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Abstract

In their simplest form, metric-like Lagrangians for higher-spin massless fields are usually assumed to
display constrained gauge symmetries, unless auxiliary fields are introduced or locality is foregone. Specif-
ically, in its standard incarnation, gauge invariance of Maxwell-like Lagrangians relies on parameters with
vanishing divergence. We find an alternative form of the corresponding local symmetry involving uncon-
strained gauge parameters of mixed-symmetry type, described by rectangular two-row Young diagrams and
entering high-derivative gauge transformations. The resulting gauge algebra appears to be reducible and we
display the full pattern of gauge-for-gauge parameters, testing its correctness via the corresponding count-
ing of degrees of freedom. The algebraic techniques applied in this work also allow us to elucidate some
general properties of linear gauge systems. In particular, we establish the general fact that any linear local
field theory always admits unconstrained, local, and finitely reducible parametrization of the gauge sym-
metry. Incidentally, this shows that massless higher spins admit a local unconstrained formulation with no
need for auxiliary fields.
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1. Introduction

The goal of this work is to analyze from a novel perspective the gauge symmetry of the
higher-spin equations proposed in [1,2]. In order to better frame our results it might be useful to
first recall some basic facts about the description of massless higher spins.

Free massless particles of spin s can be described covariantly in terms of rank-s symmetric
tensors by means of the following set of conditions [3]1:

�ϕ = 0, ∂ · ϕ = 0, ϕ′ = 0, (1.1)

while additional non-physical polarizations still contained in ϕ can be removed by the on-shell
gauge transformation δϕ = ∂Λ, with the parameter Λ also satisfying

�Λ = 0, ∂ · Λ = 0, Λ′ = 0. (1.2)

The problem of finding a Lagrangian leading to (1.1) was first solved long ago by Fronsdal [5].
As of now, several Lagrangian formulations are known, all generalizing [5] from various perspec-
tives.2 A more recent alternative description of free massless fields [1,2] will be the object of the
present work. With respect to [5] and to its generalizations, the “Maxwell-like” Lagrangians of
[1,2] display a rather peculiar feature: their gauge invariance obtains only if the parameter Λ

entering the transformation δϕ = ∂Λ satisfies the condition

∂ · Λ = 0. (1.3)

The main observation of this work is that the transversality condition (1.3) can always be solved
in terms of fully unconstrained parameters, while keeping the Lagrangians of [1,2] unchanged.
This shows that the presence of constrained gauge invariance does not represent an intrinsic
feature of Maxwell-like models but rather a choice of parametrization of the corresponding local
symmetry. From a more general perspective, and differently from what is usually assumed, this
also shows that massless higher spins admit a fully unconstrained local description with no need
for additional auxiliary fields.

In order to recall the general setting, let us consider the Lagrangians proposed in [1,2],

L = 1

2
ϕMϕ, (1.4)

where M is the Maxwell operator

M = � − ∂∂ · . (1.5)

Under δϕ = ∂Λ one obtains δL ∼ ϕ∂2∂ · Λ, thus leading to impose on the gauge parameter the
transversality condition (1.3).

1 For our notation and conventions the reader can consult [4]. Here ϕ is a rank-s symmetric tensor, whose indices are
omitted for simplicity. Products of different tensors are symmetrized with the minimal number of terms and with no
weight factors. ϕ′ denotes the Lorentz trace of ϕ while ∂ · ϕ stands for its divergence. Elsewhere in this paper we shall
display indices, sometimes according to an alternative compact convention, as in Section 2.1.

2 One issue concerns the possibility of removing all the subsidiary conditions (1.1) and (1.2) at the Lagrangian level.
In Fronsdal’s setting in particular one keeps the trace condition on the gauge parameter, Λ′ = 0, off-shell. Alternatives to
this constraint (and to the double-trace constraint on the gauge field, needed in order to obtain a proper action principle)
either exploit auxiliary fields in various forms (see e.g. [6] for early attempts along these lines, [7] for the minimal
local extension of Fronsdal’s theory, [8] and references therein for the parent approach.) or they make use of high-spin
curvatures, and consequently involve non-local operators [9–11].
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Further restrictions on the traces of ϕ and of Λ may or may not be assumed, and would influ-
ence the form of the spectrum: for traceless fields and parameters the Lagrangian (1.4) describes
the free propagation of a single massless, spin-s particle [1], while when traces are kept one ob-
tains a reducible spectrum of massless particles with decreasing spins: s, s −2, s −4, . . . [2]. The
same spectrum arises in the symmetric sector of free open string field theory in the tensionless
limit [12–15], to which (1.4) can indeed be related upon partial gauge fixing. Generalizations of
(1.4) to the case of mixed-symmetry fields and to (A)dS backgrounds have been studied in [2].

The analysis of [1,2] shows that the transversality condition (1.3) does not hamper the con-
struction of consistent free models. However, the quantization of these models as well as the
construction of cubic and possibly higher order vertices have not been attempted yet, and one
should expect that the differential constraint (1.3) might present a problem at these further stages.
Indeed, to begin with, the standard BV quantization formalism [16] and even the Faddeev–Popov
receipt do not apply to the case of local symmetry with parameters subject to differential condi-
tions.3 Moreover, on the side of possible deformations of the Lagrangian (1.4) by inclusion of
cubic and higher-order terms, one should notice that Noether’s second theorem does not hold
straight when the gauge parameters are not arbitrary functions, thus raising an issue concerning
the applicability of the standard techniques for perturbative inclusion of interactions. A general
comprehensive discussion of these and related aspects can be found in [17].

While at this stage it is difficult to assess the very nature, technical or conceptual, of the
difficulties related to the differentially constrained gauge parameters, it seems anyway useful to
find a solution circumventing any constraints, while still preserving the form of the Lagrangian.

In order to provide a simple illustration of our general idea let us consider the spin-2 case and
observe that, according to the Poincaré lemma, one can solve (1.3) as

Λμ = ∂αε
(0)
[α,μ], (1.6)

with ε
(0)
[α,μ] being an arbitrary 2-form (here square brackets denote antisymmetry).4 Correspond-

ingly, one can write the gauge transformations for the spin-2 massless field in the unconstrained
form

δϕμν = ∂α
(
∂με

(0)
[α,ν] + ∂νε

(0)
[α,μ]

)
. (1.7)

There are two features of the parametrization (1.6) and (1.7) that are worth stressing:

• The variation of ϕ contains more than one derivative of the new gauge parameter;

3 Actually (1.3) would impose restrictions on the corresponding ghosts, thus reducing the overall set of ghost degrees
of freedom similarly to the case of a reducible gauge symmetry. However, while for the latter case the appropriate
sequence of ghosts for ghosts is well known [16], a differential constraint like (1.3) would force on the corresponding
ghost-for-ghost sequence a different ghost number spectrum. This additional complication, to the best of our knowledge,
was not considered so far.

4 Solutions to (1.3) of the form (1.6) were proposed long ago in [20], for area-preserving diffeomorphisms of two-
dimensional surfaces, and were recently considered in [21] in the context of finding the correct Faddeev–Popov rules for
4D unimodular gravity. The naive Faddeev–Popov quantization procedure indeed does not apply as far as the diffeomor-
phism parameters are constrained. The Lagrangian (1.4) for s = 2 reduces to the linearized version of unimodular gravity,
where the determinant of the metric is kept fixed and gauge invariance restricts to volume-preserving diffeomorphisms
[18,19]. Leaving aside the notorious difficulties connected with higher-spin interactions, the possibility to implement a
similar programme for s > 2 should meet in particular the issue of finding the proper deformation of the transversality
condition (1.3) beyond the linear level.
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• The gauge algebra is reducible, the pattern of gauge-for-gauge transformations being pro-
vided by successive divergences of forms of increasing degrees,

δε
(0)
[μ,ν] = ∂αε

(1)
[α,μ,ν],

δε
(1)
[μ,ν,ρ] = ∂αε

(2)
[α,μ,ν,ρ],

. . . , (1.8)

where the sequence extends up to the maximal admissible form degree in a given space–time
dimension, i.e. up to the D-form in dimension D.

From the vantage point of describing the gauge symmetries of second-order Lagrangians for
symmetric gauge potentials both features appear unconventional.5 However, they provide the
clue to the elimination of the transversality constraints, and the main issue at stake in this paper
is to display explicitly the generalization of (1.7) to the case of arbitrary spins.

Both for traceful and traceless gauge parameters, whenever D � 4, the general solution to
(1.3) is

Λμ1···μs−1 = ∂α1 · · ·∂αs−1ε(0)
α1···αs−1,μ1···μs−1

, (1.9)

with ε(0) taking value in the irrep of GL(D) or of O(D) corresponding to a rectangular tableau
with two rows,

ε(0)
α1···αs−1,μ1···μs−1

:
s−1︷ ︸︸ ︷

· · ·
· · · . (1.10)

Here and in the following the representation is constructed so as to leave manifest symmetry
along the rows of the corresponding Young diagrams.

Eqs. (1.9) and (1.10) represent the first step in our analysis, providing the unconstrained form
of the gauge symmetry of Lagrangian (1.4). We first discuss in Section 2 the multi-particle case,
corresponding to traceful fields and parameters, for which the analysis is simpler and whose
outcome we use to investigate the traceless case in Section 3. Taking into account the full pattern
of gauge-for-gauge transformations, that we also display in the corresponding sections, it is then
possible to check the consistency of the procedure by counting the degrees of freedom of the
system via the general formula (2.11), about which we provide some details in Section A.1.

For the spin-2 case the parameter is a divergenceless vector whose dual (D − 1)-form is
then closed, thus allowing to derive the reducibility pattern (1.8) by repeated application of the
Poincaré lemma, as we already mentioned. However, for higher spins we follow a different route
and provide a proof of the completeness of the resolutions that we present in Sections 2 and 3
a posteriori, counting the number of degrees of freedom that they eventually predict. In order
to motivate our results from the first principles, we also discuss our problem from the general
mathematical perspective of searching for the kernel of linear differential operators in the space
of differential operators. This is a well-known issue in commutative algebra, usually referred
to as a syzygy problem [23], whose formulation we recall in Section 4. It may be interesting
to observe that, while unusual from the more customary field-theoretical viewpoint, the form

5 Reducibility of the gauge symmetry is typical for theories involving tensors with mixed-symmetry [22]. See [2] for
the corresponding generalization of (1.4).
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of the unconstrained gauge parameter (1.10) provides indeed the “natural” form of the gauge
symmetry of the differential operator (1.5), when studied from this general algebraic perspective.
In particular, for any linear system of local field equations, like those emerging from (1.4), the
corresponding techniques ensure that the resulting symmetry will not be subject to differential
constraints.6

In this respect, let us also mention that the mere existence of high-derivative, reducible
parametrizations of the gauge symmetry of linear equations is not exclusive of theories with
constrained gauge invariance, like (1.3). For instance, maybe surprisingly at first glance, even
for the ordinary Maxwell or Fierz–Pauli equations one can “solve” for the scalar and the vector
parameters in terms of tensor parameters of mixed-symmetry type. In the Outlook we provide
some details about this unusual possibility, and conclude our paper displaying consistent patterns
of high-derivative reducible transformations for spin-one and spin-two gauge potentials.

2. Multi-particle Lagrangians

Our main task in the present work is to reinterpret the gauge invariance of (1.4) under
δϕ = ∂Λ, with Λ subject to the transversality condition (1.3), in terms of unconstrained gauge
parameters, clarifying the features and the meaning of the corresponding picture. We describe
first the case of traceful fields and parameters for which the resolution of the constraint is simpler
than for the traceless case.

2.1. Resolution of the transversality constraint

As anticipated in the Introduction, the basic idea is to solve for (1.3) as follows:

Λμ1···μs−1 = ∂α1 · · ·∂αs−1ε(0)
α1···αs−1,μ1···μs−1

, (2.1)

where ε(0) takes value in the irrep of GL(D) corresponding to a rectangular tableau with two
rows,

ε(0)
α1···αs−1,μ1···μs−1

:
s−1︷ ︸︸ ︷

· · ·
· · · , (2.2)

so that the transversality condition (1.3) is identically satisfied.
In order to simplify our expressions in the following we shall often denote indices in a sym-

metrized group with the same symbol, while specifying their overall number by an additional
label, e.g.

ε(0)
α1···αs−1,μ1···μs−1

−→ ε(0)
αs−1,μs−1

, (2.3)

∂α1 · · ·∂αs−1ε(0)
α1···αs−1,μ1···μs−1

−→ (∂·)αs−1ε(0)
αs−1,μs−1

. (2.4)

For instance, the gauge transformation of ϕ in this notation looks

δϕμs = ∂μΛμs−1 = ∂μ(∂·)αs−1ε(0)
αs−1,μs−1

. (2.5)

The solution (2.1) to the constraint (1.3) features the following two properties:

6 The same techniques also ensure that the overall reducibility order can never exceed the space–time dimension in any
linear theory. In this sense, the possibility of infinite sequences of ghosts for ghosts is a phenomenon attainable only for
intrinsically nonlinear systems.
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• It displays high derivatives, although referring to a second-order Lagrangian;
• It defines a reducible gauge transformation.

Indeed, under the following variation of ε(0),

δε(0)
αs−1,μs−1

= ∂βε
(1)
β,αs−1,μs−1

, (2.6)

with ε(1) described by the diagram

ε
(1)
β,αs−1,μs−1

:

s−1︷ ︸︸ ︷
· · ·
· · · , (2.7)

the gauge potential ϕ does not change, due to the symmetrization of the index β with the whole
row of α indices enforced by the corresponding s divergences. More generally, one can identify
a whole chain of reducibility conditions defined via the transformations

δε
(k)

β(k),...,β(1),αs−1,μs−1
= ∂β(k+1)

ε
(k+1)

β(k+1),β(k),...,β(1),αs−1,μs−1
, (2.8)

where the parameters ε(k) possess the structure of the GL(D)-tableaux

ε
(k)

β(k),...,β(1),αs−1,μs−1
:

s−1︷ ︸︸ ︷
· · ·
· · ·

1
...

k

, (2.9)

with k = 0, . . . ,D − 2, so that the transformations (2.8) at level k do not affect the parameter at
the (k − 1)-th generation, i.e.

δ2ε
(k−1)

β(k−1),...,β(1),αs−1,μs−1
= ∂β(k+1)

∂β(k)

ε
(k+1)

β(k+1),β(k),β(k−1),...,β(1),αs−1,μs−1
≡ 0. (2.10)

In order to prove that (2.1) and (2.8) provide a resolution for the gauge symmetry of (1.4), in the
next section we perform the degrees of freedom count exploiting the parameters ε(k), checking
that it produces indeed the correct result.

In Section 4 we shall discuss how to interpret our results from the algebraic perspective of
syzygies [23]. However, let us mention at this point that our solution (2.1) to the transversality
condition (1.3), as well as the first reducibility transformation (2.6), also admit a nice explana-
tion in terms of s-complexes associated with maximal irreducible tensors.7 More precisely, the
equations ∂ ·Λ = 0 and (∂·)αs−1ε

(0)
αs−1,μs−1 = 0 can be interpreted as the cocycle conditions for the

cochains Λ and ε(0). The generalized Poincaré lemma then states that these cocycles are trivial,
i.e., coboundaries given by the r.h.s. of (2.1) and (2.6) [24,25]. In order to extend the analysis
to the higher-order reducibility parameters, that do not meet the maximality condition, one can
resort for instance to the prescriptions that were proposed by Labastida and Morris [22] in order

7 Given a positive integer s, a GL-irreducible tensor is called maximal if its Young tableau contains no more than s − 1
columns and at most one row of length l < s − 1.
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to describe the gauge transformations for massless fields of mixed-symmetry type. Namely, ap-
plying the Labastida–Morris rules on the duals of the gauge parameters ε(k) at the various stages
(with dualization enforced on each column) one can indeed reproduce, upon dualizing back, the
full chain of gauge-for-gauge transformations (2.8).

2.2. Degrees of freedom count

In the absence of second-class constraints,8 the number N of degrees of freedom described
by second-order Lagrangian field equations is provided by the formula [17]

N = n +
∑

k,m=0

(−1)k+1(m + 1)r(k)
m , (2.11)

where n is the number of field components, while r
(k)
m is the number of gauge generators at the

k-th reducibility generation, of the m-th differential order. For instance, with reference to the
pattern of gauge-for-gauge transformations proposed in the previous section, the contribution
from ε(0) would be encoded in r

(0)
s , the dimension of the tableau (2.2) appearing in δϕ with a

total of s derivatives. More generally, the parameters ε(k) would be accounted for in the numbers
r
(k)
s+k , dimensions of the tableaux (2.9) contributing to δϕ with a total of s + k derivatives. See

Section A.1 for some basics on the covariant counting of degrees of freedom. Here we would like
to apply (2.11) to the resolution described in the previous section and check the resulting number
of degrees of freedom against the corresponding result found in [2], in the analysis exploiting the
gauge parameter Λ subject to (1.3).

Let us mention that the nature of the resulting degrees of freedom was also discussed in [2],
where it was shown how to write the Lagrangian (1.4) in a diagonal basis so as to explicitly
identify its particle content, beyond the overall number of degrees of freedom. Moreover, the
diagonal basis also makes it manifest that all the kinetic terms in the corresponding single-particle
Lagrangians carry the same sign, and thus the theory does not propagate ghosts.

In order to apply (2.11) we need the dimensions of the diagrams corresponding to the parame-
ters ε(k) in (2.9), appearing in δϕ with a total of s + k derivatives, and thus contributing to (2.11)
with a weight equal to s + k + 1; making use of the formulae given in Section A.2 we obtain

dimGL(D)

s−1︷ ︸︸ ︷
· · ·
· · ·

1
...

k

= s − 1

(s + k)(s + k − 1)

(
D − 2

k

)(
D + s − 3

s − 1

)(
D + s − 2

s − 1

)
, (2.12)

with k = 0, . . . ,D − 2.
As a first test we compute the number of degrees of freedom when ϕ is a rank-s tensor in

D = 4; the relevant fields and their dimensions are given by

ϕ :
s︷ ︸︸ ︷

· · · ,

(
s + 3

s

)
(2.13)

8 As it is the case for the Lagrangian (1.4). See [2] for an explicit discussion of this point.
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ε(0) :
s−1︷ ︸︸ ︷

· · ·
· · · ,

1

s

(
s + 1

s − 1

)(
s + 2

s − 1

)
, o

(
∂s

)
(2.14)

ε(1) :

s−1︷ ︸︸ ︷
· · ·
· · · , 2

s − 1

s(s + 1)

(
s + 1

s − 1

)(
s + 2

s − 1

)
, o

(
∂s+1) (2.15)

ε(2) :

s−1︷ ︸︸ ︷
· · ·
· · · ,

s − 1

(s + 1)(s + 2)

(
s + 1

s − 1

)(
s + 2

s − 1

)
, o

(
∂s+2), (2.16)

where we also kept track of the overall order of derivatives for each gauge parameter. Upon
substitution in (2.11) one finds(

s + 3

s

)
−

(
s + 1

s − 1

)(
s + 2

s − 1

)[
s + 1

s
− 2

(s − 1)(s + 2)

s(s + 1)
+ (s − 1)(s + 3)

(s + 1)(s + 2)

]
= s + 1,

(2.17)

matching the dimension of a symmetric, rank-s tensor of GL(2), and thus describing correctly
the degrees of freedom of the chain of massless particles of spin s, s − 2, s − 4, . . . that constitute
indeed the spectrum of (1.4) in the absence of trace conditions.

By an inductive argument, one can then prove the following relation valid in arbitrary D:(
D + s − 1

s

)
−

(
D + s − 3

s − 1

)(
D + s − 2

s − 1

)D−2∑
k=0

(−1)k
(s − 1)(s + k + 1)

(s + k)(s + k − 1)

(
D − 2

k

)

=
(

D + s − 3

s

)
, (2.18)

thus confirming that the physical polarizations associated to the equations Mϕ = 0, with uncon-
strained gauge invariance described by the pattern (2.5) and (2.8), match those of the correspond-
ing irreducible representation of GL(D − 2).

3. Single-particle Lagrangians

The same Lagrangian (1.4) describes the propagation of a single, massless particle of spin s

if, in addition to the transversality condition (1.3) for the gauge parameter Λ, one also requires
both the field and the parameter to be traceless [1]:

ϕ′ = 0,

Λ′ = 0. (3.1)

In this section, we would thus like to discuss the resolution of the transversality constraint (1.3)
under the further restrictions (3.1).

3.1. Resolution of the transversality constraint

In the simplest attempt to solve the system ∂ · Λ = 0 and Λ′ = 0 one would try the resolution
found for the traceful case supplemented by the condition that the parameters ε(k) in (2.9) take
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values in the corresponding irreps of O(D). However, this identification cannot apply to the last
two parameters of the pattern, ε(D−3) and ε(D−2), whose tableaux do not satisfy the condition

n1 + n2 � D, (3.2)

where n1 and n2 denote the lengths of the first two columns, and thus do not exist as representa-
tions of O(D).9

As a concrete instance of this issue let us consider the spin-3 case in D = 4, where one can
still solve the rank-2 traceless parameter as in (2.1)

Λμμ = ∂α∂αε(0)
αα,μμ, (3.3)

with ε
(0)
αα,μμ to be now interpreted as a two-row, window diagram in O(D). The difficulty arises

when evaluating the gauge-for-gauge invariance associated to (3.3), since the corresponding so-
lution of the traceful case, schematically given by

δε(0) = ∂γ

γ

, (3.4)

does not involve an admissible representation of O(4). One is thus led to consider the possibility
that for this class of tableaux the pattern of reducibility of the unconstrained gauge transformation
involve more derivatives than for the traceful case, so as to compensate for the indices that cannot
be carried by the representation itself. In particular, in the example under consideration, the
minimal modification consists in removing one index from the corresponding diagram and trying
the schematic ansatz

δε(0) ∼ ∂γ
∂

γ

, (3.5)

where the symbol of the gradient ∂ in the diagram pictorially denotes an O(D)-projection of the
derivative of the diagram without the corresponding box; i.e.

∂ ≡ Y

{
∂

}
. (3.6)

Thus, the parameter ε̃(1) implicitly defined in (3.5) has the symmetry of a {2,1,1}-tableau in
O(4), with the missing box needed to match the indices of ε(0) essentially substituted by one
additional gradient. More explicitly,

δε(0)
αα,μμ = ∂α∂γ ε̃(1)

γ,α,μμ − ∂μ∂γ ε̃(1)
γ,α,αμ. (3.7)

Again, the transformations (3.7) are reducible and ε(0) does not vary when the tensor ε̃(1) trans-
forms as follows

δε̃(1)
γ,α,μμ = ∂με̃(2)

γ,α,μ − 1

D − 2

(
2ημμ∂ρε̃(2)

γ,α,ρ + ημα∂ρε̃(2)
γ,ρ,μ + ημγ ∂ρε̃(2)

ρ,α,μ

)
, (3.8)

where ε̃(2) is a 3-form. The last transformation is already irreducible and indeed counting the
physical degrees of freedom by means of (2.11) we find

9 See e.g. [28] §10.6.
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N = 16 − 4 · 10 + 6 · 9 − 7 · 4 = 2.

To complete the analysis of the spin-3 case in D = 4, let us also notice that, via dualization, it
is possible to represent ε̃(1) and ε̃(2) in a simpler form, as a traceless rank-2 tensor and a rank-1
tensor, respectively,

ε̃(1) : ←→ ε(1) : , (3.9)

ε̃(2) : ←→ ε(2) : , (3.10)

so that the final unconstrained pattern of gauge transformations can be presented in the following
form:

ε(0) : , o
(
∂3), (3.11)

ε(1) : , o
(
∂5), (3.12)

ε(2) : , o
(
∂6). (3.13)

In Section A.3 we discuss the spin-s case in D = 4 in spinorial notation. At any rate, the
example of spin 3 already conveys the essential difference between the multi-particle and the
single-particle cases, while also providing the source of inspiration for our general ansatz. The
latter can be described as follows:

• For D � 410 we solve the transversality condition for transverse-traceless parameters as in
(2.1), and assume the reducibility pattern to be given by (2.9) up to k � D − 4, with the
proviso that all diagrams are to be interpreted as taking values in O(D).

• Since ε(D−3) as defined in (2.9) does not exist in O(D), for the gauge-for-gauge invariance
at the level D − 3 we consider, schematically,

δε(D−4) ∼ ∂β

s−1︷ ︸︸ ︷
· · ·

∂ · · · ∂

1
...

β

, (3.14)

where β = D − 3; more precisely

δε
(D−4)

β(D−4),...,β(1),αs−1,μs−1
= Y

O(D)
{s−1,s−1,1,...,1}∂αs−2∂

β(D−3)

ε̃
(D−3)

β(D−3),β(D−4),...,β(1),α,μs−1
,

(3.15)

where Y
O(D)
{s−1,s−1,1,...,1} defines the projector onto the irrep matching the structure of ε(D−4).

The parameter ε̃(D−3) in (3.14) is O(D)-irreducible and can be dualized to a rank-(s − 1)

symmetric and traceless tensor, that we shall call once again ε(D−3) to avoid introducing new
symbols:

10 In Section A.4 we discuss explicitly the case D = 3.
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ε̃(D−3) ←→ ε(D−3) :
s−1︷ ︸︸ ︷

· · · . (3.16)

• The gauge-for-gauge transformation of ε̃(D−3) is schematically identified as follows:

δε̃
(D−3)

β(D−3),...,β(1),α,μs−1
∼

s−1︷ ︸︸ ︷
· · · ∂

α

1
...

β

, (3.17)

where β = D − 3 as above, while the gradient in the last box of the first row pictorially
suggests that, upon substitution in (3.14), the corresponding variation of ε(D−4) would vanish
identically. Finally, we notice once again that the parameter ε̃(D−2) implicitly defined in
(3.17) is dual to a symmetric, traceless, rank-(s −2) tensor, which makes it easier to compute
its dimension:

ε̃(D−2) ←→ ε(D−2) :
s−2︷ ︸︸ ︷

· · · . (3.18)

To summarize, our resolution for the transverse and traceless gauge transformation of the
single-particle case is described, for the first D − 3 parameters, by the same set of tensors ε(k)

presented in (2.9) for the traceful case, to be interpreted as tableaux in O(D). The last two param-
eters in the pattern are different, and after dualization can be identified with traceless symmetric
tensors of rank s − 1 and s − 2, respectively, contributing to the gauge transformation of ϕ with
a total number of derivatives that is displayed below:

ε(D−3) :
s−1︷ ︸︸ ︷
· · · , o

(
∂2s+D−5), (3.19)

ε(D−2) :
s−2︷ ︸︸ ︷

· · · , o
(
∂2s+D−4). (3.20)

The counting of degrees of freedom that we perform in the next section proves the pattern we
propose is indeed a resolution of the constrained gauge transformation. The possibility to identify
it as the minimal resolution requires more general considerations that we postpone to Section 4.

3.2. Degrees of freedom count

We would like to test the proposed resolution of the gauge symmetry defined by (1.3) and
(3.1), checking that the corresponding number of degrees of freedom matches the number of po-
larizations of a massless particle of spin s in D space–time dimensions. To this end we shall need
the dimensions of the corresponding tableaux, given by the following formulae (see Section A.2):

dimO(D)

s︷ ︸︸ ︷
· · ·
· · · = 1

s
(
s+1)

(
D + s − 4

s − 2

)(
D + s − 5

s − 1

)(
D + 2s − 2

3

)
, (3.21)
3
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dimO(D)

s−1︷ ︸︸ ︷
· · ·
· · ·

1
...

k

= 1

4
(2k+2

k−1

)(
k+3
k−1

)
(
s+k−2
k−1

)
(

s+k
2k+2

) (
D + s − k − 6

s − k − 2

)(
D − 4

k

)

×
(

D + s − 5

k − 1

)(
D + 2s − 4

3

)(
D + s − 4

s − 2

)
. (3.22)

More precisely (3.22) holds for k � [D−4
2 ], with [a] denoting the integer part of a, while for

D−4
2 < k � D − 4 the corresponding diagrams possess the same dimension as their dual coun-

terparts in the first set,

ε(k> D−4
2 ) ∼ ε(D−k−4). (3.23)

Finally, the parameters ε(D−3) and ε(D−2) are described by symmetric and traceless tensors of
rank s − 1 and s − 2, respectively, whose dimension can be computed both from the following
expression

dimSO(D)

s︷ ︸︸ ︷
· · · = D + 2s − 2

D + s − 2

(
D + s − 2

s

)
. (3.24)

We are thus in the position to count the degrees of freedom and, according to the general formula
(2.11), check the equality

ϕ
(s)
D −

[ D−4
2 ]∑

k=0

(−1)k
[
(s + k + 1) + (−1)D(s + D − k − 3)

]
ε(k)

+ (−1)D
(

s + D

2
− 1

)
δ[ D−4

2 ],[ D−3
2 ]ε

([ D−4
2 ])

+ (−1)D(2s + D − 4)ε(D−3) + (−1)D+1(2s + D − 3)ε(D−2)

= ϕ
(s)
D−2, (3.25)

where for simplicity the symbol of a given tensor stands for the dimension of the corresponding
D-dimensional tableau, while the r.h.s. of the equality is to be evaluated in D − 2 dimensions. In
the first line we exploited the duality (3.23) to pair terms represented by the same tableau, and
thus summing the coefficients depending on their differential order in δϕ. The term in the second
row is only present for even D and is meant to avoid the double counting of the corresponding
self-dual diagram computed from the last term in the previous sum. Finally, in the third row we
are summing over the contribution of the last two parameters, ε(D−3) and ε(D−2), whose structure
and differential order are specific of the traceless case.

The validity of (3.25) can be proven by induction, first checking it for a specific case, e.g. spin
s in D = 5, and then observing that, assuming it to hold for arbitrary D, its validity for D + 1
follows by rescaling the corresponding index everywhere.
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4. Gauge algebras and syzygies

In this section we shall discuss the general problem of identifying the complete gauge sym-
metry for local field theories at the level of their free equations, so as to frame the main results
of this paper in a more general mathematical setting.

A general system of free equations for the fields φ can be written schematically as

Aa0
a1

(∂)φa1 = 0. (4.1)

Here we do not assume the field equations (4.1) to come from the least action principle, so that
the (multi-)indices a0 and a1 labeling the components of field and equations may be completely
unrelated. The entries of the matrix A

a0
a1 are polynomials in the partial derivatives ∂μ. For the La-

grangian (1.4), the fields φa1 correspond to symmetric traceful or traceless tensors in Minkowski
space while A is to be identified with the Maxwell operator (1.5). In this case, the multi-indices
a0 and a1 coincide, and A = M is a symmetric matrix whose entries are quadratic in ∂μ.

A one-parameter gauge transformation δεφ must leave the equations invariant,

δε

(
Aa0

a1
(∂)φa1

) = Aa0
a1

(∂)δεφ
a1 ≡ 0. (4.2)

The transformation is supposed to be field-independent and local,

δεφ
a1(x) = Ra1(∂)ε(x). (4.3)

Locality means that the gauge generator Ra1(∂) is polynomial in the partial derivatives ∂μ. Since
the gauge parameter ε is an arbitrary function of x, the gauge generators must satisfy the linear
homogeneous equation

Aa0
a1

(∂)Ra1(∂) = 0. (4.4)

In this general setting, the problem of identifying the complete gauge symmetry for the field
equations (4.1) (or for the corresponding Lagrangian, if it exists) reduces to the issue of finding
an (over-)complete basis of right null-vectors for the matrix A. The null-vectors are assumed to
be polynomial in ∂ , to have a local gauge symmetry. If R2 = (R

a1
a2 ) is such a basis, then any

solution to (4.4) can be written in the form

Ra1 = Ra1
a2

Ra2 (4.5)

for some polynomial vector Ra2(∂). Notice that, as already mentioned, in general the indices a1
and a2 may run over different sets, so that R2 is a rectangular matrix with polynomial entries.

Unlike the case of linear systems over numerical fields like R and C, where one can aim to
find a basis of linearly independent solutions, in the case of linear equations over the polynomial
ring R = R[∂1, . . . , ∂D] the problem is more tricky. On the one hand, by the Hilbert Basis The-
orem [23], it is always possible to choose a finite number of polynomials such that any solution
can be expanded over them with polynomial coefficients. The polynomials spanning the solution
space are called the generating (or complete) set of solutions. On the other hand, the tricky issue
is that in certain cases every complete set of solutions is linearly dependent over R, or in other
words, every complete set of solutions is actually over-complete and no basis of linearly inde-
pendent solutions can exist. When this happens, to understand the structure of the solution space
one needs to compute the dependency relations among the generators. This is a well-known is-
sue in commutative algebra usually referred to as a syzygy problem [23]. It provides an algebraic
counterpart of the problem of finding the full set of gauge-for-gauge generations in a theory with
local symmetry.
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The polynomial, right null-vectors of the matrix A form a linear space over R, called the first
syzygy module, having the generators of gauge symmetry as generating set. As mentioned above,
there might be linear relations among the generators of the first syzygy module, corresponding
to linear dependencies of the gauge symmetries, i.e., there might exist Ra2(∂) �= 0 such that
R

a1
a2 (∂)Ra2(∂) = 0. The whole set of such linear relations form a vector space over R, the space

of syzygies for syzygies, also known as the second syzygy module (or second syzygy, for short).
From the viewpoint of physics, the existence of a nontrivial second syzygy means that the gauge
symmetry is reducible with the generating set in the second syzygy providing generators of
gauge-for-gauge transformations. Continuing in this way one obtains a sequence of matrices
Rk = {Rak−1

ak
(∂)}, k = 2,3, . . . , with polynomial entries such that RkRk+1 = 0. One can think of

this sequence as a proper substitution for the notion of general solution to the system of linear
equations over a numerical field. (In the latter case the sequence collapses to a single matrix
R2 = {Ra1

a2 }, whose columns define a basis of solutions.)
All that have been said above can be concisely rephrased in the language of commutative

algebra. From the algebraic viewpoint, the right kernel of the matrix M is a finitely generated
R-module, which is not free in general, but is a submodule of a free module Rr1 . Computing
chain of syzygies, one gets the exact sequence of homomorphisms of free R-modules

· · · R4 Rr3
R3 Rr2

R2 Rr1 A Rr0, (4.6)

which provides a free resolution of the quotient module M = Rr0/ ImA. The exactness means
that each map is a surjection onto the kernel of the following map and the ranks of the free
modules Rrk are determined by the size of the syzygy matrices Rk . In this language, the module
of solutions to equations (4.4) is given by kerA, the module of syzygies of kerA is kerR2, the
module of second syzygies of kerA is kerR3, and so on.

The free resolution (4.6) is by no means unique and strongly depends on the choice of gen-
erators of the syzygy modules. Different choices may result in resolutions of different length.
(Including infinity.) However, the Hilbert Syzygy Theorem ensures the existence of a resolu-
tion of length at most D, where D is the number of formal variables generating the polynomial
ring R = R[∂1, . . . , ∂D]. The minimal possible number of steps before the sequence of syzygies
terminates is known as the global dimension of the module. It is a minimal free resolution that
defines the gauge structure of the theory (4.1). The reducibility order is the global dimension of
the module M . It is well known that the minimal resolution is essentially unique [23]. Among
the other things, this proves that the gauge symmetry of any free field theory is finitely reducible.
Given (a not necessarily minimal) resolution (4.6), one can write the complete gauge symmetry
transformation as well as the full chain of gauge-for-gauge transformations:

δε2φ
a1 = Ra1

a2
(∂)εa2 , δεk+1ε

ak = Rak
ak+1

(∂)εak+1 , k = 2,3, . . . . (4.7)

The notion of free resolution also applies to the study of gauge (or Noether) identities between
the free field equations (4.1). These are identified with the field-independent differential operators
La0(∂) annihilating the field equations on the left, i.e.,

La0

(
Aa0

a1
φa1

) ≡ 0. (4.8)

Since the φ’s are considered to be arbitrary functions of the x’s, this means the following linear
equations for the L’s:

La (∂)Aa0
a (∂) = 0. (4.9)
0 1
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So, one can identify the generators of gauge identities with the left polynomial null-vectors of
the matrix A. These vectors form a linear space over R and to study its structure one should
construct a free resolution for the left kernel of the matrix A in much the same way as we did
for the right kernel. For Lagrangian equations the matrix of the wave-operator A is square and
symmetric, so that the left and right kernels essentially coincide. As a result the corresponding
free resolutions are obtained from each other by formal transposition.11 In the case of general
non-Lagrangian equations the free resolutions for the left and right kernels of the rectangular
matrix A may be completely different.

Let us stress once more that, even though the original equations are of second order (i.e.
the polynomials in A

a0
a1 are all quadratic in ∂), nothing forces the syzygies to be generated by

polynomials of lower order. In this sense, although unfamiliar in the standard approach to gauge
theories, there is no real surprise in the fact that second-order Lagrangians can enjoy higher-order
gauge symmetries. As we actually saw in Sections 2 and 3 this is just the case for the Maxwell-
like theory (1.4). In the conventional description of its gauge symmetry this property is somehow
hidden by the choice of presenting the gauge transformation in the standard (first-order) form
δϕ = ∂Λ, subject to the differential constraints (1.3).

The above algebraic technique can be immediately applied to the specific case of interest for
us in this work. Notice however that our strategy in Sections 2 and 3 was somewhat indirect in
the first step: we deduced unconstrained gauge transformations by proposing explicit solutions
to the transversality constraints (1.3) without providing in principle a direct proof that we were
not missing independent gauge transformations. What made our construction self-contained is
that we could exploit the covariant counting of degrees of freedom of [17] (see Section A.1) and
compare with the independent counting of the degrees of freedom provided in [1,2] for the model
described by (1.4). Introducing multi-indices a0 = (μ2, . . . ,μs−1) and a1 = (ν1, . . . , νs−1) we
can write (1.3) in the form (4.1) with

φa1(∂) = Λν1···νs−1, Aa0
a1

(∂) = ∂(ν1δν2
μ2

· · · δνs−1)
μs−1 , (4.10)

where the round brackets denote symmetrization of the corresponding indices. One can then go
through the general analysis, looking for the minimal resolution, whose existence is guaranteed
by the Hilbert Syzygy Theorem.Our analysis shows that the global dimension of the module
M associated with the transversality condition (1.3) reaches the upper bound established by the
Hilbert theorem. So, in D dimensions we have the (D + 2)-term exact sequences

0 RrD RD RrD−1 RD−1 · · · R3 Rr2 R2 Rr1 A Rr0, (4.11)

where the ranks of the free modules depend on the value of the spin s as well as on the algebraic
property of the fields (traceful or traceless). The 0 at the left-end of the exact sequence implies
that the module of the (D − 1)-th syzygies of kerA is free.

At present, there is a great deal of computational techniques and software packages for com-
puting minimal resolutions of polynomial modules. In performing some checks we used the
computer algebra system SINGULAR.12 There are, however, two drawbacks with these packages.
First, the computational algorithms is such that the output syzygy matrices Rk are not given in

11 More precisely, we have the following identifications for the indices and generators: L
a−k
a1−k

(∂) = R
ak
ak+1 (−∂). The

additional “minus” is due to integration by parts. This correspondence is a consequence of the second Noether theorem.
12 It is freely available for many platforms at the website http://www.singular.uni-kl.de.

http://www.singular.uni-kl.de
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Lorentz covariant form.13 Second, the program works only with a completely specified set of
equations. It is impossible, for example, to keep D and s as free parameters defining the system
and get the solutions for all the cases of interest at once. Still, one can explicitly compute mini-
mal free resolutions for specific cases, e.g. the pairs D = 3,4,5 and s = 2,3,4 and then identify
the corresponding free modules Rrk with the spaces of Young’s tableaux of a given shape, while
also writing the output syzygy matrices Rk in Lorentz-covariant form. As already mentioned,
checking the number of degrees of freedom provides the ultimate test of the overall procedure.

5. Outlook

In this work we showed how to interpret the gauge symmetry of Maxwell-like Lagrangians
(1.4) in terms of gauge parameters not subject to differential conditions like (1.3). Unlike the
constrained parametrization, the resolutions we found should allow a standard quantization of
these systems, while their possible role in the construction of non-linear/non-abelian deforma-
tions of the gauge algebra is to be investigated. In this respect, however, we would like to stress
that the potential interest for this kind of approach needs not be confined to higher-spin theories
[1,2].

Actually, while our main goal was the elimination of the transversality constraints (1.3), it
should be stressed that the mere existence of alternative parametrizations is by no means re-
stricted to theories whose gauge symmetry involves in some formulations constraints of a given
sort. Possibly the simplest example is provided by Maxwell’s theory itself. Indeed, nothing for-
bids to “solve” for the standard scalar parameter Λ in δAμ = ∂μΛ in terms of the divergence of

a vector parameter ε
(0)
α ,

Λ = ∂αε(0)
α . (5.1)

Furthermore, the latter form of the spin-1 gauge invariance is clearly reducible, with a chain of
gauge-for-gauge transformations essentially identical to that of the spin-2 case (1.8), up to a shift
in the form degree:

Λ = ∂αε(0)
α ε(0) : , o

(
∂2), (5.2)

δε(0)
α = ∂β1ε

(1)
[β1,α]ε

(1) : , o
(
∂3), (5.3)

· · · (5.4)

δε
(k−1)
[βk−1,...,β1,α] = ∂βk ε

(k)
[βk,...,β1,α]ε

(k) :
0
1
...

k

, o
(
∂k+2), (5.5)

with 0 � k � D − 1. To be sure, counting the degrees of freedom using this parametrization we
find

D −
D−1∑
k=0

(−1)k(k + 3)

(
D

k + 1

)
= D − 2, (5.6)

13 One can argue that all the syzygy matrices must be Lorentz covariant whenever the original equations (4.10) enjoy
Lorentz covariance.
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for D > 1. More generally, one can consider higher-order parametrizations of the form

Λ = ∂α1 · · ·∂αl ε(0)
α1···αl

, (5.7)

together with the corresponding pattern of gauge-for-gauge transformations,

δε
(k−1)
βk−1,...,β1,αl

= ∂βk ε
(k)
βk,...,β1,αl

ε(k) :

l︷ ︸︸ ︷
· · ·

1
...

k

, o
(
∂k+l+1), (5.8)

with 0 � k � D − 1, while the rank l of the symmetric parameter ε(0) is essentially arbitrary.
Indeed, taking into account the dimensions of the corresponding tableaux,

dimGL(D)

l︷ ︸︸ ︷
· · ·

1
...

k

=
(

D + l − 1

l + k

)(
l + k − 1

k

)
, (5.9)

where l � 2, it is possible to check that the total amount of gauge symmetry is correctly accounted
for in this case as well.

The aforementioned considerations extend to higher spins in a direct way. For instance, the
standard vector parameter Λμ of the massless Fierz–Pauli theory (no transversality conditions
assumed) could be “solved for” in terms of the divergence of a rank-2 tensor as

Λμ = ∂αλαμ. (5.10)

The resulting system of gauge-for-gauge transformations would then be easily recovered using
the results of Section 2, starting from the solution to the equation ∂αλαμ = 0 in the form (1.9).14

Whether or not exploring the space of possible resolutions (or alternative parametrizations)
might provide some additional insights into the structure of interacting gauge theories is not clear
(and not obvious) to us at this level. However, the mere existence of these alternatives calls for
a more complete understanding of their possible role. This last observation applies both to those
cases where non-abelian deformations of the standard gauge symmetry are available and, clearly,
whenever such deformations are known to be obstructed.
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Appendix A

A.1. Generalities on degrees of freedom count

The commonly known way to count the physical degrees of freedom in Lagrangian systems
goes through the constrained Hamiltonian analysis. For the case where there are no second class
constraints and the gauge symmetry generators are irreducible, a general formula for second
order field equations was provided long ago in [26]:

N = n −
∑
k=0

(m + 1)rm. (A.1)

Here N is the number of physical degrees of freedom, n counts the number of field components
while rm is the number of gauge generators of m-th differential order, i.e. the maximal order of
the derivatives acting on the corresponding gauge parameter in δϕ. However, one would like to
be able to control the number of degrees of freedom in more general situations, including the
case where the equations of motion do not follow from a Lagrangian.

In [17], a simple receipt has been found for an explicitly covariant count of the physical
degrees of freedom for general field equations, be they Lagrangian or not. The resulting formula
also covers the case of reducible symmetries as well as theories with second-class constraints.
For the case of involutive second order Lagrangian equations15 with reducible gauge symmetry
the general formula for the number of physical degrees of freedom given in [17] reduces to

N = n +
∑

k,m=0

(−1)k+1(m + 1)r(k)
m , (A.2)

where N and n have the same meaning as in (A.1) (with n coinciding with the number of the
second order field equations) while r

(k)
m is the number of gauge symmetries of the reducibility

order k and of differential order m, in the sense specified above. The reducibility order refers to
the generation of gauge-for-gauge transformation, so that the gauge parameter appearing in δϕ

is of zero reducibility order, while transformations of this parameter leaving the field invariant
involve parameters of first reducibility order and so on.

In computing the differential order of a parameter one has to take into account all derivatives
acting on it in the corresponding gauge transformation for the gauge potential. For instance if
the original gauge symmetry is reducible and the first-order reducibility parameter is involved
in the transformation with l1 derivatives, then the differential order of the first reducibility order
transformation m1 is defined as m1 = m0 + l1, where m0 is the differential order of the original
parameter. A similar prescription was also suggested for gauge fixed Lagrangian systems in [27].

15 Second order PDEs are termed involutive whenever they have no first or zero order differential consequences. The
Lagrangian field equations (1.4) are involutive. Notice that Lagrangian equations are not always involutive. For instance,
Proca’s equations for the massive vector field Aμ , being of second order, are not involutive as they have the first-order
differential consequence ∂ · A = 0.
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As a simple illustration of the formula (A.2) let us compute the degrees of freedom for spin-2
massless fields in D dimensions, with the chain of gauge-for-gauge transformations (1.8)

δε
(k)
[α,β,μ1,...,μk] = ∂μk+1ε

(k+1)
[α,β,μ1,...,μk,μk+1], k = 0, . . . ,D − 2. (A.3)

The (k + 2)-form ε(k) has
(

D
k+2

)
components and appears in δϕ together with k + 2 derivatives.

Substituting in the (A.2) we obtain, for the case of traceless ϕμν ,

N =
(

D(D + 1)

2
− 1

)
−

D−2∑
k=0

(−1)k(k + 3)

(
D

k + 2

)
= D(D − 3)

2
, (A.4)

which is the right number of polarizations for the massless spin-2 particle in D dimensions. For
traceful fields the only difference would be to add one unit (corresponding to the trace of ϕμν ) to
(A.4), providing the additional propagating scalar present in that case.

A.2. Dimensions of irreducible representations of GL(D) and O(D)

In this section we collect two useful formulae providing the dimensions of irreps V
GL(D)
λ of

GL(D) and V
O(D)
λ of O(D). The notation refers to the corresponding Young diagrams, denoted

with λ.

A.2.1. GL(D)

dimV
GL(D)
λ =

N∏
k=1

D − rk + ck

hk

, (A.5)

where N denotes the total number of boxes, each box is identified with a number from 1 to N ,
rk and ck label row (counted from top to bottom) and column (counted from left to right) of the
box labeled with k. hk is the hook length of the same box, i.e. the total number of cells forming

the hook • →
↓ having the given box as its vertex [28], as indicated in the following example:

9 6 4 3 1
7 4 2 1
4 1
2
1

(A.6)

A.2.2. O(D)

dimV
O(D)
λ = 1

h

n∏
i=1

(D + si − n − i − 1)!
(D − 2i)!

n∏
j=i

(D + si + sj − i − j), (A.7)

where h = ∏N
k=1 hk is the hook length of the diagram, n is the total number of rows, si denotes

the length of the i-th row, with rows counted from top to bottom [29].

A.3. Spin s in D = 4 in spinorial notation

In D = 4, it might be worthwhile to write the gauge symmetry of (1.4) in terms of two-
component spinors. In this formalism rank-s traceless tensors correspond to spinor-tensor fields
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ϕα1···αs α̇1···α̇s , totally symmetric in dotted and in undotted spinor indices separately. The number
of components of this field is n = (s + 1)2. The gauge transformation δϕ = ∂Λ in spinorial form
reads

δϕα1···αs α̇1···α̇s = ∂(α1α̇1Λα2···αs α̇2···α̇s ). (A.8)

Here the round brackets mean symmetrization in dotted and in undotted indices separately. The
resolution of the transversality constraint (2.1) in this notation takes the form

Λα2···αs α̇2···α̇s = i
(
∂α̇2

β2 · · ·∂α̇s
βs ε

α2···αsβ2···βs − c.c.
)
, (A.9)

where the gauge parameter ε is an arbitrary totally symmetric spin-tensor of rank 2s − 2. It has
4s − 2 (real) components and corresponds to ε(0) in the main body of the paper. The gauge
transformation for ε reads

δεα2···αsβ2···βs = ∂(α2
β̇2

· · ·∂αs
β̇s

ωβ2···βs)β̇2···β̇s , (A.10)

where ωβ2···βs β̇2···β̇s has s2 components and corresponds to the totally symmetric traceless tensor
of the rank s − 1 or, upon dualizing in one index, it can be described by the tensor with a hook-
type Young tableau, having s −1 cells in the row. The transformation of the parameter ε involves
s − 1 derivatives. As the parameter ε is itself involved with s derivatives in the original gauge
transformation (k0 = s), the overall differential order of ω is 2s − 1.

The second-order reducibility transformations look

δωβ2···βs β̇2···β̇s = ∂(β2β̇2ρβ3···βs β̇3···β̇s ), (A.11)

where ρβ3···βs β̇3···β̇s has (s − 1)2 components. In tensorial form it corresponds to a totally sym-
metric traceless tensor of rank s − 2 or, after dualization, to a hook-type tensor, with s − 2 cells
in the first row as in (3.17). Taking into account the differential order of ω and substituting all
relevant numbers in (2.11) one can check that (A.9), (A.10) and (A.11) correctly describe the
degrees of freedom of these systems:

N = (s + 1)2 − (s + 1)(4s − 2) + 2s · s2 − (2s + 1)(s − 1)2 = 2. (A.12)

A.4. Spin 3 in D = 3

In space–time dimension lower than 4, parameters that are transverse and traceless do not
admit the parametrization (2.1), since the corresponding window diagrams do not exist. In these
cases the general solution to the transversality condition (1.3) involves more than s − 1 deriva-
tives, similarly to the case of the ε(D−3) parameters for D � 4. Considering for instance the case
of spin 3, one finds that a third-order transformation is needed, since in the spirit of our discus-
sion of Section 3, we should look for a parametrization for Λμμ involving one more derivative,
schematically

Λ ∼ ∂2
∂

, (A.13)

where the unconstrained parameter is a {2,1}-traceless tensor or, by duality, a symmetric trace-
less tensor ω. More explicitly,

Λμμ = εαβμ∂μ∂α∂ρωβ
ρ − εαβμ∂α�ωμ

β, (A.14)
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where εαβγ is the Levi-Civita symbol. The gauge-for-gauge transformations for ω in their turn
involve a vector parameter ρ:

δωμμ = ∂μρμ − 1

3
ημμ∂ · ρ. (A.15)

Counting the physical degrees of freedom we obtain

N = 7 − 5 · 5 + 6 · 3 = 7 − 25 + 18 = 0, (A.16)

as expected, since no degrees of freedom are associated to massless particles with s > 1 in D � 3.
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