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We report the prediction of a novel type of electromagnetic surface wave which propagates at
the interface between a gyroelectric material and a hyperbolic medium. By solving Maxwell’s
equations, the existence conditions of this surface mode are discussed as determined by the media
parameters, the working frequency and the direction of the principal axes of the hyperbolic medium.
As one would expect, gyrotropy gives non-reciprocal features to these waves, such as the asymmetry
between the forward propagation and the backward propagation. We show that the field distribution
of the new wave resembles the Zenneck wave’s one, albeit in the present case material losses are
not required. Finally, we analyze a realistic configuration which supports the surface modes here
predicted and allows for their excitation.

I. INTRODUCTION

Electromagnetic Surface Waves (ESWs) have at-
tracted the attention of many researchers since the work
of Jonathan Zenneck in 1907 [1]. Surface modes can exist
under certain conditions on a surface bounded by air, or
at the interface separating two semi-infinite half-spaces
[2]. ESWs propagate along the interface and decay
exponentially in the normal direction. The most remark-
able examples of ESWs are Surface Plasmon-Polaritons
(SPPs), highly localized ESWs which propagate at the
interface between two isotropic media with opposite-sign
permittivities [3]. Nowadays SPPs dominate the nan-
otechnology scene, at least at optical frequencies, and are
exploited in many applications, such as bio-sensors and
near-field optics [4]. Other remarkable electromagnetic
surface modes are the Zenneck Waves (ZWs). They can
exist at the interface between a lossless dielectric and a
lossy one and, like SPPs, have a TM nature. Their most
peculiar features are the attenuation in the longitudinal
direction – caused by absorption in the lossy medium –
and a tilt of the field distribution with respect to the
normal to the interface [5, 6].

Some remarkable cases of surface waves at the inter-
face between an anisotropic material and an isotropic
one were analyzed in detail in previous works [7–16]. In
[7] Dyakonov’s Waves (DWs) were shown to propagate
between an isotropic dielectric and an uniaxial crystal
whose optical axis lied on the interface. DWs are
hybrid-polarized waves which can propagate only in a
small angular range with certain orientation relative
to the optical axis. If one of the media has metal-like
permittivities, DWs become Dyakonov Plasmons (DPs)
[9, 16]. These modes inherit the main features of SPPs
and DWs, i.e. high localization and strong directionality,
respectively.
If the system is placed in an external magnetic field,
some kinds of media are likely to exhibit non-reciprocal

behaviours which can strongly affect the propagation of
ESWs [10–12]. Gyrotropy gives unique features to these
modes, such as non-reciprocity in the dispersion and the
lack of time-reversal symmetry. Nevertheless, few works
concern the propagation of other kinds of surface modes
between two anisotropic half-spaces [17–21].

In the present paper, we focus on the analysis of elec-
tromagnetic surface modes localized at the interface be-
tween a gyrotropic material and an uniaxial medium. In
particular, our aim is to study the features of a novel type
of ESW propagating between an electrically-gyrotropic
material and a Hyperbolic Medium (HM). We show that
the anisotropy of the HM is responsible for a tilted be-
haviour in the field lines of the mode, which resemble
those of the ZW for lossy metals. Furthermore, we show
that gyrotropy is responsible for the multiplicity of these
modes and gives them non-reciprocal dispersion features.
We finally provide the analysis of a realistic gryroelectric-
hyperbolic interface - composed of InSb and a stuck of
graphene layers - which could be exploited in order to
detect such new modes.

II. SURFACE WAVES PROPAGATING
BETWEEN TWO SEMI-INFINITE MEDIA

Let us analyze the propagation of surface waves at the
interface between a gyroelectric and an uniaxial medium
(possibly a HM), as outlined in Fig. 1. We chose to con-
sider a gyroelectric medium in the so called Voigt config-
uration, such that in our coordinate system its dielectric
tensor reads

ϵgyro = ϵ0

 ϵB 0 0
0 ϵg ig
0 −ig ϵg

 , (1)

which is equivalent to considering an external magnetic
field pointing towards the x-axis. As for the uniaxial



2

FIG. 1. Outline of the interface between a gyroelectric
medium and a hyperbolic medium. The green line represents
the direction of the optical axis of the hyperbolic medium.

medium, its dielectric tensor was chosen to be

ϵ′u = ϵ0

 ϵ⊥ 0 0
0 ϵ∥ 0
0 0 ϵ⊥

 , (2)

in its principal coordinate system. We consider the con-
figuration wherein the optical axis is neither parallel nor
perpendicular to the interface between the two media, as
shown Fig. 1. Hence, we have to rotate the dielectric
tensor by means of the rotation matrix

Rx(α) =

 1 0 0
0 cosα sinα
0 − sinα cosα

 . (3)

In our coordinate system, the uniaxial dielectric tensor
reads

ϵu = Rx(α) ϵ
′
u Rx(−α) = ϵ0

 ϵxx 0 0
0 ϵyy ϵyz
0 ϵzy ϵzz

 , (4)

where the matrix elements are
ϵxx = ϵ⊥,

ϵyy = ϵ⊥ sin2 α+ ϵ∥ cos
2 α,

ϵyz = ϵzy =
(
ϵ⊥ − ϵ∥

)
sinα cosα,

ϵzz = ϵ⊥ cos2 α+ ϵ∥ sin
2 α.

(5)

The condition for the surface wave to exist is its evanes-
cence far from the interface, hence in both regions
the wave vectors must have an imaginary z-component.
Assuming propagation along ŷ, consistently with the
exp[+i(k ·r−ωt)] representation, we look for modes with
ω and ky real. Therefore, the wavevectors read

k1 = (0, ky, iβ1) , (6)

k2 = (0, ky,−iβ2) , (7)

FIG. 2. Typical dispersion diagrams of a surface wave trav-
elling through the interface between a gyroelectric medium
and an HM (the parameters used for illustrative purposes are
ϵg = 3 and ϵ⊥ = 9). The dashed lines represent the light dis-
persion in the gyroelectric medium. The multiplicity of full
lines of the same colour is due to ± sign in Eq. (19) and refers
to forward and backward propagating waves. In particular,
each upper branch represents a forward mode, whereas each
lower branch represents a backward mode. The red curve de-
scribes the case with no gyrotropy, hence its corresponding
wave can propagate in both directions. It is to be noted that
for ω > ωp all curves shown no longer correspond to physi-
cally acceptable solutions, but rather represent the real part
of an in-plane wave-vector ky which is no longer real.

where the subscript “1” stands for the gyroelectric
medium (z > 0), whereas “2” for the uniaxial medium
(z < 0) and Re[β1], Re[β2] > 0. The main feature of our
configuration is that TE and TM modes are not coupled,
hence they obey the following dispersion relations{

k2y − β2
1 = ω2

c2 ϵB ,

k2y − β2
2 = ω2

c2 ϵ⊥,
(8)

{
k2y − β2

1 = ω2

c2
ϵ2g−g2

ϵg
,

ϵyyk
2
y − ϵzzβ

2
2 − 2ikyβ2ϵyz = ω2

c2 ϵ∥ϵ⊥,
(9)

where (8) hold for TE modes, whereas (9) rule the
TM-modes propagation. As for TE modes, a simple
calculation shows that the condition for evanescence
Re[β1], Re[β2] > 0 is never satisfied for any value of
the parameters, as for standard SPPs. Hence TE surface
waves cannot propagate at the interface under considera-
tion. Thus, our discussion will be focused on TM modes,
characterized by the triplet (Ey, Ez, Hx). The magnetic
field reads

H1 = (H0, 0, 0) e
ikyy−β1z−iωt z > 0, (10)

H2 = (H0, 0, 0) e
ikyy+β2z−iωt z < 0. (11)
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We can evaluate the components of the electric field by
means of Maxwell’s equations:

E1 =
H0e

ikyy+β2z−iωt

ωϵ0(ϵ2g − g2)
(0, − iϵgβ1 − igky, ϵgky + gβ1),

(12)

E2 =
H0e

ikyy+β2z−iωt

ωϵ0ϵ∥ϵ⊥
(0, iϵzzβ2−ϵyzky, ϵyyky−iϵyzβ2).

(13)
We can now evaluate the time-averaged Poynting vector
as ⟨S⟩ ≡ 1

2 Re {E×H∗}. It turns out that

⟨S1⟩ =
H2

0e
−2Re{β1}z

2ωϵ0(ϵ2g − g2)
Re{(0, ϵgky + gβ1, iϵgβ1− igky)},

(14)

⟨S2⟩ =
H2

0e
2Re{β2}z

2ωϵ0ϵ∥ϵ⊥
Re{(0, ϵyyky−iϵyzβ2, ϵyzky−iϵzzβ2)}.

(15)
By applying the continuity of Ey, we find the further

condition

ϵ∥ϵ⊥(gky + ϵgβ1) + (ϵ2g − g2)(iϵyzky + ϵzzβ2) = 0, (16)

which rules the propagation of the surface wave together
with (9). These last two equations can be solved for
β1 and β2, under the assumptions ϵg > g > 0[22] and
ϵ⊥ϵ∥ < 0 as for HMs:

β1 =

√
k2y − ϵv

ω2

c2
, (17)

β2 = −i
ϵyz
ϵzz

ky +
1

|ϵzz|

√
ϵ∥ϵ⊥

(
k2y − ϵzz

ω2

c2

)
, (18)

where we defined ϵv ≡ ϵ2g−g2

ϵg
. Generally β2 is a complex

number, but evanescence is guaranteed in the anisotropic
bulk, provided that Re [β2] > 0. Keeping in mind that
we are looking for solutions with both ω and ky real, the
only way for the SW to exist is considering β2 as already
divided in its real and imaginary parts, as written in
(18). Thus, the quantity inside the square root must be
positive. Hence

ϵ∥ϵ⊥

(
k2y − ϵzz

ω2

c2

)
> 0

ϵ⊥ϵ∥<0
=⇒ k2y < ϵzz

ω2

c2
.

In addition, we should also require β1 to be real and
positive

β1 > 0 =⇒ k2y > ϵv
ω2

c2
.

Combining the last two conditions yields ϵzz > ϵv, which
implies (ϵ⊥− ϵ∥) cos

2 α > ϵv − ϵ∥. At this point there are
two possible cases:
(a) ϵ⊥ > 0, ϵ∥ < 0 =⇒ cos2 α >

ϵv−ϵ∥
ϵ⊥−ϵ∥

. The condition

0 < cos2 α < 1 yields to ϵ⊥ > ϵv.

(b) ϵ⊥ < 0, ϵ∥ > 0 =⇒ cos2 α <
ϵv−ϵ∥
ϵ⊥−ϵ∥

. The condition

0 < cos2 α < 1 yields to ϵ∥ > ϵv.

Solving (16), (17) and (18) for ky, we find

|ky(ω)| =
ω

c

√√√√ϵzz
(
ϵ2g − g2

)2
+ ϵg

(
ϵ⊥ϵ∥

)2 − ϵ⊥ϵ∥
[
ϵg
(
ϵ2g − g2

)
+ ϵzz

(
ϵ2g + g2

)]
±∆(

ϵ2g − g2
)2

+
(
ϵ⊥ϵ∥

)2 − 2ϵ⊥ϵ∥
(
ϵ2g + g2

) , (19)

where

∆ = 2gϵg
∣∣ϵ⊥ϵ∥∣∣√ϵ2zz + ϵ⊥ϵ∥ − ϵzzϵg +

ϵzz
ϵg

(
g2 − ϵ⊥ϵ∥

)
.

Eq. (19) represents the dispersion relation of the surface
wave[23]. It is to be remarked that the choice of the sign
of ±∆ in Eq.(19) corresponds to the choice of the sign
of ky, resulting in non-degenerate forward and backward
propagating waves. In particular, +∆ corresponds to for-
ward modes (ky > 0), whereas −∆ corresponds to back-
ward modes (ky < 0). This is a typical non-reciprocal
feature due to the presence of the magnetic field.
If both media do not exhibit dispersion, Eq. (19) reduces
to a straight line on the ω− k plane. Instead, we assume
that the HM has metal-like permittivities, i.e. we con-

sider ϵ∥ = ϵ⊥

(
1− ω2

p

ω2

)
, as for case (a)[24]. Three typical

dispersion diagrams are shown in Fig. 2, wherein the red

plot represents the case of non-gyrotropy. As we switch
gyrotropy on, depending on the sign of the off-diagonal
element g, the solution may assume a kink-behaviour,
hence there are two distinct regimes characterized by dif-
ferent values of the group velocity.
The region of the plot we are interested in is for ω < ωp

because the remaining part does not respect the assump-
tion ϵ∥ϵ⊥ < 0. In this regime, we notice that all plots
end up in the same point on the ω = ωp line, regardless
of the amount of gyrotropy affecting the system. This is
due to the fact that ϵ∥(ω = ωp) = 0. Such value of ϵ∥
lets Eq. (19) reduce to

|ky(ω = ωp)| =
ωp

c

√
ϵzz(ω = ωp), (20)

which does not depend on g any more. For ω > ωp, the
existence conditions which let the surface wave have both
ω and ky real can no longer be satisfied.
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III. ENERGY FLOW

The existence conditions let the time-averaged Point-
ing vector point towards ŷ, in particular

⟨S⟩ =


H2

0 (ϵgky+gβ1)
2ωϵ0(ϵ2g−g2) e−2β1z ŷ z > 0,

H2
0ky

2ϵ0ϵzzω
e2Re[β2]z ŷ z < 0.

(21)

Thus, the flow of energy is correctly directed along the
boundary, which guarantees an in-plane flow of energy.
We notice that for z > 0 the energy flows towards +ŷ for
any value of the parameters, whereas in the lower half-
space it can point towards −ŷ if ϵzz < 0. Overall, the
total flux of energy is

⟨F⟩ =
∫ ∞

−∞
⟨S⟩ dz

=
H2

0

4ϵ0ω

[
g

ϵgϵv
+ ky

(
1

ϵvβ1
+

1

ϵzzRe[β2]

)]
ŷ. (22)

Depending on the parameters we choose to consider,
⟨F⟩ may be opposite to the direction of propagation[25].
In particular, this happens if

0 >
1

ϵzz
> −Re[β2]

ϵv

{
1

β1
+

g

ϵgky

}
. (23)

Parameters that satisfy such inequalities allow the nega-
tive refraction of energy at the interface.
We can prove an important result related to the fields
distribution in such systems. Let us focus our attention
on the electric field lines in both upper and lower media.
To do so, we have to consider the physical fields, repre-
sented by the real parts of (12)-(13), and then derive the
equation of the field lines in the yz plane by means of

dz

dy
(y, t) =

Re[Ez(z, y, t)]

Re[Ey(z, y, t)]
. (24)

It turns out that the field lines in the gyroelectric medium
are the same as the standard SPPs propagating between
dielectric and metal. As for the HM, the field lines can-
not be analytically evaluated if ϵyz ̸= 0, but the numer-
ical results, obtained by solving Eq. (24) using Wolfram
Mathematica, are shown in Fig. 3. We notice a tilted
behaviour of the lines in the lower medium, which recalls
the characteristic profile of the ZW [5, 6], even though
we did not consider any lossy dielectric function. In ad-
dition, the tilted behaviour of the lines disappears when
the off-diagonal element ϵyz is null, thus we can conclude
that only anisotropy is responsible for this peculiar phe-
nomenon. Adding some absorption would make the lines
sink towards the interface, as for ZWs [5, 6].
The analytical results we derived in this section could
be used to study less general situations by assigning
proper values to the parameters, for instance if the up-
per medium is isotropic, in which case the solution is very

FIG. 3. Electric field lines of the TM mode that propagates at
the interface between a gyroelectric and a hyperbolic medium.
The parameters used are ϵg = 3, g = 1, ϵ⊥ = 9, ω = 4·1014Hz
and ωp = 5 · 1014Hz (corresponding to ϵ∥ ≈ −5.06). The
obtained in-plane wavelength is λ = 2π

ky
= 2.79 µm, which is

shown in the figure as a comparison length. The penetration
depths are lgyrop = 1

β1
≈ 1.8 µm and luni

p = 1
Re[β2]

≈ 0.4 µm,

respectively.

similar to standard SPPs. In general, the surface waves
we consider can be excited using the usual techniques,
such as exploiting a coupling prism in a Otto configura-
tion [3, 4], as shown below.

IV. InSb-GRAPHENE AHMM INTERFACE AT
MID-INFRARED FREQUENCIES

It is not so easy to find a proper material which shows
a gyroelectric behaviour at reasonable temperatures and
frequencies. The most famous examples of gyroelectric
media are cold plasmas subjected to an external homoge-
neous magnetic field. However, when it comes to practi-
cal uses, plasmas are difficult to confine and it is not triv-
ial to deal with their temperatures. On the other hand,
some semiconductors have been proven to have a gyro-
electric response at some particular frequencies when a
magnetic bias is switched on. For example, Indium An-
timonide (InSb) dielectric response can be modeled as
[26, 27]

ϵg = ϵ0ϵ∞

(
1−

ω2
p

(
ω2 + iγω

)
(ω2 + iγω)

2 − ω2
cω

2

)
, (25)

g = ϵ0ϵ∞
iω2

pωcω

(ω2 + iγω)
2 − ω2

cω
2
, (26)

ωp =

√
Ne2

ϵ0ϵ∞m∗ , ωc =
eB

m∗ , (27)

where ωp is the plasma frequency, ωc is the cyclotron fre-
quency, γ is the damping coefficient, N is the electron
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density, m∗ is the effective mass and B is the external
magnetic bias. In our case, one can properly choose both
the electron density and the external magnetic field such
that the existence conditions are satisfied.
As for the hyperbolic medium, many artificial structures
have been shown to generate hyperbolic anisotropy. The
most remarkable ones are a stack of alternating metal-
lic and dielectric layers (Multilayer) and a lattice of
metallic nanowires embedded in a dielectric background
(Nanowire Array). Such engineered media are known as
Hyperbolic Metamaterials (HMMs) [28, 29]. Aiming for
a multilayer structure, let us consider a material com-
posed of a succession of metallic and dielectric layers,
whose thicknesses and dielectric constants are, respec-
tively, ld, ϵd and lm, ϵm. If the growth direction is ŷ, by
means of an effective medium approximation it can be
shown that the overall dielectric tensor of such compos-
ite material has the form (2), with

ϵ⊥ =
ldϵd + lmϵm

ld + lm
= (1− f)ϵd + fϵm, (28)

ϵ∥ =
ld + lm

ldϵ
−1
d + lmϵ−1

m

=
1

(1− f)ϵ−1
d + fϵ−1

m

, (29)

where f is the fill fraction and it is defined as f ≡ lm
lm+ld

[28, 29]. If the growth direction does not lie on the inter-
face plane, the HMM is referred to as Asymmetric Hy-
perbolic Metamaterials (AHMMs) and its physical con-
figuration is depicted in Fig. 1.
Graphene layers stuck in a host matrix can exhibit a hy-
perbolic behaviour [30]; their dielectric response can be
modeled as

ϵ∥ = ϵh, (30)

ϵ⊥ = ϵh + i
σ(ω)

dωϵ0
, (31)

where ϵh is the dielectric constant of a host matrix, d is
the distance between the two-dimensional graphene lay-
ers and σ(ω) is the surface conductivity [31, 32]. If the
optical axis is tilted with respect to the interface, we
have a graphene-based AHMM [31, 33]. One can prop-
erly choose the host matrix and the periodicity d in order
to minimise the losses due to the imaginary part of ϵ⊥,
as Nefedov and Melnikov showed in [33], and satisfy the
existence conditions of the surface wave.

In order to show how the SW here predicted could be
observed in such a system, we have studied the reflec-
tion properties of a InSb-Graphene AHMM interface in
the Otto configuration, where Thallium Bromo-Iodide
(KRS5) was used as the coupling medium. Fig. 4(a)
shows the reflectivity of the system as a function of the
light frequency and the incidence angle θ, calculated us-
ing the 4× 4 Transfer Matrix Formalism for anisotropic
media, proposed by Berreman [34]. For each value of
the frequency, we notice that the reflectivity significantly
drops near a certain value of the incidence angle θ. For
that particular value of θ, the in-plane component of the
wavevector gives rise to the coupling between bulk and
surface modes. In addition, here we can easily observe
the non-reciprocal behaviour of these SWs, as the spectra
shown in Fig. 4 are not symmetric with respect to θ = 0.
Six different sections of the reflectivity plot are shown in
Fig. 4(b), where the effects of the excitation of the SW
can be observed more clearly. As an example to quan-
tify the effect of losses (here essentially due to those in
the gyroelectric medium), the propagation length of the
forward propagating mode at ω = 1100 cm−1, defined as
lp ≡ 1

2Im[ky ]
, amounts to lp ≈ 40λ. We can conclude that

InSb and a graphene-based AHMM could be exploited
in order to excite and detect the novel modes here pre-
dicted.

V. CONCLUSIONS

The propagation of a novel type of electromagnetic sur-
face wave at the interface between a hyperbolic medium
and a gyroelectric material was discussed by both the-
oretical analysis and electromagnetic simulations. The
theoretical results showed that gyrotropy is responsible
for the non reciprocal multiplicity of these TM-polarized
modes, whereas the anisotropy of the lossless hyperbolic
medium is responsible for a tilted behaviour in the field
lines, which resemble those of the Zenneck Waves for
lossy metals. Frequency dispersion of the response func-
tions has also been taken into account. Finally, a physi-
cal system which is suitable to support the propagation
of the surface waves here predicted has been proposed:
by exploiting the properties of doped InSb in a magnetic
field and a graphene-based asymmetric hyperbolic meta-
material, it could be possible to excite and detect such
modes in a Otto configuration.
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netischer wellen längs einer ebenen leiterfläche und
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