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The field of moduli of sets of points in P
2

Giulio Bresciani

Abstract. For every n ≥ 6, we give an example of a finite subset of P2 of
degree n which does not descend to any Brauer–Severi surface over the
field of moduli. Conversely, for every n ≤ 5, we prove that a finite subset
of degree n always descends to a 0-cycle on P

2 over the field of moduli.
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Let k be a field with separable closure K, and S ⊂ P
2(K) a finite subset

of order n. The field of moduli kS of S is the subfield of K of elements fixed
by Galois automorphisms σ ∈ Gal(K/k) such that σ(S) is linearly equivalent
to S, i.e., such that there exist g ∈ PGL3(K) with g(σ(S)) = S. We study the
problem of whether S descends to a 0-cycle on P

2
k(S), or more generally on a

Brauer–Severi surface over kS .
A. Marinatto [18] studied the analogous problem over P

1. He showed that,
if n is odd or equal to 4, then S descends to a divisor over P

1
kS

. Furthermore, he
has given counterexamples where S does not descend to P

1
kS

for every n ≥ 6
even. All of his counterexamples descend to a Brauer–Severi curve, though.
In [7], we have shown that if n = 6, then S always descends to some Brauer–
Severi curve, while there are counterexamples for every n ≥ 8 even.

Fields of moduli of curves, possibly with marked points, received a lot
of attention, see [11–13,15–17]. Furthermore, there are results about abelian
varieties, most famously Shimura’s result that a generic, principally polarized,
odd dimensional abelian variety is defined over the field of moduli [21], and
about fields of moduli of curves in P

2 [1–5,20]. Here is our result.

Theorem 1. Assume char k �= 2. Let S ⊂ P
2(K) be a finite set of n points with

field of moduli kS. If n ≤ 5, then S descends to a finite subscheme of P
2
kS
. For

every n ≥ 6, there exists a subset S ⊂ P
2(C) with field of moduli equal to R

which does not descend to P
2
R
.
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Notice that P
2
R

is the only Brauer–Severi surface over R, hence our coun-
terexamples do not descend to any Brauer–Severi surface over R.

1. Notation and conventions. Given a field k, we write P
n
k for the projective

space as a scheme over k. If k′/k is an extension, then P
n
k′ = P

n
k ×k Spec k′

and P
n
k (k) ⊂ P

n
k (k′) = P

n
k′(k′). Because of this, with an abuse of notation, we

sometimes drop the subscript and just write P
n(k) and P

n(k′).
Let Z ⊂ P

2 be a closed subscheme, and g ∈ PGL3(K) a projective linear
map. We say that g stabilizes Z, or that Z is g-invariant, if g(Z) = Z. We say
that g fixes Z if g(Z) = Z and g|Z : Z → Z is the identity. If G ⊂ PGL3(K)
is a finite subgroup, we say that G stabilizes (resp. fixes) Z if every element
g ∈ G stabilizes (resp. fixes) Z. The fixed locus of g (resp. G) is the subspace
of points x ∈ P

2 with gx = x (resp. ∀g ∈ G : gx = x).
Let S ⊂ P

2(K) be a finite subset with finite automorphism group. Up to
replacing k with kS , we may assume that k is the field of moduli. We recall
some definitions from [9].

A twisted form of (P2
K , S) over a k-scheme M is the datum of a projective

bundle P → M and a closed subscheme Z ⊂ P such that (PK , ZK) is étale
locally isomorphic to (P2

K , S)×KMK , i.e., there exists an étale cover M ′ → MK

and an isomorphism

(P2
K , S) ×K M ′ 	 (P,Z) ×M M ′ = (PK , ZK) ×MK

M ′

over M ′. Notice that if we do not assume that k is the field of moduli, this
definition is not correct since (P2

K , S) would not define in general a twisted
form of (P2

K , S).
The fibered category GS of twisted forms of (P2

K , S) is a finite gerbe over
Spec k called the residual gerbe of S, see [9]. Namely, for a scheme M over k,
the objects of the groupoid GS(M) are twisted forms (P,Z) of (P2

K , S) over
M , and arrows (P,Z) → (P ′, Z ′) are given by isomorphisms φ : P → P ′ over
M with φ(Z) = Z ′. The universal bundle PS → GS is the fibered category
defined as follows: the objects of PS(M) are triples (P,Z, s) where (P,Z) is
a twisted form of (P2

K , S) over M , and s is a section M → P of P → M , and
arrows are defined analogously. The base change of PS → GS to K are the
quotient stacks [P2/AutK(S)] → [Spec K/AutK(S)]. See [9] for more details.

Another way of constructing PS → GS is the following. Let NS ⊂ Autk(P2
K)

be the subgroup of k-linear automorphisms τ of P
2
K such that τ(S) = S, the

fact that k is the field of moduli implies that NS is an extension of Gal(K/k)
by NS ∩ AutK(P2

K) = AutK(P2, S) (see [6, §3] for details). We have an in-
duced action of NS on Spec K with the natural projection NS ⊂ Autk(P2

K) →
Gal(K/k), and the finite étale gerbe GS is the quotient stack [Spec K/NS ]: the
natural map Spec K → GS associated with the trivial twist of S is a pro-étale,
Galois covering with Galois group equal to NS . Similarly, we can view PS as
the quotient stack [P2

K/NS ].
Twisted forms of (P2

K , S) contained in Brauer–Severi surfaces over k cor-
respond to rational points of GS . If |S| is prime with 3 and S descends to a
0-cycle over some Brauer–Severi surface P over k, then P 	 P

2
k. In fact, if

D is a canonical divisor on P , then D · D defines a 0-cycle of degree 9 on P ,
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hence P has index 1 (recall that the index is the greatest common divisor of
the degrees of 0-cycles on P ). This implies that P has a rational point and
P 	 P

2
k, see e.g. [14, Corollary 5.3.6, Theorem 5.1.3].

Denote by PS the coarse moduli space of PS , i.e., P
2
K/NS , since the action

of AutK(S) on P
2
K is faithful, the natural map PS → PS has a birational

inverse PS ��� PS which, by composition, gives us a rational map PS ��� GS .

2. Case n ≤ 5. It is well known that any set of 4 points in P
2 in general posi-

tion (i.e., such that no line contains 3 of them) can be mapped by a projective
linear transformation in a subset of {(1 : 0 : 0), (0 : 1 : 0), (0 : 0 : 1), (1 : 1 : 1)}.
Similarly, if n ≤ 4 and at most three points are aligned, the set can be mapped
by a projective linear transformation in a subset of {(1 : 0 : 0), (0 : 1 : 0), (1 :
1 : 0), (0 : 0 : 1)}. In both these cases, we thus get that S descends to a finite
subscheme of P

2
k.

Assume that n = 4 and all points are contained in a line. Up to a change
of coordinates, we may assume that S is contained in the line L = {(x :
y : 0)} 	 P

1
K , and regard it as a divisor of degree 4 on P

1
K . Notice that

the subgroup GL2(K) ⊂ PGL3(K) acting on the first two coordinates maps
surjectively on the group PGL2(K) of projective linear transformations of L,
hence every linear transformation of L extends to a linear transformation of
P
2
K . By [7, Proposition 13], we may thus find g ∈ GL2(K) ⊂ PGL3(K) such

that g(S) ⊂ L = P
1
K ⊂ P

2
K is Galois invariant with respect to the standard

Galois action of Gal(K/k) on P
1
K(K) ⊂ P

2
K(K); it follows that g(S) descends

to a finite subscheme of P
2
k in this case, too.

Assume n = 5. Let S ⊂ P
2(K) be a finite subset of degree 5 with field of

moduli k, since 5 is prime with 3, it is enough to show that GS(k) �= ∅. We
split the analysis in three cases: either S contains 4 points in general position,
or it is contained in the union of two lines each containing at least three points
of S, or it is contained in the union of a line and a point.

2.1. S contains 4 points in general position. Since we are assuming that there
are 4 points of S in general position, there are two possibilities: either all 5
points are in general position, i.e., there is no line containing 3 of them, or
there is a unique line containing exactly 3 points of S. Denote by C the unique
non-degenerate conic passing through all the points of S in the first case, while
in the second case C is the unique line containing 3 points of S.

In any case, C is a rational curve uniquely determined by S. Because of this,
NS stabilizes C, consider the quotient C = [C/NS ] ⊂ PS and let C = C/NS

be the coarse moduli space of C . Notice that, since C ∩S ≥ 3, the subgroup of
AutK(P2, S) fixing C has at most 2 elements, hence the map C → C is either
birational or generically a gerbe of degree 2. In any case, since char k �= 2 by
the Lang-Nishimura theorem for tame stacks [10, Theorem 4.1] applied to a
birational inverse PS ��� PS and to the generic point of C ⊂ PS , we get a
generic section C ��� C ⊂ PS .

The curve C is a Brauer–Severi variety of dimension 1 over k, and any
canonical divisor has degree −2, hence the index of C is either 1 or 2. Since
C ∩ S has odd degree, there exists an odd d such that C ∩ S contains an
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odd number of orbits of degree d, let O ⊂ C ∩ S be their union. Clearly,
O is stabilized by NS , hence O/Aut(P2, S) ⊂ C/Aut(P2, S) descends to a
divisor of odd degree of C; this implies that C has index 1, which in turn
implies that C has a rational point and C 	 P

1
k, see e.g. [14, Corollary 5.3.6,

Theorem 5.1.3]. Since we have a map C ��� C → PS → GS , this implies that
GS(k) �= ∅ if k is infinite. If k is finite, the statement follows from the fact that
NS → Gal(K/k) 	 Ẑ is split and hence GS(k) �= ∅.

2.2. S is contained in the union of two lines. Assume that S is contained in
the union of two lines L,L′ each containing at least 3 points. Up to changing
coordinates, we may assume that (0 : 0 : 1), (0 : 1 : 0), (1 : 0 : 0) ∈ S. It is now
clear that, up to permuting the coordinates and multiplying them by scalars,
we might assume that

S = {(0 : 0 : 1), (0 : 1 : 0), (1 : 0 : 0), (0 : 1 : 1), (1 : 0 : 1)},

which is clearly defined over k.

2.3. S is contained in the union of a line and a point. Suppose that S is
contained in the union of a line L and a point p, choose coordinates such that
p = (0 : 0 : 1) and L = P

1 is the line {(s : t : 0)}.
The field of moduli of (P2

K , S) is equal to the field of moduli of (P1
K , S∩P

1
K):

given σ ∈ Gal(K/k), clearly σ∗(P2
K , S) 	 (P2

K , S) if and only if σ∗(P1
K , S ∩

P
1
K) 	 (P1

K , S∩P
1
K). By [7, Proposition 13], P

1
K ∩S descends to a closed subset

of P
1
k. It follows that S descends to a closed subset of P

2
k.

3. Case n ≥ 6. Let us now construct a counterexample with k = R, K = C

for every n ≥ 6.
If n ≥ 6, then either n = 2m + 4 or n = 2m + 5 for some m ≥ 1. Given

a1, . . . , am ∈ C
∗, |ai| �= 1, define

F = {(±1 : 0 : 1), (0 : ±1 : 1)} ,

S = {(ai : 1 : 0), (1 : −āi : 0)}i ∪ F,

S′ = S ∪ {(0 : 0 : 1)} ,

then |S| = 2m + 4, |S′| = 2m + 5. The matrix g =
(

0 −1 0
1 0 0
0 0 1

)
gives a linear

equivalence between S and its complex conjugate, since g(F ) = F , g(ai : 1 :
0) = (1 : −ai : 0) and g(1 : −āi : 0) = (āi : 1 : 0). Similarly, g maps S′ to its
complex conjugate. It follows that both S and S′ have field of moduli equal to
R. Let us show that S is not defined over R (the case of S′ is analogous).

Let M ∈ PGL3(C) be the image of
( −1 0 0

0 −1 0
0 0 1

)
. We have that M is a non-

trivial automorphism of both S and S′: in fact, M(ai : 1 : 0) = (−ai : −1 :
0) = (ai : 1 : 0), M(±1 : 0 : 1) = (∓1 : 0 : 1), M(0 : ±1 : 1) = (0 : ∓1 : 1),
M(0 : 0 : 1) = (0 : 0 : 1).

Lemma 2. For a generic choice of a1, . . . , am ∈ C, |ai| �= 1, and m ≥ 1,
AutC(P2, S) = AutC(P2, S′) = 〈M〉.
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Proof. For a generic choice of a1, . . . , am, there are exactly two lines containing
exactly three points of S′, hence their point of intersection (0 : 0 : 1) is fixed
by AutC(P2, S′) ⊂ AutC(P2, S). Since M ∈ Aut(P2, S′), it is enough to show
Aut(P2, S) = 〈M〉.

Let L = {(s : t : 0)} be the line at infinity. We first show that it is stabilized
by AutC(P2, S) for a generic choice of the ai. If m ≥ 2, this is obvious since it
is the only line containing at least four points of S.

Assume m = 1, a1 = a. Since the stabilizer of F in GL2(C) is finite and acts
C-linearly on P

2, for a generic a, there is no element of AutC(P2, S) swapping
(a : 1 : 0) and (1 : −ā : 0). Assume by contradiction that L is not stabilized.
We may then also assume that the orbit of (1 : −ā : 0) intersects F (if this
happens for (a : 1 : 0) but not (1 : −ā : 0), we just change coordinates).

Since M is an element of order 2 of AutC(P2, S) acting as a double trans-
position of F and no element of AutC(P2, S) swaps (a : 1 : 0) and (1 : −ā : 0),
it follows that there exists an element g ∈ AutC(P2, S) swapping some p ∈ F
and (1 : −ā : 0). In particular, g permutes the other four points F ∪ {(a :
1 : 0)} � {p}, we may thus think of g as an element of S4. Since the four
points F ∪ {(a : 1 : 0)} � {p} are in general position, for each element σ ∈ S4,
there exists φσ ∈ PGL3(C) acting as σ on F ∪ {(a : 1 : 0)} � {p}, and we
may write φσ as a 3 × 3 matrix whose entries are algebraic functions of a.
Since complex conjugation is not algebraic, for a generic choice of a, we have
φσ(p) �= (1 : −ā : 0) for every σ ∈ S4. This implies that for a generic choice of
a, the automorphism g cannot exist (since g(p) = (1 : −ā : 0)), and hence L is
stabilized.

If L is stabilized, then F is stabilized, too. The point (0 : 0 : 1) is the only
point of intersection in P

2
�(L ∪ S) of two lines passing through two points of

F , hence it is fixed by AutC(P2, S). This implies that AutC(P2, S) ⊂ GL2(C) ⊂
PGL3(C).

The subgroup of GL2(C) stabilizing F is D4 =
〈
r, s | r4 = s2 = rsrs = 1

〉
generated by r =

(
0 1−1 0

)
and s =

( −1 0
0 1

)
, hence AutC(P2, S) ⊂ D4. The

center of D4 is
〈
r2 = −1

〉
= 〈M〉 ⊂ GL2(C), which is also the kernel of

D4 → PGL2(C). Since D4/ 〈M〉 	 Z/2 × Z/2 is finite and acts by C-linear
automorphisms on L, for a generic choice of a1, . . . , am, the intersection S ∩ L
is not stabilized by any non-trivial element of D4/ 〈M〉 ⊂ PGL2(C). It follows
that AutC(P2, S) = 〈M〉. �

Write Ca for the cyclic group of degree a. Consider the natural projection
C4 → Gal(C/R) = C2 giving a non-faithful action of C4 on C and the Galois
equivariant action on P

2
C

given by (a : b : c) �→ (−b̄ : ā : c̄). Clearly, C4 stabilizes
S, hence we get a homomorphism C4 → NS . Lemma 2 implies that NS is an
extension of Gal(C/R) = C2 by C2, hence C4 → NS is an isomorphism and
GS 	 [Spec C/C4]. To conclude, it is enough to show that [Spec C/C4](R) = ∅.

By definition, an R-point of [Spec C/C4] corresponds to a C4-torsor over R

with a C4-equivariant map to Spec C, see e.g. [19, Example 8.1.12]. There are
two C4-torsors over R, the trivial one and T = Spec C ∪ Spec C, and neither
of them has C4-equivariant morphisms to Spec C. This is clear for the trivial



518 G. Bresciani Arch. Math.

torsor, while for T , it follows from the fact that C2 ⊂ C4 acts non-trivially on
each copy of Spec C ⊂ T .

Notice that PS(R) = P
2
C
/C4(R) is non-empty: however, the only real point

(0 : 0 : 1) is an A1-singularity, and hence we cannot apply the Lang-Nishimura
theorem for stacks [10, Theorem 4.1] to conclude that PS(R) is non-empty (in
fact, PS(R) = ∅). We mention that, for most types of 2-dimensional quotient
singularities (but not A1-singularities), the Lang-Nishimura theorem is still
valid, see [9, §6] and [8] for details.
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