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Abstract
In the classical Geometry of Numbers, the calculation
of successive minima may be quite difficult, even in 𝐑2

using the norm coming from a distance function asso-
ciated to a set. In the literature, there seem to be hardly
any analogues when 𝐑 is replaced by the algebraic clo-
sure of a function field in one variable and one uses a
norm arising from the absolute height. Here, we calcu-
late a one-parameter family of examples that naturally
arose in our recent paper on bounded heights. We also
comment on whether the minima are attained.

MSC 2020
11G50 (primary), 11H99 (secondary)

1 INTRODUCTION

Siegel’s Lemma was originally constructed for use in diophantine approximation and transcen-
dence theory, but has since found applications elsewhere, for example, to complexity theory (see
[9, p. 98]), to integer-valued entire functions (see [9, chapter 10]), or to counting rational points
(see [9, chapter 18]). In its simplest form, it says that a system of𝑀 ⩾ 1 homogeneous linear equa-
tions (assumed for convenience linearly independent) in 𝑁 ⩾ 1 unknowns over 𝐙 has a small
non-trivial solution in𝐙𝑁 provided𝑀 < 𝑁. More general versions show that there are 𝐿 = 𝑁 −𝑀

linearly independent solutions which are usually not much bigger.
It is convenient to take advantage of the homogeneity by working with 𝐐 and 𝐐𝑁 .

This note is dedicated to Andrzej Schinzel in fond memory. One of his favourite English authors
was Hilaire Belloc, who wrote (with a single word changed):

When I am dead, I hope it may be said:

‘His sins were scarlet, but his papers were read’.
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2 AMOROSO et al.

More precisely, we define the projective height of non-zero 𝐪 = (𝑞1, … , 𝑞𝐾) in 𝐐𝐾 as

𝐻(𝐪) = max{|𝑞𝑞1|, … , |𝑞𝑞𝐾|} (1.1)

where 𝑞 is anything in𝐐 such that 𝑞𝑞1, … , 𝑞𝑞𝐾 are in 𝐙 and coprime. The linear equations define
a variety 𝑉 of dimension 𝐿 in 𝐐𝑁 whose Grassmannian coordinates form a non-zero vector 𝐯 in
𝐐𝐾 for 𝐾 =

(𝑁
𝐿

)
, and we may define 𝐻(𝑉) = 𝐻(𝐯). Then, there are independent 𝐱1, … , 𝐱𝐿 in 𝑉

with

𝐻(𝐱1)⋯𝐻(𝐱𝐿) ⩽ 𝑐𝐻(𝑉),

where 𝑐 depends only on 𝑁.
There are extensions with𝐐 replaced by any number field, but now 𝑐 depends on the field (and

indeed must). For all this, see [4, pp. 72–80].
Roy and Thunder [10] in 1996 succeeded in replacing 𝐐 by its algebraic closure 𝐐; and now 𝑐

again depends only on 𝑁. In fact they proved that for any 𝜖 > 0 there are independent 𝐱1, … , 𝐱𝐿
in 𝑉 with

𝐻(𝐱1)⋯𝐻(𝐱𝐿) ⩽ (2𝐿(𝐿−1)∕2 + 𝜖)𝐻(𝑉)

(see also David and Philippon [7] for an explicit deduction of a better bound on 𝐻(𝐱1) from a
1995 work [13] of Zhang — they remark that a similar deduction can be made for the product of
heights).
In the same [10], they proved results when 𝐐 is replaced by the function field 𝑘(𝑡),

where 𝑘 is any field and 𝑡 is transcendental over 𝑘. Now one gets (see Theorem 2.2, p. 6,
with 𝛿 = 0)

𝐻(𝐱1)⋯𝐻(𝐱𝐿) ⩽ (1 + 𝜖)𝐻(𝑉), (1.2)

which is sharp because they note (also p. 6) that for any independent 𝐱1, … , 𝐱𝐿 in 𝑉, one
has

𝐻(𝐱1)⋯𝐻(𝐱𝐿) ⩾ 𝐻(𝑉). (1.3)

They reformulate these results in terms of successive minima already familiar from the classical
Geometry of Numbers.
But from now on, we will go additive with ℎ = log𝐻.
Thus, for 𝑖 = 1, … , 𝐿, define 𝜇𝑖(𝑉) as the infimum of all real 𝜇 for which there exist 𝑖 linearly

independent elements 𝐱 of 𝑉 with ℎ(𝐱) < 𝜇. Thus,

𝜇1(𝑉) ⩽ ⋯ ⩽ 𝜇𝐿(𝑉).

Then, (1.2) and (1.3) are equivalent to the single statement

𝜇1(𝑉) +⋯ + 𝜇𝐿(𝑉) = ℎ(𝑉). (1.4)
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ON FUNCTIONAL SUCCESSIVE MINIMA 3

At last we give the definition of ℎ in 𝑘(𝑡)
𝑁
. As in (1.1) but with degrees, we define ℎ(𝐪) for 𝐪 in

𝑘(𝑡)𝐾 by

ℎ(𝐪) = max{deg(𝑞𝑞1), … , deg(𝑞𝑞𝐾)}, (1.5)

where 𝑞 is anything in 𝑘(𝑡) such that 𝑞𝑞1, … , 𝑞𝑞𝐾 are in 𝑘[𝑡] and coprime. This is the same as

∑
𝑣

logmax{|𝑞1|𝑣, … , |𝑞𝐾|𝑣}, (1.6)

where 𝑣 runs over all valuations of 𝑘(𝑡) that are trivial on 𝑘. Standard height theory [4] then
extends this to 𝑘(𝑡)

𝐾
, where an analogue of (1.6) holds with extra rational coefficients. Then, ℎ(𝑉)

is defined as above with the Grassmannian.
Now in the classical Geometry of Numbers, the calculation of successiveminima even in rather

simple situations can be difficult. For example, let 𝑆 be the (long thin) set of (𝑥, 𝑦) in 𝐑2 with|𝜋𝑥 − 𝑦| ⩽ 1∕113, |𝑥| ⩽ 113. Then, by Minkowski, the infimum 𝜇1(113) of all 𝜇 ⩾ 0 such that 𝜇𝑆
contains a non-zero point of 𝐙2 satisfies 𝜇1(113) ⩽ 1. Here, it is not so hard to show that in fact
𝜇1(113) = 113(106𝜋 − 33) > 0.99. But if we replace 113 by 1936, then

𝜇1(1936) =
113

1936
= 0.058367… <

1√
292

. (1.7)

However, 𝜇1(33102) > 0.99 again. The behaviour with parameters lies very deep, as one can
show lim inf𝜆→∞ 𝜇1(𝜆) = 0 if and only if 𝜋 has unbounded partial quotients in its continued
fraction (as might be guessed from (1.7) above). Of course the transcendence of 𝜋 plays no role
here; for example, Brillhart’s real 𝛼 with 𝛼3 − 8𝛼 − 10 = 0 has a reasonably early partial quotient
16467250 (see [6], Churchhouse and Muir). For related problems, see also Cassels [5, Theorem
VIIA, p. 92] on binary cubic forms and section XI.4 (p. 329) in connection with Minkowski’s
Conjecture.
An example more in our context is the plane 𝑉 in 𝐐3 defined by 𝑎1𝑥1 + 𝑎2𝑥2 + 𝑎3𝑥3 = 0 with

integers 𝑎1, 𝑎2, 𝑎3. On it the smallest value of ℎ(𝐱) with non-zero 𝐱 in 𝐐3 can be found in prin-
ciple for any specific integers, but there is probably no simple closed formula; and a fortiori for
two independent solutions. Further, if we replace 𝐐 by 𝐐, the problems are unlikely to get eas-
ier. See however Sombra [11] for the explicit calculation of certain related successive minima for
toric varieties.
Things may look easier in the function field case (where, for example, all valuations are ultra-

metric); thus, for 𝑉0 defined by 𝑥1 + 𝑥2 − 𝑥3 = 0 with ℎ(𝑉0) = 0, corresponding to the affine
line 𝑥 + 𝑦 = 1, we have (𝑥, 𝑦) = (1, 0), (0, 1) so that 𝜇1(𝑉0) = 0, 𝜇2(𝑉0) = 0. Or for the line 𝑡𝑥 +

(1 − 𝑡)𝑦 = 1 with ℎ(𝑉1) = 1, we have (1, 1), (𝑡, 1 + 𝑡) so that 𝜇1(𝑉1) = 0, 𝜇2(𝑉1) = 1. But just for
𝑡1∕2𝑥 + (1 − 𝑡)1∕2𝑦 = 1, the values are not so clear (see Section 4). Indeed we know of no other
calculations of this sort in the literature.
In a recent paper [2], we proved (among other things) that algebraic numbers 𝜏 satisfying 𝜏𝜆 +

(1 − 𝜏)𝜆 = 1 usually have height bounded above independently of the positive rational 𝜆 ⩾ 0 (see
also [1] for integral 𝜆). The proof involved the 𝑉𝜆 corresponding to

𝑡𝜆𝑥 + (1 − 𝑡)𝜆𝑦 = 1
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4 AMOROSO et al.

with ℎ(𝑉𝜆) = 𝜆. There it sufficed to know when 𝜇1(𝑉𝜆) could be near zero. Here, we push the
techniques further to calculate explicitly𝜇1(𝑉𝜆), 𝜇2(𝑉𝜆) for all 𝜆 ⩾ 0, at least in characteristic zero.
Thus, from now on, we will assume that 𝑘 has characteristic zero, and (for convenience) that 𝑘 is
algebraically closed. By (1.4), it will suffice to treat the first minimum.

Theorem 1.1. Define the integer part 𝑙 = [3𝜆∕2] ⩾ 0, so that

2𝑙

3
⩽ 𝜆 <

2𝑙 + 2

3
.

Then, 𝜇1(𝑉𝜆) = 𝜆∕2 unless 𝑙 ≡ 1 mod 3, in which case

𝜇1(𝑉𝜆) = 𝑙 − 𝜆

(
2𝑙

3
⩽ 𝜆 <

2𝑙 + 1

3

)
,

𝜇1(𝑉𝜆) = 2𝜆 − 𝑙 − 1

(
2𝑙 + 1

3
⩽ 𝜆 <

2𝑙 + 2

3

)
.

Thus, by plotting also the second minimum 𝜇2(𝑉𝜆) = 𝜆 − 𝜇1(𝑉𝜆) we see an infinite sequence
of ‘lozenges’, as in the picture.

2 PRELIMINARIES

The first is very well known.

Lemma 2.1. For non-zero coprime 𝐴, 𝐵, 𝐶 in 𝑘[𝑡], not all in 𝑘, with 𝐴 + 𝐵 + 𝐶 = 0, we have

max{deg𝐴, deg 𝐵, deg𝐶} ⩽ −1 +
∑

𝜏∈𝑘,𝐴𝐵𝐶(𝜏)=0

1.
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ON FUNCTIONAL SUCCESSIVE MINIMA 5

Proof. The account in [8, p. 194] is simple but unfortunately does not explicitly exclude 𝐴, 𝐵, 𝐶
being all in 𝑘; however, if one adds the assumption 𝑛0(𝑎𝑏𝑐) ⩾ 1 there, then all becomes fine.
Alternatively see the third author [12, p. 121] or the second author [9, p. 153]. □

The second has a similar flavour but seems to be new. For a multiplicative abelian group 𝐺, we
define 𝐺div as the set of g for which there exists a positive integer 𝑑 with g𝑑 in 𝐺. We shall need
this only for 𝐺 = 𝑘(𝑡)∗.

Lemma 2.2. For 𝛼, 𝛽, 𝛾 in 𝑘(𝑡)∗div with 𝛼 + 𝛽 + 𝛾 = 0, there exists 𝛿 in 𝑘(𝑡)∗div such that 𝛿𝛼, 𝛿𝛽, 𝛿𝛾
are in 𝑘(𝑡)∗.

Proof. Indeed this mimics the first step in the proof of Lemma 2.1. Write 𝑢 = −𝛼∕𝛾, 𝑣 = −𝛽∕𝛾

so that 𝑢 + 𝑣 = 1. With the extension of d∕d𝑡 to 𝑘(𝑡), we have 𝑢′ + 𝑣′ = 0 or better (𝑢′∕𝑢)𝑢 +

(𝑣′∕𝑣)𝑣 = 0; and, if 𝑢′∕𝑢 ≠ 𝑣′∕𝑣, then solving the two linear equations for 𝑢, 𝑣 yields

𝑢 = −
𝑣′∕𝑣

𝑢′∕𝑢 − 𝑣′∕𝑣
, 𝑣 =

𝑢′∕𝑢

𝑢′∕𝑢 − 𝑣′∕𝑣
.

There is a positive integer 𝑑 with 𝑤 = 𝑢𝑑 in 𝑘(𝑡), and so 𝑢′∕𝑢 = (𝑤′∕𝑤)∕𝑑 lies also in 𝑘(𝑡). Simi-
larly for 𝑣′∕𝑣, and so 𝑢, 𝑣 lie in 𝑘(𝑡). Thus, 𝛿 = 1∕𝛾 will do. And if 𝑢′∕𝑢 = 𝑣′∕𝑣, then𝑤 = 𝑢∕𝑣 lies
in 𝑘 so 𝑘(𝑡), so also 𝑣 = 1∕(1 + 𝑤) and 𝑢 too. □

3 PROOF OF THEOREM

Wemay assume 𝜆 > 0. By (1.4), we have 𝜇1 = 𝜇1(𝑉𝜆) ⩽ 𝜆∕2. Take any 𝜉, 𝜂 in 𝑘(𝑡)with ℎ(𝜉, 𝜂, 1) <
𝜆 and

𝜉𝑡𝜆 + 𝜂(1 − 𝑡)𝜆 = 1. (3.1)

Then, 𝜉, 𝜂 are both non-zero.
Let 𝜎 be any element of Gal(𝑘(𝑡)∕𝑘(𝑡)). Applying it to (3.1), we get

𝜉𝜎𝜃𝜎𝑡
𝜆 + 𝜂𝜎𝜙𝜎(1 − 𝑡)𝜆 = 1,

with roots of unity 𝜃𝜎, 𝜙𝜎. Eliminating (1 − 𝑡)𝜆 from this and (3.1) gives Δ𝑡𝜆 = 𝛿 with

Δ = Δ𝜎 = 𝜉𝜂𝜎𝜙𝜎 − 𝜉𝜎𝜂𝜃𝜎, 𝛿 = 𝛿𝜎 = 𝜂𝜎𝜙𝜎 − 𝜂.

If Δ ≠ 0 for some 𝜎, then

𝜆 = ℎ(𝑡𝜆, 1) = ℎ(𝛿, Δ).

Here 𝛿 andΔ are bihomogeneous in (𝜉, 𝜉𝜎), (𝜂, 𝜂𝜎), of bidegrees (0,1) and (1, 1), respectively. Now,

max{𝑦, 𝑦′, 𝑥𝑦′, 𝑥′𝑦} ⩽ max{𝑥, 𝑦, 1}max{𝑥′, 𝑦′, 1}

for 𝑥, 𝑦, 𝑥′, 𝑦′ ⩾ 0. In the analogue of (1.6) for ℎ(𝛿, Δ), a typical term is

logmax{|𝛿|𝑣, |Δ|𝑣} ⩽ logmax{|𝜂|𝑣, |𝜂𝜎|𝑣, |𝜉𝜂𝜎|𝑣, |𝜉𝜎𝜂|𝑣},
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6 AMOROSO et al.

which is therefore at most

logmax{|𝜉|𝑣, |𝜂|𝑣, 1} + logmax{|𝜉𝜎|𝑣, |𝜂𝜎|𝑣, 1}.
Summing over 𝑣, we end up with

ℎ(𝛿, Δ) ⩽ ℎ(𝜉, 𝜂, 1) + ℎ(𝜉𝜎, 𝜂𝜎, 1) = 2ℎ(𝜉, 𝜂, 1).

So we get

ℎ(𝜉, 𝜂, 1) ⩾
𝜆

2
, (3.2)

which would imply 𝜇1(𝑉𝜆) ⩾ 𝜆∕2. If that were true, then we have equality by (1.4). This means
that we are on the ‘single lines’ in the picture or possibly their continuations through the lozenges.
But what if Δ = 0 above for all 𝜎?
Then, 𝛿 = 0 as well. And eliminating 𝑡𝜆 instead shows

𝜉𝜎𝜃𝜎 = 𝜉, 𝜂𝜎𝜙𝜎 = 𝜂. (3.3)

By raising to suitable powers, we see that 𝜉, 𝜂 lie in 𝑘(𝑡)∗div .
Now Lemma 2.2 on (3.1) shows that 𝜉𝑡𝜆, 𝜂(1 − 𝑡)𝜆 are in 𝑘(𝑡)∗.
So 𝜌 = 𝜉𝑡𝜆, 1 − 𝜌 = 𝜂(1 − 𝑡)𝜆 for some 𝜌 ≠ 0, 1 in 𝑘(𝑡), and with 𝜆 = 𝑝∕𝑞 and 𝜌 = 𝑌∕𝑍 with

coprime 𝑌, 𝑍 in 𝑘[𝑡], we contradict (3.2) if

ℎ∗ = 𝑞ℎ(𝜉, 𝜂, 1) = ℎ((1 − 𝑡)𝑝𝑌𝑞, 𝑡𝑝(𝑍 − 𝑌)𝑞, 𝑡𝑝(1 − 𝑡)𝑝𝑍𝑞) < 𝑝∕2 (3.4)

now over 𝑘[𝑡]. If the three expressions were coprime, then ℎ∗ would be max{𝑝 + 𝑛𝑞, 2𝑝 + 𝑚𝑞},
where

𝑛 = max{deg𝑌, deg 𝑍}, 𝑚 = deg𝑍. (3.5)

Now the only possible common prime factors are 𝑡, 1 − 𝑡. Write

𝑟 = ord𝑡=0𝑌, 𝑠 = ord𝑡=1(𝑍 − 𝑌). (3.6)

If 𝑡 occurs as a common factor, then 𝑟 ⩾ 1 so 𝑍(0) ≠ 0, and the largest power of 𝑡 occurring is
min{𝑟𝑞, 𝑝} (and this holds even if 𝑡 does not occur, because then 𝑟 = 0).
Similarly the largest power of 1 − 𝑡 occurring ismin{𝑠𝑞, 𝑝}.
Thus,

ℎ∗ = max{𝑝 + 𝑛𝑞, 2𝑝 + 𝑚𝑞} − min{𝑟𝑞, 𝑝} − min{𝑠𝑞, 𝑝}, (3.7)

and we have to figure out howmuch smaller than 𝑝∕2 this can be. Now ℎ∗ < 𝑝∕2 is equivalent to
eight inequalities according to the choices in max and the two min. Dehomogenizing these gives

𝑛 − 𝑟 − 𝑠 < −
𝜆

2
, 𝑛 − 𝑟 <

𝜆

2
, 𝑛 − 𝑠 <

𝜆

2
, 𝑛 <

3𝜆

2
, (3.8)

𝑚 − 𝑟 − 𝑠 < −
3𝜆

2
, 𝑚 − 𝑟 < −

𝜆

2
, 𝑚 − 𝑠 < −

𝜆

2
, 𝑚 <

𝜆

2
. (3.9)
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ON FUNCTIONAL SUCCESSIVE MINIMA 7

Adding the first of (3.8) and the fourth of (3.9) gives 𝑟 + 𝑠 > 𝑛 + 𝑚. We apply Lemma 2.1 to 𝑌 +

(𝑍 − 𝑌) − 𝑍. The terms are not all constant, else 𝜌 would be, and then ℎ(𝜉, 𝜂, 1) = 𝜆. Counting
the zeroes 𝜏 = 0, 1 separately gives

𝑛 ⩽ −1 + 2 + (𝑛 − 𝑟) + (𝑛 − 𝑠) + 𝑚,

that is, 𝑟 + 𝑠 ⩽ 𝑛 + 𝑚 + 1. Therefore,

𝑟 + 𝑠 = 𝑛 + 𝑚 + 1. (3.10)

And the fourth of (3.8) and the first of (3.9) now give (3𝜆∕2) − 1 < 𝑛 < 3𝜆∕2. Thus,

𝑛 = [3𝜆∕2] = 𝑙 (3.11)

as in the theorem.
Similarly, the first of (3.8) and the fourth of (3.9) give

𝑙

3
− 1 ⩽

𝜆

2
− 1 < 𝑚 <

𝜆

2
<

𝑙 + 1

3

so𝑚 ⩽ 𝑙∕3, and then

𝑚 =

[
𝑙

3

]
. (3.12)

Now the second and third of (3.8) give

min{𝑟, 𝑠} > 𝑛 −
𝜆

2
= 𝑙 −

𝜆

2
> 𝑙 −

𝑙 + 1

3
=

2𝑙 − 1

3
. (3.13)

Next, we examine the cases 𝑙 ≡ 2, 0, 1 mod 3 in turn.
When 𝑙 ≡ 2 mod 3, we have by (3.12)𝑚 = (𝑙 − 2)∕3; and (3.13) givesmin{𝑟, 𝑠} ⩾ (2𝑙 + 2)∕3. But

then

𝑟 + 𝑠 ⩾
4𝑙 + 4

3
>

4𝑙 + 1

3
= 𝑛 +𝑚 + 1,

a contradiction to (3.10).
When 𝑙 ≡ 0 mod 3, we have𝑚 = 𝑙∕3. Now the second and third of (3.9) give

min{𝑟, 𝑠} > 𝑚 +
𝜆

2
=

𝑙

3
+

𝜆

2
⩾
2𝑙

3

somin{𝑟, 𝑠} ⩾ (2𝑙 + 3)∕3. Thus, now

𝑟 + 𝑠 ⩾
4𝑙 + 6

3
>

4𝑙 + 3

3
= 𝑛 +𝑚 + 1,

a similar contradiction. Thus, in both cases 𝑙 ≡ 2, 0 mod 3, we cannot have Δ = 0 and (3.2) holds.
Finally, when 𝑙 ≡ 1 mod 3, then 𝑚 = (𝑙 − 1)∕3 and (3.13) implies min{𝑟, 𝑠} ⩾ (2𝑙 + 1)∕3. But

then

𝑟 + 𝑠 ⩾
4𝑙 + 2

3
= 𝑛 +𝑚 + 1
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8 AMOROSO et al.

now no contradiction to (3.10). Instead it forces

𝑟 = 𝑠 =
2𝑙 + 1

3
.

Next (3.7) gives

ℎ(𝜉, 𝜂, 1) =
ℎ∗

𝑞
= max{𝜆 + 𝑛, 2𝜆 + 𝑚} − min{𝑟, 𝜆} − min{𝑠, 𝜆}.

If 𝜆 ⩽ (2𝑙 + 1)∕3, this is

(𝜆 + 𝑙) − 𝜆 − 𝜆 = 𝑙 − 𝜆 ⩽
𝜆

2

so ℎ(𝜉, 𝜂, 1) decreases from 𝑙∕3 to (𝑙 − 1)∕3 as 𝜆 increases from 2𝑙∕3.
And if 𝜆 ⩾ (2𝑙 + 1)∕3, it is

(2𝜆 + 𝑚) − 𝑟 − 𝑠 = 2𝜆 − 𝑙 − 1 ⩽
𝜆

2
,

so ℎ(𝜉, 𝜂, 1) increases from (𝑙 − 1)∕3 to (𝑙 + 1)∕3 as 𝜆 increases from (2𝑙 + 1)∕3 to (2𝑙 + 2)∕3.
These describe precisely how ℎ(𝜉, 𝜂, 1) falls below 𝜆∕2, which is in accordance with the

assertions of the theorem, and we are now on the ‘lower lines’ of the picture.
The above arguments show that if we are not on the single lines, then 𝑙 ≡ 1 mod 3 as well as

𝑛 = 𝑙, 𝑚 = (𝑙 − 1)∕3, 𝑟 = 𝑠 = (2𝑙 + 1)∕3 and we are on the lower lines. We complete the proof by
showing that in this case coprime𝑌, 𝑍 actually exist satisfying (3.5), (3.6) and 0 ≠ 𝑌 ≠ 𝑍 ≠ 0, thus
producing a point on the lower lines.
In fact linear algebra gives𝑌, 𝑍, not both zero, of degrees atmost 𝑛,𝑚, respectively, and ord𝑡=0𝑌

at least 𝑟 and ord𝑡=1(𝑍 − 𝑌) at least 𝑠. The rest is relatively routine, but we give some details.
For example, 𝑌 = 0 implies 𝑍 ≠ 0 and so 𝑠 ⩽ 𝑚 a contradiction; similarly for 𝑌 = 𝑍 and 𝑍 = 0.

If we assume for themoment that𝑌, 𝑍 are coprime, then, for example, deg𝑌 < 𝑛 leads to a contra-
diction using Lemma 2.1; similarly for deg𝑍 < 𝑚 and ord𝑡=0𝑌 > 𝑟, ord𝑡=1(𝑍 − 𝑌) > 𝑠. And finally
if 𝑌, 𝑍 have a common factor 𝐷 = 𝑡𝑎(1 − 𝑡)𝑏𝐶 with 𝐶(0) ≠ 0, 𝐶(1) ≠ 0 and deg𝐷 = 𝑑 ⩾ 1, then
we check that𝑌∕𝐷 = 𝑡𝑟−𝑎𝑌′ with deg𝑌′ ⩽ 𝑛 − 𝑑 − 𝑟 + 𝑎, (𝑍 − 𝑌)∕𝐷 = (1 − 𝑡)𝑠−𝑏𝑋 with deg𝑋 ⩽

𝑛 − 𝑑 − 𝑠 + 𝑏, and of course deg(𝑍∕𝐷) ⩽ 𝑚 − 𝑑. Now Lemma 2.1 gives yet another contradiction
(using 𝑎 + 𝑏 − 2𝑑 = (𝑎 + 𝑏 − 𝑑) − 𝑑 < 0).
Here are some examples.
For 𝑙 = 1, we have 𝑛 = 1,𝑚 = 0, 𝑟 = 𝑠 = 1 and we can take

𝑌 = 𝑡, 𝑍 = 1, 𝑍 − 𝑌 = 1 − 𝑡

corresponding to 𝑥 = 𝑡 so (3.1) holds for

𝜉 = 𝑡1−𝜆, 𝜂 = (1 − 𝑡)1−𝜆;

here 2∕3 < 𝜆 < 4∕3.
For 𝑙 = 4, we have 𝑛 = 4,𝑚 = 1, 𝑟 = 𝑠 = 3 and we can take

𝑌 = −𝑡3(𝑡 − 2), 𝑍 = 2𝑡 − 1, 𝑍 − 𝑌 = −(1 − 𝑡)3(𝑡 + 1),
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ON FUNCTIONAL SUCCESSIVE MINIMA 9

so (3.1) holds for

𝜉 = −𝑡3−𝜆
𝑡 − 2

2𝑡 − 1
, 𝜂 = −(1 − 𝑡)3−𝜆

𝑡 + 1

2𝑡 − 1
; (3.14)

here 8∕3 < 𝜆 < 10∕3.
And finally for 𝑙 = 7, we have 𝑛 = 7,𝑚 = 2, 𝑟 = 𝑠 = 5 and we can take

𝑌 = 𝑡5(2𝑡2 − 7𝑡 + 7), 𝑍 = 7𝑡2 − 7𝑡 + 2, 𝑍 − 𝑌 = (1 − 𝑡)5(2𝑡2 + 3𝑡 + 2)

and (3.1) for

𝜉 = 𝑡5−𝜆
2𝑡2 − 7𝑡 + 7

7𝑡2 − 7𝑡 + 2
, 𝜂 = (1 − 𝑡)5−𝜆

2𝑡2 + 3𝑡 + 2

7𝑡2 − 7𝑡 + 2

and 14∕3 < 𝜆 < 16∕3.

4 ADDITIONAL REMARKS

The above discussion shows that the infimum 𝜇1(𝑉𝜆) is attained when 𝑙 ≡ 1 mod 3. We do not
know if this is generally the case for other 𝑙.
An interesting value with 𝑙 = 0 is 𝜆 = 1∕2. Here one can check that (𝜉1, 𝜂1) and (𝜉2, 𝜂2) are

independent solutions, where

𝜉1 =
1 + (1 − 𝑡)1∕2

𝑡1∕2
, 𝜂1 = −1

𝜉2 =
−20𝑡 + 20 + 9𝑡1∕2 + 12(1 − 𝑡)1∕2 + 15𝑡1∕2(1 − 𝑡)1∕2

25𝑡 − 16
,

𝜂2 =
−15𝑡 − 12𝑡1∕2 − 16(1 − 𝑡)1∕2 − 20𝑡1∕2(1 − 𝑡)1∕2

25𝑡 − 16
.

We found these by noting that 𝑘(𝑡, 𝑡1∕2, (1 − 𝑡)1∕2) has genus zero and is in fact 𝑘(𝑇) for

𝑇 =
−10𝑡 + 4 − 3𝑡1∕2 − 4(1 − 𝑡)1∕2 − 5𝑡1∕2(1 − 𝑡)1∕2

25𝑡 − 16

with

𝑡1∕2 =
4𝑇2 + 2𝑇

5𝑇2 + 4𝑇 + 1
, (1 − 𝑡)1∕2 =

3𝑇2 + 4𝑇 + 1

5𝑇2 + 4𝑇 + 1
.

Now the usual linear algebra in 𝑘[𝑇] leads to the two solutions above. One can verify that

ℎ(𝜉1, 𝜂1, 1) = ℎ(𝜉2, 𝜂2, 1) =
1

4

(only the valuations above 𝑡 = 0 and 𝑡 = 16∕25 are needed). This corresponds to a point on the
first single line of the graph. Thus, 𝜇1(𝑉𝜆) = 𝜇2(𝑉𝜆) = 1∕4 are both attained.
When 𝑙 = 1 and 𝜆 = 3∕4, it is easy to see that 𝜇1(𝑉𝜆) = 1∕4 is attained, even in the form just

after (3.3) with 𝜉𝑡𝜆 in 𝑘(𝑡). It is almost as easy to show 𝜇2(𝑉𝜆) = 1∕2 is not attained in this form,
but we do not know if it is attained in some other form. Perhaps the effective Theorem 5.1 (p. 15)
of [10] may help with such problems.
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10 AMOROSO et al.

From now on, let us suppose that 𝜆 is in 𝐙. Then, we have 𝜇1(𝑉𝜆) = [𝜆∕2], 𝜇2(𝑉𝜆) = 𝜆 − [𝜆∕2]

and we will show that both are attained in this form, so with 𝜉, 𝜂 now in 𝑘(𝑡).
To start the proof, one sees again by linear algebra that the space of  = (𝑃, 𝑄, 𝑅) in 𝑘[𝑡]3 with

𝑃𝑡𝜆 + 𝑄(1 − 𝑡)𝜆 + 𝑅 = 0 and the degrees of 𝑃,𝑄, 𝑅 at most 𝑑 has 𝑘-dimension 𝑒 ⩾ 2𝑑 − 𝜆 + 2. We
note that if 𝑑 < 𝜆, then any  must have 𝑅 ≠ 0.
For even 𝜆 ⩾ 2 (we already treated 𝜆 = 0) and 𝑑 = 𝜆∕2, we get 𝑒 ⩾ 2. Any solution must have

𝑃,𝑄, 𝑅 coprime, else there would be a solutionwith height strictly less than 𝜆∕2, contradicting the
fact that this is 𝜇1(𝑉𝜆). Now any two solutions that are 𝑘-independent must be 𝑘(𝑡)-independent
(and so trivially 𝑘(𝑡)-independent). They thus correspond to 𝜇2(𝑉𝜆) = 𝜆∕2.
For example, with 𝜆 = 2 and 𝑑 = 1, we get for (3.1) two reasonable solutions

(𝜉, 𝜂) = (−2𝑡 + 3, 2𝑡 + 1),
(
−
𝑡 − 2

𝑡
, 1
)

of which the first is unique in 𝑘[𝑡]2.
For odd 𝜆 ⩾ 3 (we already treated 𝜆 = 1) and 𝑑 = (𝜆 − 1)∕2, we get 𝑒 ⩾ 1 and so any solu-

tion 1 = (𝑃1, 𝑄1, 𝑅1) must have 𝑃1, 𝑄1, 𝑅1 coprime and correspond to 𝜇1(𝑉𝜆) = (𝜆 − 1)∕2. For
𝑑 = (𝜆 + 1)∕2, we get 𝑒 ⩾ 3. We already have two 𝑘-independent solutions 1 and 𝑡1, so there
must be another solution 2 = (𝑃2, 𝑄2, 𝑅2), which is 𝑘-independent of these. If 𝑃2, 𝑄2, 𝑅2 were
not coprime, then any common factor𝐷must have degree 1 because of 𝜇1(𝑉𝜆) = (𝜆 − 1)∕2. Then,
2 would be 𝑘-proportional to 𝐷1 contradicting the way it was chosen. Thus, 𝑃2, 𝑄2, 𝑅2 must be
coprime. As above now the 𝑘-independence of 1,2 implies their 𝑘(𝑡)-independence, and so 2

corresponds to 𝜇2(𝑉𝜆) = (𝜆 + 1)∕2.
For example, with 𝜆 = 3 and 𝑑 = 1, we get the unique solution (3.14) and for 𝑑 = 2, we get a

solution

(𝜉, 𝜂) = (6𝑡2 − 15𝑡 + 10, 6𝑡2 + 3𝑡 + 1),

which is unique in 𝑘[𝑡]2.
The case of odd 𝜆 and 𝑑 = (𝜆 − 1)∕2 corresponds exactly to the Padé approximations originally

considered by Beukers and Tijdeman [3]— see also [4] Theorem 5.2.10 (p. 130) with 𝐿 = 𝑀 = 𝑁 =

𝑑.
The other cases, of odd 𝜆 and 𝑑 = (𝜆 + 1)∕2, or even 𝜆 and 𝑑 = 𝜆∕2, do not strictly speaking

correspond to Padé because they are not unique (up to constants). They do however come from
linear combinations of Padé approximations (see, e.g., the proof of Lemma6 of [3] p. 199). A similar
phenomenon occurs for 𝜆 = 1∕2 above.
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