(n− 1) (2.2)

where Ψ represents the Teager Energy Operator and x(n) denotes the sampled
speech signal.

Three new TEO-oriented features were proposed by Zhou et al. [313]: the
TEO-decomposed FM (frequency modulation) variation (TEO-FM-Var), normal-
ized TEO auto-correlation envelope area (TEO-Auto-Env), and the critical band
based TEO auto-correlation envelope area (TEO-CB-Auto-Env). These features
investigate the energy variation in airflow attributes in the vocal tract for stress-
induced voiced speech. Zhou et al. [313] contrasted these with pitch and Mel
Frequency Cepstral Coefficients (MFCC) features, using both text-dependent and
independent stress classifications via the SUSAS dataset [122]. The performance
of TEO-FM-VAR and TEO-AUTO-ENV was found to be subpar compared to
traditional pitch and MFCC features. However, the TEO-CB-Auto-Env feature
surpassed both pitch and MFCC under stress conditions. Comparable outcomes
were reported by Low et al. [172] in their research on detecting clinical depression
in adolescents. They used a combination of prosodic, spectral, voice quality, and
TEO-based characteristics. Among all these, TEO-based features, particularly
TEO-CB-Auto-Env, excelled beyond the rest, including their combinations.
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Voice Quality features

Voice quality parameters describe the properties of the glottal source, that is to
say, they are influenced by the physical characteristics of the vocal tract. They
include parameters such as jitter, shimmer, and the harmonics to noise ratio. A
strong link exists between voice quality and the emotional context of speech [65].

Jitter and shimmer. Jitter refers to the fluctuation in the fundamental fre-
quency from one vibratory cycle to the next, while shimmer pertains to amplitude
variation. Jitter gauges frequency instability, while shimmer measures amplitude
instability.

Harmonics to noise ratio. The harmonics to noise ratio quantifies the rela-
tive noise level in a vowel’s frequency spectrum, signifying the ratio between the
periodic and aperiodic components in voiced speech signals. These fluctuations
are often interpreted as voice quality changes.

Other quality metrics. Other metrics that have been utilized in studies in-
clude the Normalized Amplitude Quotient (NAQ), Quasi Open Quotient (QOQ),
the variance in the amplitude of the first two harmonics in the differentiated
glottal source spectrum (H1H2), Maxima Dispersion Quotient (MDQ), the spec-
tral tilt or slope of wavelet responses (peak-slope), Parabolic Spectral Parameter
(PSP), and the shape parameter of the Liljencrants-Fant model of glottal pulse
dynamics (Rd) [277].

Spectral features

The sound produced by an individual is shaped and filtered by the form of their
vocal tract, which shape significantly impacts the resulting sound. The vocal tract
has been described as a close tube resonator [267], i.e., a closed cylindrical air
column that produces resonant standing waves4 at a fundamental frequency and
at odd harmonics. The size and shape of the vocal tract and the resonance cavities
will select some of the frequencies in the sound and diminish the range of other
frequencies (such as what would happen for a clarinet or a flute). When a sound
is fed to a resonator, the frequencies of that sound are going to be limited by the
resonator cavities. The spectrum of the resulting available frequencies is called
a formant. Spectral features are obtained by converting the time domain signal
into the frequency domain signal using Fourier transform. They are extracted
from speech segments ranging from 20 to 30 milliseconds, partitioned through a
windowing method.

4Waves with characteristic patterns that arise from the combination of reflection and inter-
ference, such that the reflected waves interfere constructively with the incident waves.
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Mel Frequency Cepstral Coefficients (MFCC). MFCC feature illustrates
the short-term power spectrum of the speech signal. The extraction of MFCC
involves dividing utterances into segments, transforming each segment into the
frequency domain using short time discrete Fourier transform, calculating sub-
band energies with a Mel filter bank, logging these sub-bands, and finally applying
the inverse Fourier transform [152].

Linear Prediction Cepstral Coefficients (LPCC). LPCC also encapsulate
vocal tract features of speakers, which show variations with distinct emotions.
LPCC can be directly derived from Linear Prediction Coefficient (LPC) using a
recursive method. LPC represents the coefficients of all-pole filters and equates
to the smoothed envelope of the speech log spectrum [301].

Log-Frequency Power Coefficients (LFPC). LFPC replicate the logarith-
mic filtering attributes of the human auditory system by measuring spectral band
energies with Fast Fourier Transform [213].

Gammatone Frequency Cepstral Coefficients (GFCC). GFCC is ob-
tained similarly to MFCC extraction, but using a Gammatone filter-bank on
the power spectrum instead of a Mel filter bank.

Formants (resonance of the vocal tract). Formants refer to the resonance
frequencies of the vocal tract and are calculated as amplitude peaks in the sound’s
frequency spectrum. The human vocal system has two main resonance cavities:
the mouth and the larynx. The positions assumed by the larynx and the mouth
during speech influence sound production, so each sound results in different for-
mants. The formants are referred to as F1, F2, F3, and so on, according to the
frequency at which a specific sound resonates. By convention, the lower the num-
ber associated with the formant, the lower the frequency at which it resonates.
Roughly, an average man shows a different formant every 1000Hz, a range that
shifts to 1100Hz for the average woman. However, the true range depends on the
dimensions (length) of the vocal tract.

Prosodic features

Prosodic features refer to elements in speech that are perceptible to the human
ear, including intonation and rhythm. An example of this kind of features is the
rising intonation at the end of a sentence to signal a question. For instance, in the
sentence “You are coming tomorrow?”, the upward inflection on the term “to-
morrow” implies it’s a question. Such elements, known as paralinguistic features,
pertain to larger speech units such as syllables, words, phrases, and sentences.
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As these features are drawn from more extensive speech segments, they are clas-
sified as long-term features. According to research, prosodic elements are key in
revealing the unique emotional aspects in the field of speech emotion recognition
[310]. The three most commonly applied prosodic features are those based on
fundamental frequency, energy, and duration.

The fundamental frequency. Also denoted by F0 or F0, it refers to the ap-
proximate frequency of the (quasi-)periodic structure of the voiced speech signal.
In other words, the fundamental frequency is the average number of oscillations
per second expressed in Hertz. The oscillation of the speech signal originates in
the vocal folds. However, since it originates from an organic structure, it cannot
be precisely periodic: it contains significant fluctuations (such as variations in pe-
riod length, jitter, or variations in amplitude, shimmer). Moreover, F0 is usually
non-stationary within a sentence but changes repeatedly. Indeed, the fundamen-
tal frequency can be used for expressive purposes in speech, for example, to add
emphasis or model a question. The typical values for the fundamental frequency
lay between 80Hz and 450Hz, with males having lower frequencies than females
and children. The fundamental frequency of an individual speaker varies accord-
ing to the length of the individual’s vocal cords, which is also correlated to body
size. The fundamental frequency is also closely related to pitch, which is how our
ears and brain perceive and interpret the signal coming from the F0.

Energy. The energy contained in the speech signal, often termed as volume
or intensity, provides a depiction of the amplitude fluctuations in speech signals
over time. It is theorized by researchers that heightened emotional states such
as anger, joy, or surprise result in an escalation of this energy, while feelings of
disgust and sorrow lead to a decline in energy [166].

Duration. Duration refers to the time required to construct speech elements
like vowels, words, and other similar constructs. Key features related to duration
include the rate of speech, the length of silent intervals, the speed of voiced and
unvoiced sections, and the duration of the longest spoken voice.

2.3.2 Analysis of human voice

The analysis of human voice is a challenging task, due to the considerable varia-
tions influenced by factors such as gender, age, health conditions, and emotional
states.

The recent advancement and increased dependability of computer systems
have facilitated the creation of numerous voice analysis tools and software. One
of the initial and most commonly utilized tools was the Multi Dimensional Voice
Program (MDVP) [275]. The software was developed and commercialized by
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Kay Elemetrics Corporation (now Pentax Medical) in the 1990s. The software,
requiring the use of a Computerized Speech Lab (CSL), provides a comprehensive
set of over 35 quantitative voice parameters, including Frequency Perturbation,
Amplitude Perturbation, and Noise measures.

MDVP is widely used for the analysis of dysphonia, a condition that causes
changes in voice quality, including hoarseness, breathiness, or roughness. It’s
capable of producing numerical data that can help detect subtle changes in voice
quality, therefore being a valuable tool for clinicians and speech pathologists.
One of the unique aspects of MDVP is its ability to provide multi-dimensional
voice assessments. This means it can measure and evaluate multiple aspects of
voice quality simultaneously, providing a more complete picture of a person’s
vocal health. Despite its usefulness, it does have some limitations. The cost
of the license for the software can be high, which may be a barrier for some
users. Also, the earliest versions of the program were criticized for their lack
of usability, particularly for non-expert users. Over time, newer versions and
alternative software have improved on this aspect.

Other prominent tools, such as DrSpeech [77] and Wevosys [297], have found
value in complementing traditional speech therapy approaches and assessing voice
range profiles.

Dr. Speech is a comprehensive software suite used for a wide range of speech
and voice assessment and analysis tasks. It is designed for use by speech-language
pathologists, voice coaches, scientists, and clinicians. The software features mul-
tiple modules, each targeted at a different aspect of voice and speech analysis.
This can include speech acoustics, perception, and physiology. It enables users
to record, play back, and analyze voice samples, offering tools to examine aspects
such as pitch, volume, voicing, and nasality. One of the strengths of Dr. Speech is
its flexibility. It offers a wide range of tools and analytical functions, which can be
used for many different applications. For example, it can be used to help evaluate
and treat voice disorders, to provide biofeedback for speech therapy patients, or
to analyze vocal performances.

Wevosys, or Voice System GmbH, is a company that develops and provides
innovative solutions for speech analysis, voice assessment, and therapy. They of-
fer LingWAVES, a comprehensive suite of tools for the evaluation, analysis, and
therapy of voice, speech, and language disorders. One of the key features of Ling-
WAVES is its broad range of applications. It can be used in several areas such as
speech-language pathology, voice coaching, and scientific research. The system
is designed to assess various parameters of voice and speech, such as fundamen-
tal frequency, intensity, and spectral characteristics. It also includes modules
for voice range profile measurement, perturbation analysis, and Electroglottog-
raphy analysis, among others. One important advantage of LingWAVES is its
user-friendly interface. The software presents complex voice and speech data
in an easy-to-understand visual format. This aids clinicians in explaining voice
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phenomena to their patients and helps patients understand and visualize their
progress throughout therapy. LingWAVES also includes tools that provide visual
biofeedback to patients during therapy. This can be particularly beneficial in
vocal training and rehabilitation, as it enables patients to visualize their voice
production in real-time and adjust their technique accordingly.

The market has also seen the emergence of a variety of open-source tools,
including VoceVista [289], Wavesurfer [294], Speech Analyzer [257], WASP [300],
and VAT [288]. These tools specialize in fundamental frequency, spectrographic
and spectral analysis, with some being especially apt as feedback tools for singing
practice and for recording vocal progression throughout voice training or therapy.

VoceVista is an educational software tool designed primarily for singers, voice
teachers, and vocal researchers. It provides visual feedback and analyses to help
improve singing technique and understand the voice better. The tool allows to
view and analyze the overtone structure (i.e., the formant) of vocal sounds, which
is particularly useful for understanding and teaching vocal technique. The tool
includes a spectrogram (a visual representation of the spectrum of frequencies
in a sound) and a scope to show pitch, giving a real-time or recorded visual
representation of the voice. It allows for pitch tracking, showing the fundamental
frequency, and the intensity of the overtones (harmonics) relative to each other.

WaveSurfer is a tool designed for sound visualization and manipulation. It
was developed primarily for the linguistic research community, but its flexibility
and modular design allow it to be useful in various other areas such as music,
speech therapy, and education. The software provides a range of functionalities,
including waveform visualization, spectrogram analysis, pitch tracking, and for-
mant analysis. It allows users to analyze and manipulate audio files in various
formats, making it a versatile tool for different audio analysis tasks. One of
the primary advantages of WaveSurfer is its extensibility. It was developed with
a plug-in architecture, allowing developers to extend its functionality with new
custom-made plug-ins.

Speech Analyzer is a computer program developed by SIL International, a
nonprofit organization committed to serving language communities worldwide.
The software is designed for acoustic analysis of speech sounds and is often used
by linguists, phoneticians, and other language professionals. Speech Analyzer
offers several key features that enable the detailed study and analysis of speech.
It allows users to perform waveform, spectrogram, and pitch analyses, providing a
multifaceted view of speech data. With the waveform analysis, users can observe
the shape and intensity of the sound waves. The spectrogram analysis, on the
other hand, gives a visual representation of the spectrum of frequencies of a signal
as it varies with time. This can be useful for studying the spectral characteristics
of different speech sounds. Pitch analysis, meanwhile, can be used to study the
melody or intonation of speech. Moreover, the software allows for the annotation
of recordings, making it easier to study specific segments of speech. Users can
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also slow down or speed up the playback without altering the pitch, which can
be beneficial for careful analysis of fast speech sounds.

WASP (Waveform and Spectral analysis Program) is a simple tool used for
recording, displaying, and analyzing speech sounds. Developed by Mark Huckvale
at University College London, it’s commonly utilized in speech and language
research. WASP offers multiple features including waveform display, spectrogram
display, pitch contour analysis, and intensity analysis.

VAT, which stands for Voice Analysis Toolkit, is a software designed for the
analysis of speech and voice. Developed in the MATLAB programming envi-
ronment, VAT provides a set of algorithms and graphical user interfaces for the
analysis of speech signals.

Another widely used tool among top-tier researchers is Praat [35], developed
by Paul Boersma and David Weenink of the University of Amsterdam. It pro-
vides a variety of features to analyze speech or other acoustic signals, with its
key functionalities including Spectrogram, Pich, Formant, and Intensity analysis,
annotation, and speech syntesis. While Praat is a powerful tool with an exten-
sive range of functionalities, its interface might not be immediately intuitive to
beginners.

The BioVoice tool

Recently, Morelli et al. [205] have introduced BioVoice, a software tool for voice
analysis based on new algorithms that make it particularly suitable also for high-
pitched and quasi-stationary voices, such as signing voice, children vocalizations,
and newborn and infant cry.

In this work, the BioVoice toolbox will be applied in the case study of Chapter
6 to estimate the parameters of the voice of a group of subjects reading some texts
out loud. For this purpose, the tool estimates the following parameters:

• the fundamental frequency F0;

• the formants F1, F2, F3;

• signal duration, voiced duration, and mean duration of the recorded speech
signal.

To extract the parameters, the tool first loads the wave file and divides it into
non-overlapping windows. The windows’ size fluctuates based on the inverse
relation to the varying vocal frequency F0. The length of these frames is linked
to the gender of the subject (whose voice is recorded and analyzed), because F0

is influenced by the dimensions, thickness, and tension of the vocal cords. The
chosen frame length is within the boundaries 3Fs/Fmin ≤ M ≤ Fs/Fmax, where
Fs is the sampling frequency of the signal, while Fmin and Fmax denote the lowest
and highest allowed F0 values for the evaluated signal (established at 50-250 Hz
for males, and 100-350 Hz for females).
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Estimation of F0. The fundamental frequency F0 is estimated in a two-step
procedure. Initially, Simple Inverse Filter Tracking (SIFT)5 is employed on the
signal time windows of a set length M = 3Fs/Fmin. This step results in a rough
F0 tracking along with its range of variation [Flow, Fhigh], where Flow is the lowest
F0 value and Fhigh is the highest F0 value [58, 256, 274]. Following that, F0 is
computed within [Flow, Fhigh] using a blended approach of Short-Time Autocorre-
lation Function (STACF) and Average Magnitude Difference Function (AMDF).

STACF is a measure of the correlation between a signal and a time-shifted
version of itself, calculated over short, overlapping segments of the signal. It
provides information about the temporal structure and repeating patterns present
in a signal. It is computed on the fixed duration frames in which the input
signal is divided. Within each frame, the autocorrelation function is calculated
by multiplying the signal with a time-shifted version of itself, and then summing
the products over a specified time lag range. STACF is calculated applying this
formula:

R(k) =

∫
[s(m) ∗ x(m− k)]dt (2.3)

where R(k) is the autocorrelation at time lag k, s(m) is the input signal at sample
index m, and ∗ denotes the convolution operation.

For each signal frame, STACF is computed, and the tool searches for the
maximum autocorrelation Rmax and the corresponding cycle length Tmax in the
range [1/Fhigh, 1/Flow], with Fhigh and Flow estimated in the previous step. If
Tmax is outside the range, the cycle length is recalculated for the same frame
utilizing the AMDF. AMDF is a measure used to estimate the periodicity of a
signal, computed by comparing the magnitude differences between a signal and its
delayed versions at different time lags. The basic idea is to calculate the average
absolute difference between the signal and its delayed versions across a range of

5Simple Inverse Filter Tracking is a technique used in signal processing and control systems
to estimate the state of a dynamic system based on input-output measurements. The goal of
inverse filter tracking is to find an inverse filter that can reproduce the original input signal
from the observed output signal. In a simple inverse filter tracking scheme, the inverse filter
is designed to model the inverse dynamics of the system. By applying the inverse filter to the
observed output signal, the estimated input signal can be obtained. The basic idea behind
inverse filter tracking is to exploit the known dynamics of the system and its input-output
relationship to estimate the input signal. However, it is important to note that inverse filtering
can be challenging in practice due to noise, modeling errors, and limitations in the observability
of the system. Inverse filter tracking has applications in various fields, including audio signal
processing, image restoration, and control systems. It can be used, for example, to remove
noise or distortions from a recorded audio signal by estimating the original clean signal. It’s
worth mentioning that the term “Simple Inverse Filter Tracking” does not refer to a specific,
well-defined technique but rather describes a general approach to inverse filtering. The specific
implementation and methodology may vary depending on the application and the characteristics
of the system being tracked.
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time lags, as shown in the following formula:

AMDF (k) =
N∑

m=k

|s(m) − s(m− k)| (2.4)

where AMDF (k) is the AMDF at time lag k, s(m) represents the signal at sample
index m, N is the length of the signal, and the summation is performed over the
entire signal. In the case of a periodic signal with a period T , the function
is expected to have a significant minimum at k = T . Consequently, the pitch
period is assessed as the one corresponding to the minimum value of the AMDF.

In a second step, the tool removes all unvoiced frames (i.e., frames that do
not show a periodical structure, that is to say, frames that have a low periodicity)
and generates a new audio file made up of only voiced frames. This step is based
on a revised version of the pitch continuity function in the AMPEX algorithm
[182].

Estimation of the Formants (F1, F2, F3). The formants are estimated
applying Autoregressive Power Spectral Density (AR-PSD) [44]. This method
is used to estimate the power spectral density (PSD) of a signal based on an
autoregressive (AR) model.

The power spectral density is a representation of the frequency content of
a signal and provides information about the distribution of signal power across
different frequencies. The AR-PSD estimation approach models the signal as an
autoregressive process, where each sample is assumed to be a linear combination
of its past samples.

In the autoregressive model, the current sample of the signal is expressed as
a weighted sum of the previous samples, with the weights determined by the
model’s parameters. The AR model is typically represented as follows:

x(n) = a(1) ∗ x(n− 1) + a(2) ∗ x(n− 2) + ... + a(p) ∗ x(n− p) + e(n) (2.5)

where x(n) represents the current sample, a(1) to a(p) are the model parameters,
x(n− 1) to x(n− p) are the previous samples, p is the model order, and e(n) is
the error term or noise.

To estimate the AR-PSD, the AR model is fitted to the pre-processed voice
signal. The parameters of the AR model are determined using methods such as
the Yule-Walker equations [307] or the Burg [44] method.

Once the AR model parameters are obtained, the PSD is computed using
the Fourier transform of the AR model’s power spectral density function. The
PSD represents the distribution of signal power across different frequencies. The
formants correspond to the peaks in the estimated PSD. The peaks indicate the
resonant frequencies of the vocal tract.
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Estimation of Signal, Voiced, and Mean Duration. These parameters
pertain to the time domain of the voice recordings and are automatically extracted
by the tool at the beginning of the analysis. They simply reflect the length of the
whole recorded signal (comprising the voiced and unvoiced sections), the length
of the sole voiced sections, and the mean length of the recorded signals.

2.4 Physiological signals modality

As seen in Chapter 1, multiple physiological sources can be measured when as-
sessing changes caused by emotions. Among them, a common, simple, and non-
invasive one to measure is Electrodermal Activity (EDA). EDA broadly refers to
any variation of the electrical properties of the skin, covering a myriad of poten-
tial fluctuations influenced by factors such as emotional state, cognitive load, and
even environmental conditions. One of the most frequently used measures of EDA
is the skin’s electrical conductance in response to sweat secretion. By applying a
low, constant, undetectable voltage it is possible to non-invasively measure the
variance in the skin’s conductance.

Electrodermal signals reflect the activity of the eccrine sweat glands, which
are stimulated by the sympathetic branch of the Autonomic Nervous System,
primarily through the sudomotor nerves [101]. Sweat production, triggered by
the sudomotor nerves, leads to alterations in the conductivity measured on the
skin’s surface. This change is a consequence of both the sweat secretion and the
changes in the ionic permeability of the sweat gland membranes [36, 79, 80].

Sweat gland activity is initiated by the postganglionic sudomotor fibers [143,
238]. Each sweat gland is innervated by multiple distinct sudomotor fibers, and
in turn, each sudomotor fiber innervates a skin region of approximately 1.28 cm2.
This network of fibers and glands forms a sophisticated system for distributing
sweat across the skin’s surface. It was calculated that the sudomotor fibers fire at
an average rate of 0.62 Hz, i.e., they fire 0.62 times per second. The simultaneous
firing of multiple fibers is recognized as a nerve burst in the integrated nerve
record. A sudomotor nerve burst corresponds to a visible Skin Conductance Re-
sponse (SCR). The density of spikes (as indicated by the nerve burst’s amplitude
in the consolidated nerve record) is directly related to the number of the activated
sweat glands and the amplitude of the SCR. Therefore, the SCR amplitude can
be considered as a measure of the activity of the Sympathetic Nervous System,
which is involved also in emotional response.

While sudomotor activity, i.e., sweat secretion, plays a major role in ther-
moregulation, the sweat glands found on the palms and the soles may have evolved
also to improve gripping ability and increase sensory discrimination. For this rea-
son, these glands potentially respond more to psychologically significant stimuli
compared to thermal ones [36, 80].
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2.4.1 Decomposition of the Skin Conductance signal

The variations in skin conductance are captured by electrodes that are easy and
non-invasive to apply to subjects. Usually, data is acquired with sampling rates
between 1-10 Hz and is measured in units of micro-Siemens (µS). The skin con-
ductance signal is characterized by two main components, a tonic component (i.e.,
the skin conductance level, SCL), and a phasic component (i.e., the skin conduc-
tance responses, SCRs), that differ in temporal scales and relationships with the
stimuli that initiated them. The tonic component fluctuates slowly (seconds to
minutes) and represents the overall psycho-physiological state of a subject. Tonic
events encompass slow shifts in the baseline skin conductance level and unpre-
dictable changes in the skin conductance. The phasic component varies faster
(fluctuating within seconds), and its changes are the short-time response evoked
by an external stimulus. The typical shape of the phasic component, i.e., of the
SCR, exhibits a fairly quick increase from the conductance level, succeeded by a
slower exponential decay back to the baseline.

When the temporal gap between two consecutive stimuli, also known as the in-
terstimulus interval (ISI), is shorter than the recovery period of the first response,
the skin conductance responses generated by the two stimuli will overlap. This sit-
uation arises in many experimental protocols, especially in cognitive neuroscience.
In this field, the typical ISI values (1-2 seconds) are usually shorter than the rec-
ommended ISI of 10-20 seconds necessary to avoid this overlap [41, 69]. This
overlapping issue is one of the main limitations for the mathematical algorithms
applied to decompose skin conductance into its phasic and tonic component.

In the past, numerous mathematical approaches have been developed to sep-
arate the phasic signal into individual Skin Conductance Responses connected
to each stimulus, even for experiments with short inter-stimulus intervals. These
methods also model how the activity of the Autonomic Nervous System – particu-
larly the activity of the sudomotor nerve – leads to Skin Conductance Responses.
This process enables the estimation of Autonomic Nervous System activity with
potentially higher resolution, compared to using the raw Skin Conductance Re-
sponse signal. However, many of these early methods, primarily conceived to
tackle the overlapping issue, required visual revision and would introduce subjec-
tive elements in the analysis [22, 165].

Further improvement in this analysis was achieved by depicting the peripheral
system as a linear time-invariant system. From this assumption, derived several
classes of models [16]. Alexander et al. [6] introduced the first linear time-
invariant model, proposing a decomposition methods by means of deconvolution.
Their model allows the estimation of sudomotor nerve activity by conceiving Skin
Conductance as the result of the convolution between discrete sudomotor nerve
activity bursts and a biexponential impulse response function.

The deconvolution approach proposed in [6] relies on the assumption that the
impulse response function is known apriori and is stable, i.e., time-invariant. How-
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ever, multiple studies have demonstrated that the Skin Conductance Response
shape shows significant variability both inter-individual and intra-individual [40,
81, 135]. To address this aspect, Benedek and Kaernbach [29, 30] proposed two
different approaches in which the linear time-invariant assumption was adjusted
to accomodate for the variability of the Skin Conductance Response shape. These
models are the nonnegative deconvolution [30] and the continuous deconvolution
analysis [29]. The two models split the sudomotor nerve activity into two por-
tions, one that represents variations in the electrodermal activity derived from
different origins, the other that represents the phasic activity. Both the mod-
els use a biexponential impulse response function (called Bateman function) and
assume a pharmacokinetic model for the dynamic law of sweat diffusion. Even
though these models [6, 29, 30] do not formally model observation noise, they all
assume its presence, estimating a noisy sudomotor nerve activity and then deriv-
ing a filtered phasic component via a low-pass filter, with a subsequent heuristic
and predifined peak-detection process.

More recently, Bach [15] presented the SCRalyze toolbox, that includes sev-
eral models based on a linear time-invariant system. These models, as the one
presented in [6], use a heuristic impulse response function optimized on large
datasets. The algorithms in the toolbox try to estimate either the model input
(the sudomotor nerve activity) or the parameters that best explain the observed
Skin Conductance data, based on optimization methods. Additionally, they in-
clude a noise term to account for possible deviations from the time-invariance
assumption.

Drawing from several elements of these prior methodological approaches, such
as the impulse response function, Greco et al. [110] proposed a method for decom-
posing Skin Conductance signals into smooth tonic and sparse phasic components
by solving a convex optimization problem. This solution incorporates physiolog-
ical knowledge about electrodermal activity through an appropriate selection of
constraints and regularizers. Specifically, the nonnegativity of the sudomotor
nerve activity is enforced by the model using a nonnegative constraint on the
corresponding optimization variable, as opposed to the soft penalty used in [30].

The cvxEDA algorithm

More recently, Greco et al. [111] have introduced the cvxEDA algorithm for the
decomposition of the Skin Conductance signal into the phasic and tonic com-
ponents. This algorithm estimates Autonomic Nervous System activity from
Electrodermal Activity through a convex optimization approach.

The model represents the observed skin conductance as the sum of three
elements:

1. a tonic (baseline) component;
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2. a phasic (event-related) component, i.e., the output of the convolution of
an Impulse Response Function with a sparse non-negative sudomotor nerve
activity phasic driver;

3. an additive noise term.

The phasic component, related to event-driven responses, is modeled as a sum
of decaying exponential functions that are triggered by impulse signals (i.e., the
first derivative of the phasic component is a sparse positive signal). The advan-
tage of this formulation is that it leads to a convex optimization problem that
can be efficiently solved. The Impulse Response Function, associated with the
phasic component, is modeled as an infinite impulse response functions through
an autoregressive moving average model.

The tonic component, or the slower baseline of the EDA signal, is modeled
as a smooth signal that captures the non-specific variations of the EDA, such as
diurnal changes and slow trends in skin conductance levels.

The cvxEDA algorithm solves for these components using a technique called
convex optimization. Specifically, it formulates the following convex optimization
problem

minimize
1

2
||Mq + Bl + Cd− y||22 + α||Aq||1 +

γ

2
||l||22

subj.to Aq ≥ 0

(2.6)

that minimizes the sum of the squares of the residuals between the modeled
signal and the observed EDA data while enforcing constraints that ensure the
model’s physiological plausibility. These constraints include that the first deriva-
tive of the phasic component is a sparse positive signal and the tonic component
is smooth.

In this work, the cvxEDA algorithm is applied to Skin Conductance time
series and the following electrodermal activity features are extracted:

The power spectrum. The dynamics of the normalized sympathetic compo-
nent of the Electrodermal Activity, abbreviated as edaSymp in this work. This
feature is meant to assess the dynamics of the autonomic nervous system in a
noninvasive and quantitative way, by computing the power spectral density of
heart rate variability. The power spectrum is computed within the 0.045-0.25Hz
interval, as it has been demonstrated that at this frequency this feature reflects
the sympatetic activity [232].

The skin conductance response. Describing the phasic changes in electrical
conductivity of the skin, thus capturing the quick stimulus-evoked changes in the
EDA signal [69]. In this work the following features and abbreviations are used:

• max pks : maximum amplitude of the phasic component;



52 Case studies, Modalities, and Representations

• no pks : number of the phasic peaks;

• sum pks : sum of the amplitudes of the phasic peaks;

• mean ph: mean value of the phasic component;

• std ph: standard deviation of the phasic component.

The skin conductance level. Describing the tonic level of the electrical activ-
ity of the skin, thus capturing the EDA slowly varying baseline and the subjects
general psychophysiological state [112].

• mean ton: mean value of the tonic component;

• std ton: standard deviation value of the tonic component;

• max ton: maximum value of the tonic component.



Chapter 3

Approach and Methods

This chapter takes a comprehensive journey into the algorithms, models, and
metrics that have been employed to untangle the complex relationship between
textual constructs and the vast array of human emotions. The systematic ap-
proach employed in this work seeks to provide an in-depth analysis and precise
modeling of the diverse datasets, each playing a crucial role in exploring and
defining the nexus between language and emotional responses.

The central goal of this thesis is to understand and illustrate the nuanced
phenomena that link language and its features to the wide spectrum of emo-
tive responses. The aim is not only to understand this interrelation but also to
communicate it clearly and concisely. To this end, all the chosen techniques for
data analysis are grounded in transparency and rigor, producing results that are
straightforward and easily explicable.

Section 3.1 describes different methods and metrics for statistical analysis, in-
cluding Correlation Coefficients (Section 3.1.1), the concept of Agreement among
annotators of a manually labeled dataset (Section 3.1.2), and the Wilcoxon Rank-
Sum Test (Section 3.1.3). Section 3.2 describes the Support Vector algorithm,
that in this work has been used both for classification and regression purposes,
along with the Recursive Feature Elimination algorithm (Section 3.2.3) applied
in the cases were a feature selection method was needed. Finally, Section 3.3
introduces the approach for the implicit representation of the linguistic features.
Despite being the sole approach applied in this work that does not yield explicitly
interpretable results, this method is a state-of-the-art model for numerous Nat-
ural Language Processing tasks. Therefore, it was chosen for comparison with
explicit linguistic features representations (see Section 2.2.2). This juxtaposi-
tion was instrumental in determining which of these two distinct methodologies
for feature representations better encapsulates the relationship between language
and emotional phenomena.

53
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3.1 Methods and metrics for statistical analysis

3.1.1 Correlation coefficients

A correlation coefficient (ρ) is a statistical metric that measures the strength of
the linear relationship between two variables x and y, namely, the degree to which
the movement of the two variables is associated.

Typical correlation coefficient formulas return a value that ranges from −1 to
+1. The absolute value of the correlation coefficient denotes the strength of the
relationship between the two variables. A value greater than 0 indicates a positive
correlation: for every positive increase in one variable, there is a positive increase
in the other variable. A value lower than 0 indicates a negative correlation: for
every positive increase in one variable, there is a negative decrease in the other.
A correlation of 0 means the two variables are unrelated.

Spearman rank correlation coefficient

Spearman Rank Correlation Coefficient (or Spearman’s Rho, denoted with the
Greek letter rho ρ) is a non-parametric test that measures the strength of the rank
correlation between two variables. Spearman’s correlation is the non-parametric
version of another popular correlation metric, Pearson Product-Moment Correla-
tion. Pearson’s correlation is applied to data based on some assumptions: (i) the
data are in an interval or ratio level, (ii) the data are linearly related, and (iii)
the data are bivariantly distributed. When the data do not meet these assump-
tions, it is necessary to apply Spearman’s Correlation Coefficient. However, while
Pearson’s metric is applied to measure the strength and direction of the linear cor-
relation between variables, Spearman’s correlation determines the strength and
direction of the monotonic relationship between the variables. In a monotonic
relationship (function), either one of the following happens:

1. the function is monotonically increasing, i.e., when the variable x increases,
so do the variable y;

2. the function is monotonically decreasing, i.e., when the variable x increases,
the variable y decreases.

The monotonic relationship is less restrictive when compared to the linear re-
lationship used in Pearson’s coefficient. Indeed, a linear relationship is always
monotonic, but a monotonic relationship is not always linear.

For a sample size n, the n raw scores Xi, Yi are converted to ranks R(Xi), R(Yi)
ad the Spearman’s Rank Correlation Coefficient is calculated as follows:

rs = ρR(X), R(Y ) =
cov(R(X), R(Y ))

σR(X)σR(Y )

, (3.1)
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where ρ indicates the Pearson correlation coefficient, but in this case applied to
rank variables, cov(R(X), R(Y )) is the covariance of the rank variables, and σR(X)

and σR(Y ) are the standard deviations of the two variables.

In the case in which all n ranks are distinct integers, Spearman’s correlation
can be calculated with the following:

rs = 1 − 6
∑

d2i
n(n2 − 1)

(3.2)

where di = R(Xi) −R(Yi) is the difference between the two ranks at each obser-
vation (among all n observations).

3.1.2 Measurement of agreement

In machine learning the quality of the training data can significantly impact
the performance of the models built. This is especially true when it comes to
tasks that involve manual annotations. When a dataset is manually labeled, it
is good practice to have multiple subjects performing the annotations and then
evaluate how coherent they are. Having only one person labeling the dataset
would result in a biased (subjective) annotation. To evaluate the quality of
manually annotated dataset, it is possible to resort to metrics like inter-annotator
agreement.

Inter-annotator agreement, also referred to as inter-rater reliability or inter-
coder agreement, is a statistical measure used to determine the level of consistency
or consensus among multiple annotators who independently label or categorize a
set of data. High agreement indicates that the labels or annotations assigned to
the dataset are consistent across the different annotators, suggesting that they
are likely to be reliable and accurate. On the other hand, low agreement may
suggest problems with he data, such as ambiguous examples or unclear labeling
instructions, which could lead to unreliable and noisy data.

The analysis of inter-annotator agreement can also provide insights into the
complexity and ambiguities of tasks. By analyzing the instances where annotators
disagree, researchers can gain a better understanding of the task’s challenges
and potentially improve the instructions or training provided to the annotators.
Moreover, the level of inter-annotator agreement can provide an upper bound
on the expected performance of the machine learning models. If humans have a
hard time agreeing on the correct label, it’s likely to be a challenging tasks for a
machine learning model as well.

There are different metrics to assess inter-annotator agreement, depending
also on the number of annotators involved. Commonly used ones are Cohen’s
Kappa [61], Fleiss’ Kappa [99], and Krippendorff’s Alpha [150]. In this work,
Fleiss’ Kappa was applied.
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Fleiss’ Kappa

Fleiss’ Kappa[99] is a statistical measure of inter-rater agreement. Named after
biostatistician Joseph L. Fleiss, it determines the level of agreement between two
or more raters (judges, observers, annotators) when assigning categorical ratings
to a number of items or classifying items. It is a generalization of Scott’s pi
(π) evaluation metric for two annotators[250] extended to multiple annotators.
Whereas Scott’s pi works for only two annotators, Fleiss’ Kappa works for any
number of raters. In addition, in Fleiss’ Kappa, it is not necessary for all raters
to annotate all given items.

Fleiss’ Kappa can be calculated as:

k =
P̄ − P̄e

1 − P̄e

(3.3)

The factor 1 − P̄e gives the degree of agreement that is attainable by chance,
while P̄ − P̄e gives the degree of the agreement actually achieved above chance.
If the annotators agree entirely, then k = 1. If there’s no agreement between the
annotators, other than the one attainable by chance, then k ≤ 0. In practice, the
interpretation of Fleiss’ Kappa results often follows the guidelines suggested by
Landis and Koch [156]:

• Below 0.00: Poor agreement

• 0.00 - 0.20: Slight agreement

• 0.21 - 0.40: Fair agreement

• 0.41 - 0.60: Moderate agreement

• 0.61 - 0.80: Substantial agreement

• 0.81 - 1.00: Almost perfect agreement.

3.1.3 Wilcoxon Rank-Sum Test

Wilcoxon Rank-Sum Test (also known by the names Mann-Whitney U test,
Mann-Whitney-Wilcoxon, or Wilcoxon-Mann-Whitney test) is a non-parametric
statistical test of the null hypothesis. The test was proposed in 1945 by Frank
Wilcoxon [299] and by Henry Mann and Donald Whitney in 1947 [183], but ac-
tually dates back to 1914, first introduced by Gustav Deuchler [151, 209].

The Wilcoxon Rank-Sum Test determines whether two independent samples
come from the same population. Being a non-parametric test, this test makes no
assumption about the underlying distribution of the data and is based on ranks
rather than the original observations. For this reason, the test is well-suited for
data that is not normally distributed. However, the test makes other assumptions
about the data and the experimental design:
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• Independence. The data in each group must be independent of each other,
meaning that the values in one group should not be related to the values in
the other group [64].

• Random Sampling. The data should be collected through random sampling,
which means that every member of the population has an equal chance of
being selected for inclusion in the sample [253].

• Ordinal Data. The data should be ordinal, meaning that it can be ranked.
The Wilcoxon Rank-Sum Test is designed to compare the medians of two
independent samples, and ranking the data allows for this comparison [308].

• Homogeneity of Variance. The variances of the two groups should be ap-
proximately equal. If the variances are significantly different, the Wilcoxon
rank-sum test may not be appropriate [64].

• Equal Shape of Distributions. The two groups should have similar shapes,
meaning that the distribution of values in one group should not be markedly
different from the distribution of values in the other group [253].

It is important to note that the Wilcoxon rank-sum test is robust to viola-
tions of the homogeneity of variance assumption and can be used even when the
variances are not equal. However, violating the independence, random sampling,
or ordinal data assumptions can lead to inaccurate results and should be avoided.
If these assumptions are not met, alternative tests, such as the Kruskal-Wallis
test [191] or the Jonckheere-Terpstra test [7], may need to be considered.

The Wilcoxon Rank-Sum test compares the medians of two independent sam-
ples. It works by converting the original numerical data into ranks and then
using these ranks to calculate a test statistic, U , which is used to test the null
hypothesis that the two groups have equal medians.

The Wilcoxon rank-sum test involves the following steps:

1. Combine the two independent samples into a single dataset and rank the
values from lowest to highest, ignoring ties.

2. Calculate the sum of the ranks for the observations in one of the groups.
This is denoted as R1.

3. Calculate the test statistic U using the following formula:

U = n1 ∗ n2 + (n1 ∗ (n1 + 1))/2 −R1 (3.4)

where n1 is the sample size of the first group, n2 is the sample size of the
second group, and R1 is the sum of the ranks for the observations in the
first group.



58 Approach and Methods

Figure 3.1: Maximum-margin hyperplane and margins for a Support Vector Machine
trained with samples from two classes. [Image source en.wikipedia.org]

4. Compare the calculated value of U to a critical value from a standard normal
distribution or look up the corresponding p-value from a Wilcoxon rank-sum
test table.

If the calculated value of U is greater than the critical value or the p-value is
less than the chosen level of significance, reject the null hypothesis and conclude
that the two groups have different medians. Otherwise, fail to reject the null
hypothesis and conclude that there is no evidence to suggest that the two groups
have different medians.

3.2 Support Vector algorithm

The foundations of the Support Vector algorithm are set in the framework of
statistical learning theory or Vapnik–Chervonenkis theory. The Support Vec-
tor algorithm is indeed a generalization of the Generalization Portrait algorithm
first theorized in Russia during the sixties [278, 281] and then further developed
in the following decades by Vapnik and Chervonenkis [279, 280, 282]. Vapnik-
Chervonekis theory is a theory for non-parametric (distribution-free) dependency
estimation with finite high-dimensional data. This theory is based on the em-
pirical risk minimization principle, an approach used in neural network training
that tries to minimize the average training error (empirical risk) with respect



3.2. Support Vector algorithm 59

to model parameters (weights of the neural network) in order to estimate the
unknown dependency. The Vapnik-Chervonekis theory derives necessary and
sufficient distribution-free conditions for fast convergence and consistency of the
empirical risk minimization principle.

Support Vector Machines (SVMs) implement a learning algorithm that lever-
ages the structural risk minimization principle to recognize patterns in complex
datasets and generalize effectively on unseen data. The algorithm attempts simul-
taneously to minimize the empirical risk and the Vapnik-Chervonenkis dimension.

In the field of Machine Learning, the typical application of Support Vector
Machines is in data classification (see Section 3.2.1). By looking at previously
labeled data, the SVM is capable of leveraging this information to separate and
label unseen data. SVMs can also be applied to regression problems by introduc-
ing an additional loss function (see Section 3.2.2).

3.2.1 Support Vector Classification

There are four main concepts at the base of the SVM algorithm for classification:

1. the separating hyperplane;

2. the maximum-margin hyperplane;

3. the soft margin;

4. the kernel function.

The separating hyperplane is a decision boundary that serves as the decision
boundary between classes. This is optimally chosen as the maximum-margin
hyperplane to ensure maximum distance from the nearest datapoints, while a soft
margin approach allows some classification errors for better generalization. Kernel
functions enable these linear classifiers to operate effectively in high-dimensional
and non-linear spaces. In what follows, these main concepts will be analyzed
more in depth.

Consider a training dataset of n points such that

D =
{

(x1, y1), ..., (xn, yn)
}
, x ∈ Rn, y ∈ {−1, 1} , (3.5)

where the x represents the data points of the dataset and the y represents the two
classes assigned to the data points (in this example, the two possible classes are
−1 and 1). In the Support Vector Classification, the training points belonging to
D need to be optimally separated by a hyperplane,

⟨w, x⟩ + b = 0. (3.6)
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The points are optimally separated by the hyperplane if these conditions verify:
(i) the points need to be separated without error, i.e., all points belonging to
one class should be separated from the ones belonging to the other class and
there should not be misclassified points, (ii) the distance between the closest
point to the hyperplane should be the maximal possible. Figure 3.1 shows a
graphical representation of the maximum-margin hyperplane and margins for an
SVM trained to separate two classes.

When data is linearly separable, it is possible to select two parallel hyperplanes
that separate the two classes −1 and 1, so that the distance between the two
hyperplanes is as large as possible. The region between them is called margin,
while the hyperplane that lies between them is the maximum-margin hyperplane,
i.e., the hyperplane that is at the maximum distance possible from the data
points. The optimal hyperplane should satisfy this constraint:

yi [⟨w, xi⟩ + b] ≥ 1, i = 1, ..., n. (3.7)

The constraint simply states that each data point must lie on the correct side of
the margin and they should not fall into the margin itself.

The distance d(w, b;x) of a point x from the hyperplane (w, b) is

d(w, b;x) =
| ⟨w, xi⟩ + b|

||w||
. (3.8)

The optimal hyperplane is obtained by maximizing the margin p, respecting the
constraint of 3.7. The margin is given by

p(w, b) = min
xi:yi=−1

d(w, b;xi) + min
xi:yi=1

d(w, b;xi) =
2

||w||
. (3.9)

Given that the maximum-margin hyperplane is dependent on the points xi that
lie next to it, these points are called support vectors.

So far, the SVM Classification problem was examined assuming that data
are only linearly separable. However, in many cases, data cannot be separated
linearly in a clean way. To handle these cases, the SVM algorithm has been
modified by adding a soft margin (also called degree of tolerance). In this way,
some data points can push their way through the margin (i.e., they are allowed
to appear on the wrong side of the margin) without affecting the final result.
The number of points that are allowed to violate the hyperplane is determined
by a user-specified parameter, in order to limit the amount of misclassified points
present.

The soft margin is indeed helpful for separating non-linear data, but in some
settings, it may not be enough. When this case occurs, the SVM is helped
by kernel functions. Kernel functions can be used to solve complex non-linear
classification problems without having to resort to complex calculations. Simply,
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kernels can be used to construct a mapping of the data into a higher dimensional
space. Different kinds of kernel functions can be applied. In this work, the
following have been used:

1. Linear Kernel, the basis kernel used in all cases in which there are linearly-
separable data, with equation K(xi, xj) = xi · xj + c;

2. Gaussian Radial Basis Function, widely used when there is no prior
knowledge about the distribution of the data. It projects the data into a
Gaussian distribution following this equation: K(xi, xj) = exp(−γ ||xi − xj||)2,
where γ > 0.

3.2.2 Support Vector Regression

Support Vector Machines can be also applied to solve regression problems and
predict discrete values. Support Vector Regression (SVR) uses the same principle
behind Support Vector Classification, but instead of finding a hyperplane to sep-
arate the data, it looks for the best hyperplane that contains (fits) the maximum
number of points.

SVRs work by introducing an alternative loss function, accordingly modified
to include a distance measure. Different loss functions are possible, such as (i)
quadratic, (ii) Laplace, (iii) Huber, and (iv) ϵ-Insensitive. In this work, the latter
is applied.

Usually, in Linear Regression models, the goal is to minimize the Sum of
Squared Errors (SSE). However, with SVR models the objective is not to minimize
the SSE but rather to minimize the coefficients – more specifically, the l2-norm
of the coefficient vector. Therefore, the objective is to minimize

MIN
1

2
||w||2 , (3.10)

following this constraint

|yi − wixi| ≤ ε . (3.11)

Notice that the error (ε) is handled not in the minimizing function but in the
constraint, where it is set to be less or equal to a specified margin. The value
of ε (or maximum error) can be tuned to gain the desired accuracy in the SVR
model. Ideally, all data points should lie between wixi − ε and wixi + ε. There
are indeed cases in which the data do not respect the constraint and some data
points fall outside the established value of ε. In these cases, the problem can
be solved by adding the so-called slack variables. Slack variables simply add a
deviation ξ from the margin to account for values that fall outside of ε. Even
though these deviations can exist, it is still necessary to minimize them. To do
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this, the deviations get added to the objective function

MIN
1

2
||w||2 + C

n∑
i=1

|ξi| (3.12)

and to the constraints
|yi − wixi| ≤ + |ξi| . (3.13)

The additional hyperparameter C can be tuned to modify the tolerance of the
algorithm. With a higher value of C, the tolerance for points outside of the error ε
increases. If C approaches 0 the equation collapses into the simplified one (3.10).
In most cases, it is good practice to test different values of C to find the ones
that maximize the performance of the algorithm.

3.2.3 Recursive Feature Elimination

Recursive Feature Elimination is a feature selection algorithm used in Machine
Learning to identify the most important features in a dataset and reduce the
dimensionality of the feature space. In the machine learning and pattern recog-
nition literature, the algorithm is cited as first appearing in the work of Guyon
et al. [117], who used it to select a subset of genes from broad patterns of gene
expression data. In their work, they demonstrated that the genes selected by
this technique yield better classification performance and are biologically rele-
vant to cancer. Indeed, the method eliminates gene redundancy automatically
and provides better and more compact gene subsets.

Typically, Recursive Feature Elimination is utilized in conjunction with other
algorithms to identify a subset of features that are most relevant to the outcome
of a predictive model (e.g., a Support Vector Machine). The algorithm begins
by training the predictive model on the entire set of features of the dataset and
determining the feature importance. The feature with the least impact on the
model’s performance is removed, and the process is repeated iteratively until a
desired number of features is reached.

The core mathematical concept behind Recursive Feature Elimination is the
ranking of features based on their importance to the model. Feature ranking can
be accomplished using different methods, such as feature weights, coefficients,
or feature importances, which are determined according to the characteristics of
the predictive model implemented. Once the features are ranked, the feature
selection process can be formalized as an optimization problem.

Given a set of features F = {f1, f2, ..., fn} and a feature ranking function
R(F ), the goal of the Recursive Feature Elimination is to find a subset of features
S ⊆ F , such that R(S) is maximized. In this optimization problem, the feature
ranking function R(F ) is calculated for each feature subset S. The feature subset
that results in the highest ranking is selected as the final set of features.
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Recursive Feature Elimination is especially advantageous for high-dimensional
datasets, where the number of features exceeds the number of samples. Tradi-
tional methods such as correlation analysis or mutual information can be challeng-
ing to use in such cases to identify the most relevant features. One of the primary
benefits of Recursive Feature Elimination is that it is an iterative method, which
permits the gradual elimination of features, rather than removing all irrelevant
features at once. This allows for a more thorough exploration of the feature space
and can lead to more accurate predictions.

By reducing the dimensionality of the dataset and removing redundant fea-
tures, recursive feature elimination can enhance the predictive accuracy of a
model, by also mitigating overfitting. Moreover, having fewer features means less
computational complexity, which leads to faster training time. Finally, recursive
feature elimination can make the model easier to understand and interpret.

3.3 Implicit representation of linguistic features

The implicit features, i.e., the high dimensional vectors that represent text, em-
ployed in this work were created leveraging BERT (Bidirectional Encoder from
Transformers) [73], a Neural Language Model based on the architecture of Trans-
formers. BERT is publicly available as an open-source framework and is nowadays
one of the state-of-the-art models for most Natural Language Processing appli-
cations. This model and features were selected to be counterposed to the explicit
linguistic features (detailed in Section 2.2.2) selected to profile the linguistic as-
pects of the texts used in this work. The goal of this comparison was to establish
which of the two methodologies can better describe the relationship between lan-
guage and emotional phenomena. Hereafter, this section describes the concepts
on which BERT is based and how the model is used in this work.

A Language Model is a probabilistic model that can predict the probability
of a sequence of words, i.e., the model can predict the next word in a sequence
given the words that precede it. A probabilistic language model would define the
probability of a sentence s = [w1, w2, ..., wn] as:

P (s) =
n∏

i=1

P (wi|w1, w2, ..., wi−1) (3.14)

Language Models are primarily of two types:

• Statistical Language Models: these models use traditional statistical tech-
niques like n-grams, Hidden Markov Models, and certain linguistic rules to
learn the probability distribution of words

• Neural Language Models: also called continuous space language models,
these are new players in the Natural Language Processing field and have
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surpassed the statistical language models in their effectiveness. They use
different kinds of Neural Networks to model language creating a continuous
representation or embedding words to make their prediction [199].

3.3.1 Neural Language Models

Traditional models such as n-grams predict the next word in an n-gram sequence
by following the Markov assumption that the probability of a given word is solely
dependent on the previous n− 1 words. However, there are inherent limitations
to language models that rely on n-grams. Initially, while a range of smoothing
methods has been suggested to mitigate data sparsity issues, n-gram language
models persistently demonstrate suboptimal performance when confronted with
rare and unseen words. Furthermore, when language models are trained on pro-
gressively larger texts, the count of distinct words and potential sequences in the
model vocabulary escalates exponentially with the number and length of texts.
An extensive vocabulary results in highly sparse data because the number of
possible word sequences augments exponentially.

An approach to assess the curse of dimensionality in modeling natural lan-
guage has been given by the approach developed by Bengio et al. [31]. The
authors propose a Neural Probabilistic Language Model that assigns a unique
vector to each word and uses a neural network structure to predict the subse-
quent word, as illustrated in Figure 3.2. The Figure shows the architecture of the
model, defined as:

f(i, wt−1, ..., wt−n+1) = g(i, C(wt−1)), ..., C(wt−n+1)) (3.15)

where g is the neural network and C(i) is the feature vector of the i − th word.
When trained on a specific text corpus, the model gains the ability to model the
joint probability of sentences. Concurrently, it yields word embeddings, otherwise
referred to as low-dimensional word vectors, as a part of its learned parameters.
Unlike preceding methodologies, the word embeddings generated by the Neural
Language Model have the advantage of decreasing the dimensionality of cate-
gorical variables and facilitating a more meaningful representation of categories
within the transformed space.

This pioneering work on Neural Language Models has catalyzed a wave of
methodologies centered on embedding words into distributed representations us-
ing a neural network. Noteworthy implementations of this include, for example,
Word2Vec [200], and GloVe [221]. Despite their distinct characteristics, these
models are bound by their exceptional efficiency and their widespread adoption
in numerous Natural Language Processing tasks in recent years. In particu-
lar, during the past years, the Word2Vec algorithm has been the lead algorithm
for many Natural Language Processing tasks. The algorithm is implemented as
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Figure 3.2: The architecture of the Neural Probabilistic Language Model. [Image source
Bengio et al. [31]].

a software package1 that include two primary models: the Continuous Bag of
Words (CBOW) and the Skip-gram model, whose architectures are represented
in Figure 3.3.

The CBOW model predicts the current word based on the context. It treats
the context as a single observation, taking the average of all word vectors, without
considering the order of words. For example, for the sentence “the cat sat on the
couch”, with “sat” as the target word, the CBOW model uses “the”, “cat”, “on”,
“the”, “couch”, to predict “sat”. Formally, the model predicts the word wi given
a window of context:

P (wi|wj(|j−i|≤l,j ̸=i)) = softmax

M

 ∑
|j−i|≤l,j ̸=i

wf

 (3.16)

1https://code.google.com/archive/p/Word2Vec/

https://code.google.com/archive/p/Word2Vec/
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Figure 3.3: The architecture of the CBOW (left) and Skip-gram (right) models in the
Word2Vec algorithm. [Image source machinelearninginterview.com].

where P (wi|wj(|j−i|≤l,j ̸=i)) is the probability of the word wi given its context, l
is the size of the training context, M is the weight matrix in R|V |×m, V is the
vocabulary, and m is the dimension of the word vector. Subsequently, the CBOW
model is optimized by minimizing the sum of negative log probabilities as in the
following loss function:

L = −
∑
i

logP (wi|wj(|j−i|≤l,j ̸=i)) (3.17)

The Skip-gram model predicts the surrounding words given a current word.
In contrast to the CBOW model, Skip-gram treats each context-target pair as a
new observation and predicts context words (“the”, “cat”, “on”, “the”, “couch”)
from the target word “sat”. Formally, the model predicts the context given the
word wi:

P (wj|wi) = softmax(Mwi
)(|j − i| ≤ l, j ̸= i) (3.18)

where P (wj|wi) is the probability of the context word wj given the word wi, and
M is the weight matrix. The model is optimized with the following loss function:

L = −
∑
i

∑
(|j−i|≤l,j ̸=i)

P (wj|wi) (3.19)

While models like Word2Vec and GloVe have been instrumental in the pro-
gression of natural language processing, they also have a few drawbacks.

As a first issue, these models cannot handle out-of-vocabulary words. If they
encounter a word during inference that was not included in their training corpus,
the models are unable to generate an appropriate embedding for it. Furthermore,
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given that they treat words as the smallest training unit, these models cannot
account for morphological nuances, which becomes problematic for languages
with a rich morphology where a single root word can have many different forms.
At the same time, even though these models can capture the semantic meaning of
individual words, they do not encode the sequence of words in a sentence, which
is an essential aspect of linguistic comprehension.

Moreover, storage poses a challenge for these models, as each unique word re-
quires a separate vector representation. For large vocabularies, this requirement
may result in significant storage overhead. Similarly, the computational expense
of training these models on extensive corpora can be considerable, posing a po-
tential obstacle for resource-limited environments.

However, the primary challenge associated with these models is that they
generate static word embeddings. In essence, each word is given the same vector
representation regardless of its context. For instance, in the case of a word like
“bank”, these models would not differentiate between its usage in the phrase
“river bank” as opposed to “bank account”. Consequently, the distinct meanings
depending on the contextual usage are not encapsulated by the vectors generated
by these models.

To address this issue and keep the context-specific representation of a docu-
ment, different context-based models have been introduced. In 2016, Melamud
et al. [195] proposed Context2Vec, a model to generate context-dependent word
representation. Context2Vec is a modified version of Word2Vec’s CBOW model,
but the most significant change is the replacement of the traditional average
word representation within a fixed window with a more robust and advanced Bi-
directional Long Short-Term Memory neural network [128]. The method uses a
large text corpus to train a neural model that embeds in the same low-dimensional
space both the context derived from a sentence and its target words. This space
is then fine-tuned to accurately reflect the interrelations between the target words
and their sentential context, as shown in Figure 3.4

From the foundations laid by Context2Vec, McCann et al. [189] introduced
CoVe (Contextualized Word Representation Vectors). Rather than employing the
methodologies used in Word2Vec (skip-gram or CBOW) or GloVe (Matrix fac-
torization), they leveraged machine translation to construct CoVe. Their funda-
mental strategy involved pre-training a two-layer BiLSTM for attention sequence-
to-sequence translation, initializing with GloVe word vectors. Subsequently, the
output of the sequence encoder is combined with GloVe vectors and used in a
task-specific downstream model through transfer learning.

In 2018, Peters et al. [222] introduced ELMo, a deep bi-directional LSTM
architecture capable of representing each word in relation to the full context in
which it appears. Specifically, ELMo converts words into low-dimensional vectors
by inputting the word and its surrounding text into a two-layer bi-directional lan-
guage model (BiLM). For a sequence of n words (w1, w2, ..., wn) ELMo calculates
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Figure 3.4: The architecture of Context2Vec. [Image source Melamud et al. [195]].

a forward language model (as in equation 2.2) and a backward language model
and computes the final vector as a concatenation of hidden representations from
the two models. The backward model is similar to the forward one, with the sole
difference that the input word sequence is reversed (wn, w(n−1), ..., w1) and each
word is predicted according to the future context:

P (s) =
n∏

i=1

P (wi|wi+1, wi+2, ..., wn) (3.20)

3.3.2 The transformer architecture

The BERT framework is based on Transformers architecture [286], a deep learn-
ing model in which every output element is connected to every input element,
and the weightings between them are dynamically calculated based upon their
connection – a process called attention. These models are designed to handle
sequential data and compensate for one of the disadvantages of recurrent model
approaches, namely the need to process data in an orderly manner. In the Trans-
former architecture, the recurrent operations are substituted with the attention
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mechanism to learn contextual relationships between words in a text.

In its base form, the Transformer architecture includes two separate mech-
anisms, an encoder and a decoder, both containing the same stacked sequence
of layers that transform the input embeddings into the output for the predic-
tions for the task. The encoder first takes an input sequence (x1, ..., xn) from a
text and maps it to a sequence of embeddings z = (z1, ..., zn). The embeddings
in z are used by the decoder to autoregressively produce the output sequence
(y1, ..., ym). Each of the layers in the encoder and the decoder has the same ar-
chitecture, comprising two sublayers: a multi-head self-attention mechanism and
a fully connected feed-forward network, with residual connections around them
and followed by a normalization layer. Additionally, the decoder has a third layer
that receives the output from the previous stack and modifies the self-attention
sublayer to look only at the preceding words. Indeed, while the encoder attends
all words in the input sequence, regardless of their position, the decoder needs to
prevent attending at future context. For the nature of the language model task
itself, for the decoder to predict a word at a position i, the prediction should be
dependent only on the outputs of the words that come before it in the sequence.
The architecture of the Transformer model and its encoder-decoder mechanism
is shown in Figure 3.5.

The attention mechanism of the transformer allows the model to focus on
different words in the input sequence when generating each word in the output
sequence. It allows the model to deal in a flexible manner with the variable length
of sentences: thanks to the attention mechanism, the model can draw connections
between any parts of the sequence, and long-range dependencies have the same
likelihood to be taken into account as short-range ones.

The attention mechanism operates by assigning a weight to each word in a
sequence, which signifies the degree of ‘attention’ each word should receive. In
essence, the attention function can be seen as a mapping between a query and
a set of key-value pairs to an output, where the query, the keys, the values, and
the output are all vectors.

The transformer architecture implements a scaled dot-product attention. In
this procedure, for each word in the input three vectors are created: the query
vector q, the key vector k, and the value vector v. Subsequently, the key vector
k is matched with the query to provide the weighting score, i.e., the score is
obtained from the dot product between these two vectors. The intuition is that
if k and q are similar, the dot-product will be large and the model will pay more
attention to that word. The scores are then normalized, generally with a softmax
function, to be interpreted as probabilities. This ensures that all the attention
scores for an output word sum up to 1. To obtain the final output for each word,
the value vectors are weighted by the normalized attention scores and summed.

The computations performed by the scaled dot-product attention can be ap-
plied to entire sets of queries simultaneously. To do so, sets of queries, keys, and



70 Approach and Methods

Figure 3.5: The architecture of the Transformer model [Image source Vaswani et al.
[286]].

values, are respectively packed in the matrices Q, K, and V , which are supplied
as inputs to the attention function as shown in Figure 3.6 (left). Formally, given
the query matrix Q, the key matrix K, and the value matrix V as inputs, the
output of the attention is computed as:

Attention(Q,K, V ) = softmax

(
QKT

√
dk

)
V (3.21)

where dk is the dimension of the query matrix.
In the Transformer model, instead of performing the attention process once

per word, it can be performed multiple times in parallel, with each instance
referred to as “head” – hence, the term multi-head attention. The multi-head
attention mechanisms linearly projects the queries, keys, and values h times, using
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Figure 3.6: The scaled dot-product attention (left) and the multi-head attention (right)
mechanisms [Image source Vaswani et al. [286]].

a different learned projection each time. The single attention mechanism is then
applied to the head of the h projections in parallel to produce h outputs, which,
in turn, are concatenated and projected again to produce a final result. This
process is also shown in Figure 3.6 (right). Each head has its own set of learned
parameters and can therefore learn to focus on different features in the input
data: the attention function can extract information from different representation
subspaces, which would be otherwise impossible with a single attention head. The
multi-head attention function can be formalized as:

multiead(Q,K, V ) = [head1, head2, ..., headh]WO (3.22)

where each headi, with i = 1, ..., h, implements a single attention function char-
acterized by its own learned projection matrices such that

headi = attention(QWQ
i , KWK

i , V W V
i )WO (3.23)

where WQ
i , WK

i , and W V
i are the projection matrices used to generate different

subspace representations of the query, key, and value matrices, and WO is a
projection matrix for the multi-head output.

The BERT model

One of the most famous Language Models based on the Transformer architec-
ture is BERT (Bidirectional Encoder from Transformers) [73]. BERT is publicly
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available as an open-source framework and is nowadays one of the state-of-the-art
models for many Natural Language Processing applications.

BERT has a series of advantages that made it the top model in recent years.
The first advantage is its bidirectional nature. Being a bidirectional model means
that BERT learns information from both the left and the right side of a token’s
context during the training phase. This is a significant improvement over previous
models like GPT [235] and the original Transformer model, which are unidirec-
tional and can only understand the context of a word based on words that came
before it (left-to-right) or after it (right-to-left).

The second advantage of BERT is that it is pre-trained on a large amount
of data. Currently, many pre-trained BERT models are available for different
languages and purposes. However, the original pre-trained model came in two
sizes: BERT-base, trained on a corpus of around 800 million words, and BERT-
large, trained on English Wikipedia, a corpus of around 2,500 words. The pre-
trained BERT models can then be fine-tuned on other domains and tasks. This
way, it is possible to leverage the knowledge already included in the pre-trained
model and transfer it to new data. This possibility eliminates the need to collect
a large amount of data to create a language model or perform a specific Natural
Language Processing task.

Given that BERT’s goal is to generate a language representation model, it
only needs the encoding part of the Transformer architecture. BERT uses the
encoder to collect the semantic and syntactic information into the embedding
representation. The input for BERT’s encoder is a sequence of tokens that are first
converted into vectors (embeddings) and then processed by the neural network.
When processing the sequence of tokens, BERT adds to the sequence some special
tokens that contain extra metadata:

• the [CLS] token, a special classification token that is added at the beginning
of each sentence. The final hidden state that corresponds to this token is
used as an aggregate representation of the whole sequence for classification
tasks.

• the [SEP] token inserted between two different sentences to help the encoder
distinguish them.

Overall, the final embedding representation constructed by BERT is the sum of
three components:

1. the token embedding, learned for each specific token from the WordPiece
embeddings vocabulary [304];

2. the segment embedding: given that BERT can take as input a single sen-
tence or two sentences A and B stacked together, this learned embedding
indicates for each token whether it belongs to sentence A or sentence B;
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Figure 3.7: Pre-training and fine-tuning architecture for BERT. [Image source Devlin
et al. [73]].

3. the position embedding, a learned embedding that encodes the position of
the tokens within the sentence.

The BERT model is pre-trained with two unsupervised tasks. The first is the
Masked Language Model, in which some tokens in the sentences are randomly
masked, and BERT is instructed to predict the masked tokens. The second is the
Next Sentence Prediction, in which BERT is given in input two sentences A and
B, and BERT is instructed to predict sentence B given the preceding sentence A.
After the pre-training stage, the model can be then fine-tuned. In the fine-tuning
stage, the model is first initialized with the pre-trained parameters, which are
then fine-tuned using labeled data from downstream tasks. A representation of
the overall structure of the pre-training and fine-tuning procedures for the BERT
model can be seen in Figure 3.7.

In Chapter 5 BERT was used to produce implicit feature vectors to be used
as input for a classification task. In particular, the BERT-base model (bert-base-
uncased) will be leveraged.
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Chapter 4

Influence of Language Complexity
on User Engagement

“Much of a language’s
complexity is not necessarily
for effective communication.”

Guy Deutscher

This first case study focuses on the aspect of engagement in communication
and the influence the explicit linguistic profile has on language complexity and
thus on engagement. Engagement is shaped by a range of emotions and fac-
tors, and in human-human interaction, it stems from effective communication.
It’s crucial to comprehend that the effectiveness of communication isn’t merely
determined by the sender, but also significantly influenced by how the receiver
processes the information. The success of communication depends on multiple
elements, including the simplicity of the message conveyed. In other words, the
complexity of language can have an impact on communication and the emotions
associated with engagement. This chapter provides insights into the relationship
between language complexity, communication, and engagement.

This case study examines how humans perceive syntactic complexity in lan-
guage by exploring two scenarios: the complexity of sentences in isolation and
the complexity of sentences within a specific context. In the first scenario, com-
plexity is studied by utilizing explicit linguistic features (Section 2.2.2), while
in the second scenario, both explicit and implicit linguistic features (Section 3.3)
are considered. Overall, the results indicate that explicit features are the most
effective in predicting the level of complexity of a sentence.

The chapter is organized as follows: Section 4.1 describes the motivations
behind this study; Section 4.2 describes the collection and creation of the data
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for this study; Section 4.3 analyzes the complexity of sentences presented in
isolation (without providing any context); Section 4.4 analyzes the complexity of
sentences when presented with two additional contextual sentences.

4.1 Background and motivations

The complexity of natural language is a topic of significant interest in linguis-
tic research. One of the main reasons for this interest resides in the fact that
complexity impacts efficient communication.

According to linguistic theories, communication is considered efficient when
a message is transmitted between the speaker and the listener quickly, and with
minimal elaboration effort [127]. In simpler terms, communication efficiency re-
lies on the structural and grammatical simplicity of a message, allowing for rapid
processing with minimal cognitive effort. Thus, a complex message in natural lan-
guage can hinder effective and satisfying communication, affecting engagement.

The concept of engagement is multi-faceted and has been defined in various
ways. Some theories consider engagement as something that captures and retains
someone’s attention [53], or as something related to playfulness and sensory in-
tegration [159]. Others view engagement as a dimension of usability, influenced
by a user’s initial impression of an application and their enjoyment while using
it [234].

Regardless of the specific definition, engagement is widely acknowledged as
a complex process that encompasses various attributes, including attention, aes-
thetics, interest, challenge, control, motivation, novelty, and feedback. These
attributes play a role in each stage of the engagement process, including point of
engagement, engagement, disengagement, and re-engagement [214].

Engagement is crucial in both human-human and human-computer interac-
tions. A dull conversation with another person is likely to result in a lack of
engagement, causing the listener’s mind to wander. Similarly, a user-unfriendly
machine makes it difficult for users to enjoy and find the interaction pleasant. The
same holds true when a human tries to listen to or read a message that they per-
ceive as linguistically complex. If decoding and interpreting the message requires
a cognitive effort that the receiver perceives as excessive, it can lead to feelings
of frustration and disinterest, jeopardizing the success of the communication and
resulting in its termination due to a lack of engagement.

By understanding the linguistic aspects that humans perceive as complex, it
is possible to gain a better understanding of the factors that cause humans to
engage or disengage in a conversation or with any digital device they use in their
daily life. This knowledge can be used to improve the design of human-computer
interactions and enhance the overall user experience.

Despite its significance, the concept of complexity in natural language remains
somewhat ambiguous, as there is a lack of a clear and consistent definition in the
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literature. One recurring theme in research is that the definition of complexity
varies depending on the perspective used to study it. Indeed, complexity has
been studied from various angles, including psycholinguistic, historical, neurosci-
entific, and computational, leading to multiple measures of complexity from each
perspective. This diversity of definitions and measures highlights the complexity
of the concept itself and the need for a more unified understanding.

According to a widely accepted distinction, complexity in natural language can
be studied using two approaches: an absolute approach and a relative approach
[198].

The absolute approach is theory-driven and defines complexity based on the
number of parts in the linguistic system, i.e., the more parts a system has, the
more complex it is. For example, a language with 34 phonemes is considered
more complex than a language with only 18 phonemes. This measure of com-
plexity is grounded in the idea that “an area of grammar is more complex than
the same area in another grammar to the extent that it encompasses more overt
distinctions and rules than another grammar” [193]. In this view, phonologi-
cal and morphological phenomena play a key role in determining a language’s
complexity.

The relative approach is user-oriented, defining complexity based on the cost
and difficulty experienced by language users (speakers, listeners, or learners).
In other words, it measures how difficult a phenomenon is to process or learn.
Sentence complexity can be analyzed in terms of cognitive load, which can be
inferred through offline processing measures, such as complexity judgments and
error rates on comprehension tests, or through online processing measures, such
as total gaze time, fixation duration, and pupil dilatation from eye-tracking data.

This case study adopts a relative approach, examining complexity from the
perspective of human perception. The aim is not to provide a formal definition of
complexity, but rather to understand the subjective nature of human perception
of complexity in language and understand which linguistic phenomena impact on
complexity perception.

There have been various metrics proposed to operationalize the factors that
influence sentence processing performance. These metrics consider properties of
individual words and sentences, as well as experience-based expectations. Word-
level predictors that are correlated with higher cognitive load (i.e., processing
difficulty) include word frequency, root frequency effect, and orthographic neigh-
borhood frequency. At the syntactic level, a well-established complexity metric
takes into account dependency length [104, 105]. Another explanation of process-
ing difficulty is in terms of surprisal [119].

In this chapter, complexity is conceptualized in terms of perceived processing
difficulty, or how difficult or easy a sentence is perceived to be by an individual.
This approach recognizes the subjective nature of human perception of complexity
and the impact of a person’s background and knowledge on their perception of
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complexity.
It is important to note that many previous studies on complexity have primar-

ily focused on studying the complexity of sentences in isolation, linking syntactic
and lexical properties with observed difficulty. However, models of language com-
prehension have emphasized the crucial role of contextual cues in creating a co-
herent representation of a text [145, 192]. Previous research has demonstrated the
impact of context (i.e., the sentences preceding and following another sentence)
on language comprehension and difficulty. For example, studies have shown that
context can affect the readability of a sentence [249] and that ill-formed sentences
are perceived as more acceptable when presented in context [33]. This highlights
the importance of considering context when analyzing the complexity of language.

This study takes a comprehensive approach to analyzing and discussing the
complexity of sentences both in isolation and within context. Through this double
analysis, the study aims to address several research questions related to complex-
ity:

1. To examine the role played by linguistic phenomena in human perception
of language complexity.

2. To identify the key linguistic phenomena involved in predicting human
agreement on complexity.

3. To understand which phenomena are associated with sentences that are
perceived as complex by humans, and to use these phenomena to predict
human complexity.

4. To describe the role played by context in the perception of complexity.

5. To demonstrate that models that rely on explicit linguistic features are bet-
ter predictors of complexity judgments compared to state-of-the-art models
that use implicit features.

4.2 Data

The data used in this case study to examine complexity consist of two monolingual
specialized corpora, each containing sentences in a single language and belonging
to a specific textual genre. Both corpora consist of sentences extracted from
newspapers, with one corpus containing Italian sentences only and the other
containing English sentences only.

By examining the complexity of sentences in two languages with different
morpho-syntactic and syntactic properties, this study aims to understand if ty-
pologically different languages share common parameters of linguistic complexity.
This comparative analysis was only performed when analyzing the complexity of
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sentences in isolation. When the context was introduced, only the English corpus
was considered.

4.2.1 Dataset creation

For both languages, the sentences were extracted from manually revised treebanks
to ensure accuracy and prevent errors that may be introduced by automatic
annotations.

The Italian sentence corpus was created from the newspaper section of the
Italian Universal Dependency Treebank (UDT) [187]. This treebank is annotated
according to the Universal Dependencies (UD) scheme [211], which is designed
to be interlingual, allowing for the annotation of different languages without the
need for language-specific schemes. The use of the UD scheme enables easier
inter-language comparisons and facilitates the creation of multilingual analysis
tools.

The English sentence corpus was created from the automatically converted
Wall Street Journal section of the Penn Treebank [190]. It is important to note
that this treebank is not annotated with the same UD scheme as the Italian one.
However, the use of a different annotation scheme for the English corpus does
not pose a problem as the UD scheme is an evolution of the Stanford scheme [70]
used to annotate the Penn Treebank. The choice of a different annotation scheme
for the English corpus was made due to the genre of the sentences analyzed in
this study. The UD treebank for English is built on texts extracted from web
media (such as blogs, e-mails, and online product reviews), while the texts in the
UDT mainly belong to the journalistic genre. By extracting texts from the Wall
Street Journal of the Penn Treebank, this study is able to compare linguistic
phenomena related to sentence complexity, minimizing possible cross-linguistic
differences caused by inconsistent sentence structure representation principles.
Different literary genres can encode various linguistic structures that would not
make them comparable within the scope of this study.

After acquiring the data, a data selection phase was conducted. To reduce the
impact of lexicon on sentence complexity, a strategy was implemented to remove
sentences containing low-frequency lemmas from the two treebanks. This was
done by using a lemma frequency list extracted from a large reference corpus,
excluding numerals and proper nouns. For Italian, the reference corpus was
PAISÁ [176], one of the most extensive corpora of contemporary Italian texts
extracted from the internet. For English, the reference corpus was a large set of
sentences extracted from the Wall Street Journal [212].

After the data selection phase, the sentences were grouped based on their
length in terms of number of tokens. Six bins were created, each containing
sentences with 10, 15, 20, 25, 30, and 35 tokens (for Italian with a range of
+/- 1 token each). By controlling the length of the sentences, it was possible
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to determine whether the linguistic features known to correlate with sentence
length still had an impact on complexity. As previously mentioned, it is widely
accepted in the literature that sentence length is often associated with linguistic
complexity, as longer sentences are typically perceived as more complex due to
their longer syntactic dependencies or the presence of many relative clauses. Only
the first 200 highest-ranked sentences from each bin were extracted, except for
the last bin of Italian, which only contained 123 sentences. The final dataset
used for the experiments consisted of 1,189 English sentences and 1,123 Italian
sentences.

Dataset extension with context

The dataset was augmented in order to examine the impact of contextual factors
on the perception of sentence complexity. The expansion was exclusively applied
to the English sentences.

In this study, context is conceptualized as “the preceding or succeeding sen-
tence, or both, to a given sentence”. The definition of a sentence in this scope
is the text segment that lies between two full stops. For each sentence in the
dataset, three separate windows of context were generated based on the relative
position of the main sentence in relation to the contextual sentence:

• begin window : the sentence appears first and is followed by two contextual
sentences;

• center window : the sentence is in the middle and is preceded by a contextual
sentence and followed by another contextual sentence;

• end window : the sentence appears as the last one and is preceded by two
contextual sentences.

The resulting dataset comprises 2,913 windows of context: 1,002 for the begin
window, 986 for the center window, and 943 for the end window.

4.2.2 Dataset annotation

Human complexity judgments were collected with the aid of crowdsourcing. Two
separate crowdsourcing tasks were established, one to assess complexity without
context and the other to evaluate complexity in the presence of context. These
tasks were conducted at different times, utilizing distinct participants and slightly
varying conditions, as described in further detail below.

The task to assess complexity without context was implemented on the Crowd-
Flower platform1. For each language, 20 native speakers were recruited through

1As of the writing of this Chapter, the CrowdFlower platform has been discontinued and its
services have been migrated to www.appen.com (last visit 09/07/2023).

www.appen.com
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the platform. Participants were instructed to read each sentence and to rate
its difficulty level on a 7-point Likert scale, where 1 indicated very easy and
7 indicated very difficult. The sentences were presented in a randomized order
and were displayed on separate pages, each containing five sentences. To ensure
high-quality annotations, only workers with a “high quality” level assigned by
the platform2 were selected. In order to maintain the quality of the annotations,
each participant was required to spend a minimum of ten seconds on each page.

The task to evaluate complexity in context was conducted on the Prolific plat-
form3. For each contextual window, the sentence to be evaluated was presented
in bold font, while the contextual sentences were displayed in plain font. The
windows were presented in a randomized order and were displayed on separate
pages, each containing ten windows. To manage the large number of context
windows to be evaluated, the dataset was divided into smaller sections, with a
maximum of 200 windows per section, resulting in 15 evaluation tasks. For each
task, ten native English speakers were recruited. Participants were asked to read
the entire window of context and to rate the complexity of the sentence presented
in bold font on the same 7-point Likert scale used in the previous task. Given
the subjective nature of complexity perception, the ratings were aggregated to
account for individual biases among participants. There may be instances where
one annotator consistently gave low scores, while another consistently gave high
scores. The ratings were then re-scaled between 0 and 1 and normalized based
on the range of ratings provided by each annotator.

4.3 Analysis of single sentence complexity

This Section focuses on the analysis of single sentence complexity in the data.
The analysis aims to address the following objectives: (i) identifying linguistic
phenomena that contribute to agreement among annotators in their complexity
judgments, (ii) examining the linguistic aspects that are more strongly associ-
ated with a higher or lower perception of complexity, and (iii) determining the
linguistic aspects that are better predictors of human complexity perception.

4.3.1 Study of the agreement

The first research question addressed in this study pertains to the evaluation of
the linguistic phenomena that contribute to agreement among annotators. Specif-
ically, the objective is to determine if certain patterns in sentence structure are
correlated with complexity levels, thus leading different annotators to assign the
same complexity judgment to a sentence. To achieve this, a new metric, referred

2This level was determined based on the worker’s performance in previous tasks.
3www.prolific.com (last visit 09/07/2023)

www.prolific.com


84 User Engagement

10 12 14 16 18 20
Number of annotators

0

200

400

600

800

1000

1200

Nu
m

be
r o

f s
en

te
nc

es

ITA
ENG
ITA
ENG

Figure 4.1: Number of sentences for
each degree of agreement.

10 15 20 25 30 35
Sentence length

1.5

2.0

2.5

3.0

3.5

4.0

4.5

M
ea

n 
ju

dg
m

en
t

ITA
ENG
ITA
ENG

Figure 4.2: Mean complexity judgment
at different sentence lengths.

to as degrees of agreement, is introduced. This metric measures the number of
annotators who assign a complexity judgment within the same range, calculated
as a standard deviation from the mean judgment for each sentence. Applying
this measure, the rated sentences are split into ten sets, each corresponding to a
different degree of agreement.

Figure 4.1 displays the number of sentences for each degree of agreement,
ranging from a minimum degree of agreement of 10 to a maximum of 20, along
with the total number of annotators involved in the study. For each language,
a small number of sentences are excluded when considering a minimum agree-
ment of 10 annotators. This indicates that there are a substantial number of
sentences (approximately 1100) on which at least 10 annotators agree in assign-
ing a complexity judgment within the same range. As the number of annotators
in agreement increases, the number of sentences decreases, yet a significant num-
ber of sentences (approximately 600) still remain at a degree of agreement of 14.
When the degree of agreement reaches 20, the number of remaining sentences
is zero, indicating that there are no sentences to which all 20 annotators have
assigned a complexity judgment within the same range.

Subsequently, the sentences are analyzed in terms of the linguistic features
outlined in Section 2.2.2 to determine the linguistic phenomena that contribute to
agreement among annotators. The features were extracted from sentences where
annotators agreed (referred to as agreed sentences) and from sentences where
annotators did not agree (referred to as not-agreed sentences). The Wilcoxon
Rank-sum test (detailed in Section 3.1.3) was used to determine if there is a sta-
tistically significant difference between the two groups of sentences. This process
was repeated for each agreement threshold.

The next step in addressing the first research question was to conduct a feature
selection process to identify the features that maximize the accuracy of a classifier
in distinguishing between agreed and not-agreed sentences. The Support Vector
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Machine Classifier (SVC) algorithm (Section 3.2.1) was used as the estimator,
and the Recursive Feature Elimination algorithm4, outlined in Section 3.2.3, was
used to create a ranking of feature relevance. At each iteration of the algorithm,
a single feature was dropped, and the performance of the classifier was evaluated
using a 3-fold cross-validation method. This process was repeated ten times for
each degree of agreement, and the top-ranked features were then selected. The
accuracy of the Support Vector Classifier on unseen data was evaluated against
a baseline, which corresponds to the performance of a most likely classification
method, where each sentence is always classified into the most likely class.

Table 4.1 shows the features that vary in a statistically significant way (marked
with ✓) according to the Wilkonson Rank-sum test and the ones selected in the
classification task with the Support Vector Machine (marked with ⋆), for both
languages and at different levels of agreement. The features are grouped into
sections based on the linguistic phenomena they describe. As evident, there is
an opposite trend between the statistically significant features and those selected
by the classifier as the degree of agreement increases. For what concerns the
Wilcoxon test, very few features have significantly different values at lower degrees
of agreement. Namely, very few features are involved in discriminating the agreed
vs. not-agreed sentences, especially when the agreement is below 14.

For both languages raw text features (n tokens, char tok) vary significantly
for most levels of agreement. It is noteworthy that while these two features
are significant, they are not given equal consideration by the classifier, which
instead relies on more complex syntactic features, such as features related to
subordination (subord depth) and nominal modification (prep chain l). Syntactic
features begin to vary significantly as the agreement increases; this happens, for
instance, for features related to the parsed tree structure, such as the depth of
the whole parsed tree (max depth) and the chains of complements (dep mark, or
features related to the use of subordination (section subordination phenomena in
the table).

By comparing the two languages, some differences emerge. At the lowest
agreement (degree 10), different features in all groups vary significantly for En-
glish, while for Italian, the agreed and not-agreed sentences do not vary for any
features. At higher degrees of agreement, the agreed sentences in Italian are
characterized by the variation of two language-specific features: the position of
the object with respect to the verbal head (order obj ) and some morphological
features about verbs (verbs num pers, verb tense), which also contribute to the
classification only for Italian.

Table 4.2 shows the accuracy of the SVC for each degree of agreement and the
baseline (computed with the most likely classification method). The accuracy of

4Implemented in the Scikit-learn library [220].
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Agreement
10 11 12 13 14 15 16 17

Feature IT EN IT EN IT EN IT EN IT EN IT EN IT EN IT EN
raw text properties

char tok ⋆ ⋆ ⋆ ⋆ ⋆ - - ✓ ✓ ✓⋆ ✓⋆ ✓⋆ ✓⋆ ✓⋆ ✓⋆ ✓⋆
n tokens - ✓⋆ ✓⋆ ✓⋆ ✓⋆ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

lexical variety
lex density - ⋆ - ⋆ - - - ✓⋆ - ✓⋆ - ✓ - ✓⋆ - ✓⋆
ttr form - ✓⋆ ⋆ ⋆ ✓⋆ ✓ ✓ ✓ ✓ ✓⋆ ✓⋆ ✓⋆ ✓⋆ ✓⋆ ✓ ✓⋆
ttr lemma ⋆ ✓⋆ ⋆ ✓⋆ ⋆ ✓ ✓ ✓⋆ ✓ ✓⋆ ✓⋆ ✓⋆ ✓⋆ ✓⋆ ✓⋆ ✓⋆

morpho syntactic information
cpos ADJ ⋆ ⋆ ⋆ ⋆ ⋆ - - - ✓⋆ - ✓⋆ ✓⋆ ✓⋆ ✓⋆ ✓⋆ ✓
cpos ADP ⋆ ⋆ ⋆ ⋆ ⋆ - - ⋆ - - - - ✓ ✓ ✓ ✓
cpos ADV ⋆ - ⋆ - ⋆ - - - - - ⋆ - ⋆ - ⋆ -
cpos AUX ⋆ - ⋆ - ⋆ - ✓ - - - - - ✓⋆ - ✓ -
cpos CONJ ⋆ ⋆ ⋆ ⋆ ⋆ - - ⋆ - ✓ ✓ ✓⋆ ✓⋆ ✓ ✓ ✓
cpos PRON ⋆ - ⋆ - ⋆ - - - ✓ - ✓⋆ - ✓ - ✓ -
cpos DET - ⋆ - ⋆ - - - ✓⋆ - ✓⋆ - ✓⋆ - ✓⋆ - ✓⋆
cpos NUM - ⋆ - ✓⋆ - ✓ - ✓⋆ - ✓⋆ - ✓⋆ - ✓⋆ - ✓⋆
cpos PROPN ⋆ - ⋆ - ⋆ - - - ✓ - ⋆ - ✓⋆ - -
cpos PUNCT ⋆ - ⋆ - ⋆ - ✓ - - - ✓⋆ - ✓ - ✓⋆ -
cpos SCONJ ⋆ - ⋆ - ⋆ - - - - - ✓⋆ - ✓ - ✓ -
cpos VERB - ⋆ - ⋆ - ✓ - ✓⋆ - ✓⋆ - ✓⋆ - ✓⋆ - ✓
verbs num pers ⋆ - ⋆ - ⋆ - ✓⋆ - ✓⋆ - ✓⋆ - ✓⋆ - ✓⋆ -
verbs tense ⋆ - ⋆ - ✓⋆ - ✓ - ✓⋆ - ✓⋆ - ✓⋆ - ✓⋆ -

verbal predicate structure
verb arity ⋆ ⋆ ⋆ ⋆ ✓⋆ - ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
verb head arity ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ✓⋆ ⋆ ✓⋆ ✓⋆ ✓⋆ ✓⋆ ✓⋆ ✓⋆
verb head ⋆ ⋆ ⋆ ⋆ ✓⋆ - ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

global and local parsed tree structure
links len - ✓⋆ ⋆ ⋆ ✓⋆ ✓ ✓ ✓ ✓⋆ ✓ ✓ ✓⋆ ✓ ✓ ✓ ✓
max depth - ⋆ ⋆ ⋆ ✓⋆ - ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓⋆ ✓ ✓
max links l - ✓⋆ ⋆ ✓⋆ ✓⋆ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
n prep chains ⋆ ✓⋆ ✓⋆ ⋆ ✓⋆ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓⋆ ✓ ✓
order obj - - ⋆ - ⋆ - - - - - ✓ - ✓ - ✓ -
order subj - - ⋆ - ⋆ - - - ⋆ - - - ✓ - ✓ -
prep chain l - ⋆ ⋆ ⋆ ⋆ - ✓ - ✓ ✓ ✓⋆ ✓ ✓⋆ ✓ ✓ ✓
prep depth - ✓⋆ ⋆ ⋆ ✓ ✓ ✓ ✓ ✓ ✓⋆ ✓ ✓⋆ ✓ ✓⋆ ✓ ✓⋆
token clause - ⋆ ⋆ ⋆ ⋆ - - - - - - - ✓ ✓ ✓ ✓

syntactic relations
dep acl - - ⋆ - ⋆ - ✓ - ✓ - ✓ - ✓ - ✓ -
dep acl:relcl - - ⋆ - ⋆ - - - ⋆ - ✓ - ✓⋆ - ✓ -
dep adpobj - ⋆ - ⋆ - - - ⋆ - - - - - - - ✓
dep advcl ⋆ - ⋆ - ⋆ - - - ✓ - ✓ - ✓⋆ - ✓ -
dep amod ⋆ ✓⋆ ⋆ ⋆ ⋆ ✓ - ✓⋆ ✓ ✓ ✓ ✓⋆ ✓⋆ ✓⋆ ✓ ✓⋆
dep appos - ⋆ - ⋆ - - - - - ⋆ - - - - - -
dep attr - ⋆ - ⋆ - - - - - - - ✓⋆ - ✓⋆ - ✓
dep aux - - ⋆ - ⋆ - ✓ - ✓ - - - ✓⋆ - ✓ -
dep case ⋆ - ⋆ - ⋆ - - - ⋆ - - - ✓ - ✓ -
dep cc ⋆ ⋆ ⋆ ⋆ ⋆ - - - - ✓⋆ ✓ ✓⋆ ✓⋆ ✓⋆ ✓ ✓
dep ccomp - ⋆ - ⋆ - - - - - ✓ - ✓ - ✓ - ✓
dep compmod - ⋆ - ⋆ - - - - - ✓⋆ - ⋆ - ✓⋆ - ✓⋆
dep conj ⋆ ⋆ ⋆ ⋆ ⋆ - - ✓⋆ - ✓⋆ ✓⋆ ✓⋆ ✓⋆ ✓⋆ ✓ ✓⋆
dep det - ⋆ - ⋆ - - - ⋆ - ✓⋆ - ✓⋆ - ✓⋆ - ✓⋆
dep dobj ⋆ - ⋆ - ⋆ - - - - - ✓ - ✓⋆ - ✓ -
dep mark ⋆ ⋆ ⋆ ⋆ ⋆ - ✓ ⋆ ✓ ⋆ ✓⋆ ⋆ ✓⋆ ✓ ✓ ✓
dep nmod ⋆ ⋆ ⋆ ⋆ ✓⋆ - ✓ - ✓ - - ✓⋆ ✓⋆ ✓ ✓ ✓
dep nsubj - ✓⋆ - ✓⋆ - ✓ - ✓ - ✓⋆ - ✓⋆ - ✓⋆ - ✓⋆
dep num - ⋆ - ⋆ - ✓ - ✓ - ✓⋆ - ✓⋆ - ✓⋆ - ✓⋆
dep partmod - ⋆ - ⋆ - - - - - - - ✓ - ✓ - ✓
dep poss - ⋆ - ⋆ - - - - - ✓ - ✓ - ✓ - ✓
dep punct ⋆ - ⋆ - ⋆ - ✓ - - - ✓⋆ - ✓ - ✓ -
dep rcmod - ⋆ - ⋆ - - - ⋆ - - - ✓⋆ - ✓⋆ - ✓
dep xcomp ⋆ - ⋆ - ⋆ - - - - - - - ✓ - ✓ -

subordination phenomena
n principal clauses - ⋆ ⋆ ⋆ ⋆ - ✓ ✓ ✓ ✓⋆ ✓ ✓ ✓ ✓ ✓ ✓
n subord chain ⋆ ⋆ ⋆ ⋆ ⋆ ✓ ✓ - ✓⋆ ✓⋆ ✓⋆ ✓ ✓⋆ ✓ ✓ ✓
n subord clauses ⋆ - ⋆ - ⋆ - ✓ - ✓⋆ - ✓⋆ - ✓⋆ - ✓⋆ -
order subord ⋆ ⋆ ⋆ ⋆ ⋆ - ✓ ✓ ✓ ✓⋆ ✓ ✓ ✓ ✓ ✓ ✓
subord depth ⋆ ⋆ ⋆ ⋆ ⋆ - ✓⋆ ⋆ ✓⋆ ✓⋆ ✓⋆ ✓⋆ ✓⋆ ✓⋆ ✓⋆ ✓⋆

Table 4.1: Linguistic features that vary statistically and features selected by the SVM
classifier in at least 50% of the 10 runs (⋆) for Italian and English at different degrees
of agreement.

the classifier is computed as the average classification score of the 10 best results
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of the feature selection process. At low degrees of agreement (< 14) the classi-
fier achieves lower accuracy compared to the baseline, showing that the selected
features do not contribute to discriminating agreed vs. non-agreed sentences.
These features begin having a more significant impact on the classification of
sentences as the degree increases (from degree 14 to degree 17). This result indi-
cates that at these degrees of agreement, the values of the features characterizing
the agreed sentences are considerably different from those of the non-agreed sen-
tences. Moreover, even though a very high number of features are considered
statistically significant by the Wilcoxon test for these sentences, the classifier
needs fewer features to assign the correct class (as shown in Table 4.1).

Baseline Accuracy (%) - SVC Accuracy (%)

10 11 12 13 14 15 16 17

Italian 95.4-95.4 91-90.8 80.6-80.5 66.7-66 51.9-59.1 66.8-68.8 79-80.7 87-87.1

English 94-94 86.8-86.8 83.6-77.4 66.3-66.1 53.9-60 60.7-71.8 70.9-79.3 80.4-84.6

Table 4.2: Baseline and Support Vector Classifier accuracy at different degrees of human
agreement.

4.3.2 Correlation between linguistic features and complex-
ity

The second research question addressed in this study aims to model human per-
ception of complexity by examining the correlation between linguistic features
extracted from sentences and the complexity judgments assigned to each sen-
tence. To achieve this, the average complexity judgment for each of the six bins
of sentences of the same length (10, 15, 20, 25, 30, 35 tokens) was calculated.
As illustrated in Figure 4.2 on page 84, both languages rated longer sentences as
more complex, although all sentences were consistently rated as more complex in
Italian.

Next, the Spearman’s Rank Correlation Coefficient (detailed in Section 3.1.1)
was calculated between the values of each feature and the average complexity
judgments to obtain a ranking of features. The correlation was computed at two
distinct degrees of agreement, 10 and 14, as these two thresholds were selected
for analysis. At degree 10, the agreed sentences correspond to nearly all of the
rated sentences, and at degree 14, the Support Vector Machine classifier starts
to outperform the baseline (as shown in Table 4.2). Additionally, at degree 14,
there is still a substantial set of agreed sentences remaining, allowing for a reliable
statistical examination of the features (as depicted in Figure 4.1). For threshold
10, the ranking of features with respect to the six bins of sentences of the same
length (L10, L15, L20, L25, L30, L35) was also calculated.

Figure 4.3 displays the ranking of features with p < 0.05. A positive value
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Figure 4.3: Features correlating with human judgments at different sentence lengths
and with respect to the sentences at agreement 10 (TOT 10 ) and 14 (TOT 14 ).

indicates that as the feature value increases, the sentence is perceived as more
complex (i.e., the feature ranked +1 is the top-ranked feature as it is most posi-
tively correlated). Conversely, a negative value indicates that as the feature value
decreases, the sentence is perceived as more complex (i.e., the feature ranked −1
is the most highly negatively correlated).

For both languages, the correlation between the top 20 ranked features and
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the judgment of complexity is substantial, ranging from 0.30 to 0.85 when consid-
ering sentences at agreement 14. At the two agreement thresholds for all lengths
(columns TOT10 and TOT14 in the Figure), highly correlated features concern
not only sentence length but also deep syntactic features, such as the depth of
the whole parsed tree (max depth), the length of dependency links (links len),
and features related to subordination (n subord clauses). In more detail, the 1st-
ranked feature in Italian (max depth, the maximum depth of the parsed tree) and
the 1st-ranked feature in English (n tokens, the length of the sentences) have a
correlation of 0.64 and 0.84 respectively. Nominal modifications (n prep chains
is also highly correlated (Italian ρ = 0.59, English ρ = 0.54) and equally ranked
at the 3rd position in both languages. The distribution of verbs num pers, i.e.,
the distribution of the number and the person of the subjects of verbs, makes the
sentence more complex only for Italian. This may be related to higher complexity
in verbal morphology, as the use of third-person verbs in impersonal structures
may increase sentence ambiguity with respect to the referent.

In English, sentence complexity is also influenced by the distribution of cardi-
nal numbers (cpos NUM ) and the presence of a numeric modifier as a dependent
(dep num). This result is in line with the difficulty of numerical information
shown in readability studies [26]. On the other hand, the relative ordering of
subjects with respect to the verbal head and the verbal arity have a lower po-
sition in the negative ranking, suggesting that these features make a sentence
easier. This outcome might be due to a more fixed predicate-argument structure
and word order in the English language.

When focusing on sentences of the same length, features considered as a proxy
of lexical complexity are in top positions in both languages. This is the case of
the average word length (char tok) and, only for English, of the lexical density
(lex density). While most features have similar rankings in all bins of same-
length sentences for English, substantial differences can be observed between the
ranking of features extracted from sentences that are ≤ 20 tokens and ≥ 20
tokens in length for Italian. In particular, when the average sentence length is
≥ 20 tokens, features related to subordination make the sentence more complex.

4.3.3 Prediction of sentence complexity judgments

This part of the work analyzes how linguistic features contribute to predicting the
judgment of complexity assigned by humans to a sentence. To this end, a linear
Support Vector Regression model (SVR) (see Section 3.2.2) is trained with default
parameters using the Scikit-learn [220] implementation. A 3-fold cross-validation
is performed over each subset of agreed sentences at degrees of agreement 10
and 14. The performance of the model is measured with two metrics: (1) the
mean absolute error to evaluate the accuracy of the model in predicting the same
complexity judgments assigned by humans to the sentences and (2) Spearman’s
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IT-10 IT-14 EN-10 EN-14

mean abs err 1 0.77 0.78 0.71 0.68

Spearman 1 0.57 0.64 0.68 0.64

mean abs err 2 0.79 0.80 0.70 0.70

Spearman 2 0.55 0.63 0.67 0.73

mean abs err 3 0.85 0.75 0.77 0.60

Spearman 3 0.55 0.64 0.61 0.71

avg mean abs err 0.80 0.78 0.72 0.66

avg Spearman 0.56 0.63 0.65 0.69

Table 4.3: Performance of the linear SVM regression model and the avg score at dif-
ferent agreements.

correlation coefficient (Section 3.1.1) to evaluate the correlation between the rank-
ing of features produced by the regression model and the ranking produced by
the human judgments.

Table 4.3 shows the outcome of each cross-fold validation and the resulting
average score of the two metrics. The model is very accurate and achieves a
very high correlation of ρ > 0.56 with p-value < 0.001, and an average error
difference (avg mean abs err) below 1. Particularly, the model obtained higher
performance predicting the ranking of features extracted from sentences at the
degree of agreement 14. This might be because these sentences are characterized
by a more uniform distribution of linguistic phenomena and that these phenomena
contribute to predicting the same judgment of complexity. These results are in
line with the ones obtained by the Support Vector Classifier in predicting the
degrees of agreement (Table 4.2 on page 87). This is more relevant for English,
and it possibly suggests that the set of sentences similarly judged by humans are
characterized by a lower variability of the values of the features.

4.4 Analysis of sentence complexity in context

This section of this case study is dedicated to the analysis performed on the data
regarding the complexity of sentences in context. Here the objective is to pinpoint
which linguistic phenomena extracted from the single sentences or the contextual
sentences (i) influence the agreement on complexity between annotators, (ii) are
correlated with complexity and complexity standard deviation in different con-
textual windows, and (iii) if these linguistic features are less or more effective
than state-of-the-art language models in predicting complexity judgments in a
low resource scenario.
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4.4.1 Study of the agreement

As what has been discussed for single sentences in Section 4.3.1, the first step of
this analysis was to look at the degrees of agreement between annotators. The
definition of the degree of agreement is the same as in Section 4.3.1.

Figure 4.4: Number of sentences for
each degree of agreement.

Figure 4.5: Number of sentences at dif-
ferent average complexity ratings.

Figure 4.6: Mean standard deviation at
different average complexity ratings.

Figure 4.4 reports the number of sentences for every degree of agreement,
considering the different sentence positions within the context windows. A strong
degree of agreement is found for all three windows, as most sentences have up to 5
annotators that have assigned a complexity judgment within the same range. As
the degree of agreement increases, the number of sentences decreases consistently.
This result is in line with what was detected when analyzing the complexity of
single sentences out of context. The highest agreement is found at 8 annotators,
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begin center end

judg std judg std judg std

Length 10 0.28 0.23 0.28 0.28 0.28 0.28

Length 15 0.27 0.23 0.32 0.28 0.30 0.28

Length 20 0.27 0.22 0.35 0.27 0.33 0.26

Length 25 0.26 0.21 0.36 0.26 0.35 0.26

Length 30 0.26 0.22 0.38 0.26 0.36 0.25

Length 35 0.25 0.21 0.39 0.26 0.38 0.26

All sents 0.26 0.22 0.35 0.27 0.33 0.27

Table 4.4: Mean complexity judgment and mean standard deviation on complexity for
all sentences and at different lengths.

but on a small number of sentences (less than 200), while there are no sentences
on which 9 or 10 annotators agree in any of the context windows. Also, this
preliminary analysis suggests that the sentence position in the context window
has little to no influence on the degree of agreement, as the numbers mostly
follow the same trend in each context window. This assumption is confirmed
by the results shown in Figure 4.5, in which the number of sentences that were
assigned the same average complexity value is plotted against the same average
complexity value. It appears clear that the average complexity follows a Gaussian
distribution for all the windows of context, as most sentences received an average
complexity between 0.2 and 0.4, regardless of their position in the context window.

To further address the relationship between complexity and agreement, it
was calculated the standard deviation of the complexity judgments that were
assigned to each sentence. In Figure 4.6 the standard deviation of each sentence is
plotted against the average complexity assigned to the same sentence for the three
windows of context. In the cases in which more than one sentence was assigned
the same average complexity values, the average standard deviation of all the
sentences is plotted. From the Figure, it is noticeable that the standard deviation
tends to increase with the average complexity score assigned to sentences. This
means that annotators agree more on rating a sentence as simple, suggesting that
the perception of a sentence as more complex may be less homogeneous. This
trend is overall similar for all contextual windows, although it appears to be a
more uniform behavior in rating a sentence as more complex when surrounded
by both contextual sentences (i.e., in the center window).

Besides the position of the sentence in the context window, also the length
of a sentence may affect the perception of complexity (as described previously in
Section 4.2.1). Thus, it was calculated the average complexity judgment assigned
to sentences of the same length, for all three context windows, along with the av-
erage standard deviation. As visible in Table 4.4, the average complexity values
tend to increase with the length of sentences for the center and the end win-
dow, as expected. On the other side, the standard deviation follows an opposite
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trend, marking that subjects agree more on the complexity of longer sentences
(e.g., lengths 30 and 35); their perception of shorter sentences, instead, is more
diversified. The data also show that when the sentence is at the beginning of
the sentence, it is overall perceived as less complex. This could indicate that the
following contextual sentences help the annotators in both the understanding and
the processing of the first sentence.

Table 4.5 contains examples of sentences whose complexity scores vary the
least or the most within the different context windows. In the case of Zero Vari-
ance, the sentence obtained the same average complexity, regardless of the relative
position it had in the contextual window (begin, center, or end). Conversely, sen-
tences with the highest variance received very diverse average values according to
the position occupied by the sentence in the contextual windows. The Table also
reports the actual average complexity values that the sentences with the highest
variance got for each position.

4.4.2 Correlation between linguistic features and complex-
ity

As described in Section 4.3.2, it was performed a correlation analysis also for
complexity in context. The correlation was computed between the complexity
score assigned to each sentence and the set of explicit linguistic features (Section
2.2.2) extracted from the sentence. This analysis is used to detect which linguistic
phenomena are more involved in the assessment of sentence complexity and to
verify whether these phenomena capture information about the sentence itself or
about the context.

For each sentence, it was computed the Spearman’s rank correlation coeffi-
cient (Section 3.1.1) between the average complexity score and the value of each
linguistic feature extracted from i) the rated sentence, ii) its preceding one and
iii) its following one, according to the contextual window. The correlation analy-
sis was performed on the sentences altogether and then on the sentences divided
into bins according to their length. The same process was repeated by correlating
the standard deviation of complexity scores with the linguistic features of each
sentence.

In what follows are discussed only the correlation results for the subset of sen-
tences presented in the center window, since this is the only window in which the
rated sentence is always surrounded by both a left and a right context sentence,
allowing a comparison between the two context positions. In Appendix B are
reported the full tables of correlation results for all contextual windows.
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Zero Variance BCE Highest Variance B C E

Length 10
Tokyo’s Nikkei index
fell 84.15 points to
35442.40.

0.38
Nashua announced the
Reiss request after the
market closed.

0.22 0.42 0.63

Length 15
Elsewhere in Europe,
share prices closed
higher in Stockholm,
Brussels and Milan.

0.23
Last year, the prisons’
sales to the Pentagon
totaled $336 million.

0.62 0.32 0.20

Length 20
Dow Jones industrials
2645.08, up 41.60;
transportation 1205.01,
up 13.15; utilities
219.19, up 2.45.

0.50
The cash dividend paid
on the common stock
also will apply to the
new shares, the com-
pany said.

0.12 0.12 0.55

Length 25
In the nine months,
Milton Roy earned $6.6
million, or $1.18 a
share, on sales of $94.3
million.

0.38
Yesterday, Compaq
plunged further, clos-
ing at $100 a share,
off $8.625 a share, on
volume of 2,633,700
shares.

0.25 0.67 0.42

Length 30
SsangYong, which has
only about 3% of the
domestic market, will
sell about 18,000 of its
models this year, twice
as many as last year.

0.32
Though not reflected in
the table, an investor
should know that the
cost of the option in-
surance can be partially
offset by any dividends
that the stock pays.

0.23 0.50 0.57

Length 35
In the nine months, net
rose 35% to $120.1 mil-
lion, or $1.64 a share,
from $89.20 million, or
$1.22 a share, a year
earlier.

0.48
William Kaiser, pres-
ident of the Kaiser
Financial Group in
Chicago, said the
decline was almost
certainly influenced
by the early sell-off
in the stock market,
which partly reflected
a weakening economy.

0.45 0.23 0.58

All sents
Dow Jones industrials
2645.08, up 41.60;
transportation 1205.01,
up 13.15; utilities
219.19, up 2.45.

0.50
The cash dividend paid
on the common stock
also will apply to the
new shares, the com-
pany said.

0.12 0.12 0.55

Table 4.5: Sentences which vary the least or the most within context windows. B, C,
and E respectively indicate the begin, center, and end windows.

Correlations with the average complexity score

Table 4.6 shows the top ten features ranked by the correlation score with average
complexity, for all sentences and all groups of sentences of the same length. A
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Features L10 L15 L20 L25 L30 L35 All

B dep aux:pass - - - −1 - - -

B dep compound - - 5 - - - -

B dep compound:prt −4 - - - - - -

B dep flat - - - −5 - - -

B dep nmod - - - 5 - - -

B dep nsubj - −5 - - - - -

B dep nsubj:pass - - - −2 - - -

B dep nummod - - 3 - - - -

B princ prop - - −4 - - - -

B verb root perc - - −3 - - - -

C aux Fin - - −1 - −4 - -

C aux num pers + −5 - −5 - - - -

C aux Pres - - - - −5 - -

C avg max depth - 5 - - - - 4

C avg max link - - - - - - 8

C avg sub chain - - - - - −1 -

C avg tok clause - - 4 - - - -

C char tok - - - - - −5 -

C dep aux - - - - −2 - -

C dep det - −3 - - - - -

C dep nmod 5 - - - - - -

C dep nummod - 4 2 - 2 2 5

C dep root - −1 - - - - −1

C dep xcomp - - - −3 - - -

C max link - - - - - - 7

C n prep chain - - - - - - 6

C n tok 3 2 - - - - 2

C tok sent 4 3 - - - - 3

C upos ADJ - −4 - - - - -

C upos AUX - - −2 - −3 −2 −2

C upos DET - −2 - - - - -

C upos NUM 1 1 1 - 1 1 1

C upos PRON - - - - - −3 -

C upos SYM 2 - - - - 3 -

C verb edge 1 - - - - −1 - -

C verb Fin - - - - 3 - -

C verb Ind - - - - 5 - -

E aux Pres −3 - - - - - -

E avg link −2 - - - - - -

E avg max depth - - - 2 - - -

E dep ccomp - - - - - −4 -

E dep nummod - - - 4 - 5 -

E lexical dens - - - −4 - - -

E upos NUM - - - 1 - 4 -

E upos SYM - - - 3 - - -

E verb edge 4 −1 - - - - - -

E verb Fin - - - - 4 - -

Table 4.6: Ranking of correlations between the top 10 linguistic features and the av-
erage complexity score for all sentences and for all length bins. The number indicates
the position the feature occupies in the ranking: the higher the number(positive or
negative), the higher the correlation. B *, C *,E * mean that the features characterize
the beginning, the central, and the ending sentence, respectively.
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positive number indicates that the feature is linked to higher perceived complex-
ity, meaning that linguistic phenomenon makes the sentence more complex in
the eyes of annotators. Conversely, a negative number is linked to lower com-
plexity, meaning the linguistic phenomenon helps annotators in the evaluation of
sentence complexity. Examining the results for the correlations with the average
complexity score in the Table, it emerges that statistically significant correlations
(p-value < 0.05) with ρ ≥ ±0.20 were found for 103 features out of the whole set.
Among them, 44% belongs to the rated sentence (i.e., 45 features) and 56% to
the contextual ones (i.e., 23 and 35 features to the left and the right sentence,
respectively). Although it was expected that many features extracted from the
rated sentence were correlated to complexity judgments, these results also suggest
that humans have paid attention to the whole context when rating the middle
sentence, and especially to the following sentence. The influence of context is
also suggested by the fact that it is possible to observe much lower coefficients
for all correlating features belonging to the rated sentence, unlike those reported
in Section 4.3.2 for the same sentences evaluated in isolation.

When all sentences are considered, the first ten ones all belong to the middle
sentence and refer to features modeling linguistic phenomena of different nature;
nevertheless, two main groups are distinguishable, both positively correlated with
the perception of sentence complexity. The first group is related to the presence of
numerical information (i.e., literal numbers in the sentence), as conveyed by both
POS and syntactic features (C upos NUM, C dep nummod). The second one, as
more expected, concerns sentence length (C tok sent, C dep root) and features
still related to length but capturing aspects of structural complexity, such as the
depth of the whole parse tree and specific sub-trees, i.e., nominal chain headed by
a preposition (C avg max depth, C n prep chain). Notably, the effect of sentence
length is observed only for the middle sentence, while the length of contextual
sentences is never correlated with complexity judgments. Even in this case, the
correlation is much lower with respect to the one obtained by sentences judged
in isolation (i.e., 0.31 vs. 0.84 reported in the previous study).

When analyzing bins of same-length sentences, it is noticeable that there is a
more prominent role of features from the context, as suggested by the presence
of features characterizing both the sentence preceding and following the rated
one in the first ten positions of the ranking. Interestingly, for all bins, numerical
information turned out to be the feature most correlated with complexity score,
being it extracted from the rated or from contextual sentences (specifically, the
right sentence, for the bin composed of sentences with 25 tokens).

Correlations with the standard deviation of complexity scores

Table 4.7 reports the first ten features more strongly correlated with the standard
deviation of assigned complexity scores, for all rated sentences and all groups of
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Features L10 L15 L20 L25 L30 L35 All

B aux Inf 2 - - - - - -

B dep compound:prt −5 - - - - - -

B subj pre - - - −5 - - -

B upos SYM - - - −3 - - -

B verb edge 1 - −2 - - - - -

B verb Past - −1 - - - - -

C avg sub chain - - - - - - −1

C char tok - - - - - - −5

C dep aux - - - - −1 - -

C dep nummod - - - - - - 2

C dep punct - - - −4 - - -

C princ prop - - - - - −2 -

C sub prop - - - - - 3 -

C upos AUX - - - - - - −2

C upos NUM - - - - - - 1

C upos PRON - - - - - - −3

C upos PUNCT - - - −2 - - -

C upos SYM - - - - - - 3

C verb edge 1 - - - - - 2 -

C verb root perc - - - - - −1 -

E avg link −4 - - - - - -

E avg max link −2 - - - - - -

E dep aux −6 - - - - - -

E dep ccomp - - - - - - −4

E dep nummod - - - - - - 5

E dep parataxis −7 - - - - - -

E dep root 1 - - - - - -

E max link −3 - - - - - -

E upos ADV - - 1 - - - -

E upos NUM - - - - - - 4

E verb edge 3 - - - −1 - 1 -

E verb Past 3 - - - - - -

E verb Pres −1 - - - - - -

Table 4.7: Ranking of correlations between the top 10 linguistic features and complexity
standard deviation for all sentences and for all length bins. Feature labels and ranking
numbers are used as in Table 4.6.

sentences of the same length. The Table is structured with the same rules as per
Table 4.6. In this analysis, 29 statistically significant (p < 0.05) features with
correlation ρ ≥ 0.20 were found. These include 24% of features belonging to
the rated sentence (i.e., 7 features), while the remaining features belong to the
contextual sentences (i.e., 6 features for the left sentence, 15 for the right one).
In this case, far fewer correlations were found if compared with the correlations
with the average complexity, with most features being significant for the length
bins but not when considering the sentences altogether. These results confirm
that humans have paid attention to the whole context when evaluating the sen-
tence, but also that standard deviation, and thus annotators’ agreement, is a
phenomenon harder to describe and subjective to factors that linguistic features
cannot fully detect.
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As noticeable, the ranking of features in Table 4.7 is mostly different than
the one obtained correlating feature values and the average complexity scores,
and it is harder to notice patterns in the rankings. Considering the entire group
of sentences (All in the Table), numerical information is still predominant for
sentences in the central window position (C upos NUM, C dep nummod) and
sentences in the end window position (E upos NUM, E dep nummod) as a factor
that is positively correlated with standard deviation – meaning that numbers in
these positions tend to produce very different complexity judgments by annota-
tors, resulting in a lower agreement on the complexity. On the other side, most
features with a negative ranking belong to the central sentence and are related to
aspects of structural complexity as the chains of subordinates (C avg sub chain),
the presence of pronouns and auxiliaries (C upos AUX, C upos NUM ) which may
indicate a more articulate verbal structure, and factors linked to the length of
the sentence and the presence of longer (C char tok). A higher value for these
features corresponds to a lower standard deviation, namely a higher agreement.

When considering groups of sentences of the same length, very few correla-
tions appear, the majority resulting for short sentences (L10, sentences that are
10 tokens long) and being mostly negative correlations with the features of the
end window sentences. Most of these features are related to structural complex-
ity as the distance of syntactic links (E avg max link, E avg link, E max link),
coordination phenomena (E dep parataxis), or aspects that regard the main verb
and the auxiliaries (E verb Pres, E dep aux ).

4.4.3 Prediction of sentence complexity judgments

The results of the correlation analysis have shown that linguistic information of
the context affects the perception of sentence complexity and the extent to which
this perception is shared by annotators. Given this, and similarly to what has
been shown in Section 4.3.3, this part of the work assesses the contribution of the
context from a modeling standpoint.

Two regression tasks were built, one to predict the average complexity value
assigned to each sentence and one to predict the standard deviation of complexity
for each sentence. In both scenarios, two different models were employed: the first
is a linear Support Vector Regression model (SVR) (Section 3.2.2) with standard
parameters that leverages the explicit linguistic features as described in Section
2.2.2, and the second is obtained by fine-tuning the BERT base model (i.e., bert-
base-uncased, detailed in Section3.3) on the dataset using the FARM5 regression
implementation. Both models were evaluated with a 5-fold cross-validation for
each of the three windows of context.

For every window, different runs of the models were carried out, varying the
number of contextual features to be considered. For the begin window and the end

5www.github.com/deepset-ai/FARM (last visit 09/07/2023).

www.github.com/deepset-ai/FARM
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window models were run with i) the features of the single sentence (no context),
ii) the features of the sentence + the features of the next sentence (right context)
for the begin window, or + the features of the previous sentence (left context) for
the end window, iii) the features of all the three sentences (full context, i.e. the
whole window of context); for the center window, the models were trained with
i) no context features, ii) left or right context features, iii) full context features.

The performance of the models was measured in terms of mean absolute er-
ror (MAE), evaluating their accuracy in predicting the same average judgment
of complexity assigned by humans and the standard deviation of the complexity
judgments. The same experiments were repeated, grouping the sentences accord-
ing to their length. The baseline for the models’ evaluation was calculated (i) in
the case of all sentences by giving in input to the linear regression model only the
length of the sentence as solely feature for the prediction, (ii) in the case of differ-
ent lengths (binned sentences), by having the model always assigning the average
complexity value (calculated on the whole set of sentences) to each sentence.

Figure 4.7 reports the results for the prediction of the average complexity,
showing the average MAE obtained after the 5-fold validation, both for SVR and
BERT models. The SVR models with linguistic features outperform BERT mod-
els overall. BERT models remain close to the baseline in all cases, despite the
amount of context considered and the length of the sentences. Instead, the SVR
models show significant differences as appropriate. In the case of all sentences,
the model’s performances are close to the baseline. Adding contextual features
partially helps the model in the case of the begin and the end window, while per-
formances worsen in the case of the center window. When considering sentences
of the same length, the model’s performance is always helped by the presence
of contextual features, and the best results are achieved when the full context is
taken into account for all the windows of context. This behavior confirms on one
side that linguistic characteristics of the context are indeed very influential on
complexity, and on the other side that the length of the sentence plays an impor-
tant role in the perception of complexity, as it is only by binning the sentences
that it is possible to exploit the effect of context in predicting complexity.

Figure 4.8 shows the results for the prediction of the standard deviation of
complexity for SVR models and BERT models. As in the previous case, BERT
models obtain results that are in line with the baseline and that are not influ-
enced by different amounts of context. When looking at the results obtained
with the explicit linguistic features, the outcome is quite different. For the all
sentences case, the SVR model cannot predict the standard deviation of complex-
ity, although the error gets lower for the begin window and the end window when
the full context is used. Conversely, the model greatly improves when working
on sentences of the same length. In all windows and for all lengths, using the
features of the whole context significantly decreases the error in the prediction
of standard deviation. When running the model with the features of the single
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(a) SVR models (b) BERT models

Figure 4.7: Performance (MAE) of Support Vector Machine Regression model on av-
erage complexity rating prediction. In different windows of context and with different
context spans, for all sentences and at different sentence lengths.

(a) SVR models (b) BERT models

Figure 4.8: Performance (MAE) of Support Vector Machine Regression models and
BERT models in the prediction of complexity standard deviation. In different windows
of context and with different context spans, for all sentences and at different sentence
lengths.
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sentence (i.e., no context), the model’s performances are generally close to the
ones of the baseline. This suggests that the context is particularly relevant in
predicting how people will agree on their perception of complexity.

Overall, the results obtained here show that information about the complexity
of a sentence is better encoded in its explicit linguistic features, thus its syntactic
and morphosyntactic structures. On the other hand, although BERT has been
proven to embed a wide range of linguistic properties, including syntactic ones
[197, 271], the findings just discussed seem to suggest that this model does not
exploit these kinds of features to solve a downstream task like the one here pre-
sented, for which few data are available. Indeed, it has been shown that BERT
performs better on datasets larger than the one here employed [154]. Thus, it
is fair to assume that more data may be needed for BERT to detect phenomena
about perceived complexity.

Moreover, these results show that the presence of context plays an impor-
tant role in complexity. As the SVR models are always helped by the contextual
features, it is fair to assume that annotators have taken into account the whole
context when expressing their judgment upon the complexity and that the pres-
ence of the context has strongly influenced their perception. Also, contextual
linguistic phenomena are the ones that impact more on the variation of complex-
ity perception between annotators as they are the ones that help more in the
prediction of this variation.
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Chapter 5

Analysis of Perceived Emotions in
Response to Audiovisual Stimuli:

a Study on Forrest Gump

“My mom always said life was like
a box of chocolates. You never
know what you’re gonna get.”

Forrest Gump

The previous case study was dedicated to how the complexity of syntactic
and semantic levels in language can affect engagement in communication, creat-
ing emotions of boredom, frustration, or anger. While in the previous Chapter
emotions are indirectly generated by possible perceived complexity, the case study
detailed in this Chapter gives a closer look at how an external stimulus can ac-
tively elicit specific emotions in humans. In particular, this case study examines
the emotive reaction that human beings have when exposed to an audio-visual
stimulus that is meant to reproduce real-life content and context.

In the context of this study, the attention is centered on the film “Forrest
Gump”. Selected for its richness in life-like situations and its presentation of a
wide range of emotions, this movie is an ideal candidate for fostering emotional
resonance, i.e., the empathic responses in viewers. The movie’s dialogue, teeming
with emotion-related language, provides an avenue to examine the correlation
between the explicit and implicit linguistic aspects and the emotions experienced
by the observers.

The Chapter is organized as follows: Section 5.1 presents the background
and motivations for this case study; Section 5.2 discusses the data used in the
study, along with the composition of the final dataset and its statistics; Section
5.3 describes the method applied for predicting subjects’ emotions from the text
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(i.e., the dialogue) extracted from the movie; finally, Section 5.4 presents the
results obtained with the aforementioned approach and features.

5.1 Background and motivations

In psychological research, there is a well-established tradition of trying to elicit
emotional states in laboratory settings for scientific purposes. Several procedures
have been used to elicit emotions in the laboratory, including images [258, 276],
sounds and music [268, 284, 283, 285], facial and body movements [90], drugs
[296], relieved or imagined scenes [17, 136], and odors [49, 252]. During the last
decades, a significant impact on the study of emotions was given by research
on the affective processing of pictures, thanks also to the development of a few
validated databases of pictures, such as the Pictures of Facial Affect (POFA)
[83], the Karolinska Directed Emotional Faces (KDEF) [175], the Nencki Affective
Picture System (NAPS) [186], or the International Affective Picture System [157],
containing more than 1,000 exemplars of human experience and widely used for
experimental research on emotions and attention.

The usage of affective images for emotion elicitation has been widespread in
the past thank to the advantages they bring compared to other stimuli. Images
are a class of stimuli with a clear, evocative ability and are easy to implement.
They can be used in different experimental designs, from simple passive viewing
to slide viewings mixed with more complex tasks. They are easy to edit, catalog,
and are static: a desirable quality in some studies because dynamic changes may
complicate the measure and interpretation of the affective response. Nevertheless,
this last feature may also be interpreted as one of the limitations of pictures,
as static image viewing does not yield an affective experience that is strong or
ecological enough compared to the one prompted by a dynamic modality, such as
video viewing [296].

Indeed, another effective and widespread method for emotion elicitation in-
volves the use of movie clips. As emotion elicitors, movies have all the advantages
of pictures, like their capability of being standardized, but they also offer the ad-
vantage of being dynamic and thus more similar to real life. Indeed, movie clips
often represent a display of prototypical situations relevant to well-being and sur-
vival that make this stimulus high in ecological validity [114]. Movies also allow
a multimodal stimulation of the viewer, simultaneously engaging both the visual
and the auditory system. Throughout the years, movies have been used as elic-
itors to study all sorts of phenomena related to mood induction, showing they
are suitable for eliciting basic emotions, such as fear or disgust, and also for the
induction of more complex feelings [240, 248].

Movies can be particularly useful in studies regarding mood induction and
emotion elicitation because they are also a source of intensive longitudinal data,
i.e., data collected with repeated measurements or self-reports separated by rel-
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atively short time intervals [121]. Indeed, movies are rich in character dialogue,
which offers the audience a direct window into what the character is feeling
and thinking. The dialogue can be used as longitudinal text to gather informa-
tion on emotion dynamics, i.e., the patterns of change and regularity in emotion
[130, 155]. Movie dialogue is often rich in emotion-related words, e.g., if a charac-
ter is angry, they are more likely to use anger-associated words [241]. The words
and actions of the character then resonate with the viewer, whose emotions are
elicited by an empathic reaction. Empathy is the ability to infer another per-
son’s feelings and share these feelings. Empathy is one of the fundamental social
abilities that let humans interact among themselves, assuring successful commu-
nication and coordination of joint actions.

The work presented in this Chapter encourages empathic reactions and emo-
tional contagion in a group of subjects, employing a naturalistic continuous stim-
ulation paradigm – the movie Forrest Gump – and studies how the language
presented in the movie’s dialogue is related to the emotions experienced by the
observers. This movie is rich in life-like situations and depicts a wide range of
emotions that can be used to nurture emotional resonance [114, 223, 248], i.e., to
foster emphatic responses in the observers, which are influenced by the narrative
choices presented in the movie. Previous work confirmed the usefulness of this
movie in the context of emotion elicitation, showing that, in a 60-second window,
the emotions presented in the movie resemble the ones experienced in real life
[163].

5.2 Data

The primary data source for this case study is StudyForrest1, a research project
centered around the use of the movie Forrest Gump. The project is built upon
the contributions of multiple research groups and has the purpose of studying
the human brain and the way it processes the vast amount of diverse information
gathered by the senses. Most studies that tackle brain activity present subjects
with simplified stimuli in a controlled environment, a setting that does not resem-
ble the complex data that the brain collects in a natural environment. Indeed,
a natural input is necessary for a deep understanding of brain functioning. The
choice of the movie Forrest Gump is designed to provide for a complex sensory
input that reproduces real-life-like content and contexts.

This open-source project includes data related to (i) brain structure and con-
nectivity, (ii) behavior and brain function, and (iii) movie stimulus annotations.
In (i) are arranged data that characterize the participant’s brain function on vari-
ous dimensions. A diverse set of stimulation paradigms (audio, audio-visual) and
data acquisition setups were used (fMRI, physiological recordings of heartbeat

1www.studyforrest.org (last visit 09/07/2023).

www.studyforrest.org
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and breathing). In (ii) are organized sets of structural brain images (MRI, an-
giography) that provide an in-vivo assessment of the participant’s brain hardware.
Lastly, (iii) gathers annotations of the content of the Forrest Gump movie, which
is rich in visual and auditory features, but also facets of social communication
(portrayed emotions, body contact, eye movements).

For this work, the focus was on two assets of data: the speech present in
the movie (the dialogue pronounced by the movie characters) and the range of
emotions elicited in a group of subjects when watching the movie. Hereafter the
composition of the data is discussed, along with the dataset creation process.

5.2.1 Textual Data

The movie stimulus annotations section of the project provides a written tran-
scription of the film dialogues and voice-overs, i.e., moments in which Forrest
Gump acts as a central narrator and tells the story from his own perspective.

The data is composed of 985 rows, each representing a line of dialogue of a
character. Each row is associated with the name of the character pronouncing
the line and two timestamps tbegin and tend with a seconds.milliseconds format.
The former timestamp states when the character starts pronouncing a specific
line, while the latter states the moment in which the character stops pronouncing
the same line. An example of how the dataset is structured can be seen in Table
5.1, where the first five rows and the last five rows of the data are represented.

Among the totality of the rows, most lines are pronounced by the main char-
acter, Forrest: 224 lines are pronounced during the story, and 197 lines are pro-
nounced as a voice-over.

5.2.2 Emotional Data

The collection of emotional data was carried out by the Molecular Mind Labo-
ratory (MoMiLab), a research group of the IMT School for Advanced Studies of
Lucca, Italy. Extensive details about the group’s contributions to the StudyFor-
rest project can be found in [163], along with information about emotional data
acquisition procedures and analyses.

A group of 12 healthy subjects was selected (5 females, 7 males; mean age
26.6, age range 24-34), making sure none of the subjects had watched the movie
in the year preceding the data acquisition. The subjects were asked to watch an
edited version of the movie, cut into eight segments with a duration ranging from
11 to 18 minutes. The subjects were instructed to continuously rate the subjec-
tively perceived intensity (scale 0 − 100) of the emotions they were experiencing
while watching, choosing among six basic emotions [84] (see also Section 1.1):
happiness, surprise, fear, sadness, anger, and disgust. To do so, they pressed
specific buttons on a keyboard, through which they could increase or decrease



5.2. Data 107

row start end character text

1 189.8 194.0 FORREST Hello. My name’s Forrest Gump.

2 199.7 201.2 FORREST You want a chocolate?

3 204.2 217.4 FORREST

I could eat about a million and a half of
these. My momma always said, “Life was
like a box of chocolates. You never know
what you’re gonna get.”

4 225.2 237.8 FORREST

Those must be comfortable shoes. I’ll bet
you could walk all day in shoes like that
and not feel a thing. I wish I had shoes
like that.

5 238.6 240.0 BLACK WOMAN My feet hurt.

. . . . . . . . . . . . . . .

981 6978.1 6985.5 FORREST
Hey, Forrest. Don’t... I wanted to tell you
I love you.

982 6986.3 6987.2 FORREST JR. I love you too, Daddy.

983 6989.3 6991.0 FORREST I’ll be right here when you get back.

984 6996.3 6999.4 SCHOOL BUS DRIVER
You understand this is the bus to school
now, don’t you?

985 6999.4 7002.6 FORREST JR.
Of course, and you’re Dorothy Harris and
I’m Forrest Gump.

Table 5.1: Head data and tail data of the written transcriptions of dialogues from the
movie “Forrest Gump”.

the intensity of the emotions they were experiencing. Subjects were also allowed
to report more than one emotion simultaneously.

5.2.3 Dataset creation

The ratings for emotional data were collected from a continuous output z =
(z1, z2, ..., zn) from the keyboard, such that each zi with i ∈ [1, n] corresponds to
an increment of 0.1 seconds (10Hz frequency) in the playing time of the movie
(zi = 0.1, zi+1 = 0.2, zi+2 = 0.3, ...). Each zi is associated to a list xi1, xi2, ..., xij,
with xj ∈ [0, 100] and j ∈ [happiness, surprise, fear, sadness, anger, disgust ],
where each xj indicates the intensity that one emotion assumes at a given times-
tamp. This results in a time series for each subject that collects the moment-by-
moment perceived emotions and their intensity.

Once textual and emotional data were collected, they underwent some pro-
cessing and manipulation to be temporally aligned. The first necessary step was
a resampling of the emotional ratings. Indeed, the 10Hz frequency used for the
collection of emotions is too detailed for the purpose of this study. The emotional
time series were downsampled from 0.1 seconds to 2 seconds. New timestamps
s = (s1, s2, ..., sm) were generated, such that each si corresponds to the sum of
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20 consecutive zi, thus to an increment of 2 seconds in the playing time of the
movie. Each si is associated with a new list of emotional values, where each new
value is the average of the values associated with the summed zi.

After resampling, the text was aligned to the emotional data. In this alignment
phase, two elements were taken into consideration to make sure the alignment
was correct:

1. the emotive response and its consequent registration through the keyboard
are not simultaneous to the movie’s events. It may take a few moments for
the subject to process their feelings and press the buttons on the keyboard;

2. the interest of this work is to understand how textual features (i.e., the
linguistic features of the lines pronounced by the characters) are related
to the emotive response. Given that the emotive response is delayed, it
is impossible to know for sure if the emotion was caused by the text the
subject listened to immediately before the emotion declaration or by the
previous text.

The statements described in the two points above and, in particular, the one
described in point 2, were tackled by aligning different amounts of text to a
single timestamp. For each timestamp sk in the data, three progressively larger
time windows are considered, such that windowi = [sk − m, sk], where m =
(2, 4, 6). For each sentence, its tend is retrieved, and the sentence is aligned to the
timestamp verifying if sk −m ≤ tend ≤ sk, thus checking if the moment in which
the sentence ends falls within the given time window. In this way, the larger
the time window, the larger the amount of text that gets aligned with a specific
timestamp. With this process, three different datasets are created, one for each
time window. After, all the lines in which no text was aligned to sk are removed.
As a result, each dataset is composed of 898 timestamps associated with a line
of text and six emotion declarations for each of the 12 subjects.

5.2.4 Data statistics and data selection

After aligning the data, their statistical distribution was analyzed. First, it was
examined how many times each subject declared a specific emotion. Given a
timestamp, if the subject assigned to an emotion a value different than zero, that
emotion was considered present for that timestamp, regardless of the intensity
declared. Along with the six categories of emotions existing in the dataset, two
more categories were created, emotion and neutral to account for two specific
cases:

1. if all six emotions were zero at the same time (all xj = 0), this case was
given the class neutral ;



5.2. Data 109

Subject Happiness Surprise Fear Sadness Anger Disgust Neutral Emotion

1 592 172 101 557 111 166 22 876

2 628 87 83 539 120 42 61 837

3 345 471 212 340 123 37 30 868

4 274 179 137 255 119 133 276 622

5 244 84 98 224 83 6 305 593

6 496 92 147 264 60 13 113 785

7 277 255 88 132 88 23 286 612

8 357 218 119 305 103 77 231 667

9 299 389 15 147 109 22 312 586

10 213 125 81 255 60 0 377 521

11 352 320 116 307 150 30 120 778

12 180 36 22 149 34 25 526 372

Total 4257 2428 1219 3474 1160 574 2659 8117

Table 5.2: Emotions distribution in the dataset.

2. if any emotion, among the six considered, was declared (at least one xj ̸= 0),
this case was given the class emotion.

These two classes are meant to address the moments of the movie in which the
subject did not allegedly perceive any emotion that they felt like declaring and the
case of a generic emotional response without accounting for the specific perceived
emotion.

Table 5.2 reports the distribution of the 6 basic emotions and the new neutral
and emotion categories for all subjects, i.e., showing for how many timestamps
across the movie that category of emotion was declared. It is necessary to remark
that the category emotion is not the exact sum of all basic emotions, as there are
cases in which two or more emotions were declared simultaneously.

What emerges from the statistics reported in Table 5.2 is that the distribu-
tion of the basic emotions in the dataset and among the subjects is quite uneven.
Overall, the most represented emotions are happiness and sadness, while the least
represented one is disgust. Furthermore, it appears clear that every subject had
a different emotional experience while watching the movie. Some subjects de-
clared all emotions evenly and frequently (e.g., subject 4, subject 8), while others
declared emotions less frequently (e.g., subject 10, subject 12). This discrepancy
happens primarily because emotive phenomena are intensely subjective, mean-
ing that emotion processing is specific to each person and everyone experiences
emotions at a different granularity [21].

To account for the inter-subject different emotional experiences, the level of
agreement between the 12 subjects was measured using Fleiss’ Kappa (Section
3.1.2). Table 5.3 reports the percentage of agreement for each basic emotion in
the data. The lowest agreement is found on surprise and disgust, meaning the
declaration of these emotions was not consistent across the subjects. This result
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Emotion Agreement

happiness 0.32

surprise 0.14

fear 0.41

sadness 0.31

anger 0.42

disgust 0.17

Table 5.3: Annotators agreement (Fleiss’ Kappa) on all emotions

may seem in opposition to the supposed universalism of basic emotions [196], as
the inconsistency and the low agreement indicate that participants did not expe-
rience surprise and disgust at the same points of the movie. However, the movie
stimulus used in this study is not conceived to reflect the definition of six basic
emotions. For instance, in [163] it is highlighted that some of the participants re-
ported as disgusting some movie scenes that required further interpretation of the
context of what was happening (e.g., the school’s principal using his power to get
sexual favors) rather than showing something that was repulsive. This interpre-
tation of disgust was not present in all subjects, with some of them relying on the
classical well-established definition of disgust. Consequently, they may have rated
with disgust only the scenes they truly perceived as repulsive. This shows that
even though research affirms the existence of six basic emotions, psychological
constructs and cognitive interpretations need to be taken into account.

The most robust agreement is found on fear and anger, showing that these
emotions are evoked in specific scenes of the movie and that subjects had a similar
emotional response to those scenes. The agreement on happiness and sadness is
slightly lower; nevertheless, this result is still significant, given these are the most
declared emotions in the dataset, indicating what the general mood of the movie
is.

Table 5.4 reports examples of sentences on which the subjects agreed the
most for all six emotions. For every emotion, there are many sentences on which
a large number of subjects agreed, meaning that there were various moments of
the movie that elicited the same emotions in the subjects. In the case of disgust,
the highest level of agreement was achieved in 8 subjects, only in one sentence.
There were no other sentences for which 8 subjects (or more) agreed. This is
justified by the fact that disgust is the least represented emotion in the data.

Given the results obtained from the agreement assessment and the distribution
of emotional ratings, the analysis of underrepresented emotions was not addressed
directly, even though the agreement of the subjects was high (as for fear and
anger). In order to account for underrepresented emotions and not lose this
information completely, the analyses relied on the general class emotion. Hence
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Emotion N subjs Text

happiness 12

I had never seen anything so

beautiful in my life. She was like

an angel.

surprise 11 Jenny! Forrest!

fear 12

(into radio) Ah, Jesus! My unit is

down hard and hurting! 6 pulling

back to the blue line, Leg Lima 6

out! Pull back! Pull back!

sadness 12

Bubba was my best good friend.

And even I know that ain’t

something you can find just around

the corner. Bubba was gonna be a

shrimpin’ Boat captain, But instead

he died right there by that river

in Vietnam.

anger 12
Are you retarded, Or just plain

stupid? Look, I’m Forrest Gump.

disgust 8 You don’t say much, do you?

Table 5.4: Examples of sentences on which subjects agreed the most, for all emotions.

three different scenarios to examine were selected:

1. the presence of any kind of emotion (at least one xj ̸= 0),

2. the presence of happiness (xhappiness ̸= 0),

3. the presence of sadness (xsadness ̸= 0).

Furthermore, the experiments were conducted only on two subjects, subject 4
and subject 8. These two subjects were chosen because they declared all emotions
evenly, without neglecting any of them, and because the number of declarations
for each emotion was quite similar between the two.

5.3 Emotions prediction from text

The three scenarios described in Section 5.2.4 were evaluated in contrast to the
absence of any emotion (all xj = 0), producing three binary classification tasks.
The experiments rely on the use of automatically extracted explicit linguistic
and lexical features described in Section 2.2.2, and implicit linguistic features,
i.e., contextual word embeddings from a language model described in Section 3.3.
In each task, the linguistic features, either explicit or implicit, are used as input
to predict one of the binary options.
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5.3.1 Prediction with explicit linguistic features

For the first set of features, the sentences were first POS tagged and parsed using
UDPipe [263]. After, the set of explicit linguistic features was automatically
extracted (hereafter linguistic features). For this task, some additional explicit
features were added to the previous ones: namely features that can capture some
lexical information (hereafter lexical features), as they identify sets of characters
or words that appear more frequently within a sentence, i.e., bigrams, trigrams,
and quadrigrams of characters, words, and lemmas.

Two SVM Classifier models (see Section 3.2.1) were trained, one on the linguis-
tic features (hereafter called SVMling) and one on the lexical features (hereafter
called SVMlex ). The models were trained with a linear kernel and standard pa-
rameters (as per ScikitLearn2 configurations), performing 10-cross-fold validation
to evaluate the accuracy of the models.

5.3.2 Prediction with implicit linguistic features

For the second set of features, the pre-trained BERT base model was retrieved
and fine-tuned on the data of this study. The pre-trained BERT model already
includes a lot of information about the language, as it has already been trained
on a large amount of data. By fine-tuning the pre-trained model on the data of
this study, it is possible to exploit the information already acquired by the model
to solve the task of predicting emotions from the screenplay text.

Three different fine-tuning stages were performed to verify if the BERT pre-
trained model is di per se sufficient to obtain accurate predictions or if it may
benefit from some additional information. Specifically, the model was fine-tuned
on:

1. the original data of this study as they have been discussed so far, without
any kind of adjustment (from now on, this setting and the model derived
from it will be referenced as BERTorig);

2. the original data with oversampling of the sentences that were assigned
the neutral class to reach the same number of neutral entries as emotional
entries (hereafter BERTover);

3. a transfer learning tuning step, followed by another tuning on the oversam-
pled data (hereafter BERTtransf).

Transfer learning is a common machine learning technique in which a model
trained on one task is re-purposed on a second related task. In this way, what
was learned in the first task can be used to speed up the learning in the second
task and grant greater generalization and better results. Applying a BERT pre-
trained model in this study is already considered transfer learning, as the model

2https://scikit-learn.org/ (last visit 10/07/2023).

https://scikit-learn.org/
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Figure 5.1: Performance (accuracy) of SVM and BERT models in the prediction of
emotion, happiness, and sadness, for every timespan window, and for both subject 4
and subject 8.

is trained on other data and for a different task. However, given that the tasks
BERT is built upon are far from the one of this study, it is possible that the model
may benefit from an additional round of tuning on an emotion-related task.

In the case of the transfer learning tuning described in point 3 above, the
BERT pre-trained model underwent a first fine-tuning step on data different
from the ones of this study but still conceived for a similar task. Notably, this
step relied on data created for SemEval-2018 Task 1E-c [203], containing tweets
annotated with 11 emotion classes.

After the tuning stages, the so fine-tuned models were used to perform the
binary classification tasks on this study’s data. The model accuracy was evaluated
with 10-fold cross-validation.

5.4 Results and discussion

Figure 5.1 shows the accuracy scores for all the models, for both subjects and the
three datasets. In all cases, the baseline was determined with a majority classifier,
i.e., a classifier that always returns the most frequent label in the dataset. The
trends in the results appear similar for both subjects.

SVM Classifier models are the worst-performing ones in all scenarios. In any
case, SVMling is the model that gave the lowest performance, remaining below
or around the baseline value. On the contrary, SVMlex tends to bring higher
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performance, despite remaining close to the baseline in most cases. The low
scoring obtained by SVMling is due to the fact that features that look at the
raw, morpho-syntactic, and syntactic aspects of text do not encode any relevant
information regarding the emotional cues in the text. The syntactic aspects of
language are not the main concurrent in the setting of this study. Nevertheless,
in other scenarios, they can impact a person’s emotionality. It is the case, for
instance, when there is a complex syntactic structure in a sentence that makes
the sentence itself less comprehensible, possibly causing feelings of boredom or
frustration in an individual (as shown in the case study of Chapter 4). Indeed, in
watching the movie, the subjects receive cues other than strictly syntactic ones
(e.g., audio-visual) that may mitigate the effects of complex syntax if present
or that convey better the emotional message. SVMlex always performs better
than SVMling because the selected lexical features look at patterns of words and
characters that are repeated in the input text and thus record information about
the lexicon of the dataset. However, as this study’s dataset is too small, it is hard
for the model to retrieve the same lexical patterns in both the training and test
set and gain points in its performance.

In all the datasets, BERT models outperform the SVM ones in both the pre-
diction of happiness and sadness. In the case the prediction of the category
emotion, BERT models are capable of excellent predictions only on the 6 seconds
dataset. This last result can be explained by the fact that in the case of the
prediction of the class emotion, all emotions are flattened into a single category.
Thus, it may be difficult for the model to distinguish between general emotion-
ally charged sentences and those not perceived as emotionally charged. When
emotions are specific and separated, as in happiness and sadness cases, BERT
can infer the perceived emotions even from small amounts of text (2 seconds and
4 seconds datasets).

BERTover and BERTtransf generally give better performances than what
happens with BERTorig. This is especially true when a larger amount of text
is used as input. The gain in accuracy when using BERTover when predicting
the happiness and sadness classes is not outstanding if compared to BERTorig
accuracy on the same classes. This result is not surprising because in these two
cases, the classes to be predicted were already distributed quite evenly. Thus, an
oversampling of the neutral class does not bring much additional information to
the model. On the contrary, in the case of the prediction of the emotion class,
the model achieves higher gains because it is helped by the higher representation
of the neutral class.

With BERTtransf, the performances stay in line with the ones obtained with
the bare oversampling. Moreover, in the prediction of the emotion class, the
model performs worse than BERTover with the 6 seconds dataset. As SemEval
data were too distant from the ones of the dataset of this study, fine-tuning the
model on those data did not add any more helpful information. Therefore, even
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subject 4 subject 8

2 sec 4 sec 6 sec 2 sec 4 sec 6 sec

emotion 82.75 83.63 85.82 82.03 87.8 90.44

happiness 70.77 72.64 79.78 76.26 72.31 79.67

sadness 82.53 85.93 87.47 80.44 79.45 85.05

Table 5.5: Agreement (%) between BERTover and BERTtransf predictions.

though the SemEval task is similar to the one described here, the input text is too
different from this study’s sentences to contribute to the prediction substantially.
Another form of transfer learning was also attempted by tuning the model on
one subject and testing it on another one. However, the results obtained with
this technique were not satisfactory and are not reported in this Chapter. This
outcome is probably because emotion perception is a very personal phenomenon
and it cannot be generalized from one individual to another one.

A further evaluation of the results of the models was realized by computing
the percentage of agreement between the two best-performing models, BERTover
and BERTtransf. The agreement was defined as the percentage of sentences for
which the models fave the same output during the classification task. Table 5.5
reports the results for emotion, happiness, and sadness for every timespan window
and both subject 4 and subject 8.

The agreement is quite high in all cases and it tends to get stronger with the
amount of text on which models are trained (i.e., 6 seconds). A higher level in the
agreement indicates that the models have similar behavior, thus making the same
mistakes in the classification task. The lowest levels of agreement are encountered
on the classification of happiness, showing that the two models work differently
in this part of the task. Indeed, both BERTover and BERTtransf obtain high
performances in predicting happiness, but the fact that their agreement is lower
suggests that they differ in the mistakes they make in the classification. This
information may be exploited to create systems that combine different classifiers,
actually enhancing the classification accuracy. By doing this, it is possible to
compare the cases in which two or more classifiers agree and the cases in which
they make mistakes, thus choosing the best classification output accordingly.

The findings of this cause study indicate that specific perceived emotions can
be accurately predicted using contextual embeddings derived from the dialogues
uttered by the characters in a movie, even when the amount of text provided to
the prediction model is minimal. However, when predicting general emotional
elicitation (i.e., without targeting a specific emotion), predictive models necessi-
tate a more substantial amount of text to yield accurate results.

This case study further revealed that the lexical, morpho-syntactic, and syn-
tactic aspects of sentences are not effective predictors of the emotional responses
experienced by viewers of a movie. This is primarily due to the fact that these
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features encapsulate minimal, if any, information about the emotional state and
sentiment conveyed in the sentence. Conversely, contextual embeddings, which
are aware of the word placement within a sentence, are capable of capturing this
information as they encapsulate more semantic information about the sentence
itself. Even though the stimuli coming from a movie are multiple (i.e., images,
speech, music, contextual information), this study shows that the dialogue of the
characters alone is already a good proxy for studying emotional elicitation and
perception.



Chapter 6

Analysis of Bodily Response
to Emotive Text

“Words mean more than what is set
down on paper. It takes the human

voice to infuse them with shades
of deeper meaning.”

Maya Angelou

The previous Chapters have shown the relationship between the linguistic
structure of a text and the perceived level of complexity in a group of subjects,
with complexity having an influence on the engagement and the emotions elicited
during communication (Chapter 4); the relationship between the speech of a
multimodal ecological stimulus and the emotions elicited in a group of subjects,
showing how it is possible to use the transcription of the speech to predict some of
the basic emotions experienced by the subjects (Chapter 5). While in the previous
Chapters text was used to actively induce emotive responses into subjects, the
case study of this Chapter employs emotively encoded texts to study how they
influence bodily response in a group of subjects.

In particular, this case study focuses on the relationship between the linguis-
tic profile of text and the acoustic properties and electrodermal activity of the
readers. The structure of spoken language, which includes both semantic and
syntactic components, is a crucial determinant of speech prosody, and by ex-
tensions, it substantially influences emotional expression. By exploring how this
linguistic construction impacts speech prosody and physiological responses, such
as those of the Autonomic Nervous System, it is possible to unravel the complex
interplay between language, emotions, and communication.

The Chapter is structured as follows: Section 6.1 describes in depth the back-
ground and motivations for this case study; Section 6.2 describes the data, the
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experimental protocol, and the procedures for the extraction of the features used
in the study; Section 6.3 details the different analyses applied on the data; finally,
Section 6.4 delves into a discussion of the results obtained.

6.1 Background and motivations

Emotions significantly influence human spoken communication, having a con-
siderable impact on the efficiency of speaking and reading tasks. In the past,
evaluating emotions heavily depended on individual self-reported methods, which
may be subject to personal biases and distinct personality traits. Nevertheless,
modern technology has made it possible to incorporate speech prosody and auto-
nomic nervous system (ANS) correlates, offering objective and reliable techniques
to determine emotional conditions.

The ANS lays the physiological groundwork for emotional regulation, as it
regulates bodily functions and is crucial in triggering emotional reactions [45].
Electrodermal activity (EDA) is one of the most thoroughly researched ANS cor-
relates of emotional arousal. It measures variations in the skin’s electrical conduc-
tance due to sweat gland activity, which is controlled by the sympathetic branch
of the ANS. This provides objective assessments of emotional states, supplying
invaluable information about the physiological expressions of emotions.

The intricate procedure involving ANS and somatic regulation also governs
the production of speech. Human speech results from fine control of up to eighty
muscles from respiratory, laryngeal, pharyngeal, palatal, and orofacial groups
[72]. Such control is a complex process involving activity in the somatic and
autonomic nervous systems (ANS). Alterations in the respiratory activity induced
by the ANS manifest changes in the emotional state of the speaker by influencing
the voice spectrum characteristics such as the fundamental frequency (F0 - the
frequency of vibration of the vocal folds), and its formants (F1, F2, F3 - resonance
frequencies of the vocal tract) [311] (also see Section 2.3). Hence, the analysis
of speech prosody offers a crucial understanding of the emotional context and
intentions concealed within spoken communication [131].

Previous studies have used various analytic methods to measure changes in
fundamental frequency, loudness, speech rate, and pause in order to effectively
characterize affective prosody [93] and to explore several psychological dimensions
of the speaker: emotion [149], mood [66], stress [106, 98], and personality [116].
Nevertheless, inferring a speaker’s emotional state from these features remains a
challenging task.

However, the linguistic framework of a spoken text, encompassing both syntac-
tic and semantic elements, significantly impacts speech prosody and, as a result,
emotional expression. Therefore, an examination of how the linguistic structure
of spoken text influences speech prosody and ANS correlates offers a meaning-
ful approach to understanding the interplay between language, emotions, and
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communication. Specifically, investigating the effect of the linguistic structure
of spoken text on speech prosody and ANS correlates, like EDA, uncovers the
dynamics of how language and emotions interrelate. This understanding carries
significant implications across various practical uses. For example, in the realm
of human-computer interaction, discerning how linguistic signals influence emo-
tional reactions can guide the creation of emotionally perceptive systems that
adjust to the affective states of users. In healthcare scenarios, observing the
emotional reactions of patients during speech or reading tasks could support the
identification and management of emotional disorders.

In an effort to capture the various dimensions of information embedded in a
text, including language, lexicon, and style, increasingly advanced Natural Lan-
guage Processing (NLP) and machine learning methods have been conceived. The
progress in these areas has led to the establishment of sophisticated techniques
enabling the depiction of a text’s linguistic profile by extracting a vast number
of features that model underlying lexical, grammatical, and semantic phenomena
[42].

Linguistic profiling (see Section 2.2.2) has been applied in various contexts,
such as automatically classifying textual genres and registers [10] and modeling
cognitive aspects of human language. For example, in [43], the authors have
shown that linguistic features that capture lexical and (morpho-)syntactic prop-
erties of a sentence can be effectively used to predict the perception of its com-
plexity by humans. This evidence has been further confirmed by a subsequent
study [133], which also proved the reliability of linguistic features extracted from
context in predicting human judgments of sentence complexity. A recent work
[255], proposed a deep learning hierarchy for emotion recognition, combining text
analysis computed by the language model ELMo [222] with prosody, voice qual-
ity, and spectral features. However, formal modeling of the relationship between
features describing linguistic profiles, ANS response, and speech prosody could
provide insights into the specific mechanisms that influence a speaker’s emotional
response.

The aim of this case study is to investigate the correlation between the lin-
guistic structure of a text and the physiological and acoustic features commonly
used to assess the activity of the autonomic nervous system (ANS) and speech
production prosody. Participants were asked to read texts that were designed
to elicit varying levels of emotional arousal and valence. Electrodermal activ-
ity (EDA) was analyzed as a widely used correlate of the sympathetic nervous
system (SNS) to quantify the sympathetic reaction. Correlation and regression
methods were applied to analyze the relationship between EDA-related features,
speech prosodic and linguistic profiles of the texts to understand the extent to
which the linguistic structure of a text interacts with the speech production and
sympathetic response elicited by the same texts.

In addition, a complementary analysis was conducted to evaluate the strength
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of the relationship between the linguistic structure of a text and the physiological
and acoustic features of speech production, but from the opposite perspective.
Specifically, this analysis aimed to test the feasibility of using speech and physio-
logical signals to predict a set of features that characterize the linguistic structure
of the pronounced text. This approach aligns with recent efforts to use cogni-
tive signals to improve the performance of natural language processing models
in multi-modal settings, and to provide more cognitive-oriented benchmarks for
their evaluation. While most of these studies have utilized eye-tracking data,
which have been shown to be effective in various sequence labeling and sequence-
to-sequence scenarios such as sentiment analysis, irony detection, Part-of-Speech
tagging, Named Entity Recognition and relation extraction [129]. On the other
hand, other sources of physiological data, such as ANS correlates, still require
further investigation.

6.2 Data

This case study employs four texts, chosen to represent different levels of arousal
and valence. The texts were chosen by following to the Circumplex Model of
Affect [233] (refer to Section 1.1.2), which defines arousal as the intensity of
perception and valence as the pleasantness or unpleasantness of the stimulus (the
text, in this case). Two of the selected texts provide a detailed and graphic
description of medieval torture practices and are classified as high arousal and
negative valence (hereafter also referred to as affective or emotive texts). The
two other text, classified as neutral, discuss text types and writing styles.

Before conducting any experiment, a group of 22 subjects (other than those
who later participated in the study) evaluated the texts based on their levels
of arousal and valence. Their evaluations confirmed the predetermined levels of
arousal and valence based on the topic of the text. In particular, the texts were
assigned the following valence and arousal rates:

• Neutral text 1 – Valence Rate: 0.30 ± 0.52; Arousal Rate: 1.31 ± 0.67

• Neutral text 2 – Valence Rate: 0.25 ± 0.55; Arousal Rate: 1.39 ± 0.77

• Emotive text 1 – Valence Rate: −1.31 ± 0.79; Arousal Rate: 3.26 ± 1.17

• Emotive text 2 – Valence Rate: −1.19 ± 0.84; Arousal Rate: 3.24 ± 1.09

The texts were also chosen to be of similar length, so that the reading task
implemented for the study would have a similar duration for each of the subject.

The full texts assigned to the readers are reported in Appendix C, along with
some statistics. As the texts chosen for the study are in Italian, the Appendix
also contains their translation in English.
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6.2.1 Subjects recruitment, experimental protocol and ac-
quisition set-up

The study recruited 33 healthy individuals (17 females and 16 males) with an
age range between 26.6 and 30.0. None of the participants had prior history
of cardiovascular diseases, mental disorders, or phobias. All subjects provided
written informed consent to participate in the study, which was approved by the
Ethical Committee of the University of Pisa.

The experiment was divided into different sessions that were randomly as-
signed to the participants. Each session lasted approximately 2 minutes for each
subject, followed by 40 seconds of rest and 1 minute of recovery. The study setup
is described in more detail in [103]. During the sessions, each participant read
aloud one neutral text and one affective text, chosen randomly from the available
texts. The duration of the reading is consistent among the subjects as the texts
are of similar lengths.

As the subjects read the texts, their speech signal and electrodermal activity
were recorded. Following the reading task, each subject was asked to rate the
texts they read on a scale of -2 to 2 for valence and 1 to 5 for arousal using the
Self-Assessment Manikin (SAM) model.

6.2.2 Linguistic analysis

The texts were divided into sentences using full stops as a delimiter criterion. The
resulting number of sentences in the neutral texts was 25, with an average length
of 28 tokens. Affective texts had 40 sentences with an average of 21 tokens.

Each sentence was analyzed linguistically and represented as a vector of ap-
proximately 140 features, using the explicit linguistic features described in 2.2.2
to define a linguistic profile for each of the text of the study.

6.2.3 Speech signal processing

The speech time series recorded during the task were analyzed using the BioVoice
toolbox [205] (see Section 2.3.2). Specifically, the F0, F1, F2, and F3 parameters
described in Section 2.3 were calculated from the speech data.

First, the toolbox detected the voiced parts of each segment. Then, it calcu-
lated F0, F1, F2, and F3. For each voiced frame, F0 is estimated with a two-step
procedure:

1. Simple Inverse Filter Tracking (SIFT) is applied.

2. F0 is adaptively estimated on signal frames of variable length inversely
proportional to F0. The estimation is done through the Average Magnitude
Difference Function (AMDF) within the range provided by the SIFT [181].
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The formants values over time were extracted by considering the Autoregressive
Power Spectral Density (AR PSD). In addition to F0 and the formants, the
following features were extracted from each sentence:

• Signal Duration: the total time duration of reading, i.e., the duration in
seconds of the time necessary to read the sentence, including pauses;

• Voiced Duration: the duration in seconds of the vocal emissions, excluding
pauses;

• Mean Duration: the average voiced duration.

To account for the subject-dependency, the frequency features (F0, F1, F2, and F3)
were scaled using the following formula: F scaled

i = Fi/F0neu where Fi represents
the frequency feature of interest (in neutral or emotional test in each sentence) and
F0neu is the mean of the frequency of the corresponding neutral texts, computed
for all time duration.

6.2.4 Electrodermal Activity signal processing

The cvxEDA algorithm [111] (detailed in Section 2.4.1) was used to decompose
the Electrodermal Activity signal into its phasic and tonic components, as de-
scribed in Section 2.4. After the decomposition process, the features described
in Section 2.4 are extracted within the time window corresponding to each sen-
tence, namely: the mean (mean ph, mean ton), standard deviation (std ph, std
ton), and maximum value (max ph, max ton) of both components; the number of
phasic peaks (no pks) and the sum of their amplitudes (sum pks); the power spec-
trum within the 0.045-0.25Hz interval (edaSymp), which reflect the sympathetic
activity [232]. The features are then normalized according to the time window
length.

6.3 Statistical analysis and modeling of the fea-

tures

This case study aim to understand the relationship between the linguistic fea-
tures of emotionally encoded texts and the acoustic and electrodermal responses
generated during the reading of the texts. To this aim, different form of analysis
and feature modeling were implemented.

The first statistical analysis of the study examines the relationship between
(i) the explicit linguistic profile of the texts and (ii) speech and electrodermal
activity features by implementing a correlation task, as detailed in Section 6.3.2.

A second statistical analysis aimed to examine the relationship between the
linguistic features and the speech and Electrodermal Activity features from a
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modeling perspective. To achieve this, two complementary tasks were designed.
The first scenario tackles the effectiveness of the linguistic features in the pre-
diction of the speech and electrodermal activity ones (Section 6.3.3), while the
second scenario tackles the effectiveness of the speech and electrodermal features
in the prediction of the linguistic features (Section 6.3.4).

6.3.1 Self-Assessment Manikin statistical analysis

The Self-Assessment Manikin valence and arousal scores assigned by the partic-
ipants at the end of each reading task were statistically compared between the
a-priori neutral and negative texts using a Wilcoxon signed-rank test (see Section
3.1.3).

The Wilcoxon test confirmed that there were significant differences between
the a-priori negative and neutral texts used in the experiments. Specifically, the
scores for arousal and valence were significantly different between the two types
of texts. The results showed that after reading the negative texts, the arousal
score was significantly higher (p < 0.01), and the valence score was significantly
lower (p < 0.01) as compared to the neutral texts.

6.3.2 Correlation analysis

This analysis aimed to identify which linguistic properties of the texts were most
related to the subjects’ physiological arousal and speech production. A study of
these factors permits to discover any underlying interaction between the linguistic
structure and profile of a text and the dynamics of the Sympathetic Nervous
system and of speech.

To investigate this relationship, a correlation analysis task was set up. Each
linguistic feature was correlated with every electrodermal activity feature and
each speech feature using Spearman’s correlation coefficient (Section 3.1.1) as
the evaluation metric. False discovery rate correction was applied to account for
multiple hypothesis testing [261]. Any correlations that were statistically signifi-
cant (with a p-value < 0.05) and had a correlation coefficient different from zero
were considered. The percentage of subjects for whom the pairwise correlation
was significant was calculated for each feature, which allows to determine whether
certain patterns were more stable across participants and to understand which
phenomena they involve.

Table 6.1 and Table 6.2 provide an overview of the most significant results
of the correlations between speech features and linguistic features, and between
electrodermal activity features and linguistic features, respectively. The complete
results, including the mean correlation values, can be found in Appendix C. In
both tables, the linguistic features are grouped according to the phenomenon they
describe. The cells in the tables show the percentage of subjects for which the lin-
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speech features

linguistic features F0 F1 F2 F3
mean

duration
signal

duration
raw text properties

sentence length 24 9 3 58 73 100
avg clause length 33 12 3 45 55 100

lexical variety
lexical density · · · 12 18 100

morpho-syntactic information
auxiliary form 30 9 · 42 64 100
auxiliary mood 33 9 · 39 58 100
auxiliary person 30 12 3 45 58 100
auxiliary tense 30 9 3 42 58 100
adjective (possessive) · · · 9 12 88
adverb · · · 6 9 70
conjunction (coordinative) · · · 6 9 79
conjunction (subordinative) · · · 6 12 79
preposition · · · 6 9 61
article (determinative) · · · 12 18 100
article (indeterminative) · · · 18 30 100
noun (proper) · · · 6 12 85
verb (main) · · · 12 21 100

verbal predicate structure
verbal arity 61 36 21 73 97 100
verbal roots dist. 33 12 3 45 58 100

syntactic relations distributions
clausal modifier of noun 42 15 9 67 88 100
adverbial clause modifier 36 18 9 61 82 100
conjunct 39 15 12 64 85 100
nominal modifier 36 12 6 58 82 100
nominal subject 33 12 3 42 55 100
passive nominal subject 36 21 9 55 82 100
object 33 12 3 42 64 100
oblique nominal 33 15 6 45 73 100

global and local parsed tree structure
avg dependency links length 33 12 3 45 55 100
avg prepositional chains length 45 30 15 70 91 100
post-verbal object 39 27 12 67 91 100
pre-verbal object 42 24 12 64 85 100
post-verbal subject 42 24 9 64 85 100
pre-verbal subject 42 21 9 64 85 100

use of subordination
principals dist. 48 27 15 70 94 100
subordinates dist. 52 27 15 70 97 100
post-verbal subordinate 55 30 18 70 97 100
pre-verbal subordinate 48 30 15 70 97 100

Table 6.1: Summary results of the correlations between Speech Features and Linguistic
Features. For each pairwise correlation, each number in the rows corresponds to the
percentage of subjects for which the correlation was statistically significant (with a p-
value < 0.05) and had a correlation coefficient different from zero. The cells where no
number is available indicate that there were no subjects for whom that correlation was
significant.
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Electrodermal Activity (EDA) features
phasic component tonic component

linguistic features
eda
symp

max
pks

no
pks

sum
pks

mean
ph

std
ph

max
ton

mean
ton

std
ton

raw text properties
sentence length 3 12 39 52 3 64 · · 52
avg clause length 3 6 21 27 3 39 3 3 39

lexical variety
lexical density · · · · · 3 · · 3

morpho-syntactic information
auxiliary form · 6 21 3 3 42 3 3 36
auxiliary mood · 6 18 24 3 36 3 3 33
auxiliary person 3 6 21 3· 3 42 3 3 33
auxiliary tense · 6 18 21 3 36 3 3 36
article (determinative) · · · · · 6 · · ·
article (indeterminative) · · · · · 6 · · 9
verb (main) · · · · · 6 · · 6

verbal predicate structure
verbal arity 18 48 7 64 27 82 21 18 88
verbal roots dist. 3 6 21 3 3 42 3 3 36

syntactic relations distributions
clausal modifier of noun 12 21 42 45 12 58 9 9 70
adverbial clause modifier 9 18 36 39 9 52 6 3 58
conjunct 12 18 45 45 12 55 9 9 61
nominal modifier 6 18 36 36 6 48 3 3 58
nominal subject 3 6 18 3· 3 39 3 3 39
passive nominal subject 9 18 42 36 9 52 6 3 55
object 6 6 21 33 3 39 3 3 42
oblique nominal 6 12 33 33 6 48 3 3 48

global and local parsed tree structure
avg dependency links length 3 6 18 3 3 39 3 3 39
avg prepositional chains length 15 3· 52 55 15 64 9 6 79
post-verbal object 15 24 52 52 15 61 9 6 79
pre-verbal object 9 24 52 45 9 55 6 6 67
post-verbal subject 9 24 48 45 12 55 6 6 70
pre-verbal subject 9 24 45 45 12 58 6 6 67

use of subordination
principals dist. 15 39 64 58 18 79 12 12 88
subordinates dist. 15 39 64 58 21 79 12 15 88
post-verbal subordinate 15 45 64 58 24 82 15 15 88
pre-verbal subordinate 12 42 64 58 21 82 12 15 88

Table 6.2: Summary results of the correlations between Electrodermal Activity Fea-
tures and Linguistic Features. For each pairwise correlation, each number in the rows
corresponds to the percentage of subjects for which the correlation was statistically sig-
nificant (with a p-value < 0.05) and had a correlation coefficient different from zero.
The cells where no number is available indicate that there were no subjects for whom
that correlation was significant.
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guistic features in the group were significantly correlated with the speech features
and the electrodermal activity features, regardless of the correlation value.

Comparing the two tables, it can be observed that the linguistic features that
belong to the same group were significant for a similar number of subjects and,
in some cases, for the same number of subjects. Furthermore, correlations with
features encoding syntactic-related phenomena were, on average, more significant
for a higher number of subjects compared to correlations with lexical and morpho-
syntactic features.

Table 6.1 shows the correlations between linguistic and speech features. It is
noticeable that the mean duration and signal duration are the acoustic parameters
that significantly correlate with almost all of the linguistic features for most
subjects. The F0 and F3 features also show significant correlations for many
subjects, while F1 and F2 are the least correlated features among the acoustic
ones. When focusing on the different types of linguistic phenomena, it can be
seen that acoustic features related to sentence length (mean duration and signal
duration) are consistently correlated for most subjects with the linguistic features
that encode aspects of sentence length.

Table 6.1 shows that there are also high correlations with the syntactic fea-
tures that describe the use of subordination and the structure of the parsed tree,
particularly for F3, with up to 70% of the subjects achieving a significant corre-
lation. Most linguistic features with significant correlations pertain to different
aspects of linguistic complexity. Apart from sentence length, which is widely con-
sidered a shallow proxy of linguistic complexity and text readability [62], there
are significant correlations with properties of the syntactic structure (e.g., longer
dependency links and prepositional chains) and verbal morphology (e.g., a past
verbal tense may be perceived as more complex than the present tense). However,
features related to the use of lexicon, such as lexical density, are correlated with
acoustic parameters for very few subjects.

The analysis of the correlations between Electrodermal Activity and Linguistic
features in Table 6.2 reveals that the features with the most significant correla-
tions with linguistic features for more than half of the subjects are std ph, sum
peaks and no peaks from the phasic component. Conversely, max peaks and mean
pk have fewer correlations and are significant for a smaller number of subjects.
The feature from the tonic component that shows the most correlations is std ton
(i.e., the standard deviation of the tonic component). This features has indeed
a strong relationship with linguistic features that describe syntactic phenomena.
The other tonic component features, max ton, mean ton, and the feature of the
power spectrum, edaSymp, are significant for fewer subjects, and have the most
significant correlations with linguistic features related to subordination phenom-
ena. When looking at the different groups of linguistic features, it can be seen
that features related to syntax, particularly subordination, have more correlation
than lexical and morpho-syntactic features.
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6.3.3 SVR prediction of EDA and speech features using
linguistic features as independent variables

This part of the study aimed to evaluate the ability of the features describing
the linguistic profile of texts to predict the Electrodermal Activity and Speech
features. A Support Vector Regressor (Section 3.2.2) was used for this task, im-
plemented with a Radial Basis Function kernel and standard parameters1. The re-
gressor took all the linguistic features as input and used them to predict the Elec-
trodermal Activity and Speech features. Leave-one-subject-out cross-validation
was used to account for within-subject repetitions by training the model on all
subjects except one and testing it on the left-out subject. The model performance
was evaluated by comparing it with a baseline, calculated by running the model
with only the length of sentences as an input feature.

After the completion of the task, a feature importance analysis was conducted.
This involved selecting all the features for each participant that had a predicted
value by the RBF-SVR, which correlated to at least ±0.30 with their actual value
and was statistically significant (p-value < 0.05). Following this, an SVR model
with a linear kernel was utilized to predict each of these selected features, i.e.,
the EDA and speech features were employed to predict the selected linguistic
features. After, the coefficients that the linear-SVR assigned to the predicting
features were extracted and used to construct the feature rankings.

The effectiveness of the implemented SVR models was assessed by comparing
their predictions to the actual values of the features being analyzed. This was
done by calculating the mean Spearman’s correlation and variance for all subjects.
The results for both signals (acoustic and electrodermal activity) are presented
as percentages, which show the number of subjects for which the predictions were
significantly correlated, regardless of the correlation values.

% significant

subjects

mean

correlation

correlation

variance
baseline

F0 15% 0.4032 0.0027 0.3622

F1 61% 0.5419 0.0181 -0.0272

F2 97% 0.5424 0.0089 0.0524

F3 27% 0.4593 0.0061 0.3264

mean duration 91% 0.5836 0.0123 0.4399

signal duration 100% 0.9559 0.0008 0.9447

Table 6.3: Regression results for the prediction of speech features using linguistic fea-
tures as independent variables. Highlighted in bold are the features that obtain a mean
correlation value across subjects > 0.50.

1The standard parameters provided by Scikit Learn implementation in the function
sklearn.svm.SVR
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Table 6.3 shows the results for predicting acoustic features. The table contains
the percentage of participants demonstrating a significant correlation between the
predicted variable and the target variable. It also shows the mean and variance
of the correlation, along with the correlation obtained by the baseline model.
The model outperforms the baseline in all cases. The low variance in correla-
tion across subjects indicates that the model’s predictions for acoustic values are
consistent among different subjects. As expected from the previous correlation
results, the prediction of mean duration and signal duration is significant for
almost all subjects, as these features are related to sentence length, which the
model can identify in its input. However, the model, which uses the entire set
of linguistic features, slightly surpasses the baseline, indicating that acoustic fea-
tures are also influenced by other linguistic properties beyond sentence length.
While the prediction of F1 and F2 is significant for a large number of subjects
(>60%), F0 and F3 are significant for a smaller number of subjects (<30%). This
is the opposite of what was seen in the correlation analysis, where the latter two
features were significant for up to 70% of the subjects.

% significant

subjects

mean

correlation

correlation

variance
baseline

edasymp 64% 0.5033 0.0082 0.0561

max pks 33% 0.4836 0.0118 0.2790

no pks 76% 0.5394 0.0103 0.4453

sum pks 67% 0.5357 0.0184 0.3532

mean ph 42% 0.2607 0.2291 0.0524

std ph 82% 0.5785 0.0207 0.4947

max ton 48% 0.1956 0.1982 0.0342

mean ton 58% 0.1664 0.2455 0.0429

std ton 73% 0.5558 0.0202 0.5066

Table 6.4: Regression results for the prediction of electrodermal activity features. High-
lighted in bold are the features that obtain a mean correlation value across subjects
> 0.50.

Table 6.4 shows the results for predicting Electrodermal Activity features.
Similar to the prediction of acoustic features, the model’s predictions in this case
also outperform the baseline (which, as previously stated, is calculated using only
sentence length as input). This is particularly evident in the prediction of edasymp
and sum pks, which are among the best-predicted features when compared to the
baseline. However, the variance of the predictions is higher for some features (e.g.,
mean ph, mean ton) compared to the relatively low variance obtained in predicting
acoustic features. It is also notable that features describing the phasic component
are overall predicted with higher accuracy, with the exception of mean ph. On
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the other hand, the maximum and mean values of the tonic component (max
ton, mean ton) are less predictable by linguistic features. This result reflects the
findings of the correlation analysis (see Table 6.2), where the pairwise correlation
between these features and linguistic features was significant for a low percentage
of subjects (on average, from 3% to 30%).

A close examination of the feature importance analysis results for speech fea-
ture prediction reveals a significant influence stemming from aspects related to
sentence length. This includes not only the length of the sentence itself, but
also other associated factors such as the count of verbal heads. This is because
lengthier sentences typically incorporate more clauses through coordination or
subordination. The study also found the distribution of subjects and their po-
sitioning (either pre-verbal or post-verbal) within the sentence to be highly in-
dicative. Regarding the feature importance analysis for predicting the EDA, no
clear influence pattern is discernible in the tonic component. Rather, the EDA
phasic component prediction seems to correlate more with sentence length and
its associated factors, like the count of prepositional chains and subordination
occurrences. There also appears to be some influence from punctuation, which is
thought to be linked to sentence length, as longer sentences generally have more
punctuation.

6.3.4 SVR prediction of linguistic features using EDA and
speech features as independent variables

This second task aimed to evaluate the effectiveness of the acoustic and physio-
logical features in predicting the features underlying the internal structure of a
text. To do this, a Support Vector Regression model was built using the Speech
and Electrodermal Activity features to predict all the linguistic parameters. Like
in the first task, the Support Vector Regressor was implemented with a Radial
Basis Function kernel and standard parameters. The model performance was
evaluated by comparing it to a baseline, which was created by training the model
using only the Voiced Duration feature as an input feature.

As what happened in the task developed in Section 6.3.3, a feature importance
analysis was implemented at the end of this task. The procedure is the same as
the one detailed in the first task, with the difference that in this case the linguistic
features were used to predict the EDA and speech features. Also in this case, the
coefficients the linear-SVR assigned to the predicting features were extracted and
used to construct the feature rankings.

As with the previous analysis, the effectiveness of the model was determined
by comparing its predictions to the true values of the features being analyzed,
using the mean Spearman’s correlation and its variance for all subjects. The
results of this analysis are presented in Table 6.5. The table only shows features
for which the number of significant subjects was ≥15. The full table with all
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linguistic features

number (and %)

of significant

subjects

mean

correlation

correlation

variance
baseline

raw text properties

sentence length 33 (100) 0.8447 0.0018 0.4563

lexical variety

types fundamental lexicon 15 (45) 0.5103 0.0087 0.1336

type/token ratio lemma 33 (100) 0.6482 0.0084 0.3439

morpho-syntactic information

subordinating conjunctions 20 (61) 0.4416 0.0031 0.0563

auxiliaries present tense 16 (48) 0.5355 0.0075 0.1362

syntactic relations

adverbial clause modifier 28 (85) 0.5355 0.0072 0.2023

marker 28 (85) 0.5631 0.0099 0.2836

nominal modifier 20 (61) 0.4226 0.0034 0.1947

nominal subject 15 (45) 0.5112 0.0103 0.2812

object 15 (45) 0.4475 0.0049 0.0567

global and local parsed tree structure

parsed tree depth 33 (100) 0.7603 0.0032 0.3852

clause length 19 (58) 0.4995 0.0039 0.2985

dependency links length 33 (100) 0.6771 0.0085 0.3486

prepositional chains length 32 (97) 0.5248 0.0052 0.2120

prepositional chains number 33 (100) 0.6316 0.0081 0.2990

post-verbal object 28 (85) 0.4715 0.0064 0.1816

prepositions distribution 17 (52) 0.4564 0.0083 0.1760

subordination phenomena

principal propositions dist. 32 (97) 0.6581 0.0228 0.2647

subordinate propositions dist. 33 (100) 0.7234 0.0077 0.2984

post-verbal subordinates 31 (94) 0.5542 0.0087 0.2350

subordinate chains length 33 (100) 0.6594 0.0063 0.3098

Table 6.5: Regression results for the prediction of Linguistic Features using in input
speech features and EDA features. Highlighted in bold are the features that obtain a
mean correlation value > 0.50.

results can be found in Appendix C.

The predictions of the implemented model are always better than the baseline
for all features. Additionally, the very low variance in the correlation coefficients
among the different subjects confirms that the model’s predictions are robust.
The highest correlations are seen for sentence length and for features related to
length, but modeling more complex properties of the global and local parsed
tree structure. These include the average depth of the parsed tree, the aver-
age length of the dependency links, and the presence and internal structure of
complex nominal complements headed by a preposition (i.e., prepositional chains
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length, prepositional chains number). These are also the features for which the
correlations are significant for a high percentage of subjects (≥ 90%).

When considering the division of linguistic features into different groups of
phenomena, the best results are seen for features describing the use of subor-
dination, with a mean correlation above 0.60 and predictions being significant
for almost all subjects. On the other hand, Electrodermal Activity and Speech
features have only a small impact on predicting morpho-syntactic properties. In
terms of the distribution of grammatical categories, while the correlations are
around 0.4 or higher, they are significant for only a few subjects. As seen in
Table 6.5, the only exceptions are the presence of subordinating conjunctions
and auxiliaries in the present tense, which are significantly correlated for a high
number of subjects (i.e., 20 subjects out of 33 for subordinating conjunctions, 16
subjects out of 33 for auxiliaries in the present tense).

The feature importance analysis uncovers trends of influence across various
types of linguistic features. For features related to lexical density, the most crucial
predictors are F1, F3, signal duration, and the EDA tonic component. When it
comes to morpho-syntactic features, F2 and signal duration emerge as the most
impactful predictors, while the EDA features don’t demonstrate any consistent
trend. Regarding features of syntactic relations and those pertaining to both local
and global parsed tree structures, F2 and signal duration are again recognized as
the most significant predictors, although the EDA phasic component also exerts a
strong influence. Finally, in relation to subordination phenomena, signal duration
is highlighted as the most important predictor, but no clear trend can be discerned
from the EDA features.

6.4 Discussion

The aim of this case study was to examine the relationship between the linguistic
characteristics of neutral and emotional texts and the emotional response of the
reader, as measured by electrodermal activity and speech signal analysis. A
combination of correlation and regression analysis was used to investigate how
the linguistic structure of the texts relates to these signals. The assumption was
that both electrodermal activity and speech signal would indicate the emotional
response elicited by the task, as assessed by the Self-Assessment Manikin method.

The correlation analysis of Section 6.3.2 revealed a statistically significant
relationship between certain linguistic properties of the text and speech and elec-
trodermal activity features. Specifically, significance was found between linguistic
features related to aspects of syntactic complexity, such as the use of subordi-
nation and verbal predicate structure, and speech features that describe some
prosodic aspects of speech often associated with emotional states (e.g., F0, F3

variation over time). The findings further illustrate how speech features, such as
signal duration, could serve as markers of linguistic complexity due to their strong
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association with sentence length. Indeed, sentence length acts as a complexity
indicator, as lengthier sentences usually contain more complex dependencies and
syntactic formations, including numerous subordinate clauses. This complexity
elevates the cognitive exertion needed to understand the sentence and its struc-
tural basis. Consequently, given the direct correlation between sentence length
and signal duration, the latter can also be perceived as a complexity metric. Ad-
ditionally, electrodermal activity features describing the variability of both phasic
and tonic components (std ph, std ton), as well as the number of phasic responses,
were strongly correlated with most of the linguistic properties of the texts. These
features often reflect arousing states such as fear and anxiety [18].

The strong significant relationship between the linguistic characteristics and
the acoustic and EDA features was further confirmed by the strong prediction
performance of the linguistic-driven SVR models. The combination of linguistic
features showed a significant and relevant ability to predict ANS-related features,
both when they described characteristics of the voice spectrum (i.e., fundamental
frequency and formants) that could be affected by respiratory activity, and when
they described the physiological arousal manifested by sweat gland activity.

The SVR model also demonstrated an exceptional ability to predict edasymp
values in addition to the EDA features previously identified by the correlation
analysis. This feature is a dependable indicator of sympathetic system activity
and a well-established stress marker, which supports the idea of a connection
between features commonly considered as proxies of linguistic complexity, partic-
ularly at the syntactic level, and stress reactions in the subject [232].

However, this outcome could raise a double possibility of interpretation. This
result could be interpreted in two ways. On one hand, the linguistic structure of
the spoken sentence may obscure the true impact of voice prosody and EDA in
determining a speaker’s emotional state. The variations in prosody and EDA dy-
namics could be caused by mechanical changes in respiratory activity associated
with speech, which is known to affect both acoustic and EDA characteristics. On
the other hand, the linguistic structure itself could directly impact a subject’s
emotional state, which would be accurately captured by the speech and EDA
features.

The last hypothesis is supported by previous research, introducing the idea
that a combination of speech processing features and linguistic features can be
used to accurately recognize emotional state [13, 255]. However, these studies
typically focus on lexical and contextual aspects of language and do not take
into account other important features such as morpho-syntactic or syntactic in-
formation. These features have been shown to have a significant impact on an
individual’s emotional state as they are related to various psycholinguistic phe-
nomena and can affect cognitive load and language processing difficulty. The
results of the study presented in this manuscript align with previous studies, par-
ticularly [43, 133], which have shown that the same set of linguistic features used
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in our study are highly correlated with conscious judgments of perceived sentence
complexity given by native speakers.

This study uncovered further evidence that acoustic and physiological signals
can accurately predict a wide range of linguistic characteristics, which play a role
in shaping the grammatical and syntactic structure of language. This supports
the idea that there is a strong connection between a speaker’s emotional state
and the way they use language. Additionally, incorporating cognitive signals into
natural language processing research could lead to more sophisticated models,
and provide deeper insight into the distinctions between human and machine
language understanding.
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Conclusions

This thesis has tackled the relationship between natural language and emotions,
trying to explain which linguistic phenomena can elicit emotive reactions and
which of them are related to the emotional aspects of the speaker and of the
reader. This relationship has been examined from different perspectives and by
introducing different modalities in the analysis. Natural language has been the
leitmotiv that has guided all the analyses presented in the three case studies. By
collecting a wide set of linguistically-motivated features, it is possible to represent
any text with its linguistic profile, capturing information about various levels of
linguistic phenomena and stylistic elements of language. To assess whether these
features are sufficient for describing the relationship of language with emotions,
they were paired and compared also with implicit vectorial representations gener-
ated by a Language Model, which is able to encode lexical and semantic relational
aspects that the linguistic profile may fail to detect. When available, language
was paired with other modalities, specifically speech and electrodermal activity,
to examine how emotionally encoded language impacts the bodily parameters of
a reader.

The first case study of this thesis presented a novel method for modeling
human perception of sentence complexity. Playing an essential role in effective
communication, the study of language complexity is fundamental to understand-
ing which linguistic phenomena facilitate feelings of positive engagement in a
human-computer or a human-human interaction. To tackle these aspects, a group
of subjects recruited through a crowdsourcing task was asked to annotate a cor-
pus of sentences in terms of perceived complexity. The analyses of the case study
were divided into two main parts, based on whether complexity was studied for
sentences in isolation or within a context.

The first part of this case study focused on the complexity of sentences pre-
sented in isolation for two languages, English and Italian. As first analysis, a
Support Vector Classifier was applied to assess the role of linguistic features in
predicting how much annotators agree on expressing the level of complexity of
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the sentences. It was shown that deep syntactic features, such as the use of
subordination and nominal modification, play a significant role in predicting the
level of agreement of human annotators. Interestingly, the classifier required only
a few of the linguistic features to predict the agreement level when more than
half of the annotators report the same judgment of complexity. When there is
no consensus among the annotators, the performance of the classifier in the pre-
diction of the agreement lowers significantly. This is a clear sign that there are
some specific linguistic phenomena that most annotators take into account for the
evaluation of complexity. This assumption is confirmed by the following analy-
sis, which tackled the correlation between the explicit linguistic features and the
complexity judgments assigned by annotators. The analysis revealed that syntac-
tic phenomena related to sentence structure are among the top-ranked features
characterizing sentences rated highly complex by a given number of agreeing an-
notators. Moreover, the set of selected explicit features significantly contributes
to automatically predicting the human judgment of sentence complexity, meaning
that the examined linguistic factors play an important role in the perception of
complexity.

The second part of this first case study examined how the context surround-
ing a sentence influences the perception of its complexity by humans. Indeed,
although a sentence by itself may be perceived as highly complex, it is possible
that additional context helps the reader of a text (or, in general, the receiver
of a message) in understanding the sentences with less cognitive effort. From
the dataset created in the first part of the study, only English sentences were ex-
tracted and enriched with the preceding and following sentences, representing the
context of the original sentence. Three different windows of context were stud-
ied according to the position the original sentence occupied within them (begin,
center, end).

The results of the first analysis revealed a strong agreement between annota-
tors, regardless of the position the evaluated sentence occupies with respect to
the other contextual sentences. This analysis also showed that annotators reach
a stronger agreement when the sentence is rated as simple, while the level of
agreement decreases when the sentence is rated as complex. This discrepancy
could indicate that the processing of complex sentence is subjective and possibly
more dependent on the knowledge of each annotator, even when the context is
provided. Subsequently, an attempt was made to try to predict the values of
complexity assigned to the sentences by the annotators. Differently from the first
part of the study, in which only explicit linguistic features were taken into con-
sideration, this second part of the study also leveraged implicit linguistic features
obtained from a pre-trained and fine-tuned language model (BERT). The results
have shown that models using explicit linguistic features achieve higher accuracy
than BERT in the prediction of the scores of complexity assigned to sentences.
This was especially true when the models used explicit linguistic features from all
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contextual sentences, in addition to the ones of the sole rated sentence. However,
this result is highly dependent on the fact that very few data were available for
this task, while language models notoriously require training on larger datasets.

As done when studying complexity of sentences in isolation, this study as-
sessed the correlation between the explicit linguistic features and the judgments
of complexity assigned by annotators also for the sentences presented with con-
text. Contrary to what was done in the first part of the study, this second part
also assessed the correlation with the standard deviation of the complexity scores
assigned to sentences. From the analysis of the correlation between the features
and the judgments of complexity, it emerged that the annotators paid attention
during the task both to the sentence to be evaluated and the context in which
it was presented. The analyses also evidenced that the presence of numbers and
of phenomena capturing aspects of structural complexity, especially in long sen-
tences, contribute to higher perceived complexity. When the explicit linguistic
features are correlated to the standard deviation of the complexity judgments,
fewer correlations emerge. Still, it is noticeable from the results that humans have
paid attention to the context in which sentences appear. Although fewer corre-
lations are present, also in this case the presence of numerical information and
elements that mark structural complexity has a strong influence on the standard
deviation of the complexity judgments.

The second case study tackled the analysis of emotion elicitation from audio-
visual stimuli, based on a dataset of sentences extracted from the movie Forrest
Gump and annotated with the emotions perceived by a group of subjects. The
main goal of this case study was to explore the interactions between the lin-
guistic aspects of the movie dialogues and the emotions elicited in participants
that watched the movie in a controlled setting. To achieve this goal, the study
leveraged both the explicit linguistic features from the linguistic profile and the
implicit contextual features generated by the language model BERT. Both the
set of features were used to predict the emotions experienced by the participants
in the study.

The results showed that contextual embeddings extracted from the sentences
pronounced by the movie characters can be leveraged to accurately predict spe-
cific perceived emotions, even with a small amount of text as input. However, for
predicting generic emotional elicitation, a larger amount of text is required for
predictive models to yield accurate results. On the other hand, lexical, morpho-
syntactic, and syntactic aspects of the dialogue sentences are not strong predictors
of the emotional elicitation subjects experienced during the view of the movie.
This outcome is expected, as these features encode little to no information re-
garding the emotive state and sentiment of what is expressed in the sentence.
Instead, contextual embeddings can capture this information because they are
aware of how the words within a sentence are co-located and encode more infor-
mation about the semantics of the sentence itself. It is also important to notice
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that the stimuli coming from a movie are multiple (i.e., images, speech, music,
other contextual cues), thus linguistic aspects by themselves cannot be the sole
emotion elicitors. However, the results of this study imply the importance of
dialogue in studying emotional elicitation and perception, even in the presence
of multiple stimuli. The findings suggest that contextual embeddings can be a
useful tool for predicting emotional responses to audiovisual stimuli.

The last case study highlights the importance of linguistic features in shaping
the emotional response of readers and supports the idea that emotional and cog-
nitive signals play a significant role in natural language processing. This study
explored the relationship between the explicit linguistic features of emotionally
encoded and neutral texts and the bodily emotional response of the reader, as
measured by electrodermal activity and speech signal analysis. The results re-
vealed a significant relationship between certain linguistic properties of the texts
and speech and electrodermal activity features. In particular, linguistic features
related to syntactic complexity, such as subordination and the verbal predicate
structure, were strongly correlated with the speech features related to emotional
states, such as the variation in fundamental frequency and the voice formants.
Additionally, electrodermal activity features that reflect arousing states, such as
fear and anxiety, were correlated with most linguistic properties of the texts.
Furthermore, a linguistic-driven Support Vector Regression model demonstrated
that the selected set of linguistic features can be used to accurately predict both
autonomic nervous system-related features and edasymp values, which are reli-
able indicators of the activity of the sympathetic system and a well-established
stress marker. These findings suggest that there is a strong connection between
a speaker’s emotional state and the way they use language. The study aligns
with previous research, demonstrating that a combination of speech processing
features and linguistic features can accurately recognize a human’s emotional
state. However, previous studies often focus on lexical and contextual aspects of
language and neglect other important features such as morpho-syntactic or syn-
tactic information. The findings of this study provide evidence that acoustic and
physiological signals can predict a wide range of linguistic characteristics, which
play a role in shaping the grammatical and syntactic structure of language.

Future applications

The findings reported in this thesis present a wealth of potential applications
across diverse fields, ranging from communication studies, to human-computer
interactions, multimedia analysis, and content-based recommendations. It opens
the opportunity for further exploration and utilization in areas where understand-
ing the interaction between language and emotion is critical, not only in the field
of research but also in real-world applications.
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In the field of educational technology, these results could help in designing
intelligent tutoring systems that are more sensitive to the cognitive state of the
learner. The tutoring system could adapt its instructions or exercises based on the
level of complexity a student can handle, as determined by the linguistic features
of their responses. Moreover, in language learning platforms, the understanding of
perceived sentence complexity could help to create more efficient learning content
tailored to individual student’s proficiency.

In the area of human-computer interaction, these findings could be used to
enhance algorithms for natural language understanding and sentiment analysis.
For instance, customer support bots could be trained to adjust their responses
according to the emotional state of the customer, inferred by analyzing the cus-
tomer’s speech and text. Additionally, the results of the study could be applied
for creating AI chatbots with a higher degree of empathy, giving them the ability
to respond more sensitively to the emotional content of human language.

The conclusions of the second case study could be applied to the entertain-
ment industry, in particular to scriptwriting and filmmaking. Understanding how
language in dialogue elicits emotional responses can guide writers in designing
narratives that effectively engage audiences. Furthermore, platforms like Netflix
could use these findings to refine their recommendation algorithms, linking emo-
tional responses to dialogue, and providing viewers with content that resonates
more emotionally.

As for the last case study, the relationship between the linguistic features
of emotionally encoded and neutral texts and the bodily emotional response of
the reader could have clinical applications in mental health. In psychotherapy,
for example, this research could inform the development of diagnostic tools that
analyze patients’ language use and physiological responses, providing insights
into their emotional states. The correlation found between linguistic properties
in texts and electrodermal activity could be valuable in biofeedback therapy,
where patients learn to modulate their physiological reactions.

Moreover, the findings of the last case study could be applied to voice-operated
virtual assistants or voice user interface devices, like Amazon’s Alexa or Google
Home. These devices could be optimized to not only understand the content
of the command but also the emotional context of the speaker, leading to more
fitting responses.
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Appendix A

List of abbreviations used for the explicit linguis-

tic features

This appendix reports the list of the abbreviations for the explicit linguistic fea-
tures described in Section 2.2.2. Features for lexical density that belong to De
Mauro’s “Vocabolario Fondamentale” [71] are valid only for Italian.

Raw text properties

– char per tok : number of characters per token;

– n tokens : number of tokens per sentence;

– n sentences : number of sentences;

– token per clause: number of tokens per proposition (average clause length).

Lexical density

– in dict : percentage of tokens in the “Vocabolario Fondamentale”;

– in dict types : percentage of types in the “Vocabolario Fondamentale”;

– in FO : percentage of tokens in the fundamental words of the “Vocabolario
Fondamentale”;

– in AD : percentage of tokens in the high availability words of the “Vocabo-
lario Fondamentale”;

– in AU : percentage of tokens in the high usage words of the “Vocabolario
Fondamentale”;
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– in FO types : percentage of types in the fundamental words of the “Vocabo-
lario Fondamentale”;

– in AD types : percentage of types in the high availability words of the “Vo-
cabolario Fondamentale”;

– in AU types : percentage of types in the high usage words of the “Vocabo-
lario Fondamentale”;

– ttr form: Type/Token Ratio calculated on forms;

– ttr lemmi : Type/Token Ratio calculated on lemmas;

– lexical density : ratio of content words over the total number of words in a
text.

Morpho-syntactic information

– cpos dist X : distribution of grammatical categories;

– verbs mood dist X : distribution of verbal moods;

– verbs tense dist X : distribution of verbal tenses;

– verbs num pers dist X : distribution of verbal person and number.

Verbal predicate structure

– avg verb edges : average verbal arity;

– verb edges dist : verbal arity distribution;

– verb edges freq : frequency of verbal arity;

– verbal head : number of verbal heads;

– verbal head per sent : number of verbal heads per sentence;

– verbal root : number of verbal roots;

– verbal root per sent : number of verbal roots per sentence.

Distributions of syntactic relations

– dep dist X : distribution of dependency relations;

– dep freq X : frequency of dependency relations.
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Global and local parsed tree structure

– avg links len: average length of syntactic links;

– avg max depth: average depth of syntactic trees;

– avg prepositional chain len: average length of prepositional chains;

– max links len: length of the longest syntactic link;

– n prepositional chains : number of embedded complement chains governed
by a nominal head;

– obj post : percentage of post-verbal objects;

– obj pre: percentage of pre-verbal objects;

– prep dist X : distribution of prepositions;

– prep freq X : frequency of prepositions;

– prepositional chain distribution X : distribution of prepositional chains per
their length;

– prepositional chain freq x : frequency of prepositional chains per their length;

– subj post : percentage of post-verbal subjects;

– subj pre: percentage of pre-verbal subjects.

Use of subordination

– avg subordinate chain len: average length of chains of subordinate proposi-
tions;

– n subordinate chain: total length of chains of subordinate propositions;

– n subordinate proposition: number of subordinate propositions;

– principal proposition dist : distribution of principal propositions;

– subordinate dist X : distribution of subordinate propositions;

– subordinate freq X : frequency of subordinate propositions;

– subordinate post : number of subordinate proposition after the principal
proposition;

– subordiante pre: number of subordinate proposition begore the principal
proposition;
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– subordinate proposition dist : distribution of subordinate propositions;

– total subordinate chain len: total lenght of chains of subordinate proposi-
tions.



Appendix B

Complete results of the correlations between Lin-

guistic Features and Complexity Average Scores

and between Linguistic Features and Complexity

Standard Deviation

In this Appendix are shown the complete results for the correlations between
Linguistic Features and Perceived Complexity in context as discussed in Section
4.4.2. More specifically, the Tables reported in this Appendix show the correla-
tions between the values of the Linguistic Features and the Complexity Average
Scores (marked as judg) and the Standard Deviation of the Complexity Scores
(marked as std).

Table B.1 shows the correlations between Linguistic Features and Perceived Com-
plexity for the Begin Context Window ; Table B.2 shows the correlations between
Linguistic Features and Perceived Complexity for the Center Context Window ;
Table B.3 shows the correlations between Linguistic Features and Perceived Com-
plexity for the End Context Window.
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176Correlations between Linguistic Features and Complexity Average Scores (judg) and
between Linguistic Features and Complexity Standard Deviation (std) for the Begin
Context Window.

Table B.1: Values of correlation for statistically significant (p-value< 0.05) linguistic features with ρ ≥ 0.20 that correlate with
either the average judgment of complexity or the complexity standard deviation. For the begin context window, for all sentences
and for sentences divided according to their length.
linguistic

features

length 10 length 15 length 20 length 25 length 30 length 35 all sents

judg std judg std judg std judg std judg std judg std judg std

B aux + −0.20 · · · · · · · · · · · · ·
B aux Fin −0.29 · · · −0.25 · · 0.22 · · · · · ·
B aux Ind −0.27 · · · · · · · · · · · · ·
B avg link 0.31 · · · · · · · · · · · 0.21 ·
B avg max depth 0.25 · 0.23 · · · · · · · · · 0.29 ·
B avg max link 0.36 · · · · · · · · · · · 0.26 ·
B avg prep chain - · · · · · · · · 0.20 · · · ·
B avg sub chain - · · · · · −0.23 · · · · · · ·
B avg tok clause −0.20 · 0.25 · · · · · · · · · · ·
B char tok · · −0.24 · · · · · · · · · · ·
B dep advmod · · · · 0.20 · · · · · · · · ·
B dep amod −0.25 · · · · · · · · · · · · ·
B dep appos 0.54 · · · · · · · · · · · · ·
B dep compound 0.27 · · · · −0.22 · · 0.20 · 0.21 · 0.22 ·
B dep cop −0.25 · · · · · · · · · · · · ·
B dep det −0.33 · · · · · · · · · · · −0.21 ·
B dep nsubj −0.43 · · · · · · · · · · · −0.22 ·
B dep nummod 0.39 · 0.20 · 0.30 · 0.23 · 0.33 · 0.35 · 0.33 ·
B dep obl:tmod · · · · · · · · · −0.26 · · · ·
B dep punct · · · · 0.20 · · · · · · · · ·
B dep root −0.34 · −0.33 · · · · · · · · · −0.32 ·
B dep xcomp · · · · · · −0.25 · · · · · · ·
B lexical dens · · · · −0.22 · −0.21 · · · · · · ·

continued on next page
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continued from previous page

linguistic

features

length 10 length 15 length 20 length 25 length 30 length 35 all sents

judg std judg std judg std judg std judg std judg std judg std

B max link 0.36 · · · · · · · · · · · 0.26 ·
B n prep chain · · · · · · 0.20 · · · · · 0.24 ·
B n tok 0.34 · 0.33 · · · · · · · · · 0.32 ·
B obj post · · 0.22 · · · · · · · · · · ·
B princ prop −0.27 · · · · · · · · · · · · ·
B sub 1 −0.24 · · · · · · · · · · · · ·
B sub prop · · · · · · −0.22 · · · · · · ·
B subj pre −0.42 · · · · · · · · · · · · ·
B tok sent 0.34 · 0.33 · · · · · · · · · 0.32 ·
B ttr −0.20 · · · · · · · · · · · · ·
B ttr lemma −0.21 · · · · · · −0.20 · · · · · ·
B upos ADJ −0.26 · · · −0.24 · · · · · · · · ·
B upos ADP −0.20 · · · · · · · · · · · · ·
B upos AUX −0.29 · · · · · · 0.23 · · · · · ·
B upos DET −0.33 · · · · · · · · · · · −0.21 ·
B upos NUM 0.40 · 0.30 · 0.33 · 0.30 · 0.34 · 0.30 · 0.34 ·
B upos PART · · · · · · · · · · −0.20 · · ·
B upos PRON −0.25 · −0.24 · · · · · · · · · · ·
B upos PUNCT · · · · 0.20 · · · · · · · · ·
B upos SYM 0.30 · 0.22 · · · 0.27 · 0.29 · 0.31 · 0.28 ·
B upos VERB −0.30 · · · · · · · · · · · · ·
B verb edge 0 · · −0.25 · · · · · · · · · · ·
B verb head sent −0.42 · · · · · −0.21 · · · · · · ·
B verb root perc −0.43 −0.22 · · · · · · · · · · · ·
C aux + · · · · · −0.21 · · · · · · · ·
C aux Fin −0.31 · · · −0.21 · · · · · · · · ·
C aux Ind −0.32 · · · · · · · · · · · · ·
C aux Pres −0.23 · · · · · · · · · · · · ·
C aux Sing+3 −0.29 · · · · · · · · · · · · ·
C avg link −0.23 · · · · · · · · · · · · ·
C avg sub chain −0.24 · · · · · · · · · · · · ·
C avg tok clause −0.33 · · · · · · · · · · · · ·
C avg verb edge −0.30 · · · −0.21 · · · · · · · · ·

continued on next page
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linguistic

features

length 10 length 15 length 20 length 25 length 30 length 35 all sents

judg std judg std judg std judg std judg std judg std judg std

C char tok 0.28 · · · · · · · · · · · · ·
C dep aux · · · · −0.21 · · · · · · · · ·
C dep aux:pass · · · · · · · · · 0.23 · · · ·
C dep cc −0.23 · · · −0.20 · · · · · · · · ·
C dep ccomp −0.23 · · · · · · · · · · · · ·
C dep compound 0.21 · · · 0.24 · · · · · · · · ·
C dep nmod:poss −0.24 · · · · · · · · · · · · ·
C dep nsubj · · · · −0.31 · · · · · · · · ·
C dep nsubj:pass · · · · · · · · · 0.23 · · · ·
C dep nummod · · · · 0.28 · 0.27 · 0.22 · 0.26 · 0.23 ·
C dep obj −0.21 · · · · · · · · · · · · ·
C dep obl −0.25 · · · · · · · · · · · · ·
C dep root 0.30 · · · · · · · · · · · · ·
C n tok −0.30 · · · · · · · · · · · · ·
C obj post −0.24 · · · −0.21 · · · · · · · · ·
C prep 3 0.37 · · · · · · · · · 0.22 · · ·
C princ prop −0.27 · · · · · · · · · · · · ·
C sub 1 −0.30 · · · · · · · · · · · · ·
C sub post −0.28 · · · · · · · · · · · · ·
C sub pre · · · · −0.24 · · · · · · · · ·
C sub prop −0.22 · · · · · · · · · · · · ·
C subj pre −0.39 · · · · · · · · · · · · ·
C tok sent −0.30 · · · · · · · · · · · · ·
C upos AUX −0.22 · · · −0.23 · · · · · · · · ·
C upos CCONJ −0.21 · · · · · · · · · · · · ·
C upos DET −0.23 · · · · · · · · · · · · ·
C upos NUM · · · · 0.24 · 0.35 · 0.23 · 0.26 · 0.24 ·
C upos PART −0.25 · · · · · · · · · · · · ·
C upos PRON −0.27 · −0.23 · · · · · · · · · · ·
C upos VERB −0.29 · · · −0.27 · · · · · · · · ·
C verb edge 5 −0.31 · · · · · · · · · · · · ·
C verb head sent −0.38 · · · −0.28 · · · · · · · · ·
C verb Ind −0.23 · · · · · · · · · · · · ·

continued on next page
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linguistic

features

length 10 length 15 length 20 length 25 length 30 length 35 all sents

judg std judg std judg std judg std judg std judg std judg std

C verb Inf −0.21 · · · · −0.20 · · · · · · · ·
C verb Part −0.24 · · · · · · · · · · · · ·
C verb Past −0.29 · · · · · · · · · · · · ·
C verb Pres · · · · −0.26 · · · · · · · · ·
C verb root perc −0.44 · · · −0.29 · · · · · · · · ·
C verb Sing+3 · · · · −0.25 · · · · · · · · ·
E aux Fin −0.29 · · · −0.21 · · · · · · · · ·
E aux Ind −0.22 · · · −0.22 · · · · 0.22 · · · ·
E aux Pres · · · · −0.24 · −0.21 · · · · · · ·
E avg link 0.32 · · · 0.31 · · · · · · · · ·
E avg max link - · · · 0.29 · · · · · · · · ·
E avg prep chain 0.26 · · · · · · · · · 0.23 · · ·
E avg verb edge −0.23 · · · · · · · · · · · · ·
E dep advmod · · −0.25 −0.24 · · · · · · · · · ·
E dep appos 0.37 · · · 0.21 · 0.23 · · · · · · ·
E dep det −0.25 · · · · · · · · · · · · ·
E dep list · · · · 0.22 · · · · · · · · ·
E dep nmod 0.35 · · · · · · · · · 0.25 · · ·
E dep nsubj −0.29 · · · −0.25 · · · · · · · · ·
E dep nummod 0.40 · · · · · · · · · · · 0.21 ·
E dep obj −0.31 · · · · · · · · · · · · ·
E lexical dens −0.30 · · · · · · · · · · · · ·
E max link - · · · 0.29 · · · · · · · · ·
E n prep chain 0.32 · · · 0.22 · · · · · 0.20 · · ·
E obj post −0.28 · · · · · · · · · · · · ·
E prep 1 0.29 · · · · · · · · · · · · ·
E princ prop −0.23 · · · · · · · · · · · · ·
E sub pre · −0.21 · · · · · · · · · · · ·
E subj pre −0.45 · · · · · · · · · · · · ·
E ttr −0.31 · · · −0.29 · · · · · · · · ·
E ttr lemma −0.30 · · · −0.29 · · · · · · · · ·
E upos ADP 0.22 · · · · · · · · · · · · ·
E upos AUX −0.24 · · · −0.27 · · · · · · · · ·
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judg std judg std judg std judg std judg std judg std judg std

E upos DET −0.27 · · · · · · · · · · · · ·
E upos NUM 0.39 · · · 0.23 · · · · · 0.21 · 0.23 ·
E upos PRON −0.34 · · · · · · · · · · · · ·
E upos VERB −0.38 · · · · · · · · · −0.24 · · ·
E verb edge 1 −0.29 · · · · · · · · · · · · ·
E verb edge 3 −0.23 · · · · · · · · · · · · ·
E verb Ger · · · · 0.20 · · · · · · · · ·
E verb head sent −0.30 · · · · · · · · · · · · ·
E verb root perc −0.41 · · · −0.21 · · · · · · · · ·
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Correlations between Linguistic Features and Complexity Average Scores (judg) and
between Linguistic Features and Complexity Standard Deviation (std) for the Center
Context Window.

Table B.2: Values of correlation for statistically significant (p-value< 0.05) linguistic features with ρ ≥ 0.20 that correlate with
either the average judgment of complexity or the complexity standard deviation. For the center context window, for all sentences
and for sentences divided according to their length.
linguistic

features

length 10 length 15 length 20 length 25 length 30 length 35 all sents

judg std judg std judg std judg std judg std judg std judg std

B aux + −0.21 · · · · · · · · · · · · ·
B aux form Ger · · 0.21 · · · · · · · · · · ·
B aux form Inf · 0.20 · · · · · · · · · · · ·
B aux Pres · · · · · · · · −0.21 · · · · ·
B avg prep chain - · · · · · 0.23 · · · · · · ·
B avg sub chain −0.24 · · · · · · · · · · · · ·
B dep aux · · · · · · · · · · −0.28 · · ·
B dep aux:pass · · · · · · −0.32 · · · · · · ·
B dep compound · · 0.20 · 0.21 · · · · · 0.22 · 0.21 ·
B dep flat · · · · · · −0.22 · · · · · · ·
B dep nmod · · · · · · 0.25 · · · · · · ·
B dep nsubj · · −0.24 · · · · · · · −0.21 · · ·
B dep nsubj:pass · · · · · · −0.29 · · · · · · ·
B dep nummod · · 0.27 · 0.23 · · · · · 0.26 · · ·
B n prep chain · · · · · · 0.23 · · · · · · ·
B princ prop · · · · −0.24 · · · · · · · · ·
B sub post −0.22 · · · · · · · · · · · · ·
B subj pre · · · · · · · −0.20 · · · · · ·
B upos NUM · · 0.22 · · · · · · · 0.29 · · ·
B upos PRON · · · · · · · · −0.22 · · · · ·
B upos PROPN · · 0.21 · · · · · · · · · · ·
B upos SYM · · · · · · · −0.21 · · 0.21 · · ·
B upos VERB · · −0.21 · −0.22 · · · · · · · · ·
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length 10 length 15 length 20 length 25 length 30 length 35 all sents

judg std judg std judg std judg std judg std judg std judg std

B verb edge 1 · · · −0.20 · · · · · · · · · ·
B verb Past · · · −0.21 · · · · · · · · · ·
B verb root perc · · · · −0.25 · · · · · · · · ·
C aux + −0.24 · · · −0.24 · · · · · −0.20 · · ·
C aux form Fin −0.21 · · · −0.28 · · · −0.22 · · · · ·
C aux Ind · · · · −0.23 · · · · · · · · ·
C aux Past · · · · −0.21 · · · · · · · · ·
C aux Pres −0.21 · · · · · · · −0.22 · −0.24 · · ·
C avg max depth 0.21 · 0.31 · · · · · · · · · 0.29 ·
C avg max link - · · · · · · · · · · · 0.25 ·
C avg sub chain - · · · · · · · −0.20 · −0.38 · · ·
C avg tok clause · · · · 0.22 · · · · · 0.26 · · ·
C char tok · · · · · · · · · · −0.30 · · ·
C dep amod · · · · −0.24 · · · · · · · · ·
C dep aux · · −0.22 · −0.21 · · · −0.28 −0.25 −0.29 · · ·
C dep case · · · · · · · · · · 0.22 · · ·
C dep ccomp · · · · · · · · · · −0.27 · · ·
C dep det · · −0.28 · −0.22 · · · · · · · · ·
C dep mark · · · · · · · · · · −0.23 · · ·
C dep nmod 0.23 · · · · · · · · · · · · ·
C dep nsubj −0.22 · · · · · · · · · · · · ·
C dep nummod 0.21 · 0.32 · 0.25 · · · 0.26 · 0.35 · 0.29 ·
C dep punct · · · · · · · −0.21 · · · · · ·
C dep root −0.24 · −0.33 · · · · · · · · · −0.31 ·
C dep xcomp · · · · · · −0.26 · · · −0.28 · · ·
C lexical dens · · −0.23 · −0.21 · · · · · −0.27 · · ·
C max link - · · · · · · · · · · · 0.25 ·
C n prep chain 0.23 · · · · · · · · · · · 0.25 ·
C n tok 0.24 · 0.33 · · · · · · · · · 0.31 ·
C princ prop · · · · · · · · · · 0.23 −0.21 · ·
C sub 2 · · · · · · · · · · −0.20 · · ·
C sub 4 · · · · · · · · · · −0.24 · · ·
C sub post · · · · · · · · · · −0.28 · · ·
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183
continued from previous page

linguistic

features

length 10 length 15 length 20 length 25 length 30 length 35 all sents

judg std judg std judg std judg std judg std judg std judg std

C sub prop · · · · · · · · · · −0.29 0.20 · ·
C tok sent 0.24 · 0.33 · · · · · · · · · 0.31 ·
C upos ADJ −0.21 · −0.25 · −0.22 · · · · · −0.26 · · ·
C upos AUX −0.24 · · · −0.27 · · · −0.23 · −0.32 · −0.23 ·
C upos DET · · −0.28 · −0.21 · · · · · · · · ·
C upos NUM 0.30 · 0.41 · 0.31 · · · 0.28 · 0.39 · 0.33 ·
C upos PRON −0.21 · · · −0.21 · · · · · −0.31 · · ·
C upos PUNCT · · · · · · · −0.21 · · · · · ·
C upos SYM 0.26 · 0.30 · · · · · · · 0.34 · 0.24 ·
C upos VERB · · · · · · · · · · −0.24 · · ·
C verb + · · · · · · 0.22 · · · · · · ·
C verb edge 1 · · · · · · · · −0.28 · · 0.20 · ·
C verb edge 2 · · · · · · · · · · −0.26 · · ·
C verb form Fin · · · · · · · · 0.24 · · · · ·
C verb form Inf · · · · · · · · · · −0.27 · · ·
C verb head sent · · · · −0.23 · · · · · −0.28 · · ·
C verb Ind · · · · · · · · 0.21 · · · · ·
C verb root perc · · · · · · · · · · · −0.22 · ·
E aux Pres −0.27 · −0.21 · · · · · · · · · · ·
E avg link −0.29 −0.23 · · · · · · · · · · · ·
E avg max depth · · · · · · 0.30 · · · · · · ·
E avg max link −0.23 −0.25 · · · · · · · · · · · ·
E avg sub chain −0.21 · · · · · · · · · −0.26 · · ·
E avg tok clause · · · · · · · · · · 0.25 · · ·
E avg verb edge −0.21 · · · · · · · · · · · · ·
E dep advmod −0.24 · −0.20 · · · · · · · · · · ·
E dep aux · −0.22 · · · · · · · · · · · ·
E dep case · · · · · · 0.20 · · · · · · ·
E dep ccomp · · · · · · · · · · −0.31 · · ·
E dep nummod · · · · · · 0.28 · · · 0.33 · 0.22 ·
E dep parataxis · −0.22 · · · · · · · · · · · ·
E dep root 0.21 0.21 · · · · · · · · · · · ·
E dep xcomp · −0.21 −0.23 · · · · · · · · · · ·
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judg std judg std judg std judg std judg std judg std judg std

E lexical dens · · · · · · −0.25 · · · −0.22 · · ·
E max link −0.23 −0.25 · · · · · · · · · · · ·
E n tok −0.21 −0.21 · · · · · · · · · · · ·
E prep 1 · · · · −0.22 · · · · · · · · ·
E prep 2 · −0.20 · · · · 0.20 · · · · · · ·
E sub post · · · · · · · · · · −0.22 · · ·
E sub pre · · −0.22 · · · · · · · · · · ·
E sub prop −0.23 · · · · · · · · · · · · ·
E tok sent −0.21 −0.21 · · · · · · · · · · · ·
E upos ADV · · −0.23 · · 0.22 · · · · · · · ·
E upos NUM · · · · · · 0.33 · · · 0.34 · 0.22 ·
E upos PART · · · · · · · · · · −0.23 · · ·
E upos PRON −0.22 · · · · · · · · · · · · ·
E upos SYM · · · · · · 0.28 · · · 0.30 · · ·
E upos VERB · · · · · · · · · · −0.21 · · ·
E verb edge 3 · · · · · · · −0.22 · · · 0.21 · ·
E verb edge 4 −0.30 · · · · · · · · · · · · ·
E verb form Fin · · · · · · · · 0.21 · · · · ·
E verb form Inf · · · · · · · · · · −0.22 · · ·
E verb head sent −0.24 · · · · · · · · · · · · ·
E verb Past · 0.20 · · · · 0.23 · · · · · · ·
E verb Pres −0.20 −0.30 · · · · · · · · · · · ·
E verb Sing+3 −0.20 −0.21 · · · · · · · · · · · ·
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Correlations between Linguistic Features and Complexity Average Scores (judg) and
between Linguistic Features and Complexity Standard Deviation (std) for the End
Context Window.

Table B.3: Values of correlation for statistically significant (p-value< 0.05) linguistic features with ρ ≥ 0.20 that correlate with
either the average judgment of complexity or the complexity standard deviation. For the end context window, for all sentences
and for sentences divided according to their length.
linguistic

features

length 10 length 15 length 20 length 25 length 30 length 35 all sents

judg std judg std judg std judg std judg std judg std judg std

B aux Fin · · · · −0.23 · · · · · · · · ·
B aux Ind · · · · −0.21 · · · · · · · · ·
B avg link - · · · −0.25 · · · · · · · · ·
B avg max link - · · · −0.24 · · · · · · · · ·
B dep acl · · · · · −0.23 · · · · · · · ·
B dep advcl · · · · · · · · −0.20 · · · · ·
B dep case · · · · −0.21 · · · · · · · · ·
B dep ccomp · · · · · · · · · · −0.21 · · ·
B dep nmod:poss · · · · · · · −0.22 · · · · · ·
B dep obj · · −0.25 · · · · · · · · · · ·
B dep obl · · · · −0.26 · · · · · · · · ·
B dep xcomp · · −0.21 · · · · · · · · · · ·
B max link - · · · −0.24 · · · · · · · · ·
B prep 3 · · · · · · · −0.20 · · · · · ·
B sub 1 · · · · −0.23 · · −0.25 · · · · · ·
B subj pre · · · · −0.21 · · · · · · · · ·
B ttr · · · · −0.25 · −0.20 · · · · · · ·
B ttr lemma · · · · −0.22 · −0.22 · · · · · · ·
B upos ADP · · · · −0.23 · · · · · · · · ·
B upos AUX · · · · −0.26 · · · · · · · · ·
B upos NOUN · · · · · · · · · · 0.22 · · ·
B upos SYM 0.23 · · · · · · · · · · · · ·
B upos VERB · · · · −0.23 · · · −0.24 · · · · ·
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judg std judg std judg std judg std judg std judg std judg std

B verb head sent · · · · −0.21 · · · · · · · · ·
B verb Part · · · · −0.26 · · · · · · · · ·
B verb root perc · · · · · · · · · · · −0.20 · ·
C aux Fin −0.21 · −0.21 · −0.26 · · · · · · · · ·
C char tok · · · · · · · · · · −0.20 · · ·
C dep appos · · · · 0.26 · · · · · · · · ·
C dep aux · · −0.27 · · · · · · · · · · ·
C dep case 0.22 · · · · · · · · · · · · ·
C dep compound · · 0.22 · 0.22 · · · · · · · · ·
C dep det −0.21 · · · · · · · · · · · · ·
C dep fixed · · · · · −0.21 · · · · · · · ·
C dep nmod 0.22 · · · · · · · · · · · · ·
C dep nsubj · · · · −0.20 · · · · · · · · ·
C dep nummod · · · · 0.26 · · · 0.20 · · · · ·
C dep obl · 0.20 · · · · · · · · · · · ·
C dep obl:tmod · −0.25 · · · · · · · · · · · ·
C dep punct · · · · 0.23 · · · · · · · · ·
C sub 2 · 0.22 · · · · · · · · · · · ·
C sub post · 0.27 · · · · · · · · · · · ·
C sub pre −0.22 −0.23 · · · · · · · · · · · ·
C sub prop · 0.22 · · · · · · · · · · · ·
C subj pre · · · · −0.27 · · · · · · · · ·
C ttr · · · · −0.24 · · · · · · 0.23 · ·
C ttr lemma · · 0.22 · −0.27 · · · · · · 0.22 · ·
C upos AUX −0.25 · −0.21 · −0.21 · · · · · · · · ·
C upos DET −0.23 · · · · · · · −0.22 · · · · ·
C upos NUM · · · · 0.26 · · · 0.21 · · · · ·
C upos PRON · · −0.21 · · · · · · · · · · ·
C upos PROPN · · 0.25 · · · · · · · · · · ·
C upos PUNCT · · · · 0.23 · · · · · · · · ·
C upos SYM · · · · · · · · · · 0.26 · · ·
C verb Past · · 0.28 · · · · · · · 0.23 · · ·
C verb Pres · · −0.20 · · · · · · · · · · ·
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judg std judg std judg std judg std judg std judg std judg std

C verb root perc · · · · −0.28 · · · · · · · · ·
E aux Fin · · · · −0.23 · · · · · · · · ·
E aux Inf · · · · · · · · · · −0.25 · · ·
E aux Pres −0.20 · · · · · · · −0.21 · · · · ·
E avg link - · · · · · · · · · · · 0.24 ·
E avg max depth 0.21 · 0.22 · · · · · · · · · 0.27 ·
E avg max link - · · · · · · · · · · · 0.28 ·
E avg sub chain - · · · · · · · · · −0.28 · · ·
E avg tok clause · · · · · · · · 0.20 · · · · ·
E avg verb edge −0.28 −0.21 · · · · · · · · · · · ·
E char tok · · · · · · −0.22 · · · · · · ·
E dep acl:relcl · · · · · · 0.21 · · · · · · ·
E dep advcl · · · · · · · · −0.20 · · · · ·
E dep advmod · · −0.23 · · · · · · · · · · ·
E dep amod · · −0.23 · · · · · · · · · · ·
E dep appos 0.28 · · · · · · · · 0.23 · · · ·
E dep aux · · · · · · · · · · −0.32 · · ·
E dep compound 0.20 · 0.27 · · · · · 0.22 · · · 0.21 ·
E dep det · · −0.30 · −0.33 · · · · · · · · ·
E dep mark · · · · · · · · · · −0.29 · · ·
E dep nmod 0.20 · · · · · · · · · · · · ·
E dep nsubj · · · · · · · · · · · · −0.21 ·
E dep nummod · · · · 0.27 · 0.23 · 0.21 · 0.25 · 0.22 ·
E dep obj · −0.22 · · · · · · · · · · · ·
E dep obl · · · · · · · · · · −0.27 · · ·
E dep parataxis · · · · · · 0.22 · · · · · · ·
E dep punct · · · · 0.22 · · · · · · · · ·
E dep root · · −0.33 · · · · · · · · · −0.33 ·
E lexical dens · · · · · · −0.29 · · · · · · ·
E max link - · · · · · · · · · · · 0.28 ·
E n tok · · 0.33 · · · · · · · · · 0.33 ·
E obj post · −0.23 · · · · · · · · · · · ·
E sub 2 · · · · · · −0.21 · · · −0.23 · · ·
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judg std judg std judg std judg std judg std judg std judg std

E sub post · · · · · · · · · · −0.25 · · ·
E subj pre −0.32 −0.23 · · · · · · · · · · · ·
E tok sent · · 0.33 · · · · · · · · · 0.33 ·
E ttr · · · · −0.22 · −0.21 · · · −0.23 · −0.20 ·
E ttr lemma · · · · −0.22 · · · · · −0.20 · · ·
E upos ADV −0.21 · · · · · · · · · · · · ·
E upos AUX · · · · −0.24 · · · · · · · · ·
E upos DET · · −0.30 · −0.33 · · · · · · · · ·
E upos NOUN · · · · −0.25 · · · · · · · · ·
E upos NUM · · 0.21 · 0.28 · 0.27 · · · 0.28 · 0.25 ·
E upos PART · · · · · · · · · · −0.23 · · ·
E upos PRON −0.22 · · · · · · · −0.21 · −0.24 · · ·
E upos PROPN · · · · · · · · · 0.24 · · · ·
E upos PUNCT · · · · 0.22 · · · · · · · · ·
E upos SYM · −0.23 · · · · 0.23 · · · 0.27 · 0.21 ·
E upos VERB · · · · · · · · −0.24 · −0.25 · · ·
E verb edge 2 · · · · · · · · · · −0.24 · · ·
E verb edge 3 −0.24 · · · · · · · · · · · · ·
E verb edge 6 · · · · · −0.21 · · · · · · · ·
E verb Fin · · · · 0.22 · · · · · · · · ·
E verb Ger · · · · · · · · −0.25 · · · · ·
E verb head sent · · · · −0.20 · · · −0.20 · · · · ·
E verb Inf · · · · −0.23 · · · · · −0.22 · · ·
E verb Pres −0.22 · · · · · · · · · · · · ·
E verb root perc −0.20 · · · · · · · · · · · · ·
E verb Sing+3 · · · · 0.23 · · · · · · · · ·



Appendix C

In this Appendix are reported the additional materials for Chapter 6.
Table C.1 shows the four Italian texts on which are based the analyses dis-

cussed in Chapter 6. As described in Section 6.2, the four texts are chosen to
represent different levels of arousal and valence. In particular, two of the selected
texts are chosen to have high arousal and negative values (Emotional text No. 1
and No. 2) as they provide a detailed and graphic description of medieval torture
practices, while the other two are chosen to have low arousal and neural valence
(Neutral text No. 1 and No. 2) and describe text types and writing styles. The
Table shows the texts in their Italian version and with an English translation.
For each text, the Table also reports the average sentence length, the average
word length for each sentence, and the valence and arousal of the texts.

Table C.2 shows the complete results of the correlation analysis between
Speech Features and Linguistic Features, while Table C.3 shows the complete
results of the correlation analysis between Electrodermal Activity Features and
Linguistic Features. In these Tables, for each pairwise correlation, each number
in the rows corresponds to the percentage of subjects for which the correlation
was statistically significant (p-value < 0.05) and had a correlation coefficient dif-
ferent from zero. The cells where no number is available indicate that there were
no subjects for whom that correlation was significant and different from zero.
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Stimuli

Table C.1: List of texts presented to the subjects as stimuli. The Table shows the
original Italian version of the texts with their corresponding English translation.
For each text is reported: its valence and arousal ratings, its average sentence
length, and the average words length per sentence.

Neutral text No. 1

Average sentence length: 37.88± 23.13; Average words length per sentence: 5.05± 0.56

Valence Rate: 0.30± 0.52; Arousal Rate: 1.31± 0.67

Italian: Il testo descrittivo ha lo scopo di informare il destinatario sulle caratteristiche (spaziali, tem-
porali, sensoriali ecc.) di un determinato referente (oggetti, ambienti, persone, situazioni ecc.).
A tal fine si ricorre opportunamente a un lessico ricco e preciso, a un’attenta selezione dei dati
e a un’ordinata struttura del discorso. La sintassi ha frasi brevi ed essenziali. In taluni casi
l’emittente può allegare anche le proprie valutazioni, opinioni o giudizi, al fine di stimolare le
emozioni del lettore: si passa cos̀ı da una descrizione oggettiva e distaccata a una descrizione
soggettiva e valutativa. Tipici testi descrittivi sono, per esempio, le guide turistiche o le voci
di enciclopedia. Descrivere un oggetto è un’operazione apparentemente semplice, che richiede,
però, molta precisione nella selezione dei dati, nella disposizione delle osservazioni e nella scelta
del lessico. Il testo narrativo presenta al lettore la dinamica di svolgimento di una determinata
vicenda o serie di vicende, reali o immaginarie. Esso risponde a una domanda elementare, “che
cosa è successo?”, in vista di obiettivi o scopi differenti: per divertire, nel caso di un romanzo o
racconto di intrattenimento; per trasmettere idee o valori, nel caso di un testo a forte impegno
ideologico; per informare, nel caso di un articolo di cronaca, di un rapporto ufficiale al termine
di una missione o dopo un incidente. Quando non persegue particolari finalità artistiche, la
narrazione espone gli eventi secondo l’ordine cronologico della loro successione, dall’inizio alla
conclusione (fabula); tuttavia, per colpire le emozioni del lettore, si possono disporre i fatti in
un intreccio che non corrisponde alla successione logica e temporale, con fenomeni di suspense o
flashback.

English: The descriptive text aims to inform the recipient about the characteristics (spatial, temporal,
sensory, etc.) of a given referent (objects, environments, people, situations, etc.). To this end,
rich and precise vocabulary, careful selection of data, and orderly discourse structure are used
appropriately. Syntax has short and essential sentences. In some cases the issuer may also attach
his or her own evaluations, opinions or judgments, in order to stimulate the reader’s emotions:
thus moving from an objective and detached description to a subjective and evaluative one.
Typical descriptive texts are, for example, travel guides or encyclopedia entries. Describing an
object is a seemingly simple task, which requires, however, much precision in the selection of
data, the arrangement of observations and the choice of vocabulary. Narrative text presents the
reader with the unfolding dynamics of a given event or series of events, real or imaginary. It
answers an elementary question, “what happened?” in view of different objectives or purposes:
to entertain, in the case of a novel or entertainment story; to convey ideas or values, in the
case of a text with a strong ideological commitment; to inform, in the case of a news article, an
official report at the end of a mission or after an incident. When not pursuing any particular
artistic purpose, the narrative sets out events in the chronological order of their succession, from
beginning to conclusion (fabula); however, in order to strike the reader’s emotions, facts may be
arranged in a plot that does not correspond to logical and temporal succession, with suspense
or flashback phenomena.
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continued from previous page

Neutral text No. 2

Average sentence length: 22.31± 7.33; Average words length per sentence: 4.85± 0.61

Valence Rate: 0.25± 0.55; Arousal Rate: 1.39± 0.77

Italian: Scrivere un testo argomentativo significa esporre la propria idea, la propria tesi, in merito ad
un determinato tema, basandola su dati certi e su un ragionamento logico dichiarato. Un testo
argomentativo generalmente si pone l’obbiettivo di convincere chi lo legge della validità della
tesi esposta. Prima di esporre la propria tesi, in un buon testo argomentativo, è bene introdurre
il lettore al tema che si tratterà. Il nostro inizio, quindi, conterrà una descrizione generale
dell’argomento, in cui vengono presentati alcuni dettagli e alcuni aspetti che possono essere
utili ad avvalorare la nostra tesi. Questo primo passo è utile per far sentire a proprio agio il
lettore durante le lettura del testo argomentativo. Per prima cosa esponi la tua tesi, chiarendo
in modo dettagliato la tua opinione. Evita i periodi eccessivamente lunghi e complessi, disponi
le frasi in ottica causa-effetto. Seguendo le buone norme del giornalismo, verifica che il tuo
testo funziona se risponde alle domande chi/dove/quando/come/perché. In seguito, esponi tutti
i dati e gli argomenti che sono a tuo favore, sottolineando il legame con la tua tesi. Accertati
della veridicità dei dati e delle affermazioni che riporterai, ed esponi gli argomenti in modo tale
che la logicità del tuo ragionamento sia chiara al lettore. In una fase successiva, il tuo testo
argomentativo deve raccontare le idee e le opinioni opposte alla tua. Anche in questo caso devi
essere preciso e dettagliato nell’esposizione. La validità della tua tesi deve basarsi su dati certi,
non su un inganno intellettuale. Per discutere degli argomenti che contrastano la tua tesi e
sostengono le tesi opposte, usa la tecnica del contrasto. Scomponi le tesi contrarie in più punti
e confutali uno dopo l’altro, contrapponendogli i dati in tuo favore. Il ragionamento logico sarà
cos̀ı valorizzato.

English: To write an argumentative text means to state one’s idea, one’s thesis, about a given topic,
basing it on certain data and stated logical reasoning. An argumentative text generally aims to
convince the reader of the validity of the thesis stated. Before stating one’s thesis, in a good
argumentative text, it is a good idea to introduce the reader to the topic that will be discussed.
Our beginning, therefore, will contain a general description of the topic, in which some details
and some aspects are presented that may be useful to substantiate our thesis. This first step is
useful to make the reader feel comfortable while reading the argumentative text. First, state your
thesis, clarifying your opinion in detail. Avoid excessively long and complex periods, arrange
sentences in a cause-and-effect perspective. Following the good rules of journalism, verify that
your text works if it answers the questions who/where/when/how/why. Next, lay out all the
data and arguments that are in your favor, emphasizing the link to your thesis. Make sure that
the data and statements you report are true, and state the arguments in such a way that the
logicality of your argument is clear to the reader. At a later stage, your argumentative text must
recount the ideas and opinions opposed to yours. Again, you must be precise and detailed in
your exposition. The validity of your argument must be based on hard data, not intellectual
deception. To discuss arguments that counter your thesis and support opposing theses, use the
contrast technique. Break down the opposing theses into several points and refute them one
after another, countering them with data in your favor. Logical reasoning will thus be enhanced.
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Emotional text No. 1

Average sentence length: 21.04± 10.37; Average words length per sentence: 4.94± 0.59

Valence Rate: −1.31± 0.79; Arousal Rate: 3.26± 1.17

Italian: Una delle condanne a morte più crudeli mai esistite, ed ancora in vigore in alcune parti del
mondo, è certamente la lapidazione. Questa tecnica di esecuzione è praticata principalmente
nei paesi islamici ed è riservata agli adulteri di entrambi i sessi. La vittima viene avvolta in un
sudario e seppellita parzialmente. Dopo di che le vengono tirati addosso dei sassi che cominciano a
distruggerne la carne e le ossa, fino al sopraggiungere della morte. Le regole della lapidazione sono
agghiaccianti ed assurde. Vengono scelti solo i sassi abbastanza piccoli da causare una morte il più
lenta possibile. La pratica del rogo invece, è una forma di esecuzione applicata, nei tempi passati,
per punire coloro che venivano giudicati colpevoli di eresia. In Sud-Africa, nei tempi recenti, un
copertone viene riempieto di benzina ed infilato a forza attorno al busto della vittima, in maniera
tale da bloccarne anche le braccia. Dopo di che viene appiccato il fuoco. La morte sopraggiunge
dopo circa 20 minuti. Venti minuti nei quali il condannato a morte è costretto a subire ustioni
tremende che, poco per volta, ne distruggono il corpo tramutandolo in un ammasso di carne
carbonizzata e gomma fusa. Una tecnica di tortura estremamente dolorosa. Una condanna a
morte disumana che, tristemente,è attuata ancora oggi. Infine, uno dei metodi di esecuzione più
dolorosi, crudeli e sanguinolenti della storia è; stato certamente l’Aquila di Sangue. Una forma
di esecuzione leggendaria, tipica delle popolazioni antiche del nord Europa. Il condannato veniva
spogliato ed immobilizzato su un altare in posizione prona. Il carnefice, armato di un affilato
coltello, praticava un’incisione molto profonda lungo la sua schiena. Nonostante questo primo
passo della tortura fosse già; di per se estremamente doloroso, non era che l’inizio. L’aguzzino
infilava a forza le mani all’interno dell’incisione praticata e, con violenza, spezzava le costole
della vittima e le faceva fuoriuscire della schiena, in modo tale che ricordassero un paio di ali.
Dopo di che, sempre con le mani, estraeva i polmoni dell’agonizzante condannato e li posizionava
sulle sue spalle. La vittima moriva entro poco tempo per soffocamento circondata dal suo stesso
sangue, tra i più atroci ed inimmaginabili dolori.

English: One of the cruelest death sentences ever, and still in force in some parts of the world, is certainly
stoning. This execution technique is practiced mainly in Islamic countries and is reserved for
adulterers of both sexes. The victim is wrapped in a shroud and partially buried. After that,
stones are thrown at her that begin to destroy her flesh and bones until death occurs. The rules
of stoning are chilling and absurd. Only stones small enough to cause the slowest possible death
are chosen. The practice of burning at the stake, on the other hand, is a form of execution applied
in earlier times to punish those found guilty of heresy. In South Africa, in recent times, a tire
is filled with gasoline and forced around the victim’s torso in such a way that the victim’s arms
are also blocked. After that, a fire is set. Death occurs after about 20 minutes. Twenty minutes
in which the condemned man is forced to suffer tremendous burns that, little by little, destroy
his body, turning it into a pile of charred flesh and melted rubber. An extremely painful torture
technique. An inhumane death sentence that, sadly, is still carried out today. Finally, one of the
most painful, cruel and bloody methods of execution in history is; certainly was the Blood Eagle.
A legendary form of execution, typical of the ancient peoples of northern Europe. The condemned
person was stripped and immobilized on an altar in a prone position. The executioner, armed
with a sharp knife, would make a very deep incision along his back. Although this first step of
torture was already; in itself extremely painful, it was only the beginning. The torturer would
forcefully thrust his hands inside the made incision and violently break the victim’s ribs and
spill them out of his back in such a way that they resembled a pair of wings. After that, again
with his hands, he would extract the lungs of the agonizing condemned man and place them on
his shoulders. The victim would die within a short time from suffocation surrounded by his own
blood, amid the most excruciating and unimaginable pains.
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Emotional text No. 2

Average sentence length: 21.57± 11.41; Average words length per sentence: 4.81± 0.52

Valence Rate: −1.19± 0.84; Arousal Rate: 3.24± 1.09

Italian: La divisione del corpo è un metodo di esecuzione veramente raccapricciante. Quanto di più
doloroso e crudele voi possiate immaginare. La sega era utilizzata quando si voleva dare una
morte lenta alla vittima, ed allo stesso tempo la si voleva privare della sua dignità. Il condannato
veniva appeso a testa in giù per le caviglie. Le sue mani erano saldamente bloccate affinché non
potesse in alcun modo disturbare il lavoro dei suoi aguzzini. Il loro compito era tanto semplice
quanto sadico. Una grossa sega veniva posizionata sull’inguine del condannato che veniva diviso
in due nella maniera più lenta possibile. La morte sopraggiungeva spesso dopo molto tempo. Il
posizionamento a testa in giù della vittima faceva si che tutto il sangue scorresse verso il cervello,
amplificando la sensazione di dolore e ritardando la morte per dissanguamento. Una tortura
violentissima, che portava il condannato a trascorrere gli ultimi attimi della sua vita urlando di
dolore e pregando i suoi carnefici per una morte più rapida. La morte per scuoiamento raggiunge
l’apice del sadismo umano. Oltre al compito di scuoiare il condannato a morte, premurandosi di
tenerlo in vita il più a lungo possibile, il boia doveva anche preservare la pelle della sua vittima in
modo da poterla appendere per le vie della città come monito alla popolazione. Questa tecnica
di esecuzione era molto diffusa in tutto il mondo e le varianti erano molte. In Cina , si toglieva
la pelle solamente dal volto della vittima. In Persia, tutto il corpo veniva spellato, portandone la
carne viva a vista. Immaginate il dolore ed il terrore di un condannato allo scuoiamento mentre
il suo aguzzino, lentamente e con perizia, gli asportava la pelle, pezzo dopo pezzo. Immaginate di
vedere parti del vostro corpo che una dopo l’ altra vengono posizionate su un tavolo davanti a voi
mentre vi tramutate lentamente in una maschera di sangue e carne. Normalmente la morte per
dissanguamento sopraggiungeva dopo qualche ora, ma se il boia era esperto riusciva a compiere
il lavoro senza provocare eccessive perdite di sangue. In questo caso l’agonia era notevolmente
prolungata ed era lo shock ad uccidere il condannato.

English: Body division is a truly gruesome method of execution. As painful and cruel as you can imagine.
The saw was used when you wanted to give a slow death to the victim, and at the same time you
wanted to deprive him of his dignity. The condemned man was hung upside down by his ankles.
His hands were firmly locked so that he could in no way disturb the work of his tormentors.
Their task was as simple as it was sadistic. A large saw was placed on the condemned man’s
groin, which was split in two in the slowest way possible. Death often came after a long time.
Positioning the victim upside down caused all the blood to flow to the brain, amplifying the
sensation of pain and delaying death by exsanguination. A very violent torture, which led the
condemned person to spend the last moments of his life screaming in pain and begging his
executioners for a quicker death. Death by flaying reaches the height of human sadism. In
addition to the task of flaying the condemned man to death, taking care to keep him alive as
long as possible, the executioner also had to preserve the skin of his victim so that he could
hang it on the streets of the city as a warning to the populace. This execution technique was
widespread throughout the world and there were many variations. In China, skin was removed
only from the victim’s face. In Persia, the whole body was skinned, bringing the living flesh into
view. Imagine the pain and terror of a condemned person being skinned as his torturer slowly
and expertly removed his skin, piece by piece. Imagine seeing parts of your body being placed
one after ’the other on a table in front of you as you slowly morphed into a mask of blood and
flesh. Normally death by exsanguination would come after a few hours, but if the executioner
was skilled he could get the job done without causing excessive blood loss. In this case the agony
was considerably prolonged and it was the shock that killed the condemned man.
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Table C.2: Results of correlation analysis between Speech Features and Linguistic Features. For each pairwise correlation, each
number in the rows corresponds to the percentage of subjects for which the correlation was statistically significant (p-value < 0.05)
and had a correlation coefficient different from zero. The cells where no number is available indicate that there were no subjects
for whom that correlation was significant and different from zero.

speech features

linguistic features F0 F1 F2 F3
mean

duration

signal

duration

raw text properties

average clause length 33 (-0.103) 12 (-0.021) 3 (0.04) 45 (-0.06) 55 (0.004) 100 (-0.03)

sentence length 24 (-0.144) 9 (-0.015) 3 (0.43) 58 (0.033) 73 (0.054) 100 (0.075)

lexical density

lexical density · · · 12 (-0.027) 18 (0.007) 100 (-0.017)

morpho-syntactic information

auxiliary form: finite 30 (-0.095) 9 (-0.062) · 42 (-0.073) 64 (-0.011) 100 (-0.026)

auxiliary form: infinite 30 (-0.087) 9 (-0.014) · 42 (-0.07) 55 (-0.009) 100 (-0.029)

auxiliary mood: indicative 33 (-0.04) 9 (-0.052) · 39 (-0.027) 52 (-0.025) 100 (-0.014)

auxiliary mood: subjunctive 30 (-0.118) 9 (-0.019) · 36 (-0.065) 58 (-0.016) 100 (-0.028)

auxiliary person: 3rd plural 30 (-0.039) 12 (-0.05) 3 (-0.044) 45 (-0.031) 58 (-0.01) 100 (-0.016)

auxiliary person: 2nd singular 30 (-0.038) 12 (-0.05) 3 (-0.045) 45 (-0.031) 58 (-0.012) 100 (-0.013)

auxiliary person: 3rd singular 30 (-0.039) 12 (-0.05) 3 (-0.046) 45 (-0.031) 58 (-0.003) 100 (-0.008)

auxiliary tense: future 30 (-0.059) 9 (-0.05) 3 (-0.047) 39 (-0.027) 52 (-0.011) 100 (-0.014)

auxiliary tense: imperative 30 (-0.035) 9 (-0.051) 3 (-0.047) 39 (-0.037) 52 (-0.011) 100 (-0.011)

auxiliary tense: present 30 (-0.028) 9 (-0.016) · 42 (-0.02) 58 (-0.01) 100 (-0.011)

verb from: finite 21 (0.004) 6 (-0.059) · 36 (-0.034) 45 (-0.012) 100 (-0.012)

verb form: gerundive 18 (0.032) 6 (-0.055) · 33 (-0.019) 45 (-0.019) 100 (-0.021)

verb form: infinite 24 (-0.007) 9 (-0.016) · 36 (-0.02) 52 (-0.002) 100 (-0.006)

verb form: participe 18 (-0.088) 6 (-0.055) · 33 (-0.049) 42 (0.001) 100 (-0.025)

verb mood: imperative · · · 18 (-0.017) 27 (0.002) 100 (-0.008)

verb mood: indicative · · · 24 (-0.024) 36 (0.01) 100 (-0.016)

continued on next page
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speech features

linguistic features F0 F1 F2 F3
mean

duration

signal

duration

verb mood: subjunctive · · · 12 (-0.057) 27 (0.003) 100 (-0.018)

verb person: 2nd plural 30 (-0.105) 9 (-0.052) · 36 (-0.081) 55 (-0.02) 100 (-0.031)

verb person: 3rd plural 30 (-0.094) 9 (-0.052) 3 (0.049) 36 (-0.081) 55 (-0.02) 100 (-0.031)

verb person: 2nd singular 27 (-0.102) 9 (-0.061) · 36 (-0.062) 52 (-0.011) 100 (-0.025)

verb person: 3rd singular 30 (-0.094) 9 (-0.016) 3 (0.049) 36 (-0.064) 52 (-0.004) 100 (-0.024)

verb tense: future · · · 30 (-0.029) 39 (0.006) 100 (-0.021)

verb tense: imperative 12 (-0.013) · · 27 (-0.032) 42 (-0.01) 100 (-0.016)

verb tense: past 12 (-0.014) 6 (0.192) · 27 (-0.026) 42 (0.032) 100 (-0.007)

verb tense: present 6 (-0.105) · · 30 (-0.017) 42 (-0.011) 100 (-0.026)

adjective · · · 6 (-0.066) · 18 (0.102)

adjective (possessive) · · · 9 (-0.021) 12 (0.004) 88 (-0.019)

adverb · · · 6 (-0.01) 9 (-0.017) 70 (-0.036)

adverb (negation) · · · 9 (-0.022) 12 (-0.022) 79 (-0.017)

conjunction (coordinative) · · · 6 (-0.067) 9 (-0.018) 79 (-0.014)

conjunction (subordinative) · · · 6 (-0.008) 12 (0.006) 79 (-0.03)

determiner (demonstrative) · · · 6 (-0.067) · 3 (0.075)

determiner (indefinite) · · · 6 (-0.006) · 39 (-0.006)

preposition · · · 6 (-0.005) 9 (-0.017) 61 (-0.006)

punctuation (balanced) · · · 6 (-0.007) · 12 (0.042)

punctuation (clause boundary) · · · 9 (-0.022) 12 (0.005) 79 (-0.024)

punctuation (comma, hyphen) · · · 12 (-0.029) 18 (0.006) 100 (-0.016)

punctuation (sentence boundary) · · · 9 (-0.022) 12 (-0.022) 79 (-0.022)

number (cardinal) · · · 6 (-0.006) · ·
number (ordinal) · · · 6 (-0.005) 3 (-0.069) 45 (-0.019)

pronoun (clitic) · · · 9 (-0.063) 15 (-0.006) 91 (-0.014)

pronoun (demonstrative) · · · 12 (-0.059) 18 (-0.014) 100 (-0.015)

pronoun (personal) · · · 6 (-0.066) · 18 (0.004)

pronoun (indefinite) · · · 9 (-0.02) 12 (-0.02) 79 (-0.027)

pronoun (possessive) · · · 6 (-0.068) 12 (-0.021) 79 (-0.019)

pronoun (interrogative) · · · 9 (-0.062) 15 (-0.028) 91 (-0.017)

pronoun (relative) · · · 6 (-0.066) 3 (-0.069) 45 (0.015)

continued on next page
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speech features

linguistic features F0 F1 F2 F3
mean

duration

signal

duration

article (determinative) · · · 12 (-0.029) 18 (0.007) 100 (-0.02)

article (indeterminative) · · · 18 (-0.015) 30 (0.01) 100 (-0.03)

noun (common) · · · 6 (-0.004) · 36 (-0.006)

noun (proper) · · · 6 (-0.008) 12 (0.005) 85 (-0.023)

predeterminer · · · 9 (-0.023) 12 (-0.022) 85 (-0.029)

verb (main) · · · 12 (-0.058) 21 (-0.001) 100 (0.019)

verb (auxiliary) · · · 9 (-0.024) 12 (-0.022) 85 (-0.037)

verb (modal) · · · 6 (-0.006) · 3 (0.076)

verbal predicate structure

verb arity (average) 58 (-0.052) 36 (-0.003) 21 (0.001) 73 (-0.033) 97 (-0.023) 100 (-0.01)

verb arity (0 dependency links) 58 (-0.077) 30 (-0.052) 21 (0.015) 73 (-0.054) 97 (-0.039) 100 (-0.029)

verb arity (1 dependency link) 58 (-0.039) 30 (0.005) 18 (0.006) 73 (-0.033) 97 (-0.02) 100 (-0.011)

verb arity (2 dependency links) 61 (-0.076) 30 (-0.065) 21 (0.015) 73 (-0.054) 97 (-0.043) 100 (-0.033)

verb arity (3 dependency links) 55 (-0.075) 30 (-0.037) 21 (0.016) 73 (-0.047) 97 (-0.034) 100 (-0.021)

verb arity (4 dependency links) 61 (-0.069) 33 (-0.053) 21 (0.015) 73 (-0.049) 97 (-0.04) 100 (-0.026)

verb arity (5 dependency links) 55 (-0.039) 30 (0.003) 15 (-0.006) 73 (-0.034) 97 (-0.021) 100 (-0.012)

verb arity (6 dependency links) 55 (-0.069) 30 (-0.04) 21 (0.032) 73 (-0.044) 97 (-0.032) 100 (-0.022)

verbal head per sentence 30 (-0.027) 12 (-0.048) 3 (-0.044) 45 (-0.022) 58 (-0.01) 100 (-0.016)

verbal roots percentage 33 (-0.039) 12 (-0.024) 3 (0.04) 45 (-0.022) 55 (-0.003) 100 (-0.016)

syntactic relations (distributions)

clausal modifier of noun 39 (-0.039) 15 (-0.034) 9 (0.024) 58 (-0.033) 88 (-0.018) 100 (-0.013)

relative clause modifier 42 (-0.033) 15 (-0.052) 9 (-0.053) 67 (-0.037) 88 (-0.027) 100 (-0.018)

adverbial clause modifier 36 (-0.027) 18 (0.007) 9 (0.023) 61 (-0.042) 82 (-0.014) 100 (-0.008)

adverbial modifier 39 (-0.039) 15 (-0.033) 9 (-0.054) 64 (-0.031) 88 (-0.02) 100 (-0.015)

adjectival modifier 39 (-0.039) 15 (-0.005) 12 (-0.056) 67 (-0.027) 88 (-0.015) 100 (-0.011)

appositional modifier 33 (-0.039) 12 (-0.024) 3 (0.042) 42 (-0.028) 73 (-0.016) 100 (-0.019)

auxiliary 33 (-0.038) 12 (-0.024) 3 (0.045) 45 (-0.015) 61 (-0.007) 100 (-0.015)

passive auxiliary 36 (-0.057) 18 (-0.009) 9 (0.023) 64 (-0.043) 88 (-0.019) 100 (-0.014)

case marking 42 (-0.033) 15 (-0.053) 9 (-0.053) 58 (-0.035) 88 (-0.027) 100 (-0.019)

coordinating conjunction 39 (-0.083) 21 (-0.002) 9 (0.023) 61 (-0.065) 82 (-0.035) 100 (-0.029)

clausal complement 39 (-0.031) 15 (-0.032) 9 (-0.055) 64 (-0.031) 91 (-0.021) 100 (-0.015)

continued on next page
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speech features

linguistic features F0 F1 F2 F3
mean

duration

signal

duration

compound 33 (-0.038) 12 (-0.048) 3 (0.042) 42 (-0.036) 73 (-0.021) 100 (-0.022)

conjunct 39 (-0.038) 15 (0.066) 12 (0.125) 64 (-0.047) 85 (-0.017) 100 (-0.001)

copula 39 (-0.031) 15 (-0.052) 9 (-0.053) 67 (-0.032) 88 (-0.027) 100 (-0.019)

clausal subject 42 (-0.033) 15 (-0.053) 9 (-0.053) 61 (-0.031) 88 (-0.027) 100 (-0.019)

determiner 33 (-0.038) 12 (-0.048) 3 (0.044) 45 (-0.028) 64 (-0.019) 100 (-0.022)

possessive determiner 33 (-0.037) 15 (-0.03) 9 (0.024) 55 (-0.033) 76 (-0.02) 100 (-0.016)

predeterminer 36 (-0.057) 18 (-0.032) 9 (0.023) 64 (-0.043) 88 (-0.023) 100 (-0.018)

expletive 33 (-0.04) 12 (-0.047) 3 (0.04) 42 (-0.036) 55 (-0.009) 100 (-0.022)

reflexive pronoun in reflexive passive 33 (-0.039) 12 (-0.024) 3 (0.043) 45 (-0.022) 73 (-0.016) 100 (-0.018)

fixed multiword expression 39 (-0.03) 18 (-0.015) 9 (0.023) 64 (-0.043) 88 (-0.013) 100 (-0.012)

names 36 (-0.048) 18 (-0.033) 9 (0.023) 64 (-0.043) 88 (-0.025) 100 (-0.02)

indirect object 36 (-0.037) 12 (-0.034) 6 (0.012) 55 (-0.039) 82 (-0.034) 100 (-0.028)

marker 33 (-0.039) 12 (-0.051) 3 (0.043) 45 (-0.031) 73 (-0.016) 100 (-0.015)

nominal modifier 36 (-0.047) 12 (-0.029) 6 (-0.0) 58 (-0.036) 82 (-0.019) 100 (-0.017)

nominal subject 33 (-0.04) 12 (-0.028) 3 (0.042) 42 (-0.031) 55 (0.004) 100 (-0.013)

passive nominal subject 36 (-0.028) 21 (-0.018) 9 (-0.054) 55 (-0.021) 82 (-0.022) 100 (-0.015)

numeric modifier 33 (-0.1) 12 (-0.05) 9 (0.025) 52 (-0.061) 73 (-0.03) 100 (-0.032)

object 33 (-0.038) 12 (-0.024) 3 (0.043) 42 (-0.028) 64 (-0.014) 100 (-0.018)

oblique nominal 33 (-0.039) 15 (-0.052) 6 (0.002) 45 (-0.028) 73 (-0.02) 100 (-0.023)

agent modifier 39 (-0.084) 15 (-0.031) 9 (0.023) 61 (-0.059) 88 (-0.039) 100 (-0.03)

punctuation 33 (-0.04) 12 (-0.023) 3 (0.044) 45 (-0.021) 61 (-0.008) 100 (-0.019)

root 39 (-0.077) 15 (-0.031) 9 (0.023) 61 (-0.059) 88 (-0.039) 100 (-0.03)

open clausal complement 39 (-0.094) 15 (-0.031) 9 (0.023) 67 (-0.064) 88 (-0.044) 100 (-0.033)

global and local parsed tree structure

dependency link: avg length 33 (-0.038) 12 (-0.024) 3 (0.04) 45 (-0.015) 55 (-0.002) 100 (-0.016)

parsed tree: avg max depth 33 (-0.039) 12 (-0.05) 3 (0.039) 45 (-0.03) 55 (-0.002) 100 (-0.016)

dependency link: avg max length 33 (-0.04) 12 (-0.05) 3 (0.04) 45 (-0.021) 55 (-0.0) 100 (-0.015)

prepositional chain: avg length 45 (-0.066) 30 (-0.03) 15 (0.017) 70 (-0.054) 91 (-0.036) 100 (-0.022)

dependency links: max length 33 (-0.052) 12 (-0.058) 3 (0.04) 45 (-0.032) 55 (-0.01) 100 (-0.02)

prepositional chain: number 45 (-0.036) 27 (0.009) 12 (0.01) 67 (-0.043) 91 (-0.026) 100 (-0.017)

post-verbal object 39 (-0.039) 27 (0.014) 12 (0.01) 67 (-0.038) 91 (-0.014) 100 (-0.012)

continued on next page
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speech features

linguistic features F0 F1 F2 F3
mean

duration

signal

duration

pre-verbal object 42 (-0.038) 24 (0.005) 12 (0.017) 64 (-0.033) 85 (-0.023) 100 (-0.021)

prepositional chain: 1 element 48 (-0.036) 24 (0.002) 12 (-0.057) 70 (-0.047) 94 (-0.021) 100 (-0.017)

prepositional chain: 2 elements 45 (-0.027) 27 (-0.042) 12 (-0.057) 70 (-0.047) 91 (-0.028) 100 (-0.018)

prepositional chain: 4 elements 48 (-0.044) 24 (-0.024) 12 (-0.056) 70 (-0.049) 94 (-0.029) 100 (-0.022)

post-verbal subject 42 (-0.09) 24 (-0.066) 9 (0.023) 64 (-0.066) 85 (-0.036) 100 (-0.033)

pre-verbal subject 42 (-0.075) 21 (-0.084) 9 (0.023) 64 (-0.059) 85 (-0.028) 100 (-0.026)

use of subordination

subordinate chains: avg length 48 (-0.039) 27 (-0.031) 15 (-0.007) 70 (-0.039) 97 (-0.029) 100 (-0.019)

principal proposition distribution 48 (-0.046) 27 (-0.057) 15 (-0.052) 70 (-0.049) 94 (-0.029) 100 (-0.026)

subordinate: embedded 1 48 (-0.031) 24 (0.002) 12 (-0.057) 70 (-0.042) 94 (-0.022) 100 (-0.014)

subordinate: embedded 2 48 (-0.04) 27 (-0.032) 15 (-0.053) 70 (-0.048) 94 (-0.027) 100 (-0.02)

subordinate: embedded 3 52 (-0.033) 24 (0.002) 12 (-0.057) 70 (-0.042) 94 (-0.021) 100 (-0.014)

subordinate: embedded 4 52 (-0.046) 24 (-0.023) 12 (0.002) 70 (-0.038) 94 (-0.021) 100 (-0.014)

subordinate: embedded 5 52 (-0.046) 24 (-0.044) 12 (-0.057) 70 (-0.056) 94 (-0.034) 100 (-0.027)

post-verbal subordinate 55 (-0.04) 30 (-0.021) 18 (-0.033) 70 (-0.043) 97 (-0.029) 100 (-0.016)

pre-verbal subordinate 48 (-0.032) 30 (-0.032) 15 (-0.052) 70 (-0.043) 97 (-0.029) 100 (-0.019)

subordinate proposition distribution 48 (-0.032) 27 (-0.032) 15 (-0.052) 70 (-0.047) 97 (-0.032) 100 (-0.019)
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Correlations between Electrodermal Activity Features and Linguistic Fea-

tures

Table C.3: Results of correlation analysis between Electrodermal Activity Features and Linguistic Features. For each pairwise
correlation, each number in the rows corresponds to the percentage of subjects for which the correlation was statistically significant
(p-value < 0.05) and had a correlation coefficient different from zero. The cells where no number is available indicate that there
were no subjects for whom that correlation was significant and different from zero.

electrodermal activity features

phasic component tonic component

linguistic features
eda

symp

max

pks

no

pks

sum

pks

mean

ph

std

ph

max

ton

mean

ton

std

ton

raw text properties

average clause length 3 (0.047) 6 (0.278) 21 (0.015) 27 (0.086) 3 (-0.062) 39 (0.017) 3 (0.062) 3 (0.062) 39 (-0.025)

sentence length 3 (-0.508) 12 (0.166) 39 (0.062) 52 (0.051) 3 (-0.504) 64 (-0.006) · · 52 (0.0)

lexical density

lexical density · · · · · 3 (0.064) · · 3 (0.066)

morpho-syntactic information

auxiliary form: finite · 6 (0.058) 21 (0.017) 30 (0.029) 3 (-0.064) 42 (-0.019) 3 (0.065) 3 (0.064) 36 (-0.027)

auxiliary form: infinite · 6 (0.05) 18 (0.026) 30 (0.024) 3 (-0.063) 39 (-0.028) 3 (0.064) 3 (0.063) 36 (-0.018)

auxiliary mood: indicative · 6 (0.049) 15 (0.022) 24 (0.001) 3 (-0.063) 36 (-0.012) 3 (0.064) 3 (0.063) 33 (-0.013)

auxiliary mood: subjunctive · 6 (0.056) 18 (0.028) 21 (0.029) 3 (-0.061) 30 (-0.004) 3 (0.063) 3 (0.062) 33 (-0.011)

auxiliary person: 3rd plural 3 (-0.057) 3 (0.052) 21 (-0.0) 30 (0.013) 3 (-0.066) 42 (-0.037) 3 (0.066) 3 (0.065) 33 (-0.035)

auxiliary person: 2nd singular 3 (-0.056) 6 (0.049) 21 (0.015) 30 (0.013) 3 (-0.064) 42 (-0.03) 3 (0.064) 3 (0.063) 33 (-0.035)

auxiliary person: 3rd singular 3 (-0.056) 6 (0.055) 21 (0.037) 30 (0.013) 3 (-0.064) 42 (-0.019) 3 (0.065) 3 (0.063) 33 (-0.021)

auxiliary tense: future · 3 (0.063) 12 (0.012) 21 (0.029) 3 (-0.06) 24 (-0.004) 3 (0.061) 3 (0.059) 33 (-0.02)

auxiliary tense: imperative · 6 (0.053) 12 (0.014) 21 (0.009) 3 (-0.06) 24 (0.009) 3 (0.061) 3 (0.06) 30 (-0.006)

auxiliary tense: present · 6 (0.054) 18 (0.01) 27 (-0.002) 3 (-0.063) 36 (-0.003) 3 (0.064) 3 (0.063) 36 (-0.006)

verb from: finite · 3 (0.058) 12 (0.011) 12 (0.028) · 15 (-0.001) · · 21 (-0.016)

verb form: gerundive · · 6 (0.064) 3 (0.068) · 9 (0.016) · · 18 (0.006)

verb form: infinite · 3 (0.063) 12 (0.038) 18 (0.023) 3 (-0.061) 27 (-0.002) 3 (0.064) 3 (0.063) 27 (0.014)

continued on next page
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verb form: participe · · 9 (0.029) 6 (0.075) · 9 (0.067) · · 18 (0.002)

verb mood: imperative · · · · · 3 (0.064) · · 3 (0.066)

verb mood: indicative · · · · · 6 (0.067) · · 12 (0.007)

verb mood: subjunctive · · · · · 6 (0.057) · · ·
verb person: 2nd plural · 6 (0.059) 18 (0.011) 21 (0.028) 3 (-0.061) 30 (-0.015) 3 (0.064) 3 (0.063) 33 (-0.011)

verb person: 3rd plural · 6 (0.06) 24 (0.026) 21 (0.024) 6 (-0.285) 30 (-0.014) 3 (0.064) 3 (0.063) 33 (-0.021)

verb person: 2nd singular · 3 (0.061) 12 (0.004) 18 (0.04) 3 (-0.061) 27 (0.015) 3 (0.063) 3 (0.062) 27 (-0.015)

verb person: 3rd singular · 6 (0.054) 21 (0.035) 21 (0.027) 6 (-0.285) 30 (-0.017) 3 (0.065) 3 (0.064) 30 (-0.018)

verb tense: future · · · · · 6 (0.067) · · 12 (0.007)

verb tense: imperative · · 3 (0.064) · · 12 (0.001) · · 18 (-0.01)

verb tense: past · · 3 (0.062) 3 (0.063) · 6 (0.068) · · 15 (0.115)

verb tense: present · · 3 (0.067) · · 15 (0.017) · · 21 (-0.021)

adjective · · · · · · · · ·
adjective (possessive) · · · · · · · · ·
adverb · · · · · · · · ·
adverb (negation) · · · · · · · · ·
conjunction (coordinative) · · · · · · · · ·
conjunction (subordinative) · · · · · · · · ·
determiner (demonstrative) · · · · · · · · ·
determiner (indefinite) · · · · · · · · ·
preposition · · · · · · · · ·
punctuation (balanced) · · · · · · · · ·
punctuation (clause boundary) · · · · · · · · ·
punctuation (comma, hyphen) · · · · · 6 (0.066) · · 3 (0.069)

punctuation (sentence boundary) · · · · · · · · ·
number (cardinal) · · · · · · · · ·
number (ordinal) · · · · · · · · ·
pronoun (clitic) · · · · · · · · ·
pronoun (demonstrative) · · · · · 6 (0.066) · · 3 (0.069)

pronoun (personal) · · · · · · · · ·
continued on next page
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pronoun (indefinite) · · · · · · · · ·
pronoun (possessive) · · · · · · · · ·
pronoun (interrogative) · · · · · · · · ·
pronoun (relative) · · · · · · · · ·
article (determinative) · · · · · 6 (0.065) · · ·
article (indeterminative) · · · · · 6 (0.058) · · 9 (0.028)

noun (common) · · · · · · · · ·
noun (proper) · · · · · · · · ·
predeterminer · · · · · · · · ·
verb (main) · · · · · 6 (0.064) · · 6 (0.066)

verb (auxiliary) · · · · · · · · ·
verb (modal) · · · · · · · · ·

verbal predicate structure

verb arity (average) 18 (0.002) 48 (0.0) 70 (-0.01) 64 (-0.011) 27 (-0.017) 82 (-0.014) 18 (-0.041) 18 (-0.061) 88 (-0.012)

verb arity (0 dependency links) 18 (-0.096) 48 (-0.008) 67 (-0.043) 61 (-0.01) 27 (-0.093) 82 (-0.036) 18 (-0.039) 15 (-0.062) 88 (-0.034)

verb arity (1 dependency link) 15 (0.012) 48 (0.0) 70 (-0.013) 58 (-0.008) 24 (-0.0) 82 (-0.015) 18 (-0.041) 15 (-0.064) 88 (-0.014)

verb arity (2 dependency links) 18 (-0.097) 48 (-0.007) 67 (-0.047) 61 (-0.015) 27 (-0.094) 82 (-0.04) 21 (-0.125) 18 (-0.136) 88 (-0.037)

verb arity (3 dependency links) 15 (-0.107) 45 (0.014) 67 (-0.031) 61 (-0.005) 24 (-0.071) 79 (-0.029) 18 (-0.038) 15 (-0.059) 88 (-0.024)

verb arity (4 dependency links) 15 (-0.109) 48 (0.007) 73 (-0.033) 64 (-0.007) 27 (-0.084) 82 (-0.037) 18 (-0.062) 15 (-0.061) 88 (-0.03)

verb arity (5 dependency links) 15 (0.009) 45 (0.005) 67 (-0.015) 58 (-0.008) 21 (0.01) 82 (-0.014) 18 (-0.017) 15 (-0.034) 88 (-0.009)

verb arity (6 dependency links) 15 (-0.084) 48 (0.0) 70 (-0.033) 58 (-0.002) 24 (-0.071) 79 (-0.036) 15 (-0.039) 15 (-0.04) 88 (-0.026)

verbal head per sentence 3 (-0.056) 6 (0.048) 21 (-0.018) 30 (0.016) 3 (-0.065) 42 (-0.021) 3 (0.065) 3 (0.064) 36 (-0.043)

verbal roots percentage 3 (0.047) 6 (0.05) 21 (-0.003) 30 (0.016) 3 (-0.063) 39 (-0.009) 3 (0.064) 3 (0.063) 36 (-0.025)

syntactic relations (distributions)

clausal modifier of noun 12 (-0.006) 21 (0.009) 39 (-0.006) 42 (0.001) 12 (-0.024) 55 (-0.043) 9 (-0.025) 9 (-0.026) 64 (-0.021)

relative clause modifier 12 (-0.007) 21 (-0.006) 42 (-0.024) 45 (0.0) 12 (0.004) 58 (-0.035) 9 (-0.028) 6 (-0.007) 70 (-0.018)

adverbial clause modifier 9 (0.018) 18 (0.039) 36 (0.008) 39 (0.026) 9 (0.03) 52 (-0.032) 6 (-0.005) 3 (0.066) 58 (-0.023)

adverbial modifier 12 (0.0) 21 (-0.007) 39 (-0.026) 45 (-0.002) 12 (0.004) 58 (-0.031) 6 (-0.006) 6 (-0.008) 67 (-0.018)

adjectival modifier 12 (0.001) 21 (-0.006) 48 (0.004) 45 (0.009) 12 (0.004) 58 (-0.022) 9 (-0.029) 6 (-0.007) 64 (-0.016)

appositional modifier 6 (-0.003) 12 (-0.0) 24 (-0.021) 33 (0.022) 6 (0.008) 48 (-0.03) 3 (0.064) 3 (0.062) 48 (-0.024)

continued on next page
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auxiliary 6 (-0.002) 6 (0.05) 21 (-0.033) 33 (0.021) 3 (-0.061) 42 (-0.012) 3 (0.061) 3 (0.06) 42 (-0.028)

passive auxiliary 9 (-0.025) 24 (0.016) 42 (-0.021) 45 (0.01) 9 (-0.012) 58 (-0.033) 6 (-0.005) 6 (-0.007) 70 (-0.021)

case marking 12 (-0.007) 15 (0.013) 39 (-0.033) 42 (-0.007) 12 (0.004) 55 (-0.043) 9 (-0.024) 6 (-0.007) 67 (-0.017)

coordinating conjunction 9 (-0.026) 15 (0.059) 45 (-0.04) 39 (0.011) 12 (-0.143) 52 (-0.038) 9 (-0.03) 6 (-0.007) 58 (-0.022)

clausal complement 12 (0.0) 18 (-0.015) 45 (-0.011) 45 (-0.002) 12 (-0.021) 55 (-0.035) 9 (-0.021) 9 (-0.022) 61 (-0.02)

compound 6 (-0.003) 12 (-0.002) 24 (-0.035) 33 (0.02) 6 (0.008) 48 (-0.038) 3 (0.063) 3 (0.061) 48 (-0.032)

conjunct 12 (-0.023) 18 (0.08) 45 (-0.004) 45 (0.01) 12 (-0.014) 55 (-0.004) 9 (0.185) 9 (0.184) 61 (-0.015)

copula 15 (0.01) 18 (-0.015) 42 (-0.025) 45 (0.0) 15 (-0.01) 55 (-0.041) 9 (-0.026) 9 (-0.027) 64 (-0.021)

clausal subject 9 (-0.026) 21 (-0.008) 39 (-0.033) 42 (-0.007) 12 (0.004) 55 (-0.042) 9 (-0.025) 6 (-0.007) 67 (-0.017)

determiner 3 (0.049) 6 (0.05) 18 (-0.031) 33 (0.019) 3 (-0.061) 39 (-0.017) 3 (0.06) 3 (0.059) 42 (-0.037)

possessive determiner 6 (-0.003) 18 (0.037) 36 (-0.01) 33 (0.009) 12 (0.034) 48 (-0.038) 3 (0.063) 3 (0.061) 55 (-0.041)

predeterminer 9 (-0.025) 21 (0.029) 45 (-0.023) 48 (-0.002) 9 (-0.012) 58 (-0.04) 6 (-0.005) 6 (-0.007) 67 (-0.026)

expletive 3 (0.046) 6 (0.051) 18 (-0.032) 33 (0.02) 3 (-0.059) 42 (-0.021) 3 (0.06) 3 (0.059) 39 (-0.035)

reflexive pronoun in reflexive passive 6 (-0.003) 9 (-0.018) 24 (-0.021) 33 (0.02) 6 (0.008) 45 (-0.022) 3 (0.063) 3 (0.061) 48 (-0.024)

fixed multiword expression 12 (-0.0) 18 (0.005) 45 (0.005) 42 (0.013) 12 (-0.022) 55 (-0.042) 9 (-0.021) 9 (-0.022) 61 (-0.026)

names 9 (-0.026) 24 (-0.002) 42 (-0.033) 48 (-0.006) 9 (-0.014) 58 (-0.049) 6 (-0.006) 6 (-0.008) 70 (-0.029)

indirect object 9 (-0.049) 18 (-0.031) 36 (0.005) 36 (0.003) 9 (0.03) 52 (-0.048) 3 (0.066) 3 (0.064) 58 (-0.024)

marker 6 (-0.003) 9 (0.061) 24 (-0.005) 33 (0.032) 6 (0.006) 45 (-0.044) 3 (0.063) 3 (0.062) 45 (-0.038)

nominal modifier 6 (-0.003) 18 (0.037) 36 (-0.001) 36 (0.012) 6 (0.006) 48 (-0.031) 3 (0.064) 3 (0.062) 58 (-0.028)

nominal subject 3 (0.047) 6 (-0.006) 18 (0.026) 30 (0.004) 3 (-0.057) 39 (-0.034) 3 (0.058) 3 (0.057) 39 (-0.017)

passive nominal subject 9 (0.019) 18 (0.019) 42 (-0.016) 36 (0.001) 9 (0.031) 52 (-0.016) 6 (-0.006) 3 (0.066) 55 (-0.012)

numeric modifier 6 (-0.002) 18 (0.06) 36 (-0.047) 33 (0.02) 6 (-0.285) 45 (-0.026) 3 (0.061) 3 (0.059) 55 (-0.019)

object 6 (-0.001) 6 (0.051) 21 (-0.033) 33 (0.021) 3 (-0.062) 39 (-0.009) 3 (0.062) 3 (0.061) 42 (-0.03)

oblique nominal 6 (-0.002) 12 (-0.002) 33 (-0.031) 33 (0.006) 6 (0.008) 48 (-0.036) 3 (0.064) 3 (0.062) 48 (-0.031)

agent modifier 12 (-0.006) 15 (0.06) 39 (-0.014) 42 (0.014) 12 (-0.143) 55 (-0.033) 9 (-0.026) 6 (-0.007) 61 (-0.016)

punctuation 3 (0.05) 6 (0.056) 21 (-0.033) 33 (0.021) 3 (-0.06) 42 (-0.012) 3 (0.061) 3 (0.059) 42 (-0.03)

root 12 (-0.006) 18 (0.024) 39 (-0.007) 42 (0.02) 12 (-0.143) 55 (-0.028) 9 (-0.026) 6 (-0.007) 61 (-0.012)

open clausal complement 12 (-0.005) 18 (0.026) 39 (-0.013) 42 (-0.004) 12 (-0.174) 55 (-0.04) 9 (-0.029) 9 (-0.03) 67 (-0.022)

global and local parsed tree structure

dependency link: avg length 3 (0.047) 6 (0.049) 18 (-0.013) 27 (0.009) 3 (-0.062) 39 (-0.009) 3 (0.062) 3 (0.061) 39 (-0.018)

continued on next page
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parsed tree: avg max depth · 6 (0.049) 18 (0.008) 30 (0.028) 3 (-0.06) 39 (-0.027) 3 (0.061) 3 (0.06) 39 (-0.027)

dependency link: avg max length · 6 (0.048) 18 (-0.008) 30 (0.016) 3 (-0.061) 39 (-0.006) 3 (0.061) 3 (0.06) 39 (-0.014)

prepositional chain: avg length 15 (-0.083) 30 (0.025) 52 (-0.033) 55 (0.008) 15 (-0.105) 64 (-0.018) 9 (0.006) 6 (0.052) 79 (-0.027)

dependency links: max length · 6 (0.053) 18 (-0.013) 27 (0.011) 3 (-0.061) 39 (-0.007) 3 (0.061) 3 (0.061) 39 (-0.016)

prepositional chain: number 15 (0.008) 24 (0.002) 52 (-0.008) 52 (-0.012) 15 (-0.011) 61 (-0.035) 9 (-0.024) 6 (-0.005) 79 (-0.02)

post-verbal object 15 (0.01) 24 (0.018) 52 (0.0) 52 (0.002) 15 (-0.011) 61 (-0.023) 9 (0.014) 6 (-0.005) 79 (-0.01)

pre-verbal object 9 (-0.052) 24 (-0.053) 52 (-0.015) 45 (-0.028) 9 (0.028) 55 (-0.04) 6 (0.059) 6 (0.057) 67 (-0.014)

prepositional chain: 1 element 12 (-0.002) 33 (-0.018) 61 (-0.009) 55 (-0.0) 12 (0.007) 70 (-0.029) 9 (-0.03) 6 (-0.003) 82 (-0.007)

prepositional chain: 2 elements 12 (-0.002) 30 (0.001) 55 (-0.01) 55 (-0.007) 15 (-0.01) 70 (-0.034) 9 (0.014) 6 (-0.004) 79 (-0.009)

prepositional chain: 4 elements 12 (-0.001) 33 (-0.028) 61 (-0.025) 55 (-0.018) 12 (0.007) 70 (-0.037) 9 (-0.03) 6 (-0.002) 82 (-0.015)

post-verbal subject 9 (-0.025) 24 (0.015) 48 (-0.056) 45 (0.001) 12 (-0.141) 55 (-0.04) 6 (-0.005) 6 (-0.006) 70 (-0.048)

pre-verbal subject 9 (-0.026) 24 (0.014) 45 (-0.05) 45 (0.007) 12 (-0.142) 58 (-0.03) 6 (-0.006) 6 (-0.008) 67 (-0.037)

use of subordination

subordinate chains: avg length 12 (-0.003) 39 (-0.013) 64 (-0.024) 58 (-0.021) 18 (-0.02) 79 (-0.031) 9 (-0.027) 12 (-0.04) 88 (-0.023)

principal proposition distribution 15 (0.011) 39 (-0.03) 64 (-0.035) 58 (-0.033) 18 (-0.019) 79 (-0.036) 12 (-0.04) 12 (-0.041) 88 (-0.03)

subordinate: embedded 1 12 (-0.002) 39 (-0.012) 61 (-0.008) 55 (0.001) 15 (-0.035) 73 (-0.03) 9 (-0.029) 9 (-0.03) 82 (-0.006)

subordinate: embedded 2 12 (-0.002) 39 (-0.026) 64 (-0.026) 55 (-0.017) 15 (-0.035) 73 (-0.037) 9 (-0.029) 9 (-0.03) 85 (-0.02)

subordinate: embedded 3 12 (-0.002) 33 (-0.016) 61 (-0.008) 55 (0.001) 12 (-0.025) 73 (-0.03) 9 (-0.029) 9 (-0.03) 82 (-0.006)

subordinate: embedded 4 12 (-0.001) 36 (-0.009) 61 (-0.013) 55 (-0.004) 12 (-0.023) 73 (-0.028) 9 (-0.026) 9 (-0.027) 82 (-0.015)

subordinate: embedded 5 12 (-0.001) 33 (-0.03) 61 (-0.034) 55 (-0.028) 12 (0.007) 73 (-0.046) 9 (-0.026) 6 (-0.002) 82 (-0.022)

post-verbal subordinate 15 (0.008) 45 (-0.003) 64 (-0.018) 58 (-0.014) 24 (-0.001) 82 (-0.024) 15 (-0.061) 15 (-0.062) 88 (-0.018)

pre-verbal subordinate 12 (-0.003) 42 (-0.008) 64 (-0.024) 58 (-0.021) 21 (-0.011) 82 (-0.028) 12 (-0.039) 15 (-0.063) 88 (-0.022)

subordinate proposition distribution 15 (0.009) 39 (-0.015) 64 (-0.02) 58 (-0.017) 21 (-0.009) 79 (-0.028) 12 (-0.036) 15 (-0.061) 88 (-0.023)
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