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1 Introduction

Despite decades of impressive progress, the lack of an all-encompassing formulation of string
theory remains an obstacle toward a thorough understanding of the theory and its physical
implications. While the ultraviolet (UV) physics is universal, at least perturbatively [1–3], the
infrared (IR) properties of the vacuum can be manifold. This property, expected to arise in
any theory of gravity by compactification, gives rise to the string landscape. The many partial
but complementary formulations at our disposal [4] cover some corners of the landscape, and
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thus the important task of exploring it further dovetails with the search for the underlying
physical principles of quantum gravity. In light of this state of affairs, top-down constructions
are faced with a “lamppost” effect, and it is sometimes unclear which properties pertain to
the whole landscape and which cannot be extrapolated beyond the limited cases where one
can achieve quantitative control. In order to address this “missing corner problem” [5], one
can follow a complementary bottom-up approach, seeking general properties entailed by the
consistency of quantum gravity rather than extrapolating from top-down examples. This is
the essence of the swampland program [6] (see also [7–10] for reviews). Ultimately, one would
like to find a perfect match between these consistency conditions and the string landscape
of effective field theories (EFTs) of gravity. This daunting task is enormously simplified in
settings with several supercharges, where the pool of potentially allowable supergravities
can be classified. The constraining power of (extended) supersymmetry can be combined
with unitarity, which requires that anomalies of various types cancel. The results are quite
striking: the swampland task is essentially complete in supersymmetric theories in dimensions
d > 6 [11–14], and there are many constraints in lower dimensions d ≤ 6 as well [11, 15–25].

In the spirit of continuing the exploration of the landscape and consistency conditions
within the simplest and most constrained settings, one is led to minimal supergravity in
six dimensions, denoted N = (1, 0) or N = 1 when no ambiguities arise. This is because
purely gravitational anomalies can exist in six and ten dimensions,1 and while the latter
case comprises just two theories the former is much richer. There are several indications
that the landscape of consistent 6d N = 1 supergravities is finite [11, 15–18, 22], but a full
classification is lacking. Still, this framework provides an ideal context to study more refined
constraints, such as the ones coming from the cancellation of global anomalies. Dai-Freed
anomalies [26] comprise both local [27–31] and global [32–35] anomalies in the traditional
sense, but they also include more general anomalies arising from spacetime topology change.
Demanding that these anomalies cancel can entail additional, stronger constraints [26, 36, 37],
and their cancellation in (non-)supersymmetric string theories in ten dimensions provides
further evidence for their non-perturbative consistency [38].

In this paper we study Dai-Freed anomalies in 6d N = 1 supergravity, focusing on families
of theories with nT = 1 tensor multiplets and simply laced gauge groups. We will also discuss
U(1) gauge groups and a model with nT = 0, as well as some non-supersymmetric heterotic
models, showing that the constraints arising from Dai-Freed anomaly cancellation extend
beyond the lamppost of supersymmetry along the lines of [38]. The upshot of our analysis
shows that the cancellation of Dai-Freed anomalies excludes some theories that were not
previously ruled out, up to an assumption on the structure of the anomaly theory which we
will specify. In the case of U(1), this argument can exclude arbitrarily large abelian charges
in the hypermultiplets discussed in [17]. The mentioned assumption concerns the structure of
the anomaly theory of the chiral 2-form fields, which in six dimensions play an important
role. According to our analysis, the ultimate fate of these theories thus depends on these
data, which is inaccessible from their local Lagrangian formulation. At present, there is no
understanding on how to access such information from stringy inputs. Given this state of
affairs, we can limit ourselves to assume the construction that has already been discussed

1In this paper we only consider d ≥ 4, where the consistency conditions of gravity are much more restrictive.
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in literature [39], allowing us to exclude some models with abelian and simply-laced gauge
groups. Another point of view, closer in spirit to the swampland program, is to consider this
result as novel and powerful restrictions on possible EFTs, if one includes global data in their
specification. A possible way to better understand these matters is to analyse the case in
which chiral fields contribute to the anomaly theory of six-dimensional heterotic orbifolds and
orientifolds models, since in these cases it expected to vanish. Therefore, global data must be
also fixed by the choice of vacuum [40]. As it turns out, the choices that cancel the anomaly
sometimes differ from the one discussed in [39], and thus further investigation is required
to settle the issue. Nevertheless, when the 2-form fields of interest are non-chiral, such
ambiguities disappear and the anomaly theory turns out to vanish for all the models at stake,
including a number of non-supersymmetric heterotic orbifolds.2 This analysis thus extends the
results of [41, 42] to some non-supersymmetric settings and those of [38] to lower dimensions.

The contents of the paper are summarised as follows. In section 2 we present the formalism
with which we describe global anomalies of chiral fields. In section 2.1 we introduce Dai-Freed
anomalies in the specific context of 6d supergravity, where the Green-Schwarz mechanism
plays a central role. Then we move on to the main part of the paper, computing anomalies on
Lens spaces for supergravity theories for the simply laced gauge groups appearing in heterotic
string constructions: in section 3 we discuss special unitary groups, in section 4 we discuss
Spin groups and in section 5 we discuss the exceptional groups E7 and E8. When describing
anomalies for special unitary groups, we provide a separate, more detailed exposition for
SU(2) in section 3.1, where a comparison with the string landscape and the general properties
of elliptic genera is performed. Abelian charges behave differently, and we discuss them
in section 6 where we also show in section 6.2 that an infinite family with arbitrary large
charges are excluded, at least for certain types of quadratic refinement for the self-dual
tensor. Finally, as a first step to extend our approach beyond the main setting of supergravity
with nT = 1, in section 7 we show that a number of non-supersymmetric heterotic models
are devoid of Dai-Freed anomalies on Lens spaces. Similarly, in section 8 we show that
the anomaly cancels for the peculiar “non-geometric” Gepner orientifold with nT = 0 for
certain choices of quadratic refinement which however differ from the one defined in [39].
These consistency checks are not a priori trivial, since the analysis of [42] covers heterotic
settings (assuming the Stolz-Teichner conjecture [43]) while the analysis of [38] covers smooth
geometric compactifications of ten-dimensional models.

2 Anomalies and unitarity in (super)gravity

Unitarity is perhaps the most fundamental requirement that a quantum field theory should
possess in order to be consistent. When chiral fields are present, quantum effects can spoil this
property by breaking gauge invariance of an internal or local Lorentz symmetry when gravity is
involved [27–30, 44–46] (see e.g. [31, 47–49] for reviews). Thus, the lack of unitarity manifests
itself into an anomalous transformation of the one-loop effective action and can be ultimately
traced back to the ambiguities occurring in the definitions of the partition function of the chiral

2More precisely, there could be additional potentially anomalous backgrounds that we have not found. All
the anomalies that we have computed using Lens spaces vanish.
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fermionic and bosonic fields. Recently, it has been shown [35, 39, 50] that these ambiguities
can be clarified by describing the chiral fields on a given spacetime X as a boundary mode
of a gapped Dirac spinor or a non-chiral (p+ 1)-form living in a (d+ 1)-dimensional space
Y such that ∂Y = X with suitable elliptic boundary conditions3 [35, 39, 50, 52], required
in order for the Dirac operator to be self-adjoint on X. The dependence of the partition
function on the choices of Y and on the boundary conditions L is given by the Dai-Freed
theorems on the index of the Dirac operator [53, 54]. As a result, the partition function for a
chiral fermion and a given spacetime extension Y is well-defined and reads [35, 50]

Z 1
2 ,+
(
L, Y

)
=
∣∣∣Pf

(
D+

D(X)
)∣∣∣ e−2iπηD(Y ) (2.1)

where L localises a chiral fermion of a given chirality on the boundary X and the Pfaffian of
its Dirac operator corresponds to the regularised product of the positive eigenvalues4 whose
phase is given by the so-called eta invariant η(Y ) [53, 54].

In similar fashion one can write the partition function of a chiral gravitino. However, one
has to take into account that the degrees of freedom of a gravitino comprise a Rarita-Schwinger
field and a Weyl fermion of opposite chirality. A Rarita-Schwinger field in d+ 1 dimensions
localises to a chiral Rarita-Schwinger field and a Weyl fermion of opposite chirality on the
d-dimensional boundary [55, 56], while the Dirac field localises to a Weyl fermion as above.
As a result, the structure of the partition function is dictated by

Zgrav,+
(
L, Y

)
=

Z 3
2 ,+
(
L, Y

)
Z 1

2 ,+
(
L, Y

)2 =

∣∣∣Pf
(
D+

RS(X)
)∣∣∣∣∣∣Pf

(
D+

D(X)
)∣∣∣2 e−2iπηRS(Y )+4iπηD(Y ) , (2.2)

where the operator D+
RS(X) is the Rarita-Schwinger operator defined on the product between

the spin and the tangent bundle, and its eta invariant is related to the density index via
the Atiyah-Patodi-Singer (APS) index theorem [55–57]

IndexRS = ηRS(∂Z) +
∫
Z

(
IRS − ID

)
. (2.3)

However this is not the end of the story, since string theory and supergravity provide additional
ingredients in their spectra, namely p-form fields. Although the action and partition function
of non-chiral forms is well-understood and under control, one faces unavoidable difficulties
in the definition of a similar action for chiral forms, thus preventing one from writing a
consistent partition function straightforwardly. Furthermore, the standard techniques that
describe abelian gauge fields (whether chiral or not) in terms of differential forms miss all
the restrictions arising from a consistent coupling to matter in topologically non-trivial
backgrounds. Indeed when the topology of the manifold is non-trivial, a consistent coupling
to the wavefunction naturally leads to the presence of magnetic monopoles implying the
quantisation of the electric charge, the celebrated Dirac quantisation condition [58, 59]. More

3These results have been obtained working in Euclidean signature. The case of Minkowski signature has
been covered in [51].

4When the Dirac operator in the bulk Y has zero modes, the boundary conditions should be properly
modified (see for instance [50, 53] for details). However for the analysis of anomalies such subtleties play no
role and we shall skip them.

– 4 –



J
H
E
P
0
4
(
2
0
2
4
)
0
6
7

generally, it restricts charges to an integer lattice [60, 61]. Therefore a p-form field is not only
described by the De Rham cohomology classes of the electric and magnetic currents with
the suitable support conditions [62, 63], but it should properly incorporate the holonomy of
the U(1) gauge bundle encoding, eventually, the restriction imposed on the corresponding
charges by Dirac quantisation. From the point of view of the functional integral this is
apparent, since one sums over gauge bundles and their isomorphism classes correspond to
elements in integer cohomology. More precisely, these consideration mean that a p-form
gauge field is mathematically described by a (generalised) differential cohomology known as
Cheeger-Simons [64] or, equivalently, Deligne cohomology [65]. These cohomology groups
are defined as the set of homomorphisms [39, 62, 66–68]

χ ∈ Ȟp(X) ⊂ Hom(Zp−1(X,Z),U(1)) (2.4)

such that there exists a globally defined closed p-form with integer periods Fχ ∈ ΩpZ(X)
which on exact cycles satisfies

χ(∂γ) = exp
(
2πi

∫
γ
Fχ

)
, with γ ∈ Cp(X,Z) . (2.5)

Although the result so far encodes all the additional properties that were missing, the
relationship with the usual treatment is far from obvious. Indeed, to make contact with the
standard approach to gauge fields, we have to clarify how the gauge connection and gauge
transformations emerge in this setup. The gauge connection A ∈ Cp−1(X,R) is related to
the holonomy for a general cycle Γ ∈ Zp−1(X,Z) via

χ(Γ) = exp
(
2πi

∫
Γ
A

)
, (2.6)

which however it is not required to be a globally defined (p − 1)-form. The definition in
eq. (2.6) allows a different but equivalent characterisation of exact cycles allowing to identify
the coboundary δA with the field strength Fχ up to an integer cochain Nχ ∈ Cp(X,Z) that
defines the characteristic class of χ

Nχ = Fχ − δA . (2.7)

However the latter definition and eq. (2.6) have a gauge redundancy, as they are unaffected
by the transformations

A→ A+ δa+ n , N → N − δn (2.8)

with a ∈ Cp−2(X,R) and n ∈ Cp−1(X,Z), providing equivalence classes forming a cohomology
group isomorphic to the one in eq. (2.4). Therefore, in this picture the non-trivial topological
data is encoded in the characteristic integer cohomology element [N ] ∈ Hp(X,Z), which carries
torsional information invisible to De Rham cohomology curvature classes [F ] ∈ Hp

dR(X).
This fact has deep consequences for the structure and dynamics of the theory. If p-form

fields are present in the spectrum, the action and partition function should make sense at
the level of differential cohomology, requiring the associated action to be invariant under
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the transformations in eq. (2.8). For non-chiral p-form fields Ǎ ∈ Ȟp(X) this can be done
following [39, 69], namely extending the spacetime X to the “bulk” manifold Y such that
∂Y = X. Without background fields, gauge invariance comes automatically. However,
when the gauge field is coupled both electrically to B̌ ∈ Ȟp+1(X) and magnetically to
Č ∈ Ȟd−p+1(X), one has to introduce an SPT phase [70–75] (and local counterterms) on
the Y . This leads to the action

S = π

g2

∫
X

(
FǍ +AB̌

)
∧ ∗

(
FǍ +AB̌

)
− 2πi

(
Ǎ, Č

)
X
− 2πi

∫
X
q(FČ, AB̌)− 2πi(−1)d−p

(
Č, B̌

)
Y
,

(2.9)

where the homotopy cochain q(ω1, ω2) acts on differential forms ω1 and ω2 according to

ω1 ∧ ω2 − ω1 ∪ ω2 = q(δω1, ω2) + (−1)p1q(ω1, δω2) + δq(ω1, ω2) . (2.10)

eq. (2.9) also contains the cohomology pairing [39](
Ǎ1, Ǎ2

)
Y
=
∫
Y
AǍ1∗Ǎ2

, (2.11)

where the product between differential characters is defined by

NǍ1∗Ǎ2
= NǍ1

∪NǍ2
,

FǍ1∗Ǎ2
= FǍ1

∧ FǍ2
,

AǍ1∗Ǎ2
= AǍ1

∪ FǍ2
+ (−1)p1+1FǍ1

∪AǍ2
+ q(FǍ1

, FǍ2
) .

(2.12)

Notice that the definition in eq. (2.9) holds only when the electrically coupled field B̌ is
topologically trivial on X. Although such requirement seems to be rather restrictive, it actually
corresponds to the unique choice available, since whenever B̌ is non-trivial the partition
function vanishes (see [39] for details). Furthermore, the action in eq. (2.9) is composed of
two pieces, one depending on Ǎ defined on X and another, the SPT phase, encoding the
cohomology pairing of the background fields on Y . All in all, the partition function is

ZǍ(Y,L) = e
2πi(−1)d−p

(
Č,B̌

)
Y

∫ [
DǍ

]
e−S[Ǎ,X] , (2.13)

where the boundary conditions L imply that the field B̌ extended to the bulk Y shall be
topologically trivial on the boundary.

The analysis performed so far holds for non-chiral p-form fields but it is not suited
to describe the case of chiral (self-dual) forms. These kinds of fields are ubiquitous in
string theory and supergravity and thus require a proper discussion. In the naïve language
of differential forms, a proper description of the action and consequently of the partition
function seems hard to achieve. Following [39], it is possible to express the action and the
partition function of a chiral bosonic field by localising on the boundary a chiral mode B̌ of
a gapped non-chiral form Ǎ on a (d+ 1)-dimensional bulk Y with ∂Y = X. The presence
of the boundary requires specifying suitable elliptic [52] boundary conditions L, e.g. that
(p+ 1)-forms vanish on the boundary.5 As a result, we can write the action as

S = π

g2

∫
Y
FǍ ∧ ∗FǍ − 2πi

(
QY (Ǎ)−QY (0)

)
− 2πi

(
Ǎ, Č

)
Y
. (2.14)

5Such a condition is motivated by the existence of the free propagator in order to build a well-defined
perturbation theory [52].
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In the latter expression, we have introduced a so-called (inhomogeneous) quadratic refine-
ment [68] of the cohomology pairing, defined via the characteristic equation (see e.g. [40]
for an application in a physical context)

QY (Ǎ1 + Ǎ2)−QY (Ǎ1)−QY (Ǎ2) +QY (0) =
(
Ǎ1, Ǎ2

)
Y
. (2.15)

In eq. (2.14) the quadratic refinement appears subtracted by the piece Q(0), in which the
background field is turned off. One is thus led to define the quantity Q̃(Ǎ) = Q(Ǎ)−Q(0)
satisfying the homogeneous version of the characteristic equation,

Q̃Y (Ǎ1 + Ǎ2)− Q̃Y (Ǎ1)− Q̃Y (Ǎ2) =
(
Ǎ1, Ǎ2

)
Y
. (2.16)

In general, the choice of quadratic refinements is dictated by a general solution of the
characteristic equation, subject to the constraint that whenever Y = ∂Z

Q∂Z(Ǎ) =
∫
Z

{1
2
(
w + FǍ

)2 − 1
8L
}
, (2.17)

where we have introduced an integral lift w of the Wu class defined as the characteristic
element of the cup product pairing [36], corresponding in six dimensions to w = −p1

4 . In
general, these requirements do not admit a unique solution and up to now it is unclear how
to choose the right quadratic refinement systematically. Moreover, in all the cases analysed
in this paper, chiral fields take values also in a lattice of signature (1, nT ), depending on
the number nT of tensor multiplets. Hence, the previous considerations have to be slightly
modified. Specifically, chiral forms arise as boundary modes of Ȟ4(Y )⊗ Λ [76], where Λ is
the SO(1, nT ) lattice determined by the cancellation of local anomalies. In this scenario, the
lattice-valued quadratic refinement on Y = ∂Z reads

QΛ
∂Z(č) =

∫
Z

{
1
2 (a0w + b0Fč)2 −

1
2

nT∑
i=1

(aiw + biFč)2 +
nT − 1

8 L

}
, (2.18)

where a = (a0, {ai}i=1,...,nT ) and b = (b0, {bi}i=1,...,nT ) span the anomaly lattice Λ and č is the
differential character encoding the gauge bundle: its field strength is the invariant polynomial
in the curvature F , while its integer flux is the Chern characteristic class c2. It is worth noting
that eq. (2.18) can be equivalently interpreted as the contribution of one antiself-dual and nT
self-dual fields, as befits the traditional additive view on anomalies for chiral p-form fields.

The action in eq. (2.14) is suited for our purpose since, whenever the gapped field is
topologically trivial and thus can be safely described by differential forms, the equations of
motion lead to the chirality condition, as well as the usual dynamical equations for p-forms,
for the boundary mode B̌, as shown explicitly in [39].

The partition function can be written as

ZǍ(L, Y ) = N0N1N2 e
−2πi

(
Q̃(Č)+ 1

82η(D̃
sig
Y )−Arfw(Y )

)
, (2.19)

where the term N1 e
− 1

82η(D̃
sig
Y ) associated to the differential operator

D̃sig
Y = − ∗Y dY im(m+2) : d†Y Ω

m(Y ) −→ d†Y Ω
m(Y ) (2.20)

– 7 –
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comes from the evaluation of the one-loop determinant with zero modes removed. The
expression also involves the so-called Arf invariant, defined via the Gauss sum [77, 78]
associated to the quadratic refinement Q̃

N2 e
2πiArfw(Y ) =

∑
j∈Jw

e2πiQ̃(ǎj) , (2.21)

where Jw denotes the set of the flat gauge fields whose characteristic classes [Nǎ]Z identify
the differential Wu class in De Rham cohomology [Nǎ]dR = − [w]dR. Moreover, among flat
gauge fields, the topologically trivial ones do not depend on the topological sector identified
by Jw and thus their contribution can be factorised in (2.19) as N0, leaving only a sum over
flat p-forms which are topologically non-trivial and take values in a group isomorphic to
the torsional subgroup of Hp+1(Y,Z) [39, 66, 67].

In the above presentation we have not discussed the physical role of the bulk Y extending
spacetime. In this formulation, the (phase) ambiguities leading to anomalies are reflected by
the arbitrariness of Y . In order for a theory to be consistent, physical quantities including
the partition function cannot depend on the choice of Y . This requirement leads to Dai-Freed
anomalies. In the following, we introduce them in the specific context of 6d supergravity. These
fields play a crucial role analogous to the case of type IIB supergravity in ten dimensions [56].

2.1 Dai-Freed anomalies in 6d supergravity

As we have anticipated in the introduction, in the following we are going to study minimal
supergravity theories in d = 6 dimensions with gauge groups6 SU(n) , SO(2N) , E7 and E8,
and later on U(1) as well. With this setup, the landscape of putative allowable EFTs has
been thoroughly analysed and much progress has been made toward bounding and classifying
it. In particular, ordinary local anomalies already impose severe constraints on the available
theories in which matter hypermultiplets transform in a miscellany of fundamental, adjoint,
symmetric and antisymmetric representations, with degeneracies collectively denoted by
dR for each representation R.

Local anomalies are encoded in a characteristic class of degree 8, the anomaly polynomial
I8 [27–29]. The structure of I8 involves an SO(1, nT )-invariant bilinear form of components Ωab,
as well as classes Xa

4 of degree 4. Writing them in terms of their Chern-Weil representatives,
determined by the curvatures R and F , the anomaly polynomial for anomaly-free theories
takes the factorised form

I8 =
1
2 ΩabXa

4 X
b
4 . (2.22)

The irreducible contribution has to cancel by consistency, while the remaining factorised
contribution can be compensated by the celebrated Green-Schwarz mechanism [79–81], since
at least the gravity multiplet contains a (chiral) 2-form field. In six dimensions the requirement
of factorisation is particularly stringent, since purely gravitational anomalies can arise. As
we shall see, this well-known framework is reproduced by the more general construction of
the “anomaly theory” A(Y ) evaluating it on 7-dimensional backgrounds Y = ∂Z that are
boundaries of 8-dimensional manifolds Z, and then applying the APS theorem.

6When discussing supergravity, we will mostly implicitly work at the level of the gauge Lie algebra. When
computing anomalies, we will choose specific gauge groups.
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Generally speaking, the anomaly theory A(Y ) associated to a given theory T on a
spacetime X = ∂Y is a topological field theory whose invertible phase e2πiA(Y ) has a
gauge variation opposite to that of the partition function of T . According to our preceding
discussion, chiral fermions contribute to the anomaly theory with eta invariants, schematically
Afermions(Y ) = ∑

η(Y ). Since the phase of the partition function is additively encoded in
A(Y ) with ∂Y = X, the phase difference for different bulk extensions Y1 , Y2 is A(Y1 ⊔ Y2).
Thus, the anomaly is encoded by A(Y ) where now Y is a closed manifold of dimension d+ 1.
The APS index theorem then ensures that, for a given theory T ,

AT (∂Z) = IndexT −
∫
Z
IT (2.23)

reproduces the anomaly polynomial in d+ 2 dimensions As explained in [26], global anoma-
lies [32–35] of a theory on a spacetime X are encoded in A(TX) with TX a mapping torus over
X. This describes paths in the space of background gauge fields which may be non-trivial
in homotopy, and thus cannot be expressed in terms of infinitesimal transformations at
the level of the Lie algebra. Requiring that these anomalies also cancel imposes additional
constraints in our setup [82]. Dai-Freed anomalies involve a further step: allowing spacetime
topology change along the path in field space, the special role of mapping tori is lost and
the anomaly need vanish on any closed manifold Y [26].7 This formulation serves as a
stepping stone to derive additional constraints on EFTs. To this end, the cancellation of
local anomalies is crucial not only for consistency but also for pragmatic reasons: because
of the APS index theorem, the anomaly theory only depends on the bordism equivalence
class of the background manifold Y . One can thus restrict to representatives of nontrivial
bordism classes, namely manifolds Y that are not the boundary of a higher-dimensional
manifold Z. Furthermore, since the set of bordism classes is a finitely generated abelian
group (loosely denoted Ωd+1) under the disjoint union, it is sufficient to identify a set of
generators on which to evaluate the anomaly theory.

In theories where the Green-Schwarz mechanism takes place, the relevant notion of
bordism is more subtle: to define a cobordism ∂Z = Y1 ⊔ Y2 between two manifolds Y1 , Y2,
the relevant structures need to extend over Z compatibly with their restrictions to the
appropriate ones on Y1,2. In the case of gauge theories with fermions this structure includes
a principal bundle and a spin structure.8 In the settings at stake there is an additional
ingredient, which is dictated by the Bianchi identities

dHa
3 = Xa

4 = aa

4 p1(R)−
∑
i

bai
λi
c2(Fi) (2.24)

for the (gauge-invariant) field strengths Ha = dBa + ωaCS associated to the 2-forms Ba in
the gravity and tensor multiplets. Here, as summarised in appendix A, in our conventions
1
4p1(R) = −1

2trR2, c2(F ) = 1
2trF 2 are the Chern-Weil expressions for the first Pontryagin

7An earlier reference to this idea was actually given by Witten in the lecture “Anomalies Revisited” held at
Strings 2015. We are not aware of a paper containing an explicit mention of this.

8In certain settings the spin structure can be modified to a pin±, spinc or spinZ4 structure. This is crucial
to find the correct consistency conditions, for instance when reducing M-theory over non-orientable manifolds
where I-fold defects emerge [12] and certain topological symmetries are broken [83, 84].
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class of the tangent bundle and the second Chern class of the (complexified, if need be) gauge
bundle for simply laced groups,9 while the λi are coefficients chosen such that the minimal
instanton number for the corresponding gauge bundle is 1.

The right-hand side of eq. (2.24), which we dub the Bianchi class, is thus trivial in
cohomology. More precisely, it turns out that it is trivial in integral cohomology, which can
include torsional classes undetected by differential forms. This was originally argued in [34],
and (at least for perturbative heterotic strings) it follows from Dai-Freed anomaly cancellation
on the worldsheet [38]. This very stringent trivialisation requirement is tantamount to the
existence of a twisted string structure (or string-G, for a given gauge group G) on spacetime
and on the background Y for the anomaly theory. Turning off any gauge contribution one
reduces to the ordinary string structure, for which the bordism group Ωstring

7 = 0. This
shows that there are no purely gravitational Dai-Freed anomalies in six dimensions when the
Green-Schwarz mechanism cancels the local anomaly. In the presence of gauge fields, twisted
string structures can generate novel anomalies [40] that need to vanish, lest the theory be
in the swampland. If such an anomaly is found it may still be possible to cancel it with
a “topological” version of the Green-Schwarz mechanism [40, 56], but we will not consider
this subtle possibility in this paper. When tensor multiplets are present, there are multiple
Bianchi identities. As we shall discuss later on, it seems that the correct requirement to
impose on allowable anomaly backgrounds is that at least one identity be satisfied (at the level
of integral cohomology). This turns out to eliminate all anomalies in string theory examples,
and it can produce non-trivial bordism groups. Imposing multiple identities simultaneously
generically kills all independent characteristic classes. Nevertheless, when presenting examples
of anomalous theories, we will include backgrounds where all Bianchi classes are trivialised.

As we have discussed, for two given d-dimensional manifolds to be bordant, the existence
of the twisted string structure requires that their disjoint union (with reversed orientation)
be the boundary of a (d+ 1)-dimensional manifold over which the twisted string structure
extends. Therefore, a systematic strategy to proceed would be to evaluate these theories
on a set of generators of the twisted string bordism group Ωstring-G

7 to check whether their
anomalies vanish, and thus if their cancellation provide further constraints on the landscape
of (super)gravity theories. In order to fully exploit these novel anomalies, it is efficient to
first impose all the constraints known up to now, to understand if these anomalies actually
entail new consistency conditions or merely disguise what has already been discovered.

These constraints reflect different properties that a consistent quantum theory coupled
to gravity should have, although they ultimately stem from unitarity. In particular, there are
local anomalies that do not pertain to the bulk EFT, but rather live on the worldvolumes of
defects [11]. The completeness principle [85, 86] is intimately connected with the absence
of (non-invertible) symmetries [87, 88] in gravity [83, 84, 89], and it requires the presence of
unitary defects in the theory. In the settings at stake, these defects are (effective) strings
coupled to the 2-forms entering the Green-Schwarz mechanism. Their presence generates
new anomalies localised on their worldsheets, which have to cancel by inflow from the bulk
theory [11]. Furthermore, unitarity of the worldsheet dynamics imposes nontrivial constraints
on the possible bulk gauge groups, which manifest themselves as current algebras on the

9For the abelian case studied in section 6, the second Chern class should be replaced by −c2
1/2.
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worldsheet. Such requirements have been used to exclude some supergravities for which there
is no UV completion, such as the SU(n)× SU(n) theory with 9 tensor multiplets and two
hypermultiplets in the bifundamental representation with n > 9 [11]. Another example is the
SU(24)× SO(8) theory with 1 tensor multiplet and 3 hypermultiplets in the antisymmetric
representation of SU(24). Furthermore, the factorisation of the anomaly polynomial I8,
required for the Green-Schwarz mechanism to take place, should not only cancel the anomaly
of the microscopic theory living on the defect, but it should also be such that the “anomaly
lattice”10 be embedded into the self-dual lattice spanned by the charges coupling the defects
to the 2-forms [90]. As emphasised in [90], this translates to a consistent Dirac quantization
for higher p-form gauge theories, thus taking into account global properties of the manifold.
A more precise way of describing the situation is saying that gauge fields, described naïvely as
differential forms, should rather be lifted to elements of a (possibly generalised) cohomology
theory, such as integer cohomology, differential cohomology or K-theory. This means that a
well-defined (twisted) string structure should be defined by 3-forms understood as elements
of generalised cohomology, in order to encode global properties. Such conditions form the
backbone on which our analysis is based and thus should always be imposed before proceeding.
In practice this means that, in order for the lift to exist, the Bianchi identities at the level of
differential forms should make sense at least as elements of integer cohomology. It is not a
priori obvious that this condition can be satisfied, since the first Pontryagin class appears
with a 1

4 in front and integral classes can have torsion. However, as explained in [39], the
image in integer cohomology of 1

4p1 in 7d is the (integral lift of the) Wu class wZ ∈ H4(Y,Z),
a well-defined integral cohomology class.

In this paper, we are mostly going to focus on supergravities with one tensor multiplet,
since they are closely connected to perturbative heterotic constructions which are well-
understood. With a single tensor multiplet, there exist only two possible self-dual lattices:

1. The “off-diagonal” lattice, in which the bilinear form in a suitable basis is given by

Ω =
(
0 1
1 0

)
, (2.25)

thus dictating a factorisation of the anomaly polynomial of the type

I8 =
1
4
(
2trR2 + b(1)

λ trF 2
) (

2trR2 + b(2)

λ trF 2
)

=
(
1
2p1 −

b(1)

λ c2
) (

1
2p1 −

b(2)

λ c2
)
.

(2.26)

2. The “diagonal” lattice, in which the bilinear form in a suitable basis is given by

Ω =
(
1 0
0 −1

)
, (2.27)

which gives a factorisation of the anomaly polynomial of the type

I8 =
1
8

{(
3trR2 + b(1)

λ trF 2
)2

−
(
trR2 + b(2)

λ trF 2
)2}

= 1
2

{(
3
4p1 −

b(1)

λ c2
)2

−
(
1
4p1 −

b(2)

λ c2
)2}

.

(2.28)

10In [15] it has been shown that cancellation of local anomalies and global anomalies on mapping tori with
fixed topology, discussed in [34], implies that the coefficients a, bi span a lattice, dubbed the “anomaly lattice”.
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Although one can derive the above expressions following the same steps for both cases,
there are very different considerations to be made. Indeed, the difference can be traced
back to the fact that the 2-forms in the gravity and tensor multiplets are chiral in six
dimensions, and thus contribe directly to the total anomaly. However, as explained in the
preceding section, there is no consistent action at the level of differential forms for these
chiral fields, unless one can interpret them as boundary modes of non-chiral fields living in
one dimension higher using a quadratic refinement Q. When gauge fields are non-chiral, such
terms simply reproduce the well-known action of form fields in seven dimensions, but it is
crucial to allow for a generalisation to the case of self-dual or antiself-dual gauge fields [39].
Adopting this view, the anomaly contribution from (anti)self-dual forms is given by the
quadratic refinement of the Chern-Simons character c2(F ) included into the Green-Schwarz
term

∫
Y ΩabHa ∧ Xb

4, and reads

A
(
Y
)
=

∑
ψ chiral

ηψ
(
Y
)
+Q+(b(1) č)−Q−(b(2) č) . (2.29)

The latter two terms, Q+ and Q−, arise from the tensor and gravity multiplets with opposite
chiralities. In particular, on Lens spaces these terms evaluate to appropriate fractional
values,11 and thus they may cancel rational anomalies in a discrete version of the Green-
Schwarz mechanism [39, 40]. The differential Chern-Simons character č encodes the gauge
bundle: its associated field strength is the Chern-Weil representation of the second Chern
class, while its integer flux is given by the characteristic class.

Determining the quadratic refinement can be cumbersome. A starting point is that
whenever the manifold Y can be extended to a higher-dimensional space Z the quadratic
refinement should reproduce both the Green-Schwarz and the gravitational irreducible contri-
butions. Therefore, for null-bordant Y the quadratic refinement is uniquely fixed, as shown
in [39] for Spin-bordism. In the settings at stake we do not know if the twisted string bordism
group vanishes, nor if the relevant backgrounds actually lie in the trivial class, so that a priori
QY could be different. Nevertheless, we can exploit the fact that in the purely gravitational
case Ωstring

7 = 0 to constrain QY (0). Applying the APS index theorem to eq. (2.18), this
gravitational contribution can be cast in the form12

QY (0) =
∫
Z

(
1
2

(
a

4p1
)2

− 1
8L
)

= − 7(35a2 − 3)
8 ηD(Y ) + (a2 − 1)

8 ηgrav(Y ) , (2.30)

where a is the relevant coefficient in the Bianchi classes in eq. (2.24). Then one can use
the formulae in appendix B to evaluate this expression on Lens spaces. Let us anticipate
that, for models with nT > 0 tensor multiplets, a general bottom-up analysis of quadratic
refinements is prohibitive. We managed to complete it in the simple setting of SU(2) models,
but in general one would need some restriction on the possible quadratic refinements. We
will expand upon this point in section 3.1 and section 3.2.1. Nevertheless, we provide a
systematic analysis of these models for simply laced groups, and study the anomaly for the

11This is ultimately related to the fact that integral cohomology classes are purely torsional for Lens spaces.
These can be thought of as flat gauge fields with fractional fluxes.

12Strictly speaking, since the Bianchi class is either p1
4 or 3

4 p1, it is not obvious that the expression of Q(0)
is unique as in the case of the standard string structure trivialising p1

2 .
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particular quadratic refinement defined in [39], leaving a more complete classification of
anomalies for future work. For models with nT = 0 the analysis is simpler, and we carry
it out in section 6.2 and section 8.

It is not always possible to consistently implement a quadratic refinement: such terms
can be added whenever the chiral gauge fields can be lifted to elements in integer cohomology,
which requires that the coefficients in I8 in diagonal form be integers. For the off-diagonal
family in item 1, diagonalisation often produces irrational coefficients, and thus no quadratic
refinement is possible in those cases. On the other hand, in this case the two chiral forms can
be thought of as the two chiral components of a non-chiral form B, whose Bianchi identity
singles out a Green-Schwarz coupling B ∧ X4. Therefore, along the lines of [38], in this
case the anomaly theory is simply given by

A
(
Y
)
=

∑
ψ chiral

ηψ
(
Y
)
−
∫
Y
H ∧X4 (2.31)

in accord with eq. (2.13). Such expression can be also obtained from a different but equivalent
consideration: the dependence on the extended manifold Y of the partition function in
eq. (2.13) is contained in the cohomology pairing of the background fields

(
B̌, Č

)
Y

defined in
eq. (2.11). In the present case the background fields corresponding to B̌ and Č are given by
combinations of the Chern-Simons and the Wu characters identified by the Bianchi identi-
ties. However, requiring the twisted string structure to hold means that the corresponding
combination of characters is trivial in integer cohomology and thus the pairing reduces to
the one included in eq. (2.31). As mentioned before, the consistency of the EFT implies
the cancellation of all the anomalies on every available background dictated by the twisted
string structure (2.24). Unfortunately, twisted string structures are particularly unwieldy,
and there is no known result on a full classification. Nevertheless, we can try to approach
the problem from another perspective, checking some backgrounds that are under control
where the anomaly can be computed. For us these are Lens spaces, schematically building
blocks for spaces with torsional (co)cycles. For our purposes, the construction of these spaces,
as well as evaluation of eta invariants, is detailed in [55]. In the following we will consider
supergravity theories with gauge groups SU(n) (with particular emphasis on the SU(2) case),
Spin(N), E7 , E8 and later on U(1), evaluating their anomaly theories on Lens spaces L7

p.
For these theories, the fermion anomaly is given by

Afermions =
∑

hypers
ηhyper + ηT − ηadj − ηgravitino , (2.32)

where ηT is the eta invariant of a Dirac fermion in the trivial representation T , which
arises from the tensor multiplet. No confusion should arise with the notation, since we fix
nT = 1 tensor multiplets for the ensuing analysis except for section 6.2 and section 8. The
eta invariant for the gravitino is ηgravitino = ηRS − 2 ηD in terms of the eta invariants of a
Rarita-Schwinger and Dirac field on the bulk Y . On Lens spaces,

ηgravitino(L2k−1
p ) = k

(
η1(L2k−1

p ) + η−1(L2k−1
p )

)
− 3 η0(L2k−1

p ) , (2.33)

where ηq denotes the eta invariant of a fermion of charge q under the Zp action on L2k−1
p ,

and is given by [55, 56]

ηq(L2k−1
p ) = − 1

(2i)k p

p−1∑
l=1

e2πiq l/p

sink(πl/p)
. (2.34)
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In appendix B we provide explicit expressions for the eta invariant of the Dirac and the
Rarita-Schwinger operators, relevant for our discussion. Turning off the gauge bundle probes
the gravitational Dai-Freed anomaly, which simplifies eq. (2.32) to

Agrav
fermions = (nH − nV + 1) ηT − ηgravitino

= 245 ηT − ηgravitino

Lens= 248 η0 − 4 (η1 + η−1)

= − p4 + 11p2 − 12
3p .

(2.35)

For anomaly lattices embedded in the diagonal lattice, the full gravitational anomaly on
Lens spaces then evaluates to

A(L7
p) = − p4 + 11p2 − 12

3p +Q+(0)−Q−(0) = 0 (2.36)

on account of eqs. (2.35) and (2.30). In particular, the anomaly vanishes for the unique Lens
space which can trivialise a Bianchi class, namely L7

3.
For anomaly lattices embedded in the off-diagonal lattice there is no quadratic refinement

in general, but the only allowed backgrounds are ordinary string manifolds with p1
2 = 0.

For Lens space this requires p = 2, for which L7
2 = RP 7 is the real projective 7-space. The

resulting gravitational anomaly

A(RP 7) = −8 ≡1 0 (2.37)

also vanishes, consistently with the fact that it is a bordism invariant of Ωstring
7 = 0. Therefore,

in the following analysis of nT = 1 models, we will not consider trivial gauge bundles.

3 Dai-Freed anomalies for unitary groups

In this section we begin our analysis of supergravity EFTs with special unitary gauge groups
SU(n). The resulting consistency conditions also apply (with some caveats discussed below)
when the full gauge group G = SU(n)×H contains an SU(n) factor, but they are a priori
weaker than what one would find including the contributions to the anomaly pertaining to
the remaining gauge group H . This simple consideration applies to the rest of the analysis in
this paper. To warm up, let us first consider SU(2), since it behaves slightly differently and
it allows a simple comparison with a class of F-theory and heterotic string constructions.

3.1 Warm-up with SU(2)

Let us begin considering supergravity theories in 6d with SU(2) gauge group and one tensor
multiplet. For simplicity, we only consider hypermultiplets in the trivial (T ) and fundamental
(F ) representations.13 In this setup, the landscape of models is already highly constrained by
local anomalies. Indeed, the cancellation of the irreducible purely gravitational piece of the
anomaly polynomial implies that the number of trivial and fundamental hypermultiplets satisfy

dT + 2dF = 247 . (3.1)
13In the following the multiplicities of the various representations R will be denoted dR.
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A comment is however in order. Here we are looking at constraints for would-be UV complete
theories with gauge group SU(2). If SU(2) is embedded into a larger gauge group, the
condition in (3.1) implicitly takes into account the contribution from the vector multiplets
whose gauge fields are turned off, and thus contribute as “hypermultiplets of wrong chirality”.
Allowing dT < 0 yields a much larger family to consider, and the control over these theories
is lost. For the purpose of uncovering new constraints to exclude EFTs, as well as for testing
particular (top-down) examples, this consideration is not relevant. Therefore, taking into
account the cancellation of the irreducible gravitational anomaly the polynomial takes the form

I8 =
(
trR2

)2
− 1

24trR2 trF 2 (dF − 4) + 1
48
(
trF 2

)2
(dF − 16) , (3.2)

where we used the decomposition tr F 4 = 1
2
(
tr F 2)2 valid for SU(2). From eq. (3.2) we can

proceed computing the possible embeddings in the two available self-dual lattices:

3.1.1 Diagonal lattice

For the diagonal lattice the number of fundamentals allowing an integral factorisation of
the anomaly polynomial has to be of the form

dF = 10 + 12s . (3.3)

Indeed, for such values it is easy to see that the polynomial factorises according to

I8 =
1
8

{(
3trR2 − strF 2

)2
−
(
trR2 + (1− s)trF 2

)2}
. (3.4)

A complete study of Dai-Freed anomalies of such theories would require to know the
proper SU(2)-twisted string bordism group, where the twisted string structure is spelled
out by the Bianchi identities

dH1 = 3
4p1 + s c2 ,

dH2 = 1
4p1 + (s− 1)c2 .

(3.5)

As described above, the task is considerably simplified by restricting to Lens spaces L7
p. We

do not know if these exhaust all the nontrivial bordism representatives, but they provide
particularly simple families of candidate backgrounds to work with. The complete expression
for the anomaly theory in eq. (2.29) involves the knowledge of the quadratic refinement on
the allowed Lens spaces. The latter, thus, has to satisfy the characteristic equation (2.15),
given the cohomology pairing (

Ǎ, B̌
)
L7

p
= − ab

p
, (3.6)

where
[
NǍ

]
= ay and

[
NB̌

]
= by, with y a generator of the integral cohomology group.

Computing the anomaly we can conveniently work with Q̃(Ǎ) = Q(Ǎ)−Q(0), which
a priori is a general solution of eq. (2.16). It can be parametrised by an integer m =
0, . . . , 2p − 1 as [39]

Q̃(Ǎ) = − a(a+m)
2p . (3.7)
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In top-down examples, the choice of the quadratic refinement may not be arbitrary. For
instance, in [40] it has been argued that F-theory selects a single possibility for Z3 gauge
groups, although a general rule to determine Q̃ is not known.

We build SU(2) bundles on L7
p backgrounds by including the defining line bundle of

Zp into SU(2) according to the rules detailed in appendix B. For SU(2), there are only two
possibilities, encoded by a parameter k = 0 , 1. For k = 0 the gauge bundle is trivial and
one probes the purely gravitational anomaly, which vanishes on account of eq. (2.36). For
k = 1, charged fermions decompose into representations with different Zp charges, for which
the eta invariants ηq are easily calculated. The anomaly for k = 1 is thus given by

A
(
L7
p

)
= dF (η1 + η−1)− (η2 + η−2 + η0) + (dT + 1)η0 − ηgravitino +Q+ −Q−

= dF η̃1 − η̃2 + 244η0 − 4η̃1 +Q+ −Q−

= 1
12p

(
dF (p2 − 1)− 4(p− 2)(p− 1)− (p2 − 1)(4p2 + 48)

)
+Q+ −Q−

≡1
dF (p2 − 1)− 4p4 + 40

12p +Q+ −Q− ,

(3.8)

where ≡1 denotes equivalence modulo 1 and we have used the useful shorthand notation

η̃q = ηq + η−q − 2η0 . (3.9)

In particular, we need the values

η̃1 =
p2 − 1
12p , η̃2 =

(p− 1)(p− 2)
3p , η0 = −(p2 − 1)(p2 + 11)

720p . (3.10)

We now need to find Lens spaces which satisfy the twisted string structure. From the Bianchi
identities in eq. (3.5), using the facts (reviewed in appendix B) that p1 = y generates the
fourth integral cohomology H4(L7

p , Z) = Zp and c2 = −k y, the first Bianchi class is (3−k s)y,
while the second is (1− k(s− 1))y. For k = 1 the Bianchi classes are (3− s)y and (2− s)y.
The gravitational contribution to the quadratic refinement is the opposite of the gravitational
anomaly in eq. (2.35), while the remainder is given by eq. (3.7) according to

Q̃±(b± č) = − b±(b± +m±)
2p . (3.11)

One can show that for any Lens space trivialising either Bianchi class the anomaly vanishes
with an appropriate choice of m±. This is crucial, since the F-theory landscape includes
models in this family.14

3.1.2 Off-diagonal lattice

Embedding in the off-diagonal lattice requires that the number of fundamental hypermultiplets
be of the form

dF = 4 + 12s. (3.12)
14We thank P. Oehlmann for correspondence on this point.
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For these values the anomaly polynomial indeed factorises according to

I8 =
1
4
(
2trR2 − trF 2

) (
2trR2 + (1− s)trF 2

)
. (3.13)

The condition in eq. (3.12) ensures the Seiberg-Taylor conditions are satisfied.
With respect to the diagonal case the SU(2)-twisted string structure is different, since

the Bianchi identities now read

dH1 = 1
2p1 + c2 ,

dH2 = 1
2p1 + (s− 1)c2 .

(3.14)

The anomaly theory now takes the form of eq. (2.31), and for Lens spaces we can set the
Green-Schwarz term to zero since there are no non-trivial cocycles of degree 3. Alternatively,
H = 0 is consistent with a trivialised twisted string structure.

The family with dF = 16 + 24s, namely theories with odd s in eq. (3.12), also affords an
embedding in the diagonal lattice, since the anomaly polynomial can be recast as

I8 =
1
8

{(
3trR2 − (1 + s)trF 2

)2
−
(
trR2 + (s− 1)trF 2

)2}
. (3.15)

The corresponding Bianchi identities are

dH1 = 3
4p1 + (1 + s)c2 ,

dH2 = 1
4p1 − (s− 1)c2 .

(3.16)

The computation of the anomaly is the same as in eq. (3.8), so that

A
(
L7
p

)
≡1

dF (p2 − 1)− 4p4 + 40
12p . (3.17)

The Bianchi classes are now encoded in eq. (3.14), and evaluate to (2−k)y and (2−k(s−
1))y. For k = 1, the only Bianchi class that can be trivialised on a Lens space is (3 − s)y.
Thus, setting s = 3 + mp for some integer m the Lens background has the appropriate
twisted string structure, and one finds

A(L7
p) ≡1 −

(p− 1) p (p+ 1)
3 , (3.18)

which also vanishes because the numerator is always divisible by three.
All in all, we have found that for SU(2) there are no Dai-Freed anomalies when the

twisted string structure is satisfied. It would thus seem useless to seek examples in the string
landscape, since there can be no anomalies regardless of the UV completion. However, when
restricting to the perturbative heterotic landscape a pattern seems to emerge: at least certain
types of free fermion constructions appear to single out settings in which dF is divisible by
eight. In F-theory other values arise,15 but we have no intuitive explanation for the pattern
that we observe in the specific perturbative vacua that we discuss in the following.

15We thank M. Dierigl, M. Kang and P. Oehlmann for discussions on this point.
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3.1.3 Comparison with the string landscape

To compare the above discussion to the landscape of perturbative heterotic strings, we seek
constructions where the gauge group admits the general decomposition

SU(2)×G (3.19)

and the matter hypermultiplets only comprise trivial and fundamental representations to
match the analysis in the preceding section. To begin with, the constructions in [91, 92]
feature numerous suitable models. It turns out that for the models that we analysed
dF ∈ {46 , 88 , 136 , 154 , 184 , 280}, which are indeed divisible by eight for off-diagonal
embeddings, i.e. whenever the model falls under the case of eq. (3.12). This is suggestive,
since the anomaly theory for k = 1 on L7

2 = RP 7 evaluates to

A(RP 7) ≡1
dF
8 . (3.20)

As we have discussed, this background does not always have the appropriate twisted string
structure, although it is of course a string manifold. Thus, somehow, it appears that this
family of vacua selects models where the twisted string structure exists on this background and
the anomaly vanishes (as shown above), rather than models where the twisted string structure
forbids this background altogether. It is unclear to us whether the heterotic worldsheet may
secretly allow this background in particular, since the argument in [38] shows that the twisted
string structure ought to hold at the integral level in spacetime. We do not understand
whether in this particular case a 7d bulk of this type is actually allowed or this pattern is
just a coincidence of this specific corner of the landscape.

We now carry out a systematic analysis for worldsheet constructions of the free-fermion
type. Namely, we consider worldsheet models where the internal sector of the superconformal
field theory is described by level-one chiral affine algebras of the form

ŝu(2)1 ⊕ ĝ = ŝu(2)1 ⊕
⊕
n

dn ŝo(2n)1 (3.21)

with some multiplicities dn ≥ 0 such that the total central charge be critical. Our strategy is
the following: we will write down the most general SU(2)-refined elliptic genus that can arise
from such worldsheet constructions, and then compare it to the one arising from modular
invariant torus partition functions of six-dimensional supersymmetric models. Automating
this procedure yields a scan of potentially allowed worldsheet models, where the number of
fundamental hypermultiplets can be extracted. The refined partition function and elliptic
genus contain the refined affine SU(2) characters

χ
(1)
0 (z; τ) = Θ(1)

0 (z; τ)
η(τ) ∼z=0

1
q

1
24

+ 3q
23
24

χ
(1)
1 (z; τ) = Θ(1)

1 (z; τ)
η(τ) ∼z=0 2q

5
24

(3.22)

where η is the Dedekind eta function (there will be no ambiguity with eta invariants in
this section) and

Θ(k)
m (z; τ) =

∑
n∈Z

qk(n+
m
2k )e2πikz(n+

m
2k ) , q = e2πiτ . (3.23)
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The chemical potential z, or more precisely its associated fugacity ξ, counts SU(2) charges
in the Cartan subalgebra generated by J3. We shall schematically denote all the (affine)
characters pertaining to the gauge factor G with the symbols O, A0 and A1. In principle
these factors could be completely general, but in order to perform our analysis we will consider
the specific cases arising from orthogonal chiral affine algebras. These characters multiply
different spacetime contributions in the partition function. In particular, O is the identity of
the chiral algebra, and thus should admit a q-expansion whose first two terms are

O ∼ 1
q

19
24

+ dim(G) q
5

24 , (3.24)

whereas A0 and A1 multiply the refined SU(2) characters χ(1)
0 and χ

(1)
1 respectively. Thus,

their q-expansion encodes the number dF of SU(2) fundamental hypermultiplets, according to

A0 ∼ (H − 2 dF ) q
5

24 ,

A1 ∼ dF
1
q

1
24
.

(3.25)

The spacetime N = (1, 0) superconformal algebra fixes the contribution Z0 to the partition
function of a heterotic string arising from massless degrees of freedom, which for a level-k
SU(2) affine algebra takes the form16

Z0 =
1

η4η4

[(
q−

1
4 V4 − 2S4

)
O χ

(k)
0 +

(
2 q 1

4 O4 − C4
) (

2A1 χ
(k)
1 + 2A0 χ

(k)
0

)]
, (3.26)

where we explicitly implemented the assumption that the only charged hypermultiplets under
SU(2) be fundamentals. The corresponding refined elliptic genus17

Zell =
2
η4

(
O χ

(k)
0 (z)−A1 χ

(k)
1 (z)−A0 χ

(k)
0 (z)

)
≡ 2 Φ10,k(z)

∆
(3.27)

is a weak Jacobi form of weight 10 and index m = k [93] determined by the level of the
ŝu(2)k affine algebra realised on the internal worldsheet conformal field theory. In the above
expression and in the following ∆ = η24 denotes the modular discriminant.

The ring of weak Jacobi forms and a convenient set of generators is described in detail
in [93]. Over the ring of modular forms MF = Q[E4, E6,∆]/(E3

4 − E2
6 − 1728∆) generated

by the holomorphic Eisenstein series E4 and E6, where we allow rational coefficients, weak
Jacobi forms are generated by

φ0,1(τ, z) ≡ 4
(
θ22(τ, z)
θ22(τ, 0)

+ θ23(τ, z)
θ23(τ, 0)

+ θ24(τ, z)
θ24(τ, 0)

)
,

φ−2,1(τ, z) ≡ − θ21(τ, z)
η6(τ) ,

(3.28)

16The factors of 2 in the hypermultiplets count the degeneracies of half-hypermultiplets. In the spacetime
characters we retain only the contributions from massless states that make (transverse) isometries manifest.
The remaining terms, necessary for modular invariance, comprise the massive contributions to the full
partition function.

17We suppress q-dependence. When z = 0 we also do not write it as an argument.
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where the suffix contains the weight and index. For our purposes, the appropriate ansatz
for Φ10,k reads

Φ10,k =
1
12k E4E6 φ

k
0,1 +

a4
12k−1 E

3
4 φ−2,1 φ

k−1
0,1 + a6

12k−1 E
2
6 φ−2,1 φ

k−1
0,1 + . . . (3.29)

where the extra terms contribute to O(z4) upon expanding in the SU(2) chemical potential
z. Expanding

χ
(k)
ℓ (z) = χ

(k)
ℓ + χ̃k,ℓ z

2 + . . . (3.30)

and comparing the ansatz to eq. (3.27) one finds, to order O(z2),

∆
η4

[
O χ

(k)
0 −A1 χ

(k)
1 −A0 χ

(k)
0

]
= E4E6 ,

∆
η4

[OE2, χ̃k,0 −A1E2 χ̃k,1 −A0E2 χ̃k,0] = − k

12 E2E4E6 − a4E
3
4 − a6E

2
6 .

(3.31)

Therefore, one reconstructs the characters A0 and A1, finding

A0
η4

= O
η4

+

(
k
12 E2E4E6 + a4E

3
4 + a6E

2
6

)
χ
(k)
1 + E4E6 χ̃k,1

(χ(k)
1 χ̃k,0 − χ

(k)
0 χ̃k,1)∆

,

A1
η4

= −

(
k
12 E2E4E6 + a4E

3
4 + a6E

2
6

)
χ
(k)
0 + E4E6 χ̃k,0

(χ(k)
1 χ̃k,0 − χ

(k)
0 χ̃k,1)∆

.

(3.32)

Specialising to the case of interest k = 1, we further obtain18

A0 χ
(1)
0

η4
= O χ

(1)
0

η4
+
(
− 5

6 + 2 a4 + 2 a6
) 1
q
+
(568

3 + 1504 a4 − 1952 a6
)
+ . . .

A1 χ
(1)
1

η4
=
(
− 1

6 − 2 a4 − 2 a6
) 1
q
+
(152

3 − 1504 a4 + 1952 a6
)
+ . . .

(3.33)

On the other hand, by counting chiral degrees of freedom in supergravity, it should be
the case that

O χ
(1)
0

η4
= 1
q
+ 7 + dim(G) + . . . ,

A0 χ
(1)
0

η4
= H − 2dF + . . . ,

A1 χ
(1)
1

η4
= 2dF + . . . ,

(3.34)

where 7 = 4 + 3 counts gravitini and the adjoint representation of SU(2). Solving these
constraints and using that H = 247+dim(G) by anomaly cancellation, one fixes the unknown
coefficient a6 to

a6 =
47
61 a4 +

3 dF − 76
2928 . (3.35)

18For k = 1 the ansatz in eq. (3.29) is complete, without extra terms.
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The remaining q−1 terms are proportional to 56 + Nf + 1728 a4, which has to vanish on
account of eq. (3.34). Therefore, the last unknown coefficient a4 is fixed to

a4 = − 56 + dF
1728 . (3.36)

Substituting these values, one finds the full refined elliptic genus

Zell = 2 E4E6
∆

φ0,1
12 − 2 dF + 56

1728
E3

4
∆ φ−2,1 + 2 dF − 88

1728
E2

6
∆ φ−2,1

= 2
q
+ 2

(
− 242 + 2dF − dF ξ

±1 + ξ±2
)
+ . . .

= 2
q
− 480 + (2dF − 8) z2 +

(8
3 − dF

6

)
z4 + dF − 64

180 z6 + . . .

(3.37)

where ξ±n ≡ ξn + ξ−n counts the Cartan SU(2) charge.
With these preparations, we have automated a scan over chiral algebras of the form of

eq. (3.21), writing all possible partition functions with critical central charges and imposing
modular invariance. The resulting refined elliptic genera turn out to always yield dF ≡8 0,
which is consistent with anomaly cancellation. This is a nontrivial consistency check, since
a priori eq. (3.37) could contain any value of dF without imposing modular invariance at
the level of the full partition function. It would be interesting to extend this scan to more
general worldsheet constructions, in order to see whether modular invariance and criticality
are powerful enough to exclude Dai-Freed anomalies (which are a priori a non-perturbative
quantum gravity effect) by themselves.

3.2 The general case

Having established the general methodology, we can proceed to study Dai-Freed anomalies
on Lens spaces for a general SU(n) gauge group. For n > 2 there can be irreducible local
gauge anomalies in addition to purely gravitational ones. Allowing hypermultiplets in trivial,
fundamental, symmetric and antisymmetric representations one finds the condition

dT + dF n+ dA
n2 − n

2 + dS
n2 + n

2 = 243 + n2, (3.38)

from the cancellation of trR4, and

dF + dA (n− 8) + dS (n+ 8) = 2n, (3.39)

from the cancellation of trF 4. Solving for dA and dS , the resulting anomaly polynomial
is given by

I8 =
(
trR2

)2
− 1

4trR2 trF 2 (dA − dS) +
1
8
(
trF 2

)2
(dA + dS − 2) . (3.40)

Once again, we impose the conditions in [90] for the diagonal and off-diagonal lattice
embeddings of the anomaly lattice.
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3.2.1 Diagonal lattice

In order to have a consistent embedding into the diagonal lattice, one can express the
multipliticies in terms of two integers r , s according to

dS = 1 − s

2 − s2

2 − 3 r s − 4r2 ,

dA = 1 + s

2 − s2

2 − 3 r s − 4r2 ,

dF = s2n + 2nr (4r + 3s) + 8s ,

dT = 243 − n

2
[
s (15 + ns) + 6snr + 8nr2

]
,

(3.41)

with the implicit restriction that the multiplicities be non-negative. For this family of models,
the anomaly polynomial factorises as

I8 =
1
8

{(
3trR2 + rtrF 2

)2
−
(
trR2 + (s+ 3r)trF 2

)2}
. (3.42)

From this expression one can read off the corresponding Bianchi identities,

dH1 = 3
4p1 − rc2 ,

dH2 = 1
4p1 − (s+ 3r)c2 .

(3.43)

Studying this family in full generality is quite cumbersome, since one can trivialise Bianchi
classes in various ways and, similarly, quadratic refinements can cancel anomalies in various
ways. The story would be considerably more interesting if we could understand which
quadratic refinements, if any, are singled out by string theory. Hints of this phenomenon
were laid out in [40], but at present a complete understanding is hindered by the difficulties
in treating global aspects with a top-down approach.

Because of this, we complement this analysis of allowable SU(n) families for diagonal
lattice embeddings with a computation of anomalies for the specific quadratic refinements
defined in [39], but we leave a comprehensive analysis of all quadratic refinements for future
work. Models with zero tensor multiplets are simpler, and we discuss them in section 6.2
and section 8. In particular, in section 8 we show that the Gepner orientifold without
tensor multiplets is anomaly-free for a unique choice of quadratic refinement defined in [39],
compatibly with the considerations in [40].

For Lens spaces, the quadratic refinement defined in [39] evaluates to

Q̃(Ǎ) = −12 (η1 − η0) , (3.44)

thus giving rise in general to

Q̃(bǍ) = b Q̃(Ǎ) + b(b− 1)
2

(
Ǎ, Ǎ

)
= −b p

2 − 1
2p − b(b− 1)

2p ,

(3.45)

where the differential character Ǎ generates the integer cohomology group of the Lens space.
Since the anomaly theory is now fully specified, one can seek anomalous models within the
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family parametrised by eq. (3.41). As an example, the model with r = −8 and s = 20,
corresponding to

dF = 160− 48n , dS = 15 , dA = 35 (3.46)

is anomalous. Indeed, the Bianchi classes are −5y and −3y, with y a generator of degree-four
cohomology, and the anomaly on L7

5 evaluates to 1
5 . Hence, the SU(3) model with sixteen

fundamental, fifteen symmetric and thirty-five antisymmetric hypermultiplets is anomalous.
As another example, the SU(3) model with r = −7 and s = 16 has both Bianchi classes
equal to −4y, and the anomaly on L7

4 evaluates to 1
2 .

3.2.2 Off-diagonal lattice

Similarly to the preceding case, in order to have a consistent embedding into the off-diagonal
lattice, one can express the multipliticies in terms of two integers r , s according to

dS = 1 − s − rs − r2 ,

dA = 1 + s − rs − r2 ,

dF = 2nr (nr + s) + 16s ,
dT = 243 − nr (nr + ns) + 15ns ,

(3.47)

once again with the implicit restriction that the multiplicities be non-negative. The resulting
anomaly polynomial factorises as

I8 =
1
4
(
2trR2 + rtrF 2

) (
2trR2 − (r + s)trF 2

)
. (3.48)

As a result, the Bianchi identity encoding the twisted string structure are

dH1 = 1
2p1 − rc2 ,

dH2 = 1
2p1 + (r + s)c2 .

(3.49)

For SU(n), the bundles described in appendix B allow 2k ≤ n, with second Chern class
c2 = − ky where y is a generator of degree-four cohomology as before. Thus, the Bianchi
classes on Lens backgrounds evaluate to (2 + kr)y and (2 − kr − ks)y. One can trivialise
either Bianchi class choosing ks = 2− kr −mp (for the first class) or kr = mp− 2 (for the
second class) for some integer m. The resulting anomaly simplifies to

A(L7
p) =

(1− p)(p2 + p+ 6 + 3kr + 3m(p+ kr + 2))
3

≡1 −
(p− 1) p (p+ 1)

3 ≡1 0
(3.50)

in the former case, and

A(L7
p) =

(1− p)(p2 + p+ 12− 3m2p− 3m(ks− 4)− 3ks)
3

≡1 −
(p− 1) p (p+ 1)

3 ≡1 0
(3.51)

in the latter case. Thus the anomaly vanishes whenever the twisted string structure exists.
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All in all, for SU(n) no novel constraints emerged for the off-diagonal models, which is a
non-trivial result in its own right. Diagonal families may some anomalies where, perhaps,
no choice of quadratic refinements can cancel them, but at least for particular choices such
as the one of [39] there are anomalous examples.

4 Dai-Freed anomalies for Spin groups

We now move on to Spin groups, in particular the Dn series Spin(2n). We include once again
trivial, vector, symmetric and antisymmetric (adjoint) representations. The conditions to
cancel irreducible gravitational and gauge anomalies now read

dT + 2ndF + n(2n− 1)(dAd − 1) + n(2n+ 1)dS = 244 (4.1)

for gravitational anomalies, and

dF + (2n− 8)(dAd − 1) + (2n+ 8)dS = 0 , (4.2)

for gauge anomalies. Here we denote the antisymmetric multiplicity with dAd, since it
corresponds to the adjoint representation in this case. The complete anomaly polynomial
is then given by

I8 =
(
trR2

)2
− 1

4trR2 trF 2 (dAd − 1− dS) +
1
8
(
trF 2

)2
(dAd − 1 + dS) . (4.3)

As before, we now seek families of models whose anomaly lattice admit consistent embeddings
into a self-dual lattice following [90]. Once again, the multiplicities of each family can be
expressed in terms of two integers r , s with the implicit restriction that the multiplicities
be non-negative.

4.1 Diagonal lattice

For the diagonal lattice, there is a single family, which is described by

dF = r(8 + 2rn) + 6rns+ 4ns2 ,

dAd = 1 + r − r2 − 3rs− 2s2
2 ,

dS = −r − r2 − 3rs− 2s2
2 ,

dT = 244− 2n(2r2n+ 4ns2 + 3r(5 + 2ns))
2 .

. (4.4)

As a result, the anomaly polynomial simplifies to the factorised form

I8 =
1
8

{(
3trR2 + s

2trF 2
)2

−
(

trR2 + 3s+ 2r
2 trF 2

)2
}
, (4.5)

from which one can read off the corresponding Bianchi identities

dH1 = 3
4p1 −

s

2c2 ,

dH2 = 1
4p1 −

2r+3s
2 c2 .

(4.6)
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As discussed in the preceding section on unitary groups, we postpone a detailed analysis
of the anomalies for this kind of models, due to the difficulties in handling two potentially
different quadratic refinements. As an example, the Spin(4) model with r = 8 and s = −6,
corresponding to

dF = 32 , dAd = 9 , dS = 0 , (4.7)

has Bianchi classes equal to ±3y, with y a generator of degree-four cohomology. The fermionic
anomaly on L7

3 evaluates to 1
3 , and thus admits a combination of quadratic refinements that

allows to cancel such contribution. Therefore, as for the unitary case, the choice of quadratic
refinement plays a crucial role, and indeed, if we use for example the definition of [39] for
eq. (3.45) the model is anomalous.

4.2 Off-diagonal lattice

For the off-diagonal lattice, two families are found. The first one is parametrised according to

dF = 4(ns2 + r(4 + ns)) ,
dAd = (1− s)(1 + r + s) ,
dS = −s2 − r(1 + s) ,
dT = 244− 30nr − 4n2s(r + s) ,

(4.8)

which yields the factorised anomaly polynomial

I8 =
1
4

(
2trR2 + 2s

2 trF 2
)(

2trR2 − 2r + 2s
2 trF 2

)
. (4.9)

The second family is described instead by

dF = 2(4 + 8r + n(1 + r + s)(1 + 2s)) ,

dAd = (1− 2s)2 + r + s

2 ,

dS = −2 + (r + s)(3 + 2s)
2 ,

dT = 244− n(15 + 30r + 2n(1 + r + s)(1 + 2s)) ,

(4.10)

leading to the factorised anomaly polynomial

I8 =
1
4

(
2trR2 + 2s+ 1

2 trF 2
)(

2trR2 − 2r + 2 + 2s
2 trF 2

)
. (4.11)

The resulting Bianchi identities can be actually encompassed into a single case for both
families, namely

dH1 = 1
2p1 −

m
2 c2 ,

dH2 = 1
2p1 +

m+w
2 c2 ,

(4.12)

where m = 2s + σ and w = 2r + σ, for which σ = 0 identifies eq. (4.8) whereas σ = 1
identifies eq. (4.10). For these models, the Chern class of Spin(2n) bundles evaluates to
−2k y according to the results in appendix B.
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The two families do not admit any anomalous model as for the SU(n) off-diagonal case.
Indeed, imposing the trivialisation of the first Bianchi identity implies 2 + km = 0 mod p

and it can be shown after some trivial algebra that the anomaly recasts as

A(L7
p) = −p(p

2 − 1)
3

≡1 0 ,
(4.13)

while trivialising the second Bianchi identity implies 2− k(m+ w) = 0 mod p which gives
rise to the same result contained in (4.13).

As a concrete example, we can focus on the Spin(28) model in the second family, with
s = r = −1. This corresponds to the heterotic orbifold model “2a” in [92] (at least at the
level of the Lie algebra), with

dF = 20 , dAd = 0 , dS = 0 . (4.14)

The Bianchi classes are (2− k)y and 2(1 + k)y. Thus, choosing k = 2 +mp or k = mp− 1
for some integer m trivialises one of them, and in either case the anomaly simplifies to

A(L7
p) ≡1 −

(p− 1) p (p+ 1)
3 ≡1 0. (4.15)

It would be interesting to perform a complete analysis that can lead us to the knowledge of
the bordism group, that would allow us to understand whether the bordism groups associated
to these string structures are trivial, as this result seems to suggest, or if it admits a non
trivial generator on which these models can be tested.

5 Dai-Freed anomalies for exceptional groups

For exceptional groups the classification of the landscape, including only fundamental and
adjoint representations for the charged hypermultiplets, is quite simpler. The price to pay
is that computing Dai-Freed anomalies is more difficult at the technical level, because the
bundles described in appendix B require decomposing spinorial representations of Spin(12)
and Spin(16) for E7 and E8 respectively. Once again, we present a systematic description
of allowable models also for the diagonal lattice embedding, showing an example of an
anomalous model for the choice of quadratic refinement of [39], and we leave a comprehensive
classification of (pairs of) quadratic refinements for future work.

5.1 The case of E7

Let us begin with E7. The multiplicities of uncharged matter and fundamental and adjoint
charged matter are restricted to

dT + 56dF + 133(dAd − 1) = 244 (5.1)

by cancellation of irreducible anomalies. Making use of the helpful trace identities

trAdF
2 = 3 trF 2 ,

trAdF
4 = 1

6
(
trF 2

)2
,

trF 4 = 1
24
(
trF 2

)2
,

(5.2)
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it is possible to simplify the anomaly polynomial to

I8 =
(
trR2

)2
− 1

4trR2 trF 2 (dF + 3(dAd − 1)) + 1
4
(
trF 2

)2 (dF
4 + (dAd − 1)

)
, (5.3)

where for convenience we have rescaled trF 2 → 6 trF 2. As in the preceding sections, we seek
families of models with consistent embeddings according to the conditions in [90]. Once more,
the multiplicities are fixes in terms of two integers r , s as before.

5.1.1 Diagonal lattice for E7

Embedding the anomaly lattice into the diagonal lattice fixes

dT = 244− 91s− 70(2r + s)(r + s) ,
dF = 4s+ 6(r + s)(2r + s) ,
dAd = 1− s− 4r2 − 6sr − 2s2 .

(5.4)

The resulting anomaly polynomial factorises in the form

I8 =
1
8

{(
3trR2 + r

2trF 2
)2

−
(

trR2 + 3r + 2s
2 trF 2

)2
}
. (5.5)

From this expression one can read off the Bianchi identities

dH1 = 3
4p1 −

r

2c2 ,

dH2 = 1
4p1 −

3r + 2s
2 c2 .

(5.6)

As an example of anomalous model with the choice of quadratic refinement in eq. (3.45),
picking r = −3 and s = 4 leads to

dF = 4 , dAd = 1 . (5.7)

For such model we can choose to trivialise the first Bianchi with the E7 bundle identified
by k = 2, which admits L7

3 as a background, leading to

A(L7
3) =

4
9 . (5.8)

The second Bianchi is instead trivialised by choosing p = 1 + k with k = 1, 2 giving rise to a
vanishing anomaly for k = 1, while (5.8) is reproduced for k = 2.

In the case for k = 2 there is no possible combination of quadratic refinement allowing to
cancel the fermion anomaly and thus such models do not admit a UV completion in quantum
gravity. However, in such a case it is possible to introduce only probe strings on which
the theory is non-unitary, thus violating the KSV constraints. This means that, although
the bordism group is non-trivial and there are anomalous models, the latter are already
excluded by the analysis performed in [11].
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5.1.2 Off-diagonal lattice for E7

Embedding the anomaly lattice into the off-diagonal lattice fixes

dT = 244− 91s− 35r(r + s) ,
dF = 4s+ 3r(r + s) ,
dAd = 1− s− r2 − sr ,

(5.9)

for which the anomaly polynomial factorises as

I8 =
1
4

(
2trR2 + r

2trF 2
)(

2trR2 − r + s

2 trF 2
)
. (5.10)

The corresponding Bianchi identities then read

dH1 = 1
2p1 −

r

2c2 ,

dH2 = 1
2p1 +

r + s

2 c2 .
(5.11)

As for the SU(n) and Spin(2n) cases, it can be shown that such models yield no anomalies
on Lens spaces trivialising at least one of the Bianchi identity with the bundle identified by
k = 1. Indeed, the first Bianchi is trivialised if 2 + r = 0 mod p and the second one whenever
2 − (r + s) = 0 mod p. In the former case the anomaly can be written as

A(L7
p) =

6
p
− 20p

3 − p3

3 − 2(−3− s+ 2s)
p

− 4s+ 6(2− s)
p

≡1 −
p(p2 − 1)

3
≡1 0 ,

(5.12)

while the it reads

A(L7
p) =

6
p
− 20p

3 − p3

3 − 6(2− s) + 4s
p

− 2(1− (2− s)2 − s− (2− s)s)
p

≡1 0 ,
(5.13)

in the second case.
For k = 2 instead there exists anomalous models, as for example the case in which

r = −9 and s = 10 admitting L7
16 as an allowed background, but on which the anomaly

theory is given by

A(L7
16) =

9
32 . (5.14)

However, as it happens for the diagonal case, these models turn out to be already excluded
by imposing the KSV constraints and thus, in such a case, Dai-Freed anomalies on Lens
spaces cannot provide any additional conditions through which we can bind the set of low
energy theories.
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5.2 The case of E8

Let us now discuss E8 as the final example of non-abelian gauge group. The situation here is
much simpler than the ones analysed previously, and indeed the number of cases is manifestly
finite. The cancellation of the irreducible gravitational anomaly constrains the number of
trivial and adjoint representations that can appear according to

dT + 248(dAd − 1) = 244 , (5.15)

from which it immediately follows that no such theory with just E8 as gauge group is allowed.
Nevertheless, we can relax eq. (5.15), allowing the presence of other gauge group factors whose
vector multiplets appear as hypermultiplets with the wrong chirality. With this subtlety
in mind, the anomaly polynomial is

I8 =
(
trR2

)2
− 30

24trR2 trF 2 (dAd − 1) + 9
24
(
trF 2

)2
(dAd − 1) , (5.16)

where we have made use of the identity

trF 4 = 1
100

(
trF 2

)2
(5.17)

as well as rescaled F 2 → 30F 2, once again to take into account the minimal instanton
numbers. Once more, the Seiberg-Taylor conditions lead to consistent embeddings of the
anomaly lattice into a self-dual lattice in terms of integers r , s as follows.

5.2.1 Diagonal lattice for E8

For the diagonal lattice, there is only solution

dAd = 2 , (5.18)

which leads to the Bianchi identities

dH1 = 3
4p1 +

4
2c2 ,

dH2 = 1
4p1 +

2
2c2 .

(5.19)

The uniqueness of the factorisation once the diagonal embedding is imposed allows to carry
out the analysis case by case. Since the second Chern class for E8 bundles on Lens spaces
is given by c2 = −2ky, the first Bianchi identity is trivialised by choosing p to be a divisor
of 4k − 3 and of 2k − 1 when instead we choose to trivialise the second Bianchi identity.
Indeed, when k = 2,19 the only available Lens space associated to the first Bianchi identity
corresponds to p = 5, yielding

A(L7
5) ≡1

3
5 ,

(5.20)

while trivialising the second class requires p = 3 and the anomaly reads

A(L7
3) ≡1

2
3 .

(5.21)

19The case k = 1 does not give rise to meaningful Lens spaces and thus cannot be considered in the following.
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If instead k = 3, the available Lens spaces trivialising the first Bianchi identity are given
by p = 3, 9, yielding

A(L7
3) ≡1

1
3 ,

A(L7
9) ≡1

1
9 ,

(5.22)

whereas the second one is trivialised by choosing p = 5, giving rise to the anomaly

A(L7
5) ≡1

3
5 .

(5.23)

All in all, if only one Bianchi identity is required for the twisted string structure, this model
is anomalous for the choice of quadratic refinement in [39]. Since anomaly-free models, and
in particular string constructions, seem to be indifferent to this choice, this seems to be a
reasonable criterion to exclude models when it is impossible to trivialise both Bianchi classes.

5.2.2 Off-diagonal lattice for E8

For the off-diagonal lattice we find a similar result for the parametrisation of the allowed
models. Namely the multiplicity of adjoint hypermultiplets takes the form

dAd = 2 , (5.24)

and the corresponding Bianchi identities are

dH1 = 1
2p1 +

3
2c2 ,

dH2 = 1
2p1 +

2
2c2 .

(5.25)

Once again, since there is only one model to be considered, one can simply look for an
anomaly on a case-by-case basis. By the previous considerations, the choices trivialising
the first Bianchi identity for k = 2 correspond to p = 4, yielding no anomaly, and p = 2,
which trivialises simultaneously also the second Bianchi, for which, again, the anomaly
cancels. The other possible E8 bundle is given by k = 3, that identifies the Lens space with
p = 7 as the result of the trivialisation of the first Bianchi identity, for which no anomaly
is found. Trivialising the second Bianchi implies p = 2, 4 and again the anomaly cancels
on the corresponding Lens spaces L7

2,4.

6 Dai-freed anomalies for abelian charges

In this section we study theories with matter charged under the gauge group U(1). Swampland
bounds on the number r of abelian factors have been obtained [16–18], depending to the
presence of tensor multiplets. In particular, it has been shown [16] that the cancellation of
local anomalies, when other non-abelian factors are present, implies the upper bound

r ≤ (nT + 2)(nT + 7/2 + (n2T − 51nT + 2225/4)1/2) (6.1)

on the rank. If only abelian groups are considered such constraints can be further refined.
Indeed, in [18] it has been found out that r ≤ 20 (22) for nT ≥ 1 in presence (absence) of
charged matter, while r ≤ 32 if there are no tensor multiplets.
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Although these constraints are great steps toward finiteness of the landscape, they turn
out to be ineffective in limiting the possible highest charge of the hypermultiplets. Indeed,
restricting to r = 1 and nT ≤ 1, a previous analysis has been carried out in [17], where
infinite families with unbounded U(1) charges were shown to satisfy all the swampland
criteria without a known string/F-theory realisation20 with the exception of a finite number
of cases.21 In this section, we shall discuss the families in [17] with nT ≤ 1 in order to see
whether they can be ruled out by Dai-Freed anomalies. In order to do so, we shall first repeat
the analysis performed in sections 3, 4 and 5 in the presence of one tensor multiplet, by
imposing |q| ≤ 2. This choice allows to recover the families with nT = 1 described in [17]
as a testbed. The analysis will be carried out from scratch in order to set notations and
conventions. Afterwards, we will consider the infinite families with nT = 0 and arbitrary
large charges found in [17]. Given this setup, we will discuss the role played by Dai-Freed
anomalies, aiming to rule out at least some of the models contained therein.

6.1 Families with one tensor multiplet

With one tensor multiplet the anomaly polynomial reads

I8=

 2∑
q=0

dq−245

 1
360trR4+

(
trR2

)2
− 1
24trR2

2∑
q=1

q2dqF
2+ 1

24

2∑
q=1

q4dqF
4 . (6.2)

The conditions stemming from cancellation of (ir)reducible local gravitational and gauge
anomalies constrain the number of degeneracies in the spectrum. In eq. (6.2), the degeneracies
are summed over positive q, since each hypermultiplet contains fields with opposite charges.
As described in the previous sections, with one tensor multiplet there are only two ways for
the anomaly lattice to be embedded in a self-dual lattice of string charges of signature (1, 1),
namely those with diagonal or off-diagonal bilinear forms.

6.1.1 Diagonal lattice

In the former case, the anomaly polynomial I8 factorises as

I8 =
1
8

{(
3trR2 + b(1)F 2

)2
−
(
trR2 + b(2)F 2

)2}
= 1

2

{(
3
4p1 +

b(1)

2 c21

)2
−
(
1
4p1 +

b(2)

2 c21

)2}
,

(6.3)

where now the second Chern class is replaced by −c21/2 as explained in appendix A. The
coefficients b(i) are obtained imposing the usual factorisation conditions, and for the abelian
case one finds eq. (6.2)

b(1)
2 − b(2)

2 = 1
3

2∑
q=1

q4dq = h ,

3b(1) − b(2) = −1
6

2∑
q=1

q2dq = −r ,
(6.4)

in which we have introduced two integer parameters h , r.
20In [17] the term swampland is used to identify these kind of theories, rather than EFTs that do not couple

consistently to gravity.
21Some examples with charges bounded by 5 admit an F-theory construction either directly or as a result of

an Higgs mechanism breaking larger non-abelian groups.
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This system of equations is solved by b(1) = s and r+3s, where r, s are integer parameters
constrained to lie on the surface h = h(r, s) = −r2 − 6rs− 8s2. In terms of these quantities
we can conveniently write the degeneracies as

d0 = 245− (30r − 3h(r, s))/4 , d1 = 8r − h(r, s) , d2 = (h(r, s)− 2r)/4 . (6.5)

In order for these expressions to be meaningful, these multiplicities are required to be non-
negative integers, which entails 2r ≤ h ≤ 8r and h > 10r − 327. This reduces the number
of charged hypermultiplets to a smaller set of degeneracies.

We now study Dai-Freed anomalies for these models. The anomaly theory in terms
of r , s reads

A
(
Y
)
= 8r − h

2 η̃1 +
h− 2r

8 η̃2 + Q̃+
(
s
2 č
)
− Q̃−

(
r+3s
2 č

)
+Agrav , (6.6)

where now č corresponds to the generator of the cohomology group given by c21 and we
isolated the purely gravitational contribution

Agrav = 245η0 − ηgravitino +Q+(0)−Q−(0) = 0 . (6.7)

In eqs. (6.6) and (6.7) the index of the η-invariants denotes U(1) charge. On the Lens
space L7

p, one obtains

A
(
L7
p

)
≡1

pr2 + 4s(p2 − 2) + 2r(2p2 + 3ps+ p− 4)
8p . (6.8)

As we have explained in the preceding sections, studying these anomalies for generic pairs
of quadratic refinements is difficult. Thus, once again in eq. (6.8) we chose the one in
eq. (3.45) derived in [39].

We are now in the position to compute the anomaly on those backgrounds in which
at least one of the Bianchi identities is satisfied. The only surviving models correspond to
those in which the polynomial in eq. (6.8) is integer-valued on all allowed backgrounds. We
performed a scan of the 123 available models where |r| , |s| ≤ 500 where the Bianchi classes
are integral, as required by [90]. Using the quadratic refinement defined in [39], only 21 of
them turn out to be anomaly-free. These models are reported in table 1.

6.1.2 Off-diagonal lattice

The case in which the lattice bilinear form is off-diagonal induces the factorisation

I8 =
1
4
(
2trR2 + b(1)F 2

) (
2trR2 + b(2)F 2

)
=
(
1
2p1 +

b(1)

2 c21

) (
1
2p1 +

b(2)

2 c21

)
,

(6.9)

where now the previous conditions for b(1,2) are modified and read

b(1) b(2) = 1
6

2∑
q=1

q4dq = h ,

b(1) + b(2) = − 1
12

2∑
q=1

q2dq = −r .
(6.10)
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(r, s) d0 d1 d2
(24,−10) 113 128 4
(26,−10) 113 124 8
(26,−8) 95 148 2
(28,−10) 107 128 10
(30,−12) 101 132 12
(30,−10) 95 140 10
(32,−10) 77 160 8
(34,−10) 53 188 4
(36,−16) 59 176 19
(36,−12) 83 144 18
(38,−14) 95 124 26
(42,−14) 77 140 28
(46,−16) 89 116 40
(48,−18) 101 96 48
(54,−18) 83 108 54
(62,−22) 131 28 86
(62,−20) 77 100 68
(70,−22) 71 92 82
(86,−26) 59 76 110
(94,−28) 53 68 124
(126,−36) 29 36 180

Table 1. Anomaly-free families of degeneracies of U(1) charges in terms of the integer parameters
r , s with a diagonal lattice embedding.

Solving this system of equations b(1) = s and b(2) = −r − s, with r , s integer parameters
lying on the surface h = h(r, s) = −rs − s2. The corresponding degeneracies are

d0 = 245− 15r + 3h(r, s)/2 , d1 = 16r − 2h(r, s) , d2 = h(r, s)/2− r . (6.11)

As before, these solutions are restricted to the cases in which dq’s are non-negative integers,
and thus satisfy 2r ≤ h ≤ 8r and h > 164 − 10r. Given these degeneracies we can
straightforwardly compute the anomaly theory on L7

p, finding

A
(
L7
p

)
= (8r − h)η̃1 +

h− 2r
4 η̃2 +Agrav

= − p− 1
12p

(
4p3 + 4p2 − 6p(r − 8)− 3(s+ 4)(r + s− 4)

) (6.12)

where now the gravitational anomaly is dictated only by the fermionic piece

Agrav = 245η0 − ηgravitino . (6.13)

Since the 2-form field lifts in integer cohomology it is non-chiral, and thus its electric-magnetic
anomaly [39] on Lens spaces vanishes, as discussed in the previous sections. We can now
evaluate this expression on the allowed L7

p backgrounds.
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To begin with, we impose the condition in [90]. Bianchi classes are integral if and only if
both r and s are even. Thus, we replace r → 2r and s→ 2s. The Bianchi classes are then
(2 + s)y and (2− r − s)y. Choosing s = lp− 2 for some integer l trivialises the former, while
r = 2 − s − lp trivialises the latter. In both cases, the anomaly simplifies to

A(L7
p) ≡1 −

(p− 1) p (p+ 1)
3 ≡1 0 . (6.14)

Hence, none of these off-diagonal models is anomalous.

6.2 A family with no tensor multiplets

Different infinite families of models with no tensor multiplets, which satisfy the swampland
criteria discussed in the literature but for which no string/F-theory realisation is known, have
been found in [17]. In this section we attempt to find out whether Dai-Freed anomalies can
exclude some cases. It turns out that for a class of quadratic refinements the anomaly is
eventually non-vanishing for large charges, thus excluding all but a finite number of these
models. For other choices of quadratic refinements, only models with even charges survive.
Unless one can choose the parameter m ad hoc for each background, or unless there is an
underlying theoretical reason to do so, at least three quarters of these models are excluded.
Generically, as we will discuss, all but a finite number are anomalous if m ̸= 6 is bounded
in the large charge limit.

Before analysing anomalies, let us provide some intuition for why large charges may
problematic, beyond merely spoiling the desireable feature of finiteness. Recall that in the
non-abelian case representations of unbounded dimension tend to violate unitarity constraints
on (BPS) string probes [22]. In the abelian case, the presence of a large charge Q in the
spectrum of elementary fields does not increase the number of massless modes, but it does
increase the effective gauge coupling geff = gQ, which in 6d has dimensions of length. One can
immediately observe that perturbativity gQ≪ ℓPl is in conflict with the (upper bound to the)
quantum gravity cutoff ΛQG determined by the magnetic weak gravity conjecture [94, 95],

ΛQG ≲ gM2
Pl ≪

MPl
Q

. (6.15)

Intuitively, this means that large charges are obstructed in weakly coupled gauge theories
when quantum gravity is involved. We now study in more detail whether this potential
obstruction exists and is detected by Dai-Freed anomalies in a family of EFTs found in [17].

Without tensor multiplets there is only one possible lattice embedding, dictated by a = 3,
and the factorised anomaly polynomial is

I8 = 1
8

(
3trR2 + bF 2

)2
= 1

2

(
3
4p1 +

b
2c

2
1

)2
.

(6.16)

In [17] a family of charges q, r, q + r admitting such factorisation was found, with fixed
multiplicities

dq = 54 , dr = 54 , dq+r = 54 . (6.17)

Here q, r are integers determining the anomaly coefficient b = −6(q2 + rq + r2).
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The anomaly theory for these models is described by

A
(
Y
)
= 27(η̃q + η̃r + η̃q+r)−

b(b+ 2m)
8p , (6.18)

where we have considered the general form of the quadratic refinement in terms of an integer
parameter m. Using the expressions contained in appendix B, we can compute the value
of eq. (6.18) for Lens spaces L7

p with p a divisor of |3 − 3(q2 + rq + r2)|, which trivialises
the Bianchi class. For general m and p, one has

A(L7
p) ≡1

β(p2 + 3m− 18)
2p , (6.19)

where β ≡ −b/6 = q2 + qr + r2 is the only combination of charges that appears. This is also
true for the Bianchi class, which is 3(1 − β)y. For p = 3 one has

A(L7
3) ≡1

β(m− 3)
2 , (6.20)

which vanishes either for even β (q and r even) or m = 3 (mod 2). For general β, p = β − 1
remains a valid choice, and we now study this case for large charge. We restrict to choices
of quadratic refinement such that m which are bounded (mod 2p), and show that all but
finitely many theories are excluded with this assumption unless m = 6. For this family of
models the choice of [39] amounts to m = p2 − 2, which for p even is bounded mod 2p for
p = β − 1 ≫ 1. For p odd, m ≡2p p − 2 = β − 3 with β even, so for this choice m is not
bounded and a separate analysis is needed.

To begin with, notice if (q, r) → ∞ in R2 then β → +∞. Indeed,

2β − |(q, r)|2 = (q + r)2 ≥ 0 =⇒ β ≥ 1
2 |(q, r)|2 → +∞ . (6.21)

For m = 6 the anomaly always vanishes. Assuming that m ̸= 6 and bounded (taken between
0 and 2p − 1), letting p = β − 1 one has

A(L7
β−1)

β≫1∼ β
(
β2 − β + 3(m− 6)

)
+ 3(m− 6)

2β + 3(m− 6)
2β2

≡ β N(β) +N0
2β + N0

2β2 ,
(6.22)

where for our purposes we only need to use that N(β) ∈ Z[β] is a polynomial with integer
coefficients and that N0 ∈ Z is an integer. The first term cannot be integer for large enough
β, since the numerator cannot be a multiple of β for β > N0. The second term is subleading
for large β, and thus cannot compensate the fractional part since the series is asymptotic.
Furthermore, having packaged the divergent part in the first term, all other terms resum to a
finite result, namely the limit of eq. (6.19) (as a rational number rather than mod 1) with its
divergent contribution subtracted. All in all, in order to cancel the anomaly on L7

β−1 one
necessarily needs m = 6, whereas for p = 3 only even charges survive unless m = 3 mod 2. If
m does not depend on the choice of background, one can save at most even charges, if any.
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(r, s)
(−2, 1)
(−1,−1)
(−1, 2)
(1,−2)
(2,−1)
(1, 1)

Table 2. Anomaly-free families of the U(1) models in eq. (6.17) with no tensor multiplets in terms of
q, r with nT = 0 and |q| , |r| ≤ 10, choosing m = p2 − 2.

In order to conclude our analysis for the choice of quadratic refinement of [39], for β ≡ 2z
even and p = β − 1, the parameter m = p2 − 2 ≡2p p − 2 = 2z − 3 is not bounded for
z ≫ 1. The anomaly simplifies to

A(L7
2z−1) ≡1

2z2 + z − 13
2z − 1 ≡1 −

12
2z − 1 ,

(6.23)

which once more shows that the anomaly is eventually non-vanishing.
The result just described is confirmed by a numerical scan. Indeed, fixing the quadratic

refinement to the choice m = p2−2, which corresponds to the definition in [39], only 6 models
out of 440 are anomaly-free.22 The charge is allowed to vary |q| ≤ 10 and |r| ≤ 10, but the
non-anomalous models are bounded by |q| = 2 and |r| = 2, as listed in table 2.

To summarise our findings, unless we were to find a mechanism indicating which specific
quadratic refinements are selected in string/F-theory, we cannot place these theories in the
swampland with certainty. A genericity argument would tend to exclude most of them, since
only a very specific choice for each backround cancels all the anomalies we have investigated.
It would be interesting to further explore this issue, trying to deduce a top-down criterion to
select the allowed quadratic refinement(s). Nonetheless, we now know that unless m = 6, no
choice with m bounded can cancel the anomaly on L7

β−1 for infinitely many charges, while
the anomaly on L7

3 only saves even charges unless m = 3 mod 2.

7 Non-supersymmetric heterotic models

In the previous sections we have discussed the role played by Dai-Freed anomalies as a
consistency swampland criterion for six-dimensional N = (1, 0) supergravity theories with
simply laced and abelian gauge groups. The reason why one could call this a swampland
condition lies in the origin of Dai-Freed anomalies, which requires spacetime topology
change. It is natural to think of this as an intrinsically quantum-gravitational effect, whereby
cancellation of such anomalies may be unnecessary if the theory is not coupled to gravity.

The analysis carried out so far is twofold: on the one hand, we have discussed the
consistency of six-dimensional supergravity theories on the allowed Lens backgrounds, from
which some anomalous EFTs have been discarded up to the choice of the quadratic refinement

22There are additional models for which the analysis cannot be performed, since they would formally yield
p = 0 as valid backgrounds. These correspond to (q, r) = {(−1, 0), (0,−1), (1, 0), (0, 1), (1,−1), (−1, 1)}.
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characterising the global dynamics of the chiral fields. In this sense, including this choice
as part of the specification of the EFT, many of them are excluded. On the other hand, all
the examples arising from the string landscape, namely perturbative heterotic or F-theory
constructions, are devoid of such anomalies. This means that Dai-Freed anomaly cancellation
is not an empty requirement, and it adds extra constraints to the ones considered in the
literature up to now. It can provide further evidence for the non-perturbative consistency
of string theory, constrain gravitational EFTs and provide an additional tool to investigate
string universality. Among the examples that we have checked are models obtained through
a K3 compactification in the orbifold limit of the heterotic SO(32) [92] and E8 × E8 [91, 92]
theories, which fit in the restricted setting of six-dimensional supersymmetric theories. This
result is neither new nor surprising, since [42] has shown that anomalies of this kind are
always absent in heterotic constructions when supersymmetry is present.

However, an analogous general result is not available for non-supersymmetric vacua23 and
thus there is no a priori guarantee that Dai-Freed anomalies would cancel for these theories
as well. As explained in section 2, the cancellation of Dai-freed anomalies is connected to
the possibility of writing unambiguously the partition functions of chiral fields [35, 50], and
makes no reference to supersymmetry. Hence, it is important to check their absence in
non-supersymmetric settings. This program has been initiated in [38], where ten-dimensional
tachyon-free models have been shown to be free of Dai-Freed anomalies. This also implies
that any smooth geometric compactification thereof is anomaly-free, but in principle lower-
dimensional vacua may arise from different constructions. Furthermore, it is not a priori
obvious that singular (e.g. orbifold) points in spaces of deformation parameters remain
anomaly-free, since in the absence of supersymmetry these parameters are not bona fide
moduli of the theory. In light of these considerations, the purpose of this section is to verify
that Dai-Freed anomalies on Lens spaces cancel for certain non-supersymmetric heterotic
orbifolds in six dimensions. For concreteness, we shall discuss SU(2) anomalies on Lens
spaces for the SO(16)× SO(16) heterotic model24 compactified on K3 in its orbifold limits.
The specific expressions for the anomaly are slightly different, since now chiral spectra do
not arrange themselves into supermultiplets, but the overall methodology is the same as
in the rest of the paper.

7.1 The SO(16) × SO(16) model

For simplicity we shall study orbifolds [96, 97] whose point group P is a discrete subgroup of
the SU(2) holonomy of K3, thus corresponding to T4/ZN with N = 2, 3, 4, 6 used to exploit
the supersymmetric heterotic landscape in [91, 92]. In the following, we shall also restrict
to the standard embedding in which the gauge connection on one of the SO(16) factors
is identified with the spin connection, so that the orbifold action on the gauge worldsheet
fermions is identical to those on spacetime. Since in the settings at stake supersymmetry is
broken already at the string scale, these restrictions are not imposed by general principles.
Rather, they are chosen for convenience and it is easy to relax these requirements to investigate

23To our knowledge, neither for supersymmetric and non-supersymmetric orientifold vacua a similar result
is available.

24The global form of the gauge group is not in fact SO(16) × SO(16), but this subtlety will be immaterial
for our considerations.

– 37 –



J
H
E
P
0
4
(
2
0
2
4
)
0
6
7

other corners of the landscape. With this setup, the point group action on the worldsheet
fermions is dictated by the vectorial shifts

vst =
1
N

(1,−1) , vgauge =
1
N

(06, 1,−1)⊗ (08) , (7.1)

for spacetime and gauge degrees of freedom respectively, acting on worldsheet fermions
and bosons via

g · ψiR = e2πiv
i
gaugeψiR , g · ψiL = e2πiv

i
stψiL , and g · zi = e2πiv

i
stzi , (7.2)

where ψiL,R denotes the complex combinations of Majorana spinors determined by the
complex structure on the i-th torus T2 parametrised by zi. With this choice of shift vectors,
the expression for the torus amplitude of the SO(16) × SO(16) vacuum compactified on
such K3 orbifolds can be straightforwardly obtained from the partition function in ten
dimensions [98, 99], and reads

T = 1
N

N−1∑
α,β=0

dα,β Z
[α
β

]
Λα,β . (7.3)

Here we have packaged the contributions from the Hilbert space of oscillators for non-compact
bosons and worldsheet fermions in the blocks Z

[α
β

]
, and for the compact bosons in Λα,β . The

explicit expressions are presented in appendix C. The multiplicities dα,β in eq. (7.3) reflect
the number of fixed points under the action of the orbifold group, and are required to obtain
a modular invariant result. Moreover, when the point group ZN admits Zk as a non-trivial
subgroup, i.e. when k is a non-trivial divisor of N , the multiplicities for the N/k-twisted
sectors encode the number of fixed points for Zk organised into suitable multiplets of the
orbifold group. For such K3 orbifolds this occurs for N = 4, 6, where fixed points for the
subgroups Z2 and Z2,3 are organised into multiplets of Z4 and Z6 respectively. Instead, for
N = 2, 3 such subtleties do not appear, and thus we shall begin discussing these constructions.

7.1.1 The Z2 orbifold

In light of the action of the point group on the torus in eq. (7.2), the N = 2 case dictates a
simple sign flip on worldsheet fermions and bosons. As a consequence, the action on spacetime
coordinates implies the presence of 16 fixed points

ζab = (0, 12 ,
1√
2e

πi
4 , 12 i)× (0, 12 ,

1√
2e

πi
4 , 12 i) (7.4)

where a, b = 1, . . . , 4 label the Z2 fixed points for each torus. The induced twisted multiplicities

dα,β =
(
1 1
16 16

)
(7.5)

are necessary to make the partition function modular invariant. Moreover, the orbifold action
on the SO(4) characters is diagonal,

O4 → O4 , V4 → −V4 ,
S4 → S4 , C4 → −C4 .

(7.6)
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This allows us to write the contributions from internal directions in the modular blocks Z
[α
β

]
in terms of a combination of the conjugacy classes of SO(4). As a result, the gauge group
induced by the T4/Z2 compactification is obtained via the breaking

SO(16)× SO(16) → SO(12)× SU(2)2 × SO(16) . (7.7)

We now have all the ingredients to write the twisted and untwisted sectors of the partition
function describing this model. The untwisted unprojected sector reads

Z
[0
0
]
= 1

(ηη̄)4
{
(V4O4 +O4V4)

[(
O12O4 + V 12V 4

)
O16 +

(
S12S4 + C12C4

)
S16

]
+ (O4O4 + V4V4)

[(
O12V 4 + V 12O4

)
C16 +

(
S12C4 + C12S4

)
V 16

]
− (S4S4 + C4C4)

[(
O12O4 + V 12V 4

)
S16 +

(
S12S4 + C12C4

)
O16

]
− (S4C4 + C4S4)

[(
O12V 4 + V 12O4

)
V 16 +

(
S12C4 + C12S4

)
C16

]}
,

(7.8)

where the compact bosons are described by the Narain lattice sum Λ0,0 = Λ4,4. The untwisted
projected contribution is encoded in

Z
[0
1
]
= 1

(ηη̄)4
{
(V4O4 −O4V4)

[(
O12O4 − V 12V 4

)
O16 +

(
S12S4 − C12C4

)
S16

]
+ (O4O4 − V4V4)

[(
−O12V 4 + V 12O4

)
C16 +

(
−S12C4 + C12S4

)
V 16

]
− (S4S4 − C4C4)

[(
O12O4 − V 12V 4

)
S16 +

(
S12S4 − C12C4

)
O16

]
− (−S4C4 + C4S4)

[(
−O12V 4 + V 12O4

)
V 16 +

(
−S12C4 + C12S4

)
C16

]}
,

(7.9)
whose compact bosons are described by

Λ0,1 =
2∏
i=1

(2 sin πvi)2ηη̄
θ
[ 1/2
1/2+vi

]
(0|τ)θ

[ 1/2
1/2−vi

]
(0|τ)

. (7.10)

As anticipated, modular invariance of the partition function introduces twisted sectors via
the images under S and TS of Z

[0
1
]

required to complete the modular orbit. Thus, the
g-twisted unprojected piece reads

Z
[1
0
]
= 1

(ηη̄)4
{
(O4S4 + V4C4)

[(
O12C4 + V 12S4

)
O16 +

(
C12O4 + S12V 4

)
S16

]
+ (O4C4 + V4S4)

[(
O12S4 + V 12C4

)
C16 +

(
S12O4 + C12V 4

)
V 16

]
− (S4O4 + C4V4)

[(
S12O4 + C12V 4

)
C16 +

(
O12S4 + V 12C4

)
V 16

]
− (S4V4 + C4O4)

[(
O12C4 + V 12S4

)
S16 +

(
S12V 4 + C12O4

)
O16

]}
,

Λ1,0 =
2∏
i=1

ηη̄

θ
[1/2+vi

1/2
]
(0|τ)θ

[1/2−vi

1/2
]
(0|τ)

,

(7.11)
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while the g-twisted projected part is given by

Z
[1
1
]
= 1

(ηη̄)4
{
(O4S4−V4C4)

[(
−O12C4+V 12S4

)
O16+

(
C12O4−S12V 4

)
S16

]
+(−O4C4+V4S4)

[(
O12S4−V 12C4

)
C16+

(
S12O4−C12V 4

)
V 16

]
−(S4O4−C4V4)

[(
S12O4−C12V 4

)
C16+

(
O12S4−V 12C4

)
V 16

]
−(−S4V4+C4O4)

[(
−O12C4+V 12S4

)
S16+

(
−S12V 4+C12O4

)
O16

]}
,

Λ1,1=
2∏
i=1

ηη̄

θ
[1/2+vi

1/2+vi

]
(0|τ)θ

[1/2−vi

1/2−vi

]
(0|τ)

.

(7.12)

The particle content of this model for each mass level can be directly read from the q-
expansion of these characters, once the level matching condition is imposed. In particular,
the massless contribution to the spectrum comprises the graviton, the non-chiral Kalb-
Ramond field and the dilaton in the singlet of the gauge group, the gauge boson in the
adjoint of SO(12)× SU(2)2 × SO(16), four scalars in (12, 2, 2, 1)⊕ 4(1, 1, 1, 1), a doublet of
left fermions in (1, 1, 1, 128s)⊕ (32s, 2, 1, 1)⊕ (1, 2, 2, 16) and a doublet of right fermions in
(32c, 2, 2, 1) ⊕ (12, 1, 1, 16) from the untwisted sector. The contribution from the twisted
sector follows similarly and comprises thirty-two scalars in (12, 2, 1, 1), one hundred and
twenty-eight scalars in (1, 1, 2, 1), eight doublets of right fermions in (32c, 1, 1, 1) and eight
doublets of left fermions in (1, 2, 1, 16).

Given the massless spectrum, we can compute the anomaly theory associated to this
vacuum. As discussed in section 2, the contribution from the fermions is encoded into the η
invariant of the Dirac operator with a sign depending on chirality of fermions in spacetime.
This leads to the contribution

Afermions
(
Y
)
= ηD(32c,1,2,1)

(
Y
)
+ ηD(12,1,1,16)

(
Y
)
+ 8 ηD(32c,1,1,1)

(
Y
)

− ηD(1,1,1,128s)
(
Y
)
− ηD(32s,2,1,1)

(
Y
)
− ηD(1,2,2,16)

(
Y
)
− 8 ηD(1,2,1,16)

(
Y
)
.

(7.13)

When Y is a boundary of an eight dimensional manifold Z, eq. (7.13) can be expressed
via the APS index theorem [57] by

Afermions
(
∂Z
)
≡1 −

∫
Z
I8 , (7.14)

where I8 reproduces precisely the perturbative contribution

I8 =
1
2
(
2 trR2 − 1

2 trF 2
1 − trF 2

2 − trF 2
3 − 1

2 trF 2
4

) (
trF 2

4 − 2 trF 2
1 + 8 trF 2

2

)
= X1

4X
2
4 .

(7.15)

The result suitably factorises in order for a generalised Green Schwarz mechanism [79–81]
to take place. In addition, the factorisation above tells us that the non-chiral B-fields lift
to Cheeger-Simons character Ǎi = (N i, Ai, X i

4), where [N i] = [Xi
4]Z and [Xi

4] = [Xi
4]dR [39,

62, 66, 67]. As discussed in [39], the anomaly associated to the non-chiral field is then
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given by the cohomology pairing25

AB-fields
(
Y
)
= (Ǎ1, Ǎ2)Y , (7.16)

thus providing the complete expression for the anomaly theory on a general background,

A
(
Y
)
= Afermions

(
Y
)
− (Ǎ1, Ǎ2)Y . (7.17)

If the i = 1 character is topologically trivial, i.e. [X1
4 ]Z = 0, the coupling reduces to the

known Chern-Simons coupling A1 ∧X2
4 . When Y = ∂Z, this contribution reproduces the

Green-Schwarz term X1
4 ∧X2

4 . Requiring that the differential characters Ǎi be topologically
trivial entails a twisted string structure on Y , since at the level of de Rham cohomology
one obtains the Bianchi identities

dH1 = X1
4 = 1

2p1 +
1
2c2(F1) + c2(F2) + c2(F3) + 1

2c2(F4) ,
dH2 = X2

4 = 4 c2(F1)− 16 c2(F2)− 2 c2(F4) .
(7.18)

One can choose to trivialise either class at the integral level, but of course the consistency
of the model should not depend on this choice. The corresponding twisted string bordism
groups ought to classify equivalent anomaly backgrounds.

We now study anomalies on Lens spaces, turning off all the groups beside the first
SU(2).26 In this case L7

p trivialises X2
4 for p = 2, 4, 8, 16, since the Pontryagin and Chern

classes are 1
2p1 = 2y and c2 = −y with y a generator of degree-four cohomology. On these

backgrounds, the contribution from eq. (7.16) vanishes, as in the off-diagonal supersymmetric
models, and thus the anomaly is simply given in terms of the net number of fundamentals
for the first SU(2), dF = 12 · 16 as in eq. (3.17). As a result,

A
(
L7
p

)
= 12 · 16 η̃1 +Agrav = 12 · 16 p

2 − 1
12p ≡1 0 . (7.19)

It is worth noticing that the available backgrounds are exactly the only ones for which the
anomaly vanishes, whereas it would have not been the case for any other value of p.

7.1.2 The Z3 orbifold

Generalising the Z2 orbifold to higher-order abelian groups brings along a complex orbifold
action on worldsheet fermions and bosons. This prevents a gauge group enhancement
U(1) → SU(2) from taking place, as in the case of Z2. This means that the breaking of the
gauge group is maximal and reflects a simple K3 compactification [91],

SO(16)× SO(16) → SO(12)× SU(2)×U(1)× SO(16) . (7.20)

Furthermore, the SO(4) characters are no longer eigenvectors of the orbifold action. The
corresponding partition function can only be expressed in terms of SU(2) and U(1) characters.

25As explained in section 2 we could have chosen to switch the role to the factors coupled “electrically” and
“magnetically”, which are expected to yield equivalent results.

26Turning on only the second SU(2) makes the second Bianchi identity trivial. However, this forbids the
Lens space as a valid background for any p, as will be explained in the following.
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However, there is no “algorithmic” procedure to determine the level of the affine U(1) algebra,
and thus the characters appearing in the partition function in eq. (7.3). Concretely, the
q-expansion of the modular blocks contains information about the SU(2) representations at
the massless level, leaving the U(1) charges undetermined.27 Since we are interested in SU(2)
anomalies, we simply turn off the U(1) in eq. (7.20). At any rate, a more complete discussion
would require computing the relevant twisted string bordism group.

The complex action of the point group also affects the complex structure of the torus,
since gauging ZN requires that the torus lattice be invariant. For the Z3 case, the complex
structure modulus U of the torus is fixed to U = e

2πi
3 . The vectorial shifts in eq. (7.1) on

the worldsheet bosons and fermions in eq. (7.2) determine nine fixed points,

ζab = (0, 1√
3e

iπ
6 , 1√

3 i)× (0, 1√
3e

iπ
6 , 1√

3 i) , (7.21)

where a, b = 1, 2, 3 label the fixed points for each torus. This is reflected in the matrix
of multiplicities

dα,β =

1 1 1
9 9 9
9 9 9

 . (7.22)

With this data one can perform a q-expansion of the modular blocks in eq. (7.3). The resulting
massless spectrum containing the graviton, the non-chiral Kalb-Ramond field and the dilaton
in the singlet of the gauge group. There are in addition twelve scalars in the (1, 1, 1), four
scalars in (12, 2, 1), the gauge boson in the adjoint of SO(12) × SU(2) × U(1) × SO(16), a
doublet of left fermions in (32s, 2, 1)⊕ (1, 1, 128s)⊕ (1, 2, 16) and a doublet of right fermions
in (32c, 1, 1)⊕ (12, 1, 16). The twisted sectors comprise instead two hundred and fifty-two
scalars in (1, 1, 1), thirty-six scalars in (12, 2, 1), nine doublets of left fermions in (1, 2, 16)
and nine doublets of right fermions in (32c, 1, 1).

From the massless spectrum one can straightforwardly compute the anomaly theory.
The fermionic contribution is

Afermions
(
Y
)
= ηD(32c,1,1)

(
Y
)
+ ηD(12,1,16)

(
Y
)
+ 9 ηD(32c,1,1)

(
Y
)

− ηD(1,1,128s)
(
Y
)
− ηD(32s,2,1)

(
Y
)
− ηD(1,2,16)

(
Y
)
− 9 ηD(1,2,16)

(
Y
)
.

(7.23)

The corresponding anomaly polynomial factorises as

I8 =
1
2
(
2 trR2 − 1

2 trF 2
1 − trF 2

2 − 1
2 trF 2

3

) (
trF 2

3 − 2 trF 2
1 + 8 trF 2

2

)
, (7.24)

as required by the Green-Schwarz mechanism. The corresponding Bianchi classes are thus

X1
4 = 1

2p1 +
1
2c2(F1) + c2(F2) + 1

2c2(F3) ,

X2
4 = 4 c2(F1)− 16 c2(F2)− 2 c2(F3) .

(7.25)

27Alternatively, one can look at the (tree-level) spectrum obtained compactifying the SO(16)×SO(16) model
on T4, select states that are invariant under the orbifold action, and complete them with suitable twisted
sectors. This allows to determine charges asides from an overall normalisation, but for our purpose these
technicalities can be neglected.
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As before, turning off all the groups aside from SU(2), the Lens spaces L7
p are valid

twisted string backgrounds trivialising the second Bianchi class when p = 2, 4, 8, 16. The
anomaly theory that depends only on the number of fundamentals dF = 12 · 16, thus yielding
the same result as eq. (7.19) and the anomaly vanishes.

7.1.3 The Z4 orbifold

As in the Z3 case, the orbifold action is complex and induces the maximal breaking of the
SO(16)× SO(16) gauge group in eq. (7.20). In addition, as before, one introduces the ŝu(2)1
and û(1)k characters whose level cannot be determined directly from the partition function.
Gauging Z4 fixes the modulus U = i, and determines the fixed points

ζab = (0, 1√
2e

iπ
4 )× (0, 1√

2e
iπ
4 ) , (7.26)

with a, b = 1, 2 labelling the fixed points on each torus. Although the situation looks similar
to the Z3 case, the main novelty resides in the non-trivial subgroup Z2 whose exclusive
fixed points are interchanged under Z4 transformations. This implies that for each torus
ζa = 0, 1√

2e
iπ
4 are Z4 fixed points but ζ̃a = 1

2 ,
i
2 form a doublet under the Z4 action. The

structure of the matrix of the degeneracies is then given by

dα,β =


1 1 1 1
4 4 4 4
16 4 16 4
4 4 4 4

 , (7.27)

where as explained the 16 appearing in the g2 should be interpreted as 4+6 · 2, in which the 4
counts the number of Z4 fixed points and the 6·2 encodes six doublets of Z2 ones. Taking these
considerations into account, we can read the massless spectrum from the q-expansion and the
level matching condition. It comprises the graviton, the non-chiral Kalb-Ramond field and
the dilaton in the singlet of the gauge group, eight scalars in (1, 1, 1), four scalars in (12, 2, 1),
the gauge boson in the adjoint of SO(12)× SU(2)×U(1)× SO(16), a doublet of left fermions
in (32s, 2, 1)⊕ (1, 1, 128s)⊕ (1, 2, 16) and a doublet of right fermions in (32c, 1, 1)⊕ (12, 1, 16)
from the untwisted sector. From the Z4 twisted sectors we have instead a hundred and sixty
scalars in (1, 1, 1), thirty-two scalars in (12, 2, 1), six doublets of left fermions in (1, 2, 16) and
six doublets of right fermions in (32c, 1, 1). Moreover, from the Z2 twisted sector we have
ninety-six scalars in (1, 1, 1), twelve scalars in (12, 2, 1), three doublets of left fermions in
(1, 2, 16) and three doublets of right fermions in (32c, 1, 1) organised into Z4 doublets.

All in all, one thus finds the fermion anomaly theory

Afermions
(
Y
)
= ηD(32c,1,1)

(
Y
)
+ ηD(12,1,16)

(
Y
)
+ 9 ηD(32c,1,1)

(
Y
)

− ηD(1,1,128s)
(
Y
)
− ηD(32s,2,1)

(
Y
)
− ηD(1,2,16)

(
Y
)
− 9 ηD(1,2,16)

(
Y
)
,

(7.28)

reproducing exactly the contribution of the preceding case.28 The anomaly polynomial is that
of eq. (7.24) and the Bianchi classes those of eq. (7.25). The anomaly on L7

p thus vanishes
on account of the preceding computation.

28The difference lies in the U(1) charges, which we are not considering.
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7.1.4 The Z6 orbifold

The Z6 orbifold exhausts the classification but does not present any further conceptual
novelties with respect to the Z4 case. Indeed, also in this case the action of the point group is
complex, entailing the maximal breaking of eq. (7.20) as well as the impossibility to express
the partition function in terms of SO(4) characters. Once more the complex structure fixes
U = e

2πi
6 . Now there is only one fixed point invariant under Z6, namely ζ = (0, 0). However,

the presence of the subgroups Z2 and Z3 induces corresponding fixed points organised in
triplets and doublets under the Z6 action. This is reflected by the degeneracy matrix

dα,β =



1 1 1 1 1 1
1 1 1 1 1 1
9 1 9 1 9 1
16 1 1 16 1 1
9 1 9 1 9 1
1 1 1 1 1 1


, (7.29)

where now the 9 Z3 fixed points should be interpreted as 1 + 4 · 2 and the 16 Z2 fixed points
as interpreted as 1 + 5 · 3. With these subtleties addressed, we have all the ingredients
to write the massless spectrum. One finds that it comprises the graviton, the non-chiral
Kalb-Ramond field and the dilaton in the singlet of the gauge group, eight scalars in (1, 1, 1),
four scalars in (12, 2, 1), the gauge boson in the adjoint of SO(12)× SU(2)×U(1)× SO(16), a
doublet of left fermions in (32s, 2, 1)⊕ (1, 1, 128s)⊕ (1, 2, 16) and a doublet of right fermions
in (32c, 1, 1)⊕ (12, 1, 16). From the twisted sectors we have instead two hundred and sixteen
scalars in (1, 1, 1), thirty-six scalars in (12, 2, 1), nine doublets of left fermions in (1, 2, 16)
and nine doublets of right fermions in (32c, 1, 1).

As a result, the fermion anomaly theory reads

Afermions
(
Y
)
= ηD(32c,1,1)

(
Y
)
+ ηD(12,1,16)

(
Y
)
+ 9 ηD(32c,1,1)

(
Y
)

− ηD(1,1,128s)
(
Y
)
− ηD(32s,2,1)

(
Y
)
− ηD(1,2,16)

(
Y
)
− 9 ηD(1,2,16)

(
Y
)
,

(7.30)

which precisely matches that of the Z3 and Z4 cases, since the U(1) gauge group is turned off.
The Bianchi classes are those of eq. (7.25), and thus the only available Lens backgrounds have
p = 2, 4, 8, 16. Once again, for all these the anomaly vanishes, since it is given by eq. (7.19).

8 The Gepner orientifold with no tensor multiplets

Gepner [100] has shown that consistent superstring worldsheet theories in a background with
SU(n) holonomy can be realised in terms of tensor products of N = 2 superconformal minimal
models. These models correspond to special points of the moduli space of a compactification
of the type IIB superstring on Calabi-Yau manifolds. The chiral closed-string spectrum
comprises the gravity multiplet and twenty-one tensor multiplets with N = (2, 0) spacetime
supersymmetry. The number of supercharges can be halved to N = (1, 0) within the open
descendants [101], whose spectra depends on the point of the moduli space in which the
model lies. In the following, we will focus on the orientifold projection of the Gepner model
with 81 characters, whose (unoriented) closed-string spectrum comprises ten hypermultiplets
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in the antisymmetric representation of the Chan-Paton gauge group SO(8) and twenty-one
uncharged ones. Our interest in this model is motivated by the absence of tensor multiplets,
which highlights the single chiral 2-form contained in the gravity multiplet.

The full anomaly theory for a generic closed manifold Y contains a single quadratic
refinement, and takes the form

A
(
Y
)
= (10− 1) η28(Y ) + 21 η0(Y )− ηgrav(Y ) +Q(Y ) . (8.1)

On boundaries Y = ∂Z, (8.1) reproduces the anomaly polynomial

A
(
∂Z
)
≡1 −

∫
Z
I8 = −9

8

∫
Z

(
trR2 − trF 2

)2
, (8.2)

from which one reads off the Bianchi identity

dH = 3
(
1
4p1 + c2

)
= X4 . (8.3)

The Green-Schwarz term cancelling eq. (8.2) arises from the quadratic refinement

QY (3č) = Q̃Y (3č) +QY (0) . (8.4)

As discussed above eq. (2.30), we write the gravitational contribution

QY (0) =
∫
Z

{
1
2

(
a

4p1
)2

− 1
8L
}

= − 7(35a2 − 3)
8 ηD(Y ) + (a2 − 1)

8 ηgrav(Y ) , (8.5)

where a = 3 in the present case. Thus the only unknown contribution is Q̃Y (3č), which solves
eq. (2.16) and can be parametrised as in eq. (3.7) on Lens spaces. The Bianchi identity in
eq. (8.3) singles out Lens spaces L7

p with p = 3, p = 1− 2k or p = 3(1− 2k), where k = 1 , 2
parametrises the bundles in appendix B. Thus, p = 3 , 9 are allowed depending on the value
of k. In these cases, the anomaly in eq. (8.1) evaluates to

A(L7
p) = 9(k(2k − 1)η̃2 + 4k(4− 2k)η̃1) + 28 · 9η0 + 21η0 − 7 · 39η0 + Q̃Y (3č)

= 9
(
k(2k − 1)(p− 1)(p− 2)

3p + 4k(4− 2k)p
2 − 1
12p

)

− (28 · 9 + 21− 7 · 39) (p
2 − 1)(p2 + 11)

720p − −6k(−6k +m)
2p

= 3k
p

(
m+ 3(p2 − 2kp+ p− 2)

)
≡1

3k
p

(m− 6) ,

(8.6)

where the quadratic refinement is parametrised as in eq. (3.7),

Q̃Y (3č) = −−6k(−6k +m)
2p , with m = 0, . . . , 2p− 1 mod 2p . (8.7)

Choosing p = 3, valid for all k, manifestly trivialises eq. (8.6), while for k = 2 and p = 9
one finds

A(L7
9) ≡1

2
3 m, (8.8)

which cancels only for m = 0 mod 3. This is not the value of m one finds for the choice
in [39], which is m = 2. All in all, we have shown that the anomaly vanishes in this model for
a specific choice of quadratic refinement for all the allowed k and p, although the rationale
behind this choice remains obscure.

– 45 –



J
H
E
P
0
4
(
2
0
2
4
)
0
6
7

9 Conclusions

In this paper we have extensively studied (a subset of) Dai-Freed anomalies in some corners of
the six-dimensional supergravity landscape. Unless a specific quadratic refinement describing
the anomaly theory of chiral fields is chosen to cancel the anomaly in each allowed background,
we have ruled out some models with abelian and simply laced gauge groups. The analysis is
particularly effective in the case of large abelian charges, where the known results on finiteness,
bounds on ranks and so on do not apply. From the point of view of the swampland program,
this means that consistent global specifications of EFTs coupled to quantum gravity are
“highly unnatural”, in the sense that randomly choosing a quadratic refinement likely leads to
anomalies. On the other hand, the same class of models is anomaly-free if the 2-form fields
uplifted in differential cohomology are non-chiral, and therefore no quadratic refinement enters
the picture. Furthermore, we have shown that the same result holds non-trivially for all string
theory constructions that we have tested, including non-supersymmetric and non-geometric
ones. This outcome is yet another testament to how all the (necessary) ingredients in the
theory interweave in precisely such a way as to guarantee consistency. The rigidity and
interconnectedness of the framework mean that it could have been easily compromised by
any inconsistency. As we have discussed, we have not found any anomalies on Lens spaces
in the string constructions that we have studied, but it is worth noting that, were such an
inconsistency to be found, they may be remedied by a discrete form of the Green-Schwarz
mechanism [40, 56]. In order to fully establish the absence of all possible anomalies, one would
have to compute the complete bordism groups associated to the twisted string structure, an
interesting mathematical task in its own right which may unveil new physical insights. This
type of analysis can also be extended to theories with more tensor multiplets. Understanding
the details of the twisted string structure, for instance whether the bordism groups depend
on the choice of Bianchi identity to trivialise, is an additional interesting challenge.

From a bottom-up perspective, the implications of unitarity for the consistency of EFTs
of gravity have already driven remarkable progress in understanding the string landscape
and uncovering physical explanations of its observed patterns. The main point that we have
emphasised in this work is that the full extent of the consistency conditions arising from
anomaly cancellation has not yet been harnessed. Combining it with supersymmetry may
eventually lead to a completion of the “swampland task” in six dimensions. Even if this
ambitious goal were to be achieved, it seems doubtful that such results could be straightfor-
wardly extended to settings in lower dimensions and/or lower amounts of supersymmetry.
In the former case, the absence of purely gravitational anomalies significantly decreases the
constraining power of these considerations, and furthermore bordism groups tend to be less
rich (if not altogether trivial). In the latter case, the field content need not be arranged in a
rigid handful of supermultiplets with tightly constrained interactions, and in particular there
is no a priori connection between chiral and non-chiral degrees of freedom, leading to a much
larger pool of a priori allowable models. Together with the technical difficulties in handling
multiple potentially independent quadratic refinements, one can foresee how this strategy
may not be as fruitful when multiple genuinely chiral form fields are present.

At present, it is unclear how to proceed to make comparable progress in these more com-
plicated settings. A natural development of the ideas that we have presented is investigating
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anomaly inflow on defects at the Dai-Freed level. Indeed, even in a bottom-up approach,
exploiting the completeness principle [85–88] arising from cobordism triviality [83, 89] and
holography [84, 102] can predict the existence of novel non-perturbative defects in the theory
(see e.g. [55, 56] for a detailed analysis in type IIB supergravity). In turn, the consistency of
anomaly inflow on these defects can restrict the theory even with lower amounts of supersym-
metry, as exemplified in [23]. Perhaps one can achieve more mileage complementing such
kinematical considerations with dynamical ones, for instance relying on S-matrix bootstrap
techniques along the lines of [103, 104]. Another promising avenue is the study of equivariant
topological modular forms [105–107], a generalised cohomology theory believed to encode
deformation classes of 2d SQFTs (and thus of heterotic worldsheets) [108] according to the
Stolz-Teichner conjecture [43]. As we have already mentioned, this approach was fruitfully
employed in [41, 42] to exclude all anomalies in supersymmetric heterotic strings, but an
equivariant version [109, 110] could apply to non-supersymmetric settings (where the GSO
projection is implemented with an additional Z2 gauging) and to refined invariants taking into
account gauge charges. This approach could exclude further models from the (perturbative
heterotic) landscape. The road ahead looks daunting, but the remarkable and rapid progress
witnessed by the last few years of research are certainly encouraging, and motivate further
efforts in the pursuit of a global understanding of the landscape.
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A Some formulae and conventions for anomalies

Throughout the paper, we have used somewhat interchangeably Chern and Pontryagin classes
and their representation in terms of invariant polynomials in the curvature of the connection
of the corresponding bundle via the Chern-Weil isomorphism. This appendix is meant to
explicitly spell out our conventions, in order to properly connect the two descriptions. We
follow the conventions of [21], where the curvatures are normalised with respect to [47] as

F → F

2π and R→ R

4π .
(A.1)

Concretely, this means that the APS index theorem for η-invariants of the Dirac operator,
corresponding to a Weyl fermion in representation R, is

IndexD = ηDR(∂Z) +
∫
Z
Â(R) chR(F ) , (A.2)
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where the A-roof genus takes the form

Â(R) = 1 + 1
12trR2 +

[ 1
360trR4 + 1

288
(
trR2

)2]
+
[ 1
5670trR6 + 1

4320trR4 trR2 + 1
10368

(
trR2

)3]
+ . . .

≡ Â0 + Â1 + Â2 + Â3 . . .

(A.3)

Similarly, the Chern character

chR(F ) = trRe
iF = dimR + i trRF − 1

2trRF
2 + . . .

= chR,0(F ) + chR,1(F ) + chR,2(F ) + . . .
(A.4)

When dealing with gravitini, we use the APS index theorem for the η-invariant of the
Rarita-Schwinger operator, which reads

IndexRS = ηRS(∂Z) +
∫
Z
Â(R)

(
tr e2iR − 1

)
, (A.5)

where now the integrand can be expanded as

Â(R)
(
tr e2iR − 1

)
= (d− 1) + d− 25

12 trR2 +
[
d+ 239
360 trR4 + d− 49

288
(
trR2

)2]
+
[
d− 505
5670 trR6 + d+ 215

4320 trR4 trR2 + d− 73
10368

(
trR2

)3]
+ . . .

(A.6)

Finally, similarly to the previous cases, the APS theorem expresses the signature of the
manifold in terms of the Hirzebruch genus and the η-invariant of the operator in eq. (2.20) as

σ(Z)
8 = 1

82η(D̃
Sig
∂Z ) +

∫
Z

1
8L , (A.7)

where the Hirzebruch genus is given by

L(R) = 1− 2
3trR2 + 16

[
− 7
180trR4 + 1

72
(
trR2

)2]
+

+ 64
[
− 31
2835trR6 + 7

1080trR4 trR2 − 1
1296

(
trR2

)3]
+ . . .

(A.8)

It is often convenient to express the invariant polynomials in terms of characteristic classes,
namely the total Chern class∑

i

cR,it
i = det

(
eiF t + 1

)
= 1 + i trRF t+

trRF
2 − (trRF )2

2 t2

− i
2trRF

3 − 3
(
trRF

2) (trRF ) + (trRF )3

6 t3 + . . .

(A.9)

and the total Pontryagin class∑
i

pit
i = det

(
e2iR + 1

)
= 1− 2 trR2 t+ 2

[(
trR2

)2
− trR4

]
t2

− 4
3

[(
trR2

)3
− 6

(
trR4

) (
trR2

)
+ 8

(
trR6

)]
+ . . .

(A.10)
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Therefore, in our conventions

p1 = −2 trR2 ,

p2 = 2
[(

trR2
)2

− trR4
]
,

p3 =
4
3

[(
trR2

)3
− 6

(
trR4

) (
trR2

)
+ 8

(
trR6

)]
,

(A.11)

so that the A-roof genus can be recast as

Â1 = −p124 ,

Â2 =
7p21 − 4p2

5760 ,

Â3 =
−31p31 + 44p21p2 − 16p3

967680 .

(A.12)

Similarly, the Hirzebruch genus is

L1 =
p1
3 ,

L2 =
7p2 − p21

45 ,

L3 =
2p31 − 13p21p2 + 62p3

945 .

(A.13)

It is also convenient to write the Chern classes in terms of the components of Chern char-
acters as

cR,1 = chR,1(F ) ,
cR,2 = 1

2chR,1(F )2 − chR,2(F ) ,
cR,3 = 2chR,3(F )− chR,1(F )chR,2(F ) + 1

6chR,1(F )3 .
(A.14)

For our purposes, it is convenient to organise the above results into the contributions to
the anomaly polynomial of 6d N = (1, 0) multiplets. The gravity multiplet, comprising the
graviton, an antiself-dual 2-form field and a doublet of left-handed gravitinos, gives

IG = −273
360 trR4 + 51

288
(
trR2

)2
. (A.15)

A tensor multiplet comprises a scalar, a self-dual 2-form and a doublet of fermions with
opposite chirality, yielding

IT = 29
360trR4 − 7

288
(
trR2

)2
. (A.16)

A vector multiplet of a Lie algebra g comprises the gauge boson and a doublet of left-handed
fermions, which give

IV = −dimg

360 trR4 − dimg

288
(
trR2

)2
− 1

24tradjF
4 + 1

24tradjF
2 trR2 . (A.17)

Finally, hypermultiplets comprise four scalars and a doublet of right-handed fermions, and
their anomaly polynomial reads

IH = dimR
360 trR4 + dimR

288
(
trR2

)2
+ 1

24trRF
4 − 1

24trRF
2 trR2 . (A.18)

Finally, in table 3 we list the group-theoretic factors λi which normalise the instanton number.
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G SU(N) SO(2N) E7 E8 U(1)
λ 1 2 12 60 1

Table 3. The group-theoretic factors entering the perturbative local anomalies of eq. (2.23).

B Systematics for computing anomalies

In this appendix we collect useful formulae to systematically compute anomalies on Lens
spaces. These expressions can be also used for more general backgrounds of the type L2k−1

p ×X.
The Pontryagin class of Lens spaces can be computed using its relation to the Chern

class of the complexified tangent bundle, which is stably trivial since

(TL2n−1
p (ji)⊗ C)⊕ C =

n⊕
i=1

Lji ⊕ L−ji . (B.1)

Therefore, one finds

p =
n∏
i=1

(
1 + j2i x

2
)

−→ p1
2 = 1

2

n∑
i=1

j2i x
2 . (B.2)

In order to discuss the role of the gauge group G, we build an inclusion Zp → U(1) → G.
Here we focus on SU(N), Spin(2N) and exceptional groups. For the first and second cases,
one can include U(1) → SU(N) → Spin(2N) in the standard way, according to which the
(complexified) vector representation of Spin(2N) splits as

2N → N ⊕ N∗ . (B.3)

Placing the U(1) fundamental representation L in k pairs L ≡ L⊕L−1 inside the fundamental
of SU(N) in k diagonal blocks, and the rest in the trivial representation L0, the vector
representation of Spin(2N) further splits into

2N → N ⊕ N∗ → [kL⊕ (N − 2k)L0]⊕ [kL⊕ (N − 2k)L0] . (B.4)

This describes a family of inclusions, parametrised by k = 0 , . . . , [N/2] for SU(N) and
Spin(2N). In order to find the branching rules for other representations, it is convenient to
use Chern characters. Letting x ≡ c1(L), the Chern character of N (and N∗) is

ch(N) = k
(
ex + e−x

)
+ (N − 2k) . (B.5)

Then we can build the characters for adjoint, symmetric and antisymmetric SU(N) represen-
tations, from which we can reconstruct the characters for Spin(2N) representations of interest,
such as the adjoint (antisymmetric) and spinorial. The latter is composed of antisymmetric
SU(N) representations, which can be computed using the graded Chern character of the
exterior algebra Λ(V ) = ⊕nΛn(V ) of a bundle V , defined by

ch(Λ(V )) ≡
∑
n

tn ch(Λn(V )) (B.6)
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where the coefficients can be extracted noticing that Λ(U ⊕ V ) ≃ Λ(U) ⊗ Λ(V ) and that,
for line bundles L,

ch(Λ(L)) = 1 + t ec1(L) . (B.7)

For the cases of interest, we will only need antisymmetric powers Λn with n ≤ 4, so that we
can build the spinorial representations which play a role in E7 and E8.

In detail, we obtain the following decompositions, where we omit the trivial representation
whose degeneracy is fixed by the total dimension of the original representation. In the
following expressions, we denote Ln ≡ Ln ⊕ L−n.

• Decompositions for SU(N):

N −→ kL ,

adj −→ k2L2 ⊕ 2k(N − 2k)L ,
N(N − 1)

2 −→ k(k − 1)
2 L2 ⊕ k(N − 2k)L ,

N(N + 1)
2 −→ k(k + 1)

2 L2 ⊕ k(N − 2k)L .

(B.8)

For Sp(N), the inclusion we employ is Zp ↪→ U(1) ↪→ Sp(1) ≃ SU(2) k
↪→ Sp(N), under which

the 2N representation branches according to

2N −→ kL⊕ (2N − 2k)L0 . (B.9)

We shall not make use of this fact in this paper, but it may be useful for future applications.

• Decompositions for Spin(2N):

2N −→ 2kL ,
adj −→ k(2k − 1)L2 ⊕ 4k(N − 2k)L ,

sym −→ k(2k + 1)L2 ⊕ 4k(N − 2k)L .
(B.10)

In order to study anomalies for exceptional groups with inclusions of this type, we need
the branching rules for spinorial representations of Spin(12) and Spin(16). These can be found
by summing antisymmetric representations of various ranks, but the resulting decompositions
are very complicated to express for general k. Since only a few values of k are allowed, one
can compute the branching rules for each value, finding the following.

• Decomposition of spinorial representations for Spin(16):

128± k=1−→ 32L ,

128± k=2−→ 8L2 ⊕ 32L ,

128± k=3−→ 2L3 ⊕ 12L2 ⊕ 30L ,

128+ k=4−→ 8L3 ⊕ 56L ,

128− k=4−→ L4 ⊕ 28L2 ,

adj(E8) −→ adj ⊕ 128 .

(B.11)
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• Decomposition of spinorial representations for Spin(12):

32± k=1−→ 8L ,

32± k=2−→ 2L2 ⊕ 8L ,

32+ k=3−→ L3 ⊕ 15L ,

32− k=3−→ 6L2 ,

fund(E7) −→ 2× 12 ⊕ 32+ ,

adj(E7) −→ adj ⊕ 32+ ⊕ 32− .

(B.12)

Having found the relevant branching rules, one needs to compute Chern classes and
eta invariants on various spaces. The above expressions spell out the decomposition of the
gauge bundle into Zp charges q = 0 , . . . , p − 1. By the splitting principle, one can then
write the total Chern class

c

(⊕
m

amL
m

)
=
∏
m

(1−m2x2)am , (B.13)

so that the second Chern class is given by

c2 = −
∑
m

m2 am x
2 . (B.14)

Since eta invariants are additive under direct sum, we provide explicit formulae for ηq for
charged spinor fields and η0 for Rarita-Schwinger fields, since in the settings at stake gravitini
are always uncharged. For future convenience we provide these invariants for Lens spaces of
dimension three, seven and eleven, where the spin structure is the simplest.

• Charged eta invariants for (bulk) Dirac fermions on Lens spaces:

ηD
q (L3

p) =
p2 − 1− 6pq + 6q2

12p ,

ηD
q (L7

p) = − p4 + 10p2 − 11− 30p2q2 − 60pq + 60pq3 − 30q4 + 60q2
720p ,

ηD
q (L11

p ) = 2p6 + 21p4 + 168p2 − 191− 42p4q2 + 210p2q4 − 630p2q2
60480p ,

+ −252pq5 + 1260pq3 − 1008pq + 84q6 − 630q4 + 1008q2
60480p .

(B.15)

• Neutral Rarita-Schwinger invariants on Lens spaces:

ηRS
0 (L3

p) =
p2 − 8p+ 7

4p ,

ηRS
0 (L7

p) = − 7p4 − 170p2 + 163
720p ,

ηRS
0 (L11

p ) = 22p6 − 273p4 − 3192p2 + 3443
60480p .

(B.16)

For the reader’s convenience, we also provide useful formulae for trace decompositions, which
we extensively use in the main text to write anomaly polynomials in a factorised form. In
the following expressions we denote the fundamental traces with tr without any suffix.

– 52 –



J
H
E
P
0
4
(
2
0
2
4
)
0
6
7

• Trace decompositions for SU(N) ([2] denotes the rank-two antisymmetric
representation):

tradj F
2 = 2N trF 2 ,

tradj F
4 = 2N trF 4 + 6(trF 2)2 ,

tr[2] F 2 = (N − 2) trF 2 ,

tr[2] F 4 = (N − 8) trF 4 + 3(trF 2)2 ,
trsym F 2 = (N + 2) trF 2 ,

trsym F 4 = (N + 8) trF 4 + 3(trF 2)2 .

(B.17)

• Trace decompositions for Spin(2N):
tradj F

2 = (2N − 2) trF 2 ,

tradj F
4 = (2N − 8) trF 4 + 3(trF 2)2 ,

trsym F 2 = (2N + 2) trF 2 ,

trsym F 4 = (2N + 8) trF 4 + 3(trF 2)2 .

(B.18)

• Trace decompositions for spinors of Spin(16) and Spin(12):
tr128 F

2 = 16 trF 2 ,

tr128 F
4 = −8 trF 4 + 6(trF 2)2 ,

tr32 F
2 = 4 trF 2 ,

tr32 F
4 = −2 trF 4 + 3

2(trF
2)2 .

(B.19)

C Partition functions for SO(16) × SO(16) K3 orbifolds

This appendix is devoted to a brief discussion on the structure of the partition functions
of the SO(16)× SO(16) theory compactified on the orbifolds T4/ZN for N = 2, 3, 4, 6. The
general strategy is to compute the trace on the Hilbert space of oscillators of the Virasoro
zero modes for the SO(16)× SO(16) vacuum compactified on T4, and afterwards performing
the projection on PN = 1

N

∑N−1
α=0 g

β. The result is not modular invariant anymore, and one
has to include suitable images of the modular orbit. This leads to the presence of twisted
sectors and multiplicities dα,β. The partition function can be expressed in terms of traces
on Hilbert space of oscillators in each sector,

trα gβqL0−c/24 q̄L̄0−c̄/24 = Z
[α
β

]
Λα,β , (C.1)

where the contributions of worldsheet fermions and non compact bosons are given by

Z
[α

β

]
= 1

(ηη̄)4×{(
V4O

(α,β)
4 +O4V

(α,β)
4

)[(
O12O

(α,β)
4 +V 12V

(α,β)
4

)
O16+

(
S12S

(α,β)
4 +C12C

(α,β)
4

)
S16

]
+
(
O4O

(α,β)
4 +V4V

(α,β)
4

)[(
O12V

(α,β)
4 +V 12O

(α,β)
4

)
C16+

(
S12C

(α,β)
4 +C12S

(α,β)
4

)
V 16

]
−
(
S4S

(α,β)
4 +C4C

(α,β)
4

)[(
O12O

(α,β)
4 +V 12V

(α,β)
4

)
S16+

(
S12S

(α,β)
4 +C12C

(α,β)
4

)
O16

]
−
(
S4C

(α,β)
4 +C4S

(α,β)
4

)[(
O12V

(α,β)
4 +V 12O

(α,β)
4

)
V 16+

(
S12C

(α,β)
4 +C12S

(α,β)
4

)
C16

]}
(C.2)
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where the various affine characters of the level-one orthogonal algebras are given by

O
(α,β)
4 = 1

2η(τ)2
( 2∏
i=1

θ
[αvi
βvi

]
(0|τ) +

2∏
i=1

θ
[ αvi
1/2+βvi

]
(0|τ)

)
,

V
(α,β)
4 = 1

2η(τ)2
( 2∏
i=1

θ
[αvi
βvi

]
(0|τ)−

2∏
i=1

θ
[ αvi
1/2+βvi

]
(0|τ)

)
,

S
(α,β)
4 = 1

2η(τ)2
( 2∏
i=1

θ
[1/2+αvi

βvi

]
(0|τ)−

2∏
i=1

θ
[1/2+αvi

1/2+βvi

]
(0|τ)

)
,

C
(α,β)
4 = 1

2η(τ)2
( 2∏
i=1

θ
[1/2+αvi

βvi

]
(0|τ) +

2∏
i=1

θ
[1/2+αvi

1/2+βvi

]
(0|τ)

)
.

(C.3)

In the above expressions, vi stands for the shift vectors described in eq. (7.1), which should
be properly inserted when dealing with the left or right moving sectors. Furthermore, such
expressions are valid whenever the spin connection is identified with the gauge connection
(namely when the Bianchi identity is satisfied with the standard embedding), and should be
modified to incorporate other cases. Finally, the contributions from compact bosons read

Λα,β =


Λ4,4 = 1

(ηη̄)4

∑
m,n

q
α′
4 (m

R
−nR

α′ )q̄
α′
4 (m

R
+nR

α′ ) , (α, β) = (0, 0) ,

2∏
i=1

(2 sin πvi)2δα,0 ηη̄

θ
[1/2+αvi

1/2+βvi

]
(0|τ) θ

[1/2−αvi

1/2−βvi

]
(0|τ)

, otherwise .
(C.4)

The expressions in eq. (C.3) contain characters of the ŝu(2)1 and û(1)k algebras, in which
however the level k and the U(1) characters themselves are not easy to extract. Thus these
“characters” can only give us explicit information about SU(2) representations encoded into
the coefficients of their q-expansion. In particular, it is possible to see that O(α,β)

4 and
C

(α,β)
4 contain the trivial representation of SU(2), whereas V (α,β)

4 and S
(α,β)
4 contain the

fundamental, for every value of α and β.
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any medium, provided the original author(s) and source are credited.
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