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1 Introduction

In this paper we prove some existence results concerning a problem arising in conformal differential
geometry. Consider a smooth metric g on B = {x ∈ Rn : |x| < 1}, the unit ball on Rn, n ≥ 3, and let
∆g, Rg, νg, hg denote, respectively, the Laplace-Beltrami operator, the scalar curvature of (B, g), the
outward unit normal to ∂B = Sn−1 with respect to g and the mean curvature of (Sn−1, g). Given two
smooth functions R′ and h′, we will be concerned with the existence of positive solutions u ∈ H1(B) of

(1)

{
−4 (n−1)

(n−2)∆gu+Rgu = R′u
n+2
n−2 , in B;

2
(n−2)∂νgu+ hgu = h′u

n
n−2 , on ∂B = Sn−1.

It is well known that such a solution is C∞ provided g, R′ and h′ are, see [10]. If u > 0 is a smooth solution
of (1) then g′ = u4/(n−2)g is a metric, conformally equivalent to g, such that R′ and h′ are, respectively,
the scalar curvature of (B, g′) and the mean curvature of (Sn−1, g′). Up to a stereographic projection,
this is equivalent to finding a conformal metric on the upper half sphere Sn+ = {(x1, . . . , xn+1) ∈ Rn+1 :
|x| = 1, xn+1 > 0} such that the scalar curvature of Sn+ and the mean curvature of ∂Sn+ = Sn−1 are
prescribed functions.

In the first part of the paper we deal with the the case in which R′ and h′ are constant, say R′ ≡ 1
and h′ ≡ c, when (1) becomes

(Y)

{
−4 (n−1)

(n−2)∆gu+Rgu = u
n+2
n−2 , in B;

2
(n−2)∂νgu+ hgu = cu

n
n−2 , on ∂B = Sn−1.

This will be referred as the Yamabe like problem and was first studied in [10, 11, 12]. More recently, the
existence of a solution of (1) has been proved in [14, 15] under the assumption that (B, g) is of positive
type (for a definition see [14]) and satisfies one of the following assumptions:

(i) (B, g) is locally conformally flat and ∂B is umbilical;

(ii) n ≥ 5 and ∂B is not umbilical.

Our main result concerning the Yamabe like problem shows that none of (i) or (ii) is required when g is
close to the standard metric g0 on B. Precisely, consider the following class Gε of bilinear forms

(2) Gε = {g ∈ C∞(B) : ‖g − g0‖L∞(B) ≤ ε, ‖∇g‖Ln(B) ≤ ε, ‖∇g‖Ln−1(Sn−1) ≤ ε}.

Inequalities in (2) hold if for example ‖g − g0‖C1(B) ≤ ε, or if ‖g − g0‖W 2,n(B) ≤ ε. We will show:

∗A.A. and A.M. have been supported by M.U.R.S.T. under the national project Variational methods and nonlinear
differential equations.
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Theorem 1.1 Given M > 0 there exists ε0 > 0 such that for every ε with ε ∈ (0, ε0), for every c > −M
and for every metric g ∈ Gε problem (Y) possesses a positive solution.

In the second part of the paper we will take g = g0, R′ = 1 + εK(x), h′ = c + εh(x) and consider the
Scalar Curvature like problem

(Pε)

{
−4 (n−1)

(n−2)∆u = (1 + εK(x))u
n+2
n−2 , in B;

2
(n−2)

∂u
∂ν + u = (c+ εh(x))u

n
n−2 , on Sn−1,

where ν = νg0 . The Scalar Curvature like problem has been studied in [16] where a non perturbative
problem like {

−4 (n−1)
(n−2)∆u = R′(x)u

n+2
n−2 , in B;

2
(n−2)

∂u
∂ν + u = 0, on Sn−1,

has been considered. We also mention the paper [9] dealing with the existence of solutions of

(3)

{
∆u = 0, in B;

2
(n−2)

∂u
∂ν + u = (1 + εh(x))u

n
n−2 , on Sn−1,

a problem similar in nature to (Pε).
To give an idea of the existence results we can prove, let us consider the particular cases that either h ≡ 0
or K ≡ 0. In the former, problem (Pε) becomes

(Pε,K)

{
−4 (n−1)

(n−2)∆u = (1 + εK(x))u
n+2
n−2 , in B;

2
(n−2)

∂u
∂ν + u = c u

n
n−2 , on Sn−1,

Theorem 1.2 Suppose that K satisfies

(K1) there exists an absolute maximum (resp. minimum) p of K|Sn−1 such that K ′(p) · p < 0, resp.
K ′(p) · p > 0.

Then for |ε| sufficiently small, (Pε,K) has a positive solution.

Another kind of result is the following

Theorem 1.3 Let K|Sn−1 be a Morse function and satisfies

(K2) K ′(x) · x 6= 0, ∀x ∈ Crit(K|Sn−1)

(K3)
∑

x∈Crit(K|Sn−1 ):K′(x)·x<0

(−1)m(x,K) 6= 1,

where m(x,K) is the Morse index of K|Sn−1 at x. Then for |ε| sufficiently small, problem (Pε,K) has a
positive solution.

When K ≡ 0 problem (Pε) becomes

(Pε,h)

{
−4 (n−1)

(n−2)∆u = u
n+2
n−2 , in B;

2
(n−2)

∂u
∂ν + u = (c+ εh(x))u

n
n−2 , on Sn−1.
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Theorem 1.4 Let h ∈ C∞(Sn−1) be a Morse function satisfying:

(h1) ∆Th(x) 6= 0, ∀x ∈ Crit(h);

(h2)
∑

x∈Crit(h):∆Th(x)<0

(−1)m(x,h) 6= 1,

Then for |ε| sufficiently small, problem (Pε,h) has a positive solution.

The preceding results are particular cases of more general ones, dealing with problem (Pε), where as-
sumptions on a suitable combination of K and h are made. See Theorems 4.3 and 4.5 later on. For a
comparison with the results of [9, 16], we refer to Remarks 4.4 and 4.6 in Section 4.

Solutions of the preceding problems are critical points of the energy functional Ic = Icg : H1(B)→ R,

Ic(u) = 2
(n− 1)

(n− 2)

∫
B

|∇gu|2dVg +
1

2

∫
B

Rgu
2dVg −

1

2∗

∫
B

R′u2∗dVg

+ (n− 1)

∫
∂B

hgu
2dσg − c(n− 2)

∫
∂B

h′|u|2
n−1
n−2 dσg.(4)

In all the cases we will deal with, Ic can be written in the form Ic(u) = Ic0(u) +O(ε), where

Ic0(u) = 2
(n− 1)

(n− 2)

∫
B

|∇u|2dx+ (n− 1)

∫
∂B

u2dσ − 1

2∗

∫
B

|u|2
∗
dx− c(n− 2)

∫
Sn−1

|u|2
n−1
n−2 dσ

and can be faced by means of a perturbation method in critial point theory discussed in [1]. First,
in Section 2, we show that Ic0 has a finite dimensional manifold Zc ' B of critical points that is non
degenerate, in the sense of [1], see Lemma 2.3. This allows us to perform a finite dimensional reduction
(uniformly with respect to c ≥ −M) that leads to seeking the critical points of Ic constrained to Zc. The
proof of Theorem 1.1 is carried out in Section 3 and is mainly based upon the study of Ic|Zc . The lack
of compactness inherited by Ic is reflected on the fact that Zc is not closed. This difficulty is overcome
using arguments similar to those emploied in [3, 7]: we show that Ic can be extended to the boundary
∂Zc and there results Ic|∂Zc ≡ const., see Proposition 3.4.

In Section 4 we deal with the Scalar Curvature like problem. In this case there results Ic(u) =
Ic0(u) + εG(u), where G depends upon K and h only, and one is lead to study the finite dimensional
auxiliary functional Γ = G|Zc . More precisely, following the approach of [2], we evaluate Γ on ∂Zc,
together with its first and second derivative. This permits to prove some general existence results which
contain as particular cases Theorems 1.2, 1.3 and 1.4. The last part of section 4 is devoted to a short
discussion of the case in which K,h inherit a simmetry. For example, if K and h are even functions, (Pε)
has always a solution provided ε is small, without any further assumption, see Theorem 4.7.

Finally, in the Appendix we prove some technical Lemmas.
The main results of this paper has been annouced in [5].

Notation

B denotes the unit ball in Rn, centered at x = 0.
We will work mainly in the functional space H1(B). In some cases it will be convenient to equip

H1(B) with the scalar product

(u, v)1 = 4
(n− 1)

(n− 2)

∫
B

∇u · ∇vdx+ 2(n− 1)

∫
∂B

uvdσ,

that gives rise to the norm ‖u‖21 = (u, u)1, equivalent to the standard one.
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If E is an Hilbert space and f ∈ C2(E,R) is a functional, we denote by f ′ or ∇f its gradient;
f ′′(u) : E → E is the linear operator defined by duality in the following way

(f ′′(u)v, w) = D2f(u)[v, w], ∀v, w ∈ E.

σS denotes the stereographic projection σS : Sn =
{
x ∈ Rn+1| |x| = 1

}
→ Rn trough the south pole,

where we identify Rn with
{
x ∈ Rn+1|xn+1 = 0

}
.

More in general, given p ∈ Sn, we denote by σp : Rn → Sn the stereographic projection trough the
point p.

The stereographic projections give rise to some isometries in the following way. The projection trough
the south pole S of Sn gives rise to the isometry τS : H1(Sn)→ H1(B)

τSu(x) =
2

1 + |x|2
u(σ−1

S x), x ∈ B.

Moreover, given p ∈ ∂Sn+, the stereographic projection trough p gives rise to the isometry τp : H1(Sn+)→
E = D1,2(Rn+) given by

τpu(x) =
2

1 + |x|2
u(σ−1

p x), x ∈ Rn+.

2 The unperturbed problem

When ε = 0, resp. g = g0, problem (Pε), resp. (Y), coincides with the unperturbed problem

(UP )

{
−4 (n−1)

(n−2)∆u = u
n+2
n−2 , in B;

2
(n−2)∂νu+ u = cu

n
n−2 , on ∂B = Sn−1.

Solutions of problem (UP ) can be found as critical points of the functional Ic0 : H1(B)→ R defined as

Ic0(u) =
1

2
‖u‖21 −

1

2∗

∫
B

|u|2
∗
dx− c(n− 2)

∫
Sn−1

|u|2
n−1
n−2 dσ.

Consider the function z0 : Rn → R,

z0(x) =

(
κ

1 + |x|2

)n−2
2

; κ = κn = (4n(n− 1))
1
2 .

The function z0 is the unique solution (up to translation and dilation) to the problem in Rn

−4
(n− 1)

(n− 2)
∆u = u

n+2
n−2 , in Rn; u > 0.

We also set
zµ,ξ = µ−

n−2
2 z0((x− ξ)/µ), zµ = µ−

n−2
2 z0(x/µ).

By a stright calculation it follows that zµ,ξ is a critical points of Ic0 , namely solutions of the problem
(UP ), iff

(5) µ2 + |ξ|2 − cκµ− 1 = 0, µ > 0.

The set

(6) Zc = {zµ,ξ : µ2 + |ξ|2 − cκµ− 1 = 0}
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is an n-dimensional manifold, diffeomorphic to a ball in Rn, with boundary ∂Zc corresponding to the
parameter values µ = 0, |ξ| = 1.

We need to study the eigenvalues of I ′′0 (zµ,ξ), with zµ,ξ ∈ Zc. Recall that, by definition, λ ∈ R is an
eigenvalue of I ′′0 (zµ,ξ) if there exists v ∈ H1(B), v 6= 0 such that I ′′0 (zµ,ξ)[v] = λv and this means that v
is solution of the linear problem

(7)


−4 (n−1)

(n−2) (1− λ) ∆v = n+2
n−2z

4
n−2

µ,ξ v, in B;

4 (n−1)
(n−2) (1− λ) ∂νv = 2(n− 1)

(
c n

(n−2)z
2

n−2

µ,ξ + λ− 1

)
v, on Sn−1.

The following lemma is well known.

Lemma 2.1 (a) λ = 0 is an eigenvalue of (7) and the corresponding eigenspace is n dimensional and
coincides with the tangent space to Zc at zµ,ξ, namely is spanned by Dzµ,ξ.

(b) (7) has precisely one negative eigenvalue λ1(c); all the remaining eigenvalues are positive.

Item (a) is proved in [14]. Item (b) easily follows from the fact that zµ,ξ is a Mountain Pass critical point
of Ic0 .

Let λ2(c) denote the smallest positive eigenvalue of I ′′0 (zµ,ξ).
The main result of this section is the following one:

Lemma 2.2 For all M > 0 there exists a positive constant CM such that

1

CM
≤ |λi(c)| ≤ CM , ∀ c ≥ −M, i = 1, 2.

Remark. There is a numerical evidence that λ2(c) ↓ 0 as c ↓ −∞.

Proof. We will prove separately that |λi(c)| ≤ CM and that 1
CM
≤ |λi(c)|. For symmetry reasons it is

sufficient to take zµ,ξ = zµ, namely to take ξ = 0. In such a case µ depends only on ξ and (5) yields

µ(c) =
1

2

(
κc+

√
κ2c2 + 4

)
.

Case 1. |λi(c)| ≤ CM . By contradiction suppose there exists a sequence cj → +∞ such that |λi(cj)| →
+∞, i = 1, 2. Let vj denote an eigenfunction of (7) with λ = λi(cj). Then vj solves the problem

(8)

{
∆vj = aj(x)vj , in B;

∂νvj = bj(x)vj , on Sn−1,

where

aj(x) =
1

(λi(cj)− 1)

n+ 2

4(n− 1)
z

4
n−2

µ(cj)
(x), x ∈ B

bj(x) =
n− 2

2(1− λi(cj))

(
cj

n

(n− 2)
z

2
n−2

µ(cj)
(x) + λi(cj)− 1

)
, x ∈ Sn−1.

Above, it is worth pointing out that bj is constant on Sn−1. Actually, there results

z
2

n−2
µ (x) = κµ−1

(
1 +

1

µ2

)−1

, ∀ x ∈ Sn−1,
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and hence

bj ≡
n− 2

2(1− λi(cj))

(
cj

n

(n− 2)
· κµ−1(cj)

(
1 +

1

µ2(cj)

)−1

+ λi(cj)− 1

)
, ∀ x ∈ Sn−1.

Moreover, since µ ∼ κc as c→ +∞, it turns out that

(9) bj → −
(n− 2)

2
.

Now, integrating by parts we deduce from (8)

(10)

∫
B

|∇vj |2dx+

∫
B

ajv
2
jdx = bj

∫
Sn−1

v2
jdσ.

Using (9) and a Poincaré-like inequality, we find there exists C > 0 1

−
∫
B

ajv
2
jdx ≥ C

∫
B

v2
jdx.

This leads to a contradiction because aj(x)→ 0 in C0(B) and vj 6≡ 0.

Case 2. 1
CM
≤ |λi(c)|. Arguing again by contradiction, let cj → +∞ and suppose that |λi(cj)| → 0.

As before, the corresponding eigenfunctions vj satisfy (10), where now bj → 1, because µ ∼ κc and
|λi(cj)| → 0. Choosing vj is such a way that supB |vj | = 1, then (10) yields that vj is bounded in H1(B)
and hence vj ⇀ v0 weakly in H1(B). Passing to the limit in∫

B

∇vj · ∇w +

∫
B

ajvjw −
∫
Sn−1

bjvjw = 0, ∀w ∈ H1(B),

it immedately follows that v0 satisfies

(P3)

{
∆v0 = 0, in B;

∂νv0 = v0, on Sn−1.

The solutions of problem (P3) are explicitly known, namely they are the linear functions an B. We denote
by X the vector space of these solutions, which is n-dimensional. To complete the proof we will show
that v0 ∈ X leads to a contradiction. We know that λ = 0 is an eigenvalue with multiplicity n, and
the eigenvectors corresponding to λ = 0 are precisely the elements of TzµZ

c. Let uj ∈ Tzµ(cj)Z
c with

supB |uj | = 1. Then, by using simple computations, one can prove that, up to a subsequence, uj → v
strongly in H1(B) for some function v ∈ X. We can assume w.l.o.g. that v = v0 (the weak limit of vj),
so it follows that (uj , vj) → ‖v0‖2 6= 0. But this is not possible, since vj are eigenvectors corresponding
to λ1 < 0, while uj are eigenvectors corresponding to λ = 0 and hence they are orthogonal.

In conclusion, taking into account of Lemma 2.2, we can state:

Lemma 2.3 The unperturbed functional Ic0 possesses an n-dimensional manifold Zc of critical points,
diffeomorphic to a ball of Rn. Moreover Ic0 satisfies the following properties

(i) I ′′0 (z) = I −K, where K is a compact operator for every z ∈ Zc;

(ii) TzZ
c = KerD2Ic0(z) for all z ∈ Zc.

From (i)-(ii) it follows that the restriction of D2Ic0 to (TzZ
c)⊥ is invertible. Moreover, denoting by Lc(z)

its inverse, for every M > 0 there exists C > 0 such that

(11) ‖Lc(z)‖ ≤ C for all z ∈ Zc and for all c > −M.

1in the sequel we will use the same symbol C to denote possibly different positive constants.
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3 The Yamabe like Problem

3.1 Preliminaries

Solutions of problem (1) can be found as critical points of the functional Ic : H1(B)→ R defined in (4).
We recall some formulas from [3] which will be useful for our computations. We denote with gij the

coefficients of the metric g in some local co-ordinates and with gij the elements of the inverse matrix
(g−1)ij .

The volume element dVg of the metric g ∈ Gε, taking into account (2) is

(12) dVg = |g| 12 · dx = (1 +O(ε)) · dx2.

The Christoffel symbols are given by Γlij = 1
2 [Digkj +Djgki−Dkgij ]g

kl. The components of the Riemann
tensor, the Ricci tensor and the scalar curvature are, respectively

(13) Rlkij = DiΓ
l
jk −DjΓ

l
ik + ΓlimΓmjk − ΓljmΓmik; Rkj = Rlklj ; R = Rg = Rkjg

kj .

For a smooth function u the components of ∇gu are (∇gu)i = gijDju, so

(14) (∇gu)i = ∇u · (1 +O(ε)).

From the preceding formulas and from the fact that g ∈ Gε it readily follows that Ic(u) = Ic0(u) +O(ε).
More precisely, the following lemma holds. The proof is rather technical and is postponed to the Appendix.

Lemma 3.1 Given M > 0 there exists C > 0 such that for c > −M and g ∈ Gε there holds

(15) ‖∇Ic(z)‖ ≤ C · ε · (1 + |c|)−
n−2
2 , ∀z ∈ Zc;

(16)
∥∥D2Ic(z)−D2Ic0(z)

∥∥ ≤ C · ε, ∀z ∈ Zc

(17) ‖Ic(z + w)− Ic(z + w′)‖ ≤ C ·(1+|c|)·(ε+ρ
2

n−2 )·‖w−w′‖, ∀z ∈ Zc, w, w′ ∈ H1(B), ‖w‖, ‖w′‖ ≤ ρ;

‖∇Ic(u+ w)−∇Ic(u)‖ ≤ C · ‖w‖ ·(18) (
1 + ‖u‖

4
n−2 + ‖w‖

4
n−2 + |c| · ‖u‖

2
n−2 + |c| · ‖w‖

2
n−2

)
, ∀u,w ∈ H1(B).

Moreover, if ‖u‖ is uniformly bounded and if ‖w‖ ≤ 1 there results

(19)
∥∥D2Ic(u+ w)−D2Ic(u)

∥∥ ≤ C · (1 + |c|) · ‖w‖
2

n−2 .

3.2 A finite dimensional reduction

The aim of this sub-section is to perform a finite dimensional reduction, using Lemma 2.3. Arguments of
this kind has been emploied, e.g. in [1]. The first step is to construct, for g ∈ Gε, a perturbed manifold
Zcg ' Zc which is a natural constraint for Ic, namely: if u ∈ Zcg and ∇Ic|Zcg (u) = 0 then ∇Ic(u) = 0.

For brevity, we denote by ż ∈ H1(B))n an orthonormal n-tuple in TzZ
c. Moreover, if α ∈ Rn we set

αż =
∑
αiżi.

2hereafter, when we write that a function is O(ε), o(ε), it is understood that this holds uniformly for g ∈ Gε, c > −M .
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Proposition 3.2 Given M > 0, there exist ε0, C > 0, such that ∀ c > −M , ∀ z ∈ Zc ∀ ε ≤ ε0 and
∀ g ∈ Gε there are C1 functions w = w(z, g, c) ∈ H1(B) and α = α(z, g, c) ∈ Rn such that the following
properties hold

(i) w is orthogonal to TzZ
c ∀z ∈ Zc, i.e. (w, ż) = 0;

(ii) ∇Ic(z + w) = α ż ∀z ∈ Zc;

(iii) ‖(w,α)‖ ≤ C · ε · (1 + |c|)−n−2
2 ∀z ∈ Zc.

Furthermore, from (i)-(ii) it follows that

(iv) the manifold Zcg = {z + w(z, g, c) | z ∈ Zc} is a natural constraint for Ic.

Proof. Let us define 3 Hg : Zc ×H1(B)× Rn → H1(B)× Rn by setting

Hg(z, w, α) =

(
∇Ic(z + w)− αż

(w, ż)

)
.

With this notation, the unknown (w,α) can be implicitly defined by the equation Hg(z, w, α) = (0, 0).
Setting Rg(z, w, α) = Hg(z, w, α)− ∂(w,α)Hg(z, 0, 0)[(w,α)] we have that

Hg(z, w, α) = 0 ⇔ ∂(w,α)Hg(z, 0, 0)[(w,α)] +Rg(z, w, α) = 0.

Let H0 = Hg0 . From (11) it follows easily that ∂(w,α)H0(z, 0, 0) is invertible uniformly w.r.t. z ∈ Zc and
c > −M . Moreover using (16) it turns out that for ε0 sufficiently small and for ε ≤ ε0 also the operator
∂(w,α)Hg(z, 0, 0) is invertible and has uniformly bounded inverse, provided g ∈ Gε. Hence, for such g
there results

Hg(z, w, α) = 0 ⇔ (w,α) = Fz,g(w,α) := −
(
∂(w,α)Hg(z, 0, 0)

)−1
Rg(z, w, α).

We prove the Proposition by showing that the map Fz,g is a contraction in some ball Bρ = {(w,α) ∈
H1(B) × Rn : ‖w‖ + |α| ≤ ρ}, with ρ of order ρ ∼ ε · (1 + |c|)−n−2

2 . We first show that there exists
C > 0 such that for all (w,α), (w′, α′) ∈ Bρ, all z ∈ Zc and all g ∈ Gε, there holds

(20)

{
‖Fz,g(w,α)‖ ≤ C ·

(
ε · (1 + |c|)−n−2

2 + (1 + |c|) · ρ
n
n−2

)
,

‖Fz,g(w′, α′)− Fz,g(w,α)‖ ≤ C · (1 + |c|) · ρ
2

n−2 · ‖(w,α)− (w′, α′)‖.

Condition (20) is equivalent to the following two inequalities

(21) ‖∇Ic(z + w)−D2Ic(z)[w]‖ ≤ C ·
(
ε · (1 + |c|)−

n−2
2 + (1 + |c|) · ρ

2
n−2

)
;

(22) ‖(∇Ic(z+w)−D2Ic(z)[w])− (∇Ic(z+w′)−D2Ic(z)[w′])‖ ≤ C · (1+ |c|) ·ρ
2

n−2 · ‖(w,α)− (w′, α′)‖.

Let us first prove (21). There holds

∇Ic(z + w)−D2Ic(z)[w] = ∇Ic(z + w)−∇Ic(z) +∇Ic(z)−D2Ic(z)[w]

= ∇Ic(z) +

∫ 1

0

(
D2Ic(z + sw)−D2Ic(z)

)
[w]ds.

3H depends also on c, but such a dependence will be understood.
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Hence it turns out that

‖∇Ic(z + w)−D2Ic(z)[w]‖ ≤ ∇Ic(z) + ‖w‖ · sup
s∈[0,1]

‖D2Ic(z + sw)−D2Ic(z)‖.

Using (19) we have

‖∇Ic(z + w)−D2Ic(z)[w]‖ ≤ ∇Ic(z) + C · (1 + |c|) · ρ
n
n−2 .

Hence from (15) we deduce that

‖∇Ic(z + w)−D2Ic(z)[w]‖ ≤ C ·
(
ε · (1 + |c|)−

n−2
2 + (1 + |c|) · ρ

n
n−2

)
,

and (21) follows. We turn now to (22). There holds

‖∇Ic(z + w)−∇Ic(z + w′) − D2Ic(z)[w − w′]‖

=

∥∥∥∥∫ 1

0

(
D2Ic(z + w + s(w′ − w))−D2Ic(z)

)
[w′ − w]ds

∥∥∥∥
≤ sup

s∈[0,1]

‖D2Ic(z + w + s(w′ − w))−D2Ic(z)‖ · ‖w′ − w‖.

Using again (19), and taking ‖w‖, ‖w′‖ ≤ ρ we have that

||D2Ic(z + w′ + s(w − w′))−D2Ic(z)|| ≤ C · (1 + |c|) · ρ
2

n−2 ,

proving (22). Taking ρ = 2C · ε · (1 + |c|)−n−2
2 and ε ≤ ε0, with ε0 sufficiently small, there results{

C ·
(
ε · (1 + |c|)−n−2

2 + (1 + |c|) · ρ
n
n−2

)
< ρ,

C · (1 + |c|) · ρ
2

n−2 < 1.

Then Fz,g is a contraction in Bρ and hence Hg = 0 has a unique solution w = w(z, g, c), α = α(z, g, c)

with ‖(w,α)‖ ≤ 2C · ε · (1 + |c|)−n−2
2 .

Remark 3.3 In general, the preceding arguments give rise to the following result, see [1]. Let Iε(u) =
I0(u) + O(ε) denote a C2 functional and suppose that I0 has an n-dimensional manifold Z of critical
points satisfying (i) − (ii) of Lemma 2.3. Then for |ε| small there exists a unique w = wε(z) satisfying
(i) − (ii) − (iii) of Proposition 3.2. Furthermore, the manifold Zε = {z + wε(z) : z ∈ Z} is a natural
constraint for Iε. Hence any critical point of Iε(z + wε(z)), z ∈ Z is a critical point of Iε.

3.3 Proof of Theorem 1.1

Throughout this subsection we will take ε and c is such a way that Proposition 3.2 applies. The main
tool to prove Theorem 1.1 is the following Proposition

Proposition 3.4 There results

(23) lim
µ→0

Ic(zµ,ξ + wg(zµ,ξ)) = bc, uniformly for ξ satisfying (5).

Hence Ic|Zcg can be continuously extended to ∂Zcg by setting

(24) Ic|∂Zcg = bc.
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Postponing the proof of Proposition 3.4, it is immediate to deduce Theorem 1.1.

Proof of Theorem 1.1. The extended functional Ic has a critical point on the compact manifold
Zcg ∪ ∂Zcg . From (24) it follows that either Ic is identically constant or it achieves the maximum or the
minimum in Zcg . In any case Ic has a critical point on Zcg . According to Proposition 3.2, such a critical
point gives rise to a solution of (Y ).

In order to prove Proposition 3.4 we prefer to reformulate (Y ) in a more convenient form using the
stereographic projection σp, trough an appropriate point p ∈ ∂Sn+, see Remark 3.6. In this way the
problem reduces to study an elliptic equation in Rn+, where calculation are easier. More precisely, let
g̃ij : Rn+ → R be the components of the metric g in σp-stereographic co-ordinates, and let

(g) gij =

(
1 + |x|2

2

)2

g̃ij .

Then problem (Y ) is equivalent to find solutions of

(Y )


−4 (n−1)

(n−2)∆gu+Rgu = u
n+2
n−2 , in Rn+;

2
(n−2)∂νgu+ hgu = cu

n
n−2 , on ∂Rn+ = Rn−1,

u > 0, u ∈ D1,2(Rn+),

where the symbols have obvious meaning. Solutions of problem (Y ) can be found as critical points of the
functional fg : D1,2(Rn+)→ R defined in the following way

fg(u) = 2
(n− 1)

(n− 2)

∫
Rn+
|∇gu|2 dVg +

1

2

∫
Rn+
Rg u

2 dVg −
1

2∗

∫
Rn+
u2∗dVg

+ (n− 1)

∫
∂Rn+

hg u
2 dσg − c(n− 2)

∫
∂Rn+
|u|2

n−1
n−2 dσg.

In general the transformation (g) induces an isometry between H1(B) and D1,2(Rn+) given by

u(x) 7→ u(x) :=

(
2

(x′)2 + (xn + 1)2

)n−2
2

u

(
2x′

(x′)2 + (xn + 1)2
,

(x′)2 + x2
n − 1

(x′)2 + (xn + 1)2

)
,

where x′ = (x1, . . . , xn−1).
It turns out that

(25) fg(u) = Ic(u)

as well as
∇fg(u) = ∇Ic(u).

In particular this implies that u solves (Y ) if and only if u is a solution of (Y ).
Furthermore, there results

• g0 corresponds to the trivial metric δij on Rn+;

• z0 corresponds to z0 ∈ D1,2(Rn+) given by

z0(x) = z0(x− (0, a0c)), x ∈ Rn+; a0 =
κ

2
;

10



• Zc corresponds to Z
c

given by

Z
c

=

{
zµ,ξ′ := µ−

n−2
2 z0

(
x− (ξ′, a0cµ)

µ

)
, µ > 0, ξ′ ∈ Rn−1

}
.

Let us point out that the manifold Z
c

is nothing but τp ◦ τ−1
S Zc (see Notations).

From the preceding items it follows that the equation

∇fg(z + w) ∈ TzZ
c
,

have a unique solution w ⊥ TzZ
c

and there results

wg(z) = wg(z).

From this and (25) it follows

(26) Ic(z + wg(z)) = fg(z + wg(z)).

Let us now introduce the metric gδ(x) := g(δx), δ > 0 and let fgδ : D1,2(Rn+)→ R be the corresponding
Euler functional. For all u ∈ D1,2(Rn+) there results

fgδ(u) = fg

(
δ

2−n
2 u(δ−1x)

)
.

Introducing the linear isometry Tδ : D1,2(Rn+)→ D1,2(Rn+) defined by Tδ(u) := δ−
n−2
2 u(x/δ) this becomes

(27) fgδ(u) = fg (Tδu) ,

Furthermore, for all u ∈ D1,2(Rn+) one has

∇fg(u) = Tδ∇fgδ(T−1
δ u)(28)

D2fg(u)[v, w] = D2fgδ(T
−1
δ u)[T−1

δ v, T−1
δ w].(29)

Arguing as above, there exists wgδ(z0) ∈ (Tz0Z
c
)⊥ such that

∇fgδ(z0 + wgδ) ∈ Tz0Z
c
.

and there results

wgδ(z0)(x) = δ
n−2
2 wg(zδ)(δx),

namely

(30) wg(zδ) = Tδwgδ(z0).

Remark 3.5 From (27), (28), (29) and using the relations between fg and Ic discussed above, it is easy
to check that the estimates listed in Lemma 3.1 hold true, substituting Ic with fgδ and z with z. A
similar remark holds for Proposition 3.2.

We are interested to the behaviour of fgδ as δ → 0. To this purpose, we set

fg(0)(u) =

∫
Rn+

2
(n− 1)

(n− 2)

∑
i,j

gij(0)DiuDju−
1

2∗
|u|2

∗

 dVg(0) − c(n− 2)

∫
∂Rn+
|u|2

n−1
n−2 dσg(0),

which is the Euler functional corresponding to the constant metric g(0).
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Remark 3.6 Unlike the gδ, the metric g(0) does not come from a smooth metric on B. This is the main
reason why it is easier to deal with (Y ) instead of (Y).

Lemma 3.7 For all u ∈ D1,2(Rn+) there results

(31) lim
δ→0
||∇fgδ(u)−∇fg(0)(u)|| = 0;

(32) lim
δ→0

fgδ(u) = fg(0)(u).

Proof. For any v ∈ D1,2(Rn+) there holds(
∇fgδ(u)−∇fg(0)(u), v

)
= θ1 + θ2 + θ3 + θ4 + θ5,

where

θ1 = 4
n− 1

n− 2

(∫
Rn+
∇gδu · ∇gδv dVgδ −

∫
Rn+
∇g(0)u · ∇g(0)v dVg(0)

)
; θ2 =

∫
Rn+
Rgδu v dVgδ ;

θ3 =

∫
Rn+
|u|

4
n−2u v (dVgδ − dVg(0)); θ4 = 2(n− 1)

∫
∂Rn−1

hgδu v dσgδ ;

θ5 = 2c(n− 1)

(∫
∂Rn+
|u|

2
n−2u v dσgδ −

∫
∂Rn+
|u|

2
n−2u v dσg(0)

)
.

Using the Dominated Convergence Theorem and the integrability of |∇u|2 and of |u|2∗ , it is easy to
show that θ1, θ3 and θ5 converge to zero. As far as θ2 is concerned, we first note that the bilinear form
(u, v) →

∫
Rn+
Rg u v dVg is uniformly bounded for g ∈ Gε, so it turns out that given η > 0 there exists

uη ∈ C∞c (Rn+) such that

(33)

∣∣∣∣∣
∫
Rn+
Rgδu v dVgδ −

∫
Rn+
Rgδuη v dVgδ

∣∣∣∣∣ ≤ η · ‖v‖; ∀v ∈ D1,2(Rn+).

Hence, since it is Rgδ(δ
−1x) = δ2Rg(x) (see (13)), it follows that for δ sufficiently small∣∣∣∣∣

∫
Rn+
Rgδuη v dVgδ

∣∣∣∣∣ ≤ δ2‖Rg‖L∞(B)‖uη‖∞
∫
supp(uη)

|v| = o(1) · ‖v‖.

So, using (33) and the arbitrarity of η, one deduces that θ2 = o(1) · ‖v‖. Similar computations hold for
the term θ4. In the same way one can prove also (32).

We need a more complete description of w0(z). For this, according to Remark 3.6, we shall study the
functional fg(0) in a direct fashion. If g ∈ Gε then the constant metric g(0) on Rn+ satisfies ‖g(0)−Id‖∞ =
O(ε) and thus fg(0) can be seen as a perturbation of the functional

f0(u) = 2
(n− 1)

(n− 2)

∫
Rn+
|∇u|2dV0 −

1

2∗

∫
Rn+
u2∗dV0 − c(n− 2)

∫
∂Rn+
|u|2

n−1
n−2 dσ0,

corresponding to the trivial metric δij .
Then the procedure used in subsection 3.2 yields to find w0(z) such that
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(j) w0(z) is orthogonal to TzZ
c
;

(jj) ∇fg(0)(z + w0(z)) ∈ TzZ
c
;

(jjj) ‖w0(z)‖ ≤ C · ε · (1 + |c|)−n−2
2 ∀z ∈ Zc.

The following Lemma proves that a property stronger than (jj) holds.

Lemma 3.8 For all z ∈ Zc there results

(34) ∇fg(0)(z + wg(0)(z)) = 0.

Hence z + wg(0)(z) solves

(35)

{
−4 (n−1)

(n−2)

∑n
i,j=1 g

ij(0)D2
iju = u

n+2
n−2 in Rn+;

2
(n−2)

∂u
∂ν = cu

n
n−2 on ∂Rn+.

Here ν is the unit normal vector to ∂Rn+ with respect to g(0), namely

g(0)(ν, ν) = 1; g(0)(ν, v) = 0, ∀v ∈ ∂Rn+.

Proof. The Lemma is a simple consequence of the invariance of the functional under the transformation
Tµ,ξ′ : D1,2(Rn+)→ D1,2(Rn+) defined in the following way

Tµ,ξ′(u) = µ−
n−2
2 u

(
x− (ξ′, 0)

µ

)
.

This can be achieved with an elementary computation. It then follows that

wg(0)(zµ,ξ′) = Tµ,ξ′(wg(0)(z0)), for all µ, ξ′.

Hence, from the invariance of fg(0), it turns out that

fg(0)(zµ,ξ′ + wg(0)(zµ,ξ′)) = fg(0)(Tµ,ξ′(z0 + wg(0)(z0))) = fg(0)(z0 + wg(0)(z0)).

Since fg(0)(zµ,ξ′ +wg(0)(zµ,ξ′)) is a constant function then, according to (j)− (jj), any z +wg(0)(z) is a
critical point of fg(0), proving the lemma.

Let us introduce some further notation: G denotes the matrix gij(0), νg(0) is the outward unit normal to
∂Rn+ with respect to gij(0), and e1, . . . , en is the standard basis of Rn.

Lemma 3.9 The solutions u of problem (35) are, up to dilations and translations, of the form

u = z0(Ax),

where A is a matrix which satisfies

(36) AG
−1
AT = I, νg(0) =

∑
j

(A−1)jnej .

In particular, up to dilations, one has that

z0 + wg(0)(z0) = z0(A ·).

13



Proof. First of all we prove the existence of a matrix A satisfying (36). The first equality simply means

that the bilinear form represented by the matrix G
−1

can be diagonalized, and this is standard. The
matrix A which satisfies the first equation in (36) is defined uniquely up to multiplication on the left by
an orthogonal matrix. Let (x1, . . . , xn) be the co-ordinates with respect to the standard basis (e1, . . . , en)
of Rn, let (f1, . . . , fn) be the basis given by f = (A−1)Te, and let (y1, . . . , yn) be the co-ordinates with
respect to this new basis. This implies the relation between the co-ordinates x = Ay and the first of (36)
implies that the bilinear form gij(0) is diagonal with respect to y1, . . . yn. Moreover, by the transitive
action of O(n) over Sn−1 we can ask that fn = ν; this is exactly the second equation in (36). In this way
the matrix A is determined up to multiplication on the left by O(n− 1).

We now prove that the function z̃0 = z0(Ax) = z0(y) is a solution of (35). First of all, since νg(0) is
g(0)-orthogonal to ∂Rn−1, the domain xn > 0 coincides with yn > 0 and the equation in the interior is,
by formula (36)

−4
(n− 1)

(n− 2)

n∑
i,j=1

D2
xixj z̃0(x) = −4

(n− 1)

(n− 2)

∑
i,j

gijAliAkjD
2
ykyl

z0(Ay) = z̃
n+2
n−2

0 (x).

Moreover, since ν = fn =
∑
j(A
−1)Tnjej =

∑
j(A
−1)jnej , it turns out that on ∂Rn+

∂z̃0

∂ν
(x) =

∑
j

(A−1)jnDxjz0(Ay) =
∑
j,k

(A−1)jnAkjDykz0(Ay) = Dynz0(Ay) = cz̃
n
n−2

0 (x).

Hence also the boundary condition is satisfied. Moreover, the function z0 ∈ D1,2(Rn+) is the unique

solution up to dilation and translation of problem (Y ) with gij = Id, see [14]. As pointed out before,
if A and A′ are two matrices satisfying (36), they differ up to O(n − 1). Then it is easy to check that
z0(Ax) = z0(A′x) and hence z̃0 is unique up to dilation and translation. This concludes the proof.

Corollary 3.10 The quantity fg(0)(z0 + w0(z0)) is independent of g(0). Precisely one has:

fg(0)(z0 + w0(z0)) = bc.

Proof. There holds

fg(0)(z0 + wg(0)(z0)) = 2
(n− 1)

(n− 2)

∫
Rn+

∑
i,j,k,l

gij(0)AkiAljDkz0(Ay)Dlz0(Ay)dVg(0)(y)

− 1

2∗

∫
Rn+
|z0(Ay)|2

∗
dVg(0)(y)− c(n− 2)

∫
∂Rn+
|z0(Ay)|2

n−1
n−2 dσg(0)(y).

Using the change of variables x = Ay, and taking into account equations (12) and (36) we obtain the
claim. This concludes the proof.

Lemma 3.11 There holds

(37) wgδ(z0)→ wg(0) as δ → 0.

Proof. Define H
δ

: D1,2(Rn+)× Rn × Zc → D1,2(Rn+)× Rn by setting

H
δ
(w,α, z) =

(
∇fgδ(z + wg(0) + w)− αż

(w, ż)

)
.
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One has that

∇fgδ(z + wg(0) + w) = ∇fgδ(z + wg(0)) +D2fgδ(z + wg(0))[w] + ϑ(w)

where

ϑ(w) :=

∫ 1

0

(
D2fgδ(z + wg(0) + sw)−D2fgδ(z + wg(0))

)
[w]ds.

Recall that D2fgδ(z) is invertible on (TzZ
c
)⊥. Since wg(0) satisfies (jjj), then also D2fgδ(z + wg(0))

is invertible on (TzZ
c
)⊥. As a consequence, the equation ∇fgδ(z + wg(0) + w) = 0, w ∈ (TzZ

c
)⊥ is

equivalent, on (TzZ
c
)⊥, to

w = −
(
D2fgδ(z + wg(0))

)−1 [∇fgδ(z + wg(0)) + ϑ(w)
]

In addition, by Remark 3.5, we can use the estimates corresponding to (19) of Lemma 3.1 and to (iii) of
Proposition 3.2, to infer that

ϑ(w) =

∫ 1

0

(
D2fgδ(z + wg(0) + sw)−D2fgδ(z + wg(0))

)
[w]ds = o(‖w‖).

Then, repeating the arguments used in Subsection 3.2 with small changes, one can show that the equation

H
δ

= 0 has a unique solution w = ω such that

‖ω‖ ≤ C · ‖∇fgδ(z + wg(0))‖.

From (34) and (31) it follows that ‖ω‖ → 0 as δ → 0. Since both wg(0) + ω and wgδ solve (on (TzZ
c
)⊥)

the same equation, we infer by uniqueness that wgδ = wg(0) + ω. Finally, since ‖ω‖ → 0 as δ → 0, then
(37) follows.

Remark 3.12 All the preceding discussion has been carried out by taking the stereographic projection
σp through an arbitrary p ∈ Sn−1. We are interested to the limit (23). When µ→ 0 then ξ → ξ for some
ξ ∈ Sn−1 and it will be convenient to choose p = −ξ.

We are now in position to give:

Proof of Proposition 3.4. As pointed out in Remark 3.12, we take p = −ξ and use all the preceding
results proved so far in this Subsection. With this choice, when (µ, ξ) → (0, ξ) with ξ = |ξ| · ξ, zµ,ξ
corresponds to zµ′ := zµ′,0, for some µ′ → 0.

Next, in view of (26), we will show that

lim
µ′→0

fg(zµ′ + wg(zµ′)) = bc.

By Corollary 3.10, bc = fg(0)(z0 + wg(0)) and hence we need to prove that

lim
µ′→0

[
fg(zµ′ + wg(zµ′))− fg(0)(z0 + wg(0))

]
= 0.

Using (30), we have
fg(zµ′ + wg(zµ′)) = fg(zµ′ + Tµ′wgµ′ (z0)).

Then we can write

fg(zµ′ + wg(zµ′))− fg(0)(z0 + wg(0)) = fg(zµ′ + Tµ′wgµ′ (z0))

= fg(zµ′ + Tµ′wgµ′ (z0))− fg(zµ′ + Tµ′wg(0)(z0))

+ fg(zµ′ + Tµ′wg(0)(z0))− fg(0)(z0 + wg(0)).
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From (17) with Ic substituted by fg, we infer∣∣∣fg(zµ′ + Tµ′wgµ′ (z0))− fg(zµ′ + Tµ′wg(0)(z0))
∣∣∣ ≤ C · ‖Tµ′wgµ′ (z0)− Tµ′wg(0)(z0)‖

≤ C · ‖wgµ′ (z0)− wg(0)(z0)‖
= o(1) as µ′ → 0.

Using zµ′ = Tµ′z0 and (27), we deduce

fg(zµ′ + Tµ′wgµ′ (z0)) = fg

(
Tµ′(z0 + wgµ′ (z0))

)
= fgµ′ (z0 + wg(0)).

Finally ∣∣∣fg(zµ′ + Tµ′wgµ′ (z0))− fg(0)(z0 + wg(0))
∣∣∣ =

∣∣∣fgµ′ (z0 + wg(0))− fg(0)(z0 + wg(0))
∣∣∣→ 0,

according to Lemma 3.7. Since the above arguments can be carried out uniformly with respect to
ξ′ ∈ Sn−1, the proof is completed.

4 The scalar curvature problem

In this section the value of c is fixed. Therefore its dependence will be omitted. So we will write Iε
instead of Icε , I0 instead of Ic0 , etc.

4.1 The abstract setting

Solutions of problem (Pε) can be found as critical points of the functional Iε : H1(B)→ R defined as

Iε(u) = I0(u)− εG(u)

where the unperturbed functional Ic0(u) is defined by (see Section 2)

I0(u) =
1

2
‖u‖21 −

1

2∗

∫
B

|u|2
∗
− c(n− 2)

∫
Sn−1

|u|2
n−1
n−2

and the perturbation G has the form

G(u) =
1

2∗

∫
B

K(x)|u|2
∗
dx+ (n− 2)

∫
Sn−1

h(x)|u|2
n−1
n−2 dσ.

The existence of critical points of Iε will be faced by means of the perturbation theory studied in [1].
Precisely, let us recall that I0 possesses an n-dimensional manifold Z = Zc, given by (6). Moreover, Z
is non-degenerate in the sense that (i) − (ii) of Lemma 2.3 hold true. Then the results of [1] lead to
consider the finite dimensional functional Γ := G|Z and give rise to the following Theorem:

Theorem 4.1 In the preceding setting, let us suppose that either

(a) Γ has a strict maximum (minimum) on Z; or

(b) there exists an open subset Ω ⊂⊂ Z such that deg(Γ′,Ω, 0) 6= 0.

Then Iε has a critical point close to Z, provided ε is small enough.
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In our specific case, the function Γ(µ, ξ) = G(zµ,ξ) has the expression

(38) Γ(µ, ξ) =
1

2∗

∫
B

K(x)z2∗

µ,ξ(x)dx+ (n− 2)

∫
Sn−1

h(σ)z
2

(n−1)
(n−2)

µ,ξ (σ)dσ,

where µ > 0 and ξ ∈ Rn are related to c by (5), namely by

µ2 + |ξ|2 − cκµ− 1 = 0.

In order to apply the preceding abstract result we need to study the behaviour of Γ at the boundary
of Z, which is given by

∂Z = {zµ,ξ0 : µ = 0, |ξ0| = 1}.
The following lemma will be proved in the Appendix and describes the behaviour of Γ at ∂Z. Below

a1, . . . , a6 denote positive constants defined in the Appendix.

Lemma 4.2 Let |ξ0| = 1 and let ν denote the outher normal direction to ∂Z at (0, ξ0). Γ can be extended
to ∂Z and there results:

(a) Γ(0, ξ0) = a1K(ξ0) + a2h(ξ0);

(b) ∂ν Γ(0, ξ0) = a3K
′(ξ0) · ξ0;

(c) suppose that K ′(ξ0) · ξ0 = 0 and let n > 3. Then

∂2
ν Γ(0, ξ0) = 4

[
a4∆TK(ξ0) + a5D

2K(ξ0)[ξ0, ξ0] + a6∆Th(ξ0)
]
.

Furthermore, if n = 3 and ∆Th(ξ0) 6= 0, then

∂2
ν Γ(0, ξ0) =

{
+∞ provided ∆Th(ξ0) > 0,

−∞ provided ∆Th(ξ0) < 0.

The above Lemma is the counterpart of the calculation carried out in [2] for the Scalar Curvature Problem
on Sn.

4.2 A general existence result

Let us consider the auxiliary function ψ : Sn−1 → R defined by

ψ(x) = a1K(x) + a2h(x), x ∈ Sn−1.

If x ∈ Crit(ψ) we denote by m(x, ψ) its Morse index.

Theorem 4.3 Suppose that either

(a) there exists an absolute maximum (resp. minimum) p ∈ Sn−1 of ψ such that K ′(p) · p < 0 (resp.
K ′(p) · p > 0);

or

(b) ψ is a Morse function satisfying

(39) K ′(x) · x 6= 0, ∀x ∈ Crit(ψ);

(40)
∑

x∈Crit(ψ), K′(x)·x<0

(−1)m(x,ψ) 6= 1.

Then for |ε| sufficiently small, problem (Pε) has a positive solution.
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Proof. We look for critical points of Γ on Z ' B. Lemma 4.2-(a) and the notation introduced before
says that Γ|∂Z = ψ

(a) Let p0 denote the point where Γ achieves its absolute maximum on the compact set Z = Z ∪ ∂Z.
Lemma 4.2-(b) and the preceding assumption (a) imply that p0 ∈ Z. Then the existence of a critical
point of Iε, for |ε| small, follows from Theorem 4.1-(a).

(b) According to Lemma 4.2-(b), if (39) holds then ∂νΓ(p) 6= 0 at any critical point of Γ|∂Z . Hence Γ
satisfies the general boundary conditions on ∂Z, see [19]. Moreover, setting

∂Z− = {(0, ξ0) ∈ ∂Z : ∂νΓ(ξ0) < 0},

there results
∂Z− = {(0, ξ0) : |ξ0| = 1, K ′(ξ0) · ξ0 < 0}.

In particular, the critical points of ψ on the negative boundary ∂Z− are precisely the x ∈ Crit(ψ) such
that K ′(x) · x < 0. Then, by a well known formula, see [13], we infer that

(41) deg(Γ′, Z, 0) = 1−
∑

x∈Crit(ψ):K′(x)·x<0

(−1)m(x,ψ).

Hence, by (40), deg(Γ′, Z, 0) 6= 0 and Theorem 4.1-(b) applies yielding the existence of a critical point of
Iε, for |ε| small.

Remarks 4.4 (a) If h ≡ 0 then ψ equals, up to the positive constant a1, K. Hence the assumption made
in case (b) is precisely condition (K1), while (39) and (40), are nothing but conditions (K2) and (K3).
As a consequence, Theorem 4.3-(a) implies Theorem 1.2 and Theorem 4.3-(b) implies Theorem 1.3.

(b) Theorem 4.3-(b) is the counterpart of the results of [16] where it is taken c = h = 0 but R′ is
possibly not close to a constant. Conditions like (b) are reminiscent of conditions used by Bahri-Coron [8]
dealing with the scalar curvature problem on S3, see also [2, 17] for results on Sn. In contrast, assumption
(a) is a new feature due to the presence of the boundary and has no counterpart in the problem on all
Sn.

(c) Theorem 4.3 can be the starting point to prove a global result. This will be carried over in a
future paper by the third Author, see [18]. Here we linit ourselves to point out that (41) can be used to
evaluate the degree of I ′ε. Actually, since z is a Mountain Pass critical point, the multiplicative property
of the degree immediately implies that

(42) deg(I ′ε, Br, 0) = (−1) · deg(Γ′, Z, 0) =
∑

x∈Crit(ψ):K′(x)·x<0

(−1)m(x,ψ) − 1.

Our second general existence result deals with the case in which

(43) K ′(x) · x = 0, ∀x ∈ Crit(ψ).

In such a case, motivated by Lemma 4.2-(c), we introduce the function Ψ : Sn−1 → R,

Ψ(x) = a4∆TK(x) + a5D
2K(x)[x, x] + a6∆Th(x).

Let us note that, according to Lemma 4.2-(c) there results ∂2
νΓ(0, ξ0) = 4Ψ(ξ0).
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Theorem 4.5 Suppose that (43) holds and that

(44) Ψ(x) 6= 0, ∀x ∈ Crit(ψ).

Let ψ be a Morse function and assume that

(45)
∑

x∈Crit(ψ),Ψ(x)<0

(−1)m(x,ψ) 6= 1.

Furthermore, if n = 3, we also assume that ∆Th(x) 6= 0 for all x ∈ Crit(ψ).
Then for |ε| sufficiently small, problem (Pε) has a solution

Proof. The proof will make use of arguments similar to those emploied for Theorem 4.3-(b). But, unlike
above, the theory of critical points under general boundary conditions cannot be applied directly because
now (43) implies that ∂νΓ = 0 at all the critical points of ψ. In order to overcome this problem, we consider
for δ > 0 sufficiently small, the set Zδ := {(µ, ξ) ∈ Z : µ > δ} with boundary ∂Zδ = {(µ, ξ) ∈ Z : µ = δ}.
Since ψ is a Morse function, it readily follows that for any ξ0 ∈ Crit(ψ) there exists (for δ small enough)
a unique ξδ such that

(i) (δ, ξδ) ∈ ∂Zδ and ξδ → ξ0 as δ → 0;

(ii) ξδ is a critical point of Γ|∂Zδ ; moreover, Γ|∂Zδ has no other critical point but ξδ;

(iii) the Morse index of ξδ is the same m(ξ0, ψ);

Furthermore, we claim that,

(iv) Γ verifies the general boundary conditions on Zδ.

Actually, (44), or ∆Th(ξ0) 6= 0 if n = 3, jointly with Lemma 4.2-(c), implies that ∂νΓ(δ, ξδ) 6= 0 for δ
small. More precisely, ∂νΓ(δ, ξδ) < 0 iff ξδ → ξ0 with Ψ(ξ0) < 0. Therefore, the critical points of Γ|∂Zδ on
the negative boundary ∂Z−δ are in one-to-one correspondence with the x ∈ Crit(ψ) such that Ψ(x) < 0.
From the above arguments we infer that

deg(Γ′, Zδ, 0) = 1−
∑

x∈Crit(ψ):Ψ(x)<0

(−1)m(x,ψ).

Then (45) implies that deg(Γ′, Zδ, 0) 6= 0 and the result follws.

Remarks 4.6 (a) If K ≡ 0 then, up to positive constants, ψ = h and Ψ = ∆Th and thus Theorem 1.4
is a particular case of Theorem 4.5.

(b) It can be shown that our arguments can be adapted to handle an equation like (1) with R′ = εK
and h′ = c+ εh, which can be seen as an extension of (3) where R′ = 0 and c = 1 is taken. This would
lead to improve the results of [9]. For brevity, we do not carry out the details here.

(c) In all the above results we can deal with −Γ instead of Γ. In such a case the condition (40)
or (45) become

∑
x∈Crit(ψ),Ψ(x)>0(−1)m(x,ψ) 6= (−1)n−1,

∑
x∈Crit(ψ), K′(x)·x>0(−1)m(x,ψ) 6= (−1)n−1,

respectively.

4.3 The symmetric case

When K and h inherit a symmetry one can obtain much more general results. They can be seen as the
counterpart of the ones dealing with the Scalar Curvature problem on Sn discussed in [4].

Theorem 4.7 Let us suppose that K and h are invariant under the action of a group of isometries
Σ ⊂ O(n), such that Fix(Σ) = 0 ∈ Rn. Then for |ε| sufficiently small, problem (Pε) has a solution.
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Proof. The proof relies on the arguments of [4, Sec. 4]. For the sake of brevity, we will be sketchy,
referring to such a paper for more details. We use the finite dimensional reduction discussed in the
Subsection 3.2, with Ic = Iε and Zc = Z, see Remark 3.3. From those results we infer that the manifold

Zε = {zµ,ξ + wε(zµ,ξ) : µ, ξ satisfying (5)}

is a natural constraint for Iε. Let us recall that here w = wε(zµ,ξ) is the solution of the equation

∇Iε(zµ,ξ + w) ∈ Tzµ,ξZ.

According to Remark 3.3, it suffices to find a critical point of Φε(µ, ξ) := Iε(zµ,ξ + wε(zµ,ξ)). It is
possible to show that Φε is invariant under the action τ of a group acting on Z and depending upon
Σ. Moreover, from the fact that Fix(Σ) = {0} it follows that (µ, ξ) ∈ Fix(τ) iff ξ = 0 and (hence)
µ = µ0 := 1

2

(
cκ+

√
c2κ2 + 4

)
. Plainly, Φε has a critical point at µ = µ0, ξ = 0, which gives rise to a

solution of (Pε).
For the reader convenience, let us give some more details in the specific case that K and h are even

functions, when the arguments do not require new notation. We claim that if K and h are even then
Φε is invariant under the action τ given by τ : (µ, ξ) 7→ (µ,−ξ). In other words, we will show that there
results

(46) Φε(µ, ξ) = Φε(µ,−ξ).

In order to prove (46), we first remark that zµ,−ξ(x) = zµ,ξ(−x). From this and using the fact that K
and h are even, one checks that w = wε(zµ,ξ)(−x) satisfies the equation, defining the natural constraint
Zε,

∇Iε(zµ,−ξ + w) ∈ Tzµ,−ξZ,

By uniqueness, it follows that wε(zµ,ξ)(−x) = wε(zµ,−ξ)(x). Then one infers:

Iε(zµ,−ξ(x) + wε(zµ,−ξ)(x)) = Iε(zµ,ξ(−x) + wε(zµ,ξ)(−x)) = Iε(zµ,ξ + wε(zµ,ξ)),

proving (46).

Remarks 4.8 (a) Coming back to the Scalar Curvature problem on the upper half sphere Sn+, an even
function K corresponds to prescribing a scalar curvature on Sn+ which is invariant under the symmetry
(x1, . . . , xn, xn+1) 7→ (−x1, . . . ,−xn, xn+1).

(b) Using again the arguments of [4] one could treat the invariance under a group Σ such that
Fix(Σ) 6= {0}.

A Appendix

A.1 Proofs of technical Lemmas

First we prove

Lemma A.1 Given M > 0, there exists C > 0 such that for all c > −M there holds

(47) ‖z‖ ≤ C · (1 + |c|)−
n−2
2 for all z ∈ Zc.

Proof. By symmetry it suffices to take ξ = 0 and consider z = zµ. As c → +∞ one has that µ ∼ κc
and zµ ∼ µ(n−2)/2 in B. Then the lemma follows by a straight calculation.
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Now we start by proving equation (15). Since it is clearly ∇Ic0(z) = 0, it is sufficient to estimate the
quantity ‖∇Ic(z)−∇Ic0(z)‖. Given v ∈ H1(B) and setting

α1 = 4
(n− 1)

(n− 2)

∫
B

∇gz · ∇gv dVg − 4
(n− 1)

(n− 2)

∫
B

∇z · ∇v dV0; α2 =

∫
B

Rg z v dVg;

α3 =

∫
B

z
n+2
n−2 v dV0 −

∫
B

z
n+2
n−2 v dVg; α4 = 2(n− 1)

∫
∂B

hg z v dσg;

α5 = 2(n− 1) c

∫
∂B

z
n
n−2 v dσg − 2(n− 1) c

∫
∂B

z
n
n−2 v dσ0,

there holds

(48) (∇Ic(z)−∇Ic0(z), v) = α1 + α2 + α3 + α4 + α5.

As far as α1 is concerned, taking into account of equations (12), (14) and the fact that ‖z‖ ≤ C · (1 +

|c|)−n−2
2 (see Lemma A.1) one deduces that

(49) |α1| ≤ C
∫
B

|∇gz · ∇gv −∇z · ∇v| dx+ C

∫
B

|∇z · ∇v| |dVg − dV0| ≤ C · ε · (1 + |c|)−
n−2
2 · ‖v‖.

Turning to α2 we recall that the expression of Rg as a function of g, is of the type

Rg = DΓ +G2; Γ = Dg, ⇒ Rg = D2g + (Dg)2.

We start by estimating the quantity
∫
B
Rg z v dV0. Integrating by parts, the term

∫
B
D2g z v dV0

transforms into ∫
B

D2g z v dV0 =

∫
∂B

Dg z v dσ0 +

∫
B

Dg D(zv)dV0.

Hence, if g ∈ Gε (see expression (2)), from the Hölder inequality it follows that∫
B

Rgzv dV0 '
∫
B

(D2g + (Dg)2)zv dV0 ≤ C · ε · ‖z‖ · ‖v‖,

and hence

(50) |α2| ≤
∫
B

|Rg z v | dV0 +

∫
B

|Rg z v||dVg − dV0| ≤ C · ε · (1 + |c|)−
n−2
2 · ‖v‖.

With simple estimates one can also prove that

(51) |α3| ≤ C · ε · (1 + |c|)−
n+2
2 · ‖v‖.

The function hg is of the form hg = Dg so, taking into account (2) one finds

(52) |α4| ≤ C · ε · (1 + |c|)−
n−2
2 · ‖v‖.

In order to estimate the last term α5, using the continuous embedding H1(B) ↪→ L2n−1
n−2 (Sn−1) and the

Hölder inequality one deduces that

|α5| ≤ C · ε · (1 + |c|) · ‖z‖
n
n−2

L
n
n−2 (Sn−1)

· ‖v‖ ≤ C · ε · (1 + |c|) · (1 + |c|)−n2 · ‖v‖.

Putting together equations (49)-(52) one deduces (15).
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Turning to equation (19) and given v1, v2 ∈ H1(B), there holds

(D2Ic(z + w)−D2Ic(z))[v1, v2] = δ1 + δ2,

where

δ1 =
(n+ 2)

(n− 2)

(∫
B

u
4

n−2 v1 v2 dVg −
∫
B

(u+ w)
4

n−2 v1 v2 dVg

)
δ2 = 2n

(n− 1)

(n− 2)
c

(∫
∂B

u
2

n−2 v1 v2 dσg −
∫
∂B

(u+ w)
2

n−2 v1 v2 dσg

)
.

Using standard inequalities one finds that

|δ1| ≤

{
C · ‖w‖

4
n−2 for n ≥ 6,

C · ‖w‖ ·
(
‖u‖

6−n
n−2 + ‖w‖

6−n
n−2

)
for n < 6;

|δ2| ≤

{
C · (1 + |c|) · ‖w‖

4
n−2 for n ≥ 4,

C · (1 + |c|) · ‖w‖ ·
(
‖u‖

4−n
n−2 + ‖w‖

4−n
n−2

)
for n < 4,

so we obtain the estimate.
We now prove inequality (16). Given v1, v2 ∈ H1(B) and setting

β1 = 4
(n− 1)

(n− 2)

∫
B

∇gv1 · ∇gv2 dVg − 4
(n− 1)

(n− 2)

∫
B

∇v1 · ∇v2 dV0; β2 =

∫
B

Rg v1 v2 dVg;

β3 =
(n+ 2)

(n− 2)

∫
B

z
4

n−2 v1 v2 dV0 −
(n+ 2)

(n− 2)

∫
B

z
4

n−2 v1 v2 dVg; β4 = 2(n− 1)

∫
∂B

hg v1 v2 dσg;

β5 = 2n
(n− 1)

(n− 2)
c

∫
∂B

z
2

n−2 v1 v2 dσg − 2n
(n− 1)

(n− 2)
c

∫
∂B

z
2

n−2 v1 v2 dσ0,

there holds

(53) (D2Ic(z)−D2Ic0(z))[v1, v2] = β1 + β2 + β3 + β4 + β5.

For β1, taking into account equation (14) one finds

(54) |β1| ≤ C
∫
B

|∇gv1 · ∇gv2 −∇v1 · ∇v2| dV0 + C

∫
B

|∇v1 · ∇v2| · |dVg − dV0| ≤ C · ε · ‖v1‖ · ‖v2‖.

Turning to β2 reasoning as for the above term α2 one deduces that

(55) |β2| ≤
∫
B

|Rg z v| dVg ≤ C · ε · ‖v1‖ · ‖v2‖.

In the same way one can prove that

(56) |β3| ≤ C · ε · ‖z‖
4

n−2 · ‖v1‖ · ‖v2‖ ≤ C · ε · (1 + |c|)−2 · ‖v1‖ · ‖v2‖.

For the term β4, similarly to the expression α4 above there holds

(57) |β4| ≤ C · ε · ‖v1‖ · ‖v2‖.

Turning to β5, using the Hölder inequality one deduces that

(58) |β5| ≤ C · c · ε · (1 + |c|) · ‖z‖
2

n−2

L
2

n−2 (Sn−1)
· ‖v1‖ · ‖v2‖ ≤ C · ε · ‖v1‖ · ‖v2‖.

Putting together equations (54)-(58) one deduces inequality (16).
Equation (17) follows from similar computations.
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A.2 Proof of Lemma 4.2

Given ξ0| = 1, we introduce a reference frame in Rn such that en = −ξ0. Let α = α(µ) be such that the
pair (µ, ξ), with ξ = αξ0, satisfies (5). Setting

γ(µ) = Γ(µ,−α(µ)en),

one has that
Γ(0, ξ0) = γ(0), ∂ν Γ(0, ξ0) = −γ′(0), ∂2

ν Γ(0, ξ0) = γ′′(0).

In order to evaluate the above quantities, it is convenient to make a change of variables. This will
considerably simplify the calculation when we deal with γ′(0) and γ′′(0).

Let ψ : Rn+ → B be the map given by

(y′, yn) ∈ Rn+ → (x′, xn) ∈ B; x′ =
2y′

(y′)2 + (yn + 1)2
, xn =

(y′)2 + y2
n − 1

(y′)2 + (yn + 1)2
.

Here and in the sequel,if x ∈ Rn we will set x′ = (x1, . . . , xn−1) so that x = (x′, xn).
By using simple computations it turns out that

γ(µ) = γ̃(µ̃),

where

γ̃(µ̃) =
1

2∗

∫
Rn+
K̃(y)(zcµ̃,0)2∗(y)dy + (n− 2)

∫
∂Rn+

h̃(ω)(zcµ̃,0)2n−1
n−2 (ω)dω,

and

µ̃ =
2µ

1 + µ2 + α(µ)
; K̃(y) = K(ψ(y)).

Let us point out that the derivatives of K and K̃ satisfy the following relations:

DynK̃(0, 0) = 2DxnK(ξ0); Dy′K̃(0, 0) = 2Dx′(ξ0); D2
ynK̃(0, 0) = 4

(
D2
xnK −DxnK

)
(ξ0);

D2
y′K̃(0, 0) = 4

(
D2
x′K −DxnK

)
(ξ0); D2

y′,ynK̃(0, 0) = 4
(
D2
x′,xnK −Dx′K

)
(ξ0).

The change of variables y = µ̃q, ω = µ̃σ yields

(59) γ̃(µ̃) =
1

2∗

∫
Rn+
K̃(µ̃q)(zc1,0)2∗(q)dq + (n− 2)

∫
∂Rn+

h̃(µ̃σ)(zc1,0)2n−1
n−2 (σ)dσ.

Hence, passing to the limit for µ̃→ 0, it follows that

γ(0) = γ̃(0) = a1K̃(0) + a2h̃(0) = a1K(ξ0) + a2h(ξ0),

with

a1 =
1

2∗

∫
Rn+
z2∗

0 (q′, qn − κc/2)dq, a2 = (n− 2)

∫
∂Rn+

z
2n−1
n−2

0 (σ, κc/2)dσ.

Let us now evaluate the first derivative. There holds

γ′(0) =
dγ̃

dµ̃
(0) · dµ̃

dµ
(0) = 2γ̃′(0).

Moreover from formula (59) we deduce

γ̃′(µ̃) =
1

2∗

∫
R+
n

∇K̃(µ̃q) · q |zc1,0(q)|2
∗
dq + (n− 2)

∫
∂Rn+
∇h̃(µ̃σ) · σ |zc1,0(σ)|2

n−1
n−2 (σ)dσ.(60)
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For symmetry reasons when µ̃ → 0, the parallel component to ∂Rn+ in the first integral and the second
integral vanishes, hence it follows that

(61) γ′(0) = 2γ̃′(0) =
2

2∗
DnK̃(0)

∫
Rn+
qn|zc1,0(q)|2

∗
dq = −a3K

′(ξ0) · ξ0,

where

a3 =
4

2∗

∫
Rn+
qnz

2∗

0 (q′, qn − κc/2)dq.

We are interested in the study of the second derivative only in the case in which the first derivative
vanishes, namely when K ′(ξ0) · ξ0 = 0.

As for the second derivative, there holds:

γ̃′′(µ̃) =
1

2∗

∫
R+
n

n∑
i,j=1

D2
ijK̃(µ̃q)qiqj |zc1,0(q)|2

∗
dq

+ (n− 2)

∫
∂Rn+

n−1∑
i,j=1

D2
ij h̃(µ̃σ)σiσj |zc1,0(σ)|2

(n−1)
(n−2) dσ := δ(µ̃) + ρ(µ̃).(62)

Now we have to distinguish the case n = 3 and the case n > 3. In fact the boundary integral ρ(µ̃)
in (62) is uniformly dominated by a function in L1(∂Rn+) if and only if n > 3. However it is possible to
determine the sign of this integral also for n = 3: it turns out that

lim
µ̃→0

δ(µ̃) =
1

2∗(n− 1)

∫
Rn+
|q′|2|zc1,0(q)|2

∗
dq ·∆T K̃(0) +

1

2∗

∫
Rn+
q2
n|zc1,0(q)|2

∗
dq ·D2

nnK̃(0);

and 
limµ̃→0 ρ(µ̃) = (+∞) ·∆T h̃(0), for n = 3;

limµ̃→0 ρ(µ̃) = (n−2)
(n−1)

∫
∂Rn+
|σ|2|zc1,0(σ)|2

(n−1)
(n−2) dσ ·∆T h̃(0), for n > 3.

Hence we have that

γ̃′′(0) =


(+∞) ·∆Th(ξ0) for n = 3;

a4∆TK(ξ0) + a5D
2K(ξ0)[ξ0, ξ0] + a6∆Th(ξ0) for n > 3,

(63)

where

a4 =
4

(n− 1)2∗

∫
Rn+
|q′|2z2∗

0 (q′, qn − κc/2)dq, a5 =
4

2∗

∫
Rn+
q2
nz

2∗

0 (q′, qn − κc/2)dq,

a6 = 4
(n− 2)

(n− 1)

∫
∂Rn+
|σ|2z2n−1

n−2

0 (σ, κc/2)dσ.

Finally, since γ′′(0) = 4γ̃′′(0), the lemma follows.
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