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Abstract
It depends. For a single molecule interacting with one mode of a biphoton probe, we show that the
spectroscopic information has three contributions, only one of which is a genuine two-photon
contribution. When all the scattered light can be measured, solely this contribution exists and can
be fully extracted using unentangled measurements. Furthermore, this two-photon contribution
can, in principle, be matched by an optimised but unentangled single-photon probe. When the
matter system spontaneously emits into inaccessible modes, an advantage due to entanglement can
not be ruled out. In practice, time-frequency entanglement does enhance spectroscopic
performance of the oft-studied weakly-pumped spontaneous parametric down conversion (PDC)
probes. For two-level systems and coupled dimers, more entangled PDC probes yield more
spectroscopic information, even in the presence of emission into inaccessible modes. Moreover,
simple, unentangled measurements can capture between 60% and 90% of the spectroscopic
information. We thus establish that biphoton spectroscopy using source-engineered PDC probes
and unentangled measurements can provide tangible quantum enhancement. Our work
underscores the intricate role of entanglement in single-molecule spectroscopy using quantum
light.

1. Introduction

Over the last couple of decades, entangled states of quantum light have been explored for their potential use
in linear and nonlinear optical spectroscopies. Absorption spectroscopy in a ‘biphoton’ setup, where the
effect of the sample is described perturbatively as an optical loss on one of the two spatially distinct modes of
an entangled state, has been experimentally performed on glass [1], crystalline [2], and nanoparticle [3]
samples. These offer a larger coincidence signal-to-noise ratio (SNR) compared to photon-counting
measurements of classical light.

More recently, coherent non-linear optical spectroscopies using quantum light have been proposed and
theoretically studied using a fully quantum mechanical approach [4–6]. The supposed improved
performance of these quantum spectroscopic methods over classical ones is often attributed to the
availability of control variables such as the entanglement time that do not have classical counterparts [7], or
more generally to the absence of the usual Fourier limit on joint temporal and spectral resolutions of
entangled photons [4].

However, if only single one-photon interactions between light and matter are considered, and
independent measurements are performed on the two photons, henceforth referred to as ‘signal’ and ‘idler’
photons, the advantage afforded by entangled biphoton states cannot be fundamentally quantum.

In fact, Stefanov has mathematically shown that, in this setting, the probability distributions of
uncorrelated measurements on the two spatially distinguishable modes of the outgoing biphoton state can
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Figure 1. Schematic of pulsed biphoton spectroscopy. Only the signal photon interacts with the molecular system M, and both
photons are measured after the light–matter interaction. Γ captures the interaction of M with the incoming signal mode while
Γ⊥ does so for all other photonic modes, collectively dubbed the environment E. The specialisation of M to the two-level system
(TLS) and coupled dimer (CD) is only made in sections (6.2) and (6.3) respectively.

always be mimicked by an ensemble with classical correlations between the two photons, and no
entanglement [8]. Thus, entanglement with an additional idler mode seemingly provides no advantage—or
disadvantage, when the subsequent measurements on signal and idler modes are independent. This implies
that the improved SNR in biphoton experiments with single-photon interactions may be attributed to
technical aspects such as the use of coincidence counters with sufficiently small time windows, but not to the
inherent quantum correlations of the entangled, non-classical light.

The general question of the role of entanglement in quantum light spectroscopy is more subtle and
intricate. It depends on the location—at the input or at the measurement stage, on the model of the matter
sample and the light–matter interaction, and on the nature and strength of the coupling to both photonic
and phononic environments. It also depends on the type of light used as probe (and consequently the type of
entanglement, such as between time–frequency modes, photon numbers, or some other degrees of freedom),
as well as on the time of measurement compared to the typical matter system timescale(s), its type, and the
detection system used.

Finally, it depends on what spectroscopy is defined to be. Mathematically, a larger probability—of
absorption, emission, or general quantum measurement outcomes—is not identical to a higher precision of
estimating unknown parameter(s) of the model matter system [9].

The latter is typically the operational goal of spectroscopy.
In this paper, we elucidate the role of time–frequency quantum entanglement in biphoton spectroscopy

in the precise estimation of unknown parameters of individual molecules. As illustrated in figure 1, it
captures spectroscopic setups in which only one of the spatially distinct travelling modes interacts with the
sample through a single one-photon interaction, the state of light itself carrying two excitations. Our
interaction model is motivated by the coherent coupling of single molecules (with strength Γ) with optical
fields. We also include a photonic environment characterised by the coupling strength Γ⊥ modelling
emission into inaccessible modes. Our conclusions are based on the quantum information-theoretic
methodology for quantum light spectroscopy developed in our recent paper [9].

Of proximate experimental relevance, we establish the functional utility of time-frequency entanglement
for the spectroscopy of a two-level system (TLS) and a coupled dimer (CD) using states generated from
weakly-pumped spontaneous parametric down conversion (PDC). Such states are typical of spectroscopic
techniques employing entangled light [1–3, 5, 10–13]. Our choice of matter systems also has immediate
practical relevance. Under certain symmetries of the dipole operator or isotropic pumping, alkali-metal
atomic vapours are approximately TLS [14]. The CD is often employed as a minimal model [15–17] for
exciton-hopping quantum dynamics in a wide class of light-harvesting complexes such as the 8-site
Fenna–Matthews–Olsen complex and the 27-site B800-B850 light-harvesting-2 complexes. It is more
substantively relevant for the cyanobacterial allophycocyanin (APC) complex [18], as well as conjugated
polymers [19, 20].

Our main results for single-molecule biphoton spectroscopy are as follows:

1. At long times, the spectroscopic information is bounded by a sum of three—a two-photon, a
one-photon, and a classical, contributions (equation (37)).

2. Entangled measurements across the signal and idler modes are not necessary to attain the bound in
equation (37) (see section (5.1))).
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3. Time-frequency entanglement of the input probe provides no in-principle advantage when Γ⊥ = 0 (see
section (5.2)).

4. A class of optimised unentangled measurements always yield more information than any measurements
on the signal photon state only (equation (52)), i.e. by tracing out the idler mode.

5. Time-frequency entanglement of PDC probes enhances the spectroscopy of TLS and CD systems. This
can be used to engineer PDC sources for practical quantum-enhanced spectroscopy (See section (6)).

Our results advance the understanding of single-molecule spectroscopy using entangled light. They pave
the path towards capturing experimental scenarios that could be the successors of absorption-based
techniques [21, 22] or fluorescence-based ones such as single-molecule pump-probe (SM2P)
spectroscopy [23–25] using quantum light. To the best of our knowledge, all these single-molecule
techniques have employed pulses of classical light, with or without a fixed phase relation between them. Our
work also stand apart from other recent ones on ‘quantum-enhanced’ spectroscopy that model the ensemble
matter system as an infinite chain of beamsplitters [26–28].

In addition to treating both the light and matter quantum mechanically, our work advances the
quantum-information theoretic understanding of spectroscopy using entangled light. It does so by clarifying
the spectroscopic potential of entangled measurements across signal and idler modes, and a simpler class
using local operations and classical communication (LOCC). These place our work beyond that of
Stefanov [8].

The paper is structured as follows: in section 2, we recast quantum spectroscopy as a local estimation
problem, which will be the basis of our evaluations of fundamental error bounds. In section 3, we describe
the fully quantum model of pulsed light–matter interaction in biphoton spectroscopy, as well as define the
form of the most general incoming biphoton probes that can be employed in the spectroscopic setup in
figure 1. In section 4, we calculate explicit expressions for the quantum Fisher information (QFI) of the
outgoing state for arbitrary incoming biphoton states and in the light–matter interaction Hamiltonian for
the biphoton setup. In section 5, we will establish that unentangled measurements can attain the QFI, and
also identify near-optimal measurements that should be more practical to implement. In section 6, we apply
the theoretical machinery of the previous sections to the experimentally viable PDC states, for which we also
show that entanglement has a functional usefulness in TLS and CD spectroscopy. Finally, we conclude in
section 7.

2. Quantum light spectroscopy as an estimation problem

Spectroscopy uses light—quantum or classical, to probe matter systems via travelling field states. Following
the light–matter interaction, the probe(s) (P) carry away information about parameters of the matter (M)
system. When both the light and the matter are described quantum mechanically, the quantum state of the
probe light just before detection, can be generally represented as

ρPout (θ) = TrME

(
Vθ
lm

[
ρM ⊗ ρP ⊗ |0E⟩⟨0E|

])
, (1)

where ρP is the incoming probe state of light, ρM is the initial state of the matter system, Vθ
lm captures the

quantum interaction between light and matter and labelled by the single, real physical parameter θ that is to
be estimated. |0E⟩ ≡

⊗
l |0l⟩ captures all environmental modes (E) of the electromagnetic field that may

couple to the matter system M, unoccupied at the start of the experiment. The tracing out of the matter and
the environmental modes captures the fact that these parts of the global state are inaccessible to the
measurement apparatus.

The parametric model corresponding to POVMmeasurement {Mi : Mi > 0,
∑

i Mi = IP} on the output
state ρPout(θ) is given by the Born rule {p(i|θ) = Tr

[
ρPout(θ)Mi

]
|θ ∈ R}. Statistical inference then involves

constructing estimators θ̂ = θ(X1,X2, . . . ,Xn), where {Xi} are random variables corresponding to each of n
measured values, independent and identically distributed. The variance of the estimator
V(θ|{Mi}) = Eθ[(θ̂− θ)]2 is the mean square error of the estimator statistic (Eθ denotes expectation with
respect to X1,X2, . . . ,Xn ∼ p(i,θ)). It is upper-bounded by the Crámer–Rao bound (CRB) [29, 30]

V(θ|{Mi})⩾
1

nC (θ|{Mi})
, (2)

and C(θ|{Mi}) is the (classical) Fisher information, defined as

C (θ|{Mi}) = Varθ

[
∂

∂θ
log p(i|θ)

]
=−Eθ

[
∂

∂θ
log p(i|θ)

]2
. (3)

3
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The model, and therefore the optimal estimators themselves, depend on the POVM {Mi}.
A stronger and more fundamental bound on the precision of estimating θ can be obtained by minimising

V(θ|{Mi}) over all possible measurements {Mi} allowed by the laws of quantum mechanics. This is referred
to as the quantum CRB (QCRB) [31, 32]

V(θ|{Mi})⩾
1

nC (θ|{Mi})
⩾ 1

nQ(θ;ρPout (θ))
, (4)

whereQ(θ;ρPout(θ)) is the QFI corresponding to the parameter θ in the outgoing state ρPout(θ),

Q
(
θ;ρPout (θ)

)
= Tr

(
ρPout (θ) L

2
θ

)
⩾ C (θ|{Mi}) , (5)

with the self-adjoint symmetric logarithmic derivative (SLD) operators defined via

Lθ ρ
P
out (θ)+ ρPout (θ) Lθ = 2

∂ρPout (θ)

∂θ
. (6)

For the estimation of a single parameter θ, the corresponding QCRB can be saturated by the projective
measurement corresponding to eigenvectors of the SLD operator Lθ [32]. For rank-deficient ρPout(θ),
however, this is only a necessary condition and eigenvectors of the SLD operator are only one of many
QCRB-saturating POVMs [33]. Indeed, for pure states ρPout(θ) = |ψθ⟩⟨ψθ|, the SLD operator has the simpler
form

Lθ = |∂θψθ⟩⟨ψθ|+ |ψθ⟩⟨∂θψθ| (7)

and the QFI is

Q
(
θ;ρPout (θ)

)
= 4

(
⟨∂θψθ|∂θψθ⟩− |⟨ψθ|∂θψθ⟩|2

)
. (8)

For a general mixed state expressed as its spectral decomposition, the QFI is [34, 35]

Q

(
θ;
∑
n

pn |ψn⟩⟨ψn|

)
=
∑
n

(∂θpn)
2

pn
(8)

+
∑
n

4pn ⟨∂θψn|∂θψn⟩−
∑
m,n

8pmpn
pm + pn

|⟨∂θψm|ψn⟩|2. (9)

3. Light–matter interaction for a biphoton probe

The dynamics of a quantum matter system interacting with quantised light can be described via the
Hamiltonian

H=HM +HF +HMSE, (10)

whereHM corresponds to matter M dynamics only, andHF is the free field Hamiltonian corresponding to the
incoming signal (S) and idler (I) modes, as well as the electromagnetic environmental E modes. Each term in
HMSE is of the dipole-field coupling form−d.E, where d is a transition dipole moment operator for the
matter system, and E is the (total) quantised electric field operator (see figure 1). The dipole coupling term is
appropriate for single molecules which are small compared to typical optical wavelengths, thus allowing the
dipole approximation [36].

While our arguments can be extended to general molecular systems, we restrict our discussion in this
paper to vibrationless P-site Hamiltonians (P= 1,2) of the form

HM =
P∑

j=1

h̄ωj|j⟩⟨j|+
∑
i̸=j

Jij|i⟩⟨j|, (11)

where |j⟩ is the excited level corresponding to the jth site (with frequency ωj), and J ij is the Coulomb
dipole–dipole coupling between sites i and j. P= 1 corresponds to a TLS Hamiltonian, whereas P= 2
corresponds to the CD system, composed of two sites that are coupled to each other via the single coupling
constant J. The transition dipole operator connecting the ground state of the matter system with the
singly-excited manifold (SEM) is of the form d=

∑
j(µjg|g⟩⟨j|+ h.c.) where the matrix elements are

µjg = ⟨g|µ|j⟩.

4
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The free field Hamiltonian can be decomposed into a countably infinite number of
one-dimensional (1D) electromagnetic fields [37–40],

HF =
∑
ϵ

ˆ
d3k h̄c|k|a†ϵ (k)aϵ (k)

=
∑
l

ˆ ∞

0
dω h̄ω a†l (ω)al (ω) , (12)

where k and ϵ are respectively the wavevector and polarisation indices for the electromagnetic mode, and the
subsequent index l labels the resulting 1D modes. Although the sum over the index l necessarily runs to
infinity and subsumes both the incoming signal/idler modes, as well as the environmental E modes, we only
need consider, in the description of the light–matter interaction, modes that couple to the matter system M
due to HMSE itself.

These modes can be identified using the slowly-varying envelope approximation (SVEA) in the optical
domain, where the frequency bandwidth of the incoming field is assumed to be much smaller than the
carrier wave frequency, B≪ ω̄S. Furthermore, the propagating, incoming beam of the signal S arm can be
approximated to be paraxial. 1D quantisation of the solutions of the classical paraxial equation for the signal
arm along the direction of propagation yields [41]

ES (t) = iϵSAS (ω̄S)

ˆ ∞

−∞
dωS aS (ωS)e

−iωSt, (13)

whereAS(ω̄S) =
√

ω̄S
2ϵ0cAh̄

is the collective pulse factor (A is the transverse quantisation area of the signal

beam), and ϵS denotes the unit polarisation vector of the signal beam. Note that the emergent Fourier
transform of the field operators can be notated as

aS (t) =
1√
2π

ˆ ∞

−∞
dωS aS (ωS)e

−iωSt. (14)

These are known as white-noise operators and are δ-correlated in time as [aS(t),a
†
S(t

′)] = δ(t− t ′), where
δ(t) is the Dirac delta function.

Description of the electromagnetic environment E is simplified by the practical fact that they are
inaccessible to experiments, and must be considered in terms of their effects on reduced dynamics only. This
effect can then be recovered by using a single bosonic degree of freedom (as opposed to the infinitude of
environmental spatial modes that the matter system Mmay decay into), labelled by the ‘b’ operators:

EE (t) = iϵEAE (ω̄S)

ˆ ∞

−∞
dωE b(ωE)e

−iωEt, (15)

whereAE(ω̄S) is a collective factor characterising the effect of the continuum electromagnetic environment.
For a more detailed description, see [9, appendix A].

In the interaction frame generated by H0 =
∑

j h̄ω̄S|j⟩⟨j|+HF, where the field Hamiltonian can be taken
to include only modes that participate in the interaction

HF =

ˆ
dω h̄ω a†S (ω)aS (ω)+

ˆ
dω h̄ω b† (ω)b(ω) , (16)

the total Hamiltonian of the biphoton setup in figure 1 is

H(t) =HM
I − ih̄

(√
ΓL† ⊗ aS (t)⊗1I ⊗1E +

√
Γ⊥ L† ⊗1S ⊗1I ⊗ b(t)− h.c.

)
, (17)

where HM
I =

∑
j h̄(ωj − ω̄S)+

∑
j̸=k Jjk|j⟩⟨k|, and 1S (1I) is identity operator on the signal (idler) Hilbert

space. Further, the collective dipole operators, weighted by the strength of interaction, are

√
ΓL=

√
2πAS (ω̄S)

∑
j

(
ϵS.µjg

)
h̄

|g⟩⟨j|,

√
Γ⊥L=

√
2πAE (ω̄S)

∑
j

(
ϵE.µjg

)
h̄

|g⟩⟨j|. (18)

5



Quantum Sci. Technol. 9 (2024) 035004 A Khan et al

3.1. Incoming probe state of entangled light
An arbitrary incoming biphoton state in terms of continuous frequency variables ωS and ωI, corresponding
to signal and idler modes respectively, can be expressed as

|Φbiph⟩=
ˆ

dωS

ˆ
dωI Φ̃(ωS,ωI) a

†
S (ωS)a

†
I (ωI) |0⟩ (19)

where Φ̃(ωS,ωI) is the joint spectral amplitude (JSA) of the entangled state in frequency space, and contains
all two-photon correlations. The bivariate JSA function admits a Schmidt decomposition [42]

Φ̃(ωS,ωI) =
∑
n

rn ξ̃
S
n (ωS) ξ̃

I
n (ωI) , (20)

which in turn can be used to express the biphoton state in equation (19) in terms of discrete orthonormal
Schmidt modes

|Φbiph⟩=
∑
n

rn a
†
n,Sa

†
n,I|0⟩ ≡

∑
n

rn |ξSn⟩|ξIn⟩, (21)

where

a†n,S =

ˆ
dωS ξ̃

S
n (ωS)a

†
S (ωS) , a

†
n,I =

ˆ
dωI ξ̃

I
n (ωI)a

†
I (ωI) , (22)

are Schmidt mode creation operators, and |ξXn ⟩= a†n,X|0⟩, X= S, I are the corresponding Schmidt basis kets.
We make the additional assumption that the idler spectral amplitude is peaked around a central

frequency ω̄I, so that a
†
I (ωI)→ a†I (ωI − ω̄I) yields idler operators peaked around ωI = 0. This is justified if

the biphoton entangled states are produced in physical processes in which (one or more) pump pulse
photons, derived from a spectral amplitude distribution centred around some central frequency ω̄P, are
converted into daughter signal (centred around ω̄S) and idler (centred around ω̄I) photons. For biphoton
states produced in the weak downconversion limit of type-II spontaneous PDC using χ(2)-nonlinear crystals,
conservation of energy dictates that ω̄P = ω̄S + ω̄I. On the other hand, for biphoton states produced in
four-wave mixing schemes [43–45] that exploit χ(3)-nonlinearities, conservation of energy dictates (for
degenerate schemes) that 2ω̄P = ω̄S + ω̄I. This assumption is distinct from the SVEA, and is motivated by the
details of the physical process used to produce the biphoton entangled state. In terms of the re-centred signal
and idler field operators, the JSA of the biphoton state in equation (19) then correspondingly transforms as
Φ̃biph(ωS,ωI)→ Φ̃biph(ωS − ω̄S,ωI − ω̄I).

In the rest of this paper, we assume that the JSA fucntion Φ̃biph(ωS,ωI), as well as photon operators a†S(ωS)

and a†I (ωI) to have been appropriately re-centred so that ω̄S = ω̄I = 0. Positing corresponding white noise
operators obtained as Fourier transforms of centred idler operators, a†I (tI) =

1√
2π

´
dωI e−ωItIa†I (ωI), we can

obtain an equivalent representation of the biphoton entangled state in terms of operators a†S(t) and a†I (t),

|Φbiph⟩=
ˆ

dtS

ˆ
dtIΦbiph (tS, tI) a

†
S (tS) a

†
I (tI) |0⟩, (23)

where the time-axis joint temporal amplitude (JTA) Φbiph(tS, tI) is the two-dimensional Fourier transform of
the centred frequency-axis JSA Φ̃(ωS,ωI),

Φbiph (tS, tI) =
1

2π

ˆ
dωS

ˆ
dωI e

i(ωStS+ωItI) Φ̃biph (ωS,ωI) . (24)

The JTA Φbiph(tS, tI) then admits an analogous Schmidt decomposition

Φbiph (tS, tI) =
∑
n

rn ξ
S
n (tS)ξ

I
n (tI) , (25)

where

ξXn (tX) =
1√
2π

ˆ
dωX e

iωXtX ξ̃Xn (ωX) , X= S, I, (26)

are the time-domain Schmidt basis functions.

6
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4. QFI for a biphoton probe

We start with the molecule in its ground state |g⟩⟨g| at t= 0. Then, the joint SI-E state at asymptotically long
times t, where max[Γ,Γ⊥]t≫ 1, is effected by the completely-positive, trace-preserving (CPTP) map

Wg

[
ρSI ⊗ |0E⟩⟨0E|

]
= TrM

[
lim
t→∞

U(t) |g⟩⟨g| ⊗ ρSI ⊗ |0E⟩⟨0E|U† (t)
]
, (27)

where U(t) = T
[
exp(− i

h̄

´ t
−∞ dt ′H(t ′))

]
is the unitary propagator corresponding to equation (17), and ρSI

is the signal-idler probe state. At t→∞, the molecule decays back to the ground state |g⟩. Thus, for a pure
biphoton input ρSI = |Φbiph⟩⟨Φbiph|, the transformed stateWg [|Φbiph⟩⟨Φbiph| ⊗ |0E⟩⟨0E|] is also pure. The
linearity of the CPTP mapWg can be employed to obtain the outgoing SI-E state as the piecewise
transformation of the Schmidt component wavefunctions on the signal-environment SE subspace, while the
idler I components remain unchanged, giving

Wg

[∑
n

rn|ξSn⟩|ξIn⟩⊗ |0E⟩

]
=
∑
n

rnWg

[
|ξSn⟩|ξIn⟩⊗ |0E⟩

]
=
∑
n

rn
(
|ϕSn⟩|ξIn⟩⊗ |0E⟩+ |0S⟩|ξIn⟩⊗ |πE

n⟩
)
, (28)

where the first term captures the signal photon being emitted into its original mode after absorption, while
the second captures the absorbed signal photon being emitted into the environment. Here, the nth
components

|ϕSn⟩= |ξSn⟩−Γ |εSn⟩, |πE
n⟩=−

√
ΓΓ⊥ |εEn⟩

are obtained using the single-mode solutions [46] as used in [9]. We have abbreviated the distortion in the
nth Schmidt mode of the signal space as

|εSn⟩=
ˆ ∞

−∞
dt1

[ˆ t1

−∞
dτ fM (t1 − τ) ξSn (τ)

]
a†S (t1) |0⟩, (30)

where

fM (t) = ⟨g|Lexp
[(

−iHM
I − Γ+Γ⊥

2
L†L

)
t

]
L† |g⟩ (31)

is the characteristic response function of the molecule M. Analogous definitions can be made for |εEn⟩.
Partial trace over the E subspace yields the outgoing state as the mixture of single photon (in the idler

mode) and biphoton states,

ρSIbiph,out = (1−N) |Φbiph,out⟩⟨Φbiph,out|+N|0S⟩⟨0S| ⊗σI (32)

where

|Φbiph,out⟩=
1√
1−N

∑
n

rn|ϕSn⟩|ξIn⟩, (33)

the normalisation factor being N= ΓΓ⊥
∑

n r
2
n ⟨εSn|εSn⟩, and

σI =
ΓΓ⊥

N

∑
mn

rmrn ⟨εEn|εEm⟩ |ξIm⟩⟨ξIn| (34)

is the conditional idler state when the excitation due to the signal is lost to E. Note that the transformed
signal states are no longer orthonormal

⟨ϕSm|ϕSn⟩= δmn −ΓΓ⊥ ⟨εSm|εSn⟩. (35)

This is, however, recovered in the limit of perfect coupling so that limΓ⊥→0 ⟨ϕSm|ϕSn⟩= δmn. As
σSI = |0S⟩⟨0S| ⊗σI has no excitation in the S space, whereas |Φbiph,out⟩ does, the two contributions
equation (33) to the mixture live in mutually orthogonal subspaces. Thus,

⟨Φbiph,out |σSI |Φbiph,out⟩= 0 (36)

yielding the form of the QFI [34] of the outgoing state with respect to the Hamiltonian parameter θ as

7



Quantum Sci. Technol. 9 (2024) 035004 A Khan et al

Table 1. Dominant contributions to spectroscopic information QFIQ(θ;ρSIbiph,out) in the asymptotic time limit t→∞ for different

regimes of relative M-S and M-E couplings. A fuller dependance on the relative magnitudes of M-S coupling Γ and M-E coupling Γ⊥ is
provided in appendix B.

Γ⊥/Γ C(N,1−N) NQ(σI) (1−N)Q(|Φbiph,out⟩)

≪ 1 × × ✓
O(1) ✓ ✓ ✓
≫ 1 ✓ ✓ ×

Q
(
θ;ρSIbiph,out

)
= C (N,1−N)+NQ

(
θ;σI

)
+(1−N)Q

(
θ; |Φbiph,out⟩

)
, (37)

where C(N,1−N) = Nθ/N(1−N) (with Nθ ≡ ∂θN) is the Fisher information associated with classical
mixing of the |Φbiph,out⟩ and |0S⟩⟨0S| ⊗σI quantum states. The conditional idler QFIQ(θ;σI) can be
obtained by solving equation (6) for σI, and using equation (5). The biphoton QFI term can be shown to
be (for details, see appendix A)

Q
(
θ; |Φbiph,out⟩

)
=

1

1−N

∑
n

|rn|2⟨∂θϕSn|∂θϕSn⟩

− 1

(1−N)2

∣∣∣∣∣∑
n

|rn|2⟨ϕSn|∂θϕSn⟩

∣∣∣∣∣
2

. (38)

Equation (37) is one of our main results, that the spectroscopic information about the molecule M has
three distinct contributions - from the biphoton state whose signal mode is modified by its interaction with
M, the one-photon idler state when the absorbed photon is lost to E, and finally the classical mixture of the
two.

In the absence of entanglement, that is a product JSA where rn = 0∀n> 1, σI = 1I, andQ(θ;σI) = 0.
Equation (37) then reduces to single-photon spectroscopy [9].

In the presence of entanglement, the contributions of the three terms in equation (37) depend on the
relative magnitudes of M-S and M-E coupling. These corresponds to different flavours of experimental
setups—in free space scenarios where Γ⊥ ≫ Γ, the first two terms dominate in equation (37) as most of the
signal excitation are lost to the E space. In contrast, for geometries engineered such that Γ⊥ ≪ Γ, the
biphoton QFI will be the major contributor as few excitations are lost to E. This is summarised in table 1.

4.1. Attaining the QFI in equation (37)
The three terms in equation (37) may be successively saturated in a cascade of mutually commuting
measurements on orthogonal subspaces in the SI space as illustrated schematically in figure 2(a).

The first term C(N,1−N) can be attained using quantum non-demolition (QND) photon counting
measurement effected by the set of signal projectors {ΠS

0,Π
S
1}, where ΠS

0 = |0S⟩⟨0S|, and
ΠS

1 =
´
dω a†S(ω)|0S⟩⟨0S|aS(ω). A QND measurement is advisable as destructive photon counting at this

stage can only fetch as much as the information as the classical C(N,1−N) term, the collapsed photon states
carrying no more quantum information. Practically, such QND photon counting has been achieved using
either cross-Kerr mapping of photons numbers onto phase shifts of a secondary optical probe [47–49], or by
strongly coupling the photonic state to atoms in cavity electrodynamics that maps photon numbers to
atomic phases, which can then be detected using interferemetric techniques [50–52]. The photon counting
measurements, non-demolition or not, are effectively absorption measurements, and the magnitude of N
can be estimated from these measurement outcomes

The second term NQ(σI) can, in general, be attained by measuring (idler) projectors corresponding to
the eigenvectors of the SLD for σI. A practical setup that can implement approximately optimal
single-photon projectors as mode-resolved photon counting may be achieved using quantum pulse
gating (QPG) techniques [53–58] for ultrafast pulses. This involves an incoherent train of pulses coupling
with a sufficiently shaped gating pulse in a sum-frequency interaction inside a nonlinear crystal. The shape of
the gating pulse determines the mode the incoming pulse is effectively projected on to, presenting at the
output as a higher frequency signal than the incoming pulse (see figure 2(b)).

The third term in equation (37) may, in general require measurements entangled across the signal and
idler on the pure state |Φbiph,out⟩ to be attained. In the next section, we show that an unentangled
measurement suffices.

8
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Figure 2. Detection scheme that fetches estimator precision corresponding to full QFI in equation (37). (a) Schematic of cascade
of mutually admissibe measurements. As a first step, QND photon counting is performed on the signal substation. Based on the
outcome (classically communicated to the idler substation), the idler photon is either detected in mode-resolved projective
measurement, or sent to the 1-LOCC box, which is discussed in detail in section 5 (schematic illustration in figure 3). (b) QPG
implementation of mode-resolved photon counting.

5. 1-LOCC detection schemes

Measurement protocols for multipartite quantum systems can be divided into three classes [60, 61] — (a)
uncorrelated local measurements (LM) with no classical communication between individual substations, (b)
correlated LOCC where results of local measurement operations may be conveyed back and forth between
the various substations using classical bits, and (c) global measurements (GM) which are the most general
class of measurements that can be performed on multipartite quantum systems. In terms of their ability to
extract quantum information and resource intensiveness of practical implementation [62],
LM⊆ LOCC⊆ GM. In our spectroscopic setup, entangled measurements across the signal and the idler
would be in GM, but not LM or LOCC.6

We show that such entangled measurements are not necessary to attain the third term in equation (37).
In fact, we show that a one-way idler-to-signal LOCC measurement scheme—that we will henceforth refer to
as ‘1-LOCC’, always attains the third term in equation (37). For the biphoton setup, the most general
1-LOCC is schematically illustrated in figure 3. In such a detection scheme, the results of local measurement
on the idler substation are classically communicated on to the signal substation, where then measurement
operators for local detection are chosen accordingly7. This is another of our main results.

Experimentally, LOCC operations on continuous-variable (CV) time–frequency entangled states have
been successfully implemented as part of CV teleportation of light states [63, 64]. Our 1-LOCC detection
scheme is thus a potentially attractive class of measurements for biphoton spectroscopy, and must be
contrasted against interferometric quantum spectroscopies that propose global measurements by bringing
together the two photons in linear [65, 66] or non-linear interferometers [67] at the detection stage.

6 Parts of results in this section appear in [59, chapters 4 and 5].
7 Signal-to-idler 1-LOCC detection schemes can be constructed in similar fashion, but with some important differences. See appendix C.
Signal-to-idler schemesmay bemore challenging to implement practically as the preparation stepmust necessarily follow the light–matter
interaction, outcomes of which must subsequently be communicated to the idler substation.

9
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Figure 3. Idler-to-signal 1-LOCC scheme. The biphoton Kraus operators for the overall LOCC scheme are given as
{Πy,x =ΠS

y|x ⊗ΠI
x}.

Operationally, the idler-to-signal 1-LOCC detection scheme can also be viewed as a heralding scheme
where a measurement is performed on the idler photon, and outcomes communicated to the signal station
independently of the light–matter interaction which has support on the MSE subspace.

We construct a spectroscopically useful subclass of 1-LOCC detection schemes by optimising the CFI
over POVMs on the signal mode only. We call this the ‘measurement-optimal’ 1-LOCC detection scheme,
and show that it (i) always includes a measurement whose CFI equalsQ(θ; |Φbiph,out(θ)⟩) in a specific choice
of the 1-LOCC scheme, and (ii) the associated CFI for allmembers exceeds that of any single-photon
measurement on the reduced signal state only.

For perfect coupling geometries (Γ⊥ = 0), (i) implies that entanglement in the incoming biphoton state
is not, in-principle, a resource. This is because the QFI of an entangled biphoton state may be attained with a
suitably heralded Fock state and uncorrelated LM measurement.

5.1. 1-LOCC fisher information in biphoton setup
The most general idler-to-signal 1-LOCC detection scheme proceeds in the following three steps:

1. Projectively measure the idler photon in the basis {V|ξIx⟩⟨ξIx|V†}, where V is an arbitrary unitary operator
on the idler Hilbert space. This transforms the incoming entangled biphoton probe state via Kraus
operators ΠI

x = 1S ⊗V|ξIx⟩⟨ξIx|V† to

ρ ′ [V] =
∑
x

(
ΠI

x

)† |Φbiph⟩⟨Φbiph|ΠI
x

=
∑
x

|ψx⟩⟨ψx| ⊗V|ξIx⟩⟨ξIx|V†, (39)

where |ψx⟩=
∑

n rnV
∗
nx|ξSn⟩, and Vmn = ⟨ξIm|V|ξIn⟩ are elements of unitary matrix V in the idler Schmidt

basis.
2. Communicate (classically) the outcome of projective measurement {ΠI

x} to the signal substation. The
M-S-E interaction, given by the CPTP mapWg in equation (27), transforms the signal Schmidt basis
{|ξSn⟩} onto the non-orthonorgonal set8 {|ϕSn⟩}, and renormalises the outgoing state as in equation (33).
The resulting SI state is given by

ρ ′
out [V] =

∑
x

|ζx⟩⟨ζx| ⊗V|ξIx⟩⟨ξIx|V†, (40)

where |ζx⟩= 1√
1−N

∑
n rnV

∗
nx|ϕSn⟩, is the unnormalised conditional signal state for the outcome x.

3. Measure the signal photon using operators {ΠS
y|x=xm

} depending on the communication x= xm received
from the idler.

These stages of the 1-LOCC scheme are illustrated in figure 3.

8 The preparation step (characterised by Kraus operators {ΠI
x}) quantum operation and the M-S-E interaction (characterised by super-

operator Wg) commute with each other, and can be applied in any order. If, in the final step, the signal subensembles {|ζx⟩} are all
projected onto a common measurement basis, the LOCC scheme reduces to an LM scheme with independent measurements performed
at signal and idler substations.

10
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The maximum CFI attainable using a 1-LOCC scheme is formally given by

max
ΠS

y|x,Π
I
x

C
(
θ|
{
Πy,x =ΠS

y|x ⊗ΠI
x

})
=max

ΠI
x

(
max
ΠS

y|x

C
(
θ|
{
Πy,x =ΠS

y|x ⊗ΠI
x

}))
, (41)

s.t.
∑

x Π
I
x = 1I,

∑
yΠ

S
y|x = 1S∀ x. The maximal 1-LOCC CFI is upper bounded as

max
ΠS

y|x,Π
I
x

C
(
θ|
{
Πy,x =ΠS

y|x ⊗ΠI
x

})
⩽Q

(
θ; |Φbiph,out⟩

)
. (42)

since 1-LOCC⊆ LOCC⊆ GM.
The maximisation of the CFI functional may now proceed in two steps, following the RHS of

equation (41): first, for a given unitary V, the CFI is maximised over all allowed {ΠS
y|x=xm

}, and second, the

resulting quantity is maximised over all ΠI
x = 1S ⊗V|ξIx⟩⟨ξIx|V†, which amounts to a maximisation over all

unitary operations V. All 1-LOCC for which maximisation over signal POVM {ΠS
y|x=xm

} has been performed
will be termed ‘measurement-optimal’, and the corresponding CFI quantity, now just a function of the
preparation unitary V, is given as

Cmax (θ;V) =max
ΠS

y|x

C
(
θ|
{
Πy,x =ΠS

y|x ⊗ΠI
x

})
. (43)

Constructing the orthogonal complement of |Φbiph,out⟩ in the two-dimensional
Span[|Φbiph,out⟩, |∂θΦbiph,out⟩] as [33]

|Φ⊥
biph,out⟩ ≡

(
1− |Φbiph,out⟩⟨Φbiph,out|

)
|∂θΦbiph,out⟩, (44)

the following result holds:

Theorem 1. For a preparation step unitary V0 that satisfies

⟨ξIm|V
†
0 TrS |Φbiph,out⟩⟨Φ⊥

biph,out|V0|ξIm⟩= 0 ∀m, (45)

Cmax(θ;V0) =Q(θ; |Φbiph,out⟩).

A proof appears in appendix D.
A constructive proof for the existence of a V0 satisfying equation (45) has been established for finite

dimensions [61, 68]. It can be extended to trace-class (and hence bounded and compact) operators on CV
spaces, including TrS |Φbiph,out⟩⟨Φ⊥

biph,out| in equation (45).
Following the upper bound in equation (42), the measurement-optimal 1-LOCC characterised by V0

must correspond to the maximal CFI attainable. Thus, the biphoton component of the QFI in equation (37)
may be attained in a measurement-optimal 1-LOCC scheme with Vopt = V0 — that is, an unentangled
measurement. The unitary V0, in general, depends on the the outgoing signal modes {ϕSn}, which themselves
change with the nature and strength of M-S and M-E interactions.

5.2. No advantage from entangled input probe
If Γ⊥ = 0, only the third term in equation (37) survives. Then there always exists a single-photon Fock state

|ζopt,
′

xm ⟩= 1√
⟨ζoptxm |ζoptxm ⟩

|ζoptxm ⟩, (46)

where

|ζoptxm ⟩= 1√
1−N

∑
n

rn
(
Vopt

)∗
nxm

|ϕSn⟩ (47)

for some measurement outcome x= xm, which has at least as much QFI as the entangled input in
equation (19). In principle, time–frequency entanglement of the input thus provides no advantage in this
scenario.

This follows from Theorem 1, whereby the biphoton QFI can be written as the convex combination of
signal-only QFIs as (see equations (D3) and (D21) in appendix D)

Q
(
θ; |Φbiph,out⟩

)
=
∑
x

⟨ζoptx |ζoptx ⟩Q
(
θ; |ζopt,

′

x ⟩
)

(48)
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where |ζopt,
′

x ⟩= 1√
⟨ζopt

x |ζopt
x ⟩

|ζoptx ⟩ are normalised conditional states. Equivalently, the biphoton QFI is always

equal to the QFI of the following separable state

Q
(
θ; |Φbiph,out⟩

)
=Q

(
θ;
∑
x

|ζoptx ⟩⟨ζoptx | ⊗ Vopt|ξIx⟩⟨ξIx|V
†
opt

)
. (49)

This shows that it is always possible to engineer the incoming state of light so as to prepare deterministically
the product state component in the convex sum in equation (48) with the maximal QFI

maxx Q(θ; |ζopt,
′

x ⟩) (which we will label by index x= xm) so that the QFI of the separable state then yields at
least as much precision as the entangled biphoton state.

Operationally, one need only start then with the (pre-conditioned) single-photon signal state

|ψopt
xm ⟩= 1√

1−N

∑
n

(
Vopt

)∗
nxm

|ξSn⟩, (50)

which would yield the outgoing state |ζopt,
′

xm ⟩ whose QFI is always greater than, or equal to, the biphoton QFI
Q(θ; |Φbiph,out⟩).

This subsection extends a similar conclusion in [9] for the restricted case of resonant Γ-estimation in TLS
for Γ⊥ = 0 to an arbitrary Hamiltonian parameter θ.

Our conclusion that an entangled input is not, in-principle, a resource can also be extended to scenarios
with Γ⊥ ̸= 0 when the biphoton state |Φbiph,out⟩ is post-selected, because, in that case the first two terms in
equation (37) drop out. The question of whether an entangled input is advantageous when all the three
terms in equation (37) contribute, however, remains open.

5.3. Lower bound onmeasurement-optimal protocols
For any measurement-optimal 1-LOCC CFI,

Cmax (θ;V) =Q(θ;ρ ′
out [V])⩾Q

(
θ;
∑
x

|ζx⟩⟨ζx|

)
=Q

(
θ;

1

1−N

∑
m

|rm|2|ϕSm⟩⟨ϕSm|

)
=Q

(
θ;TrI |Φbiph,out⟩

)
, (51)

where the first line is true because maximisation of the CFI over {ΠS
y|x=xm

} in equation (43) is precisely the

maximisation that yields the CRB [31, 32] for the conditional state ρ ′
out[V] (see equation (D1) appendix D).

The second line is a consequence of the extended convexity of the QFI [69]. The inequality is saturated iff
⟨ϕSm|∂θϕSn⟩= 0 ∀m,n. For a Schmidt basis {|ϕSn⟩} that is complete on the signal Hilbert space, this is never
true, and we get the stronger inequality

Cmax (θ;V)>Q
(
θ;TrI |Φbiph,out⟩

)
. (52)

This shows that allmeasurement-optimal 1-LOCC detection schemes yield higher CFI than the QFI in signal
photon obtained by tracing out the idler. Consequently, all measurement-optimal 1-LOCC detection schemes
have a guaranteed metrological advantage over signal photon-only strategies. This leads to the hierarchy

Q
(
θ; |Φbiph,out⟩

)
= Cmax

(
θ;Vopt

)
⩾ Cmax (θ;V)>Q

(
θ;TrI |Φbiph,out⟩

)
. (53)

5.4. Parameter-independent unitary V= 1I

Unlike V= Vopt, V= 1I is independent of θ and {ϕSn}, and presents a simpler experimental scenario. The
corresponding CFI is

Cmax

(
θ;V= 1I

)
=

4

1−N

∑
n

|rn|2⟨∂θϕSn|ϕSn⟩−
4

(1−N)2
∑
n

|rn|2|⟨ϕSn|ϕSn⟩|2. (54)

For the special case of resonant Γ-estimation in a TLS with transition frequency ω0, it has been shown
that [9, section 5.1])

Q
(
Γ; |Φbiph,out⟩

)
|∆=0 = Cmax

(
Γ;V= 1I

)
; ∆ = ω0 − ω̄S. (55)

This implies that a 1-LOCC detection scheme with V= 1I attains the QFI for Γ-estimation at∆= 0 in a
TLS. While this conclusion no longer holds for the spectroscopy of more general systems and parameters, the
measurement-optimal V= 1I 1-LOCC detection scheme continues to be an improvement over simply
tracing out the idler in the outgoing wavefunction, as per equation (53). We study its efficacy in spectroscopy
with a PDC input probe numerically in section 6.
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Figure 4. Plot of entanglement entropy S in equation (57) for PDC source characteristics—pump bandwidth (σp) and
entanglement time (Tqent). The time–frequency entanglement is higher for short Tqent, and small values of σp. See [9, appendix
H] for definitions.

6. Spectroscopy using PDC light

We now study pulsed quantum light spectroscopy using the experimentally ubiquitous entangled probes of
weakly-downconverted PDC states [9, appendix H]9

|ΦPDC⟩ ≈
1

N1/2
PDC

(
|0⟩+

∞∑
n=0

rn,PDC |hSn⟩|hIn⟩

)
, (56)

where |hSn⟩ and |hIn⟩ are nth Hermite–Gauss Schmidt basis modes for signal and idler spaces respectively, and
rn,PDC are corresponding Schmidt weights. The JTA function for the incoming PDC states may be obtained
by inverting equation (20) and recombining the Schmidt terms ΦPDC(tS, tI) =

∑
n rn,PDC hn(tS)hn(tI). The

time–frequency entanglement of PDC states can be quantified using the entanglement entropy function

S=−
∑
n

|rn,PDC|2 log |rn,PDC|2, (57)

which is plotted as a function of PDC characteristics of entanglement time Tqent and pumpwidth σp (see [9,
appendix H] for definitions) in figure 4.

We show that for these most practical of entangled probes, time–frequency entanglement provides a
functional advantage in biphoton spectroscopy for asymptotically long detection times. We also establish
that it is possible to get close to the fundamental limits set by the corresponding QCRB using unentangled
measurements that are independent of the true value of the parameter. We thus provide a complete recipe for
quantum-enhanced biphoton spectroscopy using PDC light probes and simple, unentangled measurements
independent of the sample parameters.

6.1. QFI of outgoing PDC state
The outgoing S-I state for the PDC input in equation (56) has a structure similar to equation (32), but with a
modified normalisation

ρSIPDC,out = (1− n) |ΦPDC,out⟩⟨ΦPDC,out|+ n |0S⟩⟨0S| ⊗σI, (58)

where σI is the same as in equation (34), n= N/NPDC,

|ΦPDC,out⟩=
1

(NPDC (1− n))
1/2

(
|0⟩+

∑
n

rn,PDC|ϕSn,PDC⟩|hIn⟩

)
, (59)

with

|ϕSn,PDC⟩=
ˆ ∞

−∞
dtS

(
hn (tS)−Γ

ˆ tS

−∞
dτ fM (tS − τ)hn (tS)

)
a†S (tS) |0

S⟩. (60)

The QFI of the outgoing PDC state has the familiar trinal contribution (cf equation (37))

Q
(
θ;ρSIPDC,out

)
= C (n,1− n)+ nQ

(
θ;σI

)
+(1− n)Q(θ; |ΦPDC,out⟩) (61)

9 Parts of results in this section appear in [59, chapters 4 and 5].
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where

Q(θ; |ΦPDC,out⟩) =
4

NPDC (1− n)

∑
n

|rn,PDC|2 ⟨∂θϕSn,PDC|∂θϕSn,PDC⟩

− 4

(NPDC (1− n))
2

∣∣∣∣∣∑
n

|rn,PDC|2⟨ϕSn,PDC|∂θϕSn,PDC⟩

∣∣∣∣∣
2

. (62)

The relative magnitudes of the three terms in the PDC QFI in equation (61) admit the same pattern with
respect to the ratio Γ⊥/Γ as established for the biphoton QFI in table 1, with the only modification being
that all the Fisher informations in equation (62) are scaled by the Γ⊥/Γ-independent normalisation NPDC.

Also of interest is the CFI of the measurement-optimal 1-LOCC mediated by preparation step unitary
V= 1I for the PDC states (see equation (54))

Cmax

(
θ;V= 1I

)
=

4

NPDC (1− n)

∑
n

|rn,PDC|2 ⟨∂θϕSn,PDC|∂θϕSn,PDC⟩

− 4

(NPDC (1− n))
2

∑
n

|rn,PDC|2
∣∣⟨ϕSn,PDC|∂θϕSn,PDC⟩∣∣2 . (63)

Finally, some descriptions of the entangled PDC photons omit the vacuum term in equation (56), yielding
just the biphoton state |Φbiph⟩ in equation (19). This corresponds to the state post-selected for only successful
detection of the two photons, and can be expressed in terms of the PDC JTA ΦPDC(tS, tI) as

|Φbiph⟩=
1√
Λ

ˆ
dtS

ˆ
dtIΦPDC (tS, tI) a

†
S (tS)a

†
I (tI) |0⟩, (64)

where Λ =
´
dtS
´
dtIΦ∗

PDC(tS, tI)ΦPDC(tS, tI) ensures unit norm. The spectroscopic informations provided
by states in equations (56) and (64) are not, in general, a simple rescaling. Rather,

Q(θ; |ΦPDC,out⟩)≈ ΛQ
(
θ; |Φbiph,out⟩

)
+

4

Λ

∣∣∣∣ˆ dtS

ˆ
dtI ∂θΦPDC,out (tS, tI)

∗
ΦPDC,out (tS, tI)

∣∣∣∣2 , (65)

assuming NPDC ≈ 1 and Λ≪ 1. See appendix I for details.
We finally specialise our study of entangled quantum light spectroscopy to specific matter systems: in

section 6.2, we address 1-site TLS (P= 1 in equation (11)) for which we will evaluate Fisher informations
corresponding to pulse-matter coupling Γ, as well as level frequency ω0; in section 6.3, we address the 2-site
CD systems (P= 2 in equation (11)), for which we will evaluate fundamental limits of inter-site coupling J
estimation. As a first foray, we focus on the vibrationless Hamiltonian that does not include couplings to
phonon baths.

We highlight aspects of engineering the source of PDC probes for spectroscopy while yielding tangible
quantum enhancements. We find larger time–frequency entanglement—concomitantly shorter
entanglement times and pump bandwidths—to be beneficial. Indeed, more entanglement in the PDC probe
yields more spectroscopic information. Parameter-independent (hence non-adaptive) unentangled
detection, using the most entangled of PDC probes, also meaningfully outperform single-photon
spectroscopies using the reduced signal state only. Typically, these simplified measurements capture between
60% and 90% of the spectroscopic information.

6.2. TLS spectroscopy
For the TLS, HM

I = h̄∆|e⟩⟨e|,∆= ω0 − ω̄S is the detuning between the carrier signal and TLS frequency ω0,
and the characteristic response function for TLS takes the simple form

fTLS (t) = exp

(
−
[
Γ+Γ⊥

2
+ i∆

]
t

)
. (66)

6.2.1. No coupling to environment (E): Γ⊥ = 0
In this case, only the last term in equation (61) contributes. This QFI is plotted, for a grid of values of
classical pumpwidths σp and entanglement times Tqent, for the estimation of Γ in figure 5(a), and for the
ω0-parameter in figure 5(b). For both parameters, comparing figures 4 and 5 shows that more entanglement
in the incoming PDC probe, as captured by entropy S defined in equation (57), leads to a higher value for the
outgoing QFI.
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Figure 5. QFIQ(θ; |ΦPDC,out⟩), calculated numerically using equation (62), for varying PDC entanglement time Tqent, and
classical pumpwidth σp, for TLS parameters (a) θ ≡ Γ, and (b) θ ≡ ω0, and Γ⊥ = 0. (Γ = 0.15 THz ,∆= 0 THz).

To uncover the role of entanglement in the incoming probe PDC state in this spectroscopy task more
clearly, we also display scatter plots of the Γ- and ω0-QFIs as functions of the entanglement entropy S in
appendix E (see figures 14(a) and (b)). These show that that a more entangled PDC input always yields more
outgoing QFI. However, the outgoing PDC QFI is not a one-to-one function of the incoming entanglement.
Specifically, for the same amount of entanglement, incoming PDC states may yield outgoing states with
different QFIs, depending on the experimental values of Tqent and σp.

The apparent advantage conferred by time–frequency entanglement here is not in contradiction with our
earlier conclusion that entanglement provides no in-principle advantage in biphoton spectroscopy. In
section 5.2 we showed that the outgoing QFI corresponding to any incoming entangled state may be
superseded by a suitably optimised product state in the S-I space. In contrast, entanglement-enhanced
sensing in figure 5 is relative to PDC probe states only.

For reference, in figure 5, the ratios of outgoing QFI corresponding to the most entangled PDC
state (bottom-left edge in either plot) to that of the least entangled (almost product) PDC state (top-right
edge) are

Q(Γ; |ΦPDC,out⟩) |Tqent=0.150ps,σp=50cm−1

Q(Γ; |ΦPDC,out⟩) |Tqent=1.995ps,σp=180cm−1

≈ 14.0391, (67)

and

Q(ω0; |ΦPDC,out⟩) |Tqent=0.150ps,σp=50cm−1

Q(ω0; |ΦPDC,out⟩) |Tqent=1.995ps,σp=180cm−1

≈ 15.5665, (68)

showing that for TLS spectroscopy, there is significant advantage to engineering the source to produce more
entangled states—within the class of PDC states. Our result also indicates that, for the parameter regime
considered, using entangled photons enables more precise spectroscopy than heralded single photon
states [70–72].

To further underscore the subtle role of entanglement, we consider a family of time–frequency pulse
mode (TFM) states of the form [73]

|ΦTFM⟩=
1

N1/2
TFM

(
|0⟩+

αpump

h̄
|Φt

TFM⟩
)
, (69)

where

|Φt
TFM⟩= cos t|hS0⟩|hI1⟩+ sin t|hS1⟩|hI0⟩, 0⩽ t⩽ π, (70)
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Figure 6. Degree of optimality as per the ratio κ(ω0) using PDC light, for Γ = 0.15 THz,∆= 0 THz.

and αpump/h̄= 0.01 (same as for |ΦPDC⟩). Parametric plots of the QFI of the outgoing TFM state against the
entanglement of the incoming state in figure 15 in appendix E show that for both TLS parameters, the
maximal QFI in outgoing state corresponds to the product input |hS0⟩|hI1⟩. Thus, for this family of biphoton
states, time-frequency mode entanglement is not a useful resource.

As a final caveat, recall that our conclusions are for asymptotically large times. They may not hold in
general for finite-time evolutions. As a matter of fact, an opposite behaviour was shown in a similar
parameter region [9] for short detection times, where the problem essentially reduces to absorption
estimation, and the perturbation induced on the signal photon wavefunction is not relevant. This further
highlights the intricacies in understanding the role of entanglement in quantum light spectroscopy.

To understand the measurements that attain a large fraction of the maximal spectroscopic information,
we now define two ratios to capture the efficacy of Cmax

(
θ;V= 1I

)
. They are motivated by the simpler

parameter-independent V= 1I measurements enabling practical entangled light spectroscopy. The first is a
‘degree of optimality’ defined as

κ (θ) =
Cmax

(
θ;V= 1I

)
Q(θ; |ΦPDC,out⟩)

, 0⩽ κ (θ)⩽ 1. (71)

A value closer to unity indicates proximity to the fundamental precision afforded by appropriately
constructed estimators set by the PDC QFI, which for Γ⊥ = 0 is the biphoton QFIQ(θ; |ΦPDC,out(θ)⟩) only.

The second is an ‘enhancement factor’ defined as

ς (θ) =
Cmax

(
θ;V= 1I

)
Q(θ;TrI [|ΦPDC,out⟩])

, ς (θ)> 1, (72)

where ς(θ)> 1 indicates a spectroscopic advantage offered by 1-LOCC measurement with V= 1I over all
single-photon strategies on the reduced signal-photon state TrI|ΦPDC,out⟩. For completeness,

Q(θ;TrI|ΦPDC,out⟩) = Cmax

(
θ;V= 1I

)
− 1

(NPDC (1− n))
2

∑
n>m

16 |rm|2|rn|2

|rm|2 + |rn|2
|⟨ϕSm,PDC

∣∣∂θϕSn,PDC⟩∣∣2 . (73)

Figure 6 displays the optimality ratio κ(θ) for the TLS parameter ω0 when∆= 0. It shows that more
that 80% of the QFI for a PDC probe is recovered by a parameter-independent 1-LOCC measurement. For
resonant Γ estimation, κ(Γ)|∆=0 = 1 for all points on the grid [9]. As the magnitude of the detuning |∆|
increases, ⟨ΦPDC,out |∂ΓΦPDC,out⟩|∆̸=0 ̸= 0, and the degree of optimality drops below unity, as can be seen in
figure 18 in appendix F.

Lastly, figure 7 displays the enhancement factor ς(θ) for TLS parameters ω0 and Γ. From equation (52),
we always expect ς(θ)> 1, which is substantiated in these plots. We also see that spectroscopy with only the
most entangled of PDC states can meaningfully outperform single-photon spectroscopy using the reduced
signal state TrI[|ΦPDC,out⟩]. Interestingly, for ω0-estimation, a more entangled state yields a larger ς(ω0) as the
detuning |∆| increases, whereas the reverse is true for ς(Γ). For the effects of non-zero |∆| on these
quantities, see appendix F. This has practical consequences for spectroscopy using PDC probes, as one may
resort to the even simpler setup of single photon probes if the enhancement offered by the 1-LOCC scheme,
as measured by ς(θ) is not large enough.
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Figure 7. Enhancement factor ς(θ) for estimation of TLS parameters (a) Γ, and (b) ω0 using PDC light, for
Γ = 0.15 THz,∆= 0 THz.

Figure 8. QFIQ(Γ; |ΦPDC,out⟩) for varying PDC entanglement time Tqent, and classical pumpwidth σp, for TLS parameter Γ, and
free space M-E coupling set to (a) Γ⊥/Γ = 0.5, and (b) Γ⊥/Γ = 10.0. Note the change in scale of QFI values between the two
plots. (Γ = 0.15 THz,∆= 0 THz).

6.2.2. Coupling to environment (E): Γ⊥ > 0
For non-zero coupling to the environmental modes in E so that Γ⊥ > 0, the outgoing two-photon QFI must
now be evaluated using equation (61) which includes contributions from both single- and two-photon
terms, in addition to the term corresponding to classical mixing. Figure 8 displays the outgoing Γ-QFI (for
the same grid of values as figure 5 and∆= 0) for two representative values of M-E coupling. In panel (a),
Γ⊥ = 0.5Γ corresponds to comparable M-S and M-E couplings, whereas panel (b) corresponds to
Γ⊥ = 10.0Γ such that the matter-environment coupling is much stronger than coupling to the incoming
signal mode. Corresponding results are shown in figure 9 for ω0-QFI. The effect of non-zero detuning on
TLS parameter QFIs in the presence of an environment is studied in appendix F.

Even in the presence of an environment, figures 8 and 9 show that time-frequency entanglement
continues to be a useful resource for spectroscopy using PDC probes. The magnitudes of the QFI values for
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Figure 9. QFIQ(ω0; |ΦPDC,out⟩) for varying PDC entanglement time Tqent, and classical pumpwidth σp, for TLS parameter ω0,
and free space M-E coupling set to (a) Γ⊥/Γ = 0.5, and (b) Γ⊥/Γ = 10.0. Note the change in scale of QFI values between the
two plots. (Γ = 0.15 THz,∆= 0 THz).

either TLS parameter are also diminished, an expected consequence of the M-E coupling which causes the
matter sample to decay into the environmental modes, thus reducing the information content in the
measured signal and idler modes.

6.3. CD spectroscopy: J-estimation
The Hamiltonian of a CD (P= 2 in equation (11)) is given by

HCD =
∑
j=a,b

h̄ωj|j⟩⟨j|+ h̄(ωa +ωb) |f⟩⟨f|+ J(|a⟩⟨b|+ |b⟩⟨a|) , (74)

where J is the coupling strength between the two sites a and b (see figure 1). Transforming to an
appropriately chosen interaction frame and diagonalising the matter-only part (details in appendix G), we
can express the CD Hamiltonian in the delocalised excitonic basis as

HCD
I =

∑
i=α,β

h̄∆i|i⟩⟨i|+ h̄(∆α +∆β) |f⟩⟨f|, (75)

where∆i = ωi − ω̄S (i = α,β) are the detunings from the central signal pulse frequency of the singly-excited
manifold (SEM) excitonic levels |α⟩ and |β⟩.

The explicit form for the characteristic CD function fCD(t) appears in appendix H. It can be used to
evaluate (assuming no M-E coupling so that Γ⊥ = 0) the fundamental limits on the J coupling parameter
between the sites a and b, using equation (61).

In figure 10, the J-QFI are plotted as heat maps, for identical ranges of σp and Tqent values as for
entanglement entropy S in figure 4, for signal carrier frequency ω̄S resonant withe ωα in panel (a), and ωβ in
panel (b). Akin to TLS estimation, we find that a higher value of the entanglement entropy of the incoming
PDC state, for the parameter ranges considered, yields a higher J-QFI. (see figures 14(c) and (d) in
appendix E for parametricQ(J; |ΦPDC,out⟩)− S plots.) This implies again that, within the set of PDC probes,
more time–frequency entanglement enhances the spectroscopic performance of J-estimation.

We also see that the values of J-QFI for ω̄S = ωα (so that the signal beam is resonant with the g-α
transition) are smaller than that for the choice ω̄S = ωβ (signal beam resonant with g-β transition). This can
be attributed to our choice of the small absolute value of |h̄(ωa −ωb)| relative to h̄ωa and h̄ωb, meaning that
the particular instance of the CD system that we are studying, for which 2|ωa −ωb|/(ωa +ωb)≈ 0.11, is
quite close to a homodimer for which the g-α transition is forbidden by the structure of the GSM-SEM
dipole operator. Therefore, population transfer from |g⟩ → |α⟩ for ω̄S = ωα is much smaller than for
|g⟩ → |β⟩ when ω̄S = ωβ , which accounts for the smaller values of the J-QFI.

18



Quantum Sci. Technol. 9 (2024) 035004 A Khan et al

Figure 10. QFIQ(J; |ΦPDC,out⟩) for varying PDC entanglement time Tqent, and classical pumpwidth σp, for CD interstitial
coupling J, and (a) ω̄S = ωα, and (b) ω̄S = ωβ . The CD parameters used are those of the allophycocyanin dimer [18] —
h̄ωa = 1.6 eV, h̄ωb = 1.8 eV, J=−0.07 eV, µa = 1Debye and µb = 1.5Debye. (Γ = 0.15 THz).

Figure 11. Degree of optimality κ(J) for estimation of CD parameter J, with (a) ω̄S = ωα, and (b) ω̄S = ωβ using PDC light, for
Γ = 0.15 THz,∆= 0 THz.

Next, figure 11 displays the ratio κ(J) that captures the degree of optimality of the V= 1I

measurement-optimal idler-to-signal scheme. For the central signal frequency ω̄S set to either ωα or ωβ , we
see that the V= 1I idler-to-signal LOCC scheme recovers between 60% and 90% of the QFI, especially for
highly entangled states in the the bottom right corner.

Finally, figure 12 displays the enhancement factor ς(J). For all values on the grid except for most highly
entangled states with small values of σp and Tqent, ς(J) is close to unity. As for TLS spectroscopy, CD
spectroscopy with only the most entangled of PDC states can meaningfully outperform single-photon
spectroscopy using the reduced state of the signal photon only, TrI[|ΦPDC,out⟩].
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Figure 12. Enhancement factor ς(J) for CD parameter J, with (a) ω̄S = ωα, and (b) ω̄S = ωβ using PDC light, for Γ = 0.15 THz,
∆= 0 THz.

7. Conclusions

Our quantum-information theoretic analysis of single-molecule biphoton spectroscopy of arbitrary
quantum systems provides a characterisation of all the spectroscopic information that exists and can, in
principle, be extracted using a biphoton probe in the long-time regime, when the excitation induced by the
input pulse in the matter system has decayed. This allows the design of simple unentangled measurements
that can provide tangible quantum advantage in practice.

We provide a detailed analysis of the theoretical and experimental utility of time–frequency entanglement
in single-molecule biphoton spectroscopy. With the latter in mind, we compare the performance of biphoton
spectroscopy to those with unentangled probes, especially single photons, and unentangled measurements.
This reveals the subtle and intricate role entanglement can play in enhancing spectroscopic performance.

We conclude by noting that it may be fruitful to apply our methodology to scenarios in which
two-photon interactions between light and matter are available. Indeed, two-photon absorption of entangled
biphoton states has garnered much recent attention [6, 10–12, 74–76]. Although the experimental feasibility
of spectroscopies involving two-photon absorption remains unclear [77, 78], considering a complete
quantum description of the quantum state of light for two-photon absorption, as we have done here for
one-photon interactions, may shed light of the fundamental role of entanglement there, more so as
Stefanov’s no-go result no longer applies [8].
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20



Quantum Sci. Technol. 9 (2024) 035004 A Khan et al

spectroscopic information for coherent single-molecule spectroscopies and asymptotically long detection
times.

Appendix A. Explicit expressions for QFI of |Φbiph,out⟩

The derivative of |Φbiph,out⟩ is

|∂θΦbiph,out⟩=− Nθ

2(1−N)3/2

∑
m

rm|ϕSm⟩|ξIm⟩+
1√
1−N

∑
m

rm |∂θϕSm⟩|ξIm⟩. (A1)

Then we can get the two terms of the pure state QFI as

⟨∂θΦbiph,out|∂θΦbiph,out⟩=
N2

θ

4(1−N)2
+

1

1−N

∑
m

|rm|2⟨∂θϕSm|∂θϕSm⟩−
Nθ

(1−N)2
∑
m

|rm|2Re⟨ϕSm|∂θϕSm⟩,

(A2)
and

⟨Φbiph,out|∂θΦbiph,out⟩=− Nθ

2(1−N)2
∑
m

|rm|2 ⟨ϕSm|ϕSm⟩+
1

1−N

∑
m

|rm|2 ⟨ϕSm|∂θϕSm⟩

=− Nθ

2(1−N)
+

1

1−N

∑
m

|rm|2 ⟨ϕSm|∂θϕSm⟩. (A3)

The QFI, using equation (8), is

Q
(
θ; |Φbiph,out⟩

)
=
�����N2

θ

4(1−N)2
+

1

1−N

∑
m

|rm|2 ⟨∂θϕSm|∂θϕSm⟩−
((((((((((((((Nθ

(1−N)2
∑
m

|rm|2Re⟨ϕSm|∂θϕSm⟩

−
�����N2

θ

4(1−N)2
− 1

(1−N)2

∣∣∣∣∣∑
m

|rm|2 ⟨ϕSm|∂θϕSm⟩

∣∣∣∣∣
2

+
((((((((((((((Nθ

(1−N)2
∑
m

|rm|2Re⟨ϕSm|∂θϕSm⟩

=
1

1−N

∑
m

|rm|2 ⟨∂θϕSm|∂θϕSm⟩−
1

(1−N)2

∣∣∣∣∣∑
m

|rm|2 ⟨ϕSm|∂θϕSm⟩

∣∣∣∣∣
2

. (A4)

Appendix B. Relative magnitudes of QFI contributions in table 1

B.1.Γ⊥ ≪ Γ

We can calculate orders of the various terms in equation (37) by letting M-E coupling strength Γ⊥ → 0 while
M-S coupling strength Γ remains finite in this limit.

Expanding the matrix exponential in the characteristic response function of the molecule M, defined in
equation (31), we have fM(t)∝ O(1), in orders of Γ as well as Γ⊥, which in turn means N∝ O(ΓΓ⊥).

The orders of the parametric N-derivative, Nθ = ∂N/∂θ depend on the parameter of interest. For θ ≡ Γ,
NΓ ∝ O(Γ⊥), while for molecular Hamiltonian HM

I parameters, it can be worked out that Nθ ∝ O(ΓΓ⊥).
This then gives, for Γ parameter, C(N,1−N)∝ O(Γ2

⊥/ΓΓ⊥), meaning limΓ⊥/Γ→0 C(N,1−N) = 0. For the
molecular Hamiltonian parameters, we get similarly, C(N,1−N)∝ O(Γ2Γ2

⊥/ΓΓ⊥), which again yields
limΓ⊥/Γ→0 C(N,1−N) = 0.

Moving on to the conditional idler state, we get from the unity orders of fM(t) that σI ∝ O(1), which
yields, for both Γ as well as molecular Hamiltonian parameters, Lθ ∝ O(1), and NQ(Γ;σI)∝ O(ΓΓ⊥),
yielding a vanishing contribution in the limit of Γ⊥/Γ→ 0.

B.2.Γ⊥ ≫ Γ

Next, we establish the vanishingly small contribution of the biphoton QFI term (1−N)Q(θ; |Φbiph,out⟩) in
equation (37) in the limit of Γ⊥ ≫ Γ. This limit can be interpreted, in turn, as Γ⊥ → 0 for finite magnitudes
of Γ⊥, which gives |ϕSn⟩ → |ξSn⟩, so that |∂θϕSn⟩ → 0. Further, utilising again the fact that fM(t)∝ O(1), we
have N∝ O(ΓΓ⊥). Putting these together, we have (1−N)Q(θ; |Φbiph,out⟩)→ 0, following from
equation (38).
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Appendix C. Signal-to-idler 1-LOCC scheme

This class of signal-to-idler 1-LOCC protocol proceeds in the following three steps (illustrated schematically
in figure 13):

• (Prepare): Projectively measure the signal photon in arbitrary basis {W|ξSx⟩⟨ξSx |W†}, whereW is a unitary
operator on signal Hilbert space, after the M-S interaction effected by superoperatorWg in equation (27).
This amounts to the following transformation of the entangled two-photon state, given by Kraus elements
ΠS

x =W|ξSx⟩⟨ξSx |W† ⊗1I,

ρ ′
out [W] =

∑
x

ΠS,†
x |Φbiph,out⟩⟨Φbiph,out| ΠS

x

=
∑
x

W|ξSx⟩⟨ξSx |W† ⊗ |ρx⟩⟨ρx|, |ρx⟩=
1√
1−N

∑
n

rn⟨ξSx |W†|ϕSn⟩ |ξIn⟩, (C1)

where |ρx⟩ are conditional states of the idler photon, the parametric dependence on the parameter θ entering
through the coefficient ⟨ξSx |W†|ϕSm⟩, as well as the θ-dependent quantity N.

• The outcomes of the projective measurement {ΠS
x} is classically communicated to the idler substation.

• (Measure):The idler photon ensemble is partitioned into sub-ensembles (labelled by the signal measure-
ment outcome x= xm) that are in the conditional states |ρx=xm⟩⟨ρx=xm |. These are now detected in meas-
urement bases that depends on the preparation step outcome {ΠI

y|x=xm
}. The joint signal-to-idler 1-LOCC

projector is then Πx,y =ΠS
x ⊗ΠI

y|x.

The above prepare-and-measure 1-LOCC detection scheme is now one-way going signal-to-idler because the
results of the signal measurement are communicated to the idler substation. An important point of
difference from the idler-to-signal LOCC scheme, detailed in section 5.1, is that the preparation-step
quantum operation given by Kraus operators {ΠS

x} does not commute with the M-S interactionWg as they
happen in the same substation of the setup. It is meaningful then only to perform the preparation-step
operation {ΠS

x} after the two-photon state has been encoded with information about the parameter θ.
Analogous to the idler-to-signal LOCC scheme, we can find the optimal signal-to-idler LOCC

measurements by maximizing the associated detection CFI in two steps—first over all idler measurement
strategies for the subensembles {|ρx⟩} for a givenW, and subsequently over all preparation-step signal
unitary operatorsW. Formally, we can state the maximisation analogously to idler-to-signal 1-LOCC in
equation (41) as:

max
ΠI

y|x,Π
S
x

C
(
θ|
{
Πx,y =ΠS

x ⊗ΠI
y|x

})
=max

ΠS
x

(
max
ΠI

y|x

C
(
θ|
{
Πx,y =ΠS

x ⊗ΠI
y|x

}))
s.t.
∑
x

ΠS
x = 1I,

∑
y

ΠS
y|x = 1I∀ x. (C2)

For a fixed preparation step unitaryW (which fixes ΠS
x), the maximal CFI of all measurement-step

detection measurements on the idler photon is equal to the QFI of the intermediate state ρ ′
out[W] as

maximisation over {ΠI
y|x} is precisely the maximisation that yields the quantum Cramér-Rao bound [31, 32]

for the conditional state ρ ′
out[W] (in analogy with the idler-to-signal measurement-optimal 1-LOCC):

Cmax (θ;W) =Q(θ;ρ ′
out [W]) =Q

(
θ;
∑
x

W|ξSx⟩⟨ξSx |W† ⊗ |ρx⟩⟨ρx|

)
. (C3)

where Cmax(θ;W) is the CFI of measurement-optimal LOCC strategy for a givenW, defined as the LOCC
protocol that has maximal CFI for fixedW. By renormalizing the conditional states |ρ ′

x⟩= 1√
⟨ρx|ρx⟩

|ρx⟩ in
order to express ρ ′

out[W] in its spectral form, we can use equation (9) to evaluate the
measurement-step-maximal CFI explicitly,

Cmax (θ;W) =
∑
x

(∂θ⟨ρx|ρx⟩)2

⟨ρx|ρx⟩
+

4

1−N

∑
m

|rm|2⟨∂θϕSm|∂θϕSm⟩−
∑
x

⟨ρx|ρx⟩ |⟨ρ ′
x|∂θρ ′

x⟩|
2

=
4

1−N

∑
m

|rm|2⟨∂θϕSm|∂θϕSm⟩−
4

(1−N)2
∑
x

1

⟨ρx|ρx⟩
(
Im⟨ρx|∂θρx⟩2 −Re⟨ρx|∂θρx⟩2

)
(C4)
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Figure 13. Signal-to-idler prepare-and-measure LOCC scheme. The two-photon Kraus operators for the overall LOCC scheme
are given as {Πx,y =ΠS

x ⊗ΠI
y|x}

where

⟨ρx|ρx⟩=
1

1−N

∑
m

|rm|2 |⟨ξSx |W†|ϕSm⟩|2 (C5)

has parametric dependence on θ, just as for the idler-to-signal scheme. The overlap can be expressed in the
more succint form

⟨ρx|∂θρx⟩=
1

1−N
⟨ξSx |W†YW|ξSx⟩ (C6)

where

Y(θ) =
∑
m,n

|rn|2 ⟨ϕSm|∂θϕSn⟩ |ϕSm⟩⟨ϕSn| (C7)

is an operator on the signal Hilbert space. The measurement-optimal CFI for signal-to-idler LOCC scheme
for givenW then has the following form:

Cmax (θ;W) =
4

1−N

∑
m

|rm|2⟨∂θϕSm|∂θϕSm⟩

− 4

(1−N)2
∑
x

1∑
m |rm|2 |⟨ξSx |W†|ϕSm⟩|2

(
Im
(
⟨ξSx |W†YW|ξSx⟩

)2 −Re
(
⟨ξSx |W†YW|ξSx⟩

)2)
.

(C8)

Note both the similarity of expressions to the idler-to-signal LOCC case in equation (D3), as well as the
differences—the expressions for measurement-step-maximal CFI are not the same because the biphoton
setup is not symmetrical, as we have remarked before.

We can now similarly obtain the overall optimal signal-to-idler LOCC measurement that fetches the
maximal value of measurement CFI for any W. This is done by maximizing the functional Cmax(θ;W) over
the set of all unitary matricesW, which amounts to a minimisation of the second term in equation (C4).
Defining the cost function as

ϖ (θ;W) =
4

(1−N)2
∑
x

1∑
m |rm|2 |⟨ξSx |W†|ϕSm⟩|2

(
Im
(
⟨ξSx |W†YW|ξSx⟩

)2 −Re
(
⟨ξSx |W†YW|ξSx⟩

)2)
, (C9)

whereϖ(θ;W)⩾ 0 (which follows fromQ(θ;ρ ′
out[W])⩾ 0), and the optimal unitary transformationWopt is

defined as:

Wopt :ϖ
(
θ;Wopt

)
⩽ϖ (θ;W) ∀W s.t.W†W= 1S. (C10)

The overall maximal CFI for idler-to-signal prepare-and-measure LOCC is then

CS→I (θ) =
4

1−N

∑
m

|rm|2 ⟨∂θϕSm|∂θϕSm⟩−ϖ
(
θ;Wopt

)
. (C11)
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C.1. Lower Bound
Just like the idler-to-signal scenario, the measurement-optimal CFI Cmax(θ;W) can be lower bounded using
the convexity of the QFI:

Cmax (θ;W) =Q(θ;ρ ′
out [W]) =Q

(
θ;
∑
x

W|ξSx⟩⟨ξSx |W† ⊗ |ρx⟩⟨ρx|

)

⩾Q(θ;TrIρ
′
out [W]) =Q

(
θ;
∑
x

⟨ξSx |W†TrI|Φbiph,out⟩⟨Φbiph,out|W|ξSx⟩W|ξSx⟩⟨ξSx |W†

)
= C

(
θ;⟨ξSx |W†TrI|Φbiph,out⟩⟨Φbiph,out|W|ξSx⟩

)
⩾Q

(
θ;TrI|Φbiph,out⟩

)
(C12)

which is identical to the lower bound in equation (51) for the idler-to-signal protocol QFI. The second
inequality in the above chain may always be saturated for single-parameter estimation with an appropriate
choice forW. By the same reasoning as the idler-to-signal case, the first inequality is saturated iff
⟨ϕSm|∂θϕSn⟩= 0 ∀m,n (see equation (9)). For a Schmidt basis {|ϕSn⟩} that is complete on the signal Hilbert
space, this is never satisfied, and we get the stronger inequality

Cmax (θ;W)>Q
(
θ;TrI|Φbiph,out⟩

)
. (C13)

This then leads to the following hierarchy of Fisher informations:

Q
(
θ; |Φbiph,out⟩

)
⩾ CS→I (θ)⩾ Cmax (θ;W)>Q

(
θ;TrI|Φbiph,out⟩

)
. (C14)

Therefore, the reduced signal state QFIQ(θ;TrI|Φbiph,out⟩) serves as a useful benchmark for the effectiveness
of LOCC parameter estimation using entangled light. For the signal-to-idler scheme, practical difficulties for
a setup requiring the preparation step to necessarily follow the light–matter interaction make this LOCC
scheme much less attractive as a means for enhanced θ-estimation compared to idler-to-signal scheme,
where the idler photon is conditioned by preparation POVMs independent of interaction with the sample
and subsequent measurement in the signal mode.

Appendix D. Optimal 1-LOCCmeasurement projectors for biphoton setup

As indicated by the RHS of equation (41), the maximisation of the 1-LOCC CFI function can proceed in two
steps: first, for a fixed unitary transformation V, we maximise over all signal POVMs {ΠS

y|x=xm
}; in the

second step, the resulting quantity is then maximised over all choices of unitary preparation V.

D.1. Optimisation over signal POVM {ΠS
y|x=xm

}
For a fixed V, maximisation of the CFI over {ΠS

y|x=xm
} is precisely the maximisation that yields the

Cramér–Rao bound [31, 32] for the conditional state ρ ′
out[V], meaning that

Cmax (θ;V) =Q(θ;ρ ′
out [V]) . (D1)

Abbreviating normalised conditional states

|ζ ′
x ⟩=

1√
⟨ζx|ζx⟩

|ζx⟩, (D2)

and using equation (9),

Cmax (θ;V) =
∑
x

⟨ζx|ζx⟩Q(θ; |ζ ′
x ⟩⟨ζ ′

x |)+ C (θ|{⟨ζx|ζx⟩}) , (D3)

where∑
x

⟨ζx|ζx⟩Q(θ; |ζ ′
x ⟩⟨ζ ′

x |) =
4

1−N

∑
m

|rm|2⟨∂θϕSm|∂θϕSm⟩−
1

(1−N)2
∑
x

4

⟨ζx|ζx⟩
∣∣⟨ξIx|V†X(θ)V|ξIx⟩

∣∣2 ,
(D4)

and

X(θ) =
∑
m,n

rmr
∗
n ⟨ϕSn|∂θϕSm⟩ |ξIm⟩⟨ξIn| (D5)
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is an operator on the idler I space. The one other orthonormal basis vector (besides |Φbiph,out⟩) in the
two-dimensional Span[|Φbiph,out⟩, |∂θΦbiph,out⟩] can be constructed as [33]

|Φ⊥
biph,out⟩ ≡

(
1− |Φbiph,out⟩⟨Φbiph,out|

)
|∂θΦbiph,out⟩, (D6)

in terms of which

X= (1−N) TrS |Φbiph,out⟩⟨Φ⊥
biph,out|+Tr(X) TrS |Φbiph,out⟩⟨Φbiph,out|, (D7)

where

Tr(X) =

[
(1−N)⟨Φbiph,out|∂θΦbiph,out⟩−

Nθ

2

]
. (D8)

The relation in equation (D7) can be obtained using equation (D6), and noting that

TrS |∂θΦbiph,out⟩⟨Φbiph,out|=
Nθ

2(1−N)
TrS |Φbiph,out⟩⟨Φbiph,out|+

X

1−N
. (D9)

Finally, we can also recast equation (38) in terms of X:

Q
(
θ; |Φbiph,out⟩

)
=

4

1−N

∑
n

|rn|2 ⟨ϕSn|ϕSn⟩−
4

(1−N)2
|Tr(X) |2, (D10)

where we have employed the explicit relation Tr(X) =
∑

n |rn|2 ⟨ϕSn|∂θϕSn⟩.

D.2. Optimal Choice of Preparation Unitary V
Equation (D3) is the Fisher information corresponding to the optimal 1-LOCC θ-estimation strategy for a
given unitary V, obtained by maximising the CFI functional over the set of measurement POVMs {ΠS

y|x}
acting on the sub-ensemble states of the signal photon {|ζ ′

x ⟩}. To identify the optimal 1-LOCC detection
scheme that fetches the maximum CFI, we now proceed to maximise Cmax(θ;V) over all V. As only the
second term on the RHS of equation (C4) depends on V, we can see that the maximisation is equivalent to
minimisation of the following cost function:

ϑ(θ;V) =
1

(1−N)2
∑
x

4

⟨ζx|ζx⟩
∣∣⟨ξIx|V†X(θ)V|ξIx⟩

∣∣2 −C (θ;{⟨ζx|ζx⟩}) . (D11)

Using the inequality chain

Cmax (θ;V)⩽ Cmax (θ;V0)<Q
(
θ, |Φbiph,out⟩

)
, (D12)

we have for the cost function

ϑ(θ;V)⩾ ϑ
(
θ;Vopt

)
>

4

(1−N)2
|Tr(X) |2, (D13)

where Vopt is the optimal unitary, defined formally as

Vopt : ϑ
(
θ;Vopt

)
⩽ ϑ(θ;V) ∀ V s.t.V†V= 1I, (D14)

and the second inequality in equation (D13) follows from equation (D10).
Our strategy in the following will be to construct a preparation unitary that saturates the latter of the

inequalities in equation (D13). While the existence of such a unitary (and hence a 1-LOCC detection) is not
guaranteed for general multipartite scenarios, showing that there exists such a unitary preparation for which
the inequality is saturated is a sufficient condition for maximisation. This follows from the fact that
measurement CFIs can never exceed the QFI.
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D.3. Proof of Theorem 1
For the traceless (in I space) compact bounded operator TrS |Φbiph,out⟩⟨Φ⊥

biph,out|, we can always
construct [61, 68] a preparation-step unitary V0 such that

⟨ξIm|V
†
0 TrS |Φbiph,out⟩⟨Φ⊥

biph,out|V0|ξIm⟩= 0 ∀m, (D15)

A short calculation then reveals that (which we will establish separately below)

ϑ(θ;V0) =
1

(1−N)2
|Tr(X) |2, (D16)

from which Cmax(θ,V0) =Q(θ; |Φbiph,out⟩) follows, establishing Theorem 1. Thus for all unitary preparations
V0 that admit the condition in equation (D16), the corresponding measurement-optimal 1-LOCC saturates
the utimate QCRB.

D.3.1. V= V0 saturates cost function ϑ(θ;V) bound
In order to establish the relation in equation (D16), we first note that

⟨ξx|V†
0XV0|ξx⟩=

(((((((((((((((((((

⟨ξx|V†
0 (1−N)TrS |Φ⊥

biph,out⟩⟨Φbiph,out|V0|ξx⟩+Tr(X) ⟨ξx|V†
0TrS |Φbiph,out⟩⟨Φbiph,out|V0|ξx⟩

= Tr(X) ⟨ζx|ζx⟩. (D17)

where we have used the optimality relation for V0 in equation (D15) in the first line, and the second line
utilises the relation

⟨ξx|V†
0 TrS |Φbiph,out⟩⟨Φbiph,out|V0|ξx⟩= ⟨ζx|ζx⟩ (D18)

which can be easily worked out explicitly. The cost function in equation (D11) then becomes

ϑ(θ;V0) =
1

(1−N)2
∑
x

1
⟨ζx|ζx⟩

⟨ζx|ζx⟩2 |Tr(X) |2 + C (θ;⟨ζx|ζx⟩)

=
1

(1−N)2
|Tr(X) |2

∑
x

1
1−N

r∗mrn (V0)mx (V0)
∗
nx ⟨ϕm|ϕn⟩+ C (θ;⟨ζx|ζx⟩) =

|Tr(X) |2

(1−N)2
+ C (θ;⟨ζx|ζx⟩)

(D19)

where we have used the unitarity of the V0 matrix :
∑

x (V0)mx(V0)
∗
nx = δmn. The second step will be to

establish that the classical Fisher information C(θ;⟨ζx|ζx⟩) corresponding to mixing of the subensemble
states {|ζ ′

x ⟩} vanishes for unitary V0. In order to do this, we first look at the structure of the inner product

⟨ζx|∂θζx⟩=
Nθ

2(1−N)
⟨ζx|ζx⟩+

1

1−N
⟨ξx|V†

0XV0|ξx⟩=
(

Nθ

2(1−N)
+Tr(X)

)
⟨ζx|ζx⟩

= ⟨Φbiph,out|∂θΦbiph,out⟩ ⟨ζx|ζx⟩ (D20)

where we have used the relation ⟨ξx|V†
0XV0|ξx⟩= Tr(X)⟨ζx|ζx⟩ in the first line, and equation (D8) in the

second line. Now, keeping in mind that the outgoing biphoton state |Φbiph,out⟩ is a normalised quantum
state, we have ⟨Φbiph,out|Φbiph,out⟩= 1, and thence Re ⟨Φbiph,out|∂θΦbiph,out⟩= 0. This then gives

C (θ;{⟨ζx|ζx}) =
∑
x

4
⟨ζx|∂θζx⟩2

⟨ζx|ζx⟩
=
∑
x

4⟨ζx|ζx⟩Re⟨Φbiph,out|∂θΦbiph,out⟩2 = 0, (D21)

which proves equation (D16).
Briefly, we also note that a similar result was established recently for multipartite pure and rank 2 states in

finite-dimensional Hilbert spaces [61]. However, the recipe can not be generalised to our
infinite-dimensional CV case due to its dependence on the total system dimension. We have thus employed a
different and more direct approach here that establishes existence of 1-LOCC schemes whose CFI is shown to
equal the QFI for the outgoing state.
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Figure 14. Scatter plots of outgoing entangled beam QFIQ(θ; |ΦPDC,out⟩), plotted as a function of entanglement entropy
S=−|rk,PDC|2log(|rk,PDC|2) in the incoming state |ΦPDC⟩, for (a) TLS parameter θ ≡ ω0 (corresponding to figure 5(a)), (b) TLS
parameter θ ≡ Γ (corresponding to figure 5(b)), (c) CD parameter J for ω̄S = ωα (corresponding to figure 10(a)), and (d) CD
parameter J for ω̄S = ωβ (corresponding to figure 10(b)). (Γ = 0.15 THz Γ⊥ = 0).

Figure 15. Parametric plot of outgoing TFM state QFIQ(θ; |ΦTFM,out⟩), plotted as a function of entanglement entropy
S=−|rk,PDC|2 log(|rk,PDC|2) in the incoming state |ΦTFM⟩ (defined in equation (69)), for (a) TLS parameter θ ≡ ω0, and (b) TLS
parameter θ ≡ Γ. (k1 = k2 = 1.3ps,Γ = 0.15THz, Γ⊥ = 0THz,∆= 0.).

Appendix E. Parametric relation between PDC entanglement and outgoing QFI

This appendix contains parametric plots depicting the relationship between entanglement of input
time-frequency entangled states, as captured by entropy of entanglement defined in equation (57), and
outgoing biphoton QFIQ(θ; |ΦPDC,out⟩). Figures 14(a) and (b) shows these plots for TLS parameters, while
(c) and (d) display the same relationship for CD parameter J, all for PDC input states in equation (56).
Figure 15 shows analogous plots for TFM states defined in equation (69).

Appendix F. TLS estimation using PDC Light with∆ > 0

The following series of plots reproduce all quantities presented in section 6.2 for TLS parameter estimation
using PDC light, but now for nonzero detuning between the central paraxial frequency ω̄S, and TLS
frequency ω0.

F.1. Perfect coupling
In figures 16 and 17, we see that the QFI admits the same trend with respect to σp and Tqent as figure 5 for
either TLS paramters Γ or ω0 as the magnitude of detuning |∆| changes, with the only noticeable effect of the
detuning manifesting in the diminished magnitudes for the QFIs.
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Figure 16. Outgoing entangled beam QFIQ(Γ; |ΦPDC,out⟩), calculated numerically using equation (62), for varying
entanglement time Tqent, and classical pumpwidth σp, for TLS parameter Γ and detunings (a)∆= 20THz, and (b)
∆= 100THz. (Γ = 0.15 THz, Γ⊥ = 0 THz.).

Figure 17. Outgoing entangled beam QFIQ(ω0; |ΦPDC,out⟩), calculated numerically using equation (62), for varying
entanglement time Tqent, and classical pumpwidth σp, for TLS parameter ω0 and detunings (a)∆= 20THz, and (b)
∆= 100THz. (Γ = 0.15 THz, Γ⊥ = 0 THz.).

Figure 18. Degree of optimality of measurement-optimal V= 1I LOCC schemes, measured as the ratio κ(Γ) (defined in
equation (71)), for estimation of TLS parameter Γ, using PDC light for detunings (a)∆= 20 THz, and (b)
∆= 100 THz. (Γ = 0.15 THz) .

Next, in figures 18 and 19 we plot the degree of optimality of measurement-optimal V= 1I LOCC, κ(θ),
for TLS parameters Γ and ω0 respectively. Figure 18 displays the departure from the forecasted value of unity
for κ(Γ) when there is zero detuning between ω0 and ω̄S, which can be attributed to the increasing value of
the quantity |⟨ΦPDC,out|∂ΓΦPDC,out⟩| as |∆| increases. In contrast, figure 19 shows that for certain incoming
PDC states (see upper left corner of the (σp,Tqent) grid) a higher magnitude of detuning can actually enhance
the optimality of the measurement-optimal V= 1I LOCC detection scheme. This shows that, even though
the overall QFI values decrease with increasing |∆| for either parameter (rendering therefore all possible
estimators less precise), the effect of increasing detuning on the degree of optimality of measurement
schemes is less certain, and may depend on the parameter of interest.

A similar behaviour is observed in figures 20 and 21 — for Γ-estimation using PDC photons, the
enhancement ς(Γ) of V= 1I over all single-mode schemes decreases as detuning increases (figure 20),
whereas for ω0-estimation, a larger enhancement ς(ω0) can be obtained using PDC states with signal photon
far detuned from the TLS frequency ω0 (figure 21).
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Figure 19. Degree of optimality of measurement-optimal V= 1I LOCC schemes, measured as the ratio κ(ω0) (defined in
equation (71)), for estimation of TLS parameter ω0, using PDC light for detunings (a)∆= 20 THz, and (b)
∆= 100 THz. (Γ = 0.15 THz) .

Figure 20. Enhancement factor of measurement-optimal V= 1I LOCC schemes, measured as the ratio ς(Γ) (defined in
equation (72)), for estimation of TLS parameter Γ, using PDC light for detunings (a)∆= 20 THz, and (b)
∆= 100 THz. (Γ = 0.15 THz) .

Figure 21. Enhancement factor of measurement-optimal V= 1I LOCC schemes, measured as the ratio ς(ω0) (defined in
equation (72)), for estimation of TLS parameter ω0, using PDC light for detunings (a)∆= 20 THz, and (b)
∆= 100 THz. (Γ = 0.15 THz) .

F.2. Free SpaceΓ⊥ > 0
We can also study the effect of non-zero detuning on TLS estimation for the free space scenario,
characterised by non-zero coupling to E space Γ⊥ > 0. In figures 22 and 23, we plot Γ-QFI for the same grid
of PDC characteristics σp and Tqent as figure 8. Again, the trend for QFI values against PDC chacteristics σp

and Tqent remains unchanged, with moderately diminishing values for the QFI as detuning increases. A
similar effect is seen for the TLS parameter ω0 in figures 24 and 25 for free space couplings Γ⊥/Γ = 0.5 and
Γ⊥/Γ = 10.0 respectively.

Appendix G. Light-CD interaction in excitonic basis

The CD system is comprised of two TLSs, coupled to each other via an attractive Coulomb interaction, so
that the bare molecular Hamiltonian is

HCD =
∑
j=a,b

h̄ωj|j⟩⟨j|+ h̄(ωa +ωb) |f⟩⟨f|+ J (|a⟩⟨b|+ |b⟩⟨a|) , (G1)
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Figure 22. Outgoing entangled beam QFIQ(Γ; |ΦPDC,out⟩), calculated numerically using equation (37), for varying
entanglement time Tqent, and classical pumpwidth σp, for TLS parameter Γ and detunings (a)∆= 20THz, and (b)
∆= 100THz. (Γ = 0.15 THz,Γ⊥/Γ = 0.5.).

Figure 23. Outgoing entangled beam QFIQ(Γ; |ΦPDC,out⟩), calculated numerically using equation (37), for varying
entanglement time Tqent, and classical pumpwidth σp, for TLS parameter Γ and detunings (a)∆= 20THz, and (b)
∆= 100THz. (Γ = 0.15 THz,Γ⊥/Γ = 10.0.).

Figure 24. Outgoing entangled beam QFIQ(ω0; |ΦPDC,out⟩), calculated numerically using equation (37), for varying
entanglement time Tqent, and classical pumpwidth σp, for TLS parameter ω0 and detunings (a)∆= 20THz, and (b)
∆= 100THz. (Γ = 0.15, THz,Γ⊥/Γ = 0.5.).

where J is the coupling strength between the two sites labelled a and b, whose excited levels are respectively
|a⟩ and |b⟩, and |f⟩ is the doubly excited state, characterised by level energy h̄(ωa +ωb), obtained under the
assumption of zero binding energy meaning that there is no interaction between the two excitations.

This Hamiltonian is obtained by setting P= 2 in the P-site Hamiltonian in equation (11), and is a
precursor to the far more complex Frenkel–Holstein Hamiltonians [80–83] that are used to model complex
dynamics (including excitonic energy transport (EET) and long-lived quantum beats) in photosynthetic
LHCs. In these more involved Hamiltonians, also included are site-dependent reorganisation energy terms,
and interaction terms corresponding to phonon baths comprised of harmonic oscillators at each site whose
displacement couples linearly with each excitation [81]. This is in addition to modelling each pigment site as
a TLS to account for the lowest transition, as well as interstitial coupling terms that appear in both the n-site
and CD Hamiltonians in equations (11) and (G1) respectively.
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Figure 25. Outgoing entangled beam QFIQ(ω0; |ΦPDC,out⟩), calculated numerically using equation (37), for varying
entanglement time Tqent, and classical pumpwidth σp, for TLS parameter ω0 and detunings (a)∆= 20THz, and (b)
∆= 100THz. (Γ = 0.15 THz,Γ⊥/Γ = 10.0.).

For an analytically tractable description of CD dynamics, we transform to the diagonal basis for the CD
system, called the excitonic basis, through the eigendecomposition of the Hamiltonian in equation (G1),

HCD =
∑
j=α,β

h̄ωj|j⟩⟨j|+ h̄(ωa +ωb) |f⟩ (G2)

where, effectively, we have diagonalised in the SEM space only (|g⟩ and |f⟩ states are already eigenstates of
HCD), yielding SEM eigenstates |α⟩ and |β⟩. The delocalised excitonic states can be explicitly related to the
basis kets |a⟩ and |b⟩ by the following relations [84],

|α⟩= cosΘ|a⟩+ sinΘ|b⟩, |β⟩=− sinΘ|a⟩+ cosΘ|b⟩, (G3)

whereΘ= 1
2 arctan

(
2J
δ

)
and δ = h̄(ωa −ωb), and the corresponding eigenvalues are ωα = ω̄− (δ/2) sec2Θ,

ωβ = ω̄+(δ/2) sec2Θ respectively for the |α⟩ and |β⟩ state. For reference, CD site and excitonic bases are
visually represented as level diagrams in figure 26.

The transition dipole moment operator d of the CD system that couples with the incoming electric field
has the following form in the site basis,

d=
∑
i=a,b

µig |i⟩⟨g|+
∑
i=a,b

µfi |f⟩⟨i|+ h.c. (G4)

which we can transform to the excitonic basis using equation (G3) where it has the analogous form,

d=
∑
i=α,β

µig |i⟩⟨g|+
∑
i=α,β

µfi |f⟩⟨i|+ h.c. (G5)

such that the various vector dipole elements transform via the followingΘ-rotation matrix,[
µαg

µβg

]
=

[
cosΘ sinΘ
− sinΘ cosΘ

] [
µag

µbg

]
,[

µfα

µfβ

]
=

[
− sinΘ cosΘ
cosΘ sinΘ

] [
µfa

µfb

]
. (G6)

As we will restrict our discussion to the use of pulses carrying single excitation to the CD system, and the CD
system itself being in the ground state |g⟩ at t= 0, the dipole operator elements µfi that link the SEM and
doubly excited level |f⟩ can be dropped altogether. We will then abbreviate the GSM-SEM transition dipoles
for brevity as µig ≡ µi = |µi|µ̂i, i = α,β for brevity.

In order to describe the light-CD interaction, we transform to the interaction picture with respect to the
zeroth-order Hamiltonian,

HCD
0 =

∑
i=α,β

h̄ω̄S|i⟩⟨i|+ 2h̄ω̄S|f⟩⟨f|+HF, (G7)

where ω̄S is the central frequency of the signal mode, and the free field Hamiltonian is

HF =

ˆ
dω h̄ω a†S (ω)aS (ω)+

ˆ
dω h̄ω b† (ω)b(ω) , (G8)

31



Quantum Sci. Technol. 9 (2024) 035004 A Khan et al

Figure 26. Level diagram of the CD system comprised of two two-level systems that have a common ground set to zero energy,
and excited levels |a⟩ and |b⟩, coupled to each other via Coulomb interaction of strength J. In the diagonal excitonic basis
effectively in the SEM space, |α⟩ and |β⟩ are delocalised over both sites a and b.

where we have dropped the free field term corresponding to idler mode because of the explicit assumption
that the CD system only interacts with a single mode in this input-output setup, and the operator b(t)
corresponds to the environmental modes E. The interaction picture Hamiltonian is then

HCD (t) =HCD
I − d.E(t)

=
∑
i=α,β

h̄∆i|i⟩⟨i|+ h̄(∆α +∆β) |f⟩⟨f| − ih̄
[√

ΓΣ† aS (t)⊗1I ⊗1E +
√
Γ⊥Σ†1S ⊗1I ⊗ b(t)− h.c

]
(G9)

where

Σ† =

√
ωcµ20

2ϵ0cA0h̄

(
λασ

α
+ +λβσ

β
+

)
=
√
2Γ
(
λασ

α
+ +λβσ

β
+

)
, whereσi

+ = |i⟩⟨g|,λi = (ê.µ̂i)

(
|µi|
µ0

)
(i = α,β) (G10)

is the collective SEM raising operator, and

HCD
I =

∑
i=α,β

h̄∆i|i⟩⟨i|+ h̄(∆α +∆β) |f⟩⟨f| (G11)

where∆i = ωi − ω̄S (i = α,β) are the detunings from the central signal pulse frequency of the excitonic
levels, and a(t) are white-noise operators previously defined in equation (14) corresponding to the incoming
paraxial mode. In obtaining these, we have re-centered the frequency integrals with the transformation
ω→ ω− ω̄S so that the field operators aS(ω) and b(ω) are centred around ω= 0. The extension of the
frequency integrals to all frequencies from−∞ to+∞ is a consequence of the fact that the CD
system-quantum pulse interaction is assumed to be peaked around the central frequency of the oncoming
pulse, allowing us to invoke the white noise approximation of SVEA.

Appendix H. Characteristic matter function for bare CD hamiltonian

Closed expressions for the characteristic function fCD(t1) can be calculated explicitly for the bare CD

Hamiltonian using the following formula for matrix exponential of a 2× 2 matrixM=

(
a b
c d

)
∈ C2×2 [85]

eM = e
a+d
2

(
coshυ+ a−d

2
sinhυ
υ b sinhυ

υ

c sinhυ
υ coshυ− a−d

2
sinhυ
υ

)
. (H1)

where υ = (1/2)
√
(a− d)2 + 4bc.
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For the bare CD Hamiltonian, the characteristic function can be expressed as the expectation value of the
matrix exponential

fCD (t1) =
(
λα λβ

)
exp

[
− iHCD

I t1
h̄

− 1

2
Σ†Σ t1

] (
λα
λβ

)
(H2)

which is then

fCD (t1) = e−i∆̃t1−Γt1
2 (λ

2
a+λ2

b)
{(
λ2a +λ2b

)
coshυ+

sinhυ

υ

[(
λ2α −λ2β

) a− d

2
− 2λ2αλ

2
β Γt1

]}
(H3)

where ∆̃ = (∆α +∆β)/2 is the averaged detuning, and the various terms (in terms of the CD parameters)
are

υ =
t1
2

√
−δ2 sec2 2Θ

h̄2
+Γ2

(
λ2a +λ2b

)2 − 2iδΓ

h̄
sec2Θ

(
λ2α −λ2β

)
(H4)

and

a− d

2
=

iδt1 sec2Θ

2h̄
− Γt1

2

(
λ2α −λ2β

)
. (H5)

The QFI for the outgoing single photon state that scatters off of the CD system is proportional to a
convolution of the incoming field envelope, and the parametric derivative of the characteristic function
fCD(t1) which can also be calculated explicitly for the bare CD Hamiltonian for the J parameter,

∂

∂J
fCD (t1) = e−i∆̃t1−

Γt1
2 (λ2

a+λ2
b)
[
∂υ

∂J

{(
λ2
a +λ2

b

)
sinhυ+

(
coshυ
υ

− sinhυ
υ2

)((
λ2
α −λ2

β

) a− d
2

− 2λ2
αλ

2
β Γt1

)}
+

δ

δ2 + 4J2
sinhυ
υ

{
4λαλβ

a− d
2

+
(
λ2
α −λ2

β

) iδt1
h̄

sec2Θ tan2Θ+ 2Γt1λαλβ

(
λ2
α −λ2

β

)} ]
(H6)

where

∂υ

∂J
=

δ

δ2 + 4J2
t21
8υ

{
−4δ2

h̄2
sec2 2Θ tan2Θ− 4iδΓ

h̄
sec2Θ tan2Θ

(
λ2α −λ2β

)
− 8iδΓ

h̄
sec2Θλαλβ

}
. (H7)

Appendix I. Relation between QFI of PDC state and post-selected biphoton state

The vacuum term in the two-photon PDC state in equation (56) does not contribute to the detected signal,
and is often dropped in theoretical analyses by post-selecting for the detected two-photon states only. The
post-selected biphoton state, renormalised to ensure a unit norm, can be expressed in terms of the PDC JTA
as:

|Φbiph⟩=
1√
Λ

ˆ
dtS

ˆ
dtIΦPDC (tS, tI) a

†
S (tS)a

†
I (tI) |0⟩ (I1)

where Λ =
´
dtS
´
dtIΦ∗

PDC(tS, tI)ΦPDC(tS, tI) is the normalisation factor for the post-selected state. We can
then work out the outgoing state corresponding to the biphoton state in equation (I1) for arbitrary matter
systems with Hamiltonian HM

I , also in terms of the PDC JTA:

|Φbiph,out⟩=
1√
Λ

ˆ
dtS

ˆ
dtIΦPDC,out (tS, tI) a

†
S (tS)a

†
I (tI) |0⟩ (I2)

where ΦPDC,out(tS, tI) =
∑

n rn,PDCϕ
S
n,PDC(tS)h

I
n(tI). This can then be used to calculate the corresponding

QFI for parameter θ,

Q
(
θ; |Φbiph,out⟩

)
=

4

Λ

[ˆ
dtS

ˆ
dtI

∂ΦPDC,out (tS, tI)
∗

∂θ

∂ΦPDC,out (tS, tI)

∂θ

− 1

Λ

∣∣∣∣ˆ dtS

ˆ
dtI
∂ΦPDC,out (tS, tI)

∗

∂θ
ΦPDC,out (tS, tI)

∣∣∣∣2
]
. (I3)
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The outgoing PDC state QFI and the post-selected state QFI are then related to each other as

Q
(
θ; |Φbiph,out⟩

)
=

NPDC

Λ
Q(θ; |ΦPDC,out⟩)+

4(Λ− 1)

Λ2

∣∣∣∣ˆ dtS

ˆ
dtI
∂ΦPDC,out (tS, tI)

∗

∂θ
ΦPDC,out (tS, tI)

∣∣∣∣2 .
(I4)

It is interesting to note the contrasting nontriviality of this relation (where the transformation between the
two QFIs depends on the value of the true value of the parameter θ) vis-à-vis the transformation of the QFI
function when the parameter is rescaled (in which case the QFI is rescaled by the square of the constant
scaling factorQ(θ/c; |ψ⟩⟨ψ|) = (1/c2)Q(θ; |ψ⟩⟨ψ|).

The biphoton normalisation factor Λ is proportional to the rate of entangled photon production given by
(α2

pump/h̄
2), which is typically a very small number given that the PDC process only converts between one in

106 to 1011 pump photons into entangled daughter photons, depending on the particular nonlinear crystal
used, and other experimental variables. In this text, for our choice of αpump/h̄= 0.01, we can safely conclude
that Λ≪ 1, and (by the same token) NPDC ≈ 1. This yields the simpler relation between the two QFIs,

Q(θ; |ΦPDC,out⟩)≈
Λ

NPDC
Q
(
θ; |Φbiph,out⟩

)
+

4

ΛNPDC

∣∣∣∣ˆ dtS

ˆ
dtI
∂ΦPDC,out (tS, tI)

∗

∂θ
ΦPDC,out (tS, tI)

∣∣∣∣2 . (I5)
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time-frequency estimation through mode-selective photon measurement Phys. Rev. Lett. 121 090501
[55] Reddy D V and Raymer M G 2018 Photonic temporal-mode multiplexing by quantum frequency conversion in a dichroic-finesse

cavity Opt. Express 26 28091
[56] De S, Gil-Lopez J, Brecht B, Silberhorn C, Sánchez-Soto L L, Hradil Z and Řeháček J 2021 Effects of coherence on temporal
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