On the Yamabe problem and the Scalar Curvature problems under boundary conditions

Antonio Ambrosetti - YanYan Li - Andrea Malchiodi *

September 16, 2023

1 Introduction

In this paper we prove some existence results concerning a problem arising in conformal differential geometry. Consider a smooth metric g on $B=\left\{x \in \mathbb{R}^{n}:|x|<1\right\}$, the unit ball on $\mathbb{R}^{n}, n \geq 3$, and let $\Delta_{g}, R_{g}, \nu_{g}, h_{g}$ denote, respectively, the Laplace-Beltrami operator, the scalar curvature of (B, g), the outward unit normal to $\partial B=S^{n-1}$ with respect to g and the mean curvature of $\left(S^{n-1}, g\right)$. Given two smooth functions R^{\prime} and h^{\prime}, we will be concerned with the existence of positive solutions $u \in H^{1}(B)$ of

$$
\begin{cases}-4 \frac{(n-1)}{(n-2)} \Delta_{g} u+R_{g} u=R^{\prime} u^{\frac{n+2}{n-2}}, & \text { in } B ; \tag{1}\\ \frac{2}{(n-2)} \partial_{\nu_{g}} u+h_{g} u=h^{\prime} u^{\frac{n}{n-2}}, & \text { on } \partial B=S^{n-1} .\end{cases}
$$

It is well known that such a solution is C^{∞} provided g, R^{\prime} and h^{\prime} are, see [10]. If $u>0$ is a smooth solution of (1) then $g^{\prime}=u^{4 /(n-2)} g$ is a metric, conformally equivalent to g, such that R^{\prime} and h^{\prime} are, respectively, the scalar curvature of $\left(B, g^{\prime}\right)$ and the mean curvature of $\left(S^{n-1}, g^{\prime}\right)$. Up to a stereographic projection, this is equivalent to finding a conformal metric on the upper half sphere $S_{+}^{n}=\left\{\left(x_{1}, \ldots, x_{n+1}\right) \in \mathbb{R}^{n+1}\right.$: $\left.|x|=1, x_{n+1}>0\right\}$ such that the scalar curvature of S_{+}^{n} and the mean curvature of $\partial S_{+}^{n}=S^{n-1}$ are prescribed functions.

In the first part of the paper we deal with the the case in which R^{\prime} and h^{\prime} are constant, say $R^{\prime} \equiv 1$ and $h^{\prime} \equiv c$, when (1) becomes

$$
\begin{cases}-4 \frac{(n-1)}{(n-2)} \Delta_{g} u+R_{g} u=u^{\frac{n+2}{n-2}}, & \text { in } B \tag{Y}\\ \frac{2}{(n-2)} \partial_{\nu_{g}} u+h_{g} u=c u^{\frac{n}{n-2}}, & \text { on } \partial B=S^{n-1}\end{cases}
$$

This will be referred as the Yamabe like problem and was first studied in [10, 11, 12]. More recently, the existence of a solution of (1) has been proved in $[14,15]$ under the assumption that (B, g) is of positive type (for a definition see [14]) and satisfies one of the following assumptions:
(i) (B, g) is locally conformally flat and ∂B is umbilical;
(ii) $n \geq 5$ and ∂B is not umbilical.

Our main result concerning the Yamabe like problem shows that none of (i) or (ii) is required when g is close to the standard metric g_{0} on B. Precisely, consider the following class $\mathcal{G}_{\varepsilon}$ of bilinear forms

$$
\begin{equation*}
\mathcal{G}_{\varepsilon}=\left\{g \in C^{\infty}(B):\left\|g-g_{0}\right\|_{L^{\infty}(B)} \leq \varepsilon,\|\nabla g\|_{L^{n}(B)} \leq \varepsilon,\|\nabla g\|_{L^{n-1}\left(S^{n-1}\right)} \leq \varepsilon\right\} \tag{2}
\end{equation*}
$$

Inequalities in (2) hold if for example $\left\|g-g_{0}\right\|_{C^{1}(B)} \leq \varepsilon$, or if $\left\|g-g_{0}\right\|_{W^{2, n}(B)} \leq \varepsilon$. We will show:

[^0]Theorem 1.1 Given $M>0$ there exists $\varepsilon_{0}>0$ such that for every ε with $\varepsilon \in\left(0, \varepsilon_{0}\right)$, for every $c>-M$ and for every metric $g \in \mathcal{G}_{\varepsilon}$ problem (Y) possesses a positive solution.

In the second part of the paper we will take $g=g_{0}, R^{\prime}=1+\varepsilon K(x), h^{\prime}=c+\varepsilon h(x)$ and consider the Scalar Curvature like problem

$$
\begin{cases}-4 \frac{(n-1)}{(n-2)} \Delta u=(1+\varepsilon K(x)) u^{\frac{n+2}{n-2}}, & \text { in } B \\ \frac{2}{(n-2)} \frac{\partial u}{\partial \nu}+u=(c+\varepsilon h(x)) u^{\frac{n}{n-2}}, & \text { on } S^{n-1}\end{cases}
$$

where $\nu=\nu_{g_{0}}$. The Scalar Curvature like problem has been studied in [16] where a non perturbative problem like

$$
\begin{cases}-4 \frac{(n-1)}{(n-2)} \Delta u=R^{\prime}(x) u^{\frac{n+2}{n-2}}, & \text { in } B \\ \frac{2}{(n-2)} \frac{\partial u}{\partial \nu}+u=0, & \text { on } S^{n-1}\end{cases}
$$

has been considered. We also mention the paper [9] dealing with the existence of solutions of

$$
\begin{cases}\Delta u=0, & \text { in } B \tag{3}\\ \frac{2}{(n-2)} \frac{\partial u}{\partial \nu}+u=(1+\varepsilon h(x)) u^{\frac{n}{n-2}}, & \text { on } S^{n-1}\end{cases}
$$

a problem similar in nature to $\left(P_{\varepsilon}\right)$.
To give an idea of the existence results we can prove, let us consider the particular cases that either $h \equiv 0$ or $K \equiv 0$. In the former, problem $\left(P_{\varepsilon}\right)$ becomes
$\left(P_{\varepsilon, K}\right)$

$$
\begin{cases}-4 \frac{(n-1)}{(n-2)} \Delta u=(1+\varepsilon K(x)) u^{\frac{n+2}{n-2},} & \text { in } B ; \\ \frac{2}{(n-2)} \frac{\partial u}{\partial \nu}+u=c u^{\frac{n}{n-2},} & \text { on } S^{n-1}\end{cases}
$$

Theorem 1.2 Suppose that K satisfies
$\left(K_{1}\right)$ there exists an absolute maximum (resp. minimum) p of $\left.K\right|_{S^{n-1}}$ such that $K^{\prime}(p) \cdot p<0$, resp. $K^{\prime}(p) \cdot p>0$.
Then for $|\varepsilon|$ sufficiently small, $\left(P_{\varepsilon, K}\right)$ has a positive solution.
Another kind of result is the following
Theorem 1.3 Let $\left.K\right|_{S^{n-1}}$ be a Morse function and satisfies

$$
\begin{equation*}
K^{\prime}(x) \cdot x \neq 0, \quad \forall x \in \operatorname{Crit}\left(\left.K\right|_{S^{n-1}}\right) \tag{2}
\end{equation*}
$$

$\left(K_{3}\right)$

$$
\sum_{x \in \operatorname{Crit}\left(\left.K\right|_{S^{n-1}}\right): K^{\prime}(x) \cdot x<0}(-1)^{m(x, K)} \neq 1,
$$

where $m(x, K)$ is the Morse index of $\left.K\right|_{S^{n-1}}$ at x. Then for $|\varepsilon|$ sufficiently small, problem $\left(P_{\varepsilon, K}\right)$ has a positive solution.

When $K \equiv 0$ problem $\left(P_{\varepsilon}\right)$ becomes
$\left(P_{\varepsilon, h}\right)$

$$
\begin{cases}-4 \frac{(n-1)}{(n-2)} \Delta u=u^{\frac{n+2}{n-2},} & \text { in } B \\ \frac{2}{(n-2)} \frac{\partial u}{\partial \nu}+u=(c+\varepsilon h(x)) u^{\frac{n}{n-2}}, & \text { on } S^{n-1} .\end{cases}
$$

Theorem 1.4 Let $h \in C^{\infty}\left(S^{n-1}\right)$ be a Morse function satisfying:

$$
\begin{equation*}
\Delta_{T} h(x) \neq 0, \quad \forall x \in \operatorname{Crit}(h) ; \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
\sum_{x \in \operatorname{Crit}(h): \Delta_{T} h(x)<0}(-1)^{m(x, h)} \neq 1 \tag{2}
\end{equation*}
$$

Then for $|\varepsilon|$ sufficiently small, problem $\left(P_{\varepsilon, h}\right)$ has a positive solution.
The preceding results are particular cases of more general ones, dealing with problem $\left(P_{\varepsilon}\right)$, where assumptions on a suitable combination of K and h are made. See Theorems 4.3 and 4.5 later on. For a comparison with the results of $[9,16]$, we refer to Remarks 4.4 and 4.6 in Section 4.

Solutions of the preceding problems are critical points of the energy functional $I^{c}=I_{g}^{c}: H^{1}(B) \rightarrow \mathbb{R}$,

$$
\begin{align*}
I^{c}(u) & =2 \frac{(n-1)}{(n-2)} \int_{B}\left|\nabla_{g} u\right|^{2} d V_{g}+\frac{1}{2} \int_{B} R_{g} u^{2} d V_{g}-\frac{1}{2^{*}} \int_{B} R^{\prime} u^{2^{*}} d V_{g} \\
& +(n-1) \int_{\partial B} h_{g} u^{2} d \sigma_{g}-c(n-2) \int_{\partial B} h^{\prime}|u|^{2 \frac{n-1}{n-2}} d \sigma_{g} \tag{4}
\end{align*}
$$

In all the cases we will deal with, I^{c} can be written in the form $I^{c}(u)=I_{0}^{c}(u)+O(\varepsilon)$, where

$$
I_{0}^{c}(u)=2 \frac{(n-1)}{(n-2)} \int_{B}|\nabla u|^{2} d x+(n-1) \int_{\partial B} u^{2} d \sigma-\frac{1}{2^{*}} \int_{B}|u|^{2^{*}} d x-c(n-2) \int_{S^{n-1}}|u|^{2 \frac{n-1}{n-2}} d \sigma
$$

and can be faced by means of a perturbation method in critial point theory discussed in [1]. First, in Section 2, we show that I_{0}^{c} has a finite dimensional manifold $Z^{c} \simeq B$ of critical points that is non degenerate, in the sense of [1], see Lemma 2.3. This allows us to perform a finite dimensional reduction (uniformly with respect to $c \geq-M$) that leads to seeking the critical points of I^{c} constrained to Z^{c}. The proof of Theorem 1.1 is carried out in Section 3 and is mainly based upon the study of $I_{Z^{c}}^{c}$. The lack of compactness inherited by I^{c} is reflected on the fact that Z^{c} is not closed. This difficulty is overcome using arguments similar to those emploied in [3, 7]: we show that I^{c} can be extended to the boundary ∂Z^{c} and there results $I_{\mid \partial Z^{c}}^{c} \equiv$ const., see Proposition 3.4.

In Section 4 we deal with the Scalar Curvature like problem. In this case there results $I^{c}(u)=$ $I_{0}^{c}(u)+\varepsilon G(u)$, where G depends upon K and h only, and one is lead to study the finite dimensional auxiliary functional $\Gamma=G_{\mid Z^{c}}$. More precisely, following the approach of [2], we evaluate Γ on ∂Z^{c}, together with its first and second derivative. This permits to prove some general existence results which contain as particular cases Theorems 1.2, 1.3 and 1.4. The last part of section 4 is devoted to a short discussion of the case in which K, h inherit a simmetry. For example, if K and h are even functions, $\left(P_{\varepsilon}\right)$ has always a solution provided ε is small, without any further assumption, see Theorem 4.7.

Finally, in the Appendix we prove some technical Lemmas.
The main results of this paper has been annouced in [5].

Notation

B denotes the unit ball in \mathbb{R}^{n}, centered at $x=0$.
We will work mainly in the functional space $H^{1}(B)$. In some cases it will be convenient to equip $H^{1}(B)$ with the scalar product

$$
(u, v)_{1}=4 \frac{(n-1)}{(n-2)} \int_{B} \nabla u \cdot \nabla v d x+2(n-1) \int_{\partial B} u v d \sigma
$$

that gives rise to the norm $\|u\|_{1}^{2}=(u, u)_{1}$, equivalent to the standard one.

If E is an Hilbert space and $f \in C^{2}(E, \mathbb{R})$ is a functional, we denote by f^{\prime} or ∇f its gradient; $f^{\prime \prime}(u): E \rightarrow E$ is the linear operator defined by duality in the following way

$$
\left(f^{\prime \prime}(u) v, w\right)=D^{2} f(u)[v, w], \quad \forall v, w \in E
$$

σ_{S} denotes the stereographic projection $\sigma_{S}: S^{n}=\left\{x \in \mathbb{R}^{n+1}| | x \mid=1\right\} \rightarrow \mathbb{R}^{n}$ trough the south pole, where we identify \mathbb{R}^{n} with $\left\{x \in \mathbb{R}^{n+1} \mid x_{n+1}=0\right\}$.

More in general, given $p \in S^{n}$, we denote by $\sigma_{p}: \mathbb{R}^{n} \rightarrow S^{n}$ the stereographic projection trough the point p.

The stereographic projections give rise to some isometries in the following way. The projection trough the south pole S of S^{n} gives rise to the isometry $\tau_{S}: H^{1}\left(S^{n}\right) \rightarrow H^{1}(B)$

$$
\tau_{S} u(x)=\frac{2}{1+|x|^{2}} u\left(\sigma_{S}^{-1} x\right), \quad x \in B
$$

Moreover, given $p \in \partial S_{+}^{n}$, the stereographic projection trough p gives rise to the isometry $\tau_{p}: H^{1}\left(S_{+}^{n}\right) \rightarrow$ $E=\mathcal{D}^{1,2}\left(\mathbb{R}_{+}^{n}\right)$ given by

$$
\tau_{p} u(x)=\frac{2}{1+|x|^{2}} u\left(\sigma_{p}^{-1} x\right), \quad x \in \mathbb{R}_{+}^{n}
$$

2 The unperturbed problem

When $\varepsilon=0$, resp. $g=g_{0}$, problem $\left(P_{\varepsilon}\right)$, resp. (Y), coincides with the unperturbed problem

$$
\begin{cases}-4 \frac{(n-1)}{(n-2)} \Delta u=u^{\frac{n+2}{n-2}}, & \text { in } B ; \tag{UP}\\ \frac{2}{(n-2)} \partial_{\nu} u+u=c u^{\frac{n}{n-2}}, & \text { on } \partial B=S^{n-1}\end{cases}
$$

Solutions of problem $(U P)$ can be found as critical points of the functional $I_{0}^{c}: H^{1}(B) \rightarrow \mathbb{R}$ defined as

$$
I_{0}^{c}(u)=\frac{1}{2}\|u\|_{1}^{2}-\frac{1}{2^{*}} \int_{B}|u|^{2^{*}} d x-c(n-2) \int_{S^{n-1}}|u|^{2 \frac{n-1}{n-2}} d \sigma .
$$

Consider the function $z_{0}: \mathbb{R}^{n} \rightarrow \mathbb{R}$,

$$
z_{0}(x)=\left(\frac{\kappa}{1+|x|^{2}}\right)^{\frac{n-2}{2}} ; \quad \kappa=\kappa_{n}=(4 n(n-1))^{\frac{1}{2}} .
$$

The function z_{0} is the unique solution (up to translation and dilation) to the problem in \mathbb{R}^{n}

$$
-4 \frac{(n-1)}{(n-2)} \Delta u=u^{\frac{n+2}{n-2}}, \quad \text { in } \mathbb{R}^{n} ; \quad u>0
$$

We also set

$$
z_{\mu, \xi}=\mu^{-\frac{n-2}{2}} z_{0}((x-\xi) / \mu), \quad z_{\mu}=\mu^{-\frac{n-2}{2}} z_{0}(x / \mu) .
$$

By a stright calculation it follows that $z_{\mu, \xi}$ is a critical points of I_{0}^{c}, namely solutions of the problem $(U P)$, iff

$$
\begin{equation*}
\mu^{2}+|\xi|^{2}-c \kappa \mu-1=0, \quad \mu>0 \tag{5}
\end{equation*}
$$

The set

$$
\begin{equation*}
Z^{c}=\left\{z_{\mu, \xi}: \mu^{2}+|\xi|^{2}-c \kappa \mu-1=0\right\} \tag{6}
\end{equation*}
$$

is an n-dimensional manifold, diffeomorphic to a ball in \mathbb{R}^{n}, with boundary ∂Z^{c} corresponding to the parameter values $\mu=0,|\xi|=1$.

We need to study the eigenvalues of $I_{0}^{\prime \prime}\left(z_{\mu, \xi}\right)$, with $z_{\mu, \xi} \in Z^{c}$. Recall that, by definition, $\lambda \in \mathbb{R}$ is an eigenvalue of $I_{0}^{\prime \prime}\left(z_{\mu, \xi}\right)$ if there exists $v \in H^{1}(B), v \neq 0$ such that $I_{0}^{\prime \prime}\left(z_{\mu, \xi}\right)[v]=\lambda v$ and this means that v is solution of the linear problem

$$
\begin{cases}-4 \frac{(n-1)}{(n-2)}(1-\lambda) \Delta v=\frac{n+2}{n-2} z_{\mu, \xi}^{\frac{4}{n-2}} v, & \text { in } B \tag{7}\\ 4 \frac{(n-1)}{(n-2)}(1-\lambda) \partial_{\nu} v=2(n-1)\left(c \frac{n}{(n-2)} z_{\mu, \xi}^{\frac{2}{n-2}}+\lambda-1\right) v, & \text { on } S^{n-1}\end{cases}
$$

The following lemma is well known.
Lemma 2.1 (a) $\lambda=0$ is an eigenvalue of (7) and the corresponding eigenspace is n dimensional and coincides with the tangent space to Z^{c} at $z_{\mu, \xi}$, namely is spanned by $D z_{\mu, \xi}$.
(b) (7) has precisely one negative eigenvalue $\lambda_{1}(c)$; all the remaining eigenvalues are positive.

Item (a) is proved in [14]. Item (b) easily follows from the fact that $z_{\mu, \xi}$ is a Mountain Pass critical point of I_{0}^{c}.

Let $\lambda_{2}(c)$ denote the smallest positive eigenvalue of $I_{0}^{\prime \prime}\left(z_{\mu, \xi}\right)$.
The main result of this section is the following one:
Lemma 2.2 For all $M>0$ there exists a positive constant C_{M} such that

$$
\frac{1}{C_{M}} \leq\left|\lambda_{i}(c)\right| \leq C_{M}, \quad \forall c \geq-M, \quad i=1,2
$$

Remark. There is a numerical evidence that $\lambda_{2}(c) \downarrow 0$ as $c \downarrow-\infty$.
Proof. We will prove separately that $\left|\lambda_{i}(c)\right| \leq C_{M}$ and that $\frac{1}{C_{M}} \leq\left|\lambda_{i}(c)\right|$. For symmetry reasons it is sufficient to take $z_{\mu, \xi}=z_{\mu}$, namely to take $\xi=0$. In such a case μ depends only on ξ and (5) yields

$$
\mu(c)=\frac{1}{2}\left(\kappa c+\sqrt{\kappa^{2} c^{2}+4}\right) .
$$

Case 1. $\left|\lambda_{i}(c)\right| \leq C_{M}$. By contradiction suppose there exists a sequence $c_{j} \rightarrow+\infty$ such that $\left|\lambda_{i}\left(c_{j}\right)\right| \rightarrow$ $+\infty, i=1,2$. Let v_{j} denote an eigenfunction of (7) with $\lambda=\lambda_{i}\left(c_{j}\right)$. Then v_{j} solves the problem

$$
\begin{cases}\Delta v_{j}=a_{j}(x) v_{j}, & \text { in } B \tag{8}\\ \partial_{\nu} v_{j}=b_{j}(x) v_{j}, & \text { on } S^{n-1}\end{cases}
$$

where

$$
\begin{aligned}
a_{j}(x) & =\frac{1}{\left(\lambda_{i}\left(c_{j}\right)-1\right)} \frac{n+2}{4(n-1)} z_{\mu\left(c_{j}\right)}^{\frac{4}{n-2}}(x), \quad x \in B \\
b_{j}(x) & =\frac{n-2}{2\left(1-\lambda_{i}\left(c_{j}\right)\right)}\left(c_{j} \frac{n}{(n-2)} z_{\mu\left(c_{j}\right)}^{\frac{2}{n-2}}(x)+\lambda_{i}\left(c_{j}\right)-1\right), \quad x \in S^{n-1} .
\end{aligned}
$$

Above, it is worth pointing out that b_{j} is constant on S^{n-1}. Actually, there results

$$
z_{\mu}^{\frac{2}{n-2}}(x)=\kappa \mu^{-1}\left(1+\frac{1}{\mu^{2}}\right)^{-1}, \quad \forall x \in S^{n-1}
$$

and hence

$$
b_{j} \equiv \frac{n-2}{2\left(1-\lambda_{i}\left(c_{j}\right)\right)}\left(c_{j} \frac{n}{(n-2)} \cdot \kappa \mu^{-1}\left(c_{j}\right)\left(1+\frac{1}{\mu^{2}\left(c_{j}\right)}\right)^{-1}+\lambda_{i}\left(c_{j}\right)-1\right), \quad \forall x \in S^{n-1}
$$

Moreover, since $\mu \sim \kappa c$ as $c \rightarrow+\infty$, it turns out that

$$
\begin{equation*}
b_{j} \rightarrow-\frac{(n-2)}{2} . \tag{9}
\end{equation*}
$$

Now, integrating by parts we deduce from (8)

$$
\begin{equation*}
\int_{B}\left|\nabla v_{j}\right|^{2} d x+\int_{B} a_{j} v_{j}^{2} d x=b_{j} \int_{S^{n-1}} v_{j}^{2} d \sigma \tag{10}
\end{equation*}
$$

Using (9) and a Poincaré-like inequality, we find there exists $C>0^{1}$

$$
-\int_{B} a_{j} v_{j}^{2} d x \geq C \int_{B} v_{j}^{2} d x
$$

This leads to a contradiction because $a_{j}(x) \rightarrow 0$ in $C^{0}(\bar{B})$ and $v_{j} \not \equiv 0$.
Case 2. $\frac{1}{C_{M}} \leq\left|\lambda_{i}(c)\right|$. Arguing again by contradiction, let $c_{j} \rightarrow+\infty$ and suppose that $\left|\lambda_{i}\left(c_{j}\right)\right| \rightarrow 0$. As before, the corresponding eigenfunctions v_{j} satisfy (10), where now $b_{j} \rightarrow 1$, because $\mu \sim \kappa c$ and $\left|\lambda_{i}\left(c_{j}\right)\right| \rightarrow 0$. Choosing v_{j} is such a way that $\sup _{B}\left|v_{j}\right|=1$, then (10) yields that v_{j} is bounded in $H^{1}(B)$ and hence $v_{j} \rightharpoonup v_{0}$ weakly in $H^{1}(B)$. Passing to the limit in

$$
\int_{B} \nabla v_{j} \cdot \nabla w+\int_{B} a_{j} v_{j} w-\int_{S^{n-1}} b_{j} v_{j} w=0, \quad \forall w \in H^{1}(B)
$$

it immedately follows that v_{0} satisfies

$$
\begin{cases}\Delta v_{0}=0, & \text { in } B \tag{3}\\ \partial_{\nu} v_{0}=v_{0}, & \text { on } S^{n-1}\end{cases}
$$

The solutions of problem $\left(P_{3}\right)$ are explicitly known, namely they are the linear functions an B. We denote by X the vector space of these solutions, which is n-dimensional. To complete the proof we will show that $v_{0} \in X$ leads to a contradiction. We know that $\lambda=0$ is an eigenvalue with multiplicity n, and the eigenvectors corresponding to $\lambda=0$ are precisely the elements of $T_{z_{\mu}} Z^{c}$. Let $u_{j} \in T_{z_{\mu}\left(c_{j}\right)} Z^{c}$ with $\sup _{B}\left|u_{j}\right|=1$. Then, by using simple computations, one can prove that, up to a subsequence, $u_{j} \rightarrow v$ strongly in $H^{1}(B)$ for some function $v \in X$. We can assume w.l.o.g. that $v=v_{0}$ (the weak limit of v_{j}), so it follows that $\left(u_{j}, v_{j}\right) \rightarrow\left\|v_{0}\right\|^{2} \neq 0$. But this is not possible, since v_{j} are eigenvectors corresponding to $\lambda_{1}<0$, while u_{j} are eigenvectors corresponding to $\lambda=0$ and hence they are orthogonal.

In conclusion, taking into account of Lemma 2.2, we can state:
Lemma 2.3 The unperturbed functional I_{0}^{c} possesses an n-dimensional manifold Z^{c} of critical points, diffeomorphic to a ball of \mathbb{R}^{n}. Moreover I_{0}^{c} satisfies the following properties
(i) $I_{0}^{\prime \prime}(z)=I-\mathcal{K}$, where \mathcal{K} is a compact operator for every $z \in Z^{c}$;
(ii) $T_{z} Z^{c}=\operatorname{Ker} D^{2} I_{0}^{c}(z)$ for all $z \in Z^{c}$.

From (i)-(ii) it follows that the restriction of $D^{2} I_{0}^{c}$ to $\left(T_{z} Z^{c}\right)^{\perp}$ is invertible. Moreover, denoting by $L_{c}(z)$ its inverse, for every $M>0$ there exists $C>0$ such that

$$
\begin{equation*}
\left\|L_{c}(z)\right\| \leq C \quad \text { for all } \quad z \in Z^{c} \quad \text { and for all } c>-M \tag{11}
\end{equation*}
$$

[^1]
3 The Yamabe like Problem

3.1 Preliminaries

Solutions of problem (1) can be found as critical points of the functional $I^{c}: H^{1}(B) \rightarrow \mathbb{R}$ defined in (4).
We recall some formulas from [3] which will be useful for our computations. We denote with $g_{i j}$ the coefficients of the metric g in some local co-ordinates and with $g^{i j}$ the elements of the inverse matrix $\left(g^{-1}\right)_{i j}$.

The volume element $d V_{g}$ of the metric $g \in \mathcal{G}_{\varepsilon}$, taking into account (2) is

$$
\begin{equation*}
d V_{g}=|g|^{\frac{1}{2}} \cdot d x=(1+O(\varepsilon)) \cdot d x^{2} \tag{12}
\end{equation*}
$$

The Christoffel symbols are given by $\Gamma_{i j}^{l}=\frac{1}{2}\left[D_{i} g_{k j}+D_{j} g_{k i}-D_{k} g_{i j}\right] g^{k l}$. The components of the Riemann tensor, the Ricci tensor and the scalar curvature are, respectively

$$
\begin{equation*}
R_{k i j}^{l}=D_{i} \Gamma_{j k}^{l}-D_{j} \Gamma_{i k}^{l}+\Gamma_{i m}^{l} \Gamma_{j k}^{m}-\Gamma_{j m}^{l} \Gamma_{i k}^{m} ; \quad R_{k j}=R_{k l j}^{l} ; \quad R=R_{g}=R_{k j} g^{k j} . \tag{13}
\end{equation*}
$$

For a smooth function u the components of $\nabla_{g} u$ are $\left(\nabla_{g} u\right)^{i}=g^{i j} D_{j} u$, so

$$
\begin{equation*}
\left(\nabla_{g} u\right)^{i}=\nabla u \cdot(1+O(\varepsilon)) . \tag{14}
\end{equation*}
$$

From the preceding formulas and from the fact that $g \in \mathcal{G}_{\varepsilon}$ it readily follows that $I^{c}(u)=I_{0}^{c}(u)+O(\varepsilon)$. More precisely, the following lemma holds. The proof is rather technical and is postponed to the Appendix.

Lemma 3.1 Given $M>0$ there exists $C>0$ such that for $c>-M$ and $g \in \mathcal{G}_{\varepsilon}$ there holds

$$
\begin{gather*}
\left\|\nabla I^{c}(z)\right\| \leq C \cdot \varepsilon \cdot(1+|c|)^{-\frac{n-2}{2}}, \quad \forall z \in Z^{c} \tag{15}\\
\left\|D^{2} I^{c}(z)-D^{2} I_{0}^{c}(z)\right\| \leq C \cdot \varepsilon, \quad \forall z \in Z^{c} \tag{16}
\end{gather*}
$$

$\left\|I^{c}(z+w)-I^{c}\left(z+w^{\prime}\right)\right\| \leq C \cdot(1+|c|) \cdot\left(\varepsilon+\rho^{\frac{2}{n-2}}\right) \cdot\left\|w-w^{\prime}\right\|, \forall z \in Z^{c}, w, w^{\prime} \in H^{1}(B),\|w\|,\left\|w^{\prime}\right\| \leq \rho$

$$
\begin{array}{r}
\left\|\nabla I^{c}(u+w)-\nabla I^{c}(u)\right\| \leq C \cdot\|w\| \tag{18}\\
\left(1+\|u\|^{\frac{4}{n-2}}+\|w\|^{\frac{4}{n-2}}+|c| \cdot\|u\|^{\frac{2}{n-2}}+|c| \cdot\|w\|^{\frac{2}{n-2}}\right), \forall u, w \in H^{1}(B) .
\end{array}
$$

Moreover, if $\|u\|$ is uniformly bounded and if $\|w\| \leq 1$ there results

$$
\begin{equation*}
\left\|D^{2} I^{c}(u+w)-D^{2} I^{c}(u)\right\| \leq C \cdot(1+|c|) \cdot\|w\|^{\frac{2}{n-2}} . \tag{19}
\end{equation*}
$$

3.2 A finite dimensional reduction

The aim of this sub-section is to perform a finite dimensional reduction, using Lemma 2.3. Arguments of this kind has been emploied, e.g. in [1]. The first step is to construct, for $g \in \mathcal{G}_{\varepsilon}$, a perturbed manifold $Z_{g}^{c} \simeq Z^{c}$ which is a natural constraint for I^{c}, namely: if $u \in Z_{g}^{c}$ and $\left.\nabla I^{c}\right|_{g} ^{c}(u)=0$ then $\nabla I^{c}(u)=0$.
For brevity, we denote by $\left.\dot{z} \in H^{1}(B)\right)^{n}$ an orthonormal n-tuple in $T_{z} Z^{c}$. Moreover, if $\alpha \in \mathbb{R}^{n}$ we set $\alpha \dot{z}=\sum \alpha_{i} \dot{z}_{i}$.

[^2]Proposition 3.2 Given $M>0$, there exist $\varepsilon_{0}, C>0$, such that $\forall c>-M, \forall z \in Z^{c} \forall \varepsilon \leq \varepsilon_{0}$ and $\forall g \in \mathcal{G}_{\varepsilon}$ there are C^{1} functions $w=w(z, g, c) \in H^{1}(B)$ and $\alpha=\alpha(z, g, c) \in \mathbb{R}^{n}$ such that the following properties hold
(i) w is orthogonal to $T_{z} Z^{c} \quad \forall z \in Z^{c}$, i.e. $(w, \dot{z})=0$;
(ii) $\nabla I^{c}(z+w)=\alpha \dot{z} \quad \forall z \in Z^{c}$;
(iii) $\|(w, \alpha)\| \leq C \cdot \varepsilon \cdot(1+|c|)^{-\frac{n-2}{2}} \quad \forall z \in Z^{c}$.

Furthermore, from (i)-(ii) it follows that
(iv) the manifold $Z_{g}^{c}=\left\{z+w(z, g, c) \mid z \in Z^{c}\right\}$ is a natural constraint for I^{c}.

Proof. Let us define ${ }^{3} H_{g}: Z^{c} \times H^{1}(B) \times \mathbb{R}^{n} \rightarrow H^{1}(B) \times \mathbb{R}^{n}$ by setting

$$
H_{g}(z, w, \alpha)=\binom{\nabla I^{c}(z+w)-\alpha \dot{z}}{(w, \dot{z})}
$$

With this notation, the unknown (w, α) can be implicitly defined by the equation $H_{g}(z, w, \alpha)=(0,0)$.
Setting $R_{g}(z, w, \alpha)=H_{g}(z, w, \alpha)-\partial_{(w, \alpha)} H_{g}(z, 0,0)[(w, \alpha)]$ we have that

$$
H_{g}(z, w, \alpha)=0 \quad \Leftrightarrow \quad \partial_{(w, \alpha)} H_{g}(z, 0,0)[(w, \alpha)]+R_{g}(z, w, \alpha)=0
$$

Let $H_{0}=H_{g_{0}}$. From (11) it follows easily that $\partial_{(w, \alpha)} H_{0}(z, 0,0)$ is invertible uniformly w.r.t. $z \in Z^{c}$ and $c>-M$. Moreover using (16) it turns out that for ε_{0} sufficiently small and for $\varepsilon \leq \varepsilon_{0}$ also the operator $\partial_{(w, \alpha)} H_{g}(z, 0,0)$ is invertible and has uniformly bounded inverse, provided $g \in \mathcal{G}_{\varepsilon}$. Hence, for such g there results

$$
H_{g}(z, w, \alpha)=0 \quad \Leftrightarrow \quad(w, \alpha)=F_{z, g}(w, \alpha):=-\left(\partial_{(w, \alpha)} H_{g}(z, 0,0)\right)^{-1} R_{g}(z, w, \alpha)
$$

We prove the Proposition by showing that the map $F_{z, g}$ is a contraction in some ball $B_{\rho}=\{(w, \alpha) \in$ $\left.H^{1}(B) \times \mathbb{R}^{n}:\|w\|+|\alpha| \leq \rho\right\}$, with ρ of order $\rho \sim \varepsilon \cdot(1+|c|)^{-\frac{n-2}{2}}$. We first show that there exists $C>0$ such that for all $(w, \alpha),\left(w^{\prime}, \alpha^{\prime}\right) \in B_{\rho}$, all $z \in Z^{c}$ and all $g \in \mathcal{G}_{\varepsilon}$, there holds

$$
\left\{\begin{array}{l}
\left\|F_{z, g}(w, \alpha)\right\| \leq C \cdot\left(\varepsilon \cdot(1+|c|)^{-\frac{n-2}{2}}+(1+|c|) \cdot \rho^{\frac{n}{n-2}}\right) \tag{20}\\
\left\|F_{z, g}\left(w^{\prime}, \alpha^{\prime}\right)-F_{z, g}(w, \alpha)\right\| \leq C \cdot(1+|c|) \cdot \rho^{\frac{2}{n-2}} \cdot\left\|(w, \alpha)-\left(w^{\prime}, \alpha^{\prime}\right)\right\|
\end{array}\right.
$$

Condition (20) is equivalent to the following two inequalities

$$
\begin{equation*}
\left\|\nabla I^{c}(z+w)-D^{2} I^{c}(z)[w]\right\| \leq C \cdot\left(\varepsilon \cdot(1+|c|)^{-\frac{n-2}{2}}+(1+|c|) \cdot \rho^{\frac{2}{n-2}}\right) \tag{21}
\end{equation*}
$$

(22)

$$
\left\|\left(\nabla I^{c}(z+w)-D^{2} I^{c}(z)[w]\right)-\left(\nabla I^{c}\left(z+w^{\prime}\right)-D^{2} I^{c}(z)\left[w^{\prime}\right]\right)\right\| \leq C \cdot(1+|c|) \cdot \rho^{\frac{2}{n-2}} \cdot\left\|(w, \alpha)-\left(w^{\prime}, \alpha^{\prime}\right)\right\| \text {. }
$$

Let us first prove (21). There holds

$$
\begin{aligned}
\nabla I^{c}(z+w)-D^{2} I^{c}(z)[w] & =\nabla I^{c}(z+w)-\nabla I^{c}(z)+\nabla I^{c}(z)-D^{2} I^{c}(z)[w] \\
& =\nabla I^{c}(z)+\int_{0}^{1}\left(D^{2} I^{c}(z+s w)-D^{2} I^{c}(z)\right)[w] d s
\end{aligned}
$$

[^3]Hence it turns out that

$$
\left\|\nabla I^{c}(z+w)-D^{2} I^{c}(z)[w]\right\| \leq \nabla I^{c}(z)+\|w\| \cdot \sup _{s \in[0,1]}\left\|D^{2} I^{c}(z+s w)-D^{2} I^{c}(z)\right\|
$$

Using (19) we have

$$
\left\|\nabla I^{c}(z+w)-D^{2} I^{c}(z)[w]\right\| \leq \nabla I^{c}(z)+C \cdot(1+|c|) \cdot \rho^{\frac{n}{n-2}}
$$

Hence from (15) we deduce that

$$
\left\|\nabla I^{c}(z+w)-D^{2} I^{c}(z)[w]\right\| \leq C \cdot\left(\varepsilon \cdot(1+|c|)^{-\frac{n-2}{2}}+(1+|c|) \cdot \rho^{\frac{n}{n-2}}\right)
$$

and (21) follows. We turn now to (22). There holds

$$
\begin{aligned}
\| \nabla I^{c}(z+w)-\nabla I^{c}\left(z+w^{\prime}\right) & -D^{2} I^{c}(z)\left[w-w^{\prime}\right] \| \\
& =\left\|\int_{0}^{1}\left(D^{2} I^{c}\left(z+w+s\left(w^{\prime}-w\right)\right)-D^{2} I^{c}(z)\right)\left[w^{\prime}-w\right] d s\right\| \\
& \leq \sup _{s \in[0,1]}\left\|D^{2} I^{c}\left(z+w+s\left(w^{\prime}-w\right)\right)-D^{2} I^{c}(z)\right\| \cdot\left\|w^{\prime}-w\right\|
\end{aligned}
$$

Using again (19), and taking $\|w\|,\left\|w^{\prime}\right\| \leq \rho$ we have that

$$
\left\|D^{2} I^{c}\left(z+w^{\prime}+s\left(w-w^{\prime}\right)\right)-D^{2} I^{c}(z)\right\| \leq C \cdot(1+|c|) \cdot \rho^{\frac{2}{n-2}}
$$

proving (22). Taking $\rho=2 C \cdot \varepsilon \cdot(1+|c|)^{-\frac{n-2}{2}}$ and $\varepsilon \leq \varepsilon_{0}$, with ε_{0} sufficiently small, there results

$$
\left\{\begin{array}{l}
C \cdot\left(\varepsilon \cdot(1+|c|)^{-\frac{n-2}{2}}+(1+|c|) \cdot \rho^{\frac{n}{n-2}}\right)<\rho \\
C \cdot(1+|c|) \cdot \rho^{\frac{2}{n-2}}<1
\end{array}\right.
$$

Then $F_{z, g}$ is a contraction in B_{ρ} and hence $H_{g}=0$ has a unique solution $w=w(z, g, c), \alpha=\alpha(z, g, c)$ with $\|(w, \alpha)\| \leq 2 C \cdot \varepsilon \cdot(1+|c|)^{-\frac{n-2}{2}}$.

Remark 3.3 In general, the preceding arguments give rise to the following result, see [1]. Let $I_{\varepsilon}(u)=$ $I_{0}(u)+O(\varepsilon)$ denote a C^{2} functional and suppose that I_{0} has an n-dimensional manifold Z of critical points satisfying $(i)-(i i)$ of Lemma 2.3. Then for $|\varepsilon|$ small there exists a unique $w=w_{\varepsilon}(z)$ satisfying (i) - (ii) - (iii) of Proposition 3.2. Furthermore, the manifold $Z_{\varepsilon}=\left\{z+w_{\varepsilon}(z): z \in Z\right\}$ is a natural constraint for I_{ε}. Hence any critical point of $I_{\varepsilon}\left(z+w_{\varepsilon}(z)\right), z \in Z$ is a critical point of I_{ε}.

3.3 Proof of Theorem 1.1

Throughout this subsection we will take ε and c is such a way that Proposition 3.2 applies. The main tool to prove Theorem 1.1 is the following Proposition

Proposition 3.4 There results

$$
\begin{equation*}
\lim _{\mu \rightarrow 0} I^{c}\left(z_{\mu, \xi}+w_{g}\left(z_{\mu, \xi}\right)\right)=b_{c}, \quad \text { uniformly for } \xi \text { satisfying (5). } \tag{23}
\end{equation*}
$$

Hence $\left.I^{c}\right|_{Z_{g}^{c}}$ can be continuously extended to ∂Z_{g}^{c} by setting

$$
\begin{equation*}
\left.I^{c}\right|_{\partial Z_{g}^{c}}=b_{c} \tag{24}
\end{equation*}
$$

Postponing the proof of Proposition 3.4, it is immediate to deduce Theorem 1.1.
Proof of Theorem 1.1. The extended functional I^{c} has a critical point on the compact manifold $Z_{g}^{c} \cup \partial Z_{g}^{c}$. From (24) it follows that either I^{c} is identically constant or it achieves the maximum or the minimum in Z_{g}^{c}. In any case I^{c} has a critical point on Z_{g}^{c}. According to Proposition 3.2, such a critical point gives rise to a solution of (Y).

In order to prove Proposition 3.4 we prefer to reformulate (Y) in a more convenient form using the stereographic projection σ_{p}, trough an appropriate point $p \in \partial S_{+}^{n}$, see Remark 3.6. In this way the problem reduces to study an elliptic equation in \mathbb{R}_{+}^{n}, where calculation are easier. More precisely, let $\tilde{g}_{i j}: \mathbb{R}_{+}^{n} \rightarrow \mathbb{R}$ be the components of the metric g in σ_{p}-stereographic co-ordinates, and let

$$
\begin{equation*}
\bar{g}_{i j}=\left(\frac{1+|x|^{2}}{2}\right)^{2} \tilde{g}_{i j} \tag{g}
\end{equation*}
$$

Then problem (Y) is equivalent to find solutions of

$$
\begin{cases}-4 \frac{(n-1)}{(n-2)} \Delta_{\bar{g}} u+R_{\bar{g}} u=u^{\frac{n+2}{n-2}}, & \text { in } \mathbb{R}_{+}^{n} ; \tag{Y}\\ \frac{2}{(n-2)} \partial_{\nu_{\bar{g}}} u+h_{\bar{g}} u=c u^{\frac{n}{n-2}}, & \text { on } \partial \mathbb{R}_{+}^{n}=\mathbb{R}^{n-1} \\ u>0, \quad u \in \mathcal{D}^{1,2}\left(\mathbb{R}_{+}^{n}\right) & \end{cases}
$$

where the symbols have obvious meaning. Solutions of problem (\bar{Y}) can be found as critical points of the functional $f_{\bar{g}}: \mathcal{D}^{1,2}\left(\mathbb{R}_{+}^{n}\right) \rightarrow \mathbb{R}$ defined in the following way

$$
\begin{aligned}
f_{\bar{g}}(u) & =2 \frac{(n-1)}{(n-2)} \int_{\mathbb{R}_{+}^{n}}\left|\nabla_{\bar{g}} u\right|^{2} d V_{\bar{g}}+\frac{1}{2} \int_{\mathbb{R}_{+}^{n}} R_{\bar{g}} u^{2} d V_{\bar{g}}-\frac{1}{2^{*}} \int_{\mathbb{R}_{+}^{n}} u^{2^{*}} d V_{\bar{g}} \\
& +(n-1) \int_{\partial \mathbb{R}_{+}^{n}} h_{\bar{g}} u^{2} d \sigma_{\bar{g}}-c(n-2) \int_{\partial \mathbb{R}_{+}^{n}}|u|^{2 \frac{n-1}{n-2}} d \sigma_{\bar{g}}
\end{aligned}
$$

In general the transformation (\bar{g}) induces an isometry between $H^{1}(B)$ and $\mathcal{D}^{1,2}\left(\mathbb{R}_{+}^{n}\right)$ given by

$$
u(x) \mapsto \bar{u}(x):=\left(\frac{2}{\left(x^{\prime}\right)^{2}+\left(x_{n}+1\right)^{2}}\right)^{\frac{n-2}{2}} u\left(\frac{2 x^{\prime}}{\left(x^{\prime}\right)^{2}+\left(x_{n}+1\right)^{2}}, \frac{\left(x^{\prime}\right)^{2}+x_{n}^{2}-1}{\left(x^{\prime}\right)^{2}+\left(x_{n}+1\right)^{2}}\right),
$$

where $x^{\prime}=\left(x_{1}, \ldots, x_{n-1}\right)$.
It turns out that

$$
\begin{equation*}
f_{\bar{g}}(\bar{u})=I^{c}(u) \tag{25}
\end{equation*}
$$

as well as

$$
\nabla f_{\bar{g}}(\bar{u})=\nabla I^{c}(u) .
$$

In particular this implies that u solves (Y) if and only if \bar{u} is a solution of (\bar{Y}).
Furthermore, there results

- g_{0} corresponds to the trivial metric $\delta_{i j}$ on \mathbb{R}_{+}^{n};
- z_{0} corresponds to $\bar{z}_{0} \in \mathcal{D}^{1,2}\left(\mathbb{R}_{+}^{n}\right)$ given by

$$
\bar{z}_{0}(x)=z_{0}\left(x-\left(0, a_{0} c\right)\right), \quad x \in \mathbb{R}_{+}^{n} ; \quad a_{0}=\frac{\kappa}{2}
$$

- Z^{c} corresponds to \bar{Z}^{c} given by

$$
\bar{Z}^{c}=\left\{\bar{z}_{\mu, \xi^{\prime}}:=\mu^{-\frac{n-2}{2}} z_{0}\left(\frac{x-\left(\xi^{\prime}, a_{0} c \mu\right)}{\mu}\right), \mu>0, \xi^{\prime} \in \mathbb{R}^{n-1}\right\}
$$

Let us point out that the manifold \bar{Z}^{c} is nothing but $\tau_{p} \circ \tau_{S}^{-1} Z^{c}$ (see Notations).
From the preceding items it follows that the equation

$$
\nabla f_{\bar{g}}(\bar{z}+\bar{w}) \in T_{\bar{z}} \bar{Z}^{c}
$$

have a unique solution $\bar{w} \perp T_{\bar{z}} \bar{Z}^{c}$ and there results

$$
\bar{w}_{\bar{g}}(\bar{z})=\overline{w_{g}(z)}
$$

From this and (25) it follows

$$
\begin{equation*}
I^{c}\left(z+w_{g}(z)\right)=f_{\bar{g}}\left(\bar{z}+\bar{w}_{\bar{g}}(\bar{z})\right) \tag{26}
\end{equation*}
$$

Let us now introduce the metric $\bar{g}^{\delta}(x):=\bar{g}(\delta x), \delta>0$ and let $f_{\bar{g}^{\delta}}: \mathcal{D}^{1,2}\left(\mathbb{R}_{+}^{n}\right) \rightarrow \mathbb{R}$ be the corresponding Euler functional. For all $u \in \mathcal{D}^{1,2}\left(\mathbb{R}_{+}^{n}\right)$ there results

$$
f_{\bar{g}^{\delta}}(u)=f_{\bar{g}}\left(\delta^{\frac{2-n}{2}} u\left(\delta^{-1} x\right)\right)
$$

Introducing the linear isometry $T_{\delta}: \mathcal{D}^{1,2}\left(\mathbb{R}_{+}^{n}\right) \rightarrow \mathcal{D}^{1,2}\left(\mathbb{R}_{+}^{n}\right)$ defined by $T_{\delta}(u):=\delta^{-\frac{n-2}{2}} u(x / \delta)$ this becomes

$$
\begin{equation*}
f_{\bar{g}^{\delta}}(u)=f_{\bar{g}}\left(T_{\delta} u\right) \tag{27}
\end{equation*}
$$

Furthermore, for all $u \in \mathcal{D}^{1,2}\left(\mathbb{R}_{+}^{n}\right)$ one has

$$
\begin{align*}
\nabla f_{\bar{g}}(u) & =T_{\delta} \nabla f_{\bar{g}^{\delta}}\left(T_{\delta}^{-1} u\right) \tag{28}\\
D^{2} f_{\bar{g}}(u)[v, w] & =D^{2} f_{\bar{g}^{\delta}}\left(T_{\delta}^{-1} u\right)\left[T_{\delta}^{-1} v, T_{\delta}^{-1} w\right] \tag{29}
\end{align*}
$$

Arguing as above, there exists $\bar{w}_{\bar{g}^{\delta}}\left(\bar{z}_{0}\right) \in\left(T_{\bar{z}_{0}} \bar{Z}^{c}\right)^{\perp}$ such that

$$
\nabla f_{\bar{g}^{\delta}}\left(\bar{z}_{0}+\bar{w}_{\bar{g}^{\delta}}\right) \in T_{\bar{z}_{0}} \bar{Z}^{c}
$$

and there results

$$
\bar{w}_{\bar{g}^{\delta}}\left(\bar{z}_{0}\right)(x)=\delta^{\frac{n-2}{2}} \bar{w}_{\bar{g}}\left(\bar{z}_{\delta}\right)(\delta x),
$$

namely

$$
\begin{equation*}
\bar{w}_{\bar{g}}\left(\bar{z}_{\delta}\right)=T_{\delta} \bar{w}_{\bar{g}^{\delta}}\left(\bar{z}_{0}\right) . \tag{30}
\end{equation*}
$$

Remark 3.5 From (27), (28), (29) and using the relations between $f_{\bar{g}}$ and I^{c} discussed above, it is easy to check that the estimates listed in Lemma 3.1 hold true, substituting I^{c} with $f_{\bar{g}^{\delta}}$ and z with \bar{z}. A similar remark holds for Proposition 3.2.

We are interested to the behaviour of $f_{\bar{g}^{\delta}}$ as $\delta \rightarrow 0$. To this purpose, we set

$$
f_{\bar{g}(0)}(u)=\int_{\mathbb{R}_{+}^{n}}\left(2 \frac{(n-1)}{(n-2)} \sum_{i, j} \bar{g}^{i j}(0) D_{i} u D_{j} u-\frac{1}{2^{*}}|u|^{2^{*}}\right) d V_{\bar{g}(0)}-c(n-2) \int_{\partial \mathbb{R}_{+}^{n}}|u|^{2 \frac{n-1}{n-2}} d \sigma_{\bar{g}(0)},
$$

which is the Euler functional corresponding to the constant metric $\bar{g}(0)$.

Remark 3.6 Unlike the \bar{g}^{δ}, the metric $\bar{g}(0)$ does not come from a smooth metric on B. This is the main reason why it is easier to deal with (\bar{Y}) instead of (Y).

Lemma 3.7 For all $u \in \mathcal{D}^{1,2}\left(\mathbb{R}_{+}^{n}\right)$ there results

$$
\begin{gather*}
\lim _{\delta \rightarrow 0}\left\|\nabla f_{\bar{g}^{\delta}}(u)-\nabla f_{\bar{g}(0)}(u)\right\|=0 \tag{31}\\
\lim _{\delta \rightarrow 0} f_{\bar{g}^{\delta}}(u)=f_{\bar{g}(0)}(u) \tag{32}
\end{gather*}
$$

Proof. For any $v \in \mathcal{D}^{1,2}\left(\mathbb{R}_{+}^{n}\right)$ there holds

$$
\left(\nabla f_{\bar{g}^{\delta}}(u)-\nabla f_{\bar{g}(0)}(u), v\right)=\theta_{1}+\theta_{2}+\theta_{3}+\theta_{4}+\theta_{5}
$$

where

$$
\begin{aligned}
\theta_{1} & =4 \frac{n-1}{n-2}\left(\int_{\mathbb{R}_{+}^{n}} \nabla_{\bar{g}^{\delta}} u \cdot \nabla_{\bar{g}^{\delta}} v d V_{\bar{g}^{\delta}}-\int_{\mathbb{R}_{+}^{n}} \nabla_{\bar{g}(0)} u \cdot \nabla_{\bar{g}(0)} v d V_{\bar{g}(0)}\right) ; \quad \theta_{2}=\int_{\mathbb{R}_{+}^{n}} R_{\bar{g}^{\delta}} u v d V_{\bar{g}^{\delta}} \\
\theta_{3} & =\int_{\mathbb{R}_{+}^{n}}|u|^{\frac{4}{n-2}} u v\left(d V_{\bar{g}^{\delta}}-d V_{\bar{g}(0)}\right) ; \theta_{4}=2(n-1) \int_{\partial \mathbb{R}^{n-1}} h_{\bar{g}^{\delta}} u v d \sigma_{\bar{g}^{\delta}} \\
\theta_{5} & =2 c(n-1)\left(\int_{\partial \mathbb{R}_{+}^{n}}|u|^{\frac{2}{n-2}} u v d \sigma_{\bar{g}^{\delta}}-\int_{\partial \mathbb{R}_{+}^{n}}|u|^{\frac{2}{n-2}} u v d \sigma_{\bar{g}(0)}\right)
\end{aligned}
$$

Using the Dominated Convergence Theorem and the integrability of $|\nabla u|^{2}$ and of $|u|^{2^{*}}$, it is easy to show that θ_{1}, θ_{3} and θ_{5} converge to zero. As far as θ_{2} is concerned, we first note that the bilinear form $(u, v) \rightarrow \int_{\mathbb{R}_{+}^{n}} R_{\bar{g}} u v d V_{\bar{g}}$ is uniformly bounded for $\bar{g} \in \overline{\mathcal{G}}_{\varepsilon}$, so it turns out that given $\eta>0$ there exists $u_{\eta} \in C_{c}^{\infty}\left(\overline{\mathbb{R}}_{+}^{n}\right)$ such that

$$
\begin{equation*}
\left|\int_{\mathbb{R}_{+}^{n}} R_{\bar{g}^{\delta}} u v d V_{\bar{g}^{\delta}}-\int_{\mathbb{R}_{+}^{n}} R_{\bar{g}^{\delta}} u_{\eta} v d V_{\bar{g}^{\delta}}\right| \leq \eta \cdot\|v\| ; \quad \forall v \in \mathcal{D}^{1,2}\left(\mathbb{R}_{+}^{n}\right) \tag{33}
\end{equation*}
$$

Hence, since it is $R_{\bar{g}^{\delta}}\left(\delta^{-1} x\right)=\delta^{2} R_{\bar{g}}(x)$ (see (13)), it follows that for δ sufficiently small

$$
\left|\int_{\mathbb{R}_{+}^{n}} R_{\bar{g}^{\delta}} u_{\eta} v d V_{\bar{g}^{\delta}}\right| \leq \delta^{2}\left\|R_{\bar{g}}\right\|_{L^{\infty}(B)}\left\|u_{\eta}\right\|_{\infty} \int_{\operatorname{supp}\left(u_{\eta}\right)}|v|=o(1) \cdot\|v\|
$$

So, using (33) and the arbitrarity of η, one deduces that $\theta_{2}=o(1) \cdot\|v\|$. Similar computations hold for the term θ_{4}. In the same way one can prove also (32).

We need a more complete description of $\bar{w}^{0}(\bar{z})$. For this, according to Remark 3.6, we shall study the functional $f_{\bar{g}(0)}$ in a direct fashion. If $g \in \mathcal{G}_{\varepsilon}$ then the constant metric $\bar{g}(0)$ on \mathbb{R}_{+}^{n} satisfies $\|\bar{g}(0)-I d\|_{\infty}=$ $O(\varepsilon)$ and thus $f_{\bar{g}(0)}$ can be seen as a perturbation of the functional

$$
f_{0}(u)=2 \frac{(n-1)}{(n-2)} \int_{\mathbb{R}_{+}^{n}}|\nabla u|^{2} d V_{0}-\frac{1}{2^{*}} \int_{\mathbb{R}_{+}^{n}} u^{2^{*}} d V_{0}-c(n-2) \int_{\partial \mathbb{R}_{+}^{n}}|u|^{2^{\frac{n-1}{n-2}}} d \sigma_{0}
$$

corresponding to the trivial metric $\delta_{i j}$.
Then the procedure used in subsection 3.2 yields to find $\bar{w}^{0}(\bar{z})$ such that
(j) $\bar{w}^{0}(\bar{z})$ is orthogonal to $T_{\bar{z}} \bar{Z}^{c}$;
(jj) $\nabla f_{\bar{g}(0)}\left(\bar{z}+\bar{w}^{0}(\bar{z})\right) \in T_{\bar{z}} \bar{Z}^{c}$;
$(\mathrm{j} \mathrm{jj})\left\|\bar{w}^{0}(\bar{z})\right\| \leq C \cdot \varepsilon \cdot(1+|c|)^{-\frac{n-2}{2}} \quad \forall \bar{z} \in \bar{Z}^{c}$.
The following Lemma proves that a property stronger than $(j j)$ holds.
Lemma 3.8 For all $\bar{z} \in \bar{Z}^{c}$ there results

$$
\begin{equation*}
\nabla f_{\bar{g}(0)}\left(\bar{z}+\bar{w}_{\bar{g}(0)}(\bar{z})\right)=0 . \tag{34}
\end{equation*}
$$

Hence $\bar{z}+\bar{w}_{\bar{g}(0)}(\bar{z})$ solves

$$
\begin{cases}-4 \frac{(n-1)}{(n-2)} \sum_{i, j=1}^{n} \bar{g}^{i j}(0) D_{i j}^{2} u=u^{\frac{n+2}{n-2}} & \text { in } \mathbb{R}_{+}^{n} \tag{35}\\ \frac{2}{(n-2)} \frac{\partial u}{\partial \bar{\nu}}=c u^{\frac{n}{n-2}} & \text { on } \partial \mathbb{R}_{+}^{n}\end{cases}
$$

Here $\bar{\nu}$ is the unit normal vector to $\partial \mathbb{R}_{+}^{n}$ with respect to $\bar{g}(0)$, namely

$$
\bar{g}(0)(\bar{\nu}, \bar{\nu})=1 ; \quad \bar{g}(0)(\bar{\nu}, v)=0, \quad \forall v \in \partial \mathbb{R}_{+}^{n}
$$

Proof. The Lemma is a simple consequence of the invariance of the functional under the transformation $T_{\mu, \xi^{\prime}}: \mathcal{D}^{1,2}\left(\mathbb{R}_{+}^{n}\right) \rightarrow \mathcal{D}^{1,2}\left(\mathbb{R}_{+}^{n}\right)$ defined in the following way

$$
T_{\mu, \xi^{\prime}}(u)=\mu^{-\frac{n-2}{2}} u\left(\frac{x-\left(\xi^{\prime}, 0\right)}{\mu}\right)
$$

This can be achieved with an elementary computation. It then follows that

$$
\bar{w}_{\bar{g}(0)}\left(\bar{z}_{\mu, \xi^{\prime}}\right)=T_{\mu, \xi^{\prime}}\left(\bar{w}_{\bar{g}(0)}\left(\bar{z}_{0}\right)\right), \quad \text { for all } \mu, \xi^{\prime}
$$

Hence, from the invariance of $f_{\bar{g}(0)}$, it turns out that

$$
f_{\bar{g}(0)}\left(\bar{z}_{\mu, \xi^{\prime}}+\bar{w}_{\bar{g}(0)}\left(\bar{z}_{\mu, \xi^{\prime}}\right)\right)=f_{\bar{g}(0)}\left(T_{\mu, \xi^{\prime}}\left(\bar{z}_{0}+\bar{w}_{\bar{g}(0)}\left(\bar{z}_{0}\right)\right)\right)=f_{\bar{g}(0)}\left(\bar{z}_{0}+\bar{w}_{\bar{g}(0)}\left(\bar{z}_{0}\right)\right) .
$$

Since $f_{\bar{g}(0)}\left(\bar{z}_{\mu, \xi^{\prime}}+\bar{w}_{\bar{g}(0)}\left(\bar{z}_{\mu, \xi^{\prime}}\right)\right)$ is a constant function then, according to $(j)-(j j)$, any $\bar{z}+\bar{w}_{\bar{g}(0)}(\bar{z})$ is a critical point of $f_{\bar{g}(0)}$, proving the lemma.

Let us introduce some further notation: \bar{G} denotes the matrix $\bar{g}_{i j}(0), \nu_{\bar{g}(0)}$ is the outward unit normal to $\partial \mathbb{R}_{+}^{n}$ with respect to $\bar{g}_{i j}(0)$, and e_{1}, \ldots, e_{n} is the standard basis of \mathbb{R}^{n}.
Lemma 3.9 The solutions u of problem (35) are, up to dilations and translations, of the form

$$
u=\bar{z}_{0}(A x)
$$

where A is a matrix which satisfies

$$
\begin{equation*}
A \bar{G}^{-1} A^{T}=I, \quad \nu_{\bar{g}(0)}=\sum_{j}\left(A^{-1}\right)_{j n} e_{j} \tag{36}
\end{equation*}
$$

In particular, up to dilations, one has that

$$
\bar{z}_{0}+\bar{w}_{\bar{g}(0)}\left(\bar{z}_{0}\right)=\bar{z}_{0}(A \cdot)
$$

Proof. First of all we prove the existence of a matrix A satisfying (36). The first equality simply means that the bilinear form represented by the matrix \bar{G}^{-1} can be diagonalized, and this is standard. The matrix A which satisfies the first equation in (36) is defined uniquely up to multiplication on the left by an orthogonal matrix. Let $\left(x_{1}, \ldots, x_{n}\right)$ be the co-ordinates with respect to the standard basis $\left(e_{1}, \ldots, e_{n}\right)$ of \mathbb{R}^{n}, let $\left(f_{1}, \ldots, f_{n}\right)$ be the basis given by $\mathbf{f}=\left(\mathbf{A}^{-\mathbf{1}}\right)^{\mathbf{T}} \mathbf{e}$, and let $\left(y_{1}, \ldots, y_{n}\right)$ be the co-ordinates with respect to this new basis. This implies the relation between the co-ordinates $x=A y$ and the first of (36) implies that the bilinear form $\bar{g}^{i j}(0)$ is diagonal with respect to $y_{1}, \ldots y_{n}$. Moreover, by the transitive action of $O(n)$ over S^{n-1} we can ask that $f_{n}=\nu$; this is exactly the second equation in (36). In this way the matrix A is determined up to multiplication on the left by $O(n-1)$.

We now prove that the function $\tilde{z}_{0}=\bar{z}_{0}(A x)=\bar{z}_{0}(y)$ is a solution of (35). First of all, since $\nu_{\bar{g}(0)}$ is $\bar{g}(0)$-orthogonal to $\partial \mathbb{R}^{n-1}$, the domain $x_{n}>0$ coincides with $y_{n}>0$ and the equation in the interior is, by formula (36)

$$
-4 \frac{(n-1)}{(n-2)} \sum_{i, j=1}^{n} D_{x_{i} x_{j}}^{2} \tilde{z}_{0}(x)=-4 \frac{(n-1)}{(n-2)} \sum_{i, j} \bar{g}^{i j} A_{l i} A_{k j} D_{y_{k} y_{l}}^{2} \bar{z}_{0}(A y)=\tilde{z}_{0}^{\frac{n+2}{n-2}}(x)
$$

Moreover, since $\nu=f_{n}=\sum_{j}\left(A^{-1}\right)_{n j}^{T} e_{j}=\sum_{j}\left(A^{-1}\right)_{j n} e_{j}$, it turns out that on $\partial \mathbb{R}_{+}^{n}$

$$
\frac{\partial \tilde{z}_{0}}{\partial \bar{\nu}}(x)=\sum_{j}\left(A^{-1}\right)_{j n} D_{x_{j}} \bar{z}_{0}(A y)=\sum_{j, k}\left(A^{-1}\right)_{j n} A_{k j} D_{y_{k}} \bar{z}_{0}(A y)=D_{y_{n}} \bar{z}_{0}(A y)=c \tilde{z}_{0}^{\frac{n}{n-2}}(x)
$$

Hence also the boundary condition is satisfied. Moreover, the function $\bar{z}_{0} \in \mathcal{D}^{1,2}\left(\mathbb{R}_{+}^{n}\right)$ is the unique solution up to dilation and translation of problem (\bar{Y}) with $\bar{g}_{i j}=I d$, see [14]. As pointed out before, if A and A^{\prime} are two matrices satisfying (36), they differ up to $O(n-1)$. Then it is easy to check that $\bar{z}_{0}(A x)=\bar{z}_{0}\left(A^{\prime} x\right)$ and hence \tilde{z}_{0} is unique up to dilation and translation. This concludes the proof.

Corollary 3.10 The quantity $f_{\bar{g}(0)}\left(\bar{z}_{0}+\bar{w}^{0}\left(\bar{z}_{0}\right)\right)$ is independent of $\bar{g}(0)$. Precisely one has:

$$
f_{\bar{g}(0)}\left(\bar{z}_{0}+\bar{w}^{0}\left(\bar{z}_{0}\right)\right)=b_{c} .
$$

Proof. There holds

$$
\begin{aligned}
f_{\bar{g}(0)}\left(\bar{z}_{0}+\bar{w}_{\bar{g}(0)}\left(\bar{z}_{0}\right)\right) & =2 \frac{(n-1)}{(n-2)} \int_{\mathbb{R}_{+i, j, k, l}^{n}} \sum^{i j}(0) A_{k i} A_{l j} D_{k} \bar{z}_{0}(A y) D_{l} \bar{z}_{0}(A y) d V_{\bar{g}(0)}(y) \\
& -\frac{1}{2^{*}} \int_{\mathbb{R}_{+}^{n}}\left|\bar{z}_{0}(A y)\right|^{2^{*}} d V_{\bar{g}(0)}(y)-c(n-2) \int_{\partial \mathbb{R}_{+}^{n}}\left|\bar{z}_{0}(A y)\right|^{2 \frac{n-1}{n-2}} d \sigma_{\bar{g}(0)}(y)
\end{aligned}
$$

Using the change of variables $x=A y$, and taking into account equations (12) and (36) we obtain the claim. This concludes the proof.

Lemma 3.11 There holds

$$
\begin{equation*}
\bar{w}_{\bar{g}^{\delta}}\left(\bar{z}_{0}\right) \rightarrow \bar{w}_{\bar{g}(0)} \quad \text { as } \delta \rightarrow 0 \tag{37}
\end{equation*}
$$

Proof. Define $\bar{H}^{\delta}: \mathcal{D}^{1,2}\left(\mathbb{R}_{+}^{n}\right) \times \mathbb{R}^{n} \times \bar{Z}^{c} \rightarrow \mathcal{D}^{1,2}\left(\mathbb{R}_{+}^{n}\right) \times \mathbb{R}^{n}$ by setting

$$
\bar{H}^{\delta}(w, \alpha, \bar{z})=\binom{\nabla f_{\bar{g}^{\delta}}\left(\bar{z}+\bar{w}_{\bar{g}(0)}+w\right)-\alpha \dot{\bar{z}}}{(w, \bar{z})}
$$

One has that

$$
\nabla f_{\bar{g}^{\delta}}\left(\bar{z}+\bar{w}_{\bar{g}(0)}+w\right)=\nabla f_{\bar{g}^{\delta}}\left(\bar{z}+\bar{w}_{\bar{g}(0)}\right)+D^{2} f_{\bar{g}^{\delta}}\left(\bar{z}+\bar{w}_{\bar{g}(0)}\right)[w]+\vartheta(w)
$$

where

$$
\vartheta(w):=\int_{0}^{1}\left(D^{2} f_{\bar{g}^{\delta}}\left(\bar{z}+\bar{w}_{\bar{g}(0)}+s w\right)-D^{2} f_{\bar{g}^{\delta}}\left(\bar{z}+\bar{w}_{\bar{g}(0)}\right)\right)[w] d s .
$$

Recall that $D^{2} f_{\bar{g}^{\delta}}(\bar{z})$ is invertible on $\left(T_{\bar{z}} \bar{Z}^{c}\right)^{\perp}$. Since $\bar{w}_{\bar{g}(0)}$ satisfies $(j j j)$, then also $D^{2} f_{\bar{g}^{\delta}}\left(\bar{z}+\bar{w}_{\bar{g}(0)}\right)$ is invertible on $\left(T_{\bar{z}} \bar{Z}^{c}\right)^{\perp}$. As a consequence, the equation $\nabla f_{\bar{g}^{\delta}}\left(\bar{z}+\bar{w}_{\bar{g}(0)}+w\right)=0, w \in\left(T_{\bar{z}} \bar{Z}^{c}\right)^{\perp}$ is equivalent, on $\left(T_{\bar{z}} \bar{Z}^{c}\right)^{\perp}$, to

$$
w=-\left(D^{2} f_{\bar{g}^{\delta}}\left(\bar{z}+\bar{w}_{\bar{g}(0)}\right)\right)^{-1}\left[\nabla f_{\bar{g}^{\delta}}\left(\bar{z}+\bar{w}_{\bar{g}(0)}\right)+\vartheta(w)\right]
$$

In addition, by Remark 3.5, we can use the estimates corresponding to (19) of Lemma 3.1 and to (iii) of Proposition 3.2, to infer that

$$
\vartheta(w)=\int_{0}^{1}\left(D^{2} f_{\bar{g}^{\delta}}\left(\bar{z}+\bar{w}_{\bar{g}(0)}+s w\right)-D^{2} f_{\bar{g}^{\delta}}\left(\bar{z}+\bar{w}_{\bar{g}(0)}\right)\right)[w] d s=o(\|w\|) .
$$

Then, repeating the arguments used in Subsection 3.2 with small changes, one can show that the equation $\bar{H}^{\delta}=0$ has a unique solution $w=\omega$ such that

$$
\|\omega\| \leq C \cdot\left\|\nabla f_{\bar{g}^{\delta}}\left(\bar{z}+\bar{w}_{\bar{g}(0)}\right)\right\| .
$$

From (34) and (31) it follows that $\|\omega\| \rightarrow 0$ as $\delta \rightarrow 0$. Since both $\bar{w}_{\bar{g}(0)}+\omega$ and $\bar{w}_{\bar{g}^{\delta}}$ solve $\left(\right.$ on $\left.\left(T_{\bar{z}} \bar{Z}^{c}\right)^{\perp}\right)$ the same equation, we infer by uniqueness that $\bar{w}_{\bar{g}}{ }^{\delta}=\bar{w}_{\bar{g}(0)}+\omega$. Finally, since $\|\omega\| \rightarrow 0$ as $\delta \rightarrow 0$, then (37) follows.

Remark 3.12 All the preceding discussion has been carried out by taking the stereographic projection σ_{p} through an arbitrary $p \in S^{n-1}$. We are interested to the limit (23). When $\mu \rightarrow 0$ then $\xi \rightarrow \bar{\xi}$ for some $\bar{\xi} \in S^{n-1}$ and it will be convenient to choose $p=-\bar{\xi}$.

We are now in position to give:
Proof of Proposition 3.4. As pointed out in Remark 3.12, we take $p=-\bar{\xi}$ and use all the preceding results proved so far in this Subsection. With this choice, when $(\mu, \xi) \rightarrow(0, \bar{\xi})$ with $\xi=|\xi| \cdot \bar{\xi}, z_{\mu, \xi}$ corresponds to $\bar{z}_{\mu^{\prime}}:=\bar{z}_{\mu^{\prime}, 0}$, for some $\mu^{\prime} \rightarrow 0$.

Next, in view of (26), we will show that

$$
\lim _{\mu^{\prime} \rightarrow 0} f_{\bar{g}}\left(\bar{z}_{\mu^{\prime}}+\bar{w}_{\bar{g}}\left(\bar{z}_{\mu^{\prime}}\right)\right)=b_{c} .
$$

By Corollary 3.10, $b_{c}=f_{\bar{g}(0)}\left(\bar{z}_{0}+\bar{w}_{\bar{g}(0)}\right)$ and hence we need to prove that

$$
\lim _{\mu^{\prime} \rightarrow 0}\left[f_{\bar{g}}\left(\bar{z}_{\mu^{\prime}}+\bar{w}_{\bar{g}}\left(\bar{z}_{\mu^{\prime}}\right)\right)-f_{\bar{g}(0)}\left(\bar{z}_{0}+\bar{w}_{\bar{g}(0)}\right)\right]=0 .
$$

Using (30), we have

$$
f_{\bar{g}}\left(\bar{z}_{\mu^{\prime}}+\bar{w}_{\bar{g}}\left(\bar{z}_{\mu^{\prime}}\right)\right)=f_{\bar{g}}\left(\bar{z}_{\mu^{\prime}}+T_{\mu^{\prime}} \bar{w}_{\bar{g}^{\mu^{\prime}}}\left(\bar{z}_{0}\right)\right) .
$$

Then we can write

$$
\begin{aligned}
f_{\bar{g}}\left(\bar{z}_{\mu^{\prime}}+\bar{w}_{\bar{g}}\left(\bar{z}_{\mu^{\prime}}\right)\right)-f_{\bar{g}(0)}\left(\bar{z}_{0}+\bar{w}_{\bar{g}(0)}\right) & =f_{\bar{g}}\left(\bar{z}_{\mu^{\prime}}+T_{\mu^{\prime}} \bar{w}_{\bar{g}^{\mu^{\prime}}}\left(\bar{z}_{0}\right)\right) \\
& =f_{\bar{g}}\left(\bar{z}_{\mu^{\prime}}+T_{\mu^{\prime}} \bar{w}_{\bar{g}^{\prime}}\left(\bar{z}_{0}\right)\right)-f_{\bar{g}}\left(\bar{z}_{\mu^{\prime}}+T_{\mu^{\prime}} \bar{w}_{\bar{g}(0)}\left(\bar{z}_{0}\right)\right) \\
& +f_{\bar{g}}\left(\bar{z}_{\mu^{\prime}}+T_{\mu^{\prime}} \bar{w}_{\bar{g}(0)}\left(\bar{z}_{0}\right)\right)-f_{\bar{g}(0)}\left(\bar{z}_{0}+\bar{w}_{\bar{g}(0)}\right) .
\end{aligned}
$$

From (17) with I^{c} substituted by $f_{\bar{g}}$, we infer

$$
\begin{aligned}
\left|f_{\bar{g}}\left(\bar{z}_{\mu^{\prime}}+T_{\mu^{\prime}} \bar{w}_{\bar{g}^{\mu^{\prime}}}\left(\bar{z}_{0}\right)\right)-f_{\bar{g}}\left(\bar{z}_{\mu^{\prime}}+T_{\mu^{\prime}} \bar{w}_{\bar{g}(0)}\left(\bar{z}_{0}\right)\right)\right| & \leq C \cdot\left\|T_{\mu^{\prime}} \bar{w}_{\bar{g}^{\mu^{\prime}}}\left(\bar{z}_{0}\right)-T_{\mu^{\prime}} \bar{w}_{\bar{g}(0)}\left(\bar{z}_{0}\right)\right\| \\
& \leq C \cdot\left\|\bar{w}_{\bar{g}^{\mu^{\prime}}}\left(\bar{z}_{0}\right)-\bar{w}_{\bar{g}(0)}\left(\bar{z}_{0}\right)\right\| \\
& =o(1) \text { as } \mu^{\prime} \rightarrow 0 .
\end{aligned}
$$

Using $\bar{z}_{\mu^{\prime}}=T_{\mu^{\prime}} \bar{z}_{0}$ and (27), we deduce

$$
f_{\bar{g}}\left(\bar{z}_{\mu^{\prime}}+T_{\mu^{\prime}} \bar{w}_{\bar{g}^{\mu^{\prime}}}\left(\bar{z}_{0}\right)\right)=f_{\bar{g}}\left(T_{\mu^{\prime}}\left(\bar{z}_{0}+\bar{w}_{\bar{g}^{\mu^{\prime}}}\left(\bar{z}_{0}\right)\right)\right)=f_{\bar{g}^{\mu^{\prime}}}\left(\bar{z}_{0}+\bar{w}_{\bar{g}(0)}\right)
$$

Finally

$$
\left|f_{\bar{g}}\left(\bar{z}_{\mu^{\prime}}+T_{\mu^{\prime}} \bar{w}_{\bar{g}^{\mu^{\prime}}}\left(\bar{z}_{0}\right)\right)-f_{\bar{g}(0)}\left(\bar{z}_{0}+\bar{w}_{\bar{g}(0)}\right)\right|=\left|f_{\bar{g}^{\mu^{\prime}}}\left(\bar{z}_{0}+\bar{w}_{\bar{g}(0)}\right)-f_{\bar{g}(0)}\left(\bar{z}_{0}+\bar{w}_{\bar{g}(0)}\right)\right| \rightarrow 0
$$

according to Lemma 3.7. Since the above arguments can be carried out uniformly with respect to $\xi^{\prime} \in S^{n-1}$, the proof is completed.

4 The scalar curvature problem

In this section the value of c is fixed. Therefore its dependence will be omitted. So we will write I_{ε} instead of $I_{\varepsilon}^{c}, I_{0}$ instead of I_{0}^{c}, etc.

4.1 The abstract setting

Solutions of problem $\left(P_{\varepsilon}\right)$ can be found as critical points of the functional $I_{\varepsilon}: H^{1}(B) \rightarrow \mathbb{R}$ defined as

$$
I_{\varepsilon}(u)=I_{0}(u)-\varepsilon G(u)
$$

where the unperturbed functional $I_{0}^{c}(u)$ is defined by (see Section 2)

$$
I_{0}(u)=\frac{1}{2}\|u\|_{1}^{2}-\frac{1}{2^{*}} \int_{B}|u|^{2^{*}}-c(n-2) \int_{S^{n-1}}|u|^{2 \frac{n-1}{n-2}}
$$

and the perturbation G has the form

$$
G(u)=\frac{1}{2^{*}} \int_{B} K(x)|u|^{2^{*}} d x+(n-2) \int_{S^{n-1}} h(x)|u|^{2 \frac{n-1}{n-2}} d \sigma
$$

The existence of critical points of I_{ε} will be faced by means of the perturbation theory studied in [1]. Precisely, let us recall that I_{0} possesses an n-dimensional manifold $Z=Z^{c}$, given by (6). Moreover, Z is non-degenerate in the sense that $(i)-(i i)$ of Lemma 2.3 hold true. Then the results of [1] lead to consider the finite dimensional functional $\Gamma:=\left.G\right|_{Z}$ and give rise to the following Theorem:

Theorem 4.1 In the preceding setting, let us suppose that either
(a) Γ has a strict maximum (minimum) on Z; or
(b) there exists an open subset $\Omega \subset \subset Z$ such that $\operatorname{deg}\left(\Gamma^{\prime}, \Omega, 0\right) \neq 0$.

Then I_{ε} has a critical point close to Z, provided ε is small enough.

In our specific case, the function $\Gamma(\mu, \xi)=G\left(z_{\mu, \xi}\right)$ has the expression

$$
\begin{equation*}
\Gamma(\mu, \xi)=\frac{1}{2^{*}} \int_{B} K(x) z_{\mu, \xi}^{2^{*}}(x) d x+(n-2) \int_{S^{n-1}} h(\sigma) z_{\mu, \xi}^{\frac{(n-1)}{(n-2)}}(\sigma) d \sigma, \tag{38}
\end{equation*}
$$

where $\mu>0$ and $\xi \in \mathbb{R}^{n}$ are related to c by (5), namely by

$$
\mu^{2}+|\xi|^{2}-c \kappa \mu-1=0 .
$$

In order to apply the preceding abstract result we need to study the behaviour of Γ at the boundary of Z, which is given by

$$
\partial Z=\left\{z_{\mu, \xi_{0}}: \mu=0,\left|\xi_{0}\right|=1\right\} .
$$

The following lemma will be proved in the Appendix and describes the behaviour of Γ at ∂Z. Below a_{1}, \ldots, a_{6} denote positive constants defined in the Appendix.

Lemma 4.2 Let $\left|\xi_{0}\right|=1$ and let ν denote the outher normal direction to ∂Z at $\left(0, \xi_{0}\right)$. Γ can be extended to ∂Z and there results:
(a) $\Gamma\left(0, \xi_{0}\right)=a_{1} K\left(\xi_{0}\right)+a_{2} h\left(\xi_{0}\right)$;
(b) $\partial_{\nu} \Gamma\left(0, \xi_{0}\right)=a_{3} K^{\prime}\left(\xi_{0}\right) \cdot \xi_{0}$;
(c) suppose that $K^{\prime}\left(\xi_{0}\right) \cdot \xi_{0}=0$ and let $n>3$. Then

$$
\partial_{\nu}^{2} \Gamma\left(0, \xi_{0}\right)=4\left[a_{4} \Delta_{T} K\left(\xi_{0}\right)+a_{5} D^{2} K\left(\xi_{0}\right)\left[\xi_{0}, \xi_{0}\right]+a_{6} \Delta_{T} h\left(\xi_{0}\right)\right] .
$$

Furthermore, if $n=3$ and $\Delta_{T} h\left(\xi_{0}\right) \neq 0$, then

$$
\partial_{\nu}^{2} \Gamma\left(0, \xi_{0}\right)= \begin{cases}+\infty & \text { provided } \Delta_{T} h\left(\xi_{0}\right)>0 \\ -\infty & \text { provided } \Delta_{T} h\left(\xi_{0}\right)<0\end{cases}
$$

The above Lemma is the counterpart of the calculation carried out in [2] for the Scalar Curvature Problem on S^{n}.

4.2 A general existence result

Let us consider the auxiliary function $\psi: S^{n-1} \rightarrow \mathbb{R}$ defined by

$$
\psi(x)=a_{1} K(x)+a_{2} h(x), \quad x \in S^{n-1} .
$$

If $x \in \operatorname{Crit}(\psi)$ we denote by $m(x, \psi)$ its Morse index.
Theorem 4.3 Suppose that either
(a) there exists an absolute maximum (resp. minimum) $p \in S^{n-1}$ of ψ such that $K^{\prime}(p) \cdot p<0$ (resp. $\left.K^{\prime}(p) \cdot p>0\right)$;
or
(b) ψ is a Morse function satisfying

$$
\begin{equation*}
K^{\prime}(x) \cdot x \neq 0, \quad \forall x \in \operatorname{Crit}(\psi) ; \tag{39}
\end{equation*}
$$

$$
\begin{equation*}
\sum_{x \in \operatorname{Crit}(\psi), K^{\prime}(x) \cdot x<0}(-1)^{m(x, \psi)} \neq 1 . \tag{40}
\end{equation*}
$$

Then for $|\varepsilon|$ sufficiently small, problem $\left(P_{\varepsilon}\right)$ has a positive solution.

Proof. We look for critical points of Γ on $Z \simeq B$. Lemma 4.2- (a) and the notation introduced before says that $\left.\Gamma\right|_{\partial Z}=\psi$
(a) Let p_{0} denote the point where Γ achieves its absolute maximum on the compact set $\bar{Z}=Z \cup \partial Z$. Lemma 4.2-(b) and the preceding assumption (a) imply that $p_{0} \in Z$. Then the existence of a critical point of I_{ε}, for $|\varepsilon|$ small, follows from Theorem 4.1-(a).
(b) According to Lemma 4.2-(b), if (39) holds then $\partial_{\nu} \Gamma(p) \neq 0$ at any critical point of $\left.\Gamma\right|_{\partial z}$. Hence Γ satisfies the general boundary conditions on ∂Z, see [19]. Moreover, setting

$$
\partial Z^{-}=\left\{\left(0, \xi_{0}\right) \in \partial Z: \partial_{\nu} \Gamma\left(\xi_{0}\right)<0\right\}
$$

there results

$$
\partial Z^{-}=\left\{\left(0, \xi_{0}\right):\left|\xi_{0}\right|=1, K^{\prime}\left(\xi_{0}\right) \cdot \xi_{0}<0\right\}
$$

In particular, the critical points of ψ on the negative boundary ∂Z^{-}are precisely the $x \in \operatorname{Crit}(\psi)$ such that $K^{\prime}(x) \cdot x<0$. Then, by a well known formula, see [13], we infer that

$$
\begin{equation*}
\operatorname{deg}\left(\Gamma^{\prime}, Z, 0\right)=1-\sum_{x \in \operatorname{Crit}(\psi): K^{\prime}(x) \cdot x<0}(-1)^{m(x, \psi)} . \tag{41}
\end{equation*}
$$

Hence, by (40), $\operatorname{deg}\left(\Gamma^{\prime}, Z, 0\right) \neq 0$ and Theorem 4.1-(b) applies yielding the existence of a critical point of I_{ε}, for $|\varepsilon|$ small.

Remarks $4.4(a)$ If $h \equiv 0$ then ψ equals, up to the positive constant a_{1}, K. Hence the assumption made in case (b) is precisely condition $\left(K_{1}\right)$, while (39) and (40), are nothing but conditions $\left(K_{2}\right)$ and $\left(K_{3}\right)$. As a consequence, Theorem 4.3-(a) implies Theorem 1.2 and Theorem 4.3-(b) implies Theorem 1.3.
(b) Theorem 4.3-(b) is the counterpart of the results of [16] where it is taken $c=h=0$ but R^{\prime} is possibly not close to a constant. Conditions like (b) are reminiscent of conditions used by Bahri-Coron [8] dealing with the scalar curvature problem on S^{3}, see also $[2,17]$ for results on S^{n}. In contrast, assumption (a) is a new feature due to the presence of the boundary and has no counterpart in the problem on all S^{n}.
(c) Theorem 4.3 can be the starting point to prove a global result. This will be carried over in a future paper by the third Author, see [18]. Here we linit ourselves to point out that (41) can be used to evaluate the degree of I_{ε}^{\prime}. Actually, since z is a Mountain Pass critical point, the multiplicative property of the degree immediately implies that

$$
\begin{equation*}
\operatorname{deg}\left(I_{\varepsilon}^{\prime}, B_{r}, 0\right)=(-1) \cdot \operatorname{deg}\left(\Gamma^{\prime}, Z, 0\right)=\sum_{x \in \operatorname{Crit}(\psi): K^{\prime}(x) \cdot x<0}(-1)^{m(x, \psi)}-1 \tag{42}
\end{equation*}
$$

Our second general existence result deals with the case in which

$$
\begin{equation*}
K^{\prime}(x) \cdot x=0, \quad \forall x \in \operatorname{Crit}(\psi) \tag{43}
\end{equation*}
$$

In such a case, motivated by Lemma 4.2-(c), we introduce the function $\Psi: S^{n-1} \rightarrow \mathbb{R}$,

$$
\Psi(x)=a_{4} \Delta_{T} K(x)+a_{5} D^{2} K(x)[x, x]+a_{6} \Delta_{T} h(x)
$$

Let us note that, according to Lemma 4.2- (c) there results $\partial_{\nu}^{2} \Gamma\left(0, \xi_{0}\right)=4 \Psi\left(\xi_{0}\right)$.

Theorem 4.5 Suppose that (43) holds and that

$$
\begin{equation*}
\Psi(x) \neq 0, \quad \forall x \in \operatorname{Crit}(\psi) \tag{44}
\end{equation*}
$$

Let ψ be a Morse function and assume that

$$
\begin{equation*}
\sum_{x \in \operatorname{Crit}(\psi), \Psi(x)<0}(-1)^{m(x, \psi)} \neq 1 \tag{45}
\end{equation*}
$$

Furthermore, if $n=3$, we also assume that $\Delta_{T} h(x) \neq 0$ for all $x \in \operatorname{Crit}(\psi)$.
Then for $|\varepsilon|$ sufficiently small, problem $\left(P_{\varepsilon}\right)$ has a solution
Proof. The proof will make use of arguments similar to those emploied for Theorem 4.3-(b). But, unlike above, the theory of critical points under general boundary conditions cannot be applied directly because now (43) implies that $\partial_{\nu} \Gamma=0$ at all the critical points of ψ. In order to overcome this problem, we consider for $\delta>0$ sufficiently small, the set $Z_{\delta}:=\{(\mu, \xi) \in Z: \mu>\delta\}$ with boundary $\partial Z_{\delta}=\{(\mu, \xi) \in Z: \mu=\delta\}$. Since ψ is a Morse function, it readily follows that for any $\xi_{0} \in \operatorname{Crit}(\psi)$ there exists (for δ small enough) a unique ξ_{δ} such that
(i) $\left(\delta, \xi_{\delta}\right) \in \partial Z_{\delta}$ and $\xi_{\delta} \rightarrow \xi_{0}$ as $\delta \rightarrow 0$;
(ii) ξ_{δ} is a critical point of $\left.\Gamma\right|_{\partial Z_{\delta}}$; moreover, $\left.\Gamma\right|_{\partial Z_{\delta}}$ has no other critical point but ξ_{δ};
(iii) the Morse index of ξ_{δ} is the same $m\left(\xi_{0}, \psi\right)$;

Furthermore, we claim that,
(iv) Γ verifies the general boundary conditions on Z_{δ}.

Actually, (44), or $\Delta_{T} h\left(\xi_{0}\right) \neq 0$ if $n=3$, jointly with Lemma 4.2- (c), implies that $\partial_{\nu} \Gamma\left(\delta, \xi_{\delta}\right) \neq 0$ for δ small. More precisely, $\partial_{\nu} \Gamma\left(\delta, \xi_{\delta}\right)<0$ iff $\xi_{\delta} \rightarrow \xi_{0}$ with $\Psi\left(\xi_{0}\right)<0$. Therefore, the critical points of $\left.\Gamma\right|_{\partial Z_{\delta}}$ on the negative boundary ∂Z_{δ}^{-}are in one-to-one correspondence with the $x \in \operatorname{Crit}(\psi)$ such that $\Psi(x)<0$. From the above arguments we infer that

$$
\operatorname{deg}\left(\Gamma^{\prime}, Z_{\delta}, 0\right)=1-\sum_{x \in \operatorname{Crit}(\psi): \Psi(x)<0}(-1)^{m(x, \psi)}
$$

Then (45) implies that $\operatorname{deg}\left(\Gamma^{\prime}, Z_{\delta}, 0\right) \neq 0$ and the result follws.
Remarks 4.6 (a) If $K \equiv 0$ then, up to positive constants, $\psi=h$ and $\Psi=\Delta_{T} h$ and thus Theorem 1.4 is a particular case of Theorem 4.5.
(b) It can be shown that our arguments can be adapted to handle an equation like (1) with $R^{\prime}=\varepsilon K$ and $h^{\prime}=c+\varepsilon h$, which can be seen as an extension of (3) where $R^{\prime}=0$ and $c=1$ is taken. This would lead to improve the results of [9]. For brevity, we do not carry out the details here.
(c) In all the above results we can deal with $-\Gamma$ instead of Γ. In such a case the condition (40) or (45) become $\sum_{x \in \operatorname{Crit}(\psi), \Psi(x)>0}(-1)^{m(x, \psi)} \neq(-1)^{n-1}, \sum_{x \in \operatorname{Crit}(\psi), K^{\prime}(x) \cdot x>0}(-1)^{m(x, \psi)} \neq(-1)^{n-1}$, respectively.

4.3 The symmetric case

When K and h inherit a symmetry one can obtain much more general results. They can be seen as the counterpart of the ones dealing with the Scalar Curvature problem on S^{n} discussed in [4].

Theorem 4.7 Let us suppose that K and h are invariant under the action of a group of isometries $\Sigma \subset \mathbf{O}(n)$, such that $\operatorname{Fix}(\Sigma)=0 \in \mathbb{R}^{n}$. Then for $|\varepsilon|$ sufficiently small, problem $\left(P_{\varepsilon}\right)$ has a solution.

Proof. The proof relies on the arguments of [4, Sec. 4]. For the sake of brevity, we will be sketchy, referring to such a paper for more details. We use the finite dimensional reduction discussed in the Subsection 3.2, with $I^{c}=I_{\varepsilon}$ and $Z^{c}=Z$, see Remark 3.3. From those results we infer that the manifold

$$
Z_{\varepsilon}=\left\{z_{\mu, \xi}+w_{\varepsilon}\left(z_{\mu, \xi}\right): \mu, \xi \text { satisfying (5) }\right\}
$$

is a natural constraint for I_{ε}. Let us recall that here $w=w_{\varepsilon}\left(z_{\mu, \xi}\right)$ is the solution of the equation

$$
\nabla I_{\varepsilon}\left(z_{\mu, \xi}+w\right) \in T_{z_{\mu, \xi}} Z
$$

According to Remark 3.3, it suffices to find a critical point of $\Phi_{\varepsilon}(\mu, \xi):=I_{\varepsilon}\left(z_{\mu, \xi}+w_{\varepsilon}\left(z_{\mu, \xi}\right)\right)$. It is possible to show that Φ_{ε} is invariant under the action τ of a group acting on Z and depending upon Σ. Moreover, from the fact that $\operatorname{Fix}(\Sigma)=\{0\}$ it follows that $(\mu, \xi) \in \operatorname{Fix}(\tau)$ iff $\xi=0$ and (hence) $\mu=\mu_{0}:=\frac{1}{2}\left(c \kappa+\sqrt{c^{2} \kappa^{2}+4}\right)$. Plainly, Φ_{ε} has a critical point at $\mu=\mu_{0}, \xi=0$, which gives rise to a solution of $\left(P_{\varepsilon}\right)$.

For the reader convenience, let us give some more details in the specific case that K and h are even functions, when the arguments do not require new notation. We claim that if K and h are even then Φ_{ε} is invariant under the action τ given by $\tau:(\mu, \xi) \mapsto(\mu,-\xi)$. In other words, we will show that there results

$$
\begin{equation*}
\Phi_{\varepsilon}(\mu, \xi)=\Phi_{\varepsilon}(\mu,-\xi) \tag{46}
\end{equation*}
$$

In order to prove (46), we first remark that $z_{\mu,-\xi}(x)=z_{\mu, \xi}(-x)$. From this and using the fact that K and h are even, one checks that $w=w_{\varepsilon}\left(z_{\mu, \xi}\right)(-x)$ satisfies the equation, defining the natural constraint Z_{ε},

$$
\nabla I_{\varepsilon}\left(z_{\mu,-\xi}+w\right) \in T_{z_{\mu,-\xi}} Z
$$

By uniqueness, it follows that $w_{\varepsilon}\left(z_{\mu, \xi}\right)(-x)=w_{\varepsilon}\left(z_{\mu,-\xi}\right)(x)$. Then one infers:

$$
I_{\varepsilon}\left(z_{\mu,-\xi}(x)+w_{\varepsilon}\left(z_{\mu,-\xi}\right)(x)\right)=I_{\varepsilon}\left(z_{\mu, \xi}(-x)+w_{\varepsilon}\left(z_{\mu, \xi}\right)(-x)\right)=I_{\varepsilon}\left(z_{\mu, \xi}+w_{\varepsilon}\left(z_{\mu, \xi}\right)\right)
$$

proving (46).

Remarks 4.8 (a) Coming back to the Scalar Curvature problem on the upper half sphere S_{+}^{n}, an even function K corresponds to prescribing a scalar curvature on S_{+}^{n} which is invariant under the symmetry $\left(x_{1}, \ldots, x_{n}, x_{n+1}\right) \mapsto\left(-x_{1}, \ldots,-x_{n}, x_{n+1}\right)$.
(b) Using again the arguments of [4] one could treat the invariance under a group Σ such that $\operatorname{Fix}(\Sigma) \neq\{0\}$.

A Appendix

A. 1 Proofs of technical Lemmas

First we prove
Lemma A. 1 Given $M>0$, there exists $C>0$ such that for all $c>-M$ there holds

$$
\begin{equation*}
\|z\| \leq C \cdot(1+|c|)^{-\frac{n-2}{2}} \quad \text { for all } z \in Z^{c} \tag{47}
\end{equation*}
$$

Proof. By symmetry it suffices to take $\xi=0$ and consider $z=z_{\mu}$. As $c \rightarrow+\infty$ one has that $\mu \sim \kappa c$ and $z_{\mu} \sim \mu^{(n-2) / 2}$ in B. Then the lemma follows by a straight calculation.

Now we start by proving equation (15). Since it is clearly $\nabla I_{0}^{c}(z)=0$, it is sufficient to estimate the quantity $\left\|\nabla I^{c}(z)-\nabla I_{0}^{c}(z)\right\|$. Given $v \in H^{1}(B)$ and setting

$$
\begin{aligned}
& \alpha_{1}=4 \frac{(n-1)}{(n-2)} \int_{B} \nabla_{g} z \cdot \nabla_{g} v d V_{g}-4 \frac{(n-1)}{(n-2)} \int_{B} \nabla z \cdot \nabla v d V_{0} ; \quad \alpha_{2}=\int_{B} R_{g} z v d V_{g} \\
& \alpha_{3}=\int_{B} z^{\frac{n+2}{n-2}} v d V_{0}-\int_{B} z^{\frac{n+2}{n-2}} v d V_{g} ; \quad \alpha_{4}=2(n-1) \int_{\partial B} h_{g} z v d \sigma_{g} \\
& \alpha_{5}=2(n-1) c \int_{\partial B} z^{\frac{n}{n-2}} v d \sigma_{g}-2(n-1) c \int_{\partial B} z^{\frac{n}{n-2}} v d \sigma_{0},
\end{aligned}
$$

there holds

$$
\begin{equation*}
\left(\nabla I^{c}(z)-\nabla I_{0}^{c}(z), v\right)=\alpha_{1}+\alpha_{2}+\alpha_{3}+\alpha_{4}+\alpha_{5} \tag{48}
\end{equation*}
$$

As far as α_{1} is concerned, taking into account of equations (12), (14) and the fact that $\|z\| \leq C \cdot(1+$ $|c|)^{-\frac{n-2}{2}}$ (see Lemma A.1) one deduces that
(49) $\quad\left|\alpha_{1}\right| \leq C \int_{B}\left|\nabla_{g} z \cdot \nabla_{g} v-\nabla z \cdot \nabla v\right| d x+C \int_{B}|\nabla z \cdot \nabla v|\left|d V_{g}-d V_{0}\right| \leq C \cdot \varepsilon \cdot(1+|c|)^{-\frac{n-2}{2}} \cdot\|v\|$.

Turning to α_{2} we recall that the expression of R_{g} as a function of g, is of the type

$$
R_{g}=D \Gamma+G^{2} ; \quad \Gamma=D g, \quad \Rightarrow \quad R_{g}=D^{2} g+(D g)^{2}
$$

We start by estimating the quantity $\int_{B} R_{g} z v d V_{0}$. Integrating by parts, the term $\int_{B} D^{2} g z v d V_{0}$ transforms into

$$
\int_{B} D^{2} g z v d V_{0}=\int_{\partial B} D g z v d \sigma_{0}+\int_{B} D g D(z v) d V_{0}
$$

Hence, if $g \in \mathcal{G}_{\varepsilon}$ (see expression (2)), from the Hölder inequality it follows that

$$
\int_{B} R_{g} z v d V_{0} \simeq \int_{B}\left(D^{2} g+(D g)^{2}\right) z v d V_{0} \leq C \cdot \varepsilon \cdot\|z\| \cdot\|v\|,
$$

and hence

$$
\begin{equation*}
\left|\alpha_{2}\right| \leq \int_{B}\left|R_{g} z v\right| d V_{0}+\int_{B}\left|R_{g} z v\left\|d V_{g}-d V_{0} \left\lvert\, \leq C \cdot \varepsilon \cdot(1+|c|)^{-\frac{n-2}{2}} \cdot\right.\right\| v \|\right. \tag{50}
\end{equation*}
$$

With simple estimates one can also prove that

$$
\begin{equation*}
\left|\alpha_{3}\right| \leq C \cdot \varepsilon \cdot(1+|c|)^{-\frac{n+2}{2}} \cdot\|v\| \tag{51}
\end{equation*}
$$

The function h_{g} is of the form $h_{g}=D g$ so, taking into account (2) one finds

$$
\begin{equation*}
\left|\alpha_{4}\right| \leq C \cdot \varepsilon \cdot(1+|c|)^{-\frac{n-2}{2}} \cdot\|v\| \tag{52}
\end{equation*}
$$

In order to estimate the last term α_{5}, using the continuous embedding $H^{1}(B) \hookrightarrow L^{2 \frac{n-1}{n-2}}\left(S^{n-1}\right)$ and the Hölder inequality one deduces that

$$
\left|\alpha_{5}\right| \leq C \cdot \varepsilon \cdot(1+|c|) \cdot\|z\|_{L^{\frac{n}{n-2}\left(S^{n-1}\right)}}^{\frac{n}{n-2}} \cdot\|v\| \leq C \cdot \varepsilon \cdot(1+|c|) \cdot(1+|c|)^{-\frac{n}{2}} \cdot\|v\| .
$$

Putting together equations (49)-(52) one deduces (15).

Turning to equation (19) and given $v_{1}, v_{2} \in H^{1}(B)$, there holds

$$
\left(D^{2} I^{c}(z+w)-D^{2} I^{c}(z)\right)\left[v_{1}, v_{2}\right]=\delta_{1}+\delta_{2}
$$

where

$$
\begin{aligned}
& \delta_{1}=\frac{(n+2)}{(n-2)}\left(\int_{B} u^{\frac{4}{n-2}} v_{1} v_{2} d V_{g}-\int_{B}(u+w)^{\frac{4}{n-2}} v_{1} v_{2} d V_{g}\right) \\
& \delta_{2}=2 n \frac{(n-1)}{(n-2)} c\left(\int_{\partial B} u^{\frac{2}{n-2}} v_{1} v_{2} d \sigma_{g}-\int_{\partial B}(u+w)^{\frac{2}{n-2}} v_{1} v_{2} d \sigma_{g}\right) .
\end{aligned}
$$

Using standard inequalities one finds that

$$
\begin{gathered}
\left|\delta_{1}\right| \leq \begin{cases}C \cdot\|w\|^{\frac{4}{n-2}} & \text { for } n \geq 6 \\
C \cdot\|w\| \cdot\left(\|u\|^{\frac{6-n}{n-2}}+\|w\|^{\frac{6-n}{n-2}}\right) & \text { for } n<6\end{cases} \\
\left|\delta_{2}\right| \leq \begin{cases}C \cdot(1+|c|) \cdot\|w\|^{\frac{4}{n-2}} & \text { for } n \geq 4 \\
C \cdot(1+|c|) \cdot\|w\| \cdot\left(\|u\|^{\frac{4-n}{n-2}}+\|w\|^{\frac{4-n}{n-2}}\right) & \text { for } n<4,\end{cases}
\end{gathered}
$$

so we obtain the estimate.
We now prove inequality (16). Given $v_{1}, v_{2} \in H^{1}(B)$ and setting

$$
\begin{aligned}
& \beta_{1}=4 \frac{(n-1)}{(n-2)} \int_{B} \nabla_{g} v_{1} \cdot \nabla_{g} v_{2} d V_{g}-4 \frac{(n-1)}{(n-2)} \int_{B} \nabla v_{1} \cdot \nabla v_{2} d V_{0} ; \quad \beta_{2}=\int_{B} R_{g} v_{1} v_{2} d V_{g} \\
& \beta_{3}=\frac{(n+2)}{(n-2)} \int_{B} z^{\frac{4}{n-2}} v_{1} v_{2} d V_{0}-\frac{(n+2)}{(n-2)} \int_{B} z^{\frac{4}{n-2}} v_{1} v_{2} d V_{g} ; \quad \beta_{4}=2(n-1) \int_{\partial B} h_{g} v_{1} v_{2} d \sigma_{g} \\
& \beta_{5}=2 n \frac{(n-1)}{(n-2)} c \int_{\partial B} z^{\frac{2}{n-2}} v_{1} v_{2} d \sigma_{g}-2 n \frac{(n-1)}{(n-2)} c \int_{\partial B} z^{\frac{2}{n-2}} v_{1} v_{2} d \sigma_{0}
\end{aligned}
$$

there holds

$$
\begin{equation*}
\left(D^{2} I^{c}(z)-D^{2} I_{0}^{c}(z)\right)\left[v_{1}, v_{2}\right]=\beta_{1}+\beta_{2}+\beta_{3}+\beta_{4}+\beta_{5} \tag{53}
\end{equation*}
$$

For β_{1}, taking into account equation (14) one finds

$$
\begin{equation*}
\left|\beta_{1}\right| \leq C \int_{B}\left|\nabla_{g} v_{1} \cdot \nabla_{g} v_{2}-\nabla v_{1} \cdot \nabla v_{2}\right| d V_{0}+C \int_{B}\left|\nabla v_{1} \cdot \nabla v_{2}\right| \cdot\left|d V_{g}-d V_{0}\right| \leq C \cdot \varepsilon \cdot\left\|v_{1}\right\| \cdot\left\|v_{2}\right\| \tag{54}
\end{equation*}
$$

Turning to β_{2} reasoning as for the above term α_{2} one deduces that

$$
\begin{equation*}
\left|\beta_{2}\right| \leq \int_{B}\left|R_{g} z v\right| d V_{g} \leq C \cdot \varepsilon \cdot\left\|v_{1}\right\| \cdot\left\|v_{2}\right\| \tag{55}
\end{equation*}
$$

In the same way one can prove that

$$
\begin{equation*}
\left|\beta_{3}\right| \leq C \cdot \varepsilon \cdot\|z\|^{\frac{4}{n-2}} \cdot\left\|v_{1}\right\| \cdot\left\|v_{2}\right\| \leq C \cdot \varepsilon \cdot(1+|c|)^{-2} \cdot\left\|v_{1}\right\| \cdot\left\|v_{2}\right\| \tag{56}
\end{equation*}
$$

For the term β_{4}, similarly to the expression α_{4} above there holds

$$
\begin{equation*}
\left|\beta_{4}\right| \leq C \cdot \varepsilon \cdot\left\|v_{1}\right\| \cdot\left\|v_{2}\right\| \tag{57}
\end{equation*}
$$

Turning to β_{5}, using the Hölder inequality one deduces that

$$
\begin{equation*}
\left|\beta_{5}\right| \leq C \cdot c \cdot \varepsilon \cdot(1+|c|) \cdot\|z\|_{L^{\frac{2}{n-2}}\left(S^{n-1}\right)}^{\frac{2}{n-2}} \cdot\left\|v_{1}\right\| \cdot\left\|v_{2}\right\| \leq C \cdot \varepsilon \cdot\left\|v_{1}\right\| \cdot\left\|v_{2}\right\| \tag{58}
\end{equation*}
$$

Putting together equations (54)-(58) one deduces inequality (16).
Equation (17) follows from similar computations.

A. 2 Proof of Lemma 4.2

Given $\xi_{0} \mid=1$, we introduce a reference frame in \mathbb{R}^{n} such that $e_{n}=-\xi_{0}$. Let $\alpha=\alpha(\mu)$ be such that the pair (μ, ξ), with $\xi=\alpha \xi_{0}$, satisfies (5). Setting

$$
\gamma(\mu)=\Gamma\left(\mu,-\alpha(\mu) e_{n}\right)
$$

one has that

$$
\Gamma\left(0, \xi_{0}\right)=\gamma(0), \quad \partial_{\nu} \Gamma\left(0, \xi_{0}\right)=-\gamma^{\prime}(0), \quad \partial_{\nu}^{2} \Gamma\left(0, \xi_{0}\right)=\gamma^{\prime \prime}(0)
$$

In order to evaluate the above quantities, it is convenient to make a change of variables. This will considerably simplify the calculation when we deal with $\gamma^{\prime}(0)$ and $\gamma^{\prime \prime}(0)$.

Let $\psi: \mathbb{R}_{+}^{n} \rightarrow B$ be the map given by

$$
\left(y^{\prime}, y_{n}\right) \in \mathbb{R}_{+}^{n} \rightarrow\left(x^{\prime}, x_{n}\right) \in B ; \quad x^{\prime}=\frac{2 y^{\prime}}{\left(y^{\prime}\right)^{2}+\left(y_{n}+1\right)^{2}}, \quad x_{n}=\frac{\left(y^{\prime}\right)^{2}+y_{n}^{2}-1}{\left(y^{\prime}\right)^{2}+\left(y_{n}+1\right)^{2}} .
$$

Here and in the sequel, if $x \in \mathbb{R}^{n}$ we will set $x^{\prime}=\left(x_{1}, \ldots, x_{n-1}\right)$ so that $x=\left(x^{\prime}, x_{n}\right)$.
By using simple computations it turns out that

$$
\gamma(\mu)=\tilde{\gamma}(\tilde{\mu}),
$$

where

$$
\tilde{\gamma}(\tilde{\mu})=\frac{1}{2^{*}} \int_{\mathbb{R}_{+}^{n}} \tilde{K}(y)\left(z_{\tilde{\mu}, 0}^{c}\right)^{2^{*}}(y) d y+(n-2) \int_{\partial \mathbb{R}_{+}^{n}} \tilde{h}(\omega)\left(z_{\tilde{\mu}, 0}^{c}\right)^{2 \frac{n-1}{n-2}}(\omega) d \omega
$$

and

$$
\tilde{\mu}=\frac{2 \mu}{1+\mu^{2}+\alpha(\mu)} ; \quad \quad \tilde{K}(y)=K(\psi(y))
$$

Let us point out that the derivatives of K and \tilde{K} satisfy the following relations:

$$
\begin{gathered}
D_{y_{n}} \tilde{K}(0,0)=2 D_{x_{n}} K\left(\xi_{0}\right) ; \quad D_{y^{\prime}} \tilde{K}(0,0)=2 D_{x^{\prime}}\left(\xi_{0}\right) ; \quad D_{y_{n}}^{2} \tilde{K}(0,0)=4\left(D_{x_{n}}^{2} K-D_{x_{n}} K\right)\left(\xi_{0}\right) \\
D_{y^{\prime}}^{2} \tilde{K}(0,0)=4\left(D_{x^{\prime}}^{2} K-D_{x_{n}} K\right)\left(\xi_{0}\right) ; \quad D_{y^{\prime}, y_{n}}^{2} \tilde{K}(0,0)=4\left(D_{x^{\prime}, x_{n}}^{2} K-D_{x^{\prime}} K\right)\left(\xi_{0}\right)
\end{gathered}
$$

The change of variables $y=\tilde{\mu} q, \omega=\tilde{\mu} \sigma$ yields

$$
\begin{equation*}
\tilde{\gamma}(\tilde{\mu})=\frac{1}{2^{*}} \int_{\mathbb{R}_{+}^{n}} \tilde{K}(\tilde{\mu} q)\left(z_{1,0}^{c}\right)^{2^{*}}(q) d q+(n-2) \int_{\partial \mathbb{R}_{+}^{n}} \tilde{h}(\tilde{\mu} \sigma)\left(z_{1,0}^{c}\right)^{2 \frac{n-1}{n-2}}(\sigma) d \sigma . \tag{59}
\end{equation*}
$$

Hence, passing to the limit for $\tilde{\mu} \rightarrow 0$, it follows that

$$
\gamma(0)=\tilde{\gamma}(0)=a_{1} \tilde{K}(0)+a_{2} \tilde{h}(0)=a_{1} K\left(\xi_{0}\right)+a_{2} h\left(\xi_{0}\right),
$$

with

$$
a_{1}=\frac{1}{2^{*}} \int_{\mathbb{R}_{+}^{n}} z_{0}^{2^{*}}\left(q^{\prime}, q_{n}-\kappa c / 2\right) d q, \quad a_{2}=(n-2) \int_{\partial \mathbb{R}_{+}^{n}} z_{0}^{2 \frac{n-1}{n-2}}(\sigma, \kappa c / 2) d \sigma .
$$

Let us now evaluate the first derivative. There holds

$$
\gamma^{\prime}(0)=\frac{d \tilde{\gamma}}{d \tilde{\mu}}(0) \cdot \frac{d \tilde{\mu}}{d \mu}(0)=2 \tilde{\gamma}^{\prime}(0) .
$$

Moreover from formula (59) we deduce

$$
\begin{equation*}
\tilde{\gamma}^{\prime}(\tilde{\mu})=\frac{1}{2^{*}} \int_{\mathbb{R}_{n}^{+}} \nabla \tilde{K}(\tilde{\mu} q) \cdot q\left|z_{1,0}^{c}(q)\right|^{2^{*}} d q+(n-2) \int_{\partial \mathbb{R}_{+}^{n}} \nabla \tilde{h}(\tilde{\mu} \sigma) \cdot \sigma\left|z_{1,0}^{c}(\sigma)\right|^{2^{\frac{n-1}{n-2}}}(\sigma) d \sigma . \tag{60}
\end{equation*}
$$

For symmetry reasons when $\tilde{\mu} \rightarrow 0$, the parallel component to $\partial \mathbb{R}_{+}^{n}$ in the first integral and the second integral vanishes, hence it follows that

$$
\begin{equation*}
\gamma^{\prime}(0)=2 \tilde{\gamma}^{\prime}(0)=\frac{2}{2^{*}} D_{n} \tilde{K}(0) \int_{\mathbb{R}_{+}^{n}} q_{n}\left|z_{1,0}^{c}(q)\right|^{2^{*}} d q=-a_{3} K^{\prime}\left(\xi_{0}\right) \cdot \xi_{0} \tag{61}
\end{equation*}
$$

where

$$
a_{3}=\frac{4}{2^{*}} \int_{\mathbb{R}_{+}^{n}} q_{n} z_{0}^{2^{*}}\left(q^{\prime}, q_{n}-\kappa c / 2\right) d q
$$

We are interested in the study of the second derivative only in the case in which the first derivative vanishes, namely when $K^{\prime}\left(\xi_{0}\right) \cdot \xi_{0}=0$.

As for the second derivative, there holds:

$$
\begin{align*}
\tilde{\gamma}^{\prime \prime}(\tilde{\mu}) & =\frac{1}{2^{*}} \int_{\mathbb{R}_{n}^{+}} \sum_{i, j=1}^{n} D_{i j}^{2} \tilde{K}(\tilde{\mu} q) q_{i} q_{j}\left|z_{1,0}^{c}(q)\right|^{2^{*}} d q \\
& +(n-2) \int_{\partial \mathbb{R}_{+}^{n}} \sum_{i, j=1}^{n-1} D_{i j}^{2} \tilde{h}(\tilde{\mu} \sigma) \sigma_{i} \sigma_{j}\left|z_{1,0}^{c}(\sigma)\right|^{2 \frac{(n-1)}{(n-2)}} d \sigma:=\delta(\tilde{\mu})+\rho(\tilde{\mu}) . \tag{62}
\end{align*}
$$

Now we have to distinguish the case $n=3$ and the case $n>3$. In fact the boundary integral $\rho(\tilde{\mu})$ in (62) is uniformly dominated by a function in $L^{1}\left(\partial \mathbb{R}_{+}^{n}\right)$ if and only if $n>3$. However it is possible to determine the sign of this integral also for $n=3$: it turns out that

$$
\lim _{\tilde{\mu} \rightarrow 0} \delta(\tilde{\mu})=\frac{1}{2^{*}(n-1)} \int_{\mathbb{R}_{+}^{n}}\left|q^{\prime}\right|^{2}\left|z_{1,0}^{c}(q)\right|^{2^{*}} d q \cdot \Delta_{T} \tilde{K}(0)+\frac{1}{2^{*}} \int_{\mathbb{R}_{+}^{n}} q_{n}^{2}\left|z_{1,0}^{c}(q)\right|^{2^{*}} d q \cdot D_{n n}^{2} \tilde{K}(0)
$$

and

$$
\begin{cases}\lim _{\tilde{\mu} \rightarrow 0} \rho(\tilde{\mu})=(+\infty) \cdot \Delta_{T} \tilde{h}(0), & \text { for } n=3 \\ \lim _{\tilde{\mu} \rightarrow 0} \rho(\tilde{\mu})=\frac{(n-2)}{(n-1)} \int_{\partial \mathbb{R}_{+}^{n}}|\sigma|^{2}\left|z_{1,0}^{c}(\sigma)\right|^{2 \frac{(n-1)}{(n-2)}} d \sigma \cdot \Delta_{T} \tilde{h}(0), & \text { for } n>3\end{cases}
$$

Hence we have that

$$
\tilde{\gamma}^{\prime \prime}(0)= \begin{cases}(+\infty) \cdot \Delta_{T} h\left(\xi_{0}\right) & \text { for } n=3 \tag{63}\\ a_{4} \Delta_{T} K\left(\xi_{0}\right)+a_{5} D^{2} K\left(\xi_{0}\right)\left[\xi_{0}, \xi_{0}\right]+a_{6} \Delta_{T} h\left(\xi_{0}\right) & \text { for } n>3\end{cases}
$$

where

$$
\begin{gathered}
a_{4}=\frac{4}{(n-1) 2^{*}} \int_{\mathbb{R}_{+}^{n}}\left|q^{\prime}\right|^{2} z_{0}^{2^{*}}\left(q^{\prime}, q_{n}-\kappa c / 2\right) d q, \quad a_{5}=\frac{4}{2^{*}} \int_{\mathbb{R}_{+}^{n}} q_{n}^{2} z_{0}^{2^{*}}\left(q^{\prime}, q_{n}-\kappa c / 2\right) d q \\
a_{6}=4 \frac{(n-2)}{(n-1)} \int_{\partial \mathbb{R}_{+}^{n}}|\sigma|^{2} z_{0}^{2 \frac{n-1}{n-2}}(\sigma, \kappa c / 2) d \sigma
\end{gathered}
$$

Finally, since $\gamma^{\prime \prime}(0)=4 \tilde{\gamma}^{\prime \prime}(0)$, the lemma follows.

References

[1] A. Ambrosetti, M. Badiale, Homoclinics: Poincaré-Melnikov type results via a variational approach, Ann. Inst. Henri. Poincaré Analyse Non Linéaire 15 (1998), 233-252.
[2] A. Ambrosetti, J. Garcia Azorero, I. Peral, Perturbation of $-\Delta u+u^{\frac{(N+2)}{(N-2)}}=0$, the Scalar Curvature Problem in \mathbb{R}^{N} and related topics, J. Funct. Analysis, 165 (1999), 117-149.
[3] A.Ambrosetti, A. Malchiodi, A multiplicity result for the Yamabe problem on S^{n}, J. Funct. Analysis, 168 (1999), 529-561.
[4] Ambrosetti A., Malchiodi A., On the Symmetric Scalar Curvature Problem on S^{n}, to appear on J. Diff. Equations.
[5] A.Ambrosetti, A. Malchiodi, Yan Yan Li, Scalar Curvature under Boundary Conditions, C. R. Acad. Sci. Paris. to appear.
[6] T. Aubin, Some Nonlinear Problems in Differential Geometry, Springer, (1998).
[7] M.Berti, A. Malchiodi, Preprint S.I.S.S.A. (1999)
[8] A.Bahri, J. M. Coron, The Scalar-Curvature problem on the standard three-dimensional sphere, J. Funct. Anal. 95 (1991), 106-172.
[9] A. Chang, X. Xu, P. Yang, A perturbation result for prescribing mean curvature, Math. Annalen 310-3 (1998), 473-496.
[10] P. Cherrier, Problemes de Neumann nonlinearires sur les varietes Riemanniennes, J. Funct. Anal. 57 (1984), 154-207.
[11] J. Escobar, Conformal deformation of a Riemannian metric to a scalar fla metric with constant mean curvature on the boundary, Ann. Math. 136 (1992), 1-50.
[12] J. Escobar, Conformal metrics with prescribed mean curvature on the boundary, Cal. Var. and PDE's 4 (1996), 559-592.
[13] D.H. Gottlieb, A De Moivre like formula for fixed point theory, Contemp. Math. 72 (1988), 99-105.
[14] Z.C.Han, Yan Yan Li, The Yamabe problem on manifolds with boundaries: existence and compactness results, Duke Math. J. 99 (1999), 489-542.
[15] Z.C. Han, Yan Yan Li, The existence of conformal metrics with constant scalar curvature and constant boundary mean curvature, Comm. Anal. Geom., to appear.
[16] Yan Yan Li, The Nirenberg problem in a domain with boundary, Top. Meth. Nonlin. Anal. 6 (1995), 309-329.
[17] Yan Yan Li, Prescribing scalar curvature on S^{n} and related topics, Part I, J. Diff. Equat. 120 (1995), 319-410; Part II, Existence and compactness, Comm. Pure Appl. Math. 49 (1996), 437-477.
[18] A. Malchiodi, in preparation.
[19] M. Morse, G. Van Schaak, The critical point theory under general boundary conditions, Annals of Math. 35 (1934), 545-571.

[^0]: *A.A. and A.M. have been supported by M.U.R.S.T. under the national project Variational methods and nonlinear differential equations.

[^1]: ${ }^{1}$ in the sequel we will use the same symbol C to denote possibly different positive constants.

[^2]: ${ }^{2}$ hereafter, when we write that a function is $O(\varepsilon), o(\varepsilon)$, it is understood that this holds uniformly for $g \in \mathcal{G}_{\varepsilon}, c>-M$.

[^3]: ${ }^{3} H$ depends also on c, but such a dependence will be understood.

