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1 Introduction

String theory predicts higher-curvature corrections to the gravitational effective action. If

the inflationary scale is sufficiently high, these corrections may be observable. In fact, the

imprint of these effects on the primordial perturbations may be a rare observational window

on inflationary models without a large hierarchy between the Hubble scale and the string

scale. These models are hard to analyze, since, unlike more conventional inflationary theo-

ries, they cannot be organized as an expansion in a ratio of energy scales. To make robust

statements therefore requires identifying observables which are protected by symmetries.

In this paper, we will consider inflationary models whose predictions are controlled by the

weakly broken conformal symmetry of the quasi-de Sitter background. Our approach is

similar in spirit to that of [1] and [2] (see also [3–14]), where conformal symmetry was used

to constrain the three-point functions for tensors and scalars, respectively. In particular,

in [1], it was shown that higher-curvature corrections give rise to a new structure in the

graviton three-point function. While the analysis of the tensor three-point function is par-

ticularly clean and model-insensitive, it is also hard to verify in observations, since tensor

non-Gaussianities are likely to be very small. Here, we will discuss a potentially larger

signature in the graviton two-point function.

The tensor power spectrum is characterized by an amplitude (or the tensor-to-scalar

ratio, r) and a tilt (nt). In single-field slow-roll inflation, minimally coupled to Einstein

gravity, these two parameters are related by a consistency condition [15], r = −8nt. We

will show that the leading higher-curvature corrections to the gravitational action lead to a
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violation of this consistency condition.1 We will arrive at this conclusion from two different

perspectives:

• First, we consider a small breaking of de Sitter symmetry in the inflationary action,

controlled by the slow-roll parameter ε ≡ −Ḣ/H2. In our model, conformal sym-

metry is broken by the inflaton potential and a coupling to the square of the Weyl

tensor. These terms have been considered in the literature before, both from the

perspective of an effective field theory [17] and in string theory [18] (see also [19–21]).

We argue that this simple action reproduces the most general corrections to the ten-

sor two-point function at leading order in the breaking of the conformal symmetry.

While the tensor-to-scalar ratio is of order ε, the tensor tilt gets a correction of or-

der
√
ε(H/M)2, where M is the scale suppressing the higher-curvature corrections.

If the scale M is close to the Hubble scale, this correction is the dominant effect.2

• Second, we analyze the same problem from the point of view of the wavefunction of

the universe. The coefficients of the wavefunction are constrained by the de Sitter

isometries, and can be interpreted as correlation functions of a putative conformal

field theory (CFT) [22, 23]. To describe a realistic cosmology, we break the conformal

symmetry by introducing a marginally relevant deformation of the CFT. If the de-

formation is small, then it can be treated in conformal perturbation theory [24]. The

slow-roll parameter ε is related to the coupling and the dimension of the operator that

deforms the CFT [25]. We use conformal perturbation theory as a robust proof of our

claim that the tensor-to-scalar ratio r and the tensor tilt nt are non-zero at different

orders in
√
ε. The advantage of this approach is that it relies mostly on symmetries,

and allows us to be agnostic about the details of the effective action of the theory.

The outline of the paper is as follows. In section 2, we introduce a simple action

in which higher-curvature corrections lead to a violation of the tensor consistency condi-

tion. We emphasize that the effect arises at leading order in the breaking of the de Sitter

isometries. In section 3, we confirm this conclusion with an analysis of the stress tensor

two-point function in a perturbed conformal field theory. Our conclusions are summarized

in section 4. Two appendices contain technical details. In appendix A, we make a few

remarks on the breaking of conformal symmetry in theories with a nontrivial sound speed.

In appendix B, we review the argument of [26], showing that a nontrivial tensor spectrum

can be mapped to a nontrivial scalar spectrum by a disformal transformation [27].

Notation and conventions. We will use natural units, c = ~ = 1, with reduced Planck

mass M2
pl ≡ 1/8πG. Our metric signature is (− + ++). Latin indices denote spatial

coordinates (e.g. xi, ki), while Greek indices stand for spacetime coordinates. We will use

both physical time t and conformal time η. Overdots and primes will denote derivatives

1Related observations have appeared in [16].
2Corrections due to higher-derivative interactions of the inflaton, such as (∂φ)4/Λ4, will be suppressed

by a larger scale Λ. As we will show, the hierarchy Λ�M is protected because the gravitational coupling

to the scalar sector is small.
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with respect to t and η, respectively. The dimensionless power spectrum of a Fourier mode

f~k is defined as

∆2
f (k) ≡ k3

2π2
〈f~kf−~k〉

′ , (1.1)

where the prime on the correlation function indicates that the overall momentum-

conserving delta function is being dropped.

2 Tensors beyond Einstein gravity

In this section, we motivate a scenario in which the inflaton breaks the isometries of de

Sitter space by a minimal amount, and analyze the consequences for the scalar and tensor

two-point functions. We show that a coupling to the Weyl tensor leads to a violation of

the tensor consistency condition.

2.1 Weakly broken conformal symmetry

De Sitter space is a solution to Einstein gravity with a positive cosmological constant

SdS =
M2

pl

2

∫
d4x
√
−g
(
R− 2Λ

)
. (2.1)

In flat slicing, the line element is given by

ds2 = −dt2 + e2Htd~x2 =
−dη2 + d~x2

(Hη)2
, with 3H2 ≡ Λ . (2.2)

Inspection of (2.2) reveals the isometries of the de Sitter spacetime: in addition to spatial

rotations and translations, these include a dilatation and three special conformal transfor-

mations

D : η → η (1 + λ) , ~x → ~x(1 + λ) , (2.3)

SCT : η → η(1− 2~b.~x) , ~x → ~x− 2(~b.~x) ~x+ (~x2 − η2)~b , (2.4)

where λ and ~b are infinitesimal parameters. At late times, η → 0, these isometries act as

conformal transformations on the spacelike boundary I+ (see figure 1). We will return to

this point of view in section 3.

In a realistic inflationary model, the de Sitter symmetries need to be broken. For this

purpose, we introduce the dynamical inflaton field φ. We give it a potential, M2
plΛ→ V (φ),

so that the field acquires a time-dependent expectation value φ = φ̄(t). This provides a nat-

ural clock measuring the time to the end of inflation. The expansion rate is now time depen-

dent, H → H(t), and related to the evolution of the inflaton by the Einstein equations [28]

˙̄φ2 = −2M2
plḢ , (2.5)

V (φ̄) = M2
pl

(
3H2 + Ḣ

)
. (2.6)
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Figure 1. The time-dependent inflaton vev, φ̄(t), introduces a preferred time slicing of de Sitter

space.

The inflationary slow-roll parameter can then be written as

ε =
1
2

˙̄φ2

M2
plH

2
. (2.7)

The size of ε controls the breaking of the conformal symmetries of de Sitter, with the

symmetries being restored in the limit ε→ 0.

We will assume that inflaton self-interactions are suppressed by a relatively large mass

scale, Λ2 � ˙̄φ, while gravitational interactions are controlled by a lower scale, ˙̄φ > M2 &
H2. The hierarchy Λ � M is protected because the gravitational coupling to the scalar

sector is small.3 In that case, the leading breaking of the conformal symmetry comes

from the inflaton potential, while higher-derivative interactions, like (∂φ)4/Λ4, will be

suppressed4 by powers of ˙̄φ/Λ2 � H2/M2. In addition, we may have functions of φ coupled

to curvature tensors. These couplings were discussed systematically by Weinberg in [17].

Like Weinberg, we consider these terms to be perturbative corrections to the Einstein-

Hilbert action. This ensures that any ghost instabilities are moved outside the regime of

validity of the effective theory. Using the field equations of the leading terms in the action,

all inflaton-curvature couplings can be written in terms of couplings to the Weyl tensor

Wµν ρσ ≡ Rµν ρσ −
1

2
(gµρRνσ − gµσRνρ − gνρRµσ + gνσRµρ) +

R

6
(gµρgνσ − gνρgµσ) . (2.8)

To study the tensor two-point function, we only need to consider the couplings to the

square of the Weyl tensor,

W 2 ≡Wµν ρσWµν ρσ = Rµν ρσRµν ρσ − 2RµνRµν +
1

3
R2 , (2.9)

3To see this, consider, for instance, higher-curvature terms of the form ∆L ≡ M2
plR

2/M2. Using the

leading-order equation of motion [17], M2
plRµν = −∂µφ∂νφ − V (φ)gµν , one finds ∆L ⊂ (∂φ)4/Λ4, with

Λ ≡
√
MplM � M . We see that the effective cutoff of the scalar sector is enhanced by the large ratio

Mpl/M . We thank an anonymous referee for a discussion of this point.
4If the scale controlling inflaton interactions is smaller than ˙̄φ, then the power counting of the EFT

changes significantly [29]. In this limit, inflaton fluctuations can propagate with a nontrivial sound speed,

cs � 1. In appendix A, we show that a small sound speed induces a much stronger breaking of conformal

symmetry than we wish to consider in this paper. Conversely, if we demand that the conformal symmetry

is only broken by effects of order ε, then these symmetry-breaking operators have to be highly suppressed.
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and to the parity-violating term WW̃ ≡ (
√
−g )−1 εµν ρσWµν

κλWρσκλ. Higher powers of

the Weyl tensor will contribute to higher-point correlation functions, and are not relevant

for the considerations of this paper. We will therefore study the following action

S =

∫
d4x

(
Lφ + Lg

)
, with

Lφ =
√
−g

[
−1

2
(∂φ)2 − V (φ)

]
,

Lg =
√
−g

M2
pl

2

[
R+ f(φ)

W 2

M2
+ h(φ)

WW̃

M2

]
.

(2.10)

Notice that we have factored out the scale M2
pl in Lg. This is consistent with the structure

expected in string effective actions [30], with M playing the role of the string scale or the

Kaluza-Klein scale. Since the Weyl tensor vanishes for any homogeneous FRW metric, the

background slow-roll solution is still determined by the Einstein-Hilbert part of Lg.
The effects of the parity-violating term h(φ)WW̃ have been studied in [31–34]. Since

WW̃ is a total derivative, this term vanishes if h(φ) is a constant. The correction to the

tensor two-point function therefore comes from the field-dependent variation of h(φ). This

leads to a difference in the amplitudes of the two chiralities of the tensor modes of order√
εH2/M2. In this paper, we will be interested in the effects of the coupling f(φ)W 2.

We will show that the field-dependent variation5 of f(φ) induces a sound speed for tensor

fluctuations and a contribution to the tensor tilt of order
√
εH2/M2.

Interestingly, the f(φ)W 2 term in (2.10) is similar to a term in the effective action of

the original Starobinsky model [38]. In these models, inflation is driven by a large number

of conformally coupled fields whose stress tensor is induced by the conformal anomaly [39],

〈Tµµ 〉 ⊃ cW 2. The effective action that reproduces the conformal anomaly [40] includes the

Weyl-squared term. It is not hard to imagine that variations of the model could contain a

term of the form f(φ)W 2. For example, such a term arises if one introduces the dilaton.

It would be interesting to make this connection more precise [41].6

2.2 Violation of the consistency condition

We now compute the scalar and tensor power spectra resulting from the action (2.10). We

use the standard ADM decomposition of the metric [42]

ds2 = −N2dt2 + gij
(
N idt+ dxi

)(
N jdt+ dxj

)
. (2.11)

In comoving gauge, the inflaton is unperturbed, φ = φ̄(t), and the spatial metric can be

written as

gij = a2e2ζ (δij + γij) , (2.12)

where γij is a transverse and traceless tensor. At leading order, the curvature perturbation

ζ and the tensor mode γij decouple and can be treated separately.

5For constant f(φ), the Weyl-squared term, W 2, can be put into the Gauss-Bonnet form, R2
µν ρσ −

4R2
µν + R2, via the field redefinition gµν → gµν + fM−2

pl (−2Rµν + 5
3
gµνR) [35]. Since the Gauss-Bonnet

term is a total derivative, it only contributes a boundary term. However, the field redefinition also changes

the inflaton kinetic term and the normalization of the Einstein-Hilbert action, so the constant part of the

function f(φ) is still physical. The phenomenology of inflationary models with a large Gauss-Bonnet term

has been considered before in [36, 37].
6We thank Juan Maldacena for this suggestion.
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Scalars. We first consider the spectrum of the curvature perturbation ζ. Since WW̃

vanishes for scalar fluctuations, only f(φ)W 2 contributes. At linear order in ζ, the non-

zero components of the Weyl tensor are7

W 0i
0j =

1

2

(
∂i∂j −

δij
3
∇2

)(
εζ

a2
+

1

∇2

d

dt
(aεζ̇)

)
≡ Fij ,

W ij
kl = δikFjl + δjlFik − δilFjk − δjkFil ,

(2.13)

and hence W 2 = 8F 2
ij . To eliminate terms with second-order time derivatives in the Weyl

tensor, we use the leading-order equation of motion

ζ̈ +
d

dt
log(a3ε) ζ̇ − ∇

2

a2
ζ = 0 . (2.14)

The quadratic action can then be written in the following form

Lζ
M2

pl

= a3
ε

c2s

(
ζ̇2 − c2s

a2
(~∇ζ)2

)
, (2.15)

where we have introduced the sound speed

1

c2s
− 1 ≡ 8

3
εf(φ̄)

H2

M2
. (2.16)

If we had kept the couplings of the inflaton to R2 and R2
µν , we would have found additional

corrections to cs of the same order. Since the deviation from cs = 1 is suppressed by a

factor of ε� 1, it will not play a significant role for the rest of this paper. For simplicity, we

will therefore take cs ≈ 1, and write the power spectrum of ζ in the standard slow-roll form

∆2
ζ ≈

1

8π2
1

ε

H2

M2
pl

, (2.17)

where the right-hand side is evaluated at horizon crossing, k = aH. We conclude that the

coupling to the Weyl tensor has very little effect on the scalar power spectrum, and its

main effect is a correction to the tensors.

Tensors. The linearized equation of motion for tensor fluctuations in Einstein gravity is

γ̈ij + 3Hγ̇ij −
∇2

a2
γij = 0 . (2.18)

We will use this to simplify some of the perturbative corrections to the quadratic action

for γ. At linear order in γ, the components of the Weyl tensor are

W 0i
0j =

1

4

(
γ̈ij +Hγ̇ij +

∇2

a2
γij

)
,

W 0i
jk =

1

2a

(
γ̇ik,j − γ̇ij,k

)
,

7To arrive at (2.13), we have used the linearized solutions to the Einstein constraint equations [23]:

δN = ζ̇/H and ∂iN
i = εζ̇ − a−2∇2ζ/H.
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W jk
0i =

1

2a

(
γ̇ij,k − γ̇ik,j

)
, (2.19)

W ij
kl =

1

2

{
1

a2

(
γil,jk + γjk,il − γik,jl − γjl,ik

)
+

1

2

[
δil

(
γ̈jk +Hγ̇jk −

∇2

a2
γjk

)
+ δjk

(
γ̈il +Hγ̇il −

∇2

a2
γil

)
−δik

(
γ̈jl +Hγ̇jl −

∇2

a2
γjl

)
− δjl

(
γ̈ik +Hγ̇ik −

∇2

a2
γik

)]}
.

Substituting this into W 2, we get

Wµν
ρσW

ρσ
µν = 4W 0i

0jW
0j

0i + 4W 0i
jkW

jk
0i +W ij

klW
kl
ij ,

= 2

(
γ̈ij +Hγ̇ij +

∇2

a2
γij

)2

+ 4 γ̇ij
∇2

a2
γ̇ij . (2.20)

Using (2.18), this can be brought into the form of eq. (21) in [17]. After a few integrations

by parts, we obtain

Lγ
M2

pl

=
a3

8

1

c2t

(
γ̇2ij −

c2t
a2

(~∇γij)2
)

− 2
a3

M2
f(φ̄)

[
γij
∇2

a2

(
γ̈ij + 3Hγ̇ij −

∇2

a2
γij

)]
− 2

a3

M2

df(φ̄)

dt
γij
∇2

a2
γ̇ij −

4

M2

dh(φ̄)

dt
εijk0 γil∂j∇2γkl . (2.21)

The second line in (2.21) vanishes after using the equation of motion (2.18) once more. The

last line is proportional to ˙̄φ and hence is suppressed in the slow-roll limit.8 This leaves

the first line, which is the quadratic action for tensors with a nontrivial sound speed

1

c2t
− 1 ≡ 8f(φ̄)

H2

M2
. (2.22)

In [26], it was shown that a tensor sound speed can always be set to unity by a disformal

transformation [27], followed by a Weyl rescaling to take the action to Einstein frame.

These two metric transformations trade the nontrivial tensor sound speed for a scalar

sound speed, c̃s, and a modified Hubble rate, H̃(t̃). In the new frame, the tensor spectrum

takes the standard form, ∆2
γ ∝ H̃2/M2

pl, but the scalar spectrum is modified. Of course,

predictions for observables are frame-independent [26, 43], so the choice of frame is simply

a matter of convenience. In particular, the violation of the consistency condition that we

will find is a frame-independent conclusion.9 We leave the details to appendix B, but one

point is worth emphasizing here. The violation of the consistency condition in the new

8The last term in (2.21), although slow-roll suppressed, is phenomenologically interesting because it

leads to chiral gravitational waves [31–34]. Incidentally, the size of the chiral splitting,
√
εH2/M2, is of the

same order as the correction to the tensor tilt that we will get from the rest of the action.
9We thank Paolo Creminelli and Filippo Vernizzi for a discussion of these issues.
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frame is not the same as that found in P (X)-theories [44]. Rather, it is the time derivative

of c̃s that modifies the tensor-to-scalar ratio.

The tensor sound speed leads to a simple rescaling of the standard tensor power spec-

trum. Summing over the two graviton polarizations, we obtain

∆2
γ =

2

π2
H2

M2
pl

1

ct
, (2.23)

where the right-hand side is evaluated at ctk = aH. If the inflaton-Weyl coupling is a

small correction to the leading gravitational action — as we are assuming in order to avoid

propagating ghost degrees of freedom — then ct can’t deviate much from unity. The main

effect is not the size of ct, but its time dependence.10 In particular, the tensor-to-scalar

ratio approximately still takes the form predicted by standard slow-roll inflation

r ≡
∆2
γ

∆2
ζ

=
16ε

ct
≈ 16ε . (2.24)

However, the tensor tilt can still receive an important correction due to the time dependence

of ct. Crucially, the evolution of ct(t) is coupled to that of φ̄(t). This will induce a tilt of

the tensor spectrum proportional to ˙̄φ ∝
√
ε. To see this, let us define a slow-variation pa-

rameter for the tensor sound speed, εt, and express it in terms of the slow-roll parameter ε:

εt ≡
ċt
Hct

= ∓4c2t b
√

2ε
H2

M2
+ (1− c2t )ε , (2.25)

where b ≡ Mplf
′ is a dimensionless constant. Taking the scale of variation of f(φ) to be

of order Λ, we get b ∼ Mpl/Λ, which may be large if Λ � Mpl. The fractional change

of (2.23) per Hubble time then determines the tensor tilt

nt ≡
d ln ∆2

γ

d ln k
= −2ε− εt ≈ −2ε ± 4b

√
2ε
H2

M2
, (2.26)

where we have ignored a small shift in the coefficient of the standard contribution, −2ε.

Notice that the correction has undetermined sign, so it seems to allow a blue tilt for

the tensor spectrum, even without a violation of the null energy condition (NEC).11 The

second term in (2.26) leads to a modification of the tensor consistency condition

− 8nt
r

= 1∓ 4b√
2ε

H2

M2
. (2.27)

We see that the violation of the relation nt = −r/8 is enhanced for small ε (and large

b), but suppressed by H2/M2. In the stringy regime of inflation, H2/M2 can be of order

one12 and our proposed modification of the tensor spectrum could be a significant effect.

10The fact that ct is never allowed to deviate too far from unity puts a constraint on the time dependence

of ct, and hence on the function f(φ) in (2.22).
11In the Einstein frame, with c̃t = 1, a blue tilt still corresponds to a violation of the NEC, ˙̃H > 0, but

without inducing the gradient instability that this usually implies [26, 45].
12When M is the string scale, the ratio H/M is constrained by the fact that we require the Hagedorn

temperature to remain above the de Sitter temperature in order to avoid a phase transition of the system [46].
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Testing the tensor consistency condition observationally is challenging (see [47, 48] for

a recent discussion). Naturally, the observational prospects improve for large tensor-to-

scalar ratio and if a large range of scales can be accessed (maybe with futuristic direct

detection experiments [49–51]). A blue tensor spectrum would be easier to detect.

3 CFT interpretation

The freeze-out of quantum fluctuations during inflation allows us to recast cosmological

expectation values in terms of the ‘wavefunction of the universe’, Ψ[ζ, γ]. This wavefunction

computes late-time expectation values of superhorizon fluctuations. The isometries of de

Sitter space imply that the coefficients of the wavefunction can be interpreted as correlation

functions of the stress tensor in a putative conformal field theory [22, 23]. The small

breaking of conformal symmetry during inflation is modelled as a small deformation of

the CFT, which can be treated perturbatively [24]. In this section, we will show that this

alternative point of view reproduces the results of the previous section.

3.1 Wavefunction of the universe

The wavefunction of the universe can be computed by a saddle-point approximation,

Ψ ≈ eiScl , where the action Scl is evaluated for a classical solution with certain Dirich-

let boundary conditions [23]. The result takes the following form

Ψ = eiSdiveW0[ζ,γ] , with W0 =
1

2

∫
d3k

(
ζ~k ζ−~k 〈T~kT−~k〉

′ +
∑
s

γs~k γ
s
−~k 〈T

s
~k
T s−~k〉

′

)
.

(3.1)

The local divergent piece, eiSdiv , is a pure phase factor, and thus drops out of expecta-

tion values. The coefficient functions 〈T~kT−~k〉
′ and 〈T s~kT

s
−~k
〉′ may be interpreted as the

correlation functions of the trace and the trace-free part of the stress tensor Tij of a dual

field theory [22, 23, 52].13 The power spectra of ζ and γ are then computed by a simple

Gaussian integration

〈ζ~k ζ−~k〉
′ =

∫
Dζ ζ~k ζ−~k |Ψ[ζ]|2 = − 1

2Re〈T~kT−~k〉′
, (3.2)

〈γs~k γ
s
−~k〉
′ =

∫
Dγs γs~k γ

s
−~k |Ψ[γs]|2 = − 1

2Re〈T s~k T
s
−~k
〉′
. (3.3)

The diffeomorphism invariance of gravitational theories implies that the generators of coor-

dinate transformations act as constraints on the wavefunction [53]. These constraint equa-

tions are the conformal Ward identities of the coefficient functions 〈T~kT−~k〉
′ and 〈T s~k T

s
−~k
〉′.

In a CFT, these constraints imply

〈T~kT−~k〉
′ = 0 , 〈T s~k T

s
−~k〉
′ = cTk

3 , (3.4)

13The CFT that describes the de Sitter cosmology is not unitary and has some unusual features, mostly

related to the spectrum of the dimensions of operators. Our analysis will only use the mapping of the

symmetries between the bulk and the boundary, and does not rely on a deeper meaning of dS/CFT.
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where cT is the central charge. We see that there are no ζ-fluctuations and the gravitational

sector consists only of gravitons. In terms of bulk quantities, the central charge is

cT = −1

4

M2
pl

H2
. (3.5)

In a quasi-de Sitter background, with finite slow-roll parameter ε, some of the conformal

symmetries are softly broken (see appendix A). The effects of this weak symmetry breaking

can be treated perturbatively.

3.2 Conformal perturbation theory

A suitable framework for analyzing field theories that are almost conformal is conformal

perturbation theory [24]. We now wish to show that such an analysis reproduces the results

of section 2.

We deform the CFT by a local primary operator [54]14

S = SCFT + ϕ

∫
d3zO(~z ) , (3.6)

where ϕ is a small coupling.15 We take the perturbing operator to be marginally relevant,

so its dimension is ∆ ≡ 3−λ, with 0 < λ� 1. The small expansion parameter dual to
√
ε

will be a combination of ϕ and λ. For convenience, we normalize the two-point function of

O by the central charge

〈O~kO−~k〉
′ = cT k

3−2λ . (3.7)

For small ϕ, the two-point function of the stress tensor can be computed perturbatively as

〈TijTkl〉 =
〈
TijTkl e

−ϕ
∫
d3zO〉

0

=
〈
TijTkl

〉
0
− ϕ

∫
d3z

〈
TijTklO(~z )

〉
0

+
ϕ2

2

∫
d3z d3w

〈
TijTklO(~z )O(~w)

〉
0

+ · · · , (3.8)

where the expectation values 〈TijTkl . . .O〉0 are computed using the CFT operator algebra,

and in general are constrained by Ward identities. We will use the following trace Ward

identities obeyed by the stress tensor〈
T ii(~x)Tkl(~y )O(~z )

〉
0

= λ δ(~x− ~z )
〈
Tkl(~y )O(~z )

〉
0

= 0 , (3.9)〈
T ii(~x)Tkl(~y )O(~z )O(~w)

〉
0

= λ
[
δ(~x− ~z )

〈
Tkl(~y )O(~z )O(~w)

〉
0

+ (~z ↔ ~w)
]
, (3.10)

14Of course, CFTs are characterized by a set of correlation functions rather than by an action. Here,

SCFT is simply a metaphoric way of characterizing the content of the original CFT. In practice, calculations

in conformal perturbation theory are always performed at the level of correlation functions.
15In conformal perturbation theory, one usually tunes the perturbation so that the beta function vanishes

and the theory flows to a new conformal fixed point [24]. Since we are mainly interested in the parametric

scaling of the corrections, we will not perform this additional step and thus we do not worry about the

particular renormalization group flow.
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〈
T ii(~x)T kk(~y )O(~z )O(~w)

〉
0

= λ2
[
δ(~x− ~z ) δ(~y − ~w)

〈
O(~z )O(~w)

〉
0

+ (~z ↔ ~w)
]
, (3.11)

where, in the last identity, we have dropped an irrelevant contact term, with support

when ~x = ~y. In a reparametrization invariant theory, ∇i〈Tij〉 = 0, we furthermore have

ki〈Tij(~k)Tkl(−~k)〉′ = 0. Imposing this constraint implies that 〈TijTkl〉 has the following

form

〈Tij(~k )Tkl(−~k )〉′ = 1

4

[
δ⊥ijδ

⊥
kl〈T~kT−~k〉

′ +
(
δ⊥ikδ

⊥
jl + δ⊥il δ

⊥
jk − δ⊥ijδ⊥kl

)
〈T s~k T

s
−~k〉
′
]
, (3.12)

where δ⊥ij ≡ δij − kikj/k2.
In general, 〈T s~k T

s
−~k
〉′ and 〈T~kT−~k〉

′ are arbitrary functions of k, but in a theory with

approximate conformal symmetry, we expect them to be approximately scale invariant.

The breaking of scale invariance can be studied in powers of ϕ:

• First, let us look at the two-point function of the trace, 〈T~kT−~k〉. It follows from the

trace Ward identity (3.9) that this vanishes at order ϕ. The scalar two-point function

is therefore only generated at order ϕ2. Using (3.10) and (3.11), we find

〈T~kT−~k〉
′ = ϕ2λ2〈O~kO−~k〉

′ = cT ϕ
2λ2 k3−2λ . (3.13)

The tensor-to-scalar ratio therefore is

r ≡
〈T~kT−~k〉

′

〈T s~k T
s
−~k
〉′

= ϕ2λ2 . (3.14)

Comparing this to the bulk result, r = 16ε, we identify the following duality map:

ϕλ↔ ±4
√
ε.

• Next, we consider the correction to 〈T s~k T
s
−~k
〉′. At O(ϕ), we require the integral of the

three-point function 〈T sT sO〉0. In position space, we have〈
Tij(~x)Tkl(~y )O(~z )

〉′
0

= cT fTTO Tij kl(~x− ~y , ~y − ~z , ~z − ~x) , (3.15)

where an explicit expression for the tensor structure Tij kl can be found in the classic

work of Osborn and Petkou [55], cf. eqs. (3.3)–(3.6). We have identified cT fTTO with

the coefficient a of eq. (3.4) in [55]. Integrating (3.15) over ~z, and transforming to

momentum space, we get〈
T s~k T

s
−~kO(~0)

〉′
0

= cT α(λ)fTTO k
3−λ , (3.16)

where α(λ) is a numerical coefficient. We have confirmed by explicit integration

that α(λ) is finite, even in the limit λ → 0.16 This implies that Tij doesn’t need to

be renormalized, and also means that perturbing the CFT by an exactly marginal

16We also found that α(λ) vanishes for a two-dimensional CFT. This is to be expected from the c-

theorem in two dimensions. It is also consistent with our bulk interpretation, since the Weyl tensor vanishes

identically in three dimensions.
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operator simply shifts the coefficient of the stress tensor two-point function. Substi-

tuting (3.16) into (3.8), we get

〈T s~k T
s
−~k〉
′ = cTk

3
(
1− nt ln k + · · ·

)
, (3.17)

where we have dropped a small O(ϕ) shift of the amplitude, and defined

nt ≡ −ϕλα(λ) fTTO . (3.18)

This reproduces the O(
√
ε) contribution in the bulk result (2.26), if we make the

following identification: α(λ)fTTO ↔
√

2bH2/M2. The O(ϕ2) term in the 〈T s~k T
s
−~k
〉

correlator contains the standard tensor tilt proportional to ε. This contribution

depends on the details of the CFT and its various OPE coefficients.

The main result of this section was the confirmation that a tensor tilt is generated at

O(ϕ), while the tensor-to-scalar ratio is only non-zero at O(ϕ2). The tensor tilt comes

from a specific three-point function, whose size is set by fTTO in the boundary CFT, and

by H2/M2 in the bulk action. The standard result of Einstein gravity is recovered for

fTTO → 0, or M →∞.

4 Conclusions

The weak breaking of conformal symmetry during inflation can be used to constrain the

predictions for cosmological correlators — e.g. [1, 2, 5]. This is especially relevant in

inflationary models in which the scale suppressing higher-curvature corrections is close to

the Hubble scale. In this paper, we have studied the coupling of the inflaton field to higher-

curvature tensors in models with a minimal breaking of conformal symmetry. We showed

that the most general correction to the tensor two-point function is captured by a coupling

to the square of the Weyl tensor. This interaction modifies the consistency condition of

single-field slow-roll inflation

− 8nt
r

= 1∓ 4b√
2ε

H2

M2
. (4.1)

The correction can have either sign, and may dominate over the prediction from Einstein

gravity if H/M is not too small. We consider this an interesting signature of higher-

curvature corrections during inflation.

We have left a few open questions for future work:

• What is the precise connection between our effective action (2.10) and the original

Starobinsky model [38]? Both models rely on softly broken conformal invariance, and

the effective actions even contain some terms of the same functional form. Making

this relationship more precise would be very interesting [41].

• How naturally does our scenario arise in explicit string compactifications? Under

which circumstances is a weakly broken conformal symmetry maintained in the four-

dimensional effective theory? Is there a relation to conformal supergravity [56–58]?
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• If a violation of the tensor consistency condition were to be observed, how would we

convince ourselves that it comes from higher-curvature effects? In particular, it is

well-known that a violation of r = −8nt can also arise from modifications of the scalar

spectrum in models with a nontrivial scalar sound speed [44] and/or isocurvature

fluctuations [59]. However, in that case we also expect strong interactions in the scalar

sector, which can be tested for through measurements of primordial non-Gaussianity.

In contrast, in our proposal we do not predict a strong counterpart in scalar non-

Gaussianity. A positive test of our scenario would be looking for correlated signatures

of a low string scale, such as angular dependence in the scalar bispectrum [2] and

specific forms of tensor non-Gaussianity [1].

• Can we get blue tensors? Our analysis determines neither the sign of the coupling

to the Weyl tensor, nor its time dependence. While the sign may be constrained by

requiring tensors to propagate subluminally, we see no a priori way to constrain the

rate of change of the coupling. At the moment, blue tensors therefore seem to be a

legitimate possibility.
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A Comments on conformal symmetry

In this appendix, we study the breaking of conformal symmetry in an inflationary space-

time. By conformal symmetry, we mean the action of the de Sitter isometries on quantum

fields in the background geometry. We will show that dilatations and special conformal

transformations are broken by an amount controlled by ε = −Ḣ/H2. Moreover, we will

demonstrate that in theories with nontrivial sound speed, cs � 1, special conformal sym-

metry is broken even in the limit ε→ 0.

• First, let us consider a massless scalar field f in pure de Sitter space

SdS =
1

2

∫
d4x

(f ′)2 − (~∇f)2

(Hη)2
. (A.1)
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Conformal transformations act as follows

δλf = λ
(
ηf ′ + ~x · ~∇f

)
, (A.2)

δbf = 2~b · ~x
(
ηf ′ + ~x · ~∇f

)
+ (η2 − x2)~b · ~∇f . (A.3)

It is straightforward to check that the action (A.1) is invariant under these transfor-

mations.

• Next, let us repeat the analysis for an inflationary background. The action of a

massless scalar in quasi-de Sitter space is

SI =
1

2

∫
d4x a2(η)

(
(f ′)2 − (~∇f)2

)
≡
∫

d4xLI , a(η) = − 1

Hη(1− ε)
. (A.4)

After integrations by parts, we obtain the following variations of the action

δλSI = 2λ

∫
d4x εLI , (A.5)

δbSI = 2

∫
d4x (~b · ~x) εLI . (A.6)

As advertised, dilatations and SCTs are broken by an amount proportional to ε.

• Finally, we consider a massless scalar field with a nontrivial speed of sound

Scs =
1

2

∫
d4x

1

c2s

(f ′)2 − c2s(~∇f)2

(Hη)2
. (A.7)

Assuming cs = const., for simplicity, the variation of the action gives

δλScs = 0 , (A.8)

δbScs = 2

∫
d4x

1− c2s
c2s

ηf ′ (~b · ~∇)f

(Hη)2
. (A.9)

We see that scale invariance is retained, while special conformal invariance is broken.

For time-dependent cs(t), dilatations would be broken as well.

B Comments on Einstein frame

In [26], it was shown that a nontrivial tensor sound speed can be set to unity by a disformal

transformation [27]. This is followed by a conformal transformation, which brings the action

back to Einstein frame. The combined transformation is given by

gµν → c−1t
[
gµν + (1− c2t )nµnν

]
, (B.1)

where nµ ∝ ∂µφ is the unit vector orthogonal to the constant-time hypersurfaces. The

action in the new frame then has a trivial sound speed for tensors, c̃t = 1, but a nontrivial

sound speed for scalars, c̃s = c−1t . In this appendix, we show that observables are the
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same in both frames. In particular, we will find that the modification to the consistency

condition (2.27) is still present in the new frame.

Consider the action (2.10) in comoving gauge. At quadratic order in fluctuations and

at leading order in slow-roll, we get

S =
M2

pl

8

∫
dtd3x

(
Lζ + Lγ

)
, with

Lζ = 8a3ε
[
ζ̇2 − a−2(~∇ζ)2

]
,

Lγ = a3 c−2t

[
γ̇2ij − a−2c2t (~∇γij)2

]
.

(B.2)

After performing the transformation (B.1), the background line element becomes ds2 =

−ctdt2 + c−1t a2d~x2. Rescaling the time and the scale factor,

dt̃ = c
1/2
t (t) dt , ã(t̃) = c

−1/2
t (t) a(t) , (B.3)

we get ds2 = −dt̃2 + ã2d~x2. The curvature perturbation ζ and the tensor fluctuations γij
transform as spacetime scalars, so the action (B.2) takes the form

S =
M2

pl

8

∫
dt̃d3x

(
L̃ζ̃ + L̃γ̃

)
, with

L̃ζ̃ = 8 ã3ε
[
c2t (∂t̃ ζ̃)2 − ã−2(~∇ζ̃)2

]
,

L̃γ̃ = ã3
[
(∂t̃ γ̃ij)

2 − ã−2(~∇γ̃ij)2
]
.

(B.4)

Hence, in the new frame, the tensors propagate with a trivial sound speed, c̃t = 1, but the

scalars have a modified sound speed, c̃s = c−1t . Notice that ct < 1 implies c̃s > 1. It is

not unusual that a non-local field redefinition maps a purely luminal theory to one with

apparent superluminality (e.g. [60–62]). In such a situation, the presence of a superluminal

mode does not imply a violation of relativistic causality.17

At leading order in slow-roll, the tensor power spectrum takes the standard form

∆2
γ =

2

π2
H̃2

M2
pl

, (B.5)

in terms of the new Hubble parameter H̃ ≡ ∂t̃ ln ã ≈ c−1/2t H. The tensor tilt is hence also

of the usual form, nt = −2ε̃, and all nontrivial features have been moved to the scalar

sector. The power spectrum of curvature perturbations is

∆2
ζ =

1

8π2
1

εc̃s

H̃2

M2
pl

, (B.6)

where

ε = ε̃+
1

2
ε̃s , with ε̃s = −εt . (B.7)

If we neglect the small shift in the amplitude due to c̃s ≈ 1, then the tensor-to-scalar ratio is

r ≈ 16

[
ε̃+

1

2
ε̃s

]
. (B.8)

17We thank Paolo Creminelli for explaining this to us.

– 15 –



J
H
E
P
0
1
(
2
0
1
6
)
1
0
1

Hence, although the tensor tilt is standard in the new frame, the tensor-to-scalar ratio

now is non-standard. The tensor consistency condition is then given by

− 8nt
r

=
ε̃

ε̃+ 1
2 ε̃s

(
= 1 +

1

2

εt
ε

)
. (B.9)

We see that the consistency condition is still modified in the new frame, but now the

effect is coming from the time dependence of a nontrivial scalar sound speed, ε̃s 6= 1.

Substituting ε̃ and ε̃s in terms of the parameters in the original frame, ε and εt, we find

complete agreement with our previous result (2.27).

Open Access. This article is distributed under the terms of the Creative Commons
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