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abstract In this paper we continue the study of the notion of P-rectifiability in Carnot groups. We say that a
Radon measure is Ph-rectifiable, for h ∈ N, if it has positive h-lower density and finite h-upper density almost
everywhere, and, at almost every point, it admits a unique tangent measure up to multiples.

In this paper we prove a Marstrand–Mattila rectifiability criterion in arbitrary Carnot groups for P-rectifiable
measures with tangent planes that admit a normal complementary subgroup. Namely, in this co-normal case, even
if a priori the tangent planes at a point might not be the same at different scales, a posteriori the measure has a
unique tangent almost everywhere.

Since every horizontal subgroup of a Carnot group has a normal complement, our criterion applies in the particular
case in which the tangents are one-dimensional horizontal subgroups. Hence, as an immediate consequence of our
Marstrand–Mattila rectifiability criterion and a result of Chousionis–Magnani–Tyson, we obtain the one-dimensional
Preiss’s theorem in the first Heisenberg group H1. More precisely, we show that a Radon measure φ on H1 with
positive and finite one-density with respect to the Koranyi distance is absolutely continuous with respect to the
one-dimensional Hausdorff measure H1, and it is supported on a one-rectifiable set in the sense of Federer, i.e., it is
supported on the countable union of the images of Lipschitz maps from A ⊆ R to H1.

keywords Carnot groups, Heisenberg groups, Rectifiability, Preiss’s Theorem, Rectifiable measure, Marstrand-
Mattila rectifiability criterion.
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1 introduction

In Euclidean spaces a Radon measure φ is said to be k-rectifiable if it is absolutely continuous with respect to
the k-dimensional Hausdorff measure Hk and it is supported on a countable union of k-dimensional Lipschitz
submanifolds, see [11, §3.2.14]. In Euclidean spaces, the previous global definition arises as a consequence of
the local structure of the measure, as it is clear from the following Proposition which is classically attributed to
Marstrand and Mattila, see e.g., [22, Theorem 16.7].

Proposition 1.1. Assume φ is a Radon measure on Rn and k is a natural number such that 1 ≤ k ≤ n. Then, φ is a
k-rectifiable measure if and only if for φ-almost every x ∈ Rn we have

(i) 0 < Θk
∗(φ, x) ≤ Θk,∗(φ, x) < +∞,

(ii) Tank(φ, x) ⊆ {λHkxV : λ > 0, and V is a k-dimensional vector subspace},
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introduction 2

where Θk
∗(φ, x) and Θk,∗(φ, x) are, respectively, the lower and the upper k-density of φ at x, see Definition 2.8, and Tank(φ, x)

is the set of k-tangent measures to φ at x, see Definition 2.7, while Hk is the Hausdorff measure.

The previous infinitesimal characterization of rectifiable measures in the Euclidean spaces is at the core of the
definition of P-rectifiable measures, which have been introduced by the second named author in [25, Definition
3.1 & Definition 3.2], in the setting of Carnot groups, and which have been studied by the two authors in [5, 4].
We stress that the present paper is the second of two companion papers derived from [5]. For a more thorough
introduction we refer the reader to the introductions of [5, 4].

A Carnot group G is a simply connected nilpotent Lie group, whose Lie algebra is stratified and generated by
its first layer. Carnot groups are a generalization of Euclidean spaces, and we remark that (quotients of) Carnot
groups arise as the infinitesimal models of sub-Riemannian manifolds and their geometry, even at an infinitesimal
scale, might be very different from the Euclidean one. From now on G will be a fixed Carnot group endowed
with an arbitrary left-invariant homogeneous distance d, see Section 2, and we recall that any two such distances
are bi-Lipschitz equivalent. These groups have finite Hausdorff dimension, that is commonly denoted by Q, with
respect to any homogeneous left-invariant distance. We recall that on G we have a natural family of dilations
{δλ}λ>0, see Section 2, which gives raise to a homogeneous structure on G with respect to which we can perform
blow-ups. We recall here the notion of P-rectifiable measure.

Definition 1.1 (P-rectifiable measures). Fix a natural number 1 ≤ h ≤ Q. A Radon measure φ on G is said to be
Ph-rectifiable if for φ-almost every x ∈ G we have

(i) 0 < Θh
∗(φ, x) ≤ Θh,∗(φ, x) < +∞,

(ii) Tanh(φ, x) ⊆ {λShxV(x) : λ ≥ 0}, where V(x) is a homogeneous subgroup of G of Hausdorff dimension h,

where Θh
∗(φ, x) and Θh,∗(φ, x) are, respectively, the lower and the upper h-density of φ at x, see Definition 2.8,

Tanh(φ, x) is the set of h-tangent measures to φ at x, see Definition 2.7, and Sh is the spherical Hausdorff measure
of dimension h, see Definition 2.4. Furthermore, we say that φ is P∗

h -rectifiable if (ii) is replaced with the weaker

(ii)∗ Tanh(φ, x) ⊆ {λShxV : λ ≥ 0, V is a homogeneous subgroup of G of Hausdorff dimension h}.

If we impose more regularity on the tangents we can define different subclasses of P-rectifiable or P∗-rectifiable
measures, see Definition 2.20 for details. We notice that, a posteriori, in the aforementioned definitions we can and
will restrict to λ > 0, see Remark 2.6.

Additional remark. This is the second of two companion papers derived from [5]. The present work consists of an
elaboration of Sections 2 and 5 of the Preprint [5], while the first of the two (that will appear as [3]) is an elaboration
of Sections 2, 3, 4, and 6 of [5]. In order to avoid redundancy, we wrote the complete proofs of some of the ancillary
results of Section 2 of [5] only in the first of the two. Therefore, here we omit some of the proofs of the basic results,
but we will always give precise references to the complete proofs that are contained in the Preprint on arXiv [5]. We
finally remark the results presented here are independent from those proved in Sections 3, 4, and 6 of [5]. Therefore
the present work is completeley indepent from the other.

1.1 Results

The main contribution of this paper is a co-normal Marstrand-Mattila rectifiability criterion for P-rectifiable
measures in the setting of Carnot groups. Already in the Euclidean case, it is not trivial to prove that a P∗-rectifiable
measure is rectifiable, see [8, Theorem 5.1], and [22, Theorem 16.7]. Proving that a P∗

Q−1-rectifiable measure in
a Carnot group of Hausdorff dimension Q is supported on the countable union of C1

H-regular hypersurfaces is a
challenging problem that has been solved by the second-named author in [25, Theorem 3].

In this paper we adapt Preiss’s techniques in [27] to prove that P∗-rectifiable measures with co-normal tangents,
i.e., with tangents that admit at least one normal complementary subgroup, are P-rectifiable, see Theorem 3.1.
This means that in this co-normal case, even if the tangents at a point might not be the same at different scales, then
a posteriori the tangent is unique almost everywhere. We recall that when we say that a homogeneous subgroup V

of a Carnot group G admits a complementary subgroup, we mean that there exists a homogeneous subgroup L such
that G = V ·L and V∩L = {0}.
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Theorem 1.2 (Co-normal Marstrand–Mattila rectifiability criterion). Let G be a Carnot group endowed with an arbitrary
left-invariant homogeneous distance. Let φ be a P∗

h -rectifiable measure on G with tangents that admit at least one
normal complementary subgroup. Then φ is a Ph-rectifiable measure. Moreover, there are countably many homogeneous
subgroups Vi of homogeneous dimension h, and Lipschitz maps Φi : Ai ⊆ Vi → G, where Ai’s are compact, such that

φ
(

G \
⋃

i∈N

Φi(Ai)
)
= 0.

Let us notice that the converse of Theorem 1.2 holds as well. Namely if φ is a Radon measure on G with positive
h-lower density and finite h-upper density φ-almost everywhere, and there are countably many homogeneous
subgroups Vi of homogeneous dimension h, and Lipschitz maps Φi : Ai ⊆ Vi → G, where Ai’s are compact, such
that

φ
(

G \
⋃

i∈N

Φi(Ai)
)
= 0,

hence φ is Ph-rectifiable (and a fortiori P∗
h -rectifiable). The proof is done first by a classical reduction to measures

of the type ShxΓ, and hence using the Rademacher theorem, and the area formula, which hold for the maps Φi.
The resulting reasoning is exactly the same as in the last part of the proof of Theorem 3.1.

As we said above, a Marstrand–Mattila rectifiability criterion for codimension-one rectifiable measures in arbitrary
Carnot groups has been proved by the second named author in [25]. The techniques used in [25] are likely to be
adapted to show the same result in the more general co-horizontal case. Apart from the cases discussed here, and
the result in Theorem 1.2, we presently do not know if a Marstrand–Mattila rectifiability criterion holds in the
generality of P∗-rectifiable measure with complemented tangents. We believe that such a result could be really
challenging because of the lack of regularity of the projections map in the general case.

We remark that we are able to prove Theorem 1.2 because of the following two key observations: whenever V

admits a normal complementary subgroup L, then the projection PV : G→ V related to the splitting G = V ·L
is a Lipschitz homogeneous homomorphism, see Proposition 2.21, and moreover V is a Carnot subgroup, see [2,
Remark 2.1]. This allows us to adapt Preiss’s machinery in [27] not without some difficulties that are essentially
due to the fact that, on the contrary with respect to the Euclidean setting, we do not have a canonical choice of a
normal complementary subgroup to V when there is at least one. We also stress that, for the Marstrand-Mattila
rectifiability criterion, the assumption on the strictly positive lower density is necessary already in the Euclidean
case, see [27, p. 5.9].

The hypotheses of Theorem 1.2 are satisfied whenever we have a P∗
h -rectifiable measure with horizontal tangents.

Thus, the previous co-normal Marstrand-Mattila rectifiability criterion, jointly with the result of [6, Theorem 1.3], can
be used to give the proof of Preiss’s theorem for measures with one-density in the Heisenberg group H1 endowed
with the Koranyi norm. For the sake of clarity, let us recall that if we identify H1 ≡ R3 = {(x, t) : x ∈ R2, t ∈ R}
through exponential coordinates, then the Koranyi norm is ‖(x, t)‖ := (‖x‖4

eu + t2)1/4, where ‖ · ‖eu is the standard
Euclidean norm.

Theorem 1.3 (One-dimensional Preiss’s theorem in H1). Let H1 be the first Heisenberg group endowed with the Koranyi
norm. Let φ be a Radon measure on H1 such that the one-density Θ1(φ, x) exists positive and finite for φ-almost every x ∈H1.
Then φ-almost all of H1 can be covered with countably many images Φi(Ai) of Lipschitz functions Φi : Ai ⊆ R→H1, and
moreover φ is absolutely continuous with respect to the one-dimensional Hausdorff measure H1.

Proof. From the fact that the one-density exists at φ-almost every x ∈H1 we deduce that at φ-almost every x ∈H1

the tangent measures are uniform measures, see [24, Proposition 2.2]. Then from [6, Theorem 1.3] we get that the
tangent measures, at φ-almost every x ∈H1, are S1xL, where L is a horizontal line. Finally from Theorem 1.2, since
every horizontal line admits a normal complementary subgroup, we get the first part of the sought conclusion. The
absolute continuity is a consequence of Proposition 2.5.

Let us notice that Theorem 1.3 is one of the few cases in which Preiss’s theorem [27] is nowadays known to hold
beyond the Euclidean space. The characterization of the k-rectifiability of a measure through the existence of the
k-density in Euclidean spaces was one of the great achievement of Geometric Measure Theory [27]. Another Preiss’s
type result has been proved by A. Lorent [20] in `3

∞. Recently, the second named author has accomplished to prove
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the analogue of Theorem 1.3 for the 3-density, which requires a deeper understanding of 3-uniform measures in the
first Heisenberg group H1, see [24, 25].

A related result to Theorem 1.3 in the broad generality of metric spaces is contained in [28]. Nevertheless we
stress that here we prove Theorem 1.3 in the general setting of Radon measures and we ask no bound on the density,
just its existence: namely, we prove that whenever the 1-density of a Radon measure exists on H1 endowed with
the Koranyi norm, hence we have that it is rectifiable. We remark that, even if we take advantage of the fact that the
classification of the 1-uniform measures on H1 was known from [6], the result in Theorem 1.3 is non-trivial, since it
requires the Marstrand–Mattila rectifiability criterion in Theorem 1.2.

Let us remark that the previous Theorem 1.3 is the last step needed to completely solve in H1 the implication
(i)⇒(ii) of the density problem formulated in [25, page 50]. Let us explain this and give a scheme here. If in H1

endowed with the Koranyi norm we have a Radon measure φ such that there exists α ≥ 0 for which the α-density
Θα(φ, x) exists positive and finite for φ-almost every x ∈H1 we first get that α is an integer, see [7, Theorem 1.1].
Thus the only non-trivial cases are

• α = 1. In this case φ is P1-rectifiable, see Theorem 1.2. Moreover we can cover φ-almost all of H1 with
countably many images of Lipschitz maps from subsets of R to H1. Note that we can improve the latter
conclusion. Indeed, we can cover φ-almost all of H1 with countably many images of C1

H-functions defined on
open subsets of R to H1. This last improvement comes from Pansu-Rademacher theorem for Lipschitz maps
between Carnot groups, see [26], and the Whitney exstension theorem proved in [16, Theorem 6.5].

• α = 2. In this case φ is P2-rectifiable, see [25, Theorem 3.7]. This means that the tangent measure is φ-almost
everywhere unique and it is a Haar measure of the vertical line in H1.

• α = 3. In this case φ is P3-rectifiable, see [24], and [25, Theorem 4]. Moreover we can cover φ-almost all of H1

with countably many C1
H-hypersurfaces, see [25, Theorem 4].

As it is clear from the list above, an interesting line of investigation could be a finer study of the structure of
P2-rectifiable measures in H1.

Acknowledgments: The first author is partially supported by the European Research Council (ERC Starting
Grant 713998 GeoMeG ‘Geometry of Metric Groups’). The second author is supported by the Simons Foundation
Wave Project, grant 601941, GD.

2 preliminaries

2.1 Carnot Groups

In this subsection we briefly introduce some notations on Carnot groups that we will extensively use throughout
the paper. For a detailed account on Carnot groups we refer to [18].

A Carnot group G of step κ is a simply connected Lie group whose Lie algebra g admits a stratification
g = V1 ⊕ V2 ⊕ · · · ⊕ Vκ . We say that V1 ⊕ V2 ⊕ · · · ⊕ Vκ is a stratification of g if g = V1 ⊕ V2 ⊕ · · · ⊕ Vκ ,

[V1, Vi] = Vi+1, for any i = 1, . . . , κ − 1, [V1, Vκ ] = {0}, and Vκ 6= {0},

where [A, B] := span{[a, b] : a ∈ A, b ∈ B}. We call V1 the horizontal layer of G. We denote by n the topological
dimension of g, by nj the dimension of Vj for every j = 1, . . . , κ. Furthermore, we define πi : G → Vi to be the
projection maps on the i-th strata. We will often shorten the notation to vi := πiv.

For a Carnot group G, the exponential map exp : g→ G is a global diffeomorphism from g to G. Hence, if we
choose a basis {X1, . . . , Xn} of g, any p ∈ G can be written in a unique way as p = exp(p1X1 + · · ·+ pnXn). This
means that we can identify p ∈ G with the n-tuple (p1, . . . , pn) ∈ Rn and the group G itself with Rn endowed with
the group operation · determined by the Baker-Campbell-Hausdorff formula. From now on, we will always assume
that G = (Rn, ·) and, as a consequence, that the exponential map exp acts as the identity.

For any p ∈ G, we define the left translation τp : G→ G as

q 7→ τpq := p · q.
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As already remarked above, the group operation · is determined by the Campbell-Hausdorff formula, and it has the
form (see [13, Proposition 2.1])

p · q = p + q +Q(p, q), for all p, q ∈ Rn,

where Q = (Q1, . . . , Qκ) : Rn ×Rn → V1 ⊕ . . .⊕Vκ , and the Qi’s have the following properties. For any i = 1, . . . κ
and any p, q ∈ G we have

(i) Qi(δλ p, δλq) = λiQi(p, q),

(ii) Qi(p, q) = −Qi(−q,−p),

(iii) Q1 = 0 and Qi(p, q) = Qi(p1, . . . , pi−1, q1, . . . , qi−1).

Thus, we can represent the product · as

p · q = (p1 + q1, p2 + q2 +Q2(p1, q1), . . . , pκ + qκ +Qκ(p1, . . . , pκ−1, q1, . . . , qκ−1)). (1)

The stratificaton of g carries with it a natural family of dilations δλ : g→ g, that are Lie algebra automorphisms
of g and are defined by

δλ(v1, . . . , vκ) := (λv1, λ2v2, . . . , λκvκ), for any λ > 0,

where vi ∈ Vi. The stratification of the Lie algebra g naturally induces a gradation on each of its homogeneous Lie
sub-algebras h, i.e., sub-algebras that are δλ-invariant for any λ > 0, that is

h = V1 ∩ h⊕ . . .⊕Vκ ∩ h. (2)

We say that h = W1 ⊕ · · · ⊕Wκ is a gradation of h if [Wi, Wj] ⊆ Wi+j for every 1 ≤ i, j ≤ κ, where we mean that
W` := {0} for every ` > κ. Since the exponential map acts as the identity, the Lie algebra automorphisms δλ can be
read also as group automorphisms of G.

Definition 2.1 (Homogeneous subgroups). A subgroup V of G is said to be homogeneous if it is a Lie subgroup of G

that is invariant under the dilations δλ.

We recall the following basic terminology: a horizontal subgroup of a Carnot group G is a homogeneous subgroup
of it that is contained in exp(V1); a Carnot subgroup W = exp(h) of a Carnot group G is a homogeneous subgroup
of it such that the first layer V1 ∩ h of the grading of h inherited from the stratification of g is the first layer of a
stratification of h.

Homogeneous Lie subgroups of G are in bijective correspondence through exp with the Lie sub-algebras of g
that are invariant under the dilations δλ. For any Lie algebra h with gradation h = W1 ⊕ . . .⊕Wκ , we define its
homogeneous dimension as

dimhom(h) :=
κ

∑
i=1

i · dim(Wi).

Thanks to (2) we infer that, if h is a homogeneous Lie sub-algebra of g, we have dimhom(h) := ∑κ
i=1 i · dim(h∩Vi).

We introduce now the class of homogeneous and left-invariant distances.

Definition 2.2 (Homogeneous left-invariant distance). A metric d : G×G→ R is said to be homogeneous and left
invariant if for any x, y ∈ G we have

(i) d(δλx, δλy) = λd(x, y) for any λ > 0,

(ii) d(τzx, τzy) = d(x, y) for any z ∈ G.

We remark that two homogeneous left-invariant distances on a Carnot group are always bi-Lipschitz equivalent. It
is well-known that the Hausdorff dimension (for a definition of Hausdorff dimension see for instance [22, Definition
4.8]) of a graded Lie group G with respect to an arbitrary left-invariant homogeneous distance coincides with the
homogeneous dimension of its Lie algebra. For a reference for the latter statement, see [19, Theorem 4.4]. From
now on, if not otherwise stated, G will be a fixed Carnot group. We recall that a homogeneous norm ‖ · ‖ on G is
a function ‖ · ‖ : G → [0,+∞) such that ‖δλx‖ = λ‖x‖ for every λ > 0 and x ∈ G; ‖x · y‖ ≤ ‖x‖+ ‖y‖ for every
x, y ∈ G; and ‖x‖ = 0 if and only if x = 0. We introduce now a distinguished homogeneous norm on G.
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Definition 2.3 (Smooth-box metric). For any g ∈ G, we let

‖g‖ := max{ε1|g1|, ε2|g2|1/2, . . . , εκ |gκ |1/κ},

where ε1 = 1 and ε2, . . . εκ are suitably small parameters depending only on the group G. For the proof of the
fact that we can choose the εi’s in such a way that ‖·‖ is a homogeneous norm on G that induces a left-invariant
homogeneous distance we refer to [13, Section 5].

Given an arbitrary homogeneous norm ‖ · ‖ on G, the distance d induced by ‖ · ‖ is defined as follows

d(x, y) := ‖x−1 · y‖.

Vice-versa, given a homogeneous left-invariant distance d, it induces a homogeneous norm through the equality
‖x‖ := d(x, e) for every x ∈ G, where e is the identity element of G.

Given a homogeneous left-invariant distance d we let U(x, r) := {z ∈ G : d(x, z) < r} be the open metric ball
relative to the distance d centred at x and with radius r > 0. The closed ball will be denoted with B(x, r) := {z ∈
G : d(x, z) ≤ r}. Moreover, for a subset E ⊆ G and r > 0, we denote with B(E, r) := {z ∈ G : dist(z, E) ≤ r} the
closed r-tubular neighborhood of E and with U(E, r) := {z ∈ G : dist(z, E) < r} the open r-tubular neighborhood of E.

Definition 2.4 (Hausdorff Measures). Throughout the paper we define the h-dimensional spherical Hausdorff measure
relative to a left invariant homogeneous metric d as

Sh(A) := sup
δ>0

inf
{ ∞

∑
j=1

rh
j : A ⊆

∞⋃
j=1

B(xj, rj), rj ≤ δ

}
,

for every A ⊆ G. We define the h-dimensional Hausdorff measure relative to d as

Hh(A) := sup
δ>0

inf

 ∞

∑
j=1

2−h(diam Ej)
h : A ⊆

∞⋃
j=1

Ej, diam Ej ≤ δ

 ,

for every A ⊆ G. We define the h-dimensional centered Hausdorff measure relative to d as

Ch(A) := sup
E⊆A
Ch

0 (E),

for every A ⊆ G, where

Ch
0 (E) := sup

δ>0
inf
{ ∞

∑
j=1

rh
j : E ⊆

∞⋃
j=1

B(xj, rj), xj ∈ E, rj ≤ δ

}
,

for every E ⊆ G. We stress that Ch is an outer measure, and thus it defines a Borel regular measure, see [9,
Proposition 4.1], and that the measures Sh,Hh, Ch are all equivalent measures, see [11, Section 2.10.2] and [9,
Proposition 4.2].

Definition 2.5 (Hausdorff distance). Given a left-invariant homogeneous distance d on G, for any couple of sets
A, B ⊆ G, we define the Hausdorff distance of A from B as

dH,G(A, B) := max
{

sup
x∈A

dist(x, B), sup
y∈B

dist(A, y)
}

,

where
dist(x, A) := inf

y∈A
d(x, y),

for every x ∈ G and A ⊆ G.
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2.2 Densities and tangents of Radon measures

Throughout the rest of the paper we will always assume that G is a fixed Carnot group endowed with an arbitrary
left-invariant homogeneous distance d. Some of the forthcoming results will be proved in the particular case in
which d is the distance induced by the distinguished homogeneous norm defined in Definition 2.3, and we will
stress this when it will be the case.

The homogeneous, and thus Hausdorff, dimension with respect to d will be denoted with Q. Furthermore as
discussed in the previous subsection, we will assume without loss of generality that G coincides with Rn endowed
with the product induced by the Baker-Campbell-Hausdorff formula relative to Lie(G).

Definition 2.6 (Weak convergence of measures). Given a family {φi}i∈N of Radon measures on G we say that φi
weakly converges to a Radon measure φ, and we write φi ⇀ φ, ifˆ

f dφi →
ˆ

f dφ, for any f ∈ Cc(G).

Definition 2.7 (Tangent measures). Let φ be a Radon measure on G. For any x ∈ G and any r > 0 we define the
measure

Tx,rφ(E) := φ(x · δr(E)), for any Borel set E.

Furthermore, we define Tanh(φ, x), the h-dimensional tangents to φ at x, to be the collection of the Radon measures
ν for which there is an infinitesimal sequence {ri}i∈N such that

r−h
i Tx,ri φ ⇀ ν.

Remark 2.1. (Zero as a tangent measure) We remark that our definition potentially admits the zero measure as a
tangent measure, as in [8], while the definitions in [27] and [23] do not.

Definition 2.8 (Lower and upper densities). If φ is a Radon measure on G, and h > 0, we define

Θh
∗(φ, x) := lim inf

r→0

φ(B(x, r))
rh , and Θh,∗(φ, x) := lim sup

r→0

φ(B(x, r))
rh ,

and we say that Θh
∗(φ, x) and Θh,∗(φ, x) are the lower and upper h-density of φ at the point x ∈ G, respectively.

Furthermore, we say that measure φ has h-density if

0 < Θh
∗(φ, x) = Θh,∗(φ, x) < ∞, for φ-almost any x ∈ G.

Lebesgue theorem holds for measures with positive lower density and finite upper density, and thus local
properties are stable under restriction to Borel subsets.

Proposition 2.1. Suppose φ is a Radon measure on G with 0 < Θh
∗(φ, x) ≤ Θh,∗(φ, x) < ∞ for φ-almost every x ∈ G.

Then, for any Borel set B ⊆ G and for φ-almost every x ∈ B we have

Θh
∗(φxB, x) = Θh

∗(φ, x), and Θh,∗(φxB, x) = Θh,∗(φ, x).

Proof. This is a direct consequence of Lebesgue differentiation Theorem of [15, page 77], that can be applied since
(G, d, φ) is a Vitali metric measure space due to [15, Theorem 3.4.3].

We stress that whenever the h-lower density of φ is stricly positve and the h-upper density of φ is finite φ-almost
everywhere, the set Tanh(φ, x) is nonempty for φ-almost every x ∈ G, see [25, Proposition 1.12]. The following
proposition has been proved in [25, Proposition 1.13].

Proposition 2.2 (Locality of tangents). Let h > 0, and let φ be a Radon measure such that for φ-almost every x ∈ G we
have

0 < Θh
∗(φ, x) ≤ Θh,∗(φ, x) < ∞.

Then for every ρ ∈ L1(φ) that is nonnegative φ-almost everywhere we have Tanh(ρφ, x) = ρ(x)Tanh(φ, x) for φ-almost every
x ∈ G. More precisely the following holds: for φ-almost every x ∈ G then

if ri → 0 is such that r−h
i Tx,ri φ ⇀ ν then r−h

i Tx,ri (ρφ) ⇀ ρ(x)ν. (3)
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Let us introduce a useful split of the support of a Radon measure φ on G.

Definition 2.9. Let φ be a Radon measure on G that is supported on the compact set K. For any ϑ, γ ∈N we define

E(ϑ, γ) :=
{

x ∈ K : ϑ−1rh ≤ φ(B(x, r)) ≤ ϑrh for any 0 < r < 1/γ
}

. (4)

Proposition 2.3. For any ϑ, γ ∈N, the set E(ϑ, γ) defined in Definition 2.9 is compact.

Proof. This is [25, Proposition 1.14].

Proposition 2.4. Assume φ is a Radon measure supported on the compact set K such that 0 < Θh
∗(φ, x) ≤ Θh,∗(φ, x) < ∞

for φ-almost every x ∈ G. Then φ(G \⋃ϑ,γ∈N E(ϑ, γ)) = 0.

Proof. Let w ∈ K \ ⋃ϑ,γ E(ϑ, γ) and note that this implies that either Θh
∗(φ, x) = 0 or Θh,∗(φ, x) = ∞. Since

0 < Θh
∗(φ, x) ≤ Θh,∗(φ, x) < ∞ for φ-almost every x ∈ G, this concludes the proof.

We recall here a useful proposition about the structure of Radon measures.

Proposition 2.5 ([25, Proposition 1.17 and Corollary 1.18]). Let φ be a Radon measure supported on a compact set on
G such that 0 < Θh

∗(φ, x) ≤ Θh,∗(φ, x) < ∞ for φ-almost every x ∈ G. For every ϑ, γ ∈ N we have that φxE(ϑ, γ) is
mutually absolutely continuous with respect to ShxE(ϑ, γ).

2.3 Intrinsic Grassmannian in Carnot groups

We give the definition of the intrinsic Grassmannian on Carnot groups and introduce the classes of complemented
and co-normal homogeneous subgroups.

Definition 2.10 (Intrinsic Grassmanian on Carnot groups). For any 1 ≤ h ≤ Q, we define Gr(h) to be the family of
homogeneous subgroups V of G that have Hausdorff dimension h.

Let us recall that if V is a homogeneous subgroup of G, any other homogeneous subgroup such that

V ·L = G and V∩L = {0}.

is said to be a complement of G. Finally, we let

(i) Grc(h) to be the subfamily of those V ∈ Gr(h) that have a complement and we will refer to Grc(h) as the
h-dimensional complemented Grassmanian,

(ii) GrE(h) the subfamily of those V ∈ Grc(h) having a normal complement and we will refer to GrE(h) as the
h-dimensional co-normal Grassmanian.

Let us introduce the stratification vector of a homogeneous subgroup.

Definition 2.11 (Stratification vector). Let h ∈ {1, . . . , Q} and for any V ∈ Gr(h) we denote with s(V) the vector

s(V) := (dim(V1 ∩V), . . . , dim(Vκ ∩V)),

that with abuse of language we call the stratification, or the stratification vector, of V. Furthermore, we define

S(h) := {s(V) ∈Nκ : V ∈ Gr(h)}.

We remark that the cardinality of S(h) is bounded by ∏κ
i=1(dim Vi + 1) for any h ∈ {1, . . . , Q}. We remark that

sometimes in the literature what we call stratification vector is referred to as growth vector.

Definition 2.12 (s-co-normal Grassmannian). For any s ∈ S(h) we let

GrsE(h) := {V ∈ GrE(h) : s(V) = s},

and we will refer to GrsE(h) as the s-co-normal Grassmannian.
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We now collect in the following some properties of the Grassmanians introduced above. The simple proofs are
omitted and can be found in the Preprint [5].

Proposition 2.6 (Compactness of the Grassmannian, [5, Proposition 2.7]). For any 1 ≤ h ≤ Q the function

dG(W1, W2) := dH,G(W1 ∩ B(0, 1), W2 ∩ B(0, 1)),

with W1, W2 ∈ Gr(h), is a distance on Gr(h). Moreover (Gr(h), dG) is a compact metric space.

Proposition 2.7 ([5, Proposition 2.8]). There exists a constant h̄G > 0, depending only on G, such that if W, V ∈ Gr(h)
and dG(V, W) ≤ h̄G, then s(V) = s(W).

Proposition 2.8 ([5, Proposition 2.9]). Suppose V ∈ Gr(h) is a homogeneous subgroup of topological dimension d. Then
ShxV, HhxV, ChxV and Hd

euxV are Haar measures of V. Furthermore, any Haar measure λ of V is h-homogeneous in the
sense that

λ(δr(E)) = rhλ(E), for any Borel set E ⊆ V.

We now introduce the projections related to a splitting G = V ·L of the group.

Definition 2.13 (Projections related to a splitting). For any V ∈ Grc(h), if we choose a complement L, we can find
two unique elements gV := PVg ∈ V and gL := PLg ∈ L such that

g = PV(g) · PL(g) = gV · gL.

We will refer to PV(g) and PL(g) as the splitting projections, or simply projections, of g onto V and L, respectively.

We recall here below a very useful fact on splitting projections.

Proposition 2.9. Let us fix V ∈ Grc(h) and L two complementary homogeneous subgroups of a Carnot group G. Then,
for any x ∈ G the map Ψ : V→ V defined as Ψ(z) := PV(xz) is invertible and it has unitary Jacobian. As a consequence
Sh(PV(E)) = Sh(PV(xPV(E))) = Sh(PV(xE)) for every x ∈ G and E ⊆ G Borel.

Proof. The first part is a direct consequence of [14, Proof of Lemma 2.20]. For the second part it is sufficient to use
the first part and the fact that for every x, y ∈ G we have PV(xy) = PV(xPVy).

The following proposition holds for the distance d induced by the norm introduced in Definition 2.3. The proof is
omitted and can be found in the Preprint [5].

Proposition 2.10 ([5, Proposition 2.11]). Let G be a Carnot group endowed with the homogeneous norm ‖ · ‖ introduced in
Definition 2.3. Let W ∈ Gr(h) be a homogeneous subgroup of Hausdorff dimension h and of topological dimension d. Then

(i) there exists a constant C1 := C1(s(W)) such that for any p ∈W and any r > 0 we have

Hd
eu (B(p, r) ∩W) = C1rh, (5)

(ii) there exists a constant β(W) such that ChxW = β(W)Hd
euxW,

(iii) β(W) = Hd
euxW(B(0, 1))−1 and in particular β(W) = β(s(W)).

Remark 2.2. We stress here for future references that the proof of item (iii) of Proposition 2.10, see [5], follows from
the following fact, whose proof is in [5, Proof of Proposition 2.11]. It holds that whenever an arbitrary Carnot group
G is endowed with an arbitrary left-invariant homogeneous distance d, then for every homogeneous subgroup
W ⊆ G of Hausdorff dimension h, we have that

Ch(W∩ B(0, 1)) = 1. (6)

Let ‖ · ‖ be a homogeneous norm on G. A function ϕ : G→ R is said to be radially symmetric with respect to ‖ · ‖ if
there is a function g : [0, ∞)→ R, called profile function such that ϕ(x) = g(‖x‖).
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Proposition 2.11. Let ϕ : G→ R be a radially symmetric function with respect to a homogeneous norm ‖ · ‖ on G, and let g
be its profile function. Let V ∈ Gr(h). Then the following holds

ˆ
ϕdChxV = h

ˆ
sh−1g(s)ds.

Proof. It suffices to prove the proposition for positive simple functions, since the general result follows by Beppo
Levi’s convergence theorem. Thus suppose V has topological dimension d and let ϕ(z) := ∑N

i=1 aiχB(0,ri)
(z) and

note that thanks to Remark 2.2 for any V ∈ Gr(h) we have that ChxV(B(0, ri)) = rh
i , and then

ˆ
ϕ(z)dChxV =

N

∑
i=1

aiChxV(B(0, ri)) =
N

∑
i=1

airh
i

= h
N

∑
i=1

ai

ˆ ri

0
sh−1ds = h

ˆ N

∑
i=1

aish−1χ[0,ri ]
(s)ds = h

ˆ
sh−1g(s)ds.

Let us conclude this subsection with two Propositions about the projection maps.

Proposition 2.12 (Corollary 2.15 of [14]). If V and L are two complementary subgroups, there exists a constant C2(V, L)
such that for any g ∈ G we have

C2(V, L)‖PL(g)‖ ≤ dist(g, V) ≤ ‖PL(g)‖, for any g ∈ G. (7)

In the following, whenever we write C2(V, L), we are choosing the supremum of all the constants such that inequality (7) is
satisfied.

Proposition 2.13. For any V ∈ Grc(h) with complement L there is a constant C3(V, L) > 0 such that for any p ∈ G and
any r > 0 we have

ShxV
(

PV(B(p, r))
)
= C3(V, L)rh.

Furthermore, for any Borel set A ⊆ G for which Sh(A) < ∞, we have

ShxV(PV(A)) ≤ 2C3(V, L)Sh(A). (8)

Proof. The existence of such C3(V, L) is yielded by [14, Lemma 2.20]. Suppose {B(xi, ri)}i∈N is a countable covering
of A with closed balls for which ∑i∈N rh

i ≤ 2Sh(A). Then

Sh(PV(A)) ≤ Sh
(

PV

( ⋃
i∈N

B(xi, ri)
))
≤ C3(V, L) ∑

i∈N

rh
i ≤ 2C3(V, L)Sh(A).

2.4 Cones over homogeneous subgroups and cylinder with co-normal axis

In this subsection, we introduce the intrinsic cone CW(α) and the notion of CW(α)-set, and prove some of their
properties. In this subsection G will be a fixed Carnot group endowed with an arbitrary homogeneous norm ‖ · ‖
that induces a left-invariant homogeneous distance d.

Definition 2.14 (Intrinsic cone). For any α > 0 and W ∈ Gr(h), we define the cone CW(α) as

CW(α) := {w ∈ G : dist(w, W) ≤ α‖w‖}.

Definition 2.15 (CW(α)-set). Given W ∈ Gr(h), and α > 0, we say that a set E ⊆ G is a CW(α)-set if

E ⊆ p · CW(α), for any p ∈ E.
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The following two Lemmata can be found in the Preprint [5]. The proof of the first is written here for the reader’s
convenience, since it will be evoked later on, while the proof of the second is omitted.

Lemma 2.14 ([5, Lemma 2.15]). For any W1, W2 ∈ Gr(h), ε > 0 and α > 0 if dG(W1, W2) < ε/4, then

CW1(α) ⊆ CW2(α + ε).

Proof. We prove that any z ∈ CW1(α) is contained in the cone CW2(α + ε). Thanks to the triangle inequality we infer

dist(z, W2) ≤ d(z, b) + inf
w∈W2

d(b, w), for any b ∈W1.

Thus, choosing b∗ ∈W1 in such a way that d(z, b∗) = dist(z, W1), and evaluating the previous inequality at b∗ we
get

dist(z, W2) ≤ dist(z, W1) + dist(b∗, W2) ≤ α‖z‖+ dist(b∗, W2), (9)

where in the second inequality we used z ∈ CW1(α).
Let us notice that, given W an arbitrary homogeneous subgroup of G, p ∈ G an arbitrary point such that p∗ ∈W

is one of the points at minimum distance from W to p, then the following inequality holds

‖p∗‖ ≤ 2‖p‖. (10)

Indeed,
‖p∗‖ − ‖p‖ ≤ ‖(p∗)−1 · p‖ = d(p, W) ≤ ‖p‖ ⇒ ‖p∗‖ ≤ 2‖p‖.

Now, by homogeneity, since b∗ ∈ W1 is the point at minimum distance from W1 of z, we get that D1/‖z‖(b∗)
is the point at minimum distance from W1 of D1/‖z‖(z). Thus, since ‖D1/‖z‖(z)‖ = 1, from (10) we get that
‖D1/‖z‖(b∗)‖ ≤ 2. Finally we obtain

dist(b∗, W2) = ‖z‖dist
(

D1/‖z‖(b
∗), W2

)
= ‖z‖dist

(
D1/‖z‖(b

∗), W2 ∩ B(0, 4)
)
≤

≤ ‖z‖dH(W1 ∩ B(0, 4), W2 ∩ B(0, 4))

= 4‖z‖dH(W1 ∩ B(0, 1), W2 ∩ B(0, 1)) < ε‖z‖,
(11)

where the first equality follows from the homogeneity of the distance, and the second is a consequence of the
fact that ‖D1/‖z‖(b∗)‖ ≤ 2, and thus, from (10), the point at minimum distance of D1/‖z‖(b∗) from W2 has norm
bounded above by 4; the third inequality comes from the definition of Hausdorff distance, the fourth equality is
true by homogeneity and the last inequality comes from the hypothesis dG(W1, W2) < ε/4. Joining (9), and (11)
we get z ∈ CW2(α + ε), that was what we wanted.

Lemma 2.15 ([5, Lemma 2.16]). Let V ∈ Grc(h), and let L be a complementary subgroup of V. There exists ε1 :=
ε1(V, L) > 0 such that

L∩ CV(ε1) = {0}.

Moreover we can, and will, choose ε1(V, L) := C2(V, L)/2.

Remark 2.3. Let V ∈ Grc(h) and let L be a complement of V. Let us notice that if there exists α > 0 such that
L ∩ CV(α) = {0}, then C2(V, L) ≥ α. Ineed it is enough to prove that α‖PL(g)‖ ≤ dist(g, V) for every g ∈ G. If
g ∈ V the latter in equality is trivially verified. Hence suppose by contradiction that there exists g /∈ V such that
α‖PL(g)‖ > dist(g, V). Since dist(g, V) = dist(PL(g), V) we conclude that PL(g) ∈ L ∩ CV(α) = {0}, that is a
contradiction since g /∈ V.

We will not use the following proposition in the paper, but it is worth mentioning it.

Proposition 2.16. The family of the complemented subgroups Grc(h) is an open subset of Gr(h).
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Proof. Fix a W ∈ Grc(h) and let L be one complementary subgroup of W and set ε < min{ε1(V, L), h̄G}. Then, if
W′ ∈ Gr(h) is such that dG(W, W′) < ε/4, Lemma 2.14 implies that W′ ⊆ CW(ε) and in particular

L∩W′ ⊆ L∩ CW(ε) = {0}.

Moreover, since ε < h̄G from Proposition 2.7, we get that W′ has the same stratification of W and thus the
same topological dimension. This, jointly with the previous equality and the Grassmann formula, means that
(W′ ∩ Vi) + (L ∩ Vi) = Vi for every i = 1, . . . , κ. This, jointly with the fact that L ∩W′ = {0}, implies that L

and W′ are complementary subgroups in G due to the triangular structure of the product · on G, see (1). For an
alternative proof of the fact that L and W′ are complementary subgroups, see also [17, Lemma 2.7].

We now prove a Proposition that will be useful in the next Section.

Proposition 2.17. Let W ∈ Grc(h) and assume L is one of the complementary subgroups of W. Any other subgroup
V ∈ Gr(h) on which PW is injective and satisfying the identity s(V) = s(W) is contained in Grc(h) and admits L as a
complement.

Proof. The hypothesis s(V) = s(W) implies that V and W have the same topological dimension. If by contradiction
there exists a 0 6= y ∈ L∩V, then

PW(y) = 0 = PW(0).

This however is not possible since we assumed that PW is injective on V. The fact that L∩V = {0} concludes the
proof by the same argument we used in the proof of the previous Proposition 2.16.

The following definition of intrinsically Lipschitz functions is equivalent to the classical one in [14, Definition 11]
because the cones in [14, Definition 11] and the cones CV(α) are equivalent whenever V admits a complementary
subgroup, see [14, Proposition 3.1].

Definition 2.16 (Intrinsically Lipschitz functions). Let W ∈ Grc(h) and assume L is a complement of W and let
E ⊆ W be a subset of V. Let α > 0. A function f : E → L is said to be an α-intrinsically Lipschitz function if
graph( f ) := {v · f (v) : v ∈ E} is a CW(α)-set. A function f : E→ L is said to be an intrinsically Lipschitz function if
there exists α > 0 such that f is an α-intrinsically Lipschitz function.

The next Proposition can be found in the Preprint [5] and thus we omit its proof.

Proposition 2.18 ([5, Proposition 2.19], see also [14]). Let us fix W ∈ Grc(h) with complement L. If Γ ⊂ G is a
CW(α)-set for some α ≤ ε1(W, L), then the map PW : Γ→W is injective. As a consequence Γ is the intrinsic graph of an
intrinsically Lipschitz map defined on PW(Γ).

We conclude this subsection with a more careful study of the co-normal Grassmanian. These results will turn out
to be fundamental when approaching the Marstrand-Mattila rectifiability criterion in Section 3.

Proposition 2.19. For any s ∈ S(h) the function e : GrsE(h)→ R defined as

e(V) := sup{ε1(V, L) : L is a normal complement of V}, (12)

is lower semicontinuous. Moreover the following conclusion holds

if G ⊆ GrsE(h) is compact with respect to dG, then there exists a eG > 0 such that e(V) ≥ eG for any V ∈ G ⊆ GrsE(h).

Proof. Let us prove that the function e is lower semincontinuous. Since ε1(V, L) = C2(V, L)/2, see Lemma 2.15,
it is enough to prove the proposition with 2e(V) instead of e(V), and with C2(V, L) instead of ε1(V, L). Let us
fix V ∈ GrsE(h) and 0 < ε < e(V), and denote with L one of the normal complement subgroups of V for which
C2(V, L) > 2e(V)− ε. For any W ∈ GrsE(h) thanks to Lemma 2.14 we have

CW(C2(V, L)− 4dG(V, W)− ε) ⊆ CV(C2(V, L)− ε), (13)

whenever dG(V, W) is small enough. Therefore if dG(V, W) is sufficiently small, the latter inclusion and the
same proof as in Lemma 2.15 imply that L ∩W ⊆ L ∩ CV(C2(V, L)− ε) = {0}. Since L ∩W = {0}, L and V
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are complementary subgroups and V and W have the same stratification vector, and thus the same topological
dimension, we have that L is a complement of W for the same argument used in the proof of Proposition 2.16.
Thus, taking (13) into account we get that L∩ CW(C2(V, L)− 4dG(V, W)− ε) = {0} and thus, from Remark 2.3,
we get that C2(W, L) ≥ C2(V, L)− 4dG(V, W)− ε whenever dG(V, W) is sufficiently small. This implies that

2e(W) ≥ C2(W, L) ≥ C2(V, L)− 4dG(V, W)− ε ≥ 2e(V)− 4d(V.W)− 2ε,

whenever dG(V, W) is small enough, and thus

lim inf
dG(W,V)→0

e(W) ≥ e(V)− ε,

from which the lower semicontinuity follows due to the arbitrariness of ε. The conclusion in item (i) follows since
G ⊆ GrsE(h) is compact and e is lower semincontinuous.

Remark 2.4. We observe that in the previous proposition we did not use the fact L is normal, but we stated the
proposition in this specific case since we are going to use this formulation in the paper. The same proof works in
the more general case when V ∈ Grsc (h) and e(V) = sup{ε1(V, L) : L is a complement of V}.

Proposition 2.20. Let C > 0 and V ∈ GrsE(h) be such that e(V) ≥ C. Then there exists a normal complement L of V such
that

‖PV(g)‖ ≤ (1 + 2/C)‖g‖, and ‖PL(g)‖ ≤ (2/C)‖g‖, for all g ∈ G, (14)

provided PV and PL are the projections relative to the splitting G = VL.

Proof. Thanks to the definition of e(V), see (12), there exists a normal complementary subgroup L of V such that
ε1(V, L) ≥ C/2. Thus, from Lemma 2.15, we get L∩ CV(C/2) = {0}. This implies, arguing as in Remark 2.3, that
for any g ∈ G we have

C‖PL(g)‖/2 ≤ dist(V, PL(g)) = dist(V, g) ≤ ‖g‖. (15)

Furthermore, thanks to the triangle inequality we have

‖g‖ ≥ ‖PV(g)‖ − ‖PL(g)‖ ≥ ‖PV(g)‖ − (2/C)‖g‖,

thus concluding the proof of the proposition.

Proposition 2.21. Let C > 0 and V ∈ GrsE(h) be such that e(V) ≥ C. Let L be a normal complementary subgroup to
V as in Proposition 2.20. Then the projection PV : G → V related to the splitting G = V ·L is a (1 + 2/C)-Lipschitz
homogeneous homomorphism.

Proof. Thanks to the fact that L is normal, we have that for any x, y ∈ G the following equality holds

PV(xy) = PV(xVxLyVyL) = PV(xVyV · y−1
V xLyV · yL) = PV(x)PV(y).

Since PV is always an homogeneous map, we infer that PV is a homogeneous homomorphism. Moreover, from
Proposition 2.20 we have that

‖PV(g)‖ ≤ (1 + 2/C)‖g‖,

for every g ∈ G. Hence from the fact that PV is a homomorphism we have

‖PV(x)−1PV(y)‖ = ‖PV(x−1y)‖ ≤ (1 + 2/C)‖x−1y‖,

for every x, y ∈ G and thus PV is (1 + 2/C)-Lipschitz.

Remark 2.5. Notice that in the proof of the above proposition we proved that whenever L is normal, then PV is a
homomorphism.

Definition 2.17 (Cylinder). Let V, L be two complementary subgroups of G. For any u ∈ G, and r > 0 we define

T(u, r) := P−1
V (PV(B(u, r))).
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In the following proposition we study the structure of cylinders T(·, ·) when L is normal.

Proposition 2.22. Let C > 0 and V ∈ GrsE(h) be such that e(V) ≥ C. Let L be a normal complementary subgroup to V as
in Proposition 2.20. Thus, for any u ∈ G we have T(u, r) = PV(u)δrT(0, 1). Furthermore, we have

T(u, r) ⊆ PV(u)δrP−1
V (B(0, (1 + 2/C)) ∩V) = P−1

V (B(PV(u), (1 + 2/C)r) ∩V).

Finally, for any h ∈ L we have B(uh, r) ⊆ T(u, r).

Proof. First of all, we note that thanks to Proposition 2.21 we have that w ∈ PV(B(u, r)) if and only if there exists a
v ∈ B(0, 1) such that w = PV(u)δrPV(v). Therefore, given u ∈ G and r > 0, we have that y ∈ T(u, r) if and only
if y = PV(u)δrPV(v)h for some v ∈ B(0, 1) and h ∈ L. Thus we conclude that T(u, r) = PV(u)δrT(0, 1) for every
u ∈ G and r > 0.

Secondly, thanks to Proposition 2.21 we infer that PV(B(0, 1)) ⊆ V∩ B(0, (1 + 2/C)) and thus combining such
inclusion with the first part of the proposition we deduce that

T(u, r) ⊆ PV(u)δrP−1
V (B(0, (1 + 2/C)) ∩V) = P−1

V (B(PV(u), (1 + 2/C)r) ∩V),

where the last equality is true since PV is a homogeneous homomorphism. Finally, thanks to the first part of the
proposition, for any u ∈ V and any h ∈ L we have

B(uh, r) ⊆ T(uh, r) = T(u, r),

and this concludes the proof of the proposition.

2.5 Rectifiable measures in Carnot groups

In what follows we are going to define the class of h-flat measures on a Carnot group and then we will give
proper definitions of rectifiable measures on Carnot groups. Again we recall that throughout this subsection G will
be a fixed Carnot group endowed with an arbitrary left-invariant homogeneous distance.

Definition 2.18 (Flat measures). For any h ∈ {1, . . . , Q} we let M(h) to be the family of flat h-dimensional measures in
G, i.e.

M(h) := {λShxW : for some λ > 0 and W ∈ Gr(h)}.

Furthermore, if G is a subset of the h-dimensional Grassmanian Gr(h), we let M(h, G) to be the set

M(h, G) := {λShxW : for some λ > 0 and W ∈ G}. (16)

We stress that in the previous definitions we can use any of the Haar measures on W, see Proposition 2.8, since
they are the same up to a constant.

Definition 2.19 (Ph and P∗
h -rectifiable measures). Let h ∈ {1, . . . , Q}. A Radon measure φ on G is said to be a

Ph-rectifiable measure if for φ-almost every x ∈ G we have

(i) 0 < Θh
∗(φ, x) ≤ Θh,∗(φ, x) < +∞,

(ii) there exists a V(x) ∈ Gr(h) such that Tanh(φ, x) ⊆ {λShxV(x) : λ ≥ 0}.

Furthermore, we say that φ is P∗
h -rectifiable if (ii) is replaced with the weaker

(ii)* Tanh(φ, x) ⊆ {λShxV : λ ≥ 0 and V ∈ Gr(h)}.

Remark 2.6. (About λ = 0 in Definition 2.19) It is readily noticed that, since in Definition 2.19 we are asking
Θh
∗(φ, x) > 0 for φ-almost every x, we can not have the zero measure as a tangent measure. As a consequence,

a posteriori, we have that in item (ii) and item (ii)* above we can restrict to λ > 0. We will tacitly work in this
restriction from now on.
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On the contrary, if we only know that for φ-almost every x ∈ G we have

Θh,∗(φ, x) < +∞, and Tanh(φ, x) ⊆ {λShxV(x) : λ > 0}, (17)

for some V(x) ∈ Gr(h), hence Θh
∗(φ, x) > 0 for φ-almost every x ∈ G, and the same property holds with the

item (ii)* above. Indeed, if at some x for which (17) holds we have Θh
∗(φ, x) = 0, then there exists ri → 0 such

that r−h
i φ(B(x, ri)) = 0. Since Θh,∗(φ, x) < +∞, up to subsequences (see [1, Theorem 1.60]), we have r−h

i Tx,ri φ →
λShxV(x), for some λ > 0. Hence, by applying [1, Proposition 1.62(b)] we conclude that r−h

i Tx,ri φ(B(0, 1)) →
λShxV(x)(B(0, 1)) > 0, that is a contradiction.

Throughout the paper it will be often convenient to restrict our attention to some subclasses of Ph- and P∗
h -

rectifiable measures, imposing different restrictions on the algebraic nature of the tangents. More precisely we give
the following definition.

Definition 2.20 (Subclasses of Ph and P∗
h -rectifiable measures). Let h ∈ {1, . . . , Q}. In the following we denote by

Pc
h the family of those Ph-rectifiable measures such that for φ-almost every x ∈ G we have

Tanh(φ, x) ⊆M(h, Grc(h)).

Furthermore, the family of those P∗
h -rectifiable measures φ such that for φ-almost any x ∈ G we have

(i) Tanh(φ, x) ⊆M(h, Grc(h)) is denoted by P∗,c
h ,

(ii) Tanh(φ, x) ⊆M(h, GrE(h)) is denoted by P∗,E
h ,

(iii) Tanh(φ, x) ⊆M(h, GrsE(h)) is denoted by P∗,E,s
h .

Proposition 2.23. Let h ∈ {1, . . . , Q} and assume φ is a Radon measure on G. If {ri}i∈N is an infinitesimal sequence such
that r−h

i Tx,ri φ ⇀ λChxV for some λ > 0 and V ∈ Gr(h) then

lim
i→∞

φ(B(x, ri))/rh
i = λ.

Proof. Since ChxV(x)(∂B(0, 1)) = 0, see e.g., [17, Lemma 3.5], thanks to Remark 2.2 and to [1, Proposition 1.62(b)],
we have

λ = λChxV(x)(B(0, 1)) = lim
i→∞

Tx,ri φ(B(0, 1))
rh

i
= lim

i→∞

φ(B(x, ri))

rh
i

,

and this concludes the proof.

The above proposition has the following immediate consequence.

Corollary 2.24. Let h ∈ {1, . . . , Q} and assume φ is a P∗
h -rectifiable. Then for φ-almost every x ∈ G we have

Tanh(φ, x) ⊆ {λChxW : λ ∈ [Θh
∗(φ, x), Θh,∗(φ, x)] and W ∈ Gr(h)}.

We introduce now a way to estimate how far two measures are.

Definition 2.21. Given φ and ψ two Radon measures on G, and given K ⊆ G a compact set, we define

FK(φ, ψ) := sup
{∣∣∣∣ˆ f dφ−

ˆ
f dψ

∣∣∣∣ : f ∈ Lip+
1 (K)

}
. (18)

We also write Fx,r for FB(x,r).

Remark 2.7. With few computations that we omit, it is easy to see that Fx,r(φ, ψ) = rF0,1(Tx,rφ, Tx,rψ). Furthermore,
FK enjoys the triangular inequality, indeed if φ1, φ2, φ3 are Radon measures and f ∈ Lip+

1 (K), then∣∣∣ ˆ f dφ1 −
ˆ

f dφ2

∣∣∣ ≤ ∣∣∣ ˆ f dφ1 −
ˆ

f dφ3

∣∣∣+ ∣∣∣ ˆ f dφ3 −
ˆ

f dφ2

∣∣∣
≤ FK(φ1, φ2) + FK(φ2, φ3).

The arbitrariness of f concludes that FK(φ1, φ2) ≤ FK(φ1, φ3) + FK(φ3, φ2).
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The proof of the following criterion is contained in [25, Proposition 1.10] and we omit the proof.

Proposition 2.25. Let {µi} be a sequence of Radon measures on G. Let µ be a Radon measure on G. The following are
equivalent

1. µi ⇀ µ;

2. FK(µi, µ)→ 0, for every K ⊆ G compact.

The following proposition is a consequence of the choice of the norm in Definition 2.3, since it is based on
Proposition 2.10.

Proposition 2.26. Let G be a Carnot group endowed with the smooth-box norm defined in Definition 2.3. Let h ∈ {1, . . . , Q}
and suppose that {Vi}i∈N is a sequence of planes in Gr(h) converging in the metric dG to some V ∈ Gr(h). Then,
ChxVi ⇀ ChxV.

Proof. First of all note that Proposition 2.7 implies that there exists a i0 ∈N such that for any i ≥ i0 we have that
Vi and V have the same stratification and thus the same topological dimension d. Since the Vi’s have the same
stratification if i ≥ i0, Proposition 2.10(iii) implies that β(Vi) = β(V) for any i ≥ i0. Thus, for any continuous
function f with compact support thanks to Proposition 2.10 we have

lim
i→∞

ˆ
f dChxVi −

ˆ
f dChxV = lim

i→∞
β(V)

( ˆ
f dHd

euxVi −
ˆ

f dHd
euxV

)
= 0,

where the last identity comes from the fact that Hd
euxVi ⇀ Hd

euxV.

Now we are going to define a functional that in some sense tells how far is a measure from being flat around a
point x ∈ G and at a certain scale r > 0.

Definition 2.22. For any x ∈ G, any h ∈ {1, . . . , Q} and any r > 0 we define the functional:

dx,r(φ,M(h)) := inf
Θ>0,

V∈Gr(h)

Fx,r(φ, ΘShxxV)

rh+1 . (19)

Furthermore, if G is a subset of the h-dimensional Grassmanian Gr(h), we also define

dx,r(φ,M(h, G)) := inf
Θ>0,
V∈G

Fx,r(φ, ΘShxxV)

rh+1 .

Remark 2.8. It is a routine computation to prove that, whenever h ∈ N and r > 0 are fixed, the function
x 7→ dx,r(φ,M(h, G)) is a continuous function. The proof can be reached as in [25, Item (ii) of Proposition 2.2].
Moreover, from the invariance property in Remark 2.7 and Proposition 2.8, if in (19) we use the measure ChxxV we
obtain the same functional.

The proof of the next Proposition is in the Preprint [5] and thus we omit it.

Proposition 2.27 ([5, Proposition 2.30]). Let φ be a Radon measure on G satisfying item (i) in Definition 2.19. Further, let G
be a subfamily of Gr(h) and let M(h, G) be the set defined in (16). If for φ-almost every x ∈ G we have Tanh(φ, x) ⊆M(h, G),
then for φ-almost every x ∈ G and every every k > 0 we have

lim
r→0

dx,kr(φ,M(h, G)) = 0.

The following proposition is an adaptation of [27, 4.4(4)] and it will be crucial in the proof of Marstrand-Mattila’s
rectifiability criterion in Section 3.

Proposition 2.28. Suppose that h ∈ {1, . . . , Q}, φ is a Radon measure supported on a compact set, and let G ⊆ Gr(h). If
there exists an x ∈ E(ϑ, γ), a σ ∈ (0, 2−10(h+1)ϑ−1) and a 0 < t < 1/(2γ) such that

dx,t(φ,M(h, G)) ≤ σh+4,

then there is a V ∈ G such that
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(i) whenever y, z ∈ B(x, t/2) ∩ xV and σt ≤ r, s ≤ t/2 we have

φ(B(y, r) ∩ B(xV, σ2t)) ≥ (1− 210(h+1)ϑσ)(r/s)hφ(B(z, s));

(ii) furthermore, if the plane V yielded by item (i) above admits a complementary normal subgroup L, denote by PV

the splitting projection on V according to this splitting. Then for any k > 0 with σk < 2−10hϑ−1, if we define
TV(0, t/4k) := P−1

V (PV(B(0, t/4k))) we have

φ(B(x, t/4) ∩ xTV(0, t/4k)) ≤ (1 + 4σ(2kh + 1))Ch(P(B(0, 1)))k−hφ(B(x, t/4)).

Proof. First of all, we notice that by the definition of dx,t(φ,M(h, G)) there exist V ∈ G and λ > 0 such that

Fx,t(φ, λChxxV) ≤ σh+3th+1.

proof of (i) The key of the proof of item (i) is to show that for any w ∈ B(x, t/2) ∩ xV, any τ ∈ (0, t/2] and
any ρ ∈ (0, τ] we have

φ(B(w, τ)) ≤ λChx(xV)(B(w, τ + ρ)) + σh+3th+1/ρ, (20)

λChx(xV)(B(w, τ − ρ)) ≤ φ(B(w, τ) ∩ B(xV, ρ)) + σh+3th+1/ρ. (21)

Before proving that (20) and (21) together imply the claim, we need to give a lower bound for λ. Since x ∈ E(ϑ, γ),
with the choice w = x, τ = t/4, and ρ := σ2t we have, from (20), that the following inequality holds

ϑ−1(t/4)h ≤ φ(B(x, t/4)) ≤ λChx(xV)(B(x, (1/4 + σ2)t)) + σh+1th

= λ(1/4 + σ2)hth + σh+1th,
(22)

where the last equality comes from Remark 2.2. Since we know that σ ≤ 1/(210(h+1)ϑ), we infer that σh+1 ≤ 1/(8hϑ),
and then from (22) we infer

ϑ−14−h ≤ λ(1/4 + σ2)h + σh+1 and in particular λ ≥ ϑ−12−3h, (23)

where we exploited the fact that 1/4 + σ2 < 1, the fact that σh+1 ≤ 1/(8hϑ) and the fact that 4−h − 8−h ≥ 8−h.
Let us now prove that (20) and (21) imply the claim. Since by hypothesis r, s ≥ σt with the choice ρ = σ2t we

have ρ < r, s. Furthermore since σt ≤ r, s ≤ t/2 and y, z ∈ B(x, t/2) ∩ xV, the bounds (20) and (21) imply

φ(B(y, r) ∩ B(xV, ρ))

φ(B(z, s))
≥ λChx(xV)(B(y, r− ρ))− σh+3th+1/ρ

λChx(xV)(B(z, s + ρ)) + σh+3th+1/ρ

=
rh

sh
λ(1− σ2t/r)h − σh+1(t/r)h

λ(1 + σ2t/s)h + σh+1(t/s)h

≥ rh

sh
λ(1− σ)h − σh+1(t/r)h

λ(1 + σ)h + σh+1(t/s)h ≥
rh

sh
λ(1− σ)h − σ

λ(1 + σ)h + σ
,

where the equality in the second line comes from Remark 2.2, and we are using σt/r ≤ 1, and σt/s ≤ 1. Since
2hσ ≤ 1, we have that (1 + σ)h ≤ 1 + 2hσ, that can be easily proved by induction on h. This together with (23) and
Bernoulli’s inequality (1− σ)h ≥ 1− σh allows us to finally infer that

φ(B(y, r) ∩ B(xV, ρ))

φ(B(z, s))
≥ rh

sh
1− (λh + 1)σ/λ

1 + (2hλ + 1)σ/λ
≥ (1− 210(h+1)ϑσ)

rh

sh ,

where the last inequality comes from the fact that σ ≤ 1/210(h+1)ϑ, from (23) and some easy algebraic computations
that we omit. An easy way to verify the last inequality is to show that (1 − α̃σ)/(1 + β̃σ) ≥ 1 − γ̃σ, where
α̃ := (λh + 1)/λ, β̃ := (2hλ + 1)/λ and γ̃ := 210(h+1)ϑ, and observe that the latter inequality is implied by the fact
that α̃ + β̃− γ̃ ≤ 0.



preliminaries 18

Therefore, we are left to prove (20) and (21). In order to prove (20), we let g(z) := min{1, dist(z, G \U(w, τ +
ρ))/ρ} and note that

φ(B(w, τ)) ≤
ˆ

g(z)dφ(z) ≤
ˆ

g(z)dλChx(xV)(z) + Lip(g)Fx,t(φ, λChx(xV))

≤ λChx(xV)(B(w, τ + ρ)) + σh+3th+1/ρ.

On the the other hand, to prove (21) we let h(z) := min{1, dist(z, G \ (U(w, τ) ∩U(xV, ρ)))/ρ} and

λChx(xV)(B(w, τ − ρ)) ≤
ˆ

h(z)dλChx(xV)(z)

≤
ˆ

h(z)dφ(z) + Lip(h)Fx,t(φ, λChx(xV))

≤ φ(B(w, τ) ∩ B(xV, ρ)) + σh+3th+1/ρ.

proof of (ii): In this proof let us fix τ := t/4 and define the function `(z) := min{1, dist(z, G \U(U(x, τ) ∩
xT(0, τ/k), ρ))/ρ}, where 0 < ρ < τ. With this definition we have the following chain of inequalities

φ(B(x, τ) ∩ xT(0, τ/k)) ≤
ˆ

`(z)dφ(z) ≤
ˆ

`(z)dλChx(xV)(z) + Lip(`)Fx,t(φ, λChx(xV))

≤ λChx(xV)(B(x, τ + ρ) ∩ xT(0, τ/k + ρ)) + 4h+1σh+3τh+1/ρ

≤ λChxV(P(B(0, 1)))(τ/k + ρ)h + 4h+1σh+3τh+1/ρ,

(24)

where the third inequality above comes from the fact that, according to the proof of Proposition 2.21, the projection
P is a homomorphism, and then the following chain of equalities holds

P(B(T(0, τ/k), ρ)) = P(T(0, τ/k)B(0, ρ)) = P(B(0, t/k))P(B(0, ρ)) = P(B(0, τ/k + ρ)). (25)

Putting together (21) when specialized to the case w = x and τ = t/4, with (24) and Remark 2.2, we infer that

φ(B(x, τ) ∩ xT(0, τ/k))
φ(B(x, τ))

≤ λChxV(P(B(0, 1)))(τ/k + ρ)h + 4h+1σh+3τh+1/ρ

λ(τ − ρ)h − 4h+1σh+3τh+1/ρ
. (26)

Since σ2 < 1 we choose ρ := σ2τ and note that since σk < 2−10hϑ−1, the previous inequality yields

φ(B(x, τ) ∩ xT(0, τ/k))
φ(B(x, τ))

≤ λCh(P(B(0, 1)))(1/k + σ2)h + 4h+1σh+1

λ(1− σ2)h − 4h+1σh+1

≤ (1 + 4σ(2kh + 1))Ch(P(B(0, 1)))k−h,

where we omit the computations that lead to the last inequality but we stress that we need Ch(P(B(0, 1))) ≥ 1, that
in turns comes from the fact that P(B(0, 1)) ⊇ B(0, 1) ∩V and Ch(B(0, 1) ∩V) = 1, due to Remark 2.2; and also the
bound on λ in (23). The last inequality concludes the proposition.

We prove the following compactness result that will be of crucial importance in the proof of the co-normal
Marstrand-Mattila rectifiability criterion later on.

Proposition 2.29. Let h ∈ {1, . . . , Q} and assume φ is a P∗
h -rectifiable measure. Then, for φ-almost all x ∈ G the set

Tanh(φ, x) is weak-∗ compact.

Proof. Since the statement of the Proposition does not depend on the choice of the left-invariant homogeneous
distance on G, we assume that G is endowed with the left-invariant homogeneous distance induced by the
smooth-box norm in Definition 2.3.

Let x ∈ G be such that 0 < Θh
∗(φ, x) ≤ Θh,∗(φ, x) < ∞ and Tanh(φ, x) ⊆ M(h). We now prove that for

any sequence {λjChxVj}j∈N ⊆ Tanh(φ, x), there are a λ > 0 and V ∈ Gr(h) such that, up to non-relabelled
subsequences we have

λjChxVj ⇀ λChxV.
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Indeed, thanks to Corollary 2.24 we have that λj ∈ [Θh
∗(φ, x), Θh,∗(φ, x)] for any j ∈ N and thus we can assume

without loss of generality that
λj → λ ∈ [Θh

∗(φ, x), Θh,∗(φ, x)]

up to a non-relabelled subsequence. Furthermore, thanks to Proposition 2.6 there exists a V ∈ Gr(h) such that
Vj → V with respect to the metric dG. Thus, thanks to Proposition 2.26 and a simple computation that we omit, we
conclude that

λjChxVj ⇀ λChxV.

Since we assumed {λjChxVj} ⊆ Tanh(φ, x) then, for any j ∈N there is a sequence {r`(j)}`∈N such that

r`(j)−hTx,r`(j)φ ⇀ λjChxVj.

Thus, Proposition 2.25 implies that lim`→∞ F0,1(r`(j)−hTx,r`(j)φ, λjChxVj) = 0, and in particular for any j ∈N there
exists an `j ∈N such that defined rj := r`j

(j) we have

F0,1(r
−h
j Tx,rj φ, λjChxVj) ≤ 1/j.

Since lim supj→∞ r−h
j Tx,rj φ(B(0, r)) ≤ Θh,∗(φ, x)rh for any r > 0, thanks to [1, Corollary 1.60], we can assume

without loss of generality that there exists a Radon measure ν such that r−h
j Tx,rj φ ⇀ ν. On the other hand, by

definition we have that ν ∈ Tanh(φ, x) and thus by hypothesis on φ there is a η > 0 and a W ∈ Gr(h) such that
ν = ηChxW. This implies that for any j ∈N we have

F0,1(ηChxW, λChxV) ≤ F0,1(ηChxW, r−h
j Tx,rj φ) + F0,1(r

−h
j Tx,rj φ, λjChxVj)

+ F0,1(λjChxVj, λChxV)

≤ F0,1(ηChxW, r−h
j Tx,rj φ) + 1/j + F0,1(λjChxVj, λChxV).

The arbitrariness of j and Proposition 2.25 implies that F0,1(ηChxW, λChxV) = 0 and since flat measures are cones,
see Remark 2.7, we conclude that ηChxW = λChxV. This shows that λChxV ∈ Tanh(φ, x) and then the proof is
concluded.

3 marstrand-mattila rectifiability criterion for co-normal-P∗
h -rectifiable measures

This chapter is devoted to the proof of the following result, which is a restatement of the main result of the paper
in Theorem 1.2.

Theorem 3.1 (Co-normal Marstrand-Mattila rectifiability criterion). Assume φ is a P∗,E
h -rectifiable measure on a Carnot

group G. Then there are countably many Wi ∈ GrE(h), compact sets Ki b Wi and Lipschitz functions fi : Ki → G such that

φ(G \
⋃

i∈N

fi(Ki)) = 0.

In particular φ is Pc
h-rectifiable.

We briefly discuss the strategy of the proof of Theorem 3.1, which is ultimately an adaptation of Preiss’s technique
in [27, Section 4.4(4), Lemma 5.2, Theorem 5.3, and Corollary 5.4] to our setting, see Proposition 2.28, Proposition 3.6,
and Proposition 3.10, respectively. In particular we show that whenever a Radon measure satisfies precise structure
conditions, see Proposition 3.6, that are always verified whenever φ is P∗

h -rectifiable with tangents that admit at
least one normal complementary subgroup, see Proposition 3.8, then it is possible to find a Lipschitz function
f : K b V → G, with V ∈ GrE(h), such that φ( f (K)) > 0. This implies that G can be covered φ-almost all with
∪i∈N fi(Ki), where fi : Ki b Vi → G are Lipschitz functions, see the first part of the proof of Theorem 3.1.

The last part of Theorem 3.1 is reached from the first part and the following key observation: if a homogeneous
subgroup of a Carnot group admits a normal complementary subgroup, then it is a Carnot subgroup, see [2, Remark
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2.1]. Thus the maps fi are Lipschitz maps between Carnot groups and we can apply Pansu-Rademacher theorem,
see [26], Magnani’s area formula, see [21], and a classical argument to conclude that Shx fi(Ki) is a Pc

h-rectifiable
measure, see the last part of the proof of Theorem 3.1. From this latter observation, the proof of Theorem 3.1 is
concluded.

Throughout all this Section we let G be a Carnot group of homogeneous dimension Q equipped with the
smooth-box norm introduced in Definition 2.3. This does not result in a loss of generality since our aim is
to prove Theorem 3.1 that is clearly independent on the choice of the particular left-invariant homogeneous
distance on G. So we may suppose that G is endowed with the left-invariant homogeneous distance induced
by the smooth-box norm introduced in Definition 2.3

3.1 Rigidity of the stratification of P∗
h -rectifiable measures

We let ϕ : G→ [0, 1] be a positive, smooth, radially symmetric function with respect to ‖ · ‖, supported in B(0, 2),
and such that ϕ ≡ 1 on B(0, 1). We shall denote by g its profile function, that is defined right above the statement
of Proposition 2.11.

Proposition 3.2. For any h ∈ {1, . . . , Q} there exists a constant ,G)ג h) = ג > 0 such that for any V ∈ Gr(h) and any
s ∈ S(h) \ {s(V)}, we have

inf
W∈Gr(h)
s(W)=s

ˆ
ϕ(z)dist(z, W)dChxV > ,ג

where the stratification vector s(·) was introduced in Definition 2.11.

Proof. Suppose by contradiction this is not the case. Thus there are two sequences {Wi} ⊆ Gr(h) and {Vi} ⊆ Gr(h)
such that for any i ∈N we have s(Wi) 6= s(Vi) and

ˆ
ϕ(z)dist(z, Wi)dChxVi ≤ 1/i. (27)

Thanks to the pidgeonhole principle and the fact that S(h), see Definition 2.11, is a finite set we can assume up to
passing to a non re-labelled subsequence that

s(Wi) = s1 6= s2 = s(Vi), for any i ∈N.

Furthermore, thanks to Proposition 2.6, we can also assume, up to passing to a non re-labelled subsequence, that

Wi →
dG

W ∈ Gr(h), and Vi →
dG

V ∈ Gr(h).

Furthermore, thanks to Proposition 2.7, we also deduce that

s(W) = s1 6= s2 = s(V).

In order to conclude the proof of the proposition we first note for any U ∈ Gr(h) and any R > 0, if z ∈ B(0, R),
then every element u ∈ U for which dist(z, U) = d(u, z) is contained in B(0, 2R). The same argument as in (9) and
(11) allows us to conclude that for every z ∈ B(0, 2) the following inequality holds

dist(z, Wi) ≥ dist(z, W)− 8dG(W, Wi), for all i ∈N. (28)

Putting together (27) and (28) thanks to Proposition 2.11 we infer

1/i ≥
ˆ

ϕ(z)dist(z, Wi)dChxVi ≥
ˆ

ϕ(z)dist(z, W)dChxVi − 8dG(W, Wi)

ˆ
ϕ(z)dChxVi

=

ˆ
ϕ(z)dist(z, W)dChxVi − 8dG(W, Wi)h

ˆ
sh−1g(s)ds.

(29)
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Therefore, since ϕ(z)dist(z, W) is a continuous function with compact support, thanks to Proposition 2.26 and
sending i to +∞ in the previous inequality we conclude

ˆ
ϕ(z)dist(z, W)dChxV = 0.

In particular dist(z, W) = 0 for ShxV-almost every z ∈ V, and since both Lie(V) and Lie(W) are vector subspaces
of Lie(G) we have V ⊆W. On the one hand this allows us to infer that

dim(Vi ∩V) ≤ dim(Vi ∩W), for any i ∈ {1, . . . , κ},

and on the other hand, since s(V) 6= s(W), there must exist an ` ∈ {1, . . . , κ} such that dim(V` ∩V) < dim(V` ∩W).
This however contradicts the fact that W ∈ Gr(h), indeed

h = dimhom V =
κ

∑
i=1

i · dim(Vi ∩V) <
κ

∑
i=1

i · dim(Vi ∩W) = dimhom(W).

Proposition 3.3. Let s ∈ S(h). For any Radon measure ψ we define

Fs(ψ) := inf
W∈Gr(h)
s(W)=s

ˆ
ϕ(z)dist(z, W)dψ.

Then, the functional Fs :M→ R on Radon measures is continuous with respect to the weak-* topology in the duality with
the functions with compact support on G.

Proof. Let ψi ⇀ ψ and note that for any V ∈ Gr(h) for which s(V) = s, we have

lim
i→+∞

ˆ
ϕ(z)dist(z, V)dψi =

ˆ
ϕ(z)dist(z, V)dψ, (30)

since ϕ(z)dist(z, V) is a continuous function with compact support. Let us first prove that

Fs(ψ) ≤ lim inf
i→∞

Fs(ψi).

Indeed, if by contradiction Fs(ψ) > lim infi→∞ Fs(ψi), up to passing to a non re-labelled subsequence in i that
realizes the lim inf and up to choosing a quasi-minimizer for Fs(ψi), we can find δ > 0, and Wi ∈ Gr(h) with
s(Wi) = s such that

Fs(ψ) >

ˆ
ϕ(z)dist(z, Wi)dψi + δ, for all i ∈N. (31)

We can assume that Wi →W ∈ Gr(h), with s(W) = s, up to a non re-labelled subsequence, see Proposition 2.6
and Proposition 2.7. Thus since ψi ⇀ ψ passing to the limit the right hand side of (31)1 we obtain Fs(ψ) >´

ϕ(z)dist(z, W)dψ, that is a contradiction with the definition of Fs. The proof of the proposition is concluded if
we prove that

Fs(ψ) ≥ lim sup
i→∞

Fs(ψi).

In order to prove the previous inequality let us fix ε > 0 and Vε ∈ Gr(h) with s(Vε) = s such that
ˆ

ϕ(z)dist(z, Vε)dψ− ε ≤ Fs(ψ). (32)

1 Setting fi(z) := ϕ(z)dist(z, Wi) and f (z) := ϕ(z)dist(z, W) we notice that fi → f uniformly on B(0, 2) since Wi → W. Thus |
´

f dψ −´
fidψi | ≤ |

´
f dψ−

´
f dψi |+ |

´
f dψi −

´
fidψi | and the limit is zero because ψi ⇀ ψ, supi ψi(B(0, 2)) < +∞ and fi → f uniformly on B(0, 2).



marstrand-mattila rectifiability criterion for co-normal-P∗
h -rectifiable measures 22

Putting together (30) and (32), we infer

lim sup
i→∞

Fs(ψi)− ε ≤ lim sup
i→∞

ˆ
ϕ(z)dist(z, Vε)dψi − ε

=

ˆ
ϕ(z)dist(z, Vε)dψ− ε ≤ Fs(ψ).

(33)

The arbitrariness of ε concludes the limsup inequality and thus the proof of the proposition.

Definition 3.1. For any T ⊆M(h) we define s(T ) to be the set

s(T ) := {s(V) : there exists a non-null Haar measure of V in T }.

Namely we are considering all the possible stratification vectors of the homogeneous subgroups that are the support
of some element of T .

Theorem 3.4. Assume φ is a P∗
h -rectifiable measure. Then, for φ-almost every x ∈ G the set s(Tanh(φ, x)) ⊆ S(h) is a

singleton.

Remark 3.1. In the notation of the above proposition, since for φ-almost every x ∈ G we have Tanh(φ, x) ⊆M(h),
the symbol s(Tanh(φ, x)) is well defined φ-almost everywhere.

Proof. Suppose by contradiction there exists a point x ∈ G where

(i) 0 < Θh
∗(φ, x) ≤ Θh,∗(φ, x) < ∞,

(ii) Tanh(φ, x) ⊆M(h),

(iii) there are V1, V2 ∈ Gr(h) with s(V1) 6= s(V2) and λ1, λ2 ≥ 0 such that λ1ChxV1, λ2ChxV2 ∈ Tanh(φ, x).

Assume that {ri}i∈N and {si}i∈N are two infinitesimal sequences such that ri ≤ si and for which

Tx,ri φ

rh
i

⇀ λ1ChxV1, and
Tx,si φ

sh
i

⇀ λ2ChxV2.

Note that thanks to Proposition 2.23, we have in particular that Θh
∗(φ, x) ≤ λ1, λ2 ≤ Θh,∗(φ, x). Throughout the rest

of the proof we let s := s(V1) and we define

f (r) := inf
W∈Gr(h)
s(W)=s

ˆ
ϕ(z)dist(z, W)d

Tx,rφ

rh .

Thanks to Proposition 3.2 and Proposition 3.3 we infer that the function f is continuous on (0, ∞) and that

lim
i→∞

f (ri) = 0 and lim
i→∞

f (si) > λ2ג ≥ Θhג
∗(φ, x).

Let us choose, for i sufficiently large, σi ∈ [ri, si] in such a way that f (σi) = Θhג
∗(φ, x)/2 and f (r) ≤ Θhג

∗(φ, x)/2
for any r ∈ [ri, σi]. Up to passing to a non re-labelled subsequence, since φ is P∗

h -rectifiable, we can assume
that σ−h

i Tx,σi ⇀ λ3ChxV3 for some λ3 > 0 and some V3 ∈ Gr(h). Thanks to Proposition 2.23, we infer that
Θh
∗(φ, x) ≤ λ3 ≤ Θh,∗(φ, x) and thanks to the continuity of the functional Fs in Proposition 3.3, we conclude that

Θhג
∗(φ, x)/2 = lim

i→∞
f (σi) = lim

i→∞
Fs(σ

−h
i Tx,σi φ) = λ3Fs(ChxV3). (34)

The chain of identities (34) together with the bounds on λ3 imply

0 < Θhג
∗(φ, x)/2Θh,∗(φ, x) ≤ Fs(ChxV3) ≤ .2/ג (35)

Since V3 ∈ Gr(h), (35) on the one hand implies by means of Proposition 3.2 that s(V3) = s. On the other hand,
since Fs(ChxV3) > 0, we have that s(V3) 6= s, resulting in a contradiction.
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Definition 3.2. Assume φ is a P∗
h -rectifiable measure. For every x ∈ G we define the map s(φ, x) ∈ Nκ in the

following way

s(φ, x) :=

{
s if Tanh(φ, x) ⊆M(h) and s(Tanh(φ, x)) is the singleton {s},
0 otherwise.

Remark 3.2. The map s(φ, ·) is well defined and non-zero φ-almost everywhere thanks to Theorem 3.4.

Proposition 3.5. Assume φ is a P∗
h -rectifiable measure. Then, the map x 7→ s(φ, x) is φ-measurable.

Proof. Let h̄G be the constant introduced in Proposition 2.7. Let us first prove that there exists α̃ := α̃(G) such that
the following assertion holds

for any 1 ≤ h ≤ Q and for any V, W ∈ Gr(h), if V ⊆ CW(α̃), then dG(V, W) ≤ h̄G. (36)

Indeed, if this was not the case, we can find an 1 ≤ h ≤ Q and sequences {Vi}, {Wi} in Gr(h) such that
Vi ⊆ CWi (i

−1) and for which dG(Vi, Wi) > h̄G, for all i ∈ N. Thus, up to non re-labelled subsequences, we
can assume that Vi → V and Wi → W, for some V, W ∈ Gr(h), thanks to Proposition 2.6. Thanks to the
aforementioned convergences and the fact that Vi ⊆ CWi (i

−1) for every i ∈ N we deduce that V ⊆W and thus
V = W since they both have homogeneous dimension h. But this latter equality is readily seen to be in contradiction
with the fact that dG(Vi, Wi) > h̄G, for all i ∈N, since Wi →W and Vi → V.

Let {V`}`=1,...,N be a finite α̃/3-dense set in Gr(h), where α̃ is defined above. For any r ∈ (0, 1) ∩ Q and
` = 1, . . . , N we define the functions on G

fr,`(x) := r−hφ({w ∈ B(x, r) : dist(x−1w, V`) ≥ α̃‖x−1w‖}) =: r−hφ(I(x, r, `)).

We claim that the functions fr,` are upper semicontinuous. Let {xi}i∈N be a sequence of points converging to some
x ∈ G and without loss of generality we assume that limi→∞ r−hφ(I(xi, r, `)) exists. Since the sets I(xi, r, `) are
contained in B(x, 1) provided i is sufficiently big, we infer thanks to Fatou’s Lemma that

lim sup
i→∞

fr,`(xi) =
1
rh lim sup

i→∞

ˆ
χI(xi ,r,`)(z)dφ(z) ≤ 1

rh

ˆ
lim sup

i→∞
χI(xi ,r,`)(z)dφ(z). (37)

Furthermore, since xi → x and the sets I(xi, r, `) and I(x, r, `) are closed, we have

lim sup
i→∞

χI(xi ,r,`) = χlim supi→+∞ I(xi ,r,`) ≤ χI(x,r,`),

where the first equality is true in general. Then, from (37), we infer that

lim sup
i→∞

fr,`(xi) ≤
1
rh

ˆ
lim sup

i→∞
χI(xi ,r,`)(z)dφ(z) ≤ 1

rh

ˆ
χI(x,r,`)(z)dφ(z) = fr,`(x),

and this concludes the proof that fr,` is upper semicontinuous. This implies that the function

f` := lim inf
r∈Q,r→0

fr,`,

is φ-measurable and as a consequence, since Tanh(φ, x) ⊆M(h) for φ-almost every x ∈ G, we infer that the set

B` := {x ∈ G : f`(x) = 0} ∩ {x ∈ G : Tanh(φ, x) ⊆M(h)},

is φ-measurable as well. If we prove that for φ-almost any x ∈ B` there exists a non-zero Haar measure ν in
Tanh(φ, x) relative to a homogeneous subgroup V of G such that dG(V, V`) ≤ h̄G, we infer that

s(Tanh(φ, x)) = {s(V`)}, for φ-almost any x ∈ B`, (38)

and thus s(φ, x) = s(V`) for φ-almost every x ∈ B`. Indeed, if we are able to find such a measure ν relative to V,
(38) is an immediate consequence of the fact that if dG(V, V`) ≤ h̄G, Proposition 2.7 implies that V and V` have
the same stratification; and the fact that, from Theorem 3.4, φ-almost everywhere the tangent subgroups have the
same stratification.

In order to construct such a non-zero Haar measure ν, we fix a point x ∈ B` in the φ-full-measure subset of B`

such that the following conditions hold
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(i) 0 < Θh
∗(φ, x) ≤ Θh,∗(φ, x) < ∞,

(ii) Tanh(φ, x) ⊆M(h),

and we let {ri}i∈N be an infinitesimal sequence of rational numbers such that limi→∞ fri ,`(x) = 0.
Thanks to item (i) above and the compactness of measures, see [1, Proposition 1.59], we can find a non re-labelled

subsequence of ri such that
r−h

i Tx,ri φ ⇀ ν.

Such a ν belongs by definition to Tanh(φ, x) and thus there is a λ > 0 and a V ∈ Gr(h) such that ν = λChxV.
Thanks to [8, Proposition 2.7], we infer that

ν({w ∈ U(0, 1) : dist(w, V`) > α̃‖w‖}) ≤ lim inf
i→∞

r−h
i Tx,ri φ({w ∈ U(0, 1) : dist(w, V`) > α̃‖w‖})

= lim inf
i→∞

r−h
i φ({w ∈ U(x, ri) : dist(x−1w, V`) > α̃‖x−1w‖}) = 0,

where the last identity comes from the choice of the sequence ri. This shows in particular that

V ⊆ {w ∈ G : dist(w, V`) ≤ α̃‖w‖} = CV`
(α̃),

and then, from (36) we conclude that dG(V, V`) ≤ h̄G, that was what we wanted to prove.
An immediate consequence of (38) is that

if `, m ∈ {1, . . . , N} and s(V`) 6= s(Vm) then φ(B` ∩ Bm) = 0. (39)

On the other hand, the B`’s cover φ-almost all G. To prove this latter assertion, we note that since φ is P∗
h -

rectifiable, for φ-almost all x ∈ G there is an infinitesimal sequence ri → 0, a λ > 0 and a V ∈ Gr(h) such that
r−h

i Tx,ri φ ⇀ λChxV. Since the set {V` : ` = 1, . . . , N} is α̃/3-dense in Gr(h), there must exist an ` ∈ {1, . . . , N}
such that

V ⊆ {w ∈ G : dist(w, V`) < α̃‖w‖}. (40)

This last inclusion follows since there exists ` such that dG(V, V`) ≤ α̃/3 and the observation that every point in
∂B(0, 1) ∩V is such that every point at minimum distance of it from V` is in B(0, 2) ∩V`. The previous inclusion,
jointly with [8, Proposition 2.7], implies that

f`(x) = lim inf
r∈Q,r→0

fr,`(x) ≤ lim inf
i→∞

fri ,`(x)

= lim inf
i→∞

r−h
i φ({w ∈ B(x, ri) : dist(x−1w, V`) ≥ α̃‖x−1w‖})

≤ lim sup
i→∞

r−h
i Tx,ri φ({w ∈ B(0, 1) : dist(w, V`) ≥ α̃‖w‖})

≤ λChxV({w ∈ B(0, 1) : dist(w, V`) ≥ α̃‖w‖}) = 0,

(41)

where the last inequality is true since (40) holds. This proves that x ∈ B` and as a consequence that the B`’s cover
φ-almost all G.

We are ready to prove the measurability of the map x 7→ s(φ, x). Fix an s ∈ S(h) and let D(s) := {x ∈ G :
s(φ, x) = s} ∩⋃N

`=1 B`. Since by the previous step the B`’s cover φ-almost all G we know that {x ∈ G : s(φ, x) =
s} \⋃N

l=1 B` is φ-null and thus it is φ-measurable. Furthermore, thanks to (38) and (39) we know that up to φ-null
sets we have

D(s) =
⋃

s∈S(h)

{B` : s(V`) = s}.

Since the sets B` are φ-measurable, this concludes the proof that {x ∈ G : s(φ, x) = s} is φ-measurable for every
s ∈ S(h), taking also into account that s(φ, ·)−1(0) is φ-null.
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3.2 Proof of Theorem 3.1

This long and technical section is devoted to the proof of Theorem 3.1.

Definition 3.3. Let C > 0 be a real number. Through the rest of this section we let

C4(C) := 1 + 2/C,

and
C5(C) := (10(1 + C4))

2(Q+10).

Remark 3.3. Let s ∈ S(h) be fixed and let V ∈ Gs
E(h) with e(V) ≥ C, where e is defined in (12). Let L be a

complement of V and P := PV the projection on V related to this splitting. Note that with the previous choices of
C4 and C5, for any h ∈ {1, . . . , Q}, thanks to Proposition 2.20 and Remark 2.2, we have

2(1 + C4)
hCh(P(B(0, 1))) < C5/2h+3,

since Ch(P(B(0, 1))) ≤ ChxV(B(0, C4)) = Ch
4 .

Proposition 3.6. Let h ∈ {1, . . . , Q}, s ∈ S(h), and let G be a subset of GrsE(h) such that there exists a constant C > 0 for
which

e(V) ≥ C for all V ∈ G ,

where we recall that e was defined in (12). Further let r > 0, ε ∈ (0, 5−h−5C−3h
5 ], r1 := (1− ε/h)r, and µ := 2−7h−3C−5h

5 ε2,
where C4 and C5 are defined in terms of C in Definition 3.3.

Let φ be a Radon measure and let z ∈ supp(φ). We define Z(z, r1) to be the set of the triplets (x, s, V) ∈ B(z, C5r1)×
(0, C5r]× GrsE(h) such that

φ(B(y, t)) ≥ (1− ε)(t/C5r)hφ(B(z, C5r)), (42)

whenever y ∈ B(x, C5s) ∩ xV and t ∈ [µs, C5s]. The geometric assumption we make on φ is that we can find a compact
subset E of B(z, C5r1) such that z ∈ E,

φ(B(z, C5r1) \ E) ≤ µh+1C−h
5 φ(B(z, C5r1)), (43)

and such that for any x ∈ E and every s ∈ (0, C5r − d(x, z)] there is a V ∈ GrsE(h) such that (x, s, V) ∈ Z(z, r1).
Furthermore we assume that there exists W ∈ G such that (z, r, W) ∈ Z(z, r1), and let us fix L a normal complementary
subgroup of W such that Proposition 2.21 holds. Let us denote P := PW the projection on W related to the splitting G = WL.

Let us recall that with the notation T(u, r) we mean the cylinder with center u ∈ G and radius r > 0 related to the projection
P = PW, see Definition 2.17. For any u ∈ P(B(z, r1)) let s(u) ∈ [0, r] be the smallest number with the following property:
for any s(u) < s ≤ r we have

1. E ∩ T(u, s/4h) 6= ∅, and

2. φ
(

B(z, C5r) ∩ T(u, C4s)) ≤ µ−h(s/C5r)hφ(B(z, C5r)).

Finally, we define

(α) A := {u ∈ P(B(z, r1)) : s(u) = 0},

(β) A1 :=
{

u ∈ P(B(z, r1)) : s(u) > 0, and φ
(

B(z, C5r) ∩ T(u, C4s(u))
)
≥ ε−1(s(u)/C5r)hφ(B(z, C5r))

}
,

(γ) A2 :=
{

u ∈ P(B(z, r1)) : s(u) > 0, and φ
(
(B(z, C5r) \ E) ∩ T(u, s(u)/4h)

)
≥ 2−1(s(u)/4hC5r)hφ(B(z, C5r))

}
.

Then we have

(i) s(u) ≤ C5hµr for every u ∈ P(B(z, r1)),

(ii) The function u 7→ s(u) is lower semicontinuous on P(B(z, r1)) and as a consequence A is compact,
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(iii) P(B(z, r1)) ⊆ A ∪ A1 ∪ A2,

(iv) Ch(P(B(z, r)) \ A) ≤ 5h+3C3h
5 Ch(P(B(0, 1)))εrh,

(v) P(E ∩ P−1(A)) = A, Sh(E ∩ P−1(A)) > 0 and there is a constant C > 1 such that

C−1Sh(E ∩ P−1(A)) ≤ φ(E ∩ P−1(A)) ≤ CSh(E ∩ P−1(A)).

Proof. We prove each point of the proposition in a separate paragraph. For the sake of notation we write Z := Z(z, r1),
and without loss of generality we will always assume that z = 0, since PW is a homogeneous homomorphism,
see Proposition 2.21, and thus the statement is left-invariant. Since it will be used here and there in the proof, we
estimate φ(B(0, C5r) \ B(0, C5r1)). Since (0, r, W) ∈ Z, we infer that

φ(B(0, C5r1)) ≥ (1− ε)(r1/r)hφ(B(0, C5r)).

This implies that

φ(B(0, C5r) \ B(0, C5r1)) = φ(B(0, C5r))− φ(B(0, C5r1)) ≤ φ(B(0, C5r))(1− (1− ε)(r1/r)h)

= φ(B(0, C5r))(1− (1− ε)(1− ε/h)h) ≤ 2εφ(B(0, C5r)),
(44)

where in the last inequality we used that h 7→ (1− ε/h)h is increasing.

proof of (i): Let u ∈ P(B(0, r1)) and let C5µhr < s ≤ r. Then

φ(B(0, C5r) ∩ T(u, C4s)) ≤ φ(B(0, C5r)) ≤ µ−h(s/C5r)hφ(B(0, C5r)),

where the last inequality comes from the fact that C5µhr < s. Defined v := uδµ(u−1), we immediately note that
v ∈W and that, from Proposition 2.20, d(v, u) = µd(u, 0) ≤ C4µr. Furthermore, for every ∆ ∈ B(0, µr) we have

d(0, uδµ(u−1)∆) ≤ µ‖u‖+ ‖u‖+ ‖∆‖ ≤ µC4r1 + C4r1 + µr

≤ (C4(1 + µ) + 2µ)r1 ≤ C5r1,
(45)

where in the inequality above we used the fact that r1 > r/2, and C5 > 2(C4 + 1) > C4(1 + µ) + 2µ. Thus, on the
one hand we have B(v, µr) ⊆ B(u, (1 + C4)µr) and on the other, thanks to (45), we deduce that

B(v, µr) ⊆ B(0, C5r1). (46)

Since (0, r, W) ∈ Z, this implies thanks to the definition of Z and E that

φ(B(v, µr)) ≥ (1− ε)µhC−h
5 φ(B(0, C5r1)) > φ(B(0, C5r1) \ E). (47)

Furthermore, thanks to (46), (47) and the definition of T(·, ·), we also infer that

∅ 6= E ∩ B(v, µr) ⊆ E ∩ B(u, (1 + C4)µr) ⊆ E ∩ T(u, s/4h),

where the last inclusion is true since (1 + C4)µr ≤ C5µr/4 < s/(4h).

proof of (ii): Let u ∈ P(B(0, r1)) and let 0 < s ≤ s(u). By definition of s(u), up to eventually increasing s such
that it still holds 0 < s ≤ s(u), there are two cases. Either

φ(B(0, C5r) ∩ T(u, C4s)) > (1 + τ)hµ−h(s/C5r)hφ(B(0, C5r)), (48)

for some τ > 0 or
E ∩ T(u, s/4h) = ∅. (49)
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If v ∈ P(B(0, r1)) is sufficiently close to u then s + C−1
4 d(u, v) ≤ (1 + τ)s and s + C−1

4 d(u, v) ≤ r, since s(u) ≤ r
thanks to point (i). If (48) holds, this implies that

φ(B(0, C5r) ∩ T(v, C4(s + C−1
4 d(u, v)))) > φ(B(0, C5r) ∩ T(u, C4s))

≥ (1 + τ)hµ−h(s/C5r)hφ(B(0, C5r))

≥ µ−h((s + C−1
4 d(u, v))/C5r)hφ(B(0, C5r)),

(50)

where the last inequality is true provided d(u, v) is suitably small. On the other hand, if (49) holds, then

E ∩ T(v, (s− 4hd(u, v))/4h) ⊆ E ∩ T(u, s/4h) = ∅. (51)

Taking into account (50) and (51), this shows that s(v) ≥ min{s− 4hd(u, v), s+C−1
4 d(u, v)} = s− 4hd(u, v) provided

v is sufficiently close to u. This implies that lim infv→u s(v) ≥ s for any s ≤ s(u) for which at least one between (48)
and (49) holds. In particular, from the definition of s(u), we deduce that there exists a sequence si → s(u)− such
that at each si at least one between (48) and (49) holds. In conclusion we infer

lim inf
v→u

s(v) ≥ s(u).

proof of (iii): Suppose that u ∈ P(B(0, r1)) \ (A ∪ A1). Since u 6∈ A ∪ A1, then s(u) > 0 and

φ
(

B(0, C5r) ∩ T(u, C4s(u))
)
< ε−1(s(u)/C5r)hφ(B(0, C5r)). (52)

Thanks to the definition of s(u), for any 0 < s < s(u), up to eventually increasing s in such a way that it still holds
0 < s < s(u), we have either

φ(B(0, C5r) ∩ T(u, C4s)) > µ−h(s/C5r)hφ(B(0, C5r)), (53)

or
E ∩ T(u, s/4h) = ∅. (54)

Let us assume that (54) does not hold for some s < s(u). Then (54) does not hold for any t such that s ≤ t < s(u).
Thus, in this case, we deduce the existence of ti < s(u) such that ti → s(u) for which (53) holds. Thus we have

µ−h(s(u)/C5r)hφ(B(0, C5r)) = lim
i→+∞

µ−h(ti/C5r)hφ(B(0, C5r))

≤ lim sup
i→+∞

φ(B(0, C5r) ∩ T(u, C4ti))

≤ φ(B(0, C5r) ∩ T(u, C4s(u)))

≤ ε−1(s(u)/C5r)hφ(B(0, C5r)),

(55)

that is a contradiction thanks to the choice of µ and ε. This proves that for any 0 < ρ < s(u) we have E∩T(u, v/4h) =
∅ and thus

E ∩ int(T(u, s(u)/4h)) = ∅.

Let us now define the constants

s := 16hs(u)/ε, and σ := (2h− 1)ε/32h2.

Thanks to item (i), from which s(u) ≤ C5hµr, and from the very definition of µ, we deduce that

0 < s(u) ≤ s = 16hs(u)/ε ≤ r− r1, and µ ≤ σ ≤ 1. (56)

Thanks to the compactness of E and the definition of s(u) we have that

E ∩ T(u, s(u)/4h) 6= ∅.



marstrand-mattila rectifiability criterion for co-normal-P∗
h -rectifiable measures 28

Let us fix x ∈ E ∩ T(u, s(u)/4h) and assume V ∈ GrsE(h) to be such that (x, s, V) ∈ Z. We claim that

‖P(x−1y)‖ ≥ σ‖x−1y‖, for every y ∈ xV. (57)

Assume by contradiction that there is a y ∈ xV such that ‖x−1y‖ = 1 and for which ‖P(x−1y)‖ < σ. Let us fix
w ∈ B(0, σs) and let t ∈ R be such that |t| ≤ C4s(u)/(4hσ). Then, we have

d(0, xδt(x−1y)w) ≤ d(0, x) + |t|‖x−1y‖+ σs ≤ d(0, x) +
C4s(u)

4hσ
+ σs. (58)

Thanks to the choice of the constants and item (i), according to which s(u) ≤ C5hµr, we infer that

C4s(u)
4hσ

+ σs ≤ C4s(u)(1− 1/2h + 8h/((2h− 1)ε))

≤ C42−7h−2ε2r(1− 1/2h + 8h/((2h− 1)ε)) ≤ C4εr/h,
(59)

where in the first inequality above we are using the fact that C4 ≥ 1, and in the second we are using the explicit
expression µ = 2−7h−3C−5h

5 ε2 and the fact that C−5h+1
5 < 1. Hence, since x ∈ B(0, C5r1) putting together (58) and

(59) we infer that
d(0, xδt(x−1y)w) ≤ C5r1 + C4εr/h < C5r, (60)

where the second inequality comes from the definition of r1 and the fact that C5 ≥ C4. As a consequence of the
previous computations we finally deduce that

B(xδt(x−1y), σs) ⊆ B(0, C5r), for any |t| ≤ C4s(u)/(4hσ).

We now prove that for any |t| ≤ C4s(u)/(4hσ) and any w ∈ B(0, σs), we have

xδt(x−1y)w ∈ T(u, C4s(u)). (61)

Indeed, thanks to Proposition 2.21, we have that

P(xδt(x−1y)w) = P(x)δt(P(x−1y))P(w)

and thus since x ∈ T(u, s(u)/4h) by means of Proposition 2.22 we infer that

d(u, P(x)) ≤ C4s(u)/4h.

Thanks to this, and together with the fact that ‖P(w)‖ ≤ C4σs due to Proposition 2.20, we can estimate

d(u, P(x)δt(P(x−1y))P(w)) ≤ d(u, P(x)) + |t|‖P(x−1y)‖+ C4σs

≤ C4s(u)
4h

+
C4s(u)

4h
+ C4σs ≤ C4s(u)

2h
+ C4

(
1− 1

2h

)
s(u) ≤ C4s(u),

where in the second inequality of the last line we are using σs = s(u)(1− 1/(2h)). Summing up, the above
computations yield that

B(xδt(x−1y), σs) ⊆ B(0, C5r) ∩ T(u, C4s(u)), for any |t| ≤ C4s(u)/(4hσ). (62)

Now we are in a position to write the following chain of inequalities

φ(B(0, C5r) ∩ T(u, C4s(u))) ≥ (2σs)−1
ˆ s(u)/4hσ

−s(u)/4hσ
φ(B(xδt(x−1y), σs))dt

≥ (2σs)−1(s(u)/2hσ)(1− ε)(σs/rC5)
hφ(B(0, C5r))

= (1− ε)(1− 1/2h)h16h2(2h− 1)−2ε−1(s(u)/C5r)hφ(B(0, C5r))

≥ ε−1(s(u)/C5r)hφ(B(0, C5r))

(63)
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where the first inequality is true by applying Fubini theorem to the function F(t, z) := χB(0,σs)(δt(y−1x)x−1z)
on the domain [−s(u)/(4hσ), s(u)/(4hσ)] × G, and by noticing that when |t| ≤ s(u)/(4hσ) we have (62); the
second inequality is true since x ∈ E and then (x, s, V) ∈ Z for some V ∈ GrsE(h); and the last inequality is true
since (1− ε)(1− 1/(2h))h16h2(2h− 1)−2 ≥ 1. Since (63) is a contradiction with the assumption u /∈ A1 we get
that (57) holds and thus P|V is injective, since it is also a homomorphism. Furthermore, since V has the same
stratification as W, Proposition 2.17 implies that VL = G, where L is the chosen normal complement of W. Thanks
to [12, Proposition 3.1.5], there exists an intrinsically linear function ` : W→ L such that V = graph(`) and thus
P|V is also surjective. In particular we can find a w ∈ xV in such a way that P(w) = u and, by using (57) and
d(u, P(x)) ≤ C4s(u)/4h, that follows from Proposition 2.22, and the fact that P is a homogeneous homomorphism,
we conclude that the following inequality holds

‖x−1w‖ ≤ σ−1‖P(x)−1P(w)‖ = σ−1‖P(x)−1u‖ ≤ C4s(u)
4hσ

. (64)

We now claim that the inclusion

U(w, s(u)/4h) ⊆ (B(0, C5r) \ E) ∩ int(T(u, s(u)/4h)), (65)

concludes the proof of item (iii). Indeed, we have (x, s, V) ∈ Z, and since w ∈ B(x, C5s) ∩ xV, see (64), and we have
µs ≤ s(u)/4h ≤ C5s, we infer, by approximation and using the hypothesis, that

φ(U(w, s(u)/4h)) ≥ (1− ε)(s(u)/4hC5r)hφ(B(0, C5r)). (66)

Putting together (65) and (66) we deduce that

φ
(
(B(0, C5r) \ E) ∩ int(T(u, s(u)/4h))

)
≥ (1− ε)(s(u)/4hC5r)hφ(B(0, C5r)).

and thus u ∈ A2, which proves item (iii). In order to prove the inclusion (65) we note that since ‖x−1w‖ ≤
C4s(u)/(4hσ), see (64), we have thanks to the same computation we performed in (58), (59), and (60), that
B(w, s(u)/(4h)) ⊆ B(0, C5r). Furthermore, since P(w) = u the inclusion (65) follows thanks to the fact that
B(w, s(u)/4h) ⊆ T(u, s(u)/4h), see Proposition 2.22, and the fact that int(T(u, s(u)/4h)) ∩ E = ∅.

proof of (iv): Let τ > 1. Thanks to [11, Theorem 2.8.4], we deduce that there exists a countable set D ⊆ A1
such that the following two hold

(α) {B(w, C2
4s(w)) ∩W : w ∈ D} is a disjointed subfamily of {B(w, C2

4s(w)) ∩W : w ∈ A1},

(β) for any w ∈ A1 there exists a u ∈ D such that B(w, C2
4s(w)) ∩ B(u, C2

4s(u)) ∩W 6= ∅ and s(w) ≤ τs(u).
Furthermore, if we define for every u ∈ A1 the set

B̂(u, C2
4s(u)) :=

⋃
{B(w, C2

4s(w)) ∩W : w ∈ A1, B(u, C2
4s(u)) ∩ B(w, C2

4s(w)) ∩W 6= ∅, s(w) ≤ τs(u)}, (67)

we have, thanks to [11, Corollary 2.8.5], that A1 ⊆
⋃

u∈A1
B(u, C2

4s(u)) ∩W ⊆ ⋃
w∈D B̂(w, C2

4s(w)). An easy
computation based on the triangle inequality, which we omit, leads to the following inclusion

B̂(u, C2
4s(u)) ⊆W∩ B(u, (1 + 2τ)C2

4s(u)), for every u ∈ A1. (68)

Since D ⊆ A1, and since T(u, C4s(u)) ⊆ P−1(B(u, C2
4s(u))∩W) for every u ∈ A1, see Proposition 2.22, we conclude,

by exploiting the fact that {B(w, C2
4s(w)) ∩W : w ∈ D} is a disjointed family, the following inequality

φ(B(0, C5r)) ≥ ∑
u∈D

φ(B(0, C5r) ∩ T(u, C4s(u))) ≥ ε−1 ∑
u∈D

(s(u)/C5r)hφ(B(0, C5r)),

where the last inequality above comes from the fact that D ⊆ A1. The above inequality can be rewritten as
∑u∈D s(u)h ≤ Ch

5 εrh. In particular, thanks to Remark 2.2, and (68) we infer that

Ch(A1) ≤ ∑
u∈D
Ch(B(u, (1 + 2τ)C2

4s(u)) ∩W)

= C2h
4 (1 + 2τ)h ∑

u∈D
s(u)h ≤ C2h

4 Ch
5(1 + 2τ)hεrh.

(69)
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With a similar argument we used to prove the existence of D, we can construct a countable set D′ ⊆ A2 such that
the family {B(u, C4s(u)/4h) ∩W : u ∈ D′} is disjointed and the family {B̂(u, C4s(u)/4h) : u ∈ D′}, constructed as
in (67), covers A2. In a similar way as in (68) we have B̂(u, C4s(u)/(4h)) ⊆W∩ B(u, (1 + 2τ)C4s(u)/4h) for every
u ∈ A2. Moreover, since

T(u, s(u)/4h) ⊆ P−1(B(u, C4s(u)/4h) ∩W),

for every u ∈ A2, see Proposition 2.22, we conclude by exploiting the fact that {B(u, C4s(u)/(4h)) ∩W : w ∈ D′} is
a disjointed family, the following inequality

φ(B(0, C5r) \ E) ≥ ∑
u∈D′

φ((B(0, C5r) \ E) ∩ T(u, s(u)/4h))

≥ 2−1φ(B(0, C5r)) ∑
u∈D′

(s(u)/4hC5r)h,
(70)

where the last inequality holds since D′ ⊆ A2. From the previous inequality, (44), and the fact that 0 ∈ E, we infer
that

∑
u∈D′

(s(u)/4hC5r)h ≤ 2φ(B(0, C5r) \ E)
φ(B(0, C5r))

≤ 2 · φ(B(0, C5r) \ B(0, C5r1)) + φ(B(0, C5r1) \ E)
φ(B(0, C5r))

≤ 2 ·
2εφ(B(0, C5r)) + µh+1C−h

5 φ(B(0, C5r))
φ(B(0, C5r))

≤ 10ε.

(71)

Consequently, we deduce that

Ch(A2) ≤ ∑
u∈D′
Ch(W∩ B(u, (1 + 2τ)C4s(u)/4h))

= (1 + 2τ)hCh
4 ∑

u∈D′
(s(u)/4h)h ≤ 10(1 + 2τ)hCh

4 Ch
5 εrh.

(72)

Finally, putting together (69), (72), item (iii) of this proposition, and Remark 2.2, we conclude the following
inequality

Ch(P(B(0, r)) \ A) ≤ Ch(P(B(0, r)) \ P(B(0, r1))) + Ch(A1) + Ch(A2)

≤ Ch(P(B(0, 1)))rh(1− (1− ε/h)h) + C2h
4 Ch

5(1 + 2τ)hεrh + 10(1 + 2τ)hCh
4 Ch

5 εrh

≤ 50(1 + 2τ)hC3h
5 Ch(P(B(0, 1)))εrh,

where in the last inequality we used that 1 ≤ C4 ≤ C5, and that Ch(P(B(0, 1)) ≥ 1 since P(B(0, 1)) ⊇ B(0, 1) ∩W

and Ch(B(0, 1) ∩W) = 1, thanks to Remark 2.2. With the choice τ = 2, item (iv) follows.

proof of (v): Let u ∈ A and note that since s(u) = 0, for any s > 0 we have that

E ∩ T(u, s/4h) 6= ∅.

Since the sets E ∩ T(u, s/4h) are compact we infer the following equality thanks to the finite intersection property

∅ 6= E ∩
⋂
s>0

T(u, s/4h) = E ∩ P−1(u).

This implies that u ∈ P(E∩ P−1(u)) for every u ∈ A, and as a consequence A ⊆ P(E∩ P−1(A)). Since the inclusion
P(E ∩ P−1(A)) ⊆ A is obvious we finally infer that A = P(E ∩ P−1(A)). Moreover, thanks to item (iv) and to the
choice of ε < 5−h−5C−3h

5 , we conclude that Sh(A) > 0 thanks to the fact that ChxW and ShxW are equivalent, see
Proposition 2.8, and thanks to the following chain of inequalities

Ch(A) ≥ Ch(P(B(0, r)))− Ch(P(B(0, r)) \ A)

≥ Ch(P(B(0, 1)))rh − 5h+3C3h
5 Ch(P(B(0, 1)))εrh ≥ 24

25
rh.
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Thanks to the fact that P is C4-Lipschitz, see Proposition 2.21, we further infer that

0 < Sh(A) = Sh(P(E ∩ P−1(A))) ≤ Ch
4Sh(E ∩ P−1(A)).

For any s sufficiently small and u ∈ A, by definition of s(u) and A, we have the following chain of inequalities

φ(B(x, C4s)) ≤ φ
(

B(0, C5r) ∩ T(u, C4s)) ≤ µ−h(s/C5r)hφ(B(0, C5r)),

whenever x ∈ E ∩ P−1(u), where the first inequality comes from the fact that x ∈ E ⊆ B(0, C5r1), and Proposi-
tion 2.22. Finally by [11, 2.10.17(2)] and the previous inequality we infer

φx(E ∩ P−1(A)) ≤ C−h
4 C−h

5 µ−h φ(B(0, C5r))
rh Shx(E ∩ P−1(A)). (73)

On the other hand, if we assume x ∈ E and s sufficiently small, we have (x, s, V) ∈ Z for some V ∈ GrsE(h). This
implies that, by using the very definition of Z, that

φ(B(x, s)) ≥ (1− ε)(s/C5r)hφ(B(0, C5r)),

and thus by [11, 2.10.19(3)], we have

φxE ≥ (1− ε)
φ(B(0, C5r))

(C5r)h ShxE. (74)

Putting together (73) and (74), we conclude the proof of item (v).

Proposition 3.7. Let φ be a P∗,E
h -rectifiable measure such that there exists an s ∈Nκ for which for φ-almost every x ∈ G

we have
Tanh(φ, x) ⊆ {λShxV : λ > 0 and V ∈ GrsE(h)}. (75)

Then, the set
G (x) := {V ∈ GrsE(h) : there exists Θ > 0 such that ΘShxV ∈ Tanh(φ, x)}, (76)

is a compact subset of GrsE(h) for all x ∈ G for which (75) holds, and the sets

GC := {x ∈ G : e(V) ∈ (C, ∞) for every V ∈ G (x)}, (77)

where e is defined in (12), are φ-measurable for any C > 0.

Proof. The fact that G (x) is compact is an immediate consequence of Proposition 2.29, the compactness of the
Grassmannian in Proposition 2.6, and the convergence result in Proposition 2.26. For any λ, k, r > 0 define the
functionMλ,k,r(x, V) : G× GrsE(h)→ R as

Mλ,k,r(x, V) := F0,k(r−hTx,rφ, λChxV),

where F0,k is defined in Definition 2.21. We claim that, for any choice of the parameters, the function Mλ,k,r is
continuous when G× GrsE(h) is endowed with respect to the topology induced by the metric d + dG. Indeed,
assume {xi}i∈N ⊆ G and {Vi} ⊆ GrsE(h) are two sequences converging to x ∈ G and V ∈ GrsE(h) respectively.
Thanks to the triangle inequality we have

lim sup
i→∞

|Mλ,k,r(x, V)−Mλ,k,r(xi, Vi)| ≤ lim sup
i→∞

(
|Mλ,k,r(x, V)−Mλ,k,r(xi, V)|

+ |Mλ,k,r(xi, V)−Mλ,k,r(xi, Vi)|
)

≤ lim sup
i→∞

F0,k(r−hTx,rφ, r−hTxi ,rφ) + lim sup
i→∞

F0,k(λChxV, λChxVi)

≤ lim sup
i→∞

r−(h+1)d(x, xi)φ(B(x, kr + d(x, xi)))

+ lim sup
i→∞

F0,k(λChxV, λChxVi) = 0,
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where the inequality in the fourth line comes from a simple computation that we omit and the last identity comes
from Proposition 2.26. This in particular implies that the function

M(x, V) := sup
k>0
k∈Q

inf
λ>0
λ∈Q

lim inf
r→0
r∈Q

Mλ,k,r(x, V)

kh+1 ,

is Borel measurable.
We now claim that for φ-almost every x ∈ G we have that V ∈ G (x) if and only if M(x, V) = 0. Indeed if

V ∈ G (x), there is a λ > 0 and an infinitesimal sequence {ri}i∈N such that limi→∞ F0,k(r−h
i Tx,ri φ, λChxV) = 0

for any k > 0, see Proposition 2.25. However, by the scaling properties of F, see Remark 2.7, we can choose an
another infinitesimal sequence {si}i∈N ⊆ Q such that ri/si → 1, and then limi→∞ F0,k(s−h

i Tx,si φ, λChxV) = 0 for
every k > 0 as well, proving the first half of the claim. Viceversa, ifM(x, V) = 0, then for any j ∈N there exists a
λj > 0, with λj ∈ Q, and an infinitesimal sequence {ri(j)} ⊆ Q such that limi→∞ F0,1(ri(j)−hTx,ri(j)φ, λjChxV) ≤ 1/j.
Since 0 < Θh

∗(φ, x) ≤ Θh,∗(φ, x) < ∞ for φ-almost every x ∈ G, we can argue as in the last part of the proof of
Proposition 2.29 and hence we can assume without loss of generality that λj converge to some non-zero λ and that,
for every j ∈N, there exists ij ∈N such that rij(j) is an infinitesimal sequence and rij(j)−hTx,rij

(j)φ ⇀ λChxV. This

eventually concludes the proof of the claim.
Furthermore, since e by Proposition 2.19 is lower semicontinuous on GrsE(h), we know that for any C > 0 the set

G× {W ∈ GrsE(h) : e(W) ≤ C} is closed in G× GrsE(h) and in particular, the set

M−1(0) ∩G× {W ∈ GrsE(h) : e(W) ≤ C} = {(x, V) ∈ G× GrsE(h) such that M(x, V) = 0 and e(V) ≤ C},
(78)

is Borel. Now, since the projection on the first component of the above set is an analytic set, by the very definition of
analytic sets, and since every analytic set is universally measurable, see for example [10, Section 2.2.4], we get that
the set {x ∈ G such that there exists V ∈ GrsE(h) withM(x, V) = 0 and e(V) ≤ C} is φ-measurable. In particular
its complement, that is GC up to φ-null sets - sinceM(x, V) = 0 if and only if V ∈ G (x) for φ-almost every x ∈ G -
is φ-measurable as well.

Proposition 3.8. Let h ∈ {1, . . . , Q}, s ∈ S(h), and φ be a P∗,E
h -rectifiable measure supported on a compact set K and for

which for φ-almost every x ∈ G we have

Tanh(φ, x) ⊆ {λShxV : λ > 0 and V ∈ GrsE(h)}. (79)

Let us further assume that there exists a constant C > 0 such that φ(G \ GC) = 0, where GC is defined in (77). Throughout
the rest of the statement and the proof we will always assume that C4 and C5 are the constants introduced in Definition 3.3 in
terms of C. Furthermore, let ε ∈ (0, 5−10(h+5)C−3h

5 ] and µ := 2−7h−3C−5h
5 ε2.

Then, there are ϑ, γ ∈N, a φ-positive compact subset E of E(ϑ, γ), and a point z ∈ E ∩ GC such that

(i) There exists a ρz > 0 for which φ(B(z, C5ρ) \ E) ≤ µh+1C−h
5 φ(B(z, C5ρ)) for any 0 < ρ < ρz;

(ii) There exists an r0 ∈ (0, 5−10(h+5)C−3h
5 γ−1] such that for any w ∈ E and any 0 < ρ ≤ C5r0 we can find a

Vw,ρ ∈ GrsE(h) such that e(Vw,ρ) ≥ C, see (12), and

1. Fw,4C5ρ(φ, ΘChxwVw,ρ) ≤ (4−1ϑ−1C−1
5 µ)(h+3) · (4C5ρ)h+1 for some Θ > 0,

2. whenever y ∈ B(w, C5ρ) ∩ wVw,ρ and t ∈ [µρ, C5ρ] we have φ(B(y, t)) ≥ (1− ε)(t/C5ρ)hφ(B(w, C5ρ)),

3. There exists a normal complement Lw,ρ of Vw,ρ as in Proposition 2.20 such that

(1− ε)φ(B(w, C5ρ) ∩ wTVw,ρ(0, ρ)) ≤ C−h
5 C

h(P(B(0, 1)))φ(B(w, C5ρ)),

where TVw,ρ is the cylinder related to the splitting G = Vw,ρ ·Lw,ρ, see Definition 2.17;

(iii) There exists an infinitesimal sequence {ρi(z)}i∈N ⊆ (0, min{r0, ρz}] such that for any i ∈ N, any w ∈ E and any
ρ ∈ (0, C5ρi(z)] we have φ(B(w, C5ρ)) ≥ (1− ε)(ρ/ρi(z))hφ(B(z, C5ρi(z))).
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Proof. For any positive a, b ∈ R we define F(a, b) to be the set of those points in K for which

brh ≤ φ(B(x, r)), for any r ∈ (0, a).

One can prove, with the same argument used in the proof of Proposition 2.3, see [25, Proposition 1.14], that the sets
F(a, b) are compact. As a consequence, this implies that the sets

F̃(a, b) :=
∞⋂

p=1

F(C5a, (1− ε)b) \ F(C5a/p, b),

are Borel. Since φ is P∗
h -rectifiable, G can be covered φ-almost all by countably many sets F̃(a, b). Indeed, φ(G \

∪a,b∈Q+ F̃(a, b)) = 0 since 0 < Θh
∗(φ, x) < +∞ holds φ-almost everywhere. In particular thanks to Proposition 2.4

we can find a, b ∈ R and ϑ, γ ∈ N such that φ(F̃(a, b) ∩ E(ϑ, γ)) > 0. Since F̃(a, b) ∩ E(ϑ, γ) is measurable, there
must exist a φ-positive compact subset of F̃(a, b) ∩ E(ϑ, γ) that we denote with F. Notice that since φ(G \ GC) = 0
the set F ∩ GC is measurable and φ-positive as well.

Let us denote by Grs,C
E (h) the set {V ∈ GrsE(h) such that e(V) ≥ C}. Since by the very definition of GC we

have Tanh(φ, x) ⊆ M(h, Grs,C
E (h)) for φ-almost every x ∈ F ∩ GC, we infer that Proposition 2.27 together with

Severini-Egoroff theorem, that can be applied since the functions x → dx,kr(φ,M(h, Grs,C
E (h))) are continuous in x

for every k, r > 0 - see Remark 2.8 - yield a φ-positive compact subset E of F ∩ GC and an r0 ≤ 5−10(h+5)C−3h
5 γ−1

such that

dx,4C5ρ(φ,M(h, Grs,C
E (h))) ≤ (4−1ϑ−1C−1

5 µ)(h+4) for any x ∈ E and any 0 < ρ ≤ C5r0. (80)

Let us fix z to be a density point of E with respect to φ, and let us show that E and z satisfy the requirements of the
proposition. First, by construction E is φ-positive and contained in E(ϑ, γ). Second, since z is a density point of E,
item (i) follows if we choose ρz small enough. Moreover, the bound (80) directly implies item (ii.1). Let us prove the
remaining items.

Since E ⊆ E(ϑ, γ), 4C2
5r0 < γ/2 and 4−1ϑ−1C−1

5 µ ≤ 2−10(h+1)ϑ, Proposition 2.28(i) implies that for any w ∈ E
and any 0 < ρ < C5r0 - choosing σ = 4−1ϑ−1C−1

5 µ and t = 4C5ρ in Proposition 2.28 - there exists a Vw,ρ ∈ Grs,C
E (h)

such that
φ(B(y, r) ∩ B(wV, 4−1C−1

5 ϑ−2µ2ρ)) ≥ (1− 210(h+1)4−1C−1
5 µ)(r/s)hφ(B(v, s)),

whenever y, v ∈ B(w, 2C5ρ) ∩ wVw,ρ and ϑ−1µρ ≤ r, s ≤ 2C5ρ. Since

210(h+1)4−1C−1
5 µ ≤ ε,

with the choices s = C5ρ and v = w, we finally infer

φ(B(y, r)) ≥ (1− ε)(r/C5ρ)hφ(B(w, C5ρ)),

for any µρ ≤ r ≤ C5ρ and any y ∈ B(w, C5ρ) ∩ wVw,ρ, and this proves item (ii.2). For any w ∈ E and any
0 < ρ < C5r0 we choose one normal complement Lw,ρ of Vw,ρ as in Proposition 2.20, and we denote with P := PVw,ρ

the projection relative to this splitting. Eventually, Proposition 2.28(ii), with the choice k := C5, implies that for any
0 < ρ < C5r0 we have

φ(B(w, C5ρ) ∩ wTVw,ρ(0, ρ)) ≤ (1 + (2C5h + 1)ϑ−1C−1
5 µ)C−h

5 C
h(P(B(0, 1)))φ(B(w, C5ρ))

≤ (1 + ε)C−h
5 C

h(P(B(0, 1)))φ(B(w, C5ρ)),
(81)

where the last inequality comes from the fact that (2C5h + 1)ϑ−1C−1
5 µ < ε. Hence also item (ii.3) is verified. In

order to verify item (iii), note that since z ∈ E ⊆ F̃(a, b) on the one hand then there is an infinitesimal sequence
{ρi(z)}i∈N such that

φ(B(z, C5ρi(z)))
(C5ρi(z))h ≤ b. (82)
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On the other hand for any w ∈ E, and any 0 < ρ < a we have

b ≤ 1
1− ε

φ(B(w, C5ρ))

(C5ρ)h . (83)

Putting together (82) and (83) we finally infer that for any i ∈N, any w ∈ E and any ρ ∈ (0, a) we have

φ(B(z, C5ρi(z)))
ρi(z)h ≤ 1

1− ε

φ(B(w, C5ρ))

ρh ,

concluding the proof of item (iii) and thus of the proposition.

Before going on with the last part of the proof of Theorem 3.1, we need a Proposition borrowed from the Preprint
[5] whose simple proof is omitted here. Before stating it, we give a couple of definitions.

Definition 3.4. Let us fix x ∈ G, r > 0 and φ a Radon measure on G. We define Πδ(x, r) to be the subset of planes
V ∈ Gr(h) for which there exists a Θ > 0 such that

Fx,r(φ, ΘShxxV) ≤ 2δrh+1. (84)

Definition 3.5. For any ϑ ∈N we define δG = δG(h, ϑ) := ϑ−12−(4h+5).

Proposition 3.9 ([5, Proposition 3.1]). Let φ be a Radon measure on G that is supported on a compact set, let x ∈ E(ϑ, γ),
fix δ < δG, where δG is defined in Definition 3.5, and set 0 < r < 1/γ. Then for every V ∈ Πδ(x, r), see Definition 3.4, we
have

sup
w∈E(ϑ,γ)∩B(x,r/4)

dist
(
w, xV

)
r

≤ 21+1/(h+1)ϑ1/(h+1)δ1/(h+1) =: C6(ϑ, h)δ1/(h+1). (85)

Proposition 3.10. Assume φ is a P∗,E
h -rectifiable measure supported on a compact set K. Then, there exists a W ∈ GrE(h),

a compact set K′ b W and a Lipschitz function f : K′ → G such that φ( f (K′)) > 0.

Proof. Theorem 3.4 implies that for φ-almost every x ∈ G the elements of Tanh(φ, x) all share the same stratification
vector. Furthermore, thanks to Proposition 3.5, for any s ∈ S(h) the set Ts := {x ∈ K : s(φ, x) = s} is φ-measurable.
Thus, if we prove that for any s ∈ S(h) there exists a Lipschitz function as in the thesis of the proposition whose
image has positive φxTs-measure, the proposition is proved since the sets Ts cover φ-almost all K and since the
locality of tangents hold, see Proposition 2.2. Thanks to this argument, we can assume without loss of generality
that there exists a s ∈ S(h) such that for φ-almost every x ∈ K we have s(φ, x) = s.

Let us further reduce ourselves to the setting in which there exists a constant C > 0 such that φ(G \ GC) = 0,
where GC is defined in (77). Thanks to Proposition 3.7, we know that for φ-almost every x ∈ G the set G (x) defined
in (76) is compact. Hence, taking item (i) of Proposition 2.19 into account, for φ-almost every x ∈ G there exists a
constant C(x) > 0 such that e(V) ≥ C(x) for every V ∈ G (x). This readily implies that

φ(G \ ∪n∈NG1/n) = 0.

Hence, since G1/n is φ-measurable for every n ∈N, see Proposition 3.7, we can reduce, with the same argument
used in the previous paragraph, to deal with the case in which there exists C > 0 such that φ(G \ GC) = 0.

Let C4 := C4(C) and C5 := C5(C) be defined as in Definition 3.3, and let ε̃ ≤ 5−10(h+5)C−3h
5 , and µ̃ :=

2−7h−3C−5h
5 ε̃2. Let E ⊆ K be the compact set and z ∈ E ∩ GC the point yielded by Proposition 3.8 with respect to

ε̃, µ̃. Furthermore let ε̃ ≤ ε ≤ 5−h−5C−3h
5 , and µ := 2−7h−3C−5h

5 ε2 such that (1− ε̃)2 ≥ (1− ε). We define

r := ρ1(z), and r1 := (1− ε/h)r,

where ρ1(z) is the first term of the sequence {ρi(z)}i∈N yielded by item (iii) of Proposition 3.8.
Let us check that the compact set E ∩ B(z, C5r1) satisfies the hypothesis of Proposition 3.6 with respect to the

choiches ε, µ, r. First of all, since r < ρz, item (i) of Proposition 3.8 implies that (43) holds since µ̃ ≤ µ. Secondly, since
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r ≤ r0, item (ii.2) of Proposition 3.8 implies that for any w ∈ E and any 0 < ρ < C5r there exists a Vw,ρ ∈ GrsE(h)
such that whenever y ∈ B(w, C5r) ∩ wVw,ρ and t ∈ [µρ, C5ρ] we have

φ(B(y, t)) ≥ (1− ε̃)(t/C5ρ)hφ(B(w, C5ρ)).

Furthermore, since r = ρ1(z), thanks to item (iii) of Proposition 3.8 we finally infer that for any w ∈ E and any
0 < ρ < C5r we have

φ(B(y, t)) ≥ (1− ε̃)(t/C5ρ)hφ(B(w, C5ρ)) ≥ (1− ε̃)2(t/C5r)hφ(B(z, C5r))

≥ (1− ε)(t/C5r)hφ(B(z, C5r)),
(86)

whenever y ∈ B(w, C5r) ∩ wVw,ρ and t ∈ [µρ, C5ρ]. The above paragraph shows that the hypotheses of Proposi-
tion 3.6 are satisfied by z and E ∩ B(z, C5r1) with the choices of r, r1, ε, µ as above.

Throughout the rest of the proof E will stand for E ∩ B(z, C5r1), and in order to conclude the argument we will
need to use the other two pieces of information yielded by Proposition 3.8. Indeed, since r < C5r0, item (ii.3) of
Proposition 3.8 implies that

(1− ε)φ(zTVz,r (0, r) ∩ B(z, C5r)) ≤ Ch(P(B(0, 1)))C−h
5 φ(B(z, C5r)), (87)

where T is the cylinder related to the splitting G = Vz,r ·Lz,r, and Lz,r is one normal complement to Vz,r chosen as
in item (ii.3) of Proposition 3.8. Furthermore, thanks to item (ii.1) of Proposition 3.8 and the fact that r < r0 we
know that there exists Θ > 0 such that

Fz,4C5r(φ, ΘChxzVz,r) ≤ (4−1ϑ−1C−1
5 µ)h+3 · (4C5r)h+1. (88)

The bound (88) together with Proposition 3.9, that we can apply since 4C5r ≤ γ−1, and 2−1(4−1ϑ−1C−1
5 µ)h+3 ≤ δG,

where δG was introduced in Definition 3.5, imply that

sup
w∈E∩B(z,C5r)

dist
(
w, zVz,r

)
4C5r

≤ 21+1/(h+1)ϑ1/(h+1)(2−1(4−1ϑ−1C−1
5 µ)h+3)

1
h+1 ≤ 2C−1

5 µ. (89)

The above bound shows that the set E inside the ball B(z, C5r) is very squeezed around the plane Vz,r. From now
on we should denote W := Vz,r, P := PVz,r , L := Lz,r, and T(·, r) := TW(·, r). In order to simplify the notation,
since all the statements are invariant up to substituting φ with Tz,1φ, we can assume that z = 0. Let us recall once
more that e(Vz,r) ≥ C from item (ii) of Proposition 3.8.

Since it will turn out to be useful later on, we estimate the distance of the points w of E ∩ T(0, r1) from 0. Thanks
to Proposition 2.22 and the fact that w ∈ T(0, r1), we have ‖PW(w)‖ ≤ C4r1. On the other hand, (15) and (89) imply
that

‖PL(w)‖ ≤ C4 dist(w, W) ≤ 8C4µr1.

This in particular implies that

d(0, w) ≤ ‖PW(w)‖+ ‖PL(w)‖ ≤ C4r1 + 8C4µr1 ≤ 2C4r1,

showing that
E ∩ T(0, r1) ⊆ B(0, 2C4r1). (90)

In the following A, A1 and A2 are the sets inside P(B(0, r1)) constructed in the statement of Proposition 3.6 with
respect to the 0 and the plane W. Now, let Ã be the set of those u ∈ A for which there exists ρ(u) > 0 such that

φ(B(0, C5r) ∩ T(u, s)) ≤ 2(1− ε)4(s/C5r)hCh(P(B(0, 1)))φ(B(0, C5r)), (91)

for all 0 < s < ρ(u). We claim that Ã is a Borel set. To prove this, we note that

Ã =
⋃

k∈N

{u ∈ A : (91) holds for any 0 < s < 1/k} =:
⋃

k∈N

Ãk.



marstrand-mattila rectifiability criterion for co-normal-P∗
h -rectifiable measures 36

Let us show that Ãk is a compact set for any k ∈N, and in order to do this, let us assume {ui}i∈N is a sequence
of points of Ãk. Since Ãk ⊆ A, and A is compact, we can suppose that, up to a non re-labelled subsequence, ui
converges to some u ∈ A. Thus, we have that for every 0 < s < 1/k the following chain of inequality holds

φ(B(0, C5r) ∩ T(u, s)) ≤ lim sup
i→∞

φ(B(0, C5r) ∩ T(ui, s + d(u, ui)))

≤ 2(1− ε)4Ch(P(B(0, 1)))(s/C5r)hφ(B(0, C5r)).

This concludes the proof of the fact that Ãk is compact and thus Ã is an Fσ set, and thus Borel.
Let us notice that, since r1 < r, by a compactness argument one finds that there exists a s̃ := s̃(r1, r) such that

whenever u ∈ P(B(0, r1)), then P(B(u, s̃)) ⊆ P(B(0, r)). The family

B := {P(B(u, s)) : u ∈ A \ Ã, and s ≤ s̃ does not satisfy (91)}

is a fine cover of A \ Ã by the very definition of Ã. Thus [11, p. 2.8.17] with a routine argument implies that B is a
Shx(A \ Ã)-Vitali relation ([11, p. 2.8.16]). Therefore, the set A \ Ã can be covered Sh-almost all by a sequence of
disjointed projected balls {P(B(uk, sk))}k∈N such that uk ∈ A \ Ã and

φ(B(0, C5r) ∩ T(uk, sk)) > 2(1− ε)4Ch(P(B(0, 1)))(sk/C5r)hφ(B(0, C5r)),

for every k ∈N. Note that since T(uk, sk) = P−1(P(B(uk, sk))), see Proposition 2.22, we get that {T(uk, sk)}k∈N is a
disjointed family of cylinders. Moreover, from the very definition of s̃, since uk ∈ P(B(0, r1)) and sk ≤ s̃, we have
that P(B(uk, sk)) ⊆ P(B(0, r)). This implies that

φ(T(0, r) ∩ B(0, C5r)) ≥ ∑
k∈N

φ(B(0, C5r) ∩ T(uk, sk))

> 2(1− ε)4Ch(P(B(0, 1)))C−h
5 r−hφ(B(0, C5r)) ∑

k∈N

sh
k .

(92)

Therefore, we have

Ch(A \ Ã) = ∑
k∈N

Ch(P(B(uk, sk))) ≤ Ch(P(B(0, 1))) ∑
k∈N

sh
k

< 2−1(1− ε)−4 φ(T(0, r) ∩ B(0, C5r))Ch
5 rh

φ(B(0, C5r))
≤ 2−1(1− ε)−5Ch(P(B(0, 1)))rh

≤ 27
50
Ch(P(B(0, 1)))rh,

where the second inequality on the second line above follows from (87). Furthermore, from the previous inequality
and from item (iv) of Proposition 3.6 we deduce that

Ch(Ã) = Ch(P(B(0, r)))− Ch(P(B(0, r)) \ A)− Ch(A \ Ã)

> Ch(P(B(0, 1)))rh − 5h+3C3h
5 εCh(P(B(0, 1)))rh − Ch(P(B(0, 1)))

27
50

rh

≥ (1− 1/25− 27/50)Ch(P(B(0, 1)))rh >
2
5
Ch(P(B(0, 1)))rh.

Since Ã is measurable, we can find a compact set Â ⊆ Ã and a δ ∈ (0, εr/h) such that Ch(Â) > 0 and (91) holds for
any u ∈ Â and s ∈ (0, δ). This can be done by taking an interior approximation with compact sets of Ã.

Thanks to item (v) of Proposition 3.6 we know that

Â ⊆ A = P(E ∩ P−1(A)), (93)

and thus for any u ∈ Â we can find a x ∈ E such that P(x) = u. We claim that for any x ∈ E for which P(x) ∈ Â,
any s < min{r/4, δ/(1 + C5)} and any w ∈ Vx,s we have

‖P(w)‖ > ‖w‖/2C5. (94)
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Suppose by contradiction that there are an s < min{r/4, δ/(1 + C5)} and a w ∈ Vx,s with ‖w‖ = 1 such that
‖P(w)‖ ≤ 1/2C5. This would imply that for any k = 0, . . . , bC5/4c − 1 and any p ∈ B(0, s/2) we have, by exploiting
P(x) = u and that P is a homogeneous homomorphism, that

d(P(xδ2ks(w)p), u) = d(δ2ks(P(w))P(p), 0) ≤‖δ2ks(P(w))‖+ ‖P(p)‖
≤ 2ks‖P(w)‖+ ‖P(p)‖ ≤ ks/C5 + C4s ≤ (1 + C4)s.

(95)

Since u ∈ Â ⊆ A ⊆ P(B(0, r1)), and since P(x) = u, we conclude that x ∈ T(0, r1). Hence, taking into account that
r1 < r, thanks to the inclusion (90), we have

d(xδ2ks(w)p, 0) ≤ ‖x‖+ 2ks + s ≤ 2C4r + (2k + 1)s < 2C4r + 3C5r/4 < C5r. (96)

Putting together (95) and (96), we infer that for any k = 0, . . . , bC5/4c − 1 we have

B(xδ2ks(w), s/2) ⊆ T(u, (1 + C4)s) ∩ B(0, C5r).

Furthermore, since x ∈ E, B(xδks(w), s/2) are disjoint and contained in B(x, C5s), we have by items (ii.2) and (iii) of
Proposition 3.8 that

φ
(

B(0, C5r) ∩ T(u, (1 + C4)s)
)
≥
bC5/4c−1

∑
k=1

φ(B(xδks(w), s/2))

≥ (1− ε)C5

8

( s/2
C5s

)h
φ(B(x, C5s)) ≥ (1− ε)2C5

8

( s/2
C5r

)h
φ(B(0, C5r))

= (1− ε)2 C5

2h+3

( s
C5r

)h
φ(B(0, C5r)).

(97)

Since by assumption u ∈ Â ⊆ Ã and (1 + C4)s < δ, we infer thanks to (97) and the definition of Â that

(1− ε)2 C5

2h+3

( s
C5r

)h
φ(B(0, C5r)) ≤ φ

(
B(0, C5r) ∩ T(u, (1 + C4)s)

)
≤ 2(1− ε)4(1 + C4)

h
( s

C5r

)h
Ch(P(B(0, 1)))φ(B(0, C5r)).

(98)

The chain of inequalities (98) is however in contradiction with the choice of C5 thanks to Remark 3.3, and thus the
claim (94) is proved.

Since P restricted to E ∩ P−1(A) is surjective on Â as remarked in (93), thanks to the axiom of choice there exists
a function f : Â → E ∩ P−1(A) such that P( f (u)) = u. We claim that for φ-almost every x ∈ f (Â) there exists a
r(x) > 0 such that for any y ∈ f (Â) ∩ B(x, r(x)) we have

‖P(x)−1P(y)‖ = ‖P(x−1y)‖ > C−2
5 ‖x

−1y‖ = C−2
5 ‖ f (P(x))−1 f (P(y))‖, (99)

where the last identity comes from the fact that f is bijective on its image and thus the left and right inverse
must coincide. In order to prove the latter claim, assume by contradiction that there exists an x ∈ f (Â) such that
Tanh(φ, x) ⊆M(h, GrsE(h)) and a sequence {yi}i∈N ⊆ f (Â), with yi → x, such that

‖P(x−1yi)‖ ≤ C−2
5 ‖x

−1yi‖, for any i ∈N. (100)

Defined ρi := ‖x−1yi‖, thanks to the hypothesis on x and the definitions of yi and ρi we can assume without loss of
generality that

1. for any i ∈N we have ρi ≤ min{r/4, δ/(1 + C5)},

2. the points gi := δ1/ρi
(x−1yi) converge to some y ∈ ∂B(0, 1) such that ‖P(y)‖ ≤ C−2

5 ,

3. ρ−h
i Tx,ρi φ ⇀ λChxV for some λ > 0 and V ∈ GrsE(h).
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Since ChxV(∂B(p, s)) = 0, see e.g., [17, Lemma 3.5], for any p ∈ G and any s ≥ 0, thanks to [8, Proposition 2.7] we
infer that

λChxV(B(y, ρ)) = lim
i→∞

Tx,ρi φ(B(y, ρ))/ρh
i ≥ lim

i→∞
Tx,ρi φ(B(gi, ρ− d(gi, y)))/ρh

i

≥ lim
i→∞

φ(B(yi, ρiρ/2))/ρh
i ≥ ϑ−1(ρ/2)h > 0,

where we stress that in the second inequality in the second line we are using that there exists ϑ, γ ∈ N such
that E ⊆ E(ϑ, γ), since E is provided by Proposition 3.8. The above computation shows that the (contradiction)
assumption (100) implies that at x there is a flat tangent measure whose support V contains an element y ∈ ∂B(0, 1)
such that ‖P(y)‖ ≤ C−2

5 . Let us prove that if

(HC) there exists a suitably big i0 ∈N such that we can find a qi0 ∈ Vx,ρi0
such that d(y, qi0) ≤ µ,

then we achieve a contradiction with (94), and thus we prove the claim (99). Indeed, the claim (HC) above would
imply thanks to the definition of µ, (94), Proposition 2.20, and Proposition 2.21, that

(4C5)
−1 < (1− µ)/2C5 ≤ (‖y‖ − ‖y−1qi0‖)/2C5 ≤ ‖qi0‖/2C5

< ‖P(qi0)‖ ≤ ‖P(y)‖+ ‖P(y
−1qi0)‖ ≤ C−2

5 + C4µ < 2C−2
5 ,

which is a contradiction since C5 > 10Q.
In this paragraph we prove the claim (HC), which is sufficient to conclude the proof of the claim (99). Let Θi be

the positive numbers yielded by item (ii.1) of Proposition 3.8 with the choices ρ := ρi around the point x, and notice
that

lim sup
i→∞

F0,4C5(λC
hxV, ΘiChxVx,ρi ) ≤ lim sup

i→∞
F0,4C5

(Tx,ρi φ

ρh
i

, λChxV
)
+ lim sup

i→∞
F0,4C5

(Tx,ρi φ

ρh
i

, ΘiChxVx,ρi

)

= lim sup
i→∞

F0,4C5

(Tx,ρi φ

ρh
i

, ΘiChxVx,ρi

)
= lim sup

i→∞

Fx,4C5ρi

(
φ, ΘiChxxVx,ρi

)
ρh+1

i

≤ (ϑ−1µ)(h+3),

(101)

where the first identity in the second line above comes from Proposition 2.25, the second identity from the scaling
property in Remark 2.7 and the last inequality from item (ii.1) of Proposition 3.8 and some algebraic computations
that we omit. Defined g(w) := (min{1, 2− ‖w‖})+ by Proposition 2.11 for any V′ ∈ Gr(h) we have

ˆ
gdChxV′ = h

ˆ
sh−1(min{1, 2− |s|})+ds

= h

(ˆ 1

0
sh−1 +

ˆ 2

1
sh−1(2− s)ds

)
=

2h+1 − 1
h + 1

.
(102)

Therefore, since supp(g) ⊆ B(0, 4C5), thanks to (101) we infer that

lim sup
i→∞

|λ−Θi| = lim sup
i→∞

|λ
´

gdChxV−Θi
´

gdChxVx,ρi |´
gdChxV

≤ lim sup
i→∞

(h + 1)
F0,4C5(λChxV, ΘiChxVx,ρi )

2h+1 − 1
≤ (h + 1)(ϑ−1µ)(h+3)

2h+1 − 1

≤ 2(ϑ−1µ)(h+3).

(103)
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Let p ∈ V∩ B(0, 1) and `(w) := (µ‖p‖− ‖p−1w‖)+. The function ` is a positive 1-Lipschitz function whose support
is contained in B(0, (1 + µ)‖p‖) and therefore, thanks to Remark 2.7, we deduce that

lim inf
i→∞

λ

ˆ
`(w)dChxVx,ρi ≥ λ

ˆ
`(w)dChxV− lim sup

i→∞
λ

∣∣∣∣ ˆ `(w)dChxV−
ˆ

`(w)dChxVx,ρi

∣∣∣∣
≥ λ

ˆ
`(w)dChxV− lim sup

i→∞
|λ−Θi|

ˆ
`(w)dChxVx,ρi − lim sup

i→∞

∣∣∣∣ ˆ `(w)dλChxV−
ˆ

`(w)dΘiChxVx,ρi

∣∣∣∣
≥ λ

ˆ
`(w)dChxV− lim sup

i→∞
|λ−Θi|

ˆ
`(w)dChxVx,ρi − lim sup

i→∞
F0,(1+µ)‖p‖(λChxV, ΘiChxVx,ρi ).

(104)

Let us bound separately the two last terms in the last line above. Thanks to the triangle inequality the points
qi ∈ Vx,ρi of minimal distance of p from Vx,ρi are contained in B(0, 2‖p‖). This, together Remark 2.2, implies that

ˆ
`(w)dChxVx,ρi ≤ µ‖p‖ChxVx,ρi (B(qi, (3 + 2µ)‖p‖)) ≤ (3 + 2µ)h+1‖p‖h+1. (105)

On the other hand, thanks to Remark 2.7 and the fact that ChxV and ChxVx,ρi are invariant under rescaling, we
infer that

F0,(1+µ)‖p‖(λChxV, ΘiChxVx,ρi ) =

(
(1 + µ)‖p‖

4C5

)h+1

F0,4C5(λC
hxV, ΘiChxVx,ρi ). (106)

Putting together (101), (103), (104), (105) and (106) we finally infer that

lim inf
i→∞

λ

ˆ
`(w)dChxVx,ρi ≥ λ

ˆ
`(w)dChxV− 2(ϑ−1µ)(h+3)(3 + 2µ)h+1‖p‖h+1 −

(
(1 + µ)‖p‖

4C5

)h+1

(ϑ−1µ)(h+3)

≥ λ

ˆ
`(w)dChxV− (ϑ−1µ)(h+3)‖p‖h+1(2(3 + 2µ)h+1 + 1

)
.

(107)

Finally, Proposition 2.23 and the fact that x ∈ E(ϑ, γ) imply that λ ≥ ϑ−1. This together with a simple computation
that we omit, based on Proposition 2.11, shows that

λ

ˆ
`(w)dChxV = ϑ−1(µ‖p‖)h+1/(h + 1). (108)

Putting together (107) and (108) we eventually infer that

lim inf
i→∞

λ

ˆ
`(w)dChxVx,ρi ≥ ϑ−1(µh+1/(h + 1)− 22(h+2)µ(h+3))‖p‖h+1 > 0,

proving that for any p ∈ B(0, 1) ∩V we have B(p, µ‖p‖) ∩Vx,ρi 6= ∅ provided i is chosen suitably big. Thus the
claim (HC) is proved taking p = y.

Let us conclude the proof of the proposition exploiting the claim (99) that we have proved. Defined B to be the
set of full measure in f (Â) on which (99) holds, we note that since B(P(x), r) ⊆ P(B(x, r)), the (99) implies the
following one: for any u ∈ P(B) there exists a r(u) > 0 such that

‖ f (u)−1 f (w)‖ ≤ C2
5‖u−1w‖, whenever w ∈ Â ∩ B(u, r(u)). (109)

Furthermore, note that thanks to the proof of item (v) of Proposition 3.6 and recalling that f (Â) ⊆ E ∩ P−1(A), we
deduce that Shx f (Â) is mutually absolutely continuous with respect to φ and by Proposition 2.13 we finally infer
that

Sh(Â \ P(B)) = Sh(P( f (Â) \ B)) = 0,

where the first equality above comes from the fact that f : Â→ f (Â) is bijective.
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We now prove that if r(u) is chosen to be the biggest radius for which (109) holds, then the map u 7→ r(u) is upper
semicontinuous on Â. Indeed, assume {ui}i∈N is a sequence in Â such that ui → u ∈ Â and lim supi→∞ r(ui) =
r0 ≥ 0. If r0 = 0, then the inequality lim supi→∞ r(ui) ≤ r(u) is trivially satisfied. Thus, we can assume that r0 > 0,
and, without loss of generality, also that the lim sup is actually a lim. For any fixed 0 < s < r0 there exists an i0 ∈N

such that
s + d(u, ui) < r(ui) for any i ≥ i0.

As a consequence B(u, s) ⊆ B(ui, r(ui)) and thus for any y ∈ Â ∩ B(u, s) and i ≥ i0 we have

‖ f (u)−1 f (y)‖ ≤ ‖ f (u)−1 f (ui)‖+ ‖ f (ui)
−1 f (y)‖ ≤ C2

5‖u−1
i u‖+ C2

5‖u−1
i y‖. (110)

Sending i to +∞, thanks to (110) we conclude that for any y ∈ B(u, s) ∩ Â we have ‖ f (u)−1 f (y)‖ ≤ C2
5‖u−1y‖ and

thus s ≤ r(u). The arbitrariness of s concludes that r is upper semicontinuous and thus for any j ∈N the sets

Lj := {w ∈ Â : r(w) ≥ 1/j},

are Borel. Furthermore, since r(u) > 0 everywhere on P(B), we infer that P(B) ⊆ ∪j∈NLj. This, jointly with the
fact that Sh(Â) > 0, and that Sh(Â \ P(B)) = 0 tells us that we can find a j ∈N and compact subset A of Lj such
that Sh(A) > 0 and diam(A) < 1/2j.

Let us conclude the proof by showing that f is Lipschitz on A and that φ( f (A)) > 0. The fact that f (A) is
φ-positive follows from Proposition 2.20, item (v) of Proposition 3.6 and the following computation

0 < Sh(A) = Sh(P( f (A))) ≤ Ch
4Sh( f (A)).

On the other hand, for any u, v ∈ A we have d(u, v) ≤ 1/2j and since u, v ∈ Lj then

‖ f (u)−1 f (v)‖ ≤ C2
5‖u−1v‖.

This eventually concludes the proof of the proposition.

Proof of Theorem 3.1. If we prove the result for φxB(0, k) for any k ∈N, the general case follows taking into account
the locality of tangents Proposition 2.2 and Lebesgue differentiation theorem Proposition 2.1. Therefore, we can
assume without loss of generality that φ is supported on a compact set. Let us set

F := {∪i∈N fi(Ki) : Ki is a compact subset of Wi with Wi ∈ GrE(h) and fi : Ki → G is Lipschitz}. (111)

Let m := infF∈F {φ(G \ F)}. We claim that if m = 0 the proof of the proposition is concluded. Indeed, if m = 0 we
can take Fn ∈ F such that φ(G \ Fn) < 1/n and then φ(G \ ∪n∈NFn) = 0. Let us prove that m = 0. Indeeed, if by
contradiction m > 0, we can take, as before, F′n ∈ F such that 0 < φ(G \ ∪n∈NF′n) ≤ m. Since F′ := ∪n∈NF′n is Borel,
we have, thanks to the locality of tangents Proposition 2.2 and Lebesgue differentiation theorem Proposition 2.1,
that φxF′ is a P∗,E

h -rectifiable measure with compact support. Thus we can apply Proposition 3.10 to conclude that
there exists W ∈ GrE(h), K a compact subset of W and a Lipschitz function f : K → G such that φxF′( f (K)) > 0.
Thus we get that φ(G \ ( f (K) ∪ F′)) < m, that is a contradiction with the definition of m.

In order to prove the last part of the theorem, let us notice that, thanks to the locality of tangents in Proposition 2.2
and Lebesgue differentiation theorem in Proposition 2.1, we can reduce on φxE(ϑ, γ), thanks also to Proposition 2.4.
Moreover, taking into account that ShxE(ϑ, γ) is mutually absolutely continuous with respect to φxE(ϑ, γ), see
Proposition 2.5, we can finally reduce to prove that Shx f (K) is a Pc

h-rectifiable measure whenever K is a compact
subset of W ∈ GrE(h) and f : K → G is a Lipschitz function. The fact that Shx f (K) is a Pc

h-rectifiable measure
follows from the following claim: if K is a compact subset of W ∈ GrE(h) and f : K → G is a Lipschitz function,
then for Shx f (K)-almost every x ∈ G we have that there exists W(x) ∈ Gr(h) such that the following convergence
of measures holds

r−hTx,rShx f (K) ⇀ ShxW(x), as r goes to 0. (112)

Let us finally sketch the proof of (112). Since W ∈ GrE(h), i.e., it admits a normal complementary subgroup, we
get that W is a Carnot subgroup of G, see [2, Remark 2.1]. Thus we can apply Pansu-Rademacher theorem to
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f : K ⊆W→ G, see [21, Theorem 3.4.11], to obtain that f is Pansu-differentiable Sh-almost everywhere, with Pansu
differential d f , and the area formula holds, see [21, Corollary 4.3.6]. The proof of (112) with W(x) := D f (x)(W)
for Shx f (K)-almost every x is now just a routine task, building on [21, Proposition 4.3.1 and Proposition 4.3.3], and
by using the area formula in [21, Corollary 4.3.6]. We do not give all the details as the proof follows verbatim as in
the argument contained in [23, pages 716-717], with the obvious substitutions taking into account that the authors
in [23] only deal with Heisenberg groups Hn in the case W is horizontal.
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