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Abstract
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1 Introduction

We are interested in the solutions of the two–parameter family of problems

(P p
λ )


−∆u = λ(1 + u)p in Ω

u > 0 in Ω

u = 0 on ∂Ω

∗This research was supported by MURST project “Metodi Variazionali ed Equazioni Differenziali non
Lineari”. A.M. is supported by a Fulbright fellowship for the academic year 2000–2001.
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where Ω is an open bounded domain in Rn (n ≥ 3) with boundary ∂Ω of class C2,α for some
α ∈ (0, 1), and p > 1, λ > 0. By solutions we mean here weak solutions in H1

0 (Ω). If p ≤ n+2
n−2

,

by [7] it turns out that these solutions u are in L∞(Ω) and therefore u ∈ C2,α(Ω) ∩ C∞(Ω)
and, up to the boundary, u is as smooth as the boundary permits.

Equation (P p
λ ) has been studied by several authors because of its wide applications to

physical models. Among others, it describes problems of thermal self–ignition [14], diffusion
phenomena induced by nonlinear sources [20] or a ball of isothermal gas in gravitational equi-
librium as proposed by lord Kelvin [10]. We also refer to [19, 26] where different models and
further references may be found. In this paper we concentrate on the problem of temperature
distribution in an object heated by the application of a uniform electric current suggested in
[21]. In Section 6 we discuss this model and we analyze the physical meaning of our results.

It is known [6, 8, 11, 21] that if 1 < p ≤ n+2
n−2

, then there exists λ∗ = λ∗(Ω, p) > 0 such
that:
- if λ > λ∗ there are no solutions of (P p

λ ) even in distributional sense
- if 0 ≤ λ < λ∗, problem (P p

λ ) admits at least a minimal solution uλ and a mountain–pass
solution Uλ (see next section for the definitions)
- if λ = λ∗ there exists a unique solution U∗ of (P p

λ ), usually called the extremal solution [24].
The set of solutions of (P p

λ ) does not have the above stated features if p 6∈ (1, n+2
n−2

]. We
refer to Section 2 for a survey of results which highlight a strong dependence of the solutions
of (P p

λ ) on λ, p and Ω. Therefore, it is an interesting problem to understand how the solutions
behave when these parameters vary. This is precisely the aim of this paper.

We first restrict to subcritical and critical problems (p ≤ n+2
n−2

) and consider the case
where λ ↑ λ∗; we show that the extremal solution U∗ arises from the superposition of the
solutions uλ and Uλ and therefore it is a “degenerate” solution. To see this, we use critical
point theory and we give a complete description of the Nehari manifold associated to the
action functional.

Next, we analyze the behavior of the solutions as λ ↓ 0. We first give the explicit rate of
uniform convergence to 0 of the minimal solution uλ and we show that the rate of convergence
is independent of p on bounded subsets of (1,∞). On the contrary, the mountain–pass
solution Uλ blows up; of course, here we assume that 1 < p ≤ n+2

n−2
. More precisely, in the

critical case p = n+2
n−2

we find concentration phenomena and in the subcritical case p < n+2
n−2

we find a pointwise blow–up with rate depending on p. When dealing with the critical case
we apply the technique developed by Han, Li and Schoen [17, 22, 30].

Then, we study the map λ∗ = λ∗(p,Ω). We first give an alternative proof of a result
of [19] which allows to determine explicitly λ∗, uλ, Uλ and U∗ when Ω is the unit ball and
p = n+2

n−2
. Next, we show that λ∗ = λ∗(p) is continuous and strictly decreasing (for a fixed

domain Ω). Moreover, since (for fixed p) λ∗ is minimal on balls among bounded domains
having the same measure [5], we obtain uniform lower bounds for λ∗ = λ∗(Ω, p).

Finally, we deal with the limiting case p → 1. As the limit problem (P 1
λ ) is linear, it

admits at most one solution. We show that if a solution u0 of (P 1
λ ) exists, then the minimal
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solution uε and the mountain–pass solution Uε of (P 1+ε
λ ) also exist for ε > 0 small enough.

Moreover, uε tends to u0 while Uε blows up exponentially as ε→ 0.
The outline of the paper is the following. In next section we recall some well–known

results. In Section 3, by means of the Nehari manifold relative to the functional associated
to (P p

λ ) (1 < p ≤ n+2
n−2

), we study the behavior of the solutions when λ ↑ λ∗. In Section 4
we analyze the behavior of the solutions as λ ↓ 0. In Section 5.1 we consider the critical
case p = n+2

n−2
when Ω is the unit ball. In Section 5.2 we study the map λ∗ = λ∗(Ω, p). In

Section 5.3 we determine the behavior of both the minimal and the mountain–pass solution
as p→ 1. In Section 6 we discuss a physical model associated to (P p

λ ) and we give a related
interpretation of our results; we also state some relevant open problems. In the Appendix we
recall some known results which are used in the blow–up analysis of Section 4.

2 Notations and a survey of known results

Throughout this paper we assume that Ω ∈ L, where

L = {Ω ⊂ Rn; Ω open and bounded domain, ∂Ω is of class C2,α}.

We denote by λ1 = λ1(Ω) the first (positive) eigenvalue of −∆ with homogeneous Dirichlet
boundary conditions. It is well–known that λ1 is simple and isolated and that the correspond-
ing eigenfunction ϕ1 may be chosen positive in Ω.

We denote by ‖·‖ the Dirichlet norm in H1
0 (Ω) and by ‖·‖q the Lq(Ω) norm for 1 ≤ q ≤ ∞.

The space D1,2(Rn) is the space of functions having finite Dirichlet integral over Rn. Let
2∗ = 2n

n−2
be the usual critical Sobolev exponent. We denote by S the best Sobolev constant

for the embedding D1,2(Rn) ⊂ L2∗(Rn), namely

S = inf
u∈D1,2\{0}

‖∇u‖2
2

‖u‖2
2∗
. (1)

We assume that the minimax variational characterization of mountain–pass solutions
given by Ambrosetti–Rabinowitz [1] is familiar to the reader and we recall in more precise
fashion the results in [11] (when p is subcritical, i.e. 1 < p < n+2

n−2
) and [8, Corollary 2.5]

(when p is critical, i.e. p = n+2
n−2

) roughly stated in the introduction:

Theorem 1. [8, 11]
Let Ω ∈ L, and let 1 < p ≤ n+2

n−2
. Then, there exists λ∗ = λ∗(Ω, p) > 0 such that:

(i) if λ > λ∗ there are no solutions of (P p
λ ) even in distributional sense.

(ii) if λ = λ∗ there exists a unique solution U∗ of (P p
λ ).

(iii) if 0 < λ < λ∗, problem (P p
λ ) admits at least two solutions uλ and Uλ; uλ is minimal (in

the sense that uλ(x) ≤ v(x) for all x ∈ Ω and for any other solution v of (P p
λ )) and Uλ is a

mountain–pass solution.
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From now on, without recalling it at each statement, we denote by uλ, Uλ and U∗ the
functions defined in Theorem 1. When it is needed, we emphasize the dependence of uλ, Uλ,
U∗ on p. On the other hand, we also write λ∗(Ω), λ∗(p), or simply λ∗, when there is no need
to emphasize the dependence on p,Ω or both.

In general, the mountain–pass solution Uλ may not be unique, see Remark 3. In order to
avoid ambiguity, we will state results concerning ”the mountain–pass solution Uλ” meaning
that the results hold for any solution having the same variational characterization. When Ω
is a ball, the mountain–pass solution Uλ is indeed unique and (P p

λ ) admits no solutions but
uλ and Uλ

Theorem 2. [19]
Let Ω be a ball and let 1 < p ≤ n+2

n−2
. Then, for all λ < λ∗ problem (P p

λ ) admits exactly two
solutions.

By [26, Théorème 6], the uniqueness of Uλ is also ensured if λ belongs to a suitable left
neighborhood of λ∗. It is shown there that (P p

λ ) admits exactly two solutions close to U∗, see
also Corollary 1 below.

Remark 1. Let λ < λ∗. Then the minimal solution uλ has also minimal H1
0 (Ω)–norm.

Indeed, let u be any other solution of (P p
λ ): integrating by parts to obtain∫

Ω

|∇uλ|2 = λ

∫
Ω

(1 + uλ)
puλ < λ

∫
Ω

(1 + u)pu =

∫
Ω

|∇u|2

where the inequality follows since uλ ≤ u and uλ 6≡ u. 2

Theorem 1 holds in a weaker form also when p > n+2
n−2

. Namely, there exists λ∗ > 0 such
that (P p

λ ) admits a minimal solution uλ for all λ < λ∗ and no solutions if λ > λ∗, see [6, 11].
Moreover, the extremal solution U∗ always exists in H1

0 (Ω), see [6, Lemma 5], [9, Remark
3.3]. The extremal solution U∗ is unique [24] and in some cases it may not be bounded [9, 26].

We collect all these facts in the following

Theorem 3. Let Ω ∈ L, and let p > 1. Then uλ exists for all λ ∈ (0, λ∗), the map λ 7→ uλ(x)
is continuous in to C2,α, is strictly increasing for all x ∈ Ω and

lim
λ→0

uλ = 0 in C2,α(Ω).

Moreover, for λ = λ∗ there exists a unique weak solution U∗ ∈ H1
0 (Ω) of (P p

λ ), and

lim
λ→λ∗

uλ = U∗ in H1
0 (Ω).

Finally, if either n ≤ 10 or n ≥ 11 and p < n−2
√
n−1

n−4−2
√
n−1

, then U∗ ∈ L∞(Ω) and uλ → U∗ in

C2,α(Ω), otherwise U∗ 6∈ L∞(Ω).
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We now give an overview of other results concerning (P p
λ ) which explain why we will

sometimes confine ourselves to the case p ∈ (1, n+2
n−2

]. First of all, note that if p > n+2
n−2

,
then the Brezis–Kato result [7] no longer applies and the solutions u ∈ H1

0 (Ω) of (P p
λ ) may

be unbounded. Indeed, in [9] is exhibited the unbounded function U(x) = |x|−2/(p−1) − 1
which solves (P p

λ ) in the unit ball B1 for λ = 2
p−1

(n − 2p
p−1

) but which belongs to H1
0 (B1) if

p > n+2
n−2

. A further analytic argument is that critical point methods fail in the supercritical

case p > n+2
n−2

and, for instance, the proof of Theorem 4 would no longer be correct. This is
not just a technical problem since Theorem 1 in [19] and the arguments in [9, Section 6] show
that the set of solutions of (P p

λ ) does not obey to the statement of Theorem 1 above. We may
have either uniqueness of a solution or existence of infinitely many solutions for some λ < λ∗.
On the other hand, also in the case 0 < p ≤ 1 the set of solutions of (P p

λ ) is different: for all
λ ∈ (0, λ∗) (P p

λ ) admits a unique solution [21, Corollary 4.1.3] and (P p
λ∗) admits no solution

[21, Corollary 4.1.2]. We also refer to Proposition 1 below for the case p = 1.

Remark 2. For all Ω ∈ L, we have

λ∗(p) <
(p− 1)p−1

pp
λ1. (2)

Indeed, since for all s ≥ 0 we have (1 + s)p ≥ pp

(p−1)p−1 s with the strict inequality if s 6= 1
p−1

,

arguing as in the proof of [6, Lemma 5] (i.e. by testing (P p
λ ) with the first eigenfunction) one

gets (2). We also mention that (2) may be obtained as in [20, Theorem 2]. 2

Finally, we remark that the method of sub and super–solutions, see [4, Lemma 1.1], yields

∀Ω1,Ω2 ∈ L , Ω1 ⊂ Ω2 =⇒ λ∗(Ω1) ≥ λ∗(Ω2),

and gives a positive answer (for (P p
λ )) to a problem raised by Gelfand, see the paragraph

following (15.5) p.357 in [14].

3 Behavior of the Nehari manifold for varying λ

In this section we assume p ≤ n+2
n−2

and we use critical point theory to describe how the
solutions uλ and Uλ of (P p

λ ) collapse to the unique extremal solution U∗ as λ ↑ λ∗. In order
to do this, we introduce some notations. For all λ ∈ (0, λ∗] consider the functionals defined
on the space H1

0 (Ω)

Jλ(u) =
1

2

∫
Ω

|∇u|2 − λ

p+ 1

∫
Ω

|1 + u|p+1

and, with the convention that uλ∗ = U∗,

Iλ(u) = Jλ(u+ uλ).
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Set also
Z(u) = I ′λ(u)[u]

and for all u ∈ H1
0 (Ω) consider the function Fu : [0,∞)→ R defined by

Fu(t) =
Z(tu)

t
= t

∫
Ω

|∇u|2 +

∫
Ω

∇uλ∇u− λ
∫

Ω

|1 + uλ + tu|p−1(1 + uλ + tu)u.

In particular, since uλ solves (P p
λ ), we have

Fu(0) =

∫
Ω

∇uλ∇u− λ
∫

Ω

(1 + uλ)
p u = 0 ∀u ∈ H1

0 (Ω). (3)

Note that for every u ∈ H1
0 (Ω) it is Fu ∈ C1([0,∞)) and

F ′u(t) =

∫
Ω

|∇u|2 − λ p
∫

Ω

|1 + uλ + tu|p−1u2 =

∫
Ω

|∇u|2 − λ p tp
∫

Ω

∣∣∣∣1 + uλ
t

+ u

∣∣∣∣p−1

u2. (4)

Let Σ = {u ∈ H1
0 (Ω); ‖u‖ = 1}. By [9, Lemma 2.1], uλ is a non–degenerate minimum of Jλ,

hence
inf
u∈Σ

F ′u(0) > 0. (5)

Since
lim
t→+∞

F ′u(t) = −∞ ∀u ∈ Σ,

the relation (5) implies that

∀u ∈ Σ ∃ t > 0 such that F ′u(t) = 0. (6)

Given u ∈ Σ, let tu denote the smallest positive number t for which property (6) holds true.
Define

Nλ = {uλ + tu u : u ∈ Σ}.

The set Nλ is the counterpart for problem (P p
λ ) of the Nehari manifold, usually introduced

in the study of nonlinear homogeneous equations. Our aim in this section is to describe some
qualitative properties of Nλ.

Theorem 4. Let Ω ∈ L, let p ∈ (1, n+2
n−2

], and let λ∗ be the extremal value for (P p
λ ). Then, as

λ→ λ∗, dist(uλ,Nλ)→ 0 in H1
0 (Ω). Furthermore, as λ→ 0, dist(uλ,Nλ)→ +∞ in H1

0 (Ω).

In order to prove Theorem 4 we need the following two lemmas.

Lemma 1. Let Ω, p and λ∗ be as in Theorem 4, and let λm → λ∗ from below. Then {Uλm}m
is a bounded Palais–Smale sequence for Jλ∗.
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Proof. By continuity, see Theorem 3, there exists Ĉ > 0 such that

−Ĉ ≤ sup {Jλ(tuλ) : t ∈ [0, 1], λ ∈ (0, λ∗)} ≤ Ĉ.

Moreover there exists M > 0 sufficiently large for which Jλ(Mϕ1) < −C for all λ ∈ (λ∗/2, λ∗),
where ϕ1 denotes the first eigenfunction of −∆ in Ω. As a consequence, if λ ∈ (λ∗/2, λ∗), the
piecewise rectilinear curve joining uλ to 0 and then 0 to Mϕ1 is a mountain pass curve for
Jλ. Again by continuity we obtain

sup {Jλ(tuλ) : t ∈ [0, 1], λ ∈ (λ∗/2, λ∗)}+ sup {Jλ(tϕ1) : t ∈ [0,M ], λ ∈ (λ∗/2, λ∗)} ≤ C,

where C is a fixed positive constant. Thereby, using the minimax characterization of Uλ, we
deduce that

Jλ(uλ) < Jλ(Uλ) < C ∀λ ∈ (λ∗/2, λ∗).

Hence we have

C ′ <
1

2

∫
Ω

|∇Uλ|2 −
λ

p+ 1

∫
Ω

|1 + Uλ|p+1 < C, (7)

for some other constant C ′. Moreover, from the condition J ′λ(Uλ)[Uλ] = 0 we get∫
Ω

|∇Uλ|2 − λ
∫

Ω

(1 + Uλ)
p+1 + λ

∫
Ω

(1 + Uλ)
p = 0. (8)

We prove first the boundedness of ‖Uλm‖. Suppose by contradiction that ‖Uλm‖ → +∞ as
m→ +∞: then from (7) we deduce

∫
Ω

(1 + Uλm)p+1 → +∞ and

‖Uλm‖2 =
2λm
p+ 1

∫
Ω

(1 + Uλm)p+1 +O(1). (9)

Equation (8) and Hölder’s inequality imply

‖Uλm‖2 = λm

∫
Ω

(1 + Uλm)p+1 +O

[(∫
Ω

(1 + Uλm)p+1

) p
p+1

]
. (10)

From (9) and (10) we get a contradiction, since p > 1. This proves the boundedness of ‖Uλm‖.
Since Uλm is a critical point of Jλm , we have

J ′λ∗(Uλm)[v] =

∫
Ω

∇Uλm ∇v − λ∗
∫

Ω

(1 + Uλm)pv = (λm − λ∗)
∫

Ω

(1 + Uλm)pv ∀v ∈ H1
0 (Ω).

Hence, from the boundedness of ‖Uλm‖ and from Hölder’s and Sobolev’s inequalities it follows
that

sup
‖v‖=1

|J ′λ∗(Uλm)[v]| ≤ CΩ(λ∗ − λm) sup
‖v‖=1

(
‖1 + Uλm‖

p
p+1‖v‖p+1

)
→ 0

for some CΩ > 0. This, together with (7), shows that {Uλm}m is a Palais–Smale sequence for
Jλ∗ and concludes the proof of the lemma. 2
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Lemma 2. Let Ω, p and λ∗ be as in Theorem 4. Then, as λ ↑ λ∗, Uλ → U∗ in H1
0 (Ω).

Proof. If p < n+2
n−2

, the statement follows from Lemma 1, the fact that Jλ∗ satisfies the
Palais–Smale condition and the uniqueness of U∗ (as critical point of Jλ∗), see [24].

Consider now the case p = n+2
n−2

. Since uλ is the minimal positive solution, using the

change of variables w = λ(n−2)/4(u− uλ), problem (P p
λ ) transforms into

−∆w = w(n+2)/(n−2) + f(x,w) in Ω

w ≥ 0 in Ω

w = 0 on ∂Ω

(11)

where

f(x,w) =

λ
n+2

4

[∣∣∣∣1 + uλ(x) +
w

λ
n−2

4

∣∣∣∣ 4
n−2
(

1 + uλ(x) +
w

λ
n−2

4

)
− (1 + uλ(x))

n+2
n−2 − λ−

n+2
4 |w|

4
n−2w

]
.

The action functional associated to (11) is given by

Iλ(w) =
1

2

∫
Ω

|∇w|2 − 1

2∗

∫
Ω

|w|2∗ −
∫

Ω

F (x,w) , w ∈ H1
0 (Ω),

where F (x,w) =
∫ w

0
f(x, s)ds. Following the three cases in [8, p.474], the function f satisfies

the hypotheses of Corollary 2.1 (n ≥ 5), Corollary 2.2 (n = 4) and Corollary 2.3 (n = 3), for
all λ ∈ (0, λ∗]. The arguments in the proofs of these corollaries imply

0 < Iλ(wλ) <
Sn/2

n
∀λ ∈ (0, λ∗),

where wλ = λ(n−2)/4(Uλ − uλ).
Let I∗ be the extremal functional, namely the functional Iλ∗ with U∗ instead of uλ. By

Lemma 1, as λ → λ∗, the sequence {wλ} is a bounded Palais–Smale sequence for I∗. Then
there exists w∗ ∈ H1

0 (Ω) such that wλ ⇀ w∗ up to a subsequence and, by the weak continuity

of I
′
∗, w∗ satisfies I

′
∗(w∗) = 0. By uniqueness of the extremal solution [24], it follows that

w∗ = 0. We have so far obtained that

wλ ⇀ 0 as λ→ λ∗.

From the compactness of the functionals w 7→
∫

Ω
F (x,w) and w 7→

∫
Ω
f(x,w)w, this implies∫

Ω

F (x,wλ)→ 0

∫
Ω

f(x,wλ)wλ → 0 as λ→ λ∗. (12)
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If Iλ(wλ)→ 0, then using (12) and taking into account that I
′
λ(wλ)[wλ] = 0 we get

1

2
‖wλ‖2 − 1

2∗
‖wλ‖2∗

2∗ → 0 and ‖wλ‖2 − ‖wλ‖2∗

2∗ → 0 as λ→ λ∗,

and hence wλ → 0 in H1
0 (Ω). This, together with Theorem 3 proves the statement in the

case Iλ(wλ)→ 0.
It remains to consider the case where

lim inf
λ→λ∗

Iλ(wλ) > 0. (13)

Using the arguments in [8, Lemma 2.1] one obtains

∃δ > 0 such that Iλ(wλ) <
Sn/2

n
− δ ∀λ ∈

(
λ∗

2
, λ∗
)

which, together with (13), implies that up to a subsequence

Iλ(wλ)→ c ∈
(

0,
Sn/2

n

)
as λ→ λ∗.

Using again (12) and I
′
λ(wλ)[wλ] = 0 we get

1

2
‖wλ‖2 − 1

2∗
‖wλ‖2∗

2∗ → c <
Sn/2

n

‖wλ‖2 − ‖wλ‖2∗

2∗ → 0.
(14)

The Sobolev inequality S‖wλ‖2
2∗ ≤ ‖wλ‖2 and (14) yield ‖wλ‖ → 0 as λ→ λ∗. This concludes

the proof. 2

Note that Lemma 2 and Theorem 3 entail the following result, proved in [26, Théorème
6] with an implicit function argument:

Corollary 1. Let Ω ∈ L, let p ∈ (1, n+2
n−2

], and let λ∗ be the extremal value for (P p
λ ). Then,

as λ ↑ λ∗, we have uλ → U∗ and Uλ → U∗ in C2,α(Ω); in particular, ‖Uλ − uλ‖C2,α(Ω) → 0.

Proof of Theorem 4. When λ→ λ∗, the statement follows from Lemma 2.
Assume now that λ→ 0. By (4), for all u ∈ Σ and all t ≥ 0 we have (here Ci = Ci(Ω, p)

denote positive constants depending only on Ω and p)

F ′u(t) = 1− λp
∫

Ω

|1 + uλ + tu|p−1u2

≥ 1− λC1‖1 + uλ + tu‖p−1
2∗ ‖u‖2

2∗ (Hölder’s inequality)

≥ 1− λC2(‖1 + uλ‖2∗ + t‖u‖2∗)p−1 (Sobolev and Minkowski inequalities)

≥ 1− λC3(1 + t)p−1 (uniform boundedness of uλ).

(15)
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Let t′u > 0 be the first positive value of t where F ′u(t) = 0; by (3) and (5) we obtain tu > t′u.
Therefore from (15) we infer

inf
u∈Σ

tu ≥ inf
u∈Σ

t′u ≥
1

(C3 λ)1/(p−1)
− 1→ +∞ as λ→ 0.

This proves that dist(uλ,Nλ)→∞ as λ→ 0 and the theorem follows. 2

4 The limiting case λ→ 0

Throughout this section, we will denote by wλ the unique (positive) solution of the problem −∆wλ = λ in Ω

wλ = 0 on ∂Ω.
(16)

We first state our result about the minimal solution uλ.

Theorem 5. Let Ω ∈ L, p > 1 and let λ ∈ (0, λ∗). Let uλ,p be the minimal solution of (P p
λ ).

Then uλ,p(x) > wλ(x) for all x ∈ Ω; moreover, for all p > 1 we have

lim
λ→0

uλ,p(x)

wλ(x)
= 1 uniformly w.r.t. (x, p) ∈ Ω× (1, p] .

Proof. Fix p > 1 and λ ∈ (0, λ∗). Clearly, u ≡ 0 is a subsolution of (16) while uλ,p > 0 is a
supersolution. By uniqueness of the solution of (16), this shows that uλ,p(x) > wλ(x) for all
x ∈ Ω, the strict inequality being a consequence of the maximum principle.

Let uλ be the minimal solution of (P p
λ ). By Theorem 3 we know that ‖uλ‖∞ → 0 as

λ→ 0. Therefore,

∀ε > 0 ∃λε > 0 s.t. λ < λε =⇒ ‖uλ‖∞ < ε.

So, fix ε > 0 and let λ < λε. Then,

−∆uλ = λ(1 + uλ)
p < λ(1 + ε)p = −(1 + ε)p∆wλ.

This proves that uλ(x) < (1 + ε)pwλ(x) for all x ∈ Ω. Therefore, by Theorem 8 below (which
proof is self–contained), we deduce

uλ,p(x) ≤ uλ(x) < (1 + ε)pwλ(x) ∀(x, p) ∈ Ω× (1, p]

and the result follows by arbitrariness of ε. 2

Differently from the minimal solution uλ, when 1 < p ≤ n+2
n−2

and λ→ 0, the behavior of
the mountain–pass solutions Uλ depends strongly on the exponent p, see Theorem 6 below.
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Moreover, the situation is also qualitatively different in the subcritical and critical cases.
This is related to the fact that the pure power problem

−∆u = up in Ω

u > 0 in Ω

u = 0 on ∂Ω

(17)

admits no mountain–pass solutions when p = n+2
n−2

.

Theorem 6. Let Ω ∈ L, let p ∈ (1, n+2
n−2

] and let λ ∈ (0, λ∗). Let Uλ be a mountain–pass
solution of problem (P p

λ ).
If 1 < p < n+2

n−2
then, up to a subsequence,

lim
λ→0

λ1/(p−1)Uλ = Up in C2,α(Ω), (18)

for some mountain–pass solution Up of problem (17). In particular Uλ(x) → +∞ for all
x ∈ Ω.

If p = n+2
n−2

then there exists x ∈ Ω such that, up to a subsequence

Uλ(x)→ 1

H(x, x)
G(x, x), in C2,α

loc (Ω \ {x}), (19)

where G(·, ·) denotes the Green’s function in Ω and H(·, ·) its regular part. Moreover, up to
a subsequence, we have

λ(n−2)/2 |∇Uλ|2 → Sn/2 δx; λn/2 U2∗

λ → Sn/2 δx (20)

in the weak sense of measures, where S is as in (1). The point x is critical for the function
ϕ(x) = H(x, x).

Proof. For λ ∈ (0, λ∗), let ε = λ1/(p−1) and Vε = εUλ. Then Vε satisfies
−∆Vε = (Vε + ε)p in Ω

Vε > 0 in Ω

Vε = 0 on ∂Ω.

(21)

We note that Vε is a mountain–pass critical point of the functional Jε : H1
0 (Ω)→ R

Jε(u) =
1

2

∫
Ω

|∇u|2 − 1

p+ 1

∫
Ω

|u+ ε|p+1, u ∈ H1
0 (Ω).

11



Consider first the case 1 < p < n+2
n−2

. Arguing as in the proof of Theorem 2 in [13], one
can show that if εm → 0 then {Vεm} is a Palais–Smale sequence at mountain–pass level for
the limit functional

J0(u) =
1

2

∫
Ω

|∇u|2 − 1

p+ 1

∫
Ω

|u|p+1, u ∈ H1
0 (Ω).

Since J0 satisfies the Palais–Smale condition (recall p < n+2
n−2

), the sequence {Vεm} converges,
up to a subsequence, to a critical point of J0, which is necessarily of mountain–pass type.
This proves that λ1/(p−1)Uλ → Up in H1

0 (Ω), up to a subsequence. In view of [7], one also
finds that Vε → Up uniformly in Ω. Then, by standard elliptic regularity we deduce that the
convergence is in the C2,α(Ω) topology. This also proves the pointwise blow–up.

Let now p = n+2
n−2

, and consider again the functional Jε. Let Mε (resp. M0) be the
mountain–pass level of Jε (resp. J0). The same arguments used in the proof of Lemma 8 in
[13] show that

lim
ε→0

Mε = M0. (22)

Let S be as in (1). It is well–known that M0 = 1
n
Sn/2, and that there is no solution of (17)

at this level of J0, see e.g. [31], Chapter III, Theorem 1.2. Hence the sequence {Vεm} cannot
be uniformly bounded in L∞(Ω). Indeed, if it were bounded, it would converge to a positive
solution V0 of (17) (with p = n+2

n−2
) such that J0(V0) = 1

n
Sn/2, which contradicts the just

mentioned non–existence result for (17). Therefore the sequence {Vεm} blows up in Ω. The
convergence in (19) follows from Lemma 8 and Proposition 3 in the Appendix, while (20)
follows from Proposition 2 and the subsequent discussion. The last statement of the theorem
is a consequence of Proposition 4. 2

In the critical case p = n+2
n−2

, Theorem 6 is the counterpart of [29, Theorem 1] where the
existence of solutions concentrating at non–degenerate critical points of ϕ is obtained.

Remark 3. Theorem 6 can be somehow extended to any class of non–minimal solutions, not
necessarily of mountain–pass type. We quote without proof the corresponding statements.

If p < n+2
n−2

, then (18) and the pointwise blow–up are still true, but Up has to be replaced
with a generic solution of (17). Note that if Ω is convex and has some symmetries and if p
is sufficiently close to n+2

n−2
, then (17) admits a unique solution, necessarily of mountain–pass

type, see [16]. On the other hand, it is easy to construct examples of symmetric domains Ω
for which problem (17) admits non–symmetric (and hence multiple) mountain pass solutions.
As a consequence, by Theorem 6, for such domains also the mountain–pass solution Uλ is
not unique if λ is sufficiently small.

If p = n+2
n−2

, then there is convergence to a solution of (17) or concentration as in (20),
but at possibly k points x1, . . . , xk in Ω. The number k of blow up points cannot exceed a
constant kΩ depending on the domain Ω. In particular, if Ω = B1, kΩ = 1 and we are in the
situation of Theorem 6, see also Theorem 7 below. Moreover, there exists dΩ > 0 such that
d(xi, xj) ≥ dΩ for all i 6= j and d(xi, ∂Ω) ≥ dΩ for all i. The condition ∇ϕ(x) = 0 has to

12



be substituted by the following. Given (x1, . . . , xk) ∈ Ωk, with xj 6= xl for j 6= l, define the
symmetric matrix (Mjl) of order k × k by

Mjl(x1, . . . , xk) =

{
H(xj, xj), l = j;

−G(xj, xl) l 6= j,

see [2]. Here G(·, ·) denotes the Green’s function of Ω and H(·, ·), as before, the regular part
of G. Denote by ρ = ρ(x1, . . . , xk) the least eigenvalue of (Mjl). Then the points x1, . . . , xk
satisfy the properties

ρ(x1, . . . , xk) ≥ 0 ∇ρ(x1, . . . , xk) = 0.

Viceversa, using the arguments in [29] and [3], one could prove that if n ≥ 4 and if (x1, . . . , xk)
is a non degenerate critical point of ρ with ρ(x1, . . . , xk) > 0, then for ε sufficiently small,
there exists a family Vε of solutions of (21) which blow up precisely at (x1, . . . , xk) as ε tends
to zero. 2

5 Results for varying p and varying domains

5.1 The case p = n+2
n−2 and Ω = B1

In this subsection we consider the particular problem
−∆u = λ(1 + u)(n+2)/(n−2) in B1

u > 0 in B1

u = 0 on ∂B1.

(23)

By Theorem 2 we know that (23) admits exactly two solutions if λ < λ∗. Moreover,
these solutions are radially symmetric and decreasing, see [15]. A detailed study of (23) was
performed in [19, Section VI] where the extremal value λ∗ was determined and the explicit
solutions uλ, Uλ and U∗ were given, see (VI.3)–(VI.4) in that paper. All these results were
found after several changes of variables which transformed (23) into equivalent problems.
Here, we prove the same results by a more direct procedure which, in our opinion, is much
simpler.

We first recall that all positive entire solutions of the equation

−∆w = w(n+2)/(n−2) in Rn (24)

are radially symmetric about one point. When this point is the origin they are necessarily of
the form

wd(x) =
[n(n− 2)d](n−2)/4

[1 + d|x|2](n−2)/2
(d > 0) (25)
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and these functions achieve the best constant S (defined in (1)) in Sobolev inequality, see
[32].

For all λ ≤ n(n− 2)/4 let

d±(λ) =
n(n− 2)− 2λ±

√
n2(n− 2)2 − 4λn(n− 2)

2λ
.

Note that d+(n(n−2)
4

) = d−(n(n−2)
4

) = 1. Consider also the restrictions to the unit ball B1 of
some of the functions of the family (25):

vλ = wd−(λ)|B1 Vλ = wd+(λ)|B1 V∗ = w1|B1 .

We may now state

Theorem 7. There holds λ∗(B1,
n+2
n−2

) = n(n−2)
4

. Moreover, the solutions of (23) are

U∗(x) =

(
4

n(n− 2)

)(n−2)/4

V∗(x)− 1 =

(
2

1 + |x|2

)(n−2)/2

− 1 if λ = λ∗

and
uλ = λ(2−n)/4vλ − 1 Uλ = λ(2−n)/4Vλ − 1 if 0 < λ < λ∗.

Proof. By direct calculations, one can verify that uλ and Uλ indeed solve (23) if λ < n(n−2)
4

and that U∗ solves (23) if λ = n(n−2)
4

. Hence, λ∗ ≥ n(n−2)
4

by Theorem 1.
Conversely, assume that (23) admits a solution u. This solution is radially symmetric in

view of [15]. Then, the function v = λ(n−2)/4(1 + u) is a (radial) solution of the equation
−∆v = v(n+2)/(n−2) in B1

v > λ(n−2)/4 in B1

v = λ(n−2)/4 on ∂B1.

(26)

Therefore, v = v(r) solves the ordinary differential equation

v′′(r) +
n− 1

r
v′(r) + v(n+2)/(n−2)(r) = 0 (27)

with the conditions v′(0) = 0 and v(1) = λ(n−2)/4. Moreover, v′(1) = C < 0 by the Hopf
boundary lemma. Hence v may be extended as a smooth function to some maximal interval
[1, R) (with 1 < R ≤ ∞) such that v(r) > 0 and v′(r) < 0 for all r ∈ [1, R). In fact, R =∞;
otherwise, we would have either v(R) = 0 (violating Pohozaev’s non–existence result [28] for
the equation (24) in the ball BR) or v′(R) = 0 (contradicting the Hopf boundary lemma in
the ball BR). Therefore, the (smooth) extension v of v satisfies (27) on [0,∞) and v′(0) = 0.
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This shows that v (as a function of x ∈ Rn) is a positive entire solution of (24) and hence, it
is one of the functions of the family (25) for some d > 0.

We have proved that if (23) admits a solution u, then there exists d > 0 such that the
corresponding function wd in (25) satisfies wd(x) = λ(n−2)/4 whenever |x| = 1. This condition
is satisfied if and only if

d =
n(n− 2)− 2λ±

√
n2(n− 2)2 − 4λn(n− 2)

2λ

from which we infer that d exists only if λ ≤ n(n−2)
4

. This shows that λ∗ ≤ n(n−2)
4

and
completes the proof. 2

Remark 4. Using the explicit form of Uλ(x), it is not difficult to verify that the map

λ 7→ Uλ(x) is strictly decreasing on (0, n(n−2)
4

) for all |x| < 1. In particular, this shows that
the map λ 7→ ‖Uλ‖∞ = Uλ(0) is strictly decreasing.

Finally, we note that in this particular case (p = n+2
n−2

and Ω = B1), one recovers the
statements of Corollary 1 and Theorems 5, 6 using explicit computations.

5.2 Some properties of the map λ∗ = λ∗(Ω, p)

We first show some monotonicity features of the maps p 7→ λ∗(p) and p 7→ uλ,p. Concerning
the behavior of λ∗(p) at infinity, we also refer to (43) below.

Theorem 8. Let Ω ∈ L, let 1 < p1 < p2, and consider the two problems (P p1

λ ) and (P p2

λ ).
Then

λ∗(p1) > λ∗(p2) and uλ,p1(x) < uλ,p2(x) ∀x ∈ Ω ∀λ < λ∗(p2).

Moreover, lim
p→∞

λ∗(p) = 0.

Proof. Let λ < λ∗(p2) and let uλ,p2 be the minimal solution of the problem (P p2

λ ), namely
−∆uλ,p2 = λ(1 + uλ,p2)p2 in Ω

uλ,p2 > 0 in Ω

uλ,p2 = 0 on ∂Ω.

Then −∆uλ,p2 > λ(1 + uλ,p2)p1 , i.e. uλ,p2 is a supersolution of the Dirichlet problem (P p1

λ ).
Since u ≡ 0 is a subsolution, there exists a regular (minimal) solution uλ,p1 of problem (P p1

λ )
satisfying uλ,p1(x) ≤ uλ,p2(x) for all x ∈ Ω. The strict inequality follows from the maximum
principle.

The same argument applied to the extremal value λ∗(p2) and to the corresponding ex-
tremal solution shows that λ∗(p1) ≥ λ∗(p2), and therefore the inequality uλ,p1 < uλ,p2 holds
for all λ < λ∗(p2).
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In order to prove the strict monotonicity of the map p 7→ λ∗(p), assume by contradiction
that

λ∗(p1) = λ∗(p2) = λ∗. (28)

If (28) holds we clearly have (with obvious notations)

−∆U∗,p2 = λ∗(1 + U∗,p2)p2 > λ∗(1 + U∗,p2)p1

and so U∗,p2 is a (possibly weak) supersolution of (P p1

λ∗ ). By [6, Lemma 3] and by uniqueness
of the solution of (P p1

λ∗ ), see [24], this shows that

U∗,p2(x) ≥ U∗,p1(x) > 0 for a.e. x ∈ Ω. (29)

By [9, Lemma 2.3] and [9, Theorem 3.1] we have∫
Ω

|∇u|2 − λ∗p2

∫
Ω

(1 + U∗,p2)p2−1u2 ≥ 0 ∀u ∈ H1
0 (Ω). (30)

Let λ = p1

p2
λ∗ < λ∗, let ũλ be the minimal solution of −∆ũλ = λ(1 + ũλ)

p2 and let v = p2

p1
ũλ.

Then v satisfies

−∆v =
p2

p1

(−∆ũλ) =
p2

p1

λ

(
1 +

p1

p2

v

)p2

= λ∗
(

1 +
p1

p2

v

)p2

. (31)

We now recall the elementary inequality(
1 +

p1

p2

s

)p2

≥ (1 + s)p1 ∀s ≥ 0

which, inserted into (31), gives
−∆v ≥ λ∗(1 + v)p1 .

Hence v is a bounded supersolution of (P p1

λ∗ ), and U∗,p1 is regular since U∗,p1 ≤ v. Using (29)
and taking into account that p1 < p2, we have

p2(1 + U∗,p2(x))p2−1 > p1(1 + U∗,p1(x))p1−1 ∀x ∈ Ω.

Combining the last inequality with (30) we obtain∫
Ω

|∇u|2 − λ∗ p1

∫
Ω

(1 + U∗,p1)p1−1u2 > 0, ∀u ∈ H1
0 (Ω) \ {0},

which contradicts [9, Lemma 2.3], since U∗,p1 is regular. The contradiction is achieved and
hence (28) is false.

Finally, letting p→∞ in (2) we obtain limp→∞ λ
∗(p) = 0. 2

We now study the continuity of the map λ∗ = λ∗(Ω, p). We prove
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Theorem 9. Let Ω ∈ L; then the map p 7→ λ∗(p) is continuous on (1,∞).

Proof. By Theorem 8 we know that for all p > 1 the right and left limits of λ∗(p) as p → p
exist and

lim
p→p+

λ∗(p) ≤ λ∗(p) ≤ lim
p→p−

λ∗(p).

We first prove the continuity from the right. Suppose by contradiction that there exists
p > 1 such that

λ∗(p) > lim
p→p+

λ∗(p) =: λ.

Let λ ∈ (λ, λ∗(p)) and let uλ be the minimal solution of −∆uλ = λ(1 + uλ)
p. Since uλ ∈

L∞(Ω), we can set M := ‖uλ‖∞. Set also q = p+ log λ−log λ
log(1+M)

> p, then by Theorem 8

λ∗(q) < λ. (32)

From our choice of q, we infer that λ(1 + M)p = λ(1 + M)q and with some elementary
computations, one can check that

λ (1 + s)p ≥ λ (1 + s)q ∀s ≤M.

Since ‖uλ‖∞ = M we obtain

−∆uλ = λ (1 + uλ)
p ≥ λ (1 + uλ)

q,

and hence uλ is a supersolution of (P q

λ
). Then, by [6, Lemma 3] (P q

λ
) admits a solution. By

Theorem 3, this implies λ∗(q) ≥ λ and contradicts (32).
We now prove the continuity from the left. Assume by contradiction that there exists

p > 1 such that
λ := lim

p→p−
λ∗(p) > λ∗(p).

Choose λ ∈ (λ∗(p), λ), and for p < p let up denote the minimal solution of −∆up = λ (1+up)
p.

Testing this equation with up we get∫
Ω

|∇up|2 = λ

∫
Ω

(1 + up)
pupp. (33)

From [9, Lemma 2.1] we also have∫
Ω

|∇up|2 − λ p
∫

Ω

(1 + up)
p−1u2

p > 0. (34)

From (33) and (34) we obtain∫
Ω

(1 + up)
p−1up(1 + up − p up) > 0. (35)
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This implies that there exists k > 0 such that

‖up‖p+1 ≤ k ∀p < p. (36)

Indeed, let Ωp = {x ∈ Ω : up(x) ≤ 2/(p− 1)} and Ωp = Ω \ Ωp. Then, clearly,∣∣∣∣∣
∫

Ωp

(1 + up)
p−1up (1 + up − pup)

∣∣∣∣∣ ≤ c1, (37)

for some fixed c1 > 0. Furthermore, in Ωp we have 1 + up − pup ≤ −p−1
2
up, and hence∫

Ωp
(1 + up)

p−1up (1 + up − pup) ≤ −
p− 1

2

∫
Ωp
|up|p+1. (38)

If (36) were false, namely ‖up‖p+1 → +∞, then (35), (37) and (38) give a contradiction by
letting p→ p. Hence (36) holds true and ‖up‖ remains bounded by (33). From (36) it follows
that also ‖up‖p remains bounded. Hence, as p → p−, up converges weakly in H1

0 (Ω) and in
Lp(Ω) to a solution of (P p

λ ), which contradicts λ > λ∗(p). 2

Now let us fix p > 1 and let Ω vary. We recall the following continuity result

Theorem 10. [25]
The map λ∗ : L 7→ (0,∞) is continuous with respect to the Hausdorff distance of domains.

We wish to optimize λ∗ = λ∗(Ω). By a simple rescaling, one can check that the map
λ∗ : L → (0,∞) is homogeneous of degree −2, namely k2λ∗(kΩ) = λ∗(Ω) for all Ω ∈ L and
k > 0. Then, infL λ

∗ = 0 and supL λ
∗ = +∞, and by Theorem 1 we know that the infimum

is not attained. In order to avoid this rescaling problem, we restrict our attention to the sets
Ω having the same measure ωn as the unit ball B1. Therefore, we introduce the family

IL = {Ω ∈ L; |Ω| = ωn}.

We first remark that for all p > 1 we still have

sup
Ω∈IL

λ∗(Ω) = +∞. (39)

To see this, for all ε > 0 consider the function

φε(x) = φε(x1, ..., xn) = x2
1 + ...+ x2

n−2 + εx2
n−1 +

x2
n

ε
.

Then, the ellipsoid Ωε = {x ∈ Rn; φε(x) < 1} belongs to IL and the function vε(x) = 1−φε(x)
satisfies

−∆vε = 2(n+ ε− 2) +
2

ε
>

2

ε
≥ λ2p ≥ λ(1 + vε)

p in Ωε ∀λ ≤ 21−p

ε
.

Hence vε is a supersolution of (P p
λ ) in Ωε for λ = 21−p/ε, and so λ∗(Ωε) ≥ 21−p/ε. Then (39)

follows by letting ε→ 0.
On the contrary, infIL λ

∗ is attained as states the following result
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Theorem 11. [5, Theorem 4.10]
Let p > 1. Then the functional λ∗ : IL→ (0,∞) attains its minimum at B1, infIL λ

∗ = λ∗(B1).

Remark 5. This result of optimal design may also be stated in a different fashion. In [25]
the functional λ∗ is studied for a slightly different problem. It is shown there that the map
Ω 7→ λ∗(Ω) is differentiable in a suitable sense. Therefore, according to Theorem 11 we can
say that the derivative of λ∗(Ω) vanishes when Ω = B1 and whenever the variations of Ω
preserve the total volume. 2

Combining the previous results with an argument in [19] we obtain the following lower
bounds for λ∗

Theorem 12. For all Ω ∈ L and all p > 1 we have

λ∗(Ω, p) ≥ 2
ω2
n

|Ω|2
max

{
n

(p− 1)p−1

pp
,

1

p− 1

(
n− 2p

p− 1

)}
. (40)

Moreover,

λ∗(Ω) ≥ ω2
n

|Ω|2
n(n− 2)

4
∀p ∈

(
1,
n+ 2

n− 2

]
. (41)

Proof. In order to prove (40), by Theorem 11 and by rescaling it suffices to show that

λ∗(B1, p) ≥ 2 max

{
n

(p− 1)p−1

pp
,

1

p− 1

(
n− 2p

p− 1

)}
∀p > 1. (42)

By [19, Theorem 1] (see also [9, Section 6]), we know that for all p > 1 we have

λ∗(B1, p) ≥
2

p− 1

(
n− 2p

p− 1

)
.

On the other hand, the function w(x) = 1
p−1

(1− |x|2) satisfies

−∆w =
2n

p− 1
= 2n

(p− 1)p−1

pp

(
1 +

1

p− 1

)p
≥ 2n

(p− 1)p−1

pp
(1 + w)p,

so w is a supersolution for (P p
λ ) in B1 for all λ ≤ 2n (p−1)p−1

pp
. Since w0 ≡ 0 is a subsolution

and w0 ≤ w, for any such λ there exists a solution of (P p
λ ). By Theorem 1, this shows that

λ∗(B1, p) ≥ 2n
(p− 1)p−1

pp

and (42) follows. For a different proof of the last inequality, see also [4, Theorem 1.1].
By Theorem 8 we have λ∗(B1, p) ≥ λ∗(B1,

n+2
n−2

) for all p ∈ (1, n+2
n−2

]. Therefore, the uniform
lower bound (41) follows from Theorem 7. 2
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Note that the maximum in the r.h.s. of (40) coincides with its first term if p is close to 1.
In particular, this happens for p ≤ n

n−2
since its second term is nonpositive. Note also that

by (2) and (40)

∀Ω ∈ L ∃C2(Ω) > C1(Ω) > 0 such that C1(Ω) < pλ∗(p) < C2(Ω) ∀p > 1. (43)

We conclude this section with some bibliographical references on the study of the behavior
of λ∗ for other varying parameters. Lower bounds for λ∗ for semilinear problems slightly
different from (P p

λ ) were found by variational methods in [33]. The dependence of λ∗ on
boundary conditions was studied in [18]. Finally, further results for varying domains may be
found in [4].

5.3 Behavior of solutions as p→ 1

In this section we study the case where p → 1. Consider first the case p = 1. For sake of
completeness we quote the proof of the following result:

Proposition 1. Let Ω ∈ L and λ > 0. Then the linear equation (P 1
λ ) admits a solution if

and only if λ < λ1. In such a case the solution is unique.

Proof. Assume (P 1
λ ) admits a solution u, multiply the equation by the first (positive) eigen-

function ϕ1 and integrate by parts. We obtain

λ1

∫
Ω

uϕ1 = λ

∫
Ω

uϕ1 + λ

∫
Ω

ϕ1

which proves λ < λ1.
Conversely, assume λ < λ1. Then the functional

Jλ(u) =
1

2

∫
Ω

|∇u|2 − λ

2

∫
Ω

u2 − λ
∫

Ω

u

is convex and coercive on H1
0 (Ω) (by Poincaré’s inequality) and therefore it admits a minimum

u which solves (P 1
λ ). Since Jλ(u) ≥ Jλ(|u|) for all u, we may assume u ≥ 0. Finally, the strict

positivity u > 0 follows from the maximum principle.
In order to prove uniqueness, assume that u and v both solve (P 1

λ ), for some λ < λ1.
Subtracting the equations we deduce that w = u − v ∈ H1

0 (Ω) satisfies −∆w = λw. Since
λ < λ1, this shows that w ≡ 0 and completes the proof. 2

Next, note that by (2) and by Theorem 8 the map λ∗ : p 7→ λ∗(p) admits a limit as p→ 1
and

lim
p→1

λ∗(p) ≤ λ1. (44)

The next result shows that in fact equality holds
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Theorem 13. Let Ω ∈ L, then
lim
p→1

λ∗(p) = λ1.

Moreover, for all 0 < λ < λ1 there exists ελ > 0 such that (P 1+ε
λ ) admits a minimal solution

uε and a mountain–pass solution Uε for all ε < ελ.

Proof. Assume that 0 < λ < λ1 and denote by u ∈ C2,α
0 (Ω) the unique positive solution of

(P 1
λ ), see Proposition 1. Consider the map

Φ : C2,α
0 (Ω)× R → C0,α(Ω)

(u, p) 7→ ∆u+ λ|1 + u|p−1(1 + u).

It is not difficult to verify that Φ is of class C1 in a suitable neighborhood of (u, 1) for
any positive u ∈ C2,α

0 (Ω). In particular, Φ(u, 1) = 0 and there exists a neighborhood U of
(u, 1) where Φ ∈ C1(U). Moreover, the partial derivative of Φ with respect to u evaluated
at (u, 1) is the linear operator ` : C2,α

0 (Ω) → C0,α(Ω) such that `(v) = ∆v + λv. Since
λ < λ1, ` is an isomorphism. Therefore, by the implicit function Theorem, there exists a
neighborhood U ′ of p = 1 such that the equation Φ(u, p) = 0 defines implicitly a family of
functions up = up(p) ∈ C2,α

0 (Ω) such that Φ(up, p) = ∆up + λ|1 + up|p−1(1 + up) = 0 for all
p ∈ U ′. Since u1 = u > 0 and since the map p 7→ up is continuous in the C2,α

0 (Ω) topology,
by restricting U ′ if necessary, we may assume that up(x) ≥ −1 for all x ∈ Ω. Therefore, up
is a super–harmonic function and by the maximum principle up(x) > 0 for all x ∈ Ω. We
have shown that for p sufficiently close to 1 there exists a solution up of (P p

λ ). This proves
that for such a p we have λ ≤ λ∗(p). By the strict monotonicity of the map λ∗ = λ∗(p) (see
Theorem 8), and by taking a smaller p if necessary, we have λ < λ∗(p). The existence of uε
and Uε follows from Theorem 1.

Finally, the previous argument also shows that for all λ < λ1 there exists p > 1 such that
λ∗(p) ≥ λ. Together with Theorem 8 and (44), this proves that λ∗(p)→ λ1 as p→ 1. 2

Remark 6. Proposition 1 states that λ∗(1) = λ1. Then, Theorems 9 and 13 imply that the
map λ∗ = λ∗(p) is continuous in the closed interval [1,∞). 2

As a by–product of the previous proof and of the maximum principle, we obtain that any
solution wλ of (P 1

λ ) (for 0 < λ < λ1) is limit of minimal solutions of (P 1+ε
λ )

Theorem 14. Let Ω ∈ L, let 0 < λ < λ1, let u be the unique solution of (P 1
λ ) and let uε be

the minimal solution of (P 1+ε
λ ) when ε < ελ (see Theorem 13). Then uε > u and, as ε→ 0,

uε converges to u in C2,α(Ω).

Now we study the behavior of the mountain–pass solution Uε of (P 1+ε
λ ) when ε→ 0. The

following result states that

‖Uε‖ ≈
(
λ1

λ

)1/ε

as ε→ 0,

21



namely that Uε blows up exponentially with respect to ε.

Theorem 15. Let Ω ∈ L, let 0 < λ < λ1, let Uε be the mountain–pass solution of (P 1+ε
λ )

when ε < ελ (see Theorem 13). Let Aε = ‖Uε‖: then Aε → +∞ as ε→ 0 and

lim
ε→0

Aεε =
λ1

λ
, lim

ε→0
A−1
ε Uε = ϕ1 in C2,α(Ω),

where ϕ1 is normalized so that ‖ϕ1‖ = 1; in particular, Uε(x)→ +∞ for all x ∈ Ω.

The proof of Theorem 15 is based on the following lemma.

Lemma 3. Suppose the assumptions of Theorem 15 hold true. Then Aε → +∞ as ε → 0
and Aεε remains bounded as ε→ 0.

Proof. The function Uε is a critical point of the functional

Jε(u) =
1

2

∫
Ω

|∇u|2 − λ

2 + ε

∫
Ω

|1 + u|2+ε, u ∈ H1
0 (Ω).

Due to the fact that λ < λ1, for any bounded set B ⊂ H1
0 (Ω) there exists εB > 0 such that

the second derivative J ′′ε is positive definite on B for all ε < εB. Hence, by its variational
characterization, Uε 6∈ B if ε < εB and this shows that {Uε} is not bounded in H1

0 (Ω), i.e.
Aε → +∞ as ε→ 0.

In order to prove the second statement, we observe that, testing the Euler equation on
the function Uε, we get

A2
ε =

∫
Ω

|∇Uε|2 = λ

∫
Ω

|Uε + 1|1+εUε. (45)

Inserting (45) into the expression of Jε, we deduce that

Jε(Uε) =

(
1

2
− 1

2 + ε

) ∫
Ω

|∇Uε|2 −
λ

2 + ε

∫
Ω

|1 + Uε|1+ε.

Therefore, we find as ε→ 0

Jε(Uε) ≥
ε

2(2 + ε)
A2
ε +O(A1+ε

ε ). (46)

The value of Mε := maxt≥0 Jε(t ϕ1) is attained at the point t = tε for which

tε

∫
Ω

|∇ϕ1|2 = λ

∫
Ω

|1 + tε ϕ1|1+εϕ1. (47)
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By the same argument just used to show that Aε →∞ (the positive definiteness of J ′′ε ), we
infer that tε →∞. Hence (47) reads

∫
|∇ϕ1|2 ≈ λtεε

∫
ϕ2

1, that is

tεε =
λ1

λ
+ o(1), as ε→ 0. (48)

Moreover, as ε→ 0, by (47) we also deduce (recall ‖ϕ1‖ = 1)

Mε = Jε(tεϕ1) ≤
(

1

2
− 1

2 + ε

)
t2ε

∫
Ω

|∇ϕ1|2 ≈
ε

4
t2ε. (49)

Let uε denote the minimal solution of (P 1+ε
λ ) and consider the path γε : [0, T ] → H1

0 (Ω)
defined by

γε(t) =

{
(1− t)uε if t ∈ [0, 1]

(t− 1)ϕ1 if t ∈ [1, T ]

where T = T (ε) > 1 is chosen so large that Jε(γε(T )) < Jε(uε). Since γε is an admissible
path for the mountain–pass scheme, it must be

Jε(Uε) ≤ max
0≤t≤T

Jε(γε(t)) = Mε.

Raising to the power ε
2
, and using (46), (48) and (49), we deduce

λ1

λ
≥ lim sup

ε→0
M ε/2

ε ≥ lim sup
ε→0

[Jε(Uε)]
ε/2 ≥ lim sup

ε→0
Aεε

which shows that Aεε remains bounded and concludes the proof. 2

Proof of Theorem 15. The function vε = A−1
ε Uε satisfies the equation

−∆vε = λAεε (A−1
ε + vε)

1+ε.

Testing it with vε, we deduce in particular that∫
Ω

|∇ vε|2 = λAεε

∫
Ω

|A−1
ε + vε|1+εvε. (50)

From (50) and from Lemma 3 we deduce that, for every sequence εm → 0, the sequence
{vεm} converges weakly in H1

0 (Ω) (up to a subsequence) to a nontrivial function v satisfying

−∆v = [λ (lim
m
Aεmεm)] v.

Then, since v is non–negative, it must be λ(limmA
εm
εm) = λ1 and v is a multiple of ϕ1. From

(50) one deduces that in fact vεm converges strongly to v, and hence v coincides with ϕ1.
Invoking once more [7] and elliptic regularity we also get vεm → ϕ1 in C2,α(Ω). Since this is
true for every sequence εm → 0, we have convergence for ε→ 0. Finally, from the pointwise
convergence A−1

ε Uε(x)→ φ1(x) we deduce Uε(x)→ +∞ for all x ∈ Ω. 2
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6 A physical interpretation of the results and some

open problems

In this section we discuss the model suggested in [21] and we give a physical interpretation
of our results.

We are interested in existence and behavior of steady states u of temperature distribution
in an object Ω heated by the application of a uniform electric current I =

√
λ > 0 (the

gradient ∇u represents the transfer of heat). If the body Ω is homogeneous with unitary
thermal conductivity, the electric resistance R is a function of the temperature u, R = R(u).
If the radiation is negligible, the resulting stationary equation in some dimensionless form
reads

−∆u = λR(u) (51)

for which, of course, only positive solutions have to be considered. In many cases of phys-
ical interest, the resistance increases with the temperature, that is, u 7→ R(u) is monotone
increasing. We assume that the temperature is kept equal to 0 on the boundary of the body
so that to (51) we associate the homogeneous Dirichlet boundary condition. The resistance
should be positive also at zero temperature, R(0) > 0. It is known that a limiting current
I∗ =

√
λ∗ exists beyond which positive steady states do not exist. This is precisely the

content of Theorem 1. The maximal interval of values of λ for which there exists a posi-
tive temperature u solving (51) is usually improperly called the spectrum. Both the cases of
concave and convex functions R are of some interest although they highlight very different
behaviors. In the former case the spectrum is open and the stationary solution u of (51)
is unique for all λ ∈ (0, λ∗) while in the latter case the spectrum is closed and non–unique
solutions of (51) exist.

In this paper we concentrate on convex resistance functions R and we deal with the
particular case where R(u) = (1 + u)p which gives a unitary resistance in correspondence of
zero temperature u = 0 and increases polynomially and superlinearly with respect to u. The
parameter p characterizes the material used to fill Ω. If p ≤ n+2

n−2
, Theorem 1 states that for

all current I ∈ (0, I∗) there exist at least two temperatures u solving (51). Only the minimal
temperature uλ is stable (see [21, Theorem 5.1] and [9, Lemmas 2.1 and 2.4]). Theorem 3
tells us that the stable temperature increases with the current. As I tends to the extremal
current I∗, Corollary 1 establishes that the stable and unstable stationary temperatures uλ
and Uλ tend to a limit value U∗ and give rise to a unique solution of (51). On the contrary,
these two temperatures have a very different behavior for small currents I, see Theorems 5
and 6. As the resistance R becomes more convex, Theorem 8 states that the limit current
I∗ becomes smaller while, for a given current I, the stable temperature uλ becomes larger.
As the resistance loses convexity, the stable and unstable temperatures behave again very
differently, see Theorems 14 and 15. Finally, (39) states that for a prescribed volume ωn
of the homogeneous material considered, the limiting current I∗ may be as large as desired,
provided one models the body Ω in a suitable way. The current I∗ is minimal when Ω has
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the shape of a ball, see Theorem 11.

Some open problems
• The maximal stable temperature uM = ‖uλ‖∞ for (P p

λ ) is of course of great interest.
A first problem is therefore to establish for which λ and which Ω ∈ IL one has uM ≤ T for
some limiting temperature T > 0. Let us mention that the method we used to prove (39)
shows that for all ε > 0 and all λ ≤ 21−p

ε
we have uM ≤ 1 when the body is the ellipsoid Ωε.

Hence, we may have “small” stable temperatures also in correspondence of large currents I;
of course, here this happens because Ωε is “thin”, and the surface area is large with respect
the volume. A good starting point to solve this problem are the upper bounds for λ = λ(uM)
determined in [20, Theorem 1] where one can also find some numerical results.
• An even more interesting problem is to fix the maximal stable temperature ‖uλ‖∞ and

its mean value ‖uλ‖1 and to wonder about existence and uniqueness of λ and p for which these
constraints are satisfied by the minimal solution uλ of (P p

λ ) in a given domain Ω ∈ L. This

corresponds to determine the current
√
λ and the material filling Ω since the parameter p

characterizes the resistance of the material. Of course, one should assume ‖uλ‖1 ≤ |Ω|·‖uλ‖∞
by Hölder inequality and not fix ‖uλ‖∞ too large.
• Another natural question is the following: given a fixed amount of material (e.g.

|Ω| = ωn) for which shapes of Ω ∈ IL do we have a stationary positive temperature u in
correspondence of large currents I∗ ≥ I (for some I > 0)? In other words, for which Ω ∈ IL

it is λ∗(Ω) ≥ I
2
? As we see from (39), such an Ω always exist: does it need to be “thin” in

some sense (e.g. contained in a n–dimensional rectangle having very different edges)?
• Concerning the unstable (mountain–pass) stationary temperature Uλ, an interesting

problem would be to compare ‖Uλ‖∞ for different values of λ. Of course, here we assume
that p ≤ n+2

n−2
. Is it true that the map λ 7→ ‖Uλ‖∞ is decreasing? From Remark 4 we know

that the answer is positive when Ω = B1 and p = n+2
n−2

. Further arguments in favor of a
positive answer may be found in [4, Theorem 1.2]. Indeed, the comparison between two
mountain–pass solutions corresponding to different values of λ is equivalent (thanks to a
rescaling) to the comparison of two mountain–pass solutions for the same value of λ but in
different domains, one of them strictly containing the other. Even more interesting: do we
have pointwise monotonicity with respect to λ of the functions Uλ? We refer again to Remark
4 for the case where Ω = B1 and p = n+2

n−2
. Positive answers to these questions would bring

further evidence to the “opposite” behaviors of uλ and Uλ.
•How are the topology and the geometry of the body Ω related to the number of stationary

temperatures? Are the unstable solutions of (51) all unstable in the same fashion? From a
mathematical point of view, the instability may be evaluated by means of the Morse index of
the (nondegenerate) critical point of the action functional associated. To this end, important
contributions for slightly different problems may be found in [12, 27]. We also refer to Remark
3 for related results in the critical case p = n+2

n−2
.
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7 Appendix: blow–up analysis for the case p = n+2
n−2

In this section we consider in more detail problem (21) with p = n+2
n−2

, namely
−∆Wε = (Wε + ε)(n+2)/(n−2) in Ω

Wε > 0 in Ω

Wε = 0 on ∂Ω,

(52)

Our aim is to study the behavior of the solutions when ε → 0. In order to do this, one can
use the blow–up analysis performed by Han [17], Schoen [30] and Li [22]. Note that, using

a simple translation, equation (52) becomes −∆Wε = W
n+2
n−2
ε with the boundary condition

Wε = ε on ∂Ω. This fact will be used when we will quote some results from [22]. We recall
some useful definitions.

Let εi → 0+, and let Wi be a sequence of solutions of (52) for ε = εi. The sequence Wi

is said to blow up at the point y ∈ Ω if there exists a sequence of points yi ∈ Ω such that
limi yi = y and limiWi(yi) = +∞. The point y ∈ Ω is called an isolated blow up point if
there exists a sequence {yi} of local maxima of Wi tending to y with Wi(yi) → +∞, and if
there exist r ∈ (0, d(y, ∂ Ω)) and C > 0 such that, for i sufficiently large

Wi(y) ≤ C |y − yi|−(n−2)/2 ∀y ∈ Br(yi). (53)

Let yi be as above, suppose y is an isolated blow up point for {Wi} and set

W i(r) =
1

|Br(yi)|

∫
Br(yi)∩Ω

Wi , Zi(r) = r(n−2)/2W i(r) , r ∈ (0, r).

Suppose that for some % ∈ (0, r) independent of i, the function Zi has precisely one critical
point for large i. Then we say that y is an isolated simple blow up point.

The next Lemma asserts that blow up at the boundary of Ω is excluded.

Lemma 4. Let {εi} and {Wi} be as above. Then there exists dΩ > 0 depending only on Ω
with the following properties. For every i and for every solution Wi of (52) we have

∇Wi(x) · ∇ d(·, ∂Ω)(x) ≥ 0, for all x ∈ Ω with d(x, ∂Ω) < dΩ. (54)

Moreover, if y ∈ Ω is a blow up point for {Wi}, then y ∈ Ω and d(y, ∂Ω) ≥ dΩ.

The proof follows from the same arguments as in [17, pp.163–164], which are based on the
moving planes method in [15].

Lemma 4 allows us to consider just interior blow up. Hence, we may apply [22, Proposition
2.1] to obtain the following result
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Lemma 5. Let {εi}, {Wi} and {yi} be as above and suppose that y ∈ Ω is an isolated simple
blow up point for {Wi}. Let {Ri} and {ηi} be two sequences of positive numbers such that
Ri → +∞ and ηi → 0. Then for some subsequence of {Wi}, still denoted by {Wi}, we have∥∥Wi(yi)

−1Wi

(
Wi(yi)

−2/(n−2) ·+yi
)
− (1 + b0 | · |2)(2−n)/2

∥∥
C2(B2Ri

(0))
≤ ηi ,

RiWi(yi)
−2/(n−2) → 0 as i→ +∞.

Here b0 = (n(n− 2))−1.

Combining [22, Proposition 3.1] and Lemma 4 we get

Lemma 6. Let {εi} and {Wi} be as above. Then the blow up points of {Wi} are isolated
simple. If y1, . . . , yk are the blow up points of {Wi}, then there exists dΩ > 0 depending only
on Ω such that minj 6=l d(yj, yl) ≥ dΩ and minj d(yj, ∂Ω) ≥ dΩ. Moreover, if yij → yj is a
sequence of points for which Wi(y

i
j)→ +∞, j = 1, . . . , k, then

Wi(y
i
j)Wi(y)→ a |y − yj|2−n + bj(y) in C2,α

loc (BdΩ/2(yj) \ {yj}),

where a = (n(n− 2))(n−2)/2 and bj(y) is some harmonic function in BdΩ/2(yj).

Lemma 5 describes the asymptotic behavior of Wi near the blow up points. Using [22, Lemma
2.4], [22, Proposition 3.1] and Lemma 6 one can prove that there is indeed no concentration
of mass outside the points y1, . . . , yk. More precisely, in the spirit of the concentration–
compactness principle [23], the following proposition holds

Proposition 2. Let εi → 0. Suppose {Wi} is a sequence of solutions of (52) with ε = εi
and such that maxΩWi → +∞ as i → +∞. Then, up to a subsequence, the sequence {Wi}
concentrates at a finite number of points y1, . . . , yk ∈ Ω, namely

|∇Wi|2 → Sn/2
k∑
l=1

δyl W 2∗

i → Sn/2
k∑
l=1

δyl . (55)

in the weak sense of measures.
Moreover, there exist kΩ ∈ N and dΩ > 0 (depending only on Ω) such that:

(i) the number k of concentration points cannot exceed kΩ;
(ii) d(yj, yl) ≥ dΩ for all j 6= l and d(yj, ∂Ω) ≥ dΩ for all j.

In order to derive the tools needed in the proof of Theorem 6, from now on we will
specialize to the case in which Wi is a mountain–pass solution of (52). From (22) and (55) it
follows that k = 1 in this case, i.e. there is at most one blow up point y1.

Set W̃i(x) = Wi(y
i
1)Wi(x), where yi1 is the sequence of local maxima converging to y1.

The convergence of W̃i in Lemma 6 can be in fact extended to the whole Ω \ {y1}, and the
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limit function b1(x) is harmonic. In the compact subsets of Ω\{y1}, this follows from Lemma
6, a Harnack type inequality, see [22, Lemma 2.1], and standard elliptic estimates. To get
convergence up to the boundary, one can use condition (54). Since W̃i vanishes on ∂Ω, the
limit function must be a multiple of the Green’s function with pole y1. Hence we have the
following result

Proposition 3. Let {εi}, {Wi} be as above and assume moreover that Wi is of mountain–pass
type. Then {Wi} has at most one blow up point y1 and

Wi(y
i
1)Wi(y)→ aG(y, y1) in C2,α

loc (Ω \ {y1}),

where a = (n(n− 2))(n−2)/2.

We state now a general result, based on a Pohozaev type identity, see [22, pages 331–332].
Note that in the statement of [22, Proposition 1.1] the assumption that A > 0 is in fact not
necessary.

Lemma 7. Let u be a solution of problem (52), let y1 ∈ Ω, let σ ∈ (0, d(y1, ∂Ω)) and let Bσ

the ball centered at y1 with radius σ. Then,

n− 2

2
ε

∫
Bσ

(u+ ε)(n+2)/(n−2) − (n− 2)
σ

2n

∫
∂Bσ

(u+ ε)2∗ =

∫
∂Bσ

B(σ, x, u,∇u), (56)

where

B(σ, x, u,∇u) =
n− 2

2
u
∂u

∂ν
− σ

2
|∇u|2 + σ

∣∣∣∣∂u∂ν
∣∣∣∣2 .

Moreover, for any function h : Ω→ R of the form h(x) = a|x−y1|2−n+A+α(x−y1) (where
a > 0, A ∈ R and α is of class C1 with α(0) = 0) we have

lim
σ→0

∫
∂Bσ

B(σ, x, h,∇h) = −(n− 2)2

2
nωn aA. (57)

Using Lemma 5, one can check that the asymptotic shape of the functions Wi is of the
form (25) for a suitable value of d. Then, from [22, Proposition 3.1], the formula∫ ∞

0

rα

(1 + r2)β
dr =

Γ
(
α+1

2

)
Γ
(
β − α+1

2

)
2Γ (β)

,

and a change of variable, one finds that

lim
i
Wi(y

i
1)

∫
Bσ

(Wi + εi)
(n+2)/(n−2) = (n(n− 2))n/2 ωn. (58)
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We now apply Lemma 7 to the mountain pass–solutions Wi which, by Proposition 3, has
asymptotically (as i→∞) precisely the form of h with

a = (n(n− 2))(n−2)/2 A = −(n(n− 2))(n−2)/2H(y1, y1).

From Proposition 3, equation (57) and the homogeneity of B it follows that

lim
i
Wi(y

i
1)2

∫
∂Bσ

B(σ, x,Wi,∇Wi) = lim
i

∫
∂Bσ

B(σ, x,Wi(y
i
1)Wi,∇(Wi(y

i
1)Wi))

=
1

2
nn−1(n− 2)n ωnH(y1, y1) + oσ(1)

(59)

where oσ(1) → 0 as σ → 0. Now multiply (56) by Wi(y
i
1)2 and insert in (58), (59); by

Proposition 3 there holds Wi(y
i
1)W 2∗|∂Bσ → 0 as i→∞. Hence, letting σ → 0 we deduce

Lemma 8. Let {εi}, {Wi}, {yi1} and y1 be as in Proposition 3. Then, we have

lim
i
εiWi(y

i
1) = (n(n− 2))(n−2)/2H(y1, y1).

Information on the location of the blow up point can be obtained following the arguments
in [17, page 169]. Multiplying equation (52) by ∂Wi

∂xj
and integrating by parts on Ω we get

1

2

∫
∂Ω

|∇Wi|2νj = − 1

2∗

∫
∂Ω

|Wi + εi|2
∗
νj, j = 1, . . . , n.

Integrating on Ω \Bσ(y1), we deduce

1

2

∫
∂Ω

|∇Wi|2νj +
1

2∗

∫
∂(Ω\Bσ(y1))

|Wi + εi|2
∗
νj +

∫
∂Bσ(y1)

∂Wi

∂xj

∂Wi

∂ν

−1

2

∫
∂Bσ(y1)

|∇Wi|2 νj = 0, j = 1, . . . , n.

Here ν denotes the exterior unit normal to ∂(Ω \Bσ(y1)). Letting σ → 0, using Proposition
3, the last two equations and some simple calculations, one finds

Proposition 4. Let y1 be the concentration point given in Proposition 3. Then,

∇ϕ(y1) = 0,

where ϕ(·) = H(·, ·).
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