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We present a theoretical study of the intrinsic plasmonic properties of twisted bilayer graphene
(TBG) as a function of the twist angle θ (and other microscopic parameters such as temperature and
filling factor). Our calculations, which rely on the random phase approximation, take into account
four crucially important effects, which are treated on equal footing: i) the layer-pseudospin degree
of freedom, ii) spatial non-locality of the density-density response function, iii) crystalline local field
effects, and iv) Hartree self-consistency. We show that the plasmonic spectrum of TBG displays a

smooth transition from a strongly-coupled regime (at twist angles θ . 2
◦
), where the low-energy

spectrum is dominated by a weakly dispersive intra-band plasmon, to a weakly-coupled regime (for

twist angles θ & 2
◦
) where an acoustic plasmon clearly emerges. This crossover offers the possibility

of realizing tunable mid-infrared sub-wavelength cavities, whose vacuum fluctuations may be used
to manipulate the ground state of strongly correlated electron systems.

I. INTRODUCTION

Parallel two-dimensional electron systems (P2DESs)
have been at the center of a great deal of attention since
they were theoretically proposed in 1975 as ideal setups
for the study of superfluidity of spatially separated elec-
trons and holes [1]. They have been experimentally fab-
ricated by using two main experimental platforms: i)
one based on GaAs/AlGaAs heterostructures realized by
molecular beam epitaxy [2–5] and ii) one on atomically-
thin 2D materials, such as graphene and transition-metal
dichalcogenides (TMDs), produced by mechanical exfoli-
ation [6]. These systems harbor a wide set of spectacu-
lar electrical phenomena, including Coulomb drag [7–12],
exciton superfluidity in strong [13–17] and zero [18] mag-
netic fields, and broken symmetry states [19–24] driven
by strong electron-electron interactions.

More recently, the many-body physics of P2DEs has
been greatly enriched thanks to the discovery [25, 26]
of correlated insulators and superconductors in twisted
bilayer graphene (TBG). TBG [27–34] is a P2DES com-
prising two graphene sheets on top of each other, sepa-
rated by a vertical distance d on the order on ≈ 0.3 nm,
and rotated by a twist angle θ. In this system, inter-
layer tunneling changes significantly as a function of θ,
leading to a dramatic spectral reconstruction at a small,
magic angle on the order of ≈ 1.1◦ [35]. At this angle, the
(moiré superlattice) Brillouin zone is covered by a pair of
very weakly dispersing (so-called) “flat bands” centered
on the charge neutrality point [34, 35]. The reduction
of kinetic energy due to band flattening strengthens the
role of electron-electron interactions and is believed to be
responsible for the exciting many-body physics that has
been experimentally unveiled (for recent reviews see, for

example, Refs. [36, 37]).

P2DESs are also intriguing setups from the point of
view of their plasmonic properties, which have been stud-
ied theoretically since the Eighties [38, 39]. Indeed, a sin-
gle 2DES displays a plasmon mode [40], which, in the long
wavelength q → 0 limit, can be interpreted as a center-
of-mass (COM) oscillation dispersing as ωCOM(q) ∝ √q,
as a function of the in-plane wave vector q. This mode
is extremely well understood and its small-q behavior is
highly constrained by 2D electrodynamics [40], posing
practically no bounds on approximate theories for the
2D interacting many-particle problem. On the contrary,
two P2DESs harbor an additional collective mode, which
behaves very differently from the COM mode, depending
on the amplitude of the inter-layer tunneling between
the two layers where electrons roam. Let us consider
a P2DES realized via a GaAs/AlGaAs double quantum
well [2–5]. If the barrier between the two quantum wells is
sufficiently strong, the inter-layer tunneling amplitude—
which in these systems is well described by a constant
quantity typically dubbed ∆SAS, physically representing
the splitting between the symmetric and anti-symmetric
states in the two adjacent wells—is negligible. In this
weak inter-layer tunneling (i.e. ∆SAS → 0) limit, the ad-
ditional collective mode is acoustic [38, 39], i.e. ω(q) ∝ q
for q → 0. Viceversa, in the limit of strong inter-layer
tunneling, the additional collective mode is gapped [42],
ω(q) ∝ ∆SAS for q → 0. The many-body theory of this
mode, either for ∆SAS = 0 [39] or ∆SAS 6= 0 [43], is much
more subtle than that needed to describe the COM plas-
mon in a single 2DES. Gapless, acoustic plasmons ex-
ist also in graphene double layers and topological insula-
tor thin films [41], provided that the two P2DESs there
hosted are well isolated so that inter-layer tunneling can
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FIG. 1. (Color online) The TBG energy loss function L(q, ω)
as a function of q and ω. The dependence on q is displayed
along the high-symmetry path Γ-K-M of the moiré BZ—see
Fig. 2(b). Results in this plot refer to filling factor ν = +1
and temperature T = 5 K. Panel (a) Results for θ = 1.05◦

(chemical potential µ = 22 meV). (b) Results for θ = 5◦

(chemical potential µ = 256 meV). In panel (b), an acoustic
plasmon mode is clearly visible at low energies, just above
the upper edge of the particle-hole continuum, i.e. ω = v?θq,
v?θ being the reduced Fermi velocity—see Eq. (28) below and
also Section I of Ref. [63]. High-energy interband plasmons
have been discussed at length in Refs. [45, 47, 75].

be neglected.
This Article focuses on a simple question. How is TBG

“placed” in this general context? This question is moti-
vated by the qualitative difference between the two inter-
layer tunneling Hamiltonians in the systems mentioned
above, i.e. TBG and GaAs double quantum wells. While
in the latter a constant tunneling ∆SAS works very well,
in the former inter-layer tunneling is highly modulated in
space on the moiré superlattice length scale. Moreover,
TBG too consists of two layers and in principle should
support two collective modes at low energies. However,
at small twist angles near the magic angle, only one low-
energy COM plasmon mode ωCOM(q) ∝ √q is seen in
state-of-the-art theoretical calculations of the plasmonic
modes of TBG [44–47]. Where is the acoustic plasmon
mode?

The technical point is that in order to find an intrinsic
acoustic plasmon in TBG [48], one needs to deal with
the layer-pseudospin degree of freedom. This needs to
be included into the theoretical treatment of the plas-
monic response of TBG, while at the same time tak-

ing into account three other important physical effects,
namely spatial non-locality of the density-density re-
sponse function beyond the Drude limit [39, 41, 49],
Hartree self-consistency [47, 50] and crystalline local field
effects [51, 52].

Accurate theoretical predictions for the plasmonic
modes of TBG are important for a variety of funda-
mental and applied reasons. On the one hand, plas-
mons in TBG have been suggested as potential candi-
dates for the microscopic explanation of superconductiv-
ity [53]. On the other hand, plasmon polaritons in TBG
(and many other twisted 2D materials either with itiner-
ant carriers or long-lived phonon modes) enrich the po-
lariton panorama [54], providing us with a system with
ultra-slow acoustic plasmons—see Sect. V. Finally, since
acoustic plasmons carry an electromagnetic field that is
very well confined between the two layers [55–58], they
may have important applications in the field of quantum
nanophotonics [59] and cavity QED of strongly correlated
electron systems [60–62].

This Article is organized as following. In Sect. II we
introduce linear response theory for a P2DES consisting
of two layers, formulating it for a system with in-plane
Bloch translational invariance. In Sect. III we summarize
the theoretical approach we have used in this work, which
we dub “crystalline” random phase approximation, intro-
ducing local field effects and the experimental observable
we focus on, i.e. the energy loss function. Section IV
is devoted to a brief summary of the TBG continuum
model Hamiltonian we rely on. Finally, in Sect. V we
present our main numerical results. Section VI contains
a brief summary and our main conclusions. Sections I-V
of the Supplemental Material [63] contain a wealth of ad-
ditional numerical results. In particular, Sect. IV deals
with the role of an applied perpendicular electric field
while Sect. V discusses the impact of heterostrain.

II. LINEAR RESPONSE THEORY FOR
TWO-LAYER P2DESS

In this Section we summarize linear response theory
(LRT) [40] for a P2DES consisting of two layers. The for-
malism outlined here will be employed below in Sect. III
to evaluate the plasmonic spectrum of TBG.

The ordinary density-density response function for a
single 2DES [40] can be easily extended to a P2DES con-
sisting of two layers by using a 2× 2 matrix formalism:(
δn(1)(q, ω)
δn(2)(q, ω)

)
=

∫
d2q′

(2π)2

(
χ
(1,1)
n̂qn̂−q′

(ω) χ
(1,2)
n̂qn̂−q′

(ω)

χ
(2,1)
n̂qn̂−q′

(ω) χ
(2,2)
n̂qn̂−q′

(ω)

)

×
(
V

(1)
ext (q′, ω)

V
(2)
ext (q′, ω)

)
. (1)

Here, δn(1)(q, ω) and δn(2)(q, ω) are the Fourier compo-
nents of the densities in the two layers, which are linked
to the Fourier components of the two external scalar
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the right side has ∼ 1/Lz as variation scale, the former
being greater than the latter. Fixing q‖ = q̄‖ such that
2/Lz / q̄‖ < 1/`matter, and noting that in this limit

we can use the substitution ẑ ·
(
χorb(q̄‖) · ẑ

)
→ χOMS,

we have solutions to the disequation (2.22) in the two
regimes q‖Lz/2� 1 and q‖Lz/2� 1, if:

q‖ >
1

2πχOMS
, for

q‖Lz

2
� 1 , (2.24a)

q‖ >
1√

πLzχOMS
, for

q‖Lz

2
� 1 . (2.24b)

These are lower bounds for the modulus of the momen-
tum q‖. The values of these limits must be compared
to the values the momentum q‖ takes into the Brillouin
zone of the crystal.
Concluding, we want to stress that the photon condensa-
tion criterions obtained are in perfect accord with what
was found in previous literature [5, 36] but a semiclas-
sical approach has been followed, based on the Condon
argument for equilibrium magnetic-instability [40]. Fur-
thermore the conditions can be expressed as functions of
the total current response via the relations (A.6), (2.18)
as in (2.23). This kind of expressions is useful because
the total current response assumes in the crystal the form
of equation (A.11) (see also Appendix F).

III. THEORY OF THE ORBITAL MAGNETIC
SUSCEPTIBILITY IN TBG

We devote this section to the definition of the model
for TBG, Sec. III A, with the addition of Hartree correc-
tions, Sec. III B, and the discussion of the form of the
orbital magnetic response. Through equation (2.18) we
relate the orbital magnetic response of TBG to the total
current response and we procede obtaining an expres-
sion that takes into account the equilibrium character
of the photon condensation phase transition, related to
the isothermal form of the response Sec. III C 1, and the
imposed validity of gauge invariance, Sec. III C 2. The
OMS can be then obtained in the long wavelength limit
(q‖ → 0).

A. TBG model

The continuum description of electrons in TBG
adopted in this work is the same as the one used in [41],
and first derived in Refs. [37] and [42].
Layer, sublattice, spin, and valley are the four discrete
degrees of freedom characterizing single-electron states
in TBG. We can take into account valley and spin de-
grees of freedom by a fourfold degeneracy factor g. The
single-particle Hamiltonian of TBG is written in the

G1 G2

Γ

M

KK(1)

K(2)

ky

kx

FIG. 1: Moiré first Brillouin zone (or mini Brillouin
zone) of TBG. The red (black) dashed lines are the
edges of the Brillouin zone of layer 1 (2) with K1 (K2)
the relative K point. The path K − Γ−M −K is
highlighted.

layer/sublattice basis {|1A〉, |1B〉, |2A〉, |2B〉} as:

Ĥ0 =

(
Ĥ(1) Û

Û† Ĥ(2)

)
(3.25)

The state |`τ〉 refers to layer ` = 1, 2 and sublattice index

τ = A,B, Ĥ(`) is the intra-layer Hamiltonian for layer `,
and the operator Û describes inter-layer tunneling. For
small twist angles, the moiré length scale ∼ a/θ is much
larger than the lattice parameter of monolayer gaphene
a. This allows us to replace H(`) by its k · p expansion,
i.e. by the following massless Dirac fermion Hamiltonian
whose origin is the valley K(`) of layer `:

Ĥ(`) = vD [R`(θ/2)(p̂∓ ~K`)] · (±σx,−σy) , (3.26)

where (±σx,−σy) is a vector of ordinary 2× 2 Pauli ma-
trices, p̂ is the momentum operator, vD = 3|t|a/(2~) ∼
0.87 × 106m/s is the Fermi velocity of monolayer
graphene, |t| = 2.7 eV is the nearest-neighbor hopping
energy adopted in tight-binding models of graphene, and
K` is the position of graphene’s valley K(`) measured
from the MBZ center Γ (Figure 1):

K1,2 =
8π

3a
sin

(
θ

2

)(
−
√

3

2
± 1

2

)
. (3.27)

The rotation matrix R`(θ/2) appearing in (3.26) is given
by:

R`=1,2 (θ/2) = cos(∓θ/2)I2×2 − i sin(∓θ/2)σy

=

(
cos θ/2 ± sin θ/2
∓ sin θ/2 cos θ/2

)
. (3.28)

(b)

FIG. 2. (Color online) (a) Sketch of the setup studied in this
work. TBG (spatial separation between the two graphene
layers denoted by d) is embedded in a dieletric environment
described by three isotropic and homogeneous dielectrics with
dielectric constants, ε1 (top), ε2 (middle), and ε3 (bottom).
(b) The first moiré BZ of TBG. The red (black) dashed lines

are the edges of the BZ of the graphene layer “1” (“2”), K(1)

(K(2)) being the corresponding K point. The path K-Γ-M -K
is highlighted.

potentials V
(1)
ext (q′, ω) and V

(2)
ext (q′, ω) by a 2 × 2 linear-

response matrix. Its matrix elements are the quantities

χ
(i,j)
n̂qn̂−q′

(ω), where i, j = 1, 2 are layer indices. For the

sake of simplicity, we start by neglecting intra- and inter-
layer electron-electron interactions. In this case, the off-

diagonal elements χ
(1,2)
n̂qn̂−q′

(ω) and χ
(2,1)
n̂qn̂−q′

(ω) are non-

zero only because of inter-layer tunneling, which couples
layer 1 with layer 2 and viceversa. Electron-electron in-
teractions will be included below in Sect. III.

Good care needs to be exercised to correctly iden-

tify the layer-resolved density operators n̂
(i)
q that lead

to Eq. (1). The standard number density operator is de-

fined by [40] n̂(r) =
∑N
k=1 δ(r− r̂k), where the sum runs

over the k = 1 . . . N electrons. In a multi-layer structure,
this operator is generalized to n̂(i)(r) = Π̂(i)†n̂(r)Π̂(i).
In the previous equation, i = 1, 2 denotes the layer index
and Π̂(i) is the projector operator onto the i-th layer.
In the case of two layers the total density operator is
n̂(r) = Π̂(1)†n̂(r)Π̂(1) + Π̂(2)†n̂(r)Π̂(2). An explicit con-
struction of the projector operators is given below in
Sec. IV.

We now proceed to derive an expression for the quan-

tity χ
(i,j)
n̂qn̂−q′

(ω), which applies to the case in which the

P2DES is a crystal, i.e. a Bloch translationally-invariant
system. In this case, the single-particle eigenstates are of
the Bloch type, i.e. they are labeled by a crystal momen-
tum k belonging to the first Brillouin Zone (BZ) and a
band index λ. A Bloch state |k, λ〉, with eigenvalue εk,λ,
is explicitly given by:

〈r|k, λ〉 =
1√
S

∑
G

uG(k, λ)ei(k+G)·r , (2)

where S is the P2DES’s area and G denotes the re-
ciprocal lattice vectors of the crystal. Then, the ele-

ments χ
(i,j)
n̂qn̂−q′

(ω) of the non-interacting density-density

response matrix can be expanded in a Bloch basis and the
wave vectors q and q′ appearing in Eq. (1) can differ at
most by a reciprocal lattice vector (due to the periodicity
of the lattice [40, 47]):

χ
(i,j)
n̂q+Gn̂−q−G′

(ω) =

= gs

∫
BZ

d2k

(2π)2

∑
λ,λ′

fk,λ − fk+q−Q,λ′

εk,λ − εk+q−Q,λ′ + ~ω + iη

× 〈k, λ|n̂(i)q+G|k + q −Q, λ′〉
× 〈k + q −Q, λ′|n̂(j)−q−G′ |k, λ〉 . (3)

Here, gs = 2 is a spin degeneracy factor, fk,λ is the
usual Fermi-Dirac distribution at chemical potential µ
and temperature T ,

fk,λ =
1

exp[(εk,λ − µ)/(kBT )] + 1
, (4)

and η → 0+ is a positive infinitesimal. A folding vector
Q belonging to the reciprocal lattice has been introduced
in Eq. (3) to ensure that k + q remains in the first BZ.

III. “CRYSTALLINE” RANDOM PHASE
APPROXIMATION

Plasmons are self-sustained density oscillations that
emerge due to electron-electron interactions [40]. These
need to be treated at some level of approximation.
Here, we employ the time-dependent Hartree approxi-
mation [40], also known as random phase approximation
(RPA), and focus our attention on the electron energy
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loss function L(q, ω). This quantity represents the prob-
ability of exciting the electronic system through the ap-
plication of a scalar perturbation with wave vector q and
energy ~ω. L(q, ω) contains valuable information about
self-sustained charge oscillations, which appear as sharp
peaks, as well as incoherent electron-hole pairs, which
induce a broadening of the peaks or, more in general,
produce a broadly distributed spectral weight in the q-
ω plane. The energy loss function can be in principle
measured via electron energy loss spectroscopy [64] and
scattering-type near-field optical spectroscopy (see, for
example, Refs. [54–57] and references therein).

As stated in Sect. I, the loss function will be calcu-
lated by including local field effects (LFEs) [51, 52, 65–
67], naturally arising out of the underlying crystalline
nature of the system under study. This is very naturally
accomplished by retaining the dependence of the quan-

tity χ
(i,j)
n̂q+Gn̂−q−G′

(ω) in Eq. (3) on the reciprocal lattice

vectors G, G′.
Finally, many-body effects, in general, and plasmons,

in particular, are sensitive to the dielectric environment
surrounding the P2DES under investigation. In this Ar-
ticle, we assume that TBG is embedded between two
homogeneous and isotropic dielectric media described by
the dielectric constants ε1 (top) and ε3 (bottom)—see
Fig. 2(a). The space between the layers is filled by a
third homogeneous and isotropic dielectric characterized
by a dielectric constant ε2. In a typical experimental
setup, the space between the layers is just a vacuum gap
(ε2 = 1) and TBG is encapsulated between two slabs
of hexagonal Boron Nitride (hBN), which is a homoge-
neous and anisotropic dielectric (therefore beyond the
isotropic model introduced above). Such hBN slabs host
hyperbolic phonon polariton modes [54], which strongly
couple to plasmons [68]. We have therefore deliberately
decided to neglect such plasmon-phonon polariton cou-
pling in order to access, once again, the intrinsic plasmon
modes of TBG. Including hBN polaritons into the theory
is straightforward and can be accomplished by following
for example the theory of Ref. [68].

The loss function can be calculated from the following
expression:

L(q, ω) = − Im
{

TrL
[
ε(q, ω)−1

]
G=0,G′=0

}
, (5)

where ε(q, ω) is the dynamical dielectric function, which,
in the present case, is a matrix with respect to layer in-
dices and reciprocal lattice vectors. The trace TrL in
Eq. (5) is intended to be over the layer-pseudospin de-
grees of freedom. We emphasize that, in order to evalu-
ate the loss function via Eq. (5), the matrix ε(q, ω) needs
to be inverted before a) the trace over the layer degrees
of freedom is taken and b) the G = 0,G′ = 0 element is
selected.

Returning on the importance of LFEs, we remind the
reader that the G = 0, G′ = 0 element of the inverse of
the dynamical dielectric matrix ε(q, ω) produces the so-
called “macroscopic” dielectric function [65, 66] εM(q, ω),

which is defined through the following equation:

ε−1M (q, ω) ≡
[
ε−1(q, ω)

]
G=0,G′=0

. (6)

Inverting ε(q, ω) first, and then selecting the G = 0,
G′ = 0 element, brings to the macroscopic dielectric
function contributions from non-zero reciprocal lattice
vectors, i.e. G 6= 0, G′ 6= 0. In solids, such LFEs are not
negligible. As a result, the macroscopic field, which is
the average of the microscopic field over a region larger
than the lattice constant (but smaller than the wave-
length) is not equivalent to the effective or local field
that polarizes the charge in the crystal [65, 66]. This
phenomenon is expected to be more relevant in systems
with significant charge inhomogeneities, like moiré mate-
rials and TMDs [67, 69, 70]. In particular, modifications
to the plasmon dispersion relation induced by LFEs tend
to be important near BZ edges [67]. Importantly, the
authors of Ref. [67] have recently shown that the inclu-
sion of LFEs on the plasmon dispersion relation is cru-
cial to probe correlated states in twisted hetero-bilayers
of TMDs. More precisely, they argue that a loss function
different from the one introduced in Eq. (5) and calcu-
lated by tracing over the reciprocal lattice vectors gives
profound information about the many-body properties
of the moiré material under investigation. While this is
certainly true, standard plasmonic probes [54–57] usually
access the response of the system to long-wavelength per-
turbations. Experimentally, therefore, the loss function
defined in Eq. (5) seems the more appropriate one to in-
terpret plasmonic experiments, as briefly pointed out by
the authors of Ref. [67] too.

We now comment on the role of the layer degrees of
freedom. At a first superficial glance, one may be puz-
zled by the definition of the loss function we gave above in
Eq. (5) and, in particular, by its ability to display peaks
at the collective modes of the layered structure. Indeed,
in a layered structure, plasmon modes are calculated by
looking at the zeroes of the determinant of the layer-
resolved dielectric tensor [38, 39]. How can we reconcile
these two seemingly different approaches to the collec-
tive modes of layered materials? The answer is that the
trace of the inverse dielectric tensor with respect to the
layer degrees of freedom is proportional to the recipro-
cal of the determinant over the same degrees of freedom,
i.e. TrL

[
ε(q, ω)−1

]
G=0,G′=0

∝ 1/detL [ε(q, ω)]G=0,G′=0.

We therefore see that there is no contradiction between
the usual approach [38, 39] and our loss-function based
approach.

A. Approximate dynamical dielectric matrix

While the definition in Eq. (5) is totally general, we
now need to introduce a necessarily approximate model
for the dynamical dielectric matrix ε(q, ω), which in-
cludes electron-electron interactions.
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In the RPA [40], we have

[ε(q, ω)]
(i,j)
G,G′ = δ(i,j)δG,G′

− e2
∑
`

L
(i,`)
G (q)χ

(`,j)
n̂q+Gn̂−q−G′

(ω) , (7)

where L
(i,j)
G (q) = L(i,j)(q + G) is the Coulomb propa-

gator relating the charge density fluctuations δn
(j)
q+G(ω)

to the self-induced electrical potential, i.e. W
(i)
G (q, ω) =

e2L
(i,j)
G (q)δn

(j)
q+G(ω).

The quantities L(i,j)(q) are given by [41]:

L(1,1)(q) =
4π

qD(q)
[(ε2 + ε3)eqd + (ε2 − ε3)e−qd] , (8)

and

L(1,2)(q) = L(2,1)(q) =
8π

qD(q)
ε2 , (9)

where

D(q) = (ε1+ε2)(ε2+ε3)eqd+(ε1−ε2)(ε2−ε3)e−qd . (10)

The expression for the L(2,2)(q) component is obtained
from Eq. (8) by interchanging ε3 with ε1. In the presence
of hBN dielectrics, the Coulomb propagator acquires a

frequency dependence [68], L
(i,j)
G (q, ω), due to the strong

dependence of the hBN dielectric permittivity tensor on
frequency in the mid-infrared spectral range.

It is now time to pause for a moment and discuss about
the statements we have made about the non-local nature
of the calculations reported in this Article. In the so
called “local approximation” for calculating the plasmon
dispersion relation in a single 2DES, the density-density
response function in equation (7) is approximated with
its value in the so-called “dynamical limit” [40], i.e. in
the limit q → 0 and ω � v∗Fq, where v∗Fq represents the
upper edge of the electron-hole continuum. This approx-
imation is extremely well suited to calculate the lead-
ing order term of the dispersion relation ωCOM(q) of the
COM mode in the long-wavelength q → 0 limit. How-
ever, it is very well known [39, 41] that such local ap-
proximation fails in predicting the correct acoustic plas-
mon dispersion, even in the long wavelength q → 0 limit.
This is why, in this Article, we have decided to retain

the full dependence of χ
(i,j)
n̂q+Gn̂−q−G′

(ω) in Eq. (3) on the

wave vector q, without making the local approximation
(i.e. without taking the dynamical limit).

IV. TBG MODEL HAMILTONIAN AND
HARTREE SELF-CONSISTENT THEORY

Before illustrating our numerical results, we would
like to briefly summarize the single-particle band model
we have used to describe TBG and the self-consistent
Hartree procedure we have carried out to deal with the
important ground-state charge density inhomogeneities
displayed by TBG.

A. TBG bare-band model

The continuum model of TBG adopted in this work
is the same as the one used in Ref. [47], which was first
derived in Refs. [35] and [71].

Layer, sublattice, spin, and valley are the four discrete
degrees of freedom characterizing single-electron states in
TBG. We can take into account valley and spin degrees
of freedom by a degeneracy factor g = 4 = gvgs, where
the spin-degeneracy factor gs = 2 has been introduced
earlier. The single-particle Hamiltonian of TBG is writ-
ten in the layer/sublattice basis {|1A〉, |1B〉, |2A〉, |2B〉}
as:

Ĥ0 =

(
Ĥ(1) Û

Û† Ĥ(2)

)
. (11)

The state |`τ〉 refers to layer ` = 1, 2 and sublattice in-

dex τ = A,B, Ĥ(`) is the intra-layer Hamiltonian for
layer `, and the operator Û describes inter-layer tunnel-
ing. For small twist angles, the moiré length scale ∼ a/θ
is much larger than the lattice parameter a of single-
layer graphene. This allows us to replace Ĥ(`) by its k ·p
massless Dirac fermion limit. This low-energy expansion
is done around one of the single layer valleys, K(`)/K ′(`):

Ĥ(`) = vD [R`(θ/2)(p̂∓ ~K`)] · (±σx,−σy) . (12)

Here, (±σx,−σy) is a vector of 2×2 Pauli matrices (the ±
sign referring to the K and K ′ valleys, respectively), p̂ is

the momentum operator, vD =
√

3|t|a/(2~) ∼ 1×106m/s
is the Fermi velocity of single-layer graphene, |t| =
2.78 eV being the usual single-particle nearest-neighbor
hopping. The vector K` appearing in Eq. (12) is the
position of single layer graphene’s valley K(`) measured
from the moiré BZ center Γ (Fig. 2 (b)):

K1,2 =
8π

3a
sin

(
θ

2

)(
−
√

3

2
,±1

2

)
. (13)

The rotation matrix R`(θ/2) appearing in (12) is given
by:

R`=1,2 (θ/2) = cos(∓θ/2)I2×2 − i sin(∓θ/2)σy

=

(
cos θ/2 ± sin θ/2
∓ sin θ/2 cos θ/2

)
. (14)

The convention adopted is such that θ`=1 = −θ/2 and
θ`=2 = θ/2. The longitudinal displacement between the
two layers is taken as zero in order to obtain the AB-
Bernal stacking configuration for θ = 0.

The Û operator describes inter-layer hopping and is
given by:

Û =

(
u0 u1
u1 u0

)
+ e−i

2π
3 +iG1·r̂

(
u0 u1e

i 2π3

u1e
−i 2π3 u0

)
+

+ ei
2π
3 +iG2·r̂

(
u0 u1e

−i 2π3

u1e
i 2π3 u0

)
, (15)
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where

G1,2 =
8π√
3a

sin

(
θ

2

)(
±1

2
,

√
3

2

)
, (16)

and u0 (u1) are the intra-sublattice (inter-sublattice)
hopping parameters. In general u0 6= u1. The differ-
ence between these two parameters can, in fact, take
into account the lattice corrugation of TBG samples [71–
74]. The intra- and inter-sublattice hopping energies
might also be affected in value by possible stresses in-
duced on the TBG sheet during the production phase.
Recently [75] it has been shown experimentally that the
difference between the intra- and inter-sublattice hopping
parameters is in the range of u1−u0 ∼ 30-60 meV. In this
work, we take u1 = 97.5 meV and u0 = 79.7 meV. With
this choice, we have u1−u0 ≈ 20 meV and the dimension-
less parameter u0/u1 ∼ 0.8 takes correctly into account
relaxation effects [71]. Within the continuum model de-
scribed by the single-particle Hamiltonian in Eq. (11), we
can construct the projector operators onto the i-th layer
Π̂(i) by making explicit their action on the basis |`τ〉:

Π̂(i)|`τ〉 = |iτ〉 . (17)

In particular their matrix form is given explicitly by:

Π̂(1) =

(
Î2×2 0

0 0

)
, (18)

Π̂(2) =

(
0 0

0 Î2×2

)
, (19)

where Î2×2 is the identity operator acting on the sublat-
tice index.

The chemical potential µ in Eq. (4) can be calculated
by enforcing, as usual, particle-number conservation:

n = δn+ n0 = g
∑
λ

∫
d2k

(2π)2
f regk,λ(µ) . (20)

Here, n0 is the total electron density at the charge neu-
trality point (CNP) and δn is the electron density mea-
sured from the CNP. We stress that a regularized Fermi-
Dirac distribution function f regk,λ appears in Eq. (20). In-
deed, since we are dealing with a continuum model, the
number of bands is formally infinite below and above the
CNP. In order to regularize the Dirac sea below the CNP,
one needs to introduce the regularized Fermi-Dirac dis-
tribution function defined as following:

f regk,λ(µ) ≡ f reg(εk,λ − µ) =

= f(εk,λ − µ)−Θ(εCNP − εk,λ) , (21)

where Θ(x) is the Heaviside step-function and εCNP is
the energy of the CNP.

With these conventions, the filling factor ν is defined
by:

ν ≡ Ωu.c.δn , (22)

where Ωu.c. =
√
3
2

[
a

2 sin (θ/2)

]2
is the area of the moiré

unit cell. With this definition of the filling factor, one
has |ν| < 4 when the chemical potential is within the flat
bands, at low temperatures.

B. Hartree self-consistency

Inhomogeneities in the ground-state charge density dis-
tribution of TBG create an inhomogeneous electrical po-
tential that depends on the filling factor. To capture this
effect, we need to add the so-called Hartree contribution
V̂H to the bare TBG Hamiltonian Ĥ0 [40, 47, 50]:

Ĥ = Ĥ0 + V̂H[nG] , (23)

where

V̂H[nG] = I4×4
∑
G6=0

2πe2

ε̄|G|nGe
iG·r̂ . (24)

Here, ε̄ ≡ (ε1+ε3)/2 , nG is the Fourier component of the
ground-state electron density corresponding to the recip-
rocal lattice vector G, and the identity matrix I4×4 is
expressed in the same basis of states of the Hamiltonian,
namely {|1A〉, |1B〉, |2A〉, |2B〉}.

The problem posed by Eqs. (23)-(24) needs to be solved
self-consistently, i.e., one needs to solve the Hartree equa-
tion (

Ĥ0 + V̂H[nG]
)
|k, λ〉 = εk,λ|k, λ〉 , (25)

together with the closure:

nG = g
∑
λ

∫
d2k

(2π)2
f regk,λ〈k, λ|e−iG·r̂|k, λ〉 . (26)

Note that, due to the real-space representation (2) of the
Bloch eigenstates, we have:

〈k, λ|e−iG·r̂|k, λ〉 =

=
1

S

∑
K,K′

u†K(k, λ)uK′(k, λ)

∫
d2re−i(G+K+k−K′−k)·r

=
∑
K,K′

u†K(k, λ)uK′(k, λ)δG+K,K′

=
∑
K

u†K(k, λ)uK+G(k, λ) . (27)

Once the self-consistent problem has been solved, the
Hartree eigenstates |k, λ〉 and eigenvalues εk,λ can be
used in order to calculate the so-called Hartree density-
density response [40] matrix. This is simply obtained
by using Eq. (3), with the understanding that the two
quantities |k, λ〉 and εk,λ in there need to be interpreted
as self-consistently calculated Hartree quantities rather
than single-particle, bare quantities.
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FIG. 3. (Color online) The energy loss function L(q, ω) of
TBG is plotted as a function of the twist angle θ and frequency
ω. Results in this plot have been obtained by keeping fixed the
wave number q and filling factor ν, i.e. q = qθ ≡ 2|K1,2|/31
(see main text) and ν = +1. Bright bands correspond to plas-
mons peaks. The white dashed line indicates the upper edge
of the particle-hole continuum, i.e. ω = v?(θ)qθ, v

?(θ) being
the reduced Fermi velocity, above which collective modes are
well defined. The low-energy acoustic plasmon mode, which
“tracks” the upper edge of the particle-hole continuum, dis-

appears for θ . 2
◦
.

V. NUMERICAL RESULTS

In this Section we present our main numerical results
obtained with the theory outlined above. For the sake of
definiteness, we set ε1 = ε3 = 4.9, ε2 = 1, and T = 5 K.

The dielectric tensor and hence the loss function are
obtained by using the calculated Hartree self-consistent
bands and corresponding Bloch states. These calcula-
tions take into account the role of static screening in re-
shaping the electronic bands and redistributing in space
the carrier density. The Hartree self-consistency effect on
plasmons is more important at small twist angles, since
in this regime the system displays larger charge inhomo-
geneities [47]. This is true also for the LFEs.

Fig. 1 shows the TBG loss function for filling factor
ν = +1 and two values of the twist angle θ, i.e. θ = 1.05

◦

in panel (a) and θ = 5
◦

in panel (b). This filling factor
corresponds to a carrier density n = 0.64×1012 cm−2 for
θ = 1.05

◦
and n = 1.5× 1013 cm−2 for θ = 5

◦
. Chemical

potential values have been given in the caption of Fig. 1.
Close to the magic angle, Fig. 1(a), flat bands centered
at the CNP and separated by an energy gap from the
higher-energy bands, lead to intrinsically undamped slow
plasmons [46]. We clearly see this in Fig. 1(a), where
a narrow, almost dispersion-less plasmon is present at
energies on the order of ∼ 20 meV. In general, we find
that, at small twist angles, TBG hosts a standard intra-
band COM plasmon with a ωCOM(q) ∝ √q dispersion
in the long-wavelength limit. No sign of other collective
modes is seen at small values of θ, neither gapless [39,
41] nor gapped [42, 43]—further results are reported in
Section II of Ref. [63].

This is not the case for larger values of the twist angle,
as seen for example in Fig. 1(b) for θ = 5

◦
. For this value

of the twist angle, an acoustic plasmon is clearly visible.
This mode lies just above the upper edge of the particle-
hole continuum (Section I of Ref. [63]), which is identified
by the line ~ωθ(q) = ~v?θq, v?θ being the reduced Fermi
velocity of the TBG Dirac cones [32]:

v?θ = vD
1− 3α2(θ)

1 + 6α2(θ)
, (28)

α(θ) = u1

[
8π√
3a
~vD sin

(
θ
2

)]−1
being a dimensionless pa-

rameter that depends on the twist angle (the parame-
ters vD and u1 have been introduced in Sect. IV A). For

θ = 5
◦
, the Fermi velocity (28) is v∗θ ≈ 7.99 × 105 m/s,

while the acoustic plasmon velocity in Fig. 1(b) is cs ≈
8.43×105 m/s. For the sake of comparison, we note that
the acoustic plasmon velocity in two (tunnel-decoupled
but Coulomb-coupled) graphene layers at a distance d =
0.3 nm is cs ≈ 1.2 × 106 m/s (and at the same density
n = 1.5 × 1013 cm−2) [41]. A reduced single-particle
Fermi velocity in TBG leads to slower acoustic plasmons
with respect to other graphene-related systems [41]. A
plot illustrating the dependence of cs on θ is reported in
Section I of Ref. [63].

(Further numerical results are reported in Section II
of Ref. [63]—where the plasmon dispersion relation ob-
tained with the inclusion of the layer-pseudospin degree
of freedom and LFEs is compared with that obtained by
neglecting the latter—and Section III of Ref. [63]— where
the dependence on the filling factor ν is discussed, for var-
ious twist angles. In Section II of Ref. [63], we note that
the introduction of LFEs leads to a blue shift in the en-
ergy of the plasmon modes around the edge of the moiré
BZ, as already found out in other systems [67, 69, 70].
This effect is even more pronounced at small twist angles.
In Section III of Ref. [63], we observe, for a fixed value
of θ, a weak dependence on ν. The impact of an applied
perpendicular electric field and heterostrain on the plas-
monic spectrum of TBG are discussed in Sects. IV and V
of Ref. [63], respectively.)

Fig. 3 shows the loss function L(q, ω) as a function
of the twist angle θ and frequency ω. Results in this
figure have been obtained by setting q = qθ ≡ ξ|K1,2|,
where |K1| = |K2| is the modulus of the θ-depending
vector linking Γ to K in the moiré BZ—see Eq. (13)—
and ξ = 2/31 < 1. The brightest feature in this figure
corresponds to the usual COM plasmon while the lower-
energy feature corresponds to the acoustic plasmon. At
twist angles θ . 2

◦
, the acoustic plasmon branch dis-

appears. We conclude that, at small twist angles, low
energies, and long wavelengths, TBG behaves effectively
as a single 2DES with an ordinary COM plasmon. A
weakly-damped out-of-phase acoustic plasmon appears
only for twist angles larger than θ ≈ 2

◦
. As discussed

in Sect I, this mode is typical of weakly-coupled double
layers, where two spatially-separated 2DESs interact only
through the long-range Coulomb interaction [39, 41]. The
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FIG. 4. (Color online) Layer polarization Pk,λ of the Hartree self-consistent eigenstates , superimposed on TBG energy bands

calculated with Hartree self-consistency at filling factor ν = +1. Panel (a) θ = 1.05
◦
. Panel (b) θ = 5

◦
. At lower angles the

Hamiltonian eigenstates are less layer polarized, resulting in more hybridization and the suppression of the bi-layer acoustic
plasmon mode. Bands are calculated at the K′ valley.

gapless nature of the extra mode emerging for θ & 2
◦

is
reasonable since the moiré potential that couples the two
layers does not open a gap at the K/K ′ points (Dirac
cones are protected by symmetry).

Despite the apparent similarity with spatially-
separated 2DESs, acoustic plasmons in TBG offer a qual-
itative difference: in the latter system, they emerge only
for sufficiently large values of θ. In the former sys-
tems, instead, acoustic plasmons exist for all values of
the macroscopic parameters, provided that the single-
particle Fermi velocities in the two 2DESs are identi-
cal [39, 41].

Regarding damping of the TBG acoustic plasmon, let
us recall that the upper edge of the particle-hole contin-
uum in TBG is given by:

~ωθ(qθ) ≡ ~v∗θqθ = ξ
8π√
3a

~vD
sin2(θ/2)− 3α̃2

sin2(θ/2) + 6α̃2
sin(θ/2) ,

(29)
where α̃ = α(θ)/ sin(θ/2) and α(θ) has been introduced
above in Eq. (28). If the plasmon dispersion lies above
this threshold value, it is a well-defined (i.e. long lived)
mode (at least within the RPA). Since the wave vector
q is fixed at the value qθ ≡ ξ|K1,2|, the expression on
the right hand side of Eq. (29) depends only on θ and
is plotted in Fig. 3 (white dashed line) for small values

of θ (up to θ = 6
◦
). We clearly see that, for sufficiently

large values of θ (i.e. θ & 4
◦
) the acoustic plasmon is a

well-defined long-lived collective mode.
In order to better understand the disappearance of the

acoustic mode for θ . 2
◦
, we have calculated the layer po-

larization Pk,λ of the TBG Hartree self-consistent eigen-
states |k, λ〉. This quantity is defined as [76]:

Pk,λ ≡ 〈k, λ|Π̂(1)|k, λ〉 − 〈k, λ|Π̂(2)|k, λ〉 , (30)

where Π̂(i) is the projector operator onto the i-th layer
introduced in Sec. IV, Eq. (17). Fig. 4 shows the layer
polarization (color bar) at the K valley and for two val-

ues of the twist angle, i.e. θ = 1.05
◦
—panel (a)—and

θ = 5
◦
—panel (b). For the latter value of the twist an-

gle, the polarization is |Pk,λ| ≈ 1 for almost every value
of the wave vector k and throughout all the bands. At
θ = 1.05

◦
, instead, we observe a very low layer polariza-

tion stemming from a strong inter-layer hybridization. It
is this transition from high to low values of the layer po-
larization that, in our opinion, leads to the disappearance
of the acoustic plasmon mode at twist angles θ . 2

◦
.

VI. SUMMARY AND CONCLUSIONS

In this Article we have presented a theoretical study
of the plasmonic response of twisted bilayer graphene as
a function of the twist angle θ. Our theory treats on
equal footing four important effects, namely the layer
degree of freedom, non-local effects in the density-density
response function beyond the dynamical long-wavelength
limit, Hartree self-consistency, and crystalline local field
effects.

We have found that at small values of the twist angle
(θ . 2

◦
) and in the low-energy long-wavelength limit,

the 2D electron system in twisted bilayer graphene re-
sponds to a perturbation carrying wave vector q and en-
ergy ~ω as a single entity, displaying a center-of-mass
mode ωCOM(q) ∝ √q. This is in agreement with all ear-
lier studies [44–47]. As the twist angle increases, however,
inter-layer tunneling decreases and the layer-pseudospin
becomes a quasi-good quantum number. For θ & 2

◦
, the

layer-pseudospin degree of freedom needs to be taken into
account and the plasmonic spectrum of the system dis-
plays a qualitatively different behavior. In this case, in-
deed, a weakly-damped acoustic plasmon mode appears,
akin to the acoustic plasmon of other parallel 2D electron
systems of historical importance [38, 39].

In the future it will be interesting to feed our results
to an Eliashberg theory [77] of plasmon-mediated super-
conductivity in twisted bilayer graphene and to study
the spatial distribution of chirality associated to this
mode [78, 79].
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Nikitin, Y. Gao, A. Woessner, M.B. Lundeberg, A.
Principi, N. Forcellini, W. Yan, S. Vélez, A.J. Huber,
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In this Supplemental Material we present more numerical results for the energy loss function of TBG. We discuss
further results concerning: i) acoustic plasmons and the particle-hole continuum; ii) the impact of LFEs on the

plasmonic spectrum; iii) the robustness of the plasmonic spectrum with respect to changes in the filling factor; iv)
effects of a static, perpendicular electric field; v) heterostrain effects on plasmons.

SECTION I: ACOUSTIC PLASMONS AND THE TBG PARTICLE-HOLE CONTINUUM

In this Section we show that the acoustic plasmon appearing in Fig. 1(b) of the main text lies above the TBG
particle-hole continuum (and it is therefore undamped). As discussed in the main text, the upper edge of such
continuum is identified by ~ωθ = ~v∗θq. In Figs. S1(a) and (b) we report the plasmon spectrum of TBG for θ = 5◦

and θ = 6◦, respectively. In each panel, the white dashed line represents the ~ωθ = ~v∗θq line. We clearly see that, for
both twist angles, the acoustic plasmon mode lies above the particle-hole continuum, although falls very close to it.
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FIG. S1. (Color online) The TBG energy loss function L(q, ω) is plotted as a function of q (along the Γ −K high symmetry
path) and ω for two values of the twist angle θ: θ = 5◦ in panel (a) and θ = 6◦ in panel (b). Results in this plot refer to
filling factor ν = +1 and temperature T = 5 K. The upper edge of the particle-hole continuum (which of course depends on θ),
i.e. ω = v?θq, v

?
θ being the reduced Fermi velocity (see Eq. (28) in the main text), is represented by a thin white dashed line.

A plot summarizing the dependence of cs on θ is reported in Fig. S2.

SECTION II: IMPACT OF LFES ON THE PLASMONIC SPECTRUM

In this Section we discuss the role of LFEs on the plasmonic spectrum. Results presented in Figs. S3 and S4 have
been obtained by setting ε1 = ε3 = 4.9, ε2 = 1, and T = 5 K. In order to isolate the impact of LFEs, we have
deliberately neglected Hartree corrections in producing the data reported in Figs. S3 and S4.

Fig. S3 compares the energy loss function (for θ = 1.35
◦

and various values of ν) in the local (i.e. G = G′ = 0)
approximation (panels in the right column) with that calculated by including LFEs (panels in the left columns). The
impact of LFEs is most significant around the edges of the moiré BZ. This is especially true at low doping.
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FIG. S2. (Color online) The sound velocity cs (red stars) of the acoustic plasmon is plotted as a function of the twist angle
θ. Results in this plot have been obtained by setting ν = +1 and T = 5 K. The shaded region identifies the particle-hole
continuum, whose upper edge coincides with v?θ (see Eq. (28) in the main text). The horizontal solid line represents the
acoustic plasmon velocity in two spatially-separated graphene layers [S41] at a distance d = 0.3 nm and total electron density
of n = 1.5× 1013 cm−2.

A similar comparison is reported in Fig. S4 where the filling factor is fixed at ν = +1 while the twist angle is varied.
Increasing the angle leads to a reduction of the importance of LFEs corrections. As emphasized in the main text, for
θ = 6

◦
we can clearly see the acoustic plasmon mode.

SECTION III: ROBUSTNESS OF THE PLAMONIC SPECTRUM WITH RESPECT TO CHANGES IN
THE FILLING FACTOR

In this Section we study the robustness of the acoustic plasmon with respect to changes in the filling factor (exploring,
in particular, higher values of ν, as compared to the main text).

We evaluated the energy loss function L(q, ω) with LFEs and Hartree corrections (while taking into account the

layer-pseudospin degree of freedom) for θ = 1.05
◦

and θ = 5
◦
, at filling factor ν = +2. Results are shown in Figure S5.

Similarly to Fig. 1 (which refers to ν = +1), we clearly see an intrinsic acoustic plasmon mode for θ = 5
◦
. Note that

the peak in the energy loss function associated to the acoustic plasmon is weaker for ν = +2 than ν = +1.
Figure S6 shows the energy loss function for different values of ν and fixed values of the wave vector q taken along

the Γ-K direction in the moiré BZ. Results in Fig. S6 have been obtained by neglecting the Hartree contribution. In
Figure S7 we show similar results—for two values of θ, i.e. θ = 1.05

◦
and θ = 5

◦
—but this time with the inclusion

of the Hartree contribution. Note the very high level of particle-hole symmetry in the plasmonic spectrum and a
significant suppression of the acoustic plasmon for |ν| > 2.

SECTION IV: EFFECTS OF A STATIC, PERPENDICULAR ELECTRIC FIELD

In this Section, we discuss the effect of a static, perpendicular electric field Ez = E0z on the plasmonic spectrum
of TBG. Within the continuum model introduced in Sect. IV A of the main text, such an electric field is taken into
account by adding to the Hamiltonian (11) the following contribution:

Ĥel = Uel

(
Π̂(1) − Π̂(2)

)
. (S1)

Here, Π̂(i) is the projector on the i-th layer defined in Eq. (17) of the main text and

Uel =
1

2
eE0d , (S2)

where e is the elementary charge and d ≈ 0.3 nm the spatial separation between the two graphene layers.
We have evaluated the impact of Eq. (S1) on the energy loss function L(q, ω), by including LFEs and Hartree

corrections. A summary of our main findings is reported in Fig. S8, where we show results obtained for θ = 1.05
◦
—

panels (a) and (b)—and θ = 5
◦
—panels (c) and (d). For each of the two twist angles, we considered two values of
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FIG. S3. (Color online) The TBG energy loss function L(q, ω) is plotted as a function of q and ω for θ = 1.35
◦

and various filling
factors ν. Results shown in the panels on the left (right) column have been obtained by including (neglecting) LFEs. Panels
(a)-(b): ν = 0. Panels (c)-(d): ν = +1. Panels (e)-(f): ν = +2. On the horizontal axis we report q along the high-symmetry
path Γ-K-M of the moiré BZ—see Fig. 2(b) in the main text.

the electric field, namely E0 = 0.5 V/nm and E0 = 1 V/nm which correspond to a potential energy of Uel ≈ 84 meV
and Uel = 168 meV, respectively. Clearly, the impact of the perpendicular electric field is more pronounced at small
angles, as it suppresses the COM plasmon already for E0 = 0.5 V/nm: see Fig. S8(a). At higher angles, instead, the
plasmonic spectrum is only slightly modified, Fig. S8(c)-(d), the main effect of a large applied electric field being the
suppression of the acoustic plasmon.

These results can be qualitatively explained as following. The applied perpendicular electric field polarizes TBG,
leading to charge accumulation onto one of two layers and a consequent depletion of charge in the other layer. It is
precisely this imbalance that is at the origin of the suppression of the COM mode at small twist angles, where the
two layers are strongly tunnel-coupled, and of the acoustic plasmon at large twist angles, where the two layers are
weakly tunnel-coupled.

SECTION V: HETEROSTRAIN EFFECTS ON PLASMONS

In this Section, we explore the effects of heterostrain on the plasmonic spectrum of TBG. We first briefly review
how strain modifies the reciprocal lattice of the bilayer system. We then introduce the continuum model [S1] that
describes heterostrained TBG.
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FIG. S4. (Color online) The TBG energy loss function L(q, ω) is plotted as a function of q and ω for ν = +1 and various values
of the twist angle θ. Results in the left column (i.e. panels (a), (c), and (e)) have been obtained by including LFEs. Results

in the right column (i.e. panels (b), (d), and (f)) have been obtained by neglecting LFEs. Panels (a)-(b): θ = 1.05
◦
. Panels

(c)-(d): θ = 2
◦
. Panels (e)-(f): θ = 6

◦
. On the horizontal axis we report q along the high-symmetry path Γ-K-M of the moiré

BZ—see Fig. 2(b) in the main text.
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FIG. S5. (Color online) The TBG energy loss function L(q, ω) is plotted as a function of q and ω for ν = +2. Results in this

figure have been obtained by taking into account both LFEs and Hartree corrections. Panel (a) θ = 1.05
◦
. Panel (b) θ = 5

◦
.

On the horizontal axis we report q along the high-symmetry path Γ-K-M of the moiré BZ—see Fig. 2(b) in the main text.
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FIG. S6. (Color online) The TBG energy loss function L(q, ω) is plotted as a function of ω and filling factor ν. Each panel
corresponds to a value of θ and q (the latter taken along the Γ-K direction of the moiré BZ). Results in this figure have been

obtained by neglecting Hartree corrections. Panel (a) θ = 1.05
◦
. Panel (b) θ = 1.35

◦
. Panel (c) θ = 2

◦
. Panel (d) θ = 5

◦
.
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FIG. S7. (Color online) The TBG energy loss function L(q, ω) is plotted as a function of ω and filling factor ν. Each panel
corresponds to a value of θ and q (the latter taken along the Γ-K direction of the moiré BZ). Results in this figure have been

obtained by including Hartree corrections. Panel (a) θ = 1.05
◦
. Panel (b) θ = 5

◦
.

Heterostrain refers to relative strains between layers, and can be present in experimental TBG samples either
because of unwanted interactions with the substrate or because intentionally applied and controlled by piezoelectrics.
The properties of heterostrained TBG can be captured, in the small deformation and small rotation limit, by the
following deformation matrices:

E(`) =

(
ε
(`)
xx ε

(`)
xy − (−)`θ/2

ε
(`)
yx + (−)`θ/2 ε

(`)
yy

)
. (S3)

The strained geometry leads to a deformed moiré reciprocal lattice. This can be constructed according to the following
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FIG. S8. (Color online) Dependence of the plasmonic spectrum on a static, perpendicular electric field. The TBG energy loss
function L(q, ω) is plotted as a function of q and ω for two values of Uel: see Eq. (S2). On the horizontal axis we report q along
the high-symmetry path Γ-K of the moiré BZ: see Fig. 2(b) in the main text. The left (right) column refers to E0 = 0.5 V/nm

(E0 = 1 V/nm). Panels (a)-(b): θ = 1.05
◦
. At this small twist angle, the applied electric field suppresses the COM mode.

Panels (c)-(d): θ = 5
◦
. At this larger value of the twist angle, instead, the main effect of the electric field is to suppress the

acoustic mode.

equation,

G̃i = ETgi , (S4)

where g1 = 4π√
3a

(
√
3
2 ,− 1

2 ) and g2 = 4π√
3a

(0, 1) are the unstrained and untwisted reciprocal lattice vectors and E ≡
E(2)−E(1) is the relative deformation matrix. The quantity G̃i defines the strained moiré reciprocal lattice counterpart
of the unstrained reciprocal lattice obtained by the vectors defined in the main text in Eq. (16).

In what follows, we further assume E(2) = −E(1) = 1
2E , as in Ref. [S1] and limit our investigation to uniaxial

heterostrain. This type of heterostrain involves the application of stress predominantly along one direction of the
bilayer system while leaving the perpendicular direction unstressed. With all these restrictions, the strain part of the
relative deformation matrix E can be expressed with only three parameters: strain magnitude ε, strain direction φ,
and Poisson ration νp, which takes the value νp ≈ 0.16 in graphene. We find

E = R−1(φ)

(
−ε 0
0 νpε

)
R(φ) +

(
0 −θ
θ 0

)
, (S5)

where the rotation matrix R(φ) is given by

R(φ) =

(
cosφ − sinφ
sinφ cosφ

)
. (S6)

We now move on to describe the continuum model Hamiltonian for the uniaxial heterostrained TBG. The structure
of the Hamiltonian operator is the same as we described in Sect. IV of the main text, with some modifications. Within
the two-center approximation, the effect of strain on the intra-layer Hamiltonian can be described by an effective vector
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FIG. S9. (Color online) The energy bands of TBG and their corresponding density of states calculated by taking into account
uniaxial heterostrain. On the horizontal axis we report the momentum k along the high-symmetry path K-Γ-M -K of the

strained moiré BZ. In order to obtain these results we fixed ε = 0.6% and φ = 30
◦
. In panel (a) the twist angle is θ = 1.05

◦
,

while in panel (b) θ = 5
◦
. In both panels the dashed-dot line shows the chemical potential µ for filling factor ν = +1 and

temperature T = 5 K.

potential (gauge field) [S1, S2]:

Ĥ(`)
ξ = vD

[(
I + ET

)
(p̂− ~K̃ξ,` + ξA`)

]
· (ξσx,−σy) . (S7)

Here ξ = ± is the valley index, K̃ξ,` is the K point of the strained mBZ, and A` is the effective vector potential
defined as:

A2 = −A1 =

√
3

4a
βε(1 + νp) (cos(2φ), sin(2φ)) , (S8)

with β ≈ 3.14 in graphene. Concerning inter-layer tunneling, it should be expressed in terms of the strained reciprocal
lattice basis vectors introduced in Eq. (S4). With respect to the main text expression, cf. Eq. (15), we have a slightly
different formula that takes into account the different reciprocal lattice basis:

Û =

(
u0 u1
u1 u0

)
+ eiξG̃1·r̂

(
u0 u1e

−i 2π3

u1e
i 2π3 u0

)
+ eiξ(G̃1+G̃2)·r̂

(
u0 u1e

i 2π3

u1e
−i 2π3 u0

)
. (S9)

Moiré minibands as modified by uniaxial heterostrain are displayed in Fig. S9. Results in this figure refer to ε = 0.6%
and strain direction φ = 30

◦
. The impact of uniaxial heterostrain on the energy loss function is illustrated in Figs. S10

and S11. In Fig. S10 the energy loss function is displayed for ε = 0.6% and φ = 30
◦
. Instead, in Fig. S11, we show

results for the energy loss function at fixed momentum q = ξ|K1,2|, where |K1| = |K2| is the modulus of the vector
linking Γ to K in the moiré BZ (which depends on the strain magnitude ε). In Fig. S11 we used ξ = 4/25, and

varied ε at fixed φ = 0
◦
. In order to obtain these plots, Hartree contributions have been neglected, while we have

retained LFEs. These results suggest that, at small twist angles, heterostrain largely suppresses the COM plasmon,
which becomes extremely feeble and flat, while it pushes inter-band excitations toward lower energies: see Figs. S10(a)
and S11(a). At larger angles, instead, the effect of strain is less severe, suggesting resilience of the acoustic plasmon
for ε . 2.5%, as show in Figs. S10(b) and S11(b).

[S1] Z. Bi, N. F. Q. Yuan, and L. Fu, Designing flat bands by strain, Phys. Rev. B 100, 035448 (2019).
[S2] N. N. T. Nam and M. Koshino, Lattice relaxation and energy band modulation in twisted bilayer graphene, Phys. Rev.

B 96, 075311 (2017).

https://doi.org/10.1103/PhysRevB.100.035448
https://doi.org/10.1103/PhysRevB.96.075311
https://doi.org/10.1103/PhysRevB.96.075311
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FIG. S10. (Color online) The impact of uniaxial heterostrain on the TBG energy loss function L(q, ω), which is plotted, as
usual, as a function of q (along the high-symmetry path Γ-K of the strained mBZ) and ω. Results in this figure have been

obtained by choosing ε = 0.6% and φ = 30
◦
. Panel (a): θ = 1.05

◦
. We clearly see that heterostrain largely suppresses the

COM plasmon while pushing the inter-band transitions toward lower energies. Panel (b): θ = 5
◦
. In this case heterostrain

does not affect the plasmonic spectrum as a direct comparison with e.g. Fig. S1 shows. In both panels the filling factor is fixed
at ν = +1 and temperature is T = 5 K.
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FIG. S11. (Color online) The TBG energy loss function L(q, ω) is plotted as a function of ~ω and strain magnitude ε. Results

in this figure have been obtained by setting q = ξ|K1,2| (see Sect. V), φ = 0
◦
, ν = +1, and T = 5 K. Panel (a): θ = 1.05

◦
.

We clearly see that for ε & 0.4% the COM mode is suppressed and merges with inter-band plasmons. Panel (b): θ = 5
◦
. We

clearly see that the acoustic plasmon, which in this figure is the feeble feature at ~ω ≈ 100 meV, is visible for ε . 2.5%− 3.0%.
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