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Abstract. We calculate mod-p cohomology of extended powers, and their 

group completions which are free infinite loop spaces. We consider the coho- 

mology of all extended powers of a space together and identify a Hopf ring 

structure with divided powers within which cup product structure is more 

readily computable than on its own. We build on our previous calculations 

of cohomology of symmetric groups, which are the cohomology of extended 

powers of a point, the well-known calculation of homology, and new results on 

cohomology of symmetric groups with coefficients in the sign representation. 

We then use this framework to understand cohomology rings of related spaces 

such as infinite extended powers and free infinite loop spaces. 
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1. Introduction 

Homotopy orbit spaces with respect to the symmetric group action on iterated 
products, known as extended powers, play many key roles in algebraic topology. 
Steenrod introduced them as a central character in the study of cohomology oper- 
ations [Ste53]. Extended powers of spectra play an essential role in Nishida’s proof 
of his Nilpotence Theorem [Nis75]. By the Barratt-Priddy-Quillen theorem [BP72], 
after group completion the infinite extended powers functor provides a model for 

the free infinite loop space functor Q. May and his collaborators demonstrated that 
the stable version of extended powers not only were essential in defining structured 
ring spectra but also provided access to a wide range of phenomena which had pre- 
viously been ad-hoc [BMMS86]. In addition to necessarily playing a role in derived 
algebra, modern applications of extended powers and free infinite loop spaces range 
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widely from, for example, the calculus of functors [AM99] to the stable cohomology 
of mapping class groups [Gal04]. 

We focus on the cohomology rings of these spaces, as this ring structure is the 
most basic unstable homotopical structure. These rings have long been implicitly 
understood through homology and coproduct calculations [CLM76]. But calcula- 
tions with such require application of Adem relations for Kudo-Araki-Dyer-Lashof 
operations, so are difficult to work with. Here, as in our work on symmetric groups 
and alternating groups [Gue17, GSS12, GS21], we find that cohomology ring struc- 
ture is best understood when coupled with a transfer (or induction) product, first 
defined by Strickland and Turner [ST97]. Our techniques in this setting for example 
have led to further development of the Curtis-Wellington spectral sequence [Hun]. 

Our work is thus parallel to as well as building on the well-established homology 
calculations. In [CLM76], the homology of extended powers all together forms an 
algebra over the Dyer-Lashof algebra, which behaves similarly to and in fact can 
be related to the cohomology rings of spaces over the Steenrod Algebra [May70]. 

Our presentations capture cohomology ring structure as part of a larger structure 
as well, ultimately presenting cohomology as “universal component super-Hopf rigs 
with additive divided powers” which then have small, if any, sets of relations. Prior 
to the elaboration of such Hopf ring structures, calculations of mod-two cohomology 
rings of classifying spaces of symmetric groups – the extended powers of a point – 
had cumbersome descriptions [AM04, Fes02], and calculations were not made at all 
for odd primes. 

We develop these needed algebraic notions in Section 2, and we encourage the 
reader to take a look at the statement of first main results, namely Theorems 2.34 
through 2.38 to understand the goal of the algebraic work before going through 
the details of that section. Such statements are remarkably simple, given the com- 
plexity for example of individual component rings. In the odd primary setting, 
such brevity is not possible without use of trivial and twisted coefficients together. 
We follow these statements with a development of additive bases in their algebraic 
frameworks. After extending well-known results about homology to the twisted co- 
efficient setting, as needed for our cleanest statements, we prove the theorems about 
ground rings, namely Theorems 2.34 and 2.35, in Section 3. We then use those to 
prove our first main theorems, namely Theorems 2.37 and 2.38, in Section 4. Our 
strategy is to use the two products and divided powers structures to produce a set 
of classes in cohomology which pairs perfectly with the standard basis in homology. 
This perfect pairing both establishes the set of cohomology classes as a basis and 
validates the algebraic presentation which governs them. 

After treating the cohomology of extended powers with disjoint basepoints, we 

calculate the cohomology of DX, the extended powers of a topological space X, 

D∞X, the stable extended power of X, CX, the free E∞-algebra on X, and QX,    
the free infinite loop space generated by X, in Section 5.  The precise definition of 

these objects is given below.  For CX  and QX  these reproduce Dũng’s description 
of the cohomology ring for QX when p = 2 and give new results for odd  primes. 

While we capitalize on finding the right algebraic structures and rely on stan- 
dard techniques from algebraic topology and group cohomology as well as previous 

homology calculations, geometry has inspired and guided us.  We focus on   C(X), 

the free E∞-space on X.  We  choose ESn to be the (ordered) configuration    space 
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ESn = {(x1,... , xn) ∈ (R∞)n : xi xj∀i /= j}, 

with an action of Sn given by permutation of coordinates. 

Definition 1.1.  Let X be a pointed topological space.  Let φi,n : E n E   n−1 

be the map that forgets the ith point of the configuration.       Let si,n : Xn−1 Xn
 

be the map that adds the basepoint as the ith coordinate.     Define CX, the space 
of  configurations  in  R∞ with  labels  in  X , as 

I
n≥0 ESn ×Sn X  /∼, where ∼ 

n 

is the equivalence relation generated by  (φi,na, b) ∼ (a, si,nb) for all a    ∈ ESn and 

b ∈ Xn−1. 

We consider the finite-dimensional versions of this model, with a limited number 
of points in some RN R∞, in which case if X  is a manifold  then so is  this  
quotient. In that setting, we can use geometric chains and cochains [FMS22]. The 

homology story is well-known through Kudo-Araki-Dyer-Lashof operations, which 
are manifestly geometric. If f : P → X represents a mod-two geometric homology 

class  y  then  we  can  map  Si ×C  (P × P )  to  CX by  sending  v × p1 × p2  to the 
configuration of two points at v, −v with labels f (p1) and f (p2).  The resulting 
geometric homology class represents the operation qi(y). On the cohomology side, 
the analogous geometric cochain would be the submanifold of CX where two points 
in the underlying configuration share their first coordinate with labels both in 

some geometric cochain W   X.  This geometry guided us in formulating our   
main structures, with cup product corresponding to intersection as usual, transfer 
product a type of “union”, and divided powers a  “repeating”. 

We see many possible investigations building on this work. Following Remark 
2.39, it would be interesting and probably reflective of deeper structure to fully 
understand divided powers operations on cohomology, as we only employ them 
on a limited set of classes. The pairing between homology and cohomology is not 
Kronecker, and is likely to be useful since the two settings differ in which structures 
are most readily expressed. We have made partial progress on computing Steenrod 
operations, a natural “self-serving” calculation to consider. Calculating cup product 
more organically as we have done here could help in extending these calculations to 
generalized cohomology theories, with even understanding whether divided powers 
operations exist for the transfer product an interesting first question. We suspect 
not, as the transfer product is analogous to the Pontrjagin product on the homology 

of Eilenberg-MacLane spaces, which has a divided powers structure [Car55, HHP+], 
but the homology of other infinite loop spaces instead has Dyer-Lashof operations. 
Related to this, there is possibility of further binding these structures through 
higher algebra enhancements of transfer product, in which case all of this intricate 

structure could likely be tied back to the homology of RP 1 and CP 1. 

 
2. Hopf ring with additive divided powers structure on the 

cohomology of DX 

In this section we introduce the algebraic structure of component Hopf ring with 
additive divided powers. We show in Corollary 2.31 that this structure applies to 
the cohomology of extended powers, and then give an explicit presentation of this 
cohomology in Theorem 2.35. 
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= Dn(X+).  We will also consider this unbased version  of 
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2.1. Preliminaries. Extended powers are our first main objects of study, and we 

assume throughout that X is Hausdorff and compactly generated, and that any 
basepoint has a neighborhood deformation retract. 

Definition 2.1. If spaces E and Y are both Sn-spaces, with action preserving the 

base  point  of  Y ,  then  E ><Sn Y  is  defined  as  the  quotient  ((E)+ ∧ Y ) /Sn,  where 

(E)+ is E with a disjoint basepoint and Sn acts diagonally. 

   Define the nth extended power of X by DnX =   ESn ><S 

 

  

X∧ .   Let  DX = 

 
 

 

Dn, for which we use the symbol D̃  to differentiate the two.  Hence D̃ 
n(X) = XhSn. 

For p = 2 let H 
∗(X) := H∗(D  X; F ). 

For  odd  primes  let  HEP 
∗(X)  :=   Fp ⊕ n≥1 H

∗(DnX; Fp  ⊕ sgn),   where  Fp 

denotes the trivial representation and sgn is the sign representation.      These are 
bi- or tri-graded by component, degree, and in the odd prime setting a mod-two 
grading induced by an obvious grading on Fp ⊕ sgn. 

Observe that D̃ (X) ∼= D(X+) ∼= C(X+). 

We use both algebraic and geometric variants of the extended powers topological 
construction, using the algebra to provide the main framework for our arguments. 
Almost by definition, cohomology of DnX is the equivariant cohomology of the n- 

fold tensor product of the cochains of X. But the following basic computation shows 
one can consider only the cohomology of X (see for example [May70, Lemma 1.1]). 

Proposition 2.2. There are natural isomorphisms 

H∗(DnX ; Fp) ∼= H∗(Sn; H- ∗(X ; Fp) ), 

and similarly for homology, compatible with standard pairings. 

Our main results present the cohomology rings, with Fp coefficients, of these 
three related spaces, namely DX, the extended power of a topological space X, CX, 
the free E∞-space over X, and QX, the free infinite-loop space over  X.  Because 

the homology of these spaces, as co-algebras,    is known and only depends on the 
homology of X [CLM76], our first step is to develop the algebraic functors which 

will take as their input the cohomology ring of X and produce the cohomology 
rings of these spaces. 

2.2. Component Hopf rings with additive divided powers. We work pri- 
marily in a bigraded setting in a strong sense, namely products vanish on elements 
which differ in the first grading. 

Definition 2.3.  Let (H, Δ, ·) be a bialgebra over R.  We say that H is a bigraded 

 
 

 

• the product sends Hm,i ⊗ Hm,j to Hm,i+j 

• the product of x and y is zero if x ∈ Hm,i, y ∈ Hn,j w ith n m 

  

  
The first grading of an element is called its component, while the second is 

called its dimension.   For  such H, we  let H  denote the direct sum of Hn,d for    

n+m=p,k=i+j Hn,i⊗ • the coproduct is standardly bigraded, sending Hp,k to 
Hm,j. 

n+m=p,k=i+j Hn,i⊗ • the coproduct is standardly bigraded, sending Hp,k to 
Hm,j. 

component bialgebra if H = 
n,d∈N×N Hn,d, where component bialgebra if H = 

n 

n(DnX).  Recall that if X is a G-space we let XhG denote the homotopy    quotient 

n EG ×G X, so that Xn
hS 

n 
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n  > 0  (and  all  d ≥ 0).  We  require  the  connectedness  condition  A =  im(η)   A, 

where η : R → A is the image of the unit  map. 
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Similarly, a super-component bialgebra is a bialgebra graded over N ×   Z 
 

satisfying these same axioms. 

Recall that a rig (ring without negatives) satisfies all ring axioms except the 
existence of additive inverses. 

Definition 2.4. A Hopf rig H is a rig object in the category of coalgebras, so 
that there are two products, a “multiplication product” · and an “addition product” 

8,  both  givin g  bialgebras  with  one  coproduct  Δ,  and  a  distributivity  axiom  that 

 
 

 

A bigraded component Hopf rig (respectively super-component Hopf rig) 

is one for which (H, , Δ) is a bigraded component bialgebra (respectively super- 
component bialgebra), and     preserves both gradings.  In this setting, we  modify 

the distributivity axiom above by introducing a coefficient ( 1)|aII||b| corresponding 
to the usual Koszul sign. 

We require the structural morphisms to be graded (co)commutative with respect 
to the dimension. When this commutativity condition is not necessarily satisfied, 
we speak of a non-commutative bigraded component Hopf rig. 

The Hopf rigs we study have antipodes, and are thus Hopf rings. But we will 
not need the antipode structures, and only mention them in passing. Hopf rings 
first appeared in topology in the study of homology of infinite loop spaces which 
represent cohomology with product structure [Mil70, RW80, Wil00]. But following 
Strickland and Turner [ST97], we have found them essential in describing the coho- 
mology of symmetric groups. An interesting related case of Hopf rings arises when 
one introduces an induction or symmetrization product on rings of symmetric poly- 
nomials. Readers who would like to see concrete examples can see these treated in 
the second section of [GSS12]. 

We will show that the cohomology of DX not only is a Hopf rig, but is also 
endowed with divided powers operations. 

Definition 2.5. A divided powers algebra is a triple (A, I, γ), where A is an 
algebra, I � A is a proper ideal, and γ = {γn}n∈N is a family of functions from I 

to I, also denoted x[n] := γn(x), which satisfies the following relations, whenever 
x, y ∈ I and λ ∈ A: 

(1)  x[0] = 1, and x[1] = x (0, 1 Cases) 

(2) (x + y)
[n] 

=     
n   

x[i]y[n−i] (Binomial) 
(3) (λx)

[n]  
=  λnx[n] (Distributivity over Multiplication) 

(4) x[n]x[m]  =  

(
n +  m

\ 

x[n+m] (Law of Exponents) 

(5) (x[m])[n] =   
(nm)! 

x[nm]. (Composition) 

We also refer to such triples as divided powers structures, on the algebra A. 
Introduced in [Car55], these have been extensively studied and applied to various 
contexts, for example in [Rob65], from which we borrow notation, and [Ber74, 
Haz78]. In algebraic topology, the homology of Eilenberg-MacLane spaces is divided 
powers algebras [EML54, Tho57]. 

These  relations  imply  that  the  formal  series  f (t) = 
∞
i=0 x

[i]ti     A[[t]]  satisfies 
f (0) = 1 and f (t + s) = f (t)f (s). The set Exp(A) of f A[[t]] satisfying these con- 
ditions constitutes an R-module. The left adjoint of Exp viewed as a functor  from 

Δa=
), 

aI⊗aII(aI · b) 8 (aII · c). a · (b 8 c) =  
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R- algebras to R-modules is the free divided powers functor DP , defined explicitly 
as follows. 

 
Definition 2.6. For an R-module M , we let DP (M ), the free divided powers 

algebra generated by  M ,  be generated as an algebra by  the set    x[n]  ,  where     
x M , with relations (1)-(5) from Definition 2.5 imposed. The ideal I is given by  

the collection of x[n] with n 1 and divided powers maps are defined through the 
Binomial, Scalar Multiplication and Composition relations of Definition 2.5. 

 
If M is graded, then naturally so are DP (M ) and the universal map. Over a 

field, if M is finite-dimensional, there is a standard additive basis of DP (M ) which 

we can associate to a choice of basis {x1,... , xr} for M , namely 
Jnr

 x
[ni]

1
 . 
ni∈N 

 

Definition 2.7. For a divided powers algebra (A, I, γ), the tensor product A⊗ A 

has a natural divided powers structure (A ⊗ A, A ⊗ I + I ⊗ A, γ⊗) defined for x ∈ I 
and y ∈ A by (x ⊗ y)[n] = x[n] ⊗ yn and (y ⊗ x)[n] = yn ⊗ x[n].      

A divided powers bialgebra is a divided powers structure (H, H, γ) o n  a 

bialgebra H, with H kernel of the counit, such that the coproduct   Δ: H H H 

is a morphism of divided powers structures. 

 
In the graded setting, we require divided powers operations to be compatible 

with degrees, in the sense that deg(x[k]) = k deg(x). In characteristic not equal to 
two, elements of odd degree have zero squares and thus higher powers, so in this 

setting x[k] = 0 if deg(x) is odd and k 2. This is also the case for the odd degree 
classes in the super-bigraded component setting. By a classical theorem of Milnor 
and Moore, a graded Hopf algebra H that is bicommutative in the graded sense 
can always be split into an even and odd part where the odd factor is an exterior 
algebra generated by primitive elements in odd degree. A graded divided powers 
structure on H is thus equivalent to a divided powers structure in the standard 
sense on the even part, and on the odd part the divided powers with exponent 
larger than one are zero. 

Admitting a divided powers structure is a very restrictive condition on a Hopf 
algebra. Such algebras arise as dual Hopf algebras to free, primitively generated 
Hopf algebras or more generally as duals of enveloping algebras of Lie algebras 
[Sch67, And71]. 

Given a counital R-coalgebra C, let ε : C → R be the counit and C = ker(ε). The 

coproduct Δ: C     C    C extends uniquely to DP (C)     DP (C)    DP (C), which 

by abuse of notation we still denote Δ. This is a coassociative and cocommutative 
coproduct, and defines a bialgebra structure on DP (C). 

 
Definition 2.8. Denote by DPHA the free divided powers Hopf algebra 
functor from R-coalgebras to Hopf algebras with divided powers over R, with 
DPHA(C) = DP (C) as an algebra, the coproduct induced by that of C, and 
extended to morphisms by the universal property. 

 
Then DPHA(C) is left adjoint to the forgetful functor from divided powers bial- 

gebras to coalgebras. 
Our main structure we use comprises the two structures detailed above. 
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Definition 2.9. A bigraded component Hopf ring with additive divided 
powers is a septad (A, 8, ·, Δ, {γn}) such that 

• (A, 8, Δ, {γn}) is a divided powers bigraded component Hopf  algebra 

• (A, 8, ·, Δ) is a bigraded component Hopf rig 

We also require that each component algebra (An, ) is unital, and that the unit   of 

An is the nth divided power of the unit    of A1. 
A component super-Hopf ring with additive divided powers is a septad 

as above where A has an additional Z/2Z-grading A = Aeven ⊕ Aodd, preserved by 

Δ and · and such that Aeven 8 Aodd = 0, satisfying the following conditions: 

• (A, 8, Δ, {γn}) is a divided powers Hopf algebra 

• (A, ·, Δ) is a component super-algebra 

• the Hopf ring distributivity axiom holds in A 

We will prove below that the Hopf rings of our interest have divided powers 
operations for the addition product satisfying Definition 2.9. However, they are 
not compatible with the multiplication product in a simple way, as we show in 
Remark 2.39. 

2.3. The algebraic extended powers functor. Recall that our first main goal is 

to describe the algebraic functor which takes the cohomology ring of a space X and 
produces the cohomology of its extended powers. In light of Proposition 2.2, this 
can be viewed in terms of group cohomology. For optimal results, at odd primes 
we take cohomology with coefficients which incorporate sign representation. 

Definition 2.10. Let V be a representation of n over a field. Define the coho- 
mology of extended powers of a space X with coefficients in V ,  denoted 

H∗(DnX ; V ), to be the group cohomology H∗(Sn; H- ∗(X) ⊗ V ). 

In our application V will be either trivial when p = 2 or for odd primes will 
incorporate the sign representation. Clearly the notation is consistent in the case 
of trivial coefficients by Proposition 2.2. 

Definition 2.11. By abuse, for any odd prime p and any n let ρ be the represen- 
tation of n given by ρ = Fp  sgn, where Fp denotes the trivial representation and  
sgn denotes the sign representation. 

We grade ρ by having the trivial representation in degree zero (even) and the sign 
representation  in  degree  one  (odd).   We  use  canonical  isomorphisms  Fp ⊗ V  ∼=  V 

and sgn ⊗ sgn ∼= Fp to define a graded algebra structure on ρ. 

In our setting, the coefficients we are using have multiplicative structure which 
is then reflected in cohomology. 

Definition  2.12.  A product  series  of  algebras over  a field k is a collection 

{An} with An k[Sn]-algebra, with isomorphisms of k[Si ×Sj]-algebras χi,j : Ai+j → 

Ai⊗kAj that are coherent in the sense that the following two conditions are satisfied: 

(1) for all i, j, k > 0 the following diagram commutes in the category of k[Si × 
Sj × Sk]-modules: 

 
Ai+j+k 

 

χi,j+k 
Ai ⊗ Aj+k 

χi+j,k id ⊗χj,k 

Ai+j ⊗ Ak 
χi,j ⊗id 

A
 
⊗ Aj ⊗ Ak i 



.  

∈ 

     τ  

( 

⊗ 

∗ 

{ } S 

⊕ → ⊗ 

∗ Si×Sj ∗ ∗ 

∗ ∗ j Si ∗ i ∗ j 

• 8 S ⊗ S → S 

Sn ∗ ∗ ∗ ∗ n 

Sn×Sm ∗ ∗ ∗ n+m 

 

(2) for all n, m > 0, the following diagram commutes 

An+m 

σn,m 
An+m 

χn,m χm,n , 

An ⊗ Am Am ⊗ An 

where τ exchanges the two factors and σn,m Σn+m is the permutation 
given by 

 
σn,m (i) = 

m + i   if 1 ≤ i ≤ n 
. 

i − n if n +1 ≤ i ≤ n + m 

A super-product series of algebras is a collection An with An k[ n]-module 
with the following additional structure: 

• a grading An = An,0 ⊕ An,1  of each An over Z/2Z, 

• a product An ⊗ An → An that makes each An a k[Sn]-super-algebra, 
• and k[Si × Sj]-module isomorphism χi,j,e : Ai+j,e → Ai,e ⊗k Aj,e for all i, 

j ∈ N and e ∈ Z/2Z, that are coherent in the sense that the two conditions 
above are satisfied and such that χi,j,0   χi,j,1 : Ai,j   Ai   k Aj are super- 
algebra morphisms. 

We note that a product series of algebras can be regarded as a super-product 
series of algebras concentrated in Z/2Z-degree 0. 

The product series we use are built from a single algebra, ultimately the coho- 
mology ring of a space. 

Definition 2.13. Let A be an algebra. Define TA to be the product series of 
algebras with TAn = A⊗n with canonical restrictions. For  odd primes define TρA  

to be the sequence of modules with TρAn = ρ  A⊗n and structure maps given by   
the identity map on ρ tensored with canonical restrictions. 

Definition 2.14. Let {An} be a product series of algebras. Let f ∈ H∗(Sn; An) 
and g ∈ H∗(Sm; Am), so f is represented by a homomorphism from a resolution 
W Sn of k over k[Sn] to a suspension of An. Define the preliminary multiplicative 
structures on cohomology of symmetric groups with coefficients in {An} as follows. 

• A  coproduct  Δ̃  =  
 

i,j Δ̃
 
i,j,  where  Δ̃ 

i,j : H∗(Si+j; Ai+j)  → H∗(Si; Ai) ⊗ 

H∗(Sj; Aj) is induced by the composition 

hom (W 
Si+j ; A )  res hom (W Si ⊗ W 

Sj ; A 
χi,j 

) 
 

hom (W Si ⊗ W 
Sj ; A ⊗ A  )   

∼=
 hom (W Si; A ) ⊗ hom (W 

Sj ; A ), 

where res is the restriction to the resolution of a subgroup; 

A  transfer  product  ˜ : H∗(  n; An) H∗(  m; Am) H∗(    n+m; An+m)  is 
induced by 

∼= χ−1 

hom (W Sn; A )⊗hom (W Sm; A 
) hom 

(W Sn ⊗W Sm; A ⊗A n,m 

 

hom (W Sn ⊗ W Sm; A )
  tr 

hom (W 
Sn+m; A ), 

where tr denotes the usual transfer map; 

Si+j i+j i+j 

Si×Sj i Sj 

n Sm m Sn×Sm m 

n+m Sn+m 

) 



.  

∗ ∗ n ∗ ∗ 

∗ ∗ 

  

of algebras,  define H∗(S•; A•) to be the direct sum    Fp ⊕ 
n≥1 H

∗(Sn; An), ob-  
n≥0 Sn n         

H∗(S•; A•), Δ̃ , · 

8 

8 

  

• a cup product · is defined in the standard way on each component, using 

restriction along the diagonal on a resolution of k over k[Sn] and the product 
on An 

homS (W Sn; An)⊗homS (W Sn; An)   
∼=

 homS ×S (W Sn ⊗W Sn; An ⊗An) 
 

homSn (W Sn; An ⊗ An) homS (W Sn; An), 

and is zero between distinct components; 

More generally, if we start with a super-product series of algebras {An} with 

 
 

 

• a  coproduct  Δ̃   as  the  direct  sum  of  the  coproducts  associated  with  the 
addend product series A∗,e; 

• a transfer product that restricts to that defined above on each addend A∗,e, 
and such that f 8̃ g is zero if f  ∈ H∗(Sn; An,e) and g ∈ H∗(Sm; Am,eI) with 
e /= eI; 

• if each An is an algebra, a cup product · as above. 

These structures are preliminary because of some additional signs which we will 
include below. 

Definition 2.15.  If {An} is a product series of algebras o r super-product    series 

tained from H∗( ; A ) by  replacing in component 0 the     representation 

e∈Z/2Z A0,e  
∼= e Fp  via  the  epimorphism e : e Fp  → Fp,  with  coproduct 

Δ̃  and product 8̃ 

Theorem  2.16.  H∗(S•; A•)  forms  a  non-co(mmutative  Hopf algebra,  with  struc- 

 

Proof. This theorem has been essentially proved by Strickland and Turner [ST97] 
for generalized cohomology theories, and in particular for cohomology with coeffi- 
cients in the trivial representations. Their proof can be reinterpreted diagrammat- 
ically in a group-theoretic setting as explained by Giusti–Salvatore–Sinha [GSS12]. 
In our case, the modification in component zero is introduced only to ensure that 
the unit behaves correctly with both the coproduct and the counit. With this 
exception, those diagrams also prove the statement for coefficients in a general 
super-product series of algebras, with the exception of those yielding the commu- 

tativity of  ˜  and the cocommutativity of Δ̃ , that involve conjugation by elements 
of the symmetric groups. 

The associativity of Δ̃  and  ˜  is shown using the following commutative diagram 
of finite coverings: 

 
B(Sn × Sm × Sl) B(Sn+m × Sl) 

B(Sn × Sm+l) B(Sn+m+l) 

An = 
e∈Z/2Z An,e, we similarly define: An = 

tures defined in Definition  2.14.  Moreover, 

ponent bialgebra. 

is a bigraded com- tures defined in Definition  2.14.  Moreover, 

ponent bialgebra. 

is a bigraded com- 

n n n 

n 
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S 

   ̃ ⊗1  
n n m l l l l n+m l l 

   ̃  

n n m+l n+m+l n+m+l 

∈ S  × S  → S  × S 

b c d m 

· 
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When taking cohomology with coefficient in the product series we obtain the 
following  commutative diagram: 

 
H∗(Sn+m+l; An+m+l)       H∗(Sn+m × Sl; An+m+l)       H∗(Sn+m; An+m) ⊗ H∗(Sl; Al) 

H∗(Sn × Sm+l; An+m+l)  H∗(Sn × Sm × Sl; An+m+l)  H∗(Sn × Sm; An+m) ⊗ H∗(Sl; Al) 

H∗(Sn; An) ⊗ H∗(Sm+l; Am+l)      H∗(Sn; An) ⊗ H∗(Sm × Sl; Am ⊗ Al)      H∗(Sn; An) ⊗ H∗(Sm; Am) ⊗ H∗(Sl; Al). 

 

The outer square looks as follows and encodes the co-commutativity of Δ̃ . 
 

H∗(Sn; An) ⊗ H∗(Sm; Am) ⊗ H∗(Sl; Al) 

1⊗Δ̃ 

 
Δ̃ ⊗1 

H∗(Sn+m × Sl; An+m ⊗ Al) =∼ H∗(Sn+m; An+m) ⊗ H∗(Sl; Al) 

Δ̃ 

H∗(Sn; An) ⊗ H∗(Sm+l; Am+l) 
Δ̃

 H∗(Sn+m+l; An+m+l). 

 

Moreover, the representations considered in the diagram at the bottom are all 
canonically identified with the restriction of the n+m+l-representation An+m+l. 
Therefore, there is also an induced diagram of transfer maps, obtained by replacing 
restrictions with transfer maps in the commutative diagrams above: 

 

H∗(S ; A  ) ⊗ H∗(S ; A  ) ⊗ H∗(S ; A )) H∗(S ×S ; A ⊗ A ) ∼= H∗(S ; A ) ⊗ H∗(S ; A ) 

1⊗ ˜ 

H∗(S ; A  ) ⊗ H∗(S ; A 

 ̃ 

) H∗(S ; A ). 

 

The  fact  that  both  8̃  and  · are  morphisms  of  coalgebras  with  the  preliminary 

coproduct is proved in a similar way using the following commutative diagrams for 
all n, m N, where i denotes the standard inclusions,   τ :   b c c b the 

switching map, and d the diagonal maps: 

I 
B(S ×S ×S ×S ) 

I 
B(ia,b×ic,d) 

B(S ×S ) 
I 
B(ia,c×ib,d)◦B(1×τ ×1) B(in,m) 

I 
B(Sp × Sq) 

I 
B(ip,q) 

B(S n+m) 

 

B(Sn × Sm) 
B(1×τ ×1)◦B(dSn ×dSm ) 

B((Sn × Sm )2) 

in,m in,m×in,m 

B(S n+m) 
dSn+m 

n+m) 
 
 

where the first unions are over all p + q = n + m and the second union is over all 
a + b = n, c + d = m, a + c = p, b + d = q. 

It is well-known in general that is associative. Since, under our hypotheses, all 
the morphisms involved in the definition of the coproduct are algebra maps   with 
respect to the cup product, so is Δ̃ . D 

m n+m n+m n+m 

m+l 

a n 

B(S 
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In the cases of our interest, the statement of Theorem 2.16 can be improved to 
show the commutativity of a twisted version of the coproduct and the products and 
Hopf rig distributivity. 

Definition 2.17. Given a graded commutative algebra A over the field Fp, define 
the algebraic extended powers functor by 

EP (A) = Fp ⊕ 
d≥0,n>0 

Hd(Sn; TρA  ) 

for odd primes.  Replace TρA by TA to obtain the definition when p =   2. 

By Proposition 2.2, for a pointed topological space X, HEP 
∗(X) ∼= EP (H̃ (X)). 

We observe three different gradings on EP (A). The first two are the cohomo- 
logical grading d, and component n, defined before. We also use the decomposition 

TρAn 
∼= A⊗n ⊕ (sgn ⊗ A⊗n) to induce a decomposition on EP (A). 

Definition 2.18. Over Fp with p odd, consider the decomposition 

EP (A) =∼ Fp 

n>0,d≥0 

Hd(Sn; A⊗n) ⊕ 
n>0,d≥0 

Hd(Sn; sgn ⊗ A⊗n). 

We define sign degree e of an element to be zero or even if it is in the second 
summand of this decomposition and to be one or odd if it is in the third summand. 
Equivalently,  we  define EP (A)d,n,e to be the summand  Hd(  n; A⊗n) when e   = 0  

or the summand Hd(  n; sgn   A⊗n) when e = 1.  We  define the total  degree to   
be t = ne + d.  As the sign degree, the total degree is only defined modulo   2. 

By convention, if p = 2, then the sign degree is always even/zero. In order to 
ultimately account for signs we need the following. 

Definition 2.19. A bi-graded component super-Hopf ring is a super-Hopf ring en- 
dowed with the component grading n, the Z/2Z-grading e arising from the “super-” 

structure, and an additional grading d over N where Δ preserves all three gradings, 
preserves  n and d, preserves d and e in each component, and the   axioms of 

super-Hopf ring are considered in the graded sense with respect to the total degree 
t = ne + d. 

Definition 2.20. Let EP (A) be the extended powers of an algebra, as above. Let 

Δ̃  and 8̃  be the maps constructed in Definition 2.14.  We define: 

• For all x such that, using Sweedler’s notation, Δ̃ (x) = x(1) ⊗ x(2), with 

x(1), x(2) all tri-homogeneous, the modified coproduct is given   by 

Δ(x) =        (−1)d(x(2))n(x(1))e(x(1))x(1) ⊗ x(2). 

• For all x, y tri-homogeneous, the modified transfer product x 8 y = 

(−1)d(y)n(x)e(x)x8̃ y. 

We can finally state our main result of this section. 

Theorem 2.21. Let A be a graded commutative algebra of finite type over Fp. Then 

EP (A), with the coproduct Δ and the products  and  , is a super-component Hopf 
rig bigraded by the component n and the total degree t. If p = 2, it is a component 
Hopf ring bigraded by the component n and the cohomological dimension d. 
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Proof. Theorem 2.16 guarantees that EP (A) is a non-commutative Hopf algebra 

with the non-modified coproduct and transfer product Δ̃  and  ˜ .  Clearly the addi- 
tional signs do not disrupt the (co)associativity of the transfer product and the 
coproduct Δ, that still form a Hopf algebra, and Δ and still form a component 
bialgebra. On the addend corresponding to the trivial representation, the remain- 
ing Hopf rig axioms are proved diagrammatically as in [GS21, Theorem 2.4]. On 
the addend corresponding to the sign representation, one can adapt their proof by 

additionally keeping track of coefficients.  However, the cocommutativity of Δ̃ , the 

commutativity  of  8̃  and  the  Hopf  ring  distributivity  axiom  fail  because,  contrary 
to constant coefficients, inner automorphisms do not induce the identity on coho- 
mology with coefficients in non-trivial representations.  For instance, the diagram 

that would encode the commutativity of ˜ 

following: 

and  the  cocommutativity  of  Δ̃ is the 

Sn × Sm Sm × Sn 

  γ 

Sn+m Sn+m, 

where τ is the obvious switching isomorphism and γ is the conjugation by a per- 
mutation σn,m n+m depending on n and m. In cohomology with trivial co- 
efficients, such conjugation maps induce the identity, but in cohomology with 

coefficients in sgn they induce the multiplication by ( 1)nm. Therefore x ̃  y = 

( 1)n(x)n(y)e(x)e(y)+d(x)d(y)y ̃  x. The additional signs introduced with the modified 

transfer product guarantee that x y = ( 1)t(x)t(y)y x. The same argument shows 
that Δ is cocommutative. By analyzing the corresponding diagram, one proves sim- 
ilarly that (EP (A), Δ, , ) satisfy the graded version of Hopf ring distributivity, 
with respect to the total degree. D 

Remark 2.22. Additively, H∗( n; sgn A⊗n) is  isomorphic  to  H∗(  n, Σ(A)⊗n),  
where Σ is the suspension  functor on graded vector spaces.       Hence,  for p odd, 

DP (A)  =∼     
n≥0 H

∗(Sn; A⊗n) ⊕ H∗(Sn; Σ(A)⊗n)  as  vector  spaces.   The  total  de- 
gree on EP (A) is defined in such a way that this isomorphism becomes a  degree- 
preserving linear map. Seen through this lens, the correction signs appearing in the 
modified coproduct and transfer product become less mysterious and arise from the 
Koszul sign conventions  on Hom(W Sn;  Σ(A)). 

∗ 

For p = 2, HEP 
∗(X) differs from the cohomology of DX by an innocuous com- 

pletion.  We see something similar at odd primes if we take only the  H∗(DnX; Fp) 
summands. Our work ahead is to understand the algebraic extended powers functor 
as a free functor to the category of Hopf rings with additive divided powers, which 
we next develop. 

Remark 2.23. As we remarked in the first section, if X is a manifold then cochains 
of finite dimensional approximations of CX can be defined by submanifolds, which 
informally we consider through “conditions” on the underlying points of the con- 
figuration or on their labels in X. 

Cup product as usual is given by intersecting, or in this case requiring that two 
sets of conditions hold. Transfer product defines a condition on n + m points by 
asking that a condition is satisfied on some subcollection of n points and another 
is satisfied on m points. The transfer product of a class with itself is divisible by 
two because the condition is satisfied whether some n points or its complement is 
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considered “first.” The divided powers operation repeats a condition on n points k 

times to define a condition on nk points. 
See Theorem 4.9 of [GSS12] where we discuss the representatives for Hopf ring 

generators as subvarieties defined by 2n points sharing a coordinate, and [GS14] 
which gives a development through cellular models for one-point compactifications 
of configuration spaces. A chain-level model for the transfer product is given which 
would also work for the divided powers operations. (Note that the cup product 
result claimed but not proven in [GS14] is not correct.) 

2.4. Divided powers on cohomology of symmetric groups with coefficients 

in a product series. We now develop a divided powers structure on HEP 
∗(X), 

as a special case of divided power structure on cohomology of symmetric   groups 
with coefficients in a product series of algebras. In order to define it we need 
restriction and transfer maps for subgroups of symmetric groups which are defined 
by partitions. 

Definition 2.24. A labeled multipartition π of a set S is the labeling of the 

leaves of a rooted tree by the elements of S, possibly with additional labeling of 
internal vertices. The subsets defined by considering all of the leaf labels over a 
fixed internal vertex are called the blocks of the labeled multipartition. The depth 
of a block is the number of edges between its corresponding internal vertex and the 
root vertex. 

Given a labeled multipartition π of {1 , . . . ,  n} define its automorphism group 

Sπ to be the automorphisms of the tree which preserve any additional labels of 
internal vertices. We identify π canonically with a subgroup of n through the  
action on leaves. 

A labeled multipartition is determined up to additional labels by its blocks. The 
additional labels of internal vertices are sometimes used to make such structures 
more rigid, ruling out automorphisms between blocks. Since we only use them in 
this way, we do not give explicit additional labels or name the labeling set; we only 
indicate when labels are shared or they differ. 

There are some basic constructions which give rise to the multipartitions and 
thus automorphism subgroups we  consider. 

Definition 2.25. If π1 , . . .  , πk are labeled multipartitions of S1 , . . .  , Sk define the 
union π1 ∪ ···  ∪ πk to be the multipartition of  Si in which the trees defining the 

πi are grafted to a (new) root with k edges, and the internal vertices corresponding 
to the original roots are given distinct labels. 

If π is a labeled multipartition of S define the multiple m · π to be the  labeled 

  
  

single root and given the same label. 
Let n denote the trivial labeled partition of 1,... , n , defined by a rooted tree 

with no internal vertices. 

It is convenient to use the standard finite sets {1 , . . .  , n} for all labels, in which 
case we identify the abstract disjoint union {1 , . . . ,  n1} LJ ···  LJ {1 , . . .  , nk} with 

 

the  set {1 , . . .  , ni} through the standard “ordering on the page.”  We identify 

m  1, . . . , n   ∼=   1, . . . , mn   similarly. 
The fact that the union of labeled multipartitions has distinct labels while those 

of a multiple multipartition are repeated is a key distinction, in a sense giving rise 

S in which m copies of the tree defining π are grafted to a multipartition of 
S in which m copies of the tree defining π are grafted to a multipartition of 

{ } { } 
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to our divided powers operations. In particular, Sn∪m is isomorphic to Sn × Sm, 

including when n = m, while    2·n is isomorphic to    n       2. 
We  consider standard set  partitions as labeled multipartitions  through   trees 

whose internal vertices all have depth one, and identical labels.  Recall that the  
set of partitions of a set is a poset under refinement and that this poset has meet 

and join operators, which we denote ∧ and ∨, that provide it with a lattice  struc- 

ture. The following properties of Sπ are straightforward. 

Lemma 2.26.  Let π = {Si} be a partition of {1,... , n}. 

(1) Sm·k is isomorphic to the wreath product Sk ISm.  More generally, if mπ(i) is 

the number of parts of π whose cardinality is i, Sπ is conjugate to ×n   
Si I 

Smπ(i) in Sn. 

(2) For any σ ∈ Sn, the conjugate σSπσ−1 coincides with Sσπ. 

(3) The map [σ] σπ is a bijection between the cosets Sn/Sπ and the set   of 
partitions that are permutations of  π. 

Partition subgroups play key roles in defining the divided powers. 

Definition 2.27. Let {An} be a product series of algebras. For  x ∈ H∗(Sn; An)  

we define x[k] ∈ H∗(Skn; Akn) to  be 

x[k] := trSkn 

SnlSk 
(x⊗k), 

where we identify Akn with A⊗
n 

k via the structural isomorphism. 

Proposition  2.28.  If   An   is a product series of algebras then n H
∗(   n; An) 

with cup and transfer product from Definition 2.14, coproduct from Definition  2.20 
and divided powers from Definition 2.27 satisfies the axioms for divided powers 

structures. 

Before proving this, we set aside a basic fact from group cohomology which we 
repeatedly use, which follows from the standard fact that restriction followed by 
transfer from a subgroup is multiplication by the index of a subgroup. 

Lemma 2.29.  If K ⊂ H ⊂ G are finite-index inclusions of groups  then 

trG ◦ resH  = [K  : H]trG . 

Proof of Proposition 2.28. Let x ∈ H∗(Sn; An) be represented by a homomorphism 

f from a resolution of Sn to An, and similarly y ∈ H∗(Sm; Am) be represented by 
 
 

The 0, 1-Cases axioms of Definition 2.5 are immediate. For the Binomial axiom, 

we calculate (x + y)[r] by taking the transfer (induction) of (f + g)⊗r, which is a 

sum over i of shuffles of f ⊗i and g⊗(r−i). But the transfer on such shuffles is exactly 
x[i]  8 y[r−i]. 

Checking the Exponent Axiom, x[m] 8 x[r] and x[m+r] are both images under 
transfer of f ⊗m+r, but the former is induced up from the subgroup (Sm·n) × (Sr·n), 

while the latter is induced up from    (m+r)·n.  By Lemma 2.29, the former is obtained 
from the latter by multiplication by the quotient of the indices of these subgroups, 

m+r 
m 

We next verify the Distributivity Axiom, which in the Hopf rig setting is that 

(x 8 y)[k] = x 8 y[k]. By definition (x 8 y)⊗ is a composite of induction maps of 
  

(f ⊗ g)⊗  from Sk·(n∪m) ultimately to Sk(n+m).  Similarly, x   8 y[k] is obtained by 

k k 

g. 
g. 
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inducing f ⊗  ⊗ g⊗   from S∪kn∪k·m.  After conjugating so that (f ⊗ g)⊗   becomes 

f ⊗  ⊗ g⊗  ,  both  subgroups  are  then  subgroups  of  Sk·n∪k·m,  for  which  f ⊗  ⊗ g⊗
 

is invariant.      Lemma 2.29 applies in both cases, so that each result is the induc- 
tion  from k·n∪k·m  multiplied  by  the  index  of  the  corresponding  subgroup.   The 
Distributivity axiom follows as these two indices are the same. 

We verify the Composition Axiom (x[k])[h] = 
(hk)! 

x[hk] similarly. By definition 

x[hk] is given by inducing f ⊗    from Shk· n to Snhk, while (x[k])[h] is the induction of 
the same cochain from    h·(k·n).  Since    h·(k·n) hk·n, Lemma 2.29 applies to show 
that they differ by a multiplicative coefficient equal to the index of this inclusion, 

which is exactly    
(hk)! 

.  D 

We next turn to compatibility of divided powers with coproduct. As our divided 
powers structures are defined by transfers, and our coproduct is defined by restric- 

tion, the Cartan-Eilenberg Double Coset Formula will be of use. Recall that if H 

and K are subgroups of a finite group G and is a set of representatives in G for  
the set of double cosets H  G/K, then, on cohomology with coefficients in a    given 
G- representation, 

ρG ◦ trG =       trH crK ◦ cr 
∗, 

where cr is the isomorphism of K with rKr−1 and ρ and tr denote restriction   and 
transfer maps respectively. This is proved for example as Theorem I.6.2 of [AM04]. 

Proposition 2.30. If  An  is a product series of algebras, then on    n H
∗(  n; An) 

the divided powers of Definition 2.27 commute with the coproduct of Definition 2.20. 

Proof. We start with a more explicit expression of divided powers of a coprod- 
uct.    If  x  ∈  H∗(Sn; An),  set  Δx  =    x(i,n−i),  where  x(i,n−i)  ∈  H∗(Si; Ai) ⊗ 

H∗( n−i; An−i). By the Binomial Axiom, which was just established in Propo- 
sition 2.28, 

(Δx)
[k] 

= 
 

 
  (

x
  
(i,n−i) 

)[ji] 
.
 

j0+···+jn=k i=0 

If a + b = n the (a, b) component of this consists of terms with ji · i  =  a. We 

    
    

Let x ∈ H∗(Sn; An) be represented by a homomorphism f from a resolution 

of Sn to An.   By definition (x[k])(a,b)  will be represented by  ρSnk      ◦ trSnk (f ⊗k). 
  

Applying the Cartan-Eilenberg Double Coset Formula, this coincides with 
  

tr
Sa∪b      ◦ρ

crSk·n      ◦ c#(f ⊗
k

), 
    

 
 

 
where is a set of representatives for the set of double cosets (   a∪b) nk/(   k·n). 

To understand this double coset space, recall that the cosets of symmetric groups 
modulo the automorphism groups Sπ correspond to partitions with the same shape 

as π.  Thus Snk/Sk·n corresponds to partitions of {1, . . . , nk} with k parts of cardi- 
nality n, while   a∪b nk corresponds to partitions into two sets with cardinalities 
a and b, or equivalently  bicolorings.  Thus corresponds to bicolored partitions 

of 1 , . . .  , nk with k parts of cardinality n. Equivalently  is given by  multipar-  
titions governed by a tree with k edges attached to the root, and each of those  
with at most two edges labeled a and/or b, with a total of n leaf edges over them. 

r∈R 

r∈R 

agrees with this. 
(a,b) 

Δ(x[k]) show that 

agrees with this. 
(a,b) 

Δ(x[k]) show that 

r∈R r∈R 
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All  labels  in  the  multipartition  are  identical.   The  intersections  Sa∪b ∩ crSk·n are 

the  automorphisms  of  such  multipartitions.  These  are  conjugate  to  S∪imi·(i∪n−i), 
where mi is the number of times there are i leaves in the group labeled by a within 
a k-block. 

We  then  identify  the  restriction  ρ
crSk·n      ◦ c#(f ⊗

k

)  with  
 n   

f 
mi 

, 
  

 

  
 

 

where f(i,n−i) represents x(i,n−i).  To calculate tr
Sa∪b applied to this class, 

we  factor  the  inclusion  of  Sa∪b ∩ crSk·n  in  Sa∪b.    Since  Sa∪b ∩ crSk·n  is  con- 
jugate  to  S∪imi·(i∪n−i)  it  is  contained  in  a  conjugate  of  S∪i(imi∪(n−i)mi).    The 
transfer map up to this subgroup is a product of transfer maps defining divided 

powers, so     
n

 f(i,n−i) 

 
 

⊗   is sent to i=0 (f(i,n−i) )
[mi].  The transfer map  from 

S∪i(imi∪(n−i)mi) to Sa∪b is the transfer product on the tensor product of the  coho- 

mology with itself, so      
n   

(f(i,n−i))
[mi] is sent to      

n   
(f(i,n−i))

[mi], which agrees 

i=0( [k]
) i=0 

 

Corollary 2.31. HEP 
∗(X) is a bigraded component Hopf ring with additive divided 

powers. 

2.5. Statement of first main results. We state here our first main structure 
theorem, that we will prove in the remaining sections. 

We require two more definitions before stating our first main theorems. 

Definition 2.32. An element of a divided powers algebra of even degree when p 
odd, or any degree when p = 2, is standard non-nilpotent if all x[m] are non-zero, 

with Δx[m] =   i+j=m x[i] ⊗ x[j]  and  x[i] 8 x[j] = 
(
i+j

)
x[i+j]. 

Definition 2.33. Let C be a category, S a subcategory, and F : C → D a functor. 
We say some object x ∈ S is universal among S with respect to F if its image under 
F  is initial in the full subcategory generated by F (C). 

We first give an immediate reformulation of the calculations of Giusti–Salvatore– 
Sinha utilizing divided powers structure. 

Theorem 2.34 (From [GSS12]). The mod-two cohomology of extended powers of 

S0,  namely  HE
∗ 

P (S
0)  =∼     H∗(BSn),  is  a  component  Hopf  rig  with  additive  di- 

2i−1 

vided powers which contains standard non-nilpotent classes γi ∈ H (BS2i).   It 
is universal among such objects, with respect to the functor which forgets divided 

powers. 

In  other  words,  there  are  no  relations  required  to  understand  HE
∗ 

P (S
0)  as  a   

Hopf ring other than those given in the axioms of component Hopf rig with ad- 
ditive divided powers. This thus determines the cohomology ring structure. In 

particular, the subrings generated by  γ
[2j ]  

for i + j = n are polynomial subrings   
of the cohomology of B n. But there are many relations for classes involving the 
transfer product. At the moment, we do not fully understand the divided powers 
structure—see Remark 2.39—so while we use divided powers to generate classes we 
forget them in order to have a unique characterization. 

The following is the odd primes counterpart of Theorem 2.34, that we will prove 
in Section 3. For p > 2, let Tρ(H∗(X; Fp)) = Tρ,n(H∗(X; Fp)) n∈N be the super- 
product series of algebras defined above. We consider the sign degree e that deter- 
mines the super-structure and the degree d induced by the cohomological dimension 
of  H∗(X; Fp). 

   

with our determination of (Δx) 
(a,b) 

above. D 
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Theorem 2.35.  The mod-p cohomology of extended powers of S0, namely HE
∗ 

P (S
0) 

∼= H∗(B   n; ρ),  is  a  trigraded  component  super-Hopf  rig  with  additive  divided 
powers which contains 

• standard non-nilpotent classes γk in grading (2(pk − 1), pk, 0), 

• primitive classes λk in grading (pk − 1, pk, 1), 

• standard non-nilpotent classes γk
I  in grading (pk − 2, pk, 1), 

with cup product relations λk 
2 = γk. It is universal among such objects with respect 

to the functor which forgets divided powers. 

Remark 2.36. The sub-Hopf rig of HEP 
∗(S0) corresponding to  the  addend  of 

even sign degree has been calculated by Guerra [Gue17]. The generating classes 
γk,  αi,k and  βi,j,k appearing  there can be retrieved from our presentation  as    γk, 

k  i k  i k  i 

(−1)  2  (k−i)λ γI     and (−1)  2  (j−i)γI     γI     , respectively. 

For any nonempty X, the cohomology of D(X+) is an algebra over the cohomol- 

ogy of D(S0), through the projection map which sends X to the non-base point of 

S0. This is injective, with any choice point in X giving a splitting. We use this 
algebra structure for the two following results, that will be proved in Section 4. For 
odd primes, we compute a bigger Hopf ring with cohomology taken with coefficients 
in ρ, but one can easily recover the ordinary mod p cohomology of D̃ (X) as a Hopf 
ring by extracting only the homogeneous part of even sign degree. 

Theorem 2.37. The mod-two cohomology of extended powers of X+ is the univer- 

sal component super-Hopf rig with additive divided powers over the cohomology of 

extended powers of S0 which contains the cohomology classes of X as classes which 
are standard non-nilpotent. Relations are 

x[n] · y[n] = (x · y)[n]  for x, y ∈ H∗(X)  and 

x[nm] · y[n] = (x[m] · y)[n] for x ∈ H∗(X),y ∈ H∗(Dm(S0)). 

It is universal among such objects with respect to the functor which forgets divided 

powers. 

Theorem 2.38.  For p  > 2, the mod-p cohomology of extended powers of X+ is  

a component super-Hopf rig with additive divided powers over the cohomology of 

extended powers of S0 which contains two copies of the cohomology of X, which we 
denote by xe degree (d, 1, e) for e  0, 1  . These classes are standard non-nilpotent 
if d + e is even and primitive if d + e    is odd, with 

x[n] · y = (x · y) , 

x[nm] · z[n]  = (x[m] · z)[n]  and 
e e 

xe 8 yeI = 0 if e eI, 

if x, y H∗(X; Fp), z H∗(Dm(S0); Fp), and e, eI 0, 1  , with the sum e + eI  

understood modulo two. It is universal among such objects with respect to the 

functor which forgets divided powers. 

Remark 2.39. Theorems 2.37 and 2.38 explicitly embed the cohomology of the 

symmetric groups and the cohomology of X in HEP 
∗(X). The relations provide   a 

compatibility identity between divided powers and cup product. We can interpret 
this structure as a “bigraded component Hopf ring with divided powers over    the 



.  

∈ 

{∗} 

S  I S → S 

1 2 1 

1 

· 

1 

× ⊂ 
∈ 

 

cohomology of symmetric groups generated by H∗(X)”. More generally, one could 
define a “bigraded component Hopf ring with divided powers” as a bigraded com- 
ponent Hopf ring with additive divided powers A such that a similar compatibility 
condition between divided powers and cup product holds for all x, y A divided 
powers of primitive elements. However, this simple identity does not extend to 

classes x not arising from the cohomology of X.       For  example,  with p =  2 and 

X  =        ,  HEP 
∗(X+)  becomes  the  ordinary  mod  2  cohomology  of  the  symmetric 

groups and the divided powers operations [k] agree with the cohomological trans- 
fer  maps  associated  to   k      n nk.   A procedure to compute   these transfer 

maps is described by Kechagias [Kec09]. Combining Kechagias’s algorithm with 
the computations of the restriction to elementary abelian subgroups achieved by 
Giusti–Salvatore–Sinha [GSS12] one obtains the following equality 

(γ1)[2] · (γ2)[2]  = γ2 + (γ3)[2]. 

As the right hand side is not simply (γ3)[2], the relationship between the divided 

powers operations and the cup product in HEP 
∗(X) is not as expected and appears 

likely to be complicated in general. 

Remark 2.40. Recall from Remark 2.23 that the cohomology of extended powers of 
manifolds all have simple geometric cochain models. The γk for F2 are represented 
by “2k points which share a coordinate”. Formally one considers the manifold 
consisting of triples (x, X, Y ) where x R, X is a configuration of 2k distinct 

unordered points in x   RN−1    RN , and Y  is a configuration of unordered points  
in the complement of X in RN . This manifold maps properly to the configuration 
space, generically an embedding but finite-to-one if some point in Y is contained 

in x × RN−1 or some 2k points in Y  contained in an xI × RN−1.  It thus defines       

a geometric cocycle, which represents γk as shown in Theorem 4.9 of [GSS12]. 
Similarly, the γk for odd primes are represented by the geometric cochain defined 
by  “pk points in CN  which share a complex coordinate.”  The cup products γk      

x[k] on the kth extended power are represented by labeled points which share a 
coordinate and are labeled by the representative of x. One must name which 
extended power because the cup product of manifestations of these classes on higher 
extended powers, given by transfer products with unit classes, can differ from this 
(as some points in a configuration could share their coordinate while others share 
their label). 

We have not developed geometric representatives for the γk
I  and λk, or their even 

sign degree products as considered earlier in [Gue17].  And as mentioned  before, 

one must take care with geometry and cup products since one would expect γ
[2]3 

to be represented by the geometric cochain defined by four points which consist of 
two sets of two points each of which share three coordinates. But it is represented 
by the union of this along with a copy of the geometric cochain defined by four 
points which share two coordinates. 

2.6. Explicit construction of (relatively) universal component Hopf rings 
with divided powers. In this subsection we analyze better the structures elabo- 
rated in the main theorems just stated, abstracting as follows. 

Definition 2.41. Let A be a component super-Hopf ring with additive divided 
powers  containing  ρ  as  a  subalgebra  of  A1,  its  ·-algebra  in  component  1,  and  let 

V  be a connected graded algebra.  Let Halg(A, V ), which we generally shorten    to 
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Halg, be the super-Hopf ring with additive divided powers universal among those 
satisfying the following five properties. 

(1) There is a map π : A Halg that is both a super-Hopf ring map and a 
morphism of divided powers structures preserving the -unit of each com- 
ponent; 

(2) There is a ρ-algebra homomorphism ι from V ⊗ρ to the subspace of elements 

of component 1 inside Halg (that is, an algebra morphism ι : V Halg in 
component 1 if p = 2); 

(3) For all x, xI   V ρ both with even total degree ι(x)[n]  ι(xI)[n] = ι(xxI)[n]; 

(4) For  all  x V ρ with even total degree and for all y A  such that 
n(y) = m, 

ι(x)[lm]  · π(y)[l]  =  (ι(x)[m]  · π(y))[l]; 

(5) If p > 2, x[n]  8 xI = 0 if x ∈ V ⊗ Fp ⊆ V ⊗ ρ and xI ∈ V ⊗ sgn ⊆ V ⊗ ρ. 

We wish to describe, in terms of additive bases of A and V , a basis for Halg. In 
Section 4.1 we will specialize it to our case of interest, where 

A = Fp ⊕ H∗(Sn; ρ)   and V  = H∗(X; Fp). 

n≥1 

In the remainder of this section, we will assume that p > 2, because the treatment 
for p = 2 is similar and much simpler. Let Veven (respectively Vodd) be the subspaces 
of V     ρ of even (respectively odd) total degree. 

As A, with the product and the coproduct Δ alone is a bicommutative divided 
powers Hopf algebra, by a classical result [And71] it must be the free divided powers 
Hopf algebra on its subspace of primitive elements.  That is, A ∼= DP (P (A)).  Since 
A is a component super-Hopf ring, P (A) is a non-unital component super-algebra 
with ·, that inherits a triple grading from A. 

We consider the tensor product of algebras Veven ⊗ P (A), that we tri-grade with 
the  following  rule:   if  v     Veven is  homogeneous  of  degree  d(v)  and  y      P (A) 
is tri-homogeneous  of tri-degree (d(y), n(y), e(y)),  then v     y      V      P (A) is   tri- 

homogeneous of tri-degree (d(v)n(y) + d(y), n(y), e(y) + d(v)). Intuitively, we in- 

terpret  a  pure  tensor  v  y  Veven  P (A)  as  the  element  ι(v)[n(y)]   π(y).  This 
justifies our choice of degrees. Recall that the sign degree e is defined only modulo 
2. 

From a graded module M we can construct an augmented non-unital coalgebra 

M pr = Fp    M  with the Fp addend in tri-degree (0, 0, 0) and a coproduct    Δ(x) =  
1 x + x 1 for all x M . This is the “primitive coalgebra extension” of the 
module M . 

We then decompose Veven ⊗ P (A) as the direct sum (Veven ⊗ P (A))+ ⊕ (Veven ⊗ 
P (A))−, where (Veven ⊗ P (A))+ is the subspace generated by elements v ⊗ x ∈ 
Veven ⊗ P (A) in which e(v) = e(x) mod 2 and (Veven ⊗ P (A))− consists of such 
with e(v) /= e(x) mod 2). Then we let 

(H, 8, Δ) =∼ DPHA((Veven ⊗ P (A))
pr

) ⊕ DPHA((Veven ⊗ P (A))
pr

)/∼, 

where ∼ is the equivalence relation that identifies the units of the two addends. 

Additive bases for V and P (A) induce a basis for DPHA((Veven ⊗ P (A))pr), and 

consequently on H, consisting of elements of the form   i(vi ⊗ yi)   with vi, yi   

basis elements with ni = 1 if vi ⊗ yi has odd total degree and vi ⊗ yi belong all to 

(V  ⊗ P (A))+ or all to (V  ⊗ P (A))−. 
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= (−1) ι(vw) · π(y) · π(z) 

= (−1) ι(v) · ι(w) π(y)    π(z) 

[a] [b] [n(y)] [a] [n(z)] [b] 

(v ⊗ y) · (w ⊗ z) = (−1) ι(vw) · π(y · z  ). 

 

For now, H is only a component divided powers super-Hopf algebra. Under this 
isomorphism we next identify maps π : A → H and ι : V ⊗ ρ → H, as well as a 

second product · : H ⊗ H → H which provide it with a super-Hopf ring structure. 

First, we define π : A → H as the unique divided powers super-Hopf algebra 

morphism extending the linear map on primitives π : y ∈ P (A) 1→ 1V ⊗ y ∈ Veven ⊗ 
P (A) ⊆ P (H). Second, let ι : V ⊗ ρ → H. If v ∈ Veven, then we let ι(v) = v ⊗ 11, 

where 11  ∈ A is  the  ·-product  unit  of the 1-component  of A.  If  v ∈ Vodd,  then let 

s ∈ ρ be a generator of the sgn addend. Since vs ∈ Veven, we can define ι(v) as  
ι(vs)     s, where s     ρ     A1 is considered as a primitive element of    A. 

We construct the second product on H step-by-step. As always, between 
elements of different components will be zero. As an intermediate step, we define 
the  product  ι(v)[n]    x  for  all  v     Veven  and  x     H  with  n(x)  =  n     1.   The 
case n = 1 reduces to the product on V     ρ, so we can assume that n     2.  If      

x = (w  y)[m] is a divided power of a primitive element w   y   Veven   P (A), then 

we let ι(v)[n] x = (ι(v)(w y))[m]. We can then extend it to general x H by using 
Hopf ring distributivity, because H is generated under by the divided powers of 
its primitive elements. Explicitly, every element of H is a linear combination of 

products  
r
 x

[mi] for some xi = (wi ⊗ yi) ∈ Veven ⊗ P (A) and mi ≥ 1. We let 

ι(v)[
),

i n(xi)mi] · 
  

x
[mi] 

= 
 

(ι(v)(wi ⊗ yi))[mi] 

i i 

and we extend to all H  by  linearity. 

Proposition 2.42. There is a unique component super-Hopf ring structure on H 

such that the multiplication by ι(v)[n] for v Veven has the form defined above, and 

satisfying the five conditions of Definition  2.41. 

Proof. Let v, w ∈ Veven and y, z ∈ P (A) be tri-homogeneous elements. Note that, 

by the definition of the multiplication by divided powers of elements of Veven above, 
we  must  have  v      y  = ι(v)[n(y)]    π(y) and  w      z  = ι(w)[n(z)]    π(z).  Hence,  if    H 

satisfies the third and fourth conditions we must have 

(v ⊗ y) · (w ⊗ z) = (ι(v) · π(y)) · (ι(w) · π(z)) 

t(y)d(w)n(z)ab [n(y)a] [n(z)b] [a] [b] 

 
t(y)d(w)n(z)ab [n(y)a] [a] [b] 

 

for all a, b such that n(y)a = n(z)b. Moreover, if π is a morphism of Hopf rings and 

of divided powers structure, π(y)[a] · π(z)[b] = π(y[a] · z[b]). In conclusion 

[a] [b] t(y)d(w)n(z)ab [n(y)a] [a] [b] 

 

Consequently,   the  conditions  above  uniquely  determine  the  values  of         on 
-indecomposables. Therefore, if an extension of exists, it is necessarily unique. 
To prove existence, we only need to check that the formula above provides a well- 

defined bilinear product satisfying Hopf ring distributivity. This is straightforward. 
For instance, one can fix bases of A and V , define the product as above on the 
induced basis, extend it to all H by bilinearity and directly check the axioms of 

Hopf rings using the basis. D 

We now prove that H is our desired   object. 
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Proposition 2.43. The super-Hopf rig with additive divided powers H explicitly 

constructed above is the universal object Halg of Definition 2.41. 

Proof. Let B be a super-Hopf rig with additive divided powers with maps πB : A 
B, ιB : V ρ B satisfying our desired hypotheses. DPHA and pr are left adjoints 
of the forgetful functor from divided powers Hopf algebras to coalgebras and the 
primitives P : R-coalg → R-mod, respectively. Therefore, a morphism of divided 

powers Hopf algebras f : Halg → B such that fπ = πB and fι = ιV  is  uniquely 

determined by its restriction to Veven   P (A).  If, in addition, f is a super-Hopf rig 
morphism, then 

f (v ⊗ y) = f (ι(v) · π(y)) = ιB(v) · πB(y) 

for all v ∈ Veven and y ∈ P (A). Therefore, such a morphism is unique (if it exists). 
To prove existence, we let f : Halg → B be the divided powers super-Hopf algebra 

morphism adjoint of the linear map v ⊗ y ∈ Veven ⊗ P (A) ιB(v)[n(y)]  · πB(y) ∈ 
P (B).  We  only need to check  that f preserves the · product,  and by  Hopf    ring 
distributivity it is enough to prove this on 8-indecomposables, that is divided 

powers of elements of P (Halg) = Veven ⊗P (A). By our construction of the · product 

in Halg, we immediately see that f (ι(v)[a] · x) = ιB(v)[a] · f (x) for all v ∈ Veven and 
x    Halg and a    2.  Moreover, since πB is a super-Hopf rig morphism, we have 
that 

f 
(
(v ⊗ y)[a] · (w ⊗ z)[b]    = (−1)t(y)d(w)n(z)abf 

(
ι(vw)[n(y)a] · π(y[a] · z[b])

 
 

= (−1) ιB(vw) · πB(y · z  ) 

= 
(
ιB (v)[n(y)]  · πB

 (y)  
[a] 

· 
(
ι (w)[n(w)] · πB

 (z)  
[b] 

= f (v ⊗ y) · f (w ⊗ z)  . 

D 

Since we  want  to specialize to the case A = HEP 
∗(S0) and V  = H∗(X; Fp) and  

as shown in Remark 2.39 the relation between cup product and divided powers  

in HEP 
∗(S0) is complicated, it is preferable to rephrase the construction above  in 

terms of indecomposables. In a Hopf algebra with divided powers, the indecompos- 

ables are elements of the form x[p  ] with x primitive and k ≥ 0.  Consequently, as  
a graded bicommutative Hopf algebra alone, DPHA(V  ⊗ P (A)pr) is generated by 

[pk] 

{(v ⊗ y) }v∈V,y∈P (A),k≥0 = V ⊗ Q(A). 

We  obtain  an  isomorphism  of  indecomposables  Veven ⊗ Q(A)  ∼=  QHalg  given  by 

v ⊗ y v[n(y)] · y  for  all  v  ∈ V  and  y  ∈ A,  and  this  realizes  Halg,  under the 
product    alone, as the free graded commutative algebra generated by Veven Q(A), 
quotiented by the image of the Frobenius and the ideal generated by the relation 
(5). As a result, any pair of additive bases for V and Q(A) induce an additive basis 
for Halg. 

In summary, we have the following. 

Lemma 2.44. Let e0 (respectively e1) in ρ be a non-zero element in the constant 
representation (respectively sign representation) addend of ρ. Let Q(A) be the space 

of 8-indecomposables of A.  Let B
ρ 

V  and BA be totally ordered additive bases of Veven 

and Q(A) respectively. Define BV as the set of elements {v ⊗ ei}v∈BV ,i∈{0,1}. Order 

B 
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i=1 ι(vi)[n(yi)] · π(yi) 

ρ 

∈ Halg  with  v1  ≤ · · · ≤ vr  ∈ B  ,  y1  ≤ · · · ≤ yr  ∈ BA,V 
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S 
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∗ ∗ ∗ 

C(X) can be defined through an embedding R∞ R∞ → R∞, through which one  

can take the image of the union of configurations with labels in X. Since it   arises 

 

 BV  in(any way (e.g.  le)xicographically).      Let B be the set of elements of the form 
 

such that: 

• the sign degree of all the 8-factors is the same 

• the multiplicity of every 8-factor of even total degree is at most p − 1, 

• and the multiplicity of every 8-factor of odd total degree is at most   1. 

Then B is a basis for Halg as an Fp-vector space. 

3. The homology and cohomology of symmetric groups with 

twisted  coefficients 

Homology of extended powers and free infinite loop spaces are algebras over the 
Kudo-Araki-Dyer-Lashof algebra, an algebra of homology operations that constitute 
the basic building blocks of the homology of the extended powers of a point – that 
is, the homology of symmetric groups. This structure is well-understood by the 
work of Cohen–Lada–May [CLM76]. Our strategy in this paper is to show that 
our descriptions which build on cup product structure pair perfectly with their 
descriptions. But for odd primes the cleanest descriptions of cohomology require 
considering coefficients in ρ, the Fp[ n]-representation which is the sum of the trivial 

and sign representations, introduced in the previous section. 
Thus, this section is divided in two parts.     In the first subsection we provide a 

description of the homology of D̃ X  with coefficients in ρ, in terms of Kudo-Araki- 
Dyer-Lashof operations. We do not make any claim of originality here, as we only 
review classical results by Cohen–Lada–May [CLM76] for the trivial summand and 
their recent extension to sign-twisted coefficients by Bernard [Ber]. In the second 

subsection we  dualize these results to obtain a description of    n≥0 H
∗(Sn; ρ) as    

a Hopf ring, and prove Theorem 2.35.  While the summand of sign degree zero  is 
known by our previous work, namely [GSS12] and [Gue17], the description of the 
sign degree one summand is new. 

 
3.1. The homology of extended powers in terms of KADL operations. 
Since we work with field coefficients in a setting which is finite dimensional in each 

grading, the homology of DX with local coefficients given by the Sn-representation 

An of Definition 2.17 is isomorphic to the bigraded linear dual of 

H∗(Dn(X); An) = HEP 
∗(X). 

n≥0 

Hence it will be a Hopf co-ring, endowed with two coproducts Δ , Δ·, and a product 
dual to ,  , and Δ respectively, satisfying all the axioms of a Hopf ring with the 

directions of all morphisms reversed. 

The product ∗ : Hi(DnX) ⊗ Hj(DmX) → Hi+j(Dn+mX). also has a group- 

homology interpretation. Let RSn be a resolution of Fp as an Fp[ n]-module, so that 
⊗n 

by Proposition 2.2 the homology of RSn ⊗Sn H
-

∗(X) is that of DnX .  The product 
· is induced,  up to sign,  by  the tensor product of the map    of resolutions RSn ⊗ 
RSm → RSn+m  induced  by  the  inclusion  Sn × Sm <→ Sn+m with the  isomorphism 

H- (X)
⊗n 

⊗ H-  (X)
⊗m ∼=  H-  (X)

⊗n+m
.   Geometrically,  the  product  on  D(X)  and 
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from a homotopy commutative multiplication on spaces we also call this product 
the Pontrjagin product. 

Since the coproduct and the transfer product on cohomology form a bialgebra, 
then for example if the evaluations of cohomology classes ai on homology xj are 
Kronecker – that is, (ai, xj) = δi,j – and the ai are primitive, then the evaluation 

 

introduced, as for example n a, x∗n  = n!. a[n], x∗n   is one,  as it is  given by 
the tensor product at the chain and cochain level.  Therefore, the divided  powers 
operations in cohomology “fill in” to produce duals in these cases. 

Just as the inclusions Sn × Sm <→ Sn+m give rise to the Pontrjagin product, the 

inclusions of wreath products n k < nk give rise to the algebraic Kudo-Araki- 
Dyer-Lashof  operations. 
Definition 3.1 (Compare [Ber]).  Use RSn ⊗ (RS  )⊗   as a resolution for Sn I Sk <→ 

n 

Snk. Let W∗ be the standard minimal Fp resolution of Cp, the cyclic group of order 
p and ei a generator  for Wi.   To  every chain e     ∈ W∗ we  associate  an operation 
q(e)# : RS   → RS    as sending a chain c to the image of e ⊗ cp under the map of 

pn 

resolutions induced by the inclusion of Cp n < np. 
We consider the linear morphisms 

⊗n 

 

⊗pn 

q(e):  H∗(Sn; H∗(X) 

induced by the map 

⊗ ρ) → H∗(Spn; H-∗(X) ⊗ ρ) 

c ⊗ (x1 ⊗ · · ·  ⊗ xn) 1→ q(e)  (c) ⊗ (x1 ⊗ ·· ·  ⊗ xn) . 

The Kudo-Araki-Dyer-Lashof (KADL) operations are linear morphisms 

q  = q(e ) : H   (S  ; H-  (X)
⊗n 

⊗ ρ) → H (S   ; H-  (X)
⊗pn 

⊗ ρ). 

Geometrically, qi on a homology class of X (the n =  1 case) when i is odd is 

represented in CX by a family of configurations with labels where the p points in 
the configuration are on the i(p 1)-sphere related by the action of a p-th root of 
unity, with labels all in the same cycle on X. 

We also remark that our indexing differs from [Ber, Definition 6.3] by a factor 
of (p − 1). 

For p = 2 we consider r-tuples (i1, ···  , ir). For odd primes, let β be the Bockstein 
homomorphism.  We  associate to a 2r-tuple I = (ε1, i1 , . . . ,  εr, ir), with εk ∈  {0, 1} 

and all ik ≥ 0,  the homology operation qI = βε1qi  ◦ ··· ◦ βεr qi .   We  say     that 
I is admissible if ik ≤ ik+1 − εk+1 (respectively ik ≤ ik+1 when p = 2) for all 

1 ≤ k < r and, in case p > 2, ik ≡ ik+1 − εk+1  mod 2∀1 ≤ k < r.  We  say   that 
I is strongly admissible if it is admissible and i1 > 0.     This is a reformulation 
of Bernard’s admissibility conditions, in Section 7 of [Ber], with the lower indices 
notation. 

Theorem 3.2 (Cohen–Lada–May [CLM76]). The mod-p homology of CX is a free 
graded commutative algebra with respect to the Pontrjagin product, generated by 

qI (x) where x ranges over a graded basis for the reduced homology of X and I ranges 

over strongly admissible sequences, with the additional requirement that for p odd ir 
and the homological degree of x have the same parity, where I = (ε1, i1 , . . . ,  εr, ir). 

Similarly, the homology of CX with twisted coefficients given by the mod p sign 
representation for p odd can be computed as an algebra using the twisted versions 
of  Dyer-Lashof operations. 

( i ai, ∗ixi) will be one.  But if some classes are repeated then coefficients are  

k k 
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Theorem  3.3  (Bernard  [Ber]).  For p  odd, the homology of D̃ (X) = C(X+)  with 

coefficients in sgn, the mod p sign representation, is the free graded commutative 
algebra with respect to the homology product generated by qI (x), where x ranges 

over a graded basis for the homology of X and I ranges over strongly admissible 
sequences such that ir and the homological degree of x have different parity, with  

I  =  (ε1, i1 , . . .  , εr, ir). 

Remark 3.4. Admissible, but not strongly admissible, KADL operations on CX 

can be retrieved by the identity q0(x) = x∗p. Iterated non-admissible sequences of 
KADL operations can be computed by means of Adem relations. Both in [CLM76] 
and in [Ber], an “upper indices” notation is used, because homological degrees 
behave better and Adem relations have a better form. We use a “lower indices” no- 
tation, because it makes the argument for the computation of the dual module and 
the construction of Hopf ring generators more transparent. The two conventions 
differ only by coefficients and reindexing, and are essentially equivalent. We refer 
to the two papers cited above for the precise relations between the two notations. 

Definition 3.5.  Let p be an odd prime and let k ≥ 0.  Define Rt be the Fp-vector 
space spanned by the admissible KADL operations qI where I = (ε1, i1,... , εk, ik) 

has length 2k. Let Rt =     k≥0 R
t . 

For p = 2, let Rk be the F2-vector space spanned by the admissible KADL 

operations qI , where I = (i1,... , ik) has length k. 

In light of our main application, we consider an admissible operation qI as acting 

on a 0-dimensional class. In this case, the subspace Rk ⊆ Rt spanned by qI such 
that ik is even corresponds to the classical untwisted KADL operations, and the 

subspace RI
k  ⊆ Rt spanned by qI such that ik is odd corresponds to the twisted 

 

KADL  operations.    Precisely,  by  sending  qI  to  qI (ι), for ι 0  ∈  H0(S0), we 

identify Rk as a subspace of H∗(Spk; Fp) ⊆ H∗(D(S0); Fp) and RI
k  as a subspace 

of  H∗(Spk; sgn)  ⊆ H∗(D(S0); sgn).   The  component  of  an  operation  qI  ∈ Rt is 

n(qI) = p , and its homological degree is d(qI ) = 
−   

p   (ij+1(p − 1) − εj+1). 

As a consequence of Theorem 3.2, H∗(DS0; Fp) = H∗(CS0; Fp) has a basis given 
by Pontryagin monomials in strongly admissible KADL operations in R = k Rk.  
We denote this basis with B, and we call it Nakaoka basis. Similarly, by Theorem 
3.3, H∗(DS0; sgn) has a basis given by ∗-monomials in strongly admissible KADL 

  
 

with odd degree must not appear twice in the same monomial. 

For  p = 2,  R = k Rk embeds as a subspace of H∗(CS0; F2) by sending qI to 
qI (ι),  whose component is n(qI ) =  2k and whose homological degree is  d(qI ) =   

k−1 
2jij+1. Theorem 3.2 provides a Nakaoka monomial basis as  above. 

3.2. Cohomology of symmetric groups with coefficients in the sign rep- 

resentation mod-p. To complete the description of H∗(DX; Fp) as a Hopf ring 
in the odd primary case, we must first analyze the cohomology of the symmetric 
groups with coefficients in the sign representation, mod p.  When we consider the 
cohomology of Xn

 , through say cellular chain models, a d-cell in X gives rise to a 

chain of d 
hSn 

, and a permutation σ ∈S  acts on this chain as multiplica- 
tion by (   1)d sgn(σ).  So for example H∗+nd(Dn(Sd); Fp) has a summand isomorphic 

to H∗( n; sgnd). While additive structures are isomorphic in the d even and odd 
cases, the product structures here differ significantly. 

k R
I
k, that we denote with Bsgn.  In both B and Bsgn, operations operations in RI = 



.  

R   R 

    

8 
8 

· 
8 

R 

8 

  

{ } 

S S ⊗ 
R R 

  
∗
 

S 

2 

R S 

S ⊕ → R ⊕ R ∗ ∗ ∗ I ∗ 

n n 

  

A first step in understanding a Hopf ring is through its -indecomposables, which 
by Hopf ring distributivity form a ring under the -product. In the bigraded compo- 
nent setting, this ring is a coproduct of the -indecomposables on each component. 
For the cohomology of symmetric groups these rings of -indecomposables form 
the foundation of our previous calculations [GSS12, Gue17], but the calculation of 
these rings goes back to the work of Cohen–Lada–May [CLM76], where they were 

called     ∗k. 
Thus the focus of this section is Lemma 3.8, which consists of the calculation 

of the dual  algebra of I.  While this computation for twisted  operations is 
similar to the untwisted case, it has not been computed previously. Our calculation 

here is a straightforward generalization of arguments in Section I.3 of [CLM76], and 
as suggested in that text we use lower index notation. 

Let ∗
k  and I∗

k  be  the  spans  of  linear  duals  qI
∨ of  the  operations  qI  of  length 

k  respectively in H∗(  pk; Fp) and H∗(  pk ; sgn    Fp)  with respect to the   Nakaoka 
bases. Because of the naturality of twisted KADL operations, the proof of The- 
orem 4.13 in [GSS12] also shows that the subspace of primitives with respect to 

the  coproduct  dual  to  the  transfer  product  P (     n≥0 H∗(Sn; An))  is  Rt = R RI. 

Because the transfer product forms a bialgebra with the coproduct dual to ∗,   the 
dual  classes    qI

∨   for  I  admissible  are  a  basis  for  our  Hopf  ring  indecomposables. 
Moreover, each component of this module of  -indecomposables is a graded com- 
mutative ring under cup product. 

Recall that the coproduct Δ: H∗(Cp) → H∗(Cp)⊗H∗(Cp) dual to cup product in 
the homology of the cyclic group Cp induces a unique coproduct ψ on Rt such that 

 

ψ(q(e)) =  (q ⊗ q)(Δ(e)).  The  coproduct  ψ  has the  form  ψ(qI )  = i ηiqJi ⊗ qKi, 

  
 

[CLM76] for the precise construction and related calculations. 

While the isomorphism H∗(   n; sgn) =∼ H∗(DnS1; Fp) guides us, we need to make 

a finer distinction for this calculation. While the transfer product and the coproduct 
are preserved by this isomorphism, the same does not happen for the cup product. 

By letting an operation qI act on [S1] in H∗(DS1; Fp) and composing with that iso- 

morphism, we can nevertheless embed I
k into H∗( pk; sgn). Combining this with 

what we know about the homology of the symmetric group with trivial coefficients, 
we  obtain a map κ : R⊕ RI →  n H  (Sn; Fp ⊕ sgn).  By duality this provides a  

map of Fp-modules κ  : H  (  pk; Fp    sgn)         k         k  .  We  compare the products  
in those rings. 

Proposition 3.6. If x ∈ Hd(Spk ; sgnε) and y ∈ HdI

(Spk; sgnεI

), then 

ψ∗(κ∗(x) ⊗ κ∗(y)) = (−1)ε(dI+ 
p−1 

kεI)κ∗(x · y). 

Proof.  Let X  be a space,  and let n = pk.  Fix a graded basis  B  of the homology    
of X. We observe that the following diagram commutes, where d denotes diagonal 
maps, τ the obvious shuffle map, and q is the obvious quotient map. 

 

D̃ 
n(X) 

dD̃ n (X) 

D̃ 
n(X)2

 

dE(Sn )×SndXn τ 

q 

(E(Sn) × E(Sn)) ×Sn (X  × X ) (E(Sn) × E(Sn)) ×(Sn×Sn) X 

i ηiqJi(x) ⊗ qKi(y).   We  refer  to which encodes a Cartan formula qI (x ⊗ y) =   

which encodes a Cartan formula qI (x ⊗ y )  =   i ηiqJi(x) ⊗ qKi(y).   We  refer  to 

2n 



.  

xI
i
I  in  H∗(X), for  some  xI

i, x
I
i
I  ∈ B.  Write  ψ(qI )  =   

i,k 

l 

n 

n 

ij 
il dE(S ) 

n ∗ 
⎝ ⊗ xI

i
I ⎠ .

j

 

n n 

i 
2 i i 

E(Sn)∗ I 

i i 

i i 2 i i I i i 

n 2 

n Sn 
n 2 

p ∗ n ∗ p n 

1 n 1 n 

G G 

i l I i i 

i 
2 i i 

I i i 

2 2 

p−1  I 

ηlκ(qJ ) ⊗ κ(qJ ) =  Il 2 

R 

l=1 2 
J K 

 

Consider qI (x) ∈ H∗(D̃ 
n(X)), where x ∈ H∗(X).  A ssume that Δ(x) = 

 
i λixI

i⊗ 

 
 

coproduct in homology dual to the cup product of H∗(Sn; Fp ⊕ sgn). 
Taking homology and keeping track of the image of qI (x) in the upper path in 

the diagram above, we obtain 

τ∗ ◦ dD̃n(X)∗
(qI (x)) = τ∗ ⎝

⎛
  

λiηlqJ
l
I(xI

i) ⊗ qJ
l
II(xI

i
I)

⎞

⎠ 

 

= (−1) |qJ  II ||x
I
i| 

λiηlqJI ⊗ qJII ⊗ (xI
i)

⊗
 ⊗ (xI

i
I)⊗ . 

l l 

i,l 

Similarly, for the lower path, we have 

q∗(dE(Sn) ×Sn dXn)∗(qI (x)) 

  ), 
 

 

  

 
|xII ||xI | 

⎛ 
n  

⎞ 
 

 
 

 

  
 

   

We can split this last summation as the sum over the set of n-tuples where all ik 

are equal to each other (say i) and the sum over the set on n-tuples which are not 
all equal.  The first part can be rewritten as 

  
λ (−1) 

n(n−1) |xI ||xII|d
 

 

 

(q ) ⊗ (xI ⊗ 
⊗ xII⊗ 

), 

 

 

which maps to      λ (−1) 
n(n−1) 

|xI ||xII|ϕ(q ) ⊗ xI ⊗
n 

⊗ xII⊗
n 

under q.   We claim 

 
 

E(S  )) × X2n; F  )  =∼  H  (S  ; (H  (X ; F  )⊗  )⊗ ).   The  S  -subrepresentation  of 

(H∗(X; Fp)⊗ )⊗  generated by (xI
i  ⊗ . . .  xI

i  ) ⊗ (xI
i
I ⊗ ·· ·  ⊗ xI

i
I ) with i1 , . . . ,  in not 

all equal is isomorphic to the induced Sn-representation of a G-representation for 
a Young subgroup G :s Sn. The corresponding terms in the sum above amount to 

trSn ρ
Sn(qI ), which is multiplication by the index [Sn : G], which is zero modulo  p. 

In conclusion, 
  

λ (−1)
|xI

i||qJII |
ψ(q  ) ⊗ (xI)⊗n 

⊗ (xII)⊗n

 

=   λ (−1) 
n(n−1) 

|xI ||xII|ϕ(q ) ⊗ (xI)⊗n 

⊗ (xII)⊗n

. 

 
 

 

Since n = pk,  
n(n−1)  

=  p−1 
k  mod 2.     Hence, the equality above is true for all 

spaces X and for all classes x ∈ H∗(X; Fp) if and only  if 

I II ε(|q II|+ ε ) 

for ε, εI ∈ {0, 1}.  Dualizing this we obtain the desired formula. D 

To  summarize, the coproduct dual to the cup product, when   restricted on t, 
has the form 

i 

i 

that the second part is zero.        Recall that there is an isomorphism  H∗((E(Sn) × 

i 

i 

j=1 j=1 i1,...,in j=1 

j n 

j xI
i
 n (qI ) ⊗S  ×Sn λi (−1)j 

i1,...,in j=1 

= 

l ηlqJ
l
I ⊗ qJ

l
II .   Let  ϕ  be  the 

n n 

i i 

1≤j<l≤n 

ηl(−1) ϕκ(qI) 
l 

l l 

l 



. 

 

I ϕ(q  ) =    
 

 (−1)
),n

 
( p−1 

jlkl+δljl)q ⊗ q  , 

where J = (ε1, j1,... , jn) and K = (δ1, k1,... , kn). 

J+K=I 



.  

+
  

∅,k 

{ LI 

  

  

 

The difficulty with this formula is that the sum is over all ways to decompose 

the sequence I, not just admissible sequences. Adem relations are needed to make 
calculations. The dual algebra is in the end manageable, though to this day (to our 
knowledge) even in the trivial coefficient setting the pairing between the Nakaoka 
basis on homology and the standard basis on cohomology from analysis such as we 
give below is not known. 

To calculate the product dual to ϕ in the sign representation setting, we continue 
to follow the trivial coefficient treatment of [CLM76, Section I.3]. We consider 
sequences of operations with minimal entries. 

Let  S  ⊆ {1, . . . , k} and  define  IS[k]  and  IS
I [k]  respectively  as  the  sets  of  the 

admissible 2k-tuples I = (ε1, i1 , . . .  , εk, ik) such that ij is equal to |S ∩{1 , . . . ,k−j}| 
(respectively (|S ∩ {1,... ,k − j}| + 1)) mod 2 and εj = 1 if and only if k +1 − j ∈ S. 
Note that {qI : I ∈ IS[k]} ⊆ Rk and {qI : I ∈ IS

I [k]} ⊆ RI
k. 

For all k ∈ N and S ⊆ {1 , . . . ,  k}, we can define a partial order ≤ on IS[k] and IS
I 

[k]  by  comparison  of  all  entries.   This  partially  ordered  set  possesses  all  meets, 
obtained by taking the minimum on each entry.  In particular, IS[k] and IS

I [k] have 

a minimal element, that we denote LS,k and LI
S,k   respectively. 

Although we will not need this, it is straightforward to write down the elements 

LS,k and LI
S,k explicitly. For instance, L{1,2},3 = (0, 0, 1, 1, 1, 2). Up to switching to 

upper-index notation, the (2k)-tuples LS,k coincide with those defined in   Section 
I.3 of [CLM76]. 

The following is straightforward combinatorics, following the same argument as 

Lemmas I.3.3 and I.3.4 in [CLM76]. 

Lemma 3.7. For all j, k ∈ N such that 1 ≤ j ≤ k, let 

Ij,k = (0,... , 0, 0, 2,... , 0, 2) ∈ I∅[k]. 

 
2(k

 
−
 
j)

     
2

 
j
 

The weighted sum (n1,... , nk) 

for all subsets S of {1,... , k}. 

LI
S,k 

k 
j=1 njIj,k is a bijection from Nk → IS

I [k] 

We  can now  compute the algebra dual to (Rt,  ϕ). 

Lemma  3.8.  Assume that p is odd.  We consider the following dual classes   in 

(Rt)∨ with respect to the admissible sequences basis: 

• ξj,k = qI
∨
j,k  

for 1 ≤ j ≤ k 

• ξk
I  = qL

∨
I 

• τj
I
,k = qL

∨
I 

for k ≥ 1 

for 1 ≤ j ≤ k 
{j},k 

As  an  Fp[ξ1,k,... , ξk,k]-module,  (Rt )∨  is  isomorphic  to  Fp[ξ1,k,... , ξk,k] ⊗ 

(Mk 

k 

Mk
I ), where 

• Mk is the Fp-vector space with basis {qL
∨

S,k 
}S⊆{1,...,k}, as in Cohen–Lada– 

May, and 

• Mk
I
 is the Fp-vector space with basis q∨

 
S,k 

}S⊆{1,...,k}. 

As  a  graded  commutative  algebra,  (Rt)∨ is  generated  by  ξj,k,  ξk
I
 and τj

I
,k with 

1 ≤ j ≤ k, under the relations 
ξk
I 

 

= ξk,k. 

Proof.  Theorem  I.3.7  in   [CLM76]  states  that   R∨
k   is   additively  isomorphic   to 

Fp[ξ1,k,... , ξk,k] ⊗ Mk. The exact argument used to prove that result, with Lemma 

2 



.  

R 
j,k 

= 

(  

s∈S s},k | | 
, 

{ 

= 

(  

s∈S s},k ∅,k | | 
. 

{ 

n 

n 

or ξk
I
 

that ξk
I
 

s∈S τs
I
,k (if |S| is odd) and the qLI

S,k  
is perfect.  This implies by Lemma 3.7 

and τj
I
,k with 1 ≤ j ≤ k generate (Rt )∨ as an Fp[ξ1 ,k,..., ξk,k]-algebra. We 

k 

k 
2 

k R 

k 

S,k 

S,k 

j,j 

LI 

i=1 

≥ ∈ 

k 

γ
[mp 
∅,i 

] (γI
s 
j 

j=1 

)[mp 

 

3.7  in  place  of  Lemma  I.3.4  of  [CLM76],  yields  an  additive  isomorphism  RI
k 

∨  ∼= 

Fp[qI
∨  ]1≤j≤k ⊗ Mk

I .  In particular, Fp[ξ1,k, . . . , ξk,k] is the dual of the quotient coal- 
gebra ∅[k].  Let + denote component-wise addition of 2k-tuples.  One can check 
that 

 
LS,k 

LI if  S  is even 
{ 

s∈S L
I 

s},k + LI
∅,k    if |S| is odd 

 

LI
S,k 

LI + LI if S  is even 
{ 

s∈S L
I 
s},k if |S| is odd 

 

This is true because   the function +  LI
 : IS[k]  → II [k] (respectively + 

I I 
{f},k S∪{f} 

L{f},k : IS[k] → IS∪{f}[k]) is an order-preserving bijection for all S ⊆ {1, . . . , f − 1} 
of even (respectively odd) cardinality, thus it must preserve minimal elements. Since 
application of Adem relations to a sequence qI produces elements qJ with J  > I 

and LS,k, LI
S,k are minimal, the argument in the proof of [CLM76, I.3.7] can be used 

to  prove  that  the  pairing  between  products  of  the  form      s∈S τs
I
,k  (if  |S| is  even) 

 
 

can check the relations ξI 2 
= ξk,k between the generators also following [CLM76]. 

Explicitly, since Ik,k =  LI
∅,k + LI

∅,k ,  (ξk
I  , qI 

 
k,k ) = 1.  Tracking degrees, the only 

possible summand of ξI 2 
is q∨

 , hence the relation holds.  By comparing dimen- 
k Ik,k 

sions, we see that these provide a presentation of (   t )∨ as a graded commutative 
algebra. D 

Remark 3.9. We recover the elements τj,k and σi,j,k defined at page 28 in Cohen, 
Lada and May’s book by the identities τj,k = ±ξk

I τj
I
,k and σi,j,k = ±τi

I
,kτj

I
,k.  These 

are indecomposables in R∨
k , but not in (Rt )∨. 

We now provide an additive basis for the twisted cohomology of the symmetric 
groups. In Definition 3.10, gathered blocks are elements of the universal Hopf ring 
of the statement of Theorem 2.35. 

Definition  3.10.  Given a subset S ⊂ {1, . . . , k}, define γS
I 
,k = qL

∨
I   , where linear 

duals are taken with respect to the Nakaoka  monomial basis.   Similarly,     define 

γS,k = qL
∨

 . We also define: 

• λk = γ∅
I  

,k 

• γj,m = (qI
∗m )∨

 

• γk = γk,1 

• γi
I
,m = (q∗m  )∨

 

I I 
{i},i 

• γk = γk,1 

Let S = {s1 < s2 · ··  < sr}⊂ {1 , . . .  , k} and let D = {ni}k 

 
be a finite sequence 

of non-negative integers of length k.  If |S| is odd let m = 1, but if it is even let 
m 1 and assume that k S or nk > 0. 

Set 
  ( 

k−i   ni  
r 

k−s 

 

 
 

 
 

 

where ε(r) is 0 if r is even and 1 if r    is odd. 

i=1 

S,D,m 

i=1 

S,D,m Γ = j ]λ ε(r), k 



.  

=     (γ
[mp −  ])n 

  
j−sj 
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ni 

[n]  [i] [n−i] 

k i k k 
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I I 
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k k n 
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Similarly, we define 
 

ΓI
S,D,m 

 

 
k 

k  i 
i 

∅,i 
i=1 

 

 
r 

(γs
I 
j
 

j=1 

 

)[mp ]λk 
1−ε(r), 

for S ⊆ {1 , . . .  , k}, with S and ni as above, but now if |S| is even then m = 1 and 
if |S| is odd then k ∈ S or nk > 0. 

We    call   ΓS,D,m   and   ΓI
S,D,m  gathered    blocks   with   profile   (S, D)    in 

n H
∗(Sn; Fp) or n H

∗(Sn; sgn) respectively. 

We  define our  preferred Hopf  monomials in HEP 
∗(S0) as  a  8 product of 

divided powers of primitive gathered blocks with pairwise different profiles, all 
belonging to      n H

∗(Sn; Fp) or all belonging to     n H
∗(Sn; sgn). 

The product of a collection of γ
[p        ] 

only depends, up to sign, on the union of 
i 

the Si as well as the list, with multiplicity, of the ni. 

We observe that ΓS,D,m and ΓI
S,D,m are primitive if and only if m = 1. 

These gathered blocks will be the building blocks of Hopf monomial bases   for 
the cohomology we compute, and can be assembled into “skyline diagrams.” The 
reader is encouraged to compare this with the notion of gathered block in the 

classical mod p cohomology of the symmetric groups, as defined in Guerra’s paper 
[Gue17] at page 964. 

Lemma 3.11. The universal Hopf ring described by the statement of Theorem 2.35 
is spanned as an Fp-vector space by Hopf monomials. 

Proof. By unraveling the definition of the universal object, we directly see that a 
complete set of relations for the considered component super-Hopf rig between the 
generators γ

[n]
, γI[n]

, λk is the  following: 
k i 

• (λk)2 = γk 

• the 8 product of a class in H∗(Sn; Fp) and a class in H∗(Sn; sgn) is  0. 

• Δ(λk) = 1 ⊗ λk + λk ⊗ 1 
• Δ(γ ) = γ ⊗ γ 

• Δ(γI   ) =  
 

  

γI[i] ⊗ γI[n−i] 
 

k i(  k \k 

  
 

   
 

 
[n] [m] n + m [m+n] 

• γ 8 γ = γ 

• the 8 product of elements with different sign degree is 0 

Since our Hopf rig is generated by the classes above, monomials in both products 
(· and 8) generate it as a vector space.  By Hopf ring distributivity we can reduce 

to  8-products  of  ·-monomials  of  generators.   Moreover,  we  can  further  restrict  to 

considering ·-monomials of generators all belonging to the same component and we 
can discard monomial in which λk appears at least twice thanks to the relation    
λ2 = γk.  All the relations above preserve profile of such     -monomials and can be 
used to equate any product which has the same profile as a gathered block. Hence, 
Hopf monomials generate our Hopf ring as a vector space. D 

We can now prove the main result of this section. 

Proof of Theorem 2.35.  Since q0 is the pth power in the mod p homology of  D(S0) 
with coefficients in ρ, then γj,pk−j = (qIj,k)∨ and γI   

k−i = γI . 

n 
[m+n] [m] [n] 

[m+n] 
• γk  8 γk  = 

[m] [n] n + m [m+n] 

k 



. 

 

i,p {i},k 



.  

R 

k 
[m] 
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m 

k k k 

8 

k 

mulation of those in (R  )∨. 
R 

8 

Rt I 

 

 
 

We use Proposition 3.6 and Lemma 3.8 to deduce our cup product relations. The 
structure  of  R∨

k  is  described  by  Theorem  I.3.7  in  [CLM76].  In  this  reference,  the 

product relations involve dividing by γ∅,k, but they are equivalent to the identities 

stated in [Gue17], of whose our relations (as far as ∨
k is concerned) are straightfor- 

ward reformulations that use lower indexes. For the cohomology with coefficients in 
the sign representation, a similar argument using Lemma 3.8 yields our description. 

We  first  observe  that  γj,pk−j ,  γi
I
,pk−i  and  λk  are  liftings  of  the  generators  ξj,k, 

τi
I
,k and ξk

I  of (Rt )∨. 

We  first  prove  by  induction  on  m  ≥  1  that  γI
k =  γk

I 
,m .   The  base  of the 

induction (m = 1) is obvious, so we assume m > 1. Since the product in homology 

is linear dual to the coproduct Δ in HEP 
∗(S0), a straightforward calculation by 

induction on i yields the coproduct formula: 

Δ(γk
I 
,m) =  

i+j=m 

γk
I 
,i ⊗ γk

I 
,j. 

Similarly, using the compatibility between coproduct and divided powers, we deduce 
by induction that 

Δ(γI[m]
) =      γI[j] ⊗ γI[m−j]

.
 

By combining  these  two  coproduct identities  with the  induction hypothesis  we 
deduce that the difference between γI [m] 

and   γI
 must be primitive.  If m is  not 

k k,m 

a power of p,  then there are  no    -indecomposables  in the right  component.    If 
m = pl, the primitives are determined by Lemma 3.8 and there is none in the 

correct  dimension.   In  all  cases,  this  difference  must  be  zero.   This  shows  that  γk
I 

is standard non-nilpotent.  A similar argument shows that γ
[m] 

= γk,m and γk is 
standard non-nilpotent. 

It is obvious from its definition that λk is primitive. The cup-product relation 
(λk)2 = γk holds because both sides are primitive, hence -indecomposables, and 
because this identity holds in (   t)∨.  Then our cup-product relations are a   refor- 

t 
k 

Let H be the universal Hopf rig described in the statement of Theorem 2.35. 
Since we have checked that all the required relations hold in HEP 

∗(S0), there must  
be  a  unique  Hopf  rig  map  π :  H  → HEP 

∗(S0) compatible  with  our  choice 

  
 

   

 

[pk] [pk] 

dual of , which is generated by the images of γ , γ and λ by Lemma 3.8, 

HEP 
∗(S0) is generated by the classes defined at the beginning of this proof and, 

consequently, π is surjective. Hence, by Lemma 3.11, the images of Hopf monomials 

generate HEP 
∗(S0) as an Fp-vector space. To prove that π is an isomorphism, it is 

enough to check that they form a basis, which can be done by comparing dimension 
degree-wise with the Nakaoka basis in homology, as done in [Gue17, Theorem 2.7]. 

D 

 
As a byproduct of this proof we directly obtain the following. 

Corollary  3.12.  The set of Hopf monomials in HEP 
∗(S0), defined  in Defini-  

tion 3.10, is a tri-graded additive basis for HEP 
∗(S0) as an Fp-vector   space. 

k i i 

n≥0 H
∗(Sn; ρ)  is  the linear of generators.  As the ring of 8-indecomposables in 

j=0 j=0 



.  
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for H∗(X; Fp).  Let A = 

n≥0 H
∗(Sn; An)  and  let  V   =  H∗(X; Fp).  Let  Halg be 

M 
· 8 

  

4. Cohomology rings of extended powers with basepoints 

We are now ready to establish our main calculations. In Section 2 we developed 
the algebraic framework which governs the cohomology rings of extended powers, 
when considered together. Such a framework demands twisted coefficients, so in 
Section 3 we extended well-known results about homology to that setting. We now 
show that the cohomology generated within the framework of component Hopf rings 
with divided powers pairs perfectly with homology. We develop an additive basis 
for the former before proving the pairing result. 

 

4.1. Additive basis for the cohomology of DX+. We describe explicit additive 
bases of the super-Hopf ring with additive divided powers given Theorems 2.37 and 
2.38. We use these to pair with homology. Our basis is useful to perform concrete 
calculations, because we describe an algorithm to compute the two products and 
the coproduct in terms of it. 

We primarily combine results from Section 2.6 with Lemma 3.11. We apply 
Lemma  2.44  when A = HEP 

∗(S0) and  V  = H∗(X; Fp),  so  that  a  basis  for  Q(A) 
is given by gathered blocks of component equal to a power of p by Corollary 3.12. 
The basis provided by Lemma 2.44 consists of such gathered blocks, with the extra 
datum of a class in the cohomology of X.  Informally, by the Hopf ring relations  
in A, the transfer product of two such gathered blocks with the same profile is 
again another gathered block. Therefore, we can merge -factors with the same 
profile and the same extra cohomology class of X and remove the constraint on the 
component. We formalize this as follows. 

Definition 4.1. Let X be a topological space and let B be a graded additive basis 
for H∗(X; Fp).   A decorated  gathered  block on B is a pair (x, b),  where b   is 

 
 

 

gathered block (x, b) is the profile of b, and its decoration is x.  Its sign degree   
is 0 if the degree of x and the sign degree of b have the same parity, is 1 if they  

have different parity. A decorated Hopf monomial on B is a formal expression 

of the form b1 8 ···  8 br, where b1 , . . .  , br are decorated gathered blocks on B, up to 
permutation of the bi, where no two bis have the same profile and decoration, and 
where all the bis have the same sign degree. 

Our previous results assemble as follows. 

Proposition 4.2. Let X be a topological space and let B be a graded additive basis 
 

the universal object among Hopf ring with additive divided powers satisfying the 
conditions of the statement of Theorem 2.38. Let M be the set of decorated Hopf 

monomials on B. We map M to Halg by realizing a decorated gathered block (x, b) 

as ι(x)[n(b)]   π(b), and a decorated Hopf monomial as the    -product in Halg of   the 
constituent gathered blocks. Then is an additive basis for Halg as an Fp-vector 
space. 

We can give a graphical description of our additive basis using a mild generaliza- 
tion of Giusti, Salvatore, and Sinha’s skyline diagrams. Moreover, all our structural 
morphisms can be understood graphically. We first consider undecorated skyline 
diagrams, which correspond to classes in HEP 

∗(S0). 
First, we recall some definitions from [GSS12] and [Gue17]. 

a gathered block in 
n≥0 H

∗(Sn; An)  and  x ∈ B.  The  profile of  the  decorated a gathered block in 



.  

    

 
n≥0 Sn p   

1 

|  | 
|  | 

|  | 
|  | 

1 1 

 

 

Definition 4.3. A skyline diagram is a display of columns placed one next to 
the other horizontally. Each column is comprised of rectangular boxes with the 
same width stacked one on top of the other. The possible dimensions of these boxes 

depend on a prime p: 

• If p = 2, a column can be made of any number of boxes of width n2k and 
height 1 − 2−k, for some k, n ∈ N, n ≥ 1. 

• If p  > 2, a column can be made of any number of hollow rectangles of 
width npk and height 2(1 − p−k) and at most one solid box of width npk 

and height dependent on a subset S ⊆ {1 , .. . , k}. To simplify notation, we  
let  |S|  =  2a + ε,  with  a  ∈  N  and ε  ∈  {0, 1}.    For  any  choice  of  k 

 
and S, we have two possible  heights: 
 

s∈S p
s−k − 2(|S| +1 − ε)p−k +1 − ε. 

s∈S p − 2(|S| + ε)p + ε and 

If a box has height given by the first formula, we say that it is of even 
type, while we say that it is of odd type otherwise. Boxes of even type are 
always defined if the subset has even cardinality S = 2a, while they are 
allowed for S = 2a + 1 only if n = 1. Boxes of odd type are always defined 
if the subset has odd cardinality S  = 2a + 1, while they are allowed for 
S  = 2a only if n =  1. 

We say that a column is of even type if its solid box is of even type or is 
absent, and we say that it is of odd type if its solid box is of odd type. 

We require that a skyline diagram does not contain two columns made of boxes 
with matching heights, and that its constituent columns are all of the even type or 
all of odd type. We do not keep track of the order in which columns are placed or 
in which boxes are stacked inside each column, so two skyline diagrams that differ 
by a permutation of their columns are considered the same. 

Each fundamental box should be interpreted as a  class in H∗( ; F ) or 

n≥0 H
∗(Sn; sgn), in the component corresponding to its width. Precisely: 

• if p = 2, the rectangle of dimensions n2k and 1 − 2−k corresponds to γk 
[n]

 

• if p  > 2, we regard the hollow rectangle whose width is npk and whose 
height is 2(1 − p−k) as γk 

[n]
 

• if p > 2, the solid box of even (respectively odd) type with width npk associ- 
ated to the subset S corresponds to the gathered block ΓS,0,n (respectively 
ΓI

S,0,n), as defined in Definition 3.10. 

A column is understood as the cup product of the constituent fundamental 
boxes, and a general skyline diagram is interpreted as the transfer product of its 

columns.  With these correspondences, the elements of the additive bases   for 

n≥0 H
∗(Sn; F2) and n≥0 H

∗(Sn; Fp) (p >  2)  obtained  in  the  papers  men-  

tioned above are described as those skyline diagrams (with columns of even  type 

if p > 2). For example, in Figure 1 we depict the skyline diagrams correspond- 
ing  to  Γ∅,{3},1  8 Γ∅,{0,1},1  =  γ3 8 γ2  ∈  H∗(S6; F2)  and  Γ{1},{1,0},1  8 Γ∅,{2},1   = 

γ1
[3]γI [3]

λ2 8 γ2 ∈ H∗(S12; F3). 
It is sometimes useful to consider vertical dashed lines dividing some boxes into 

equal parts.  Explicitly,  boxes  corresponding  to  γk 
[n]  are  divided  into  n  parts 

of width pk and, if p > 2, even-dimensional solid boxes of even type and odd- 
dimensional solid boxes of odd type corresponding to a subset S are divided into 
parts  of  width pmax(S). 

s−k −k 



.  

1 

1 1 

k 

∈ 

B 
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γ3 8 γ2 

 

 

 
γ1

[3]γI [3]
λ2 8 γ2 

 
Figure 1.  Examples of skyline diagrams in H∗(S6; F2) (top)    and 

H∗(S12; F3) (bottom) 

Proposition 4.4. Hopf monomials in HEP 
∗(S0) are in bijective correspondence 

with skyline diagrams as defined above. 

Proof.  We  already  noted that  solid  blocks correspond  to gathered  blocks ΓS,D,n 

or  ΓI
S,D,n and hollow rectangles correspond to γ

[n]
.  Hence, the set of all  possible 

columns is in bijective correspondence with the set of gathered blocks, with taking 
the cup product of the classes corresponding to the stacking of constituent boxes. 

Similarly, a skyline diagram gives rise to a Hopf monomial in HEP 
∗(S0) by tak- 

ing the transfer product of the gathered blocks corresponding to its constituent 
columns. 

To define this precisely, one needs to fix an ordering of the boxes and the columns 
for each skyline diagram, because cup product and transfer product are only com- 
mutative up to sign. With that subtlety, it is straightforward to check directly from 

the definitions that this is a bijection. D 

We next describe our generalization of skyline diagrams for HEP 
∗(X+). 

Definition  4.5.  Let p be a prime number and V  be a graded algebra over  Fp.   

A column decorated in V is a column diagram as in Definition 4.3, together 
with an element x   V .  Graphically,  we  depict the decoration of the column as   
an additional rectangle labeled x with width equal to its width and height equal  
to the degree of x, placed beneath that column. When p > 2, we say that a 
decorated column is of even type if the type of underlying undecorated column and 
the dimension of the decoration are both even or both odd. We say that it is of  
odd type otherwise. 

A skyline diagram decorated in V is a diagram constituted by columns 
decorated in V placed one next to each other horizontally, in which there are not two 
columns made of blocks of corresponding heights and having the same decoration 
and in which the constituent columns are all of even type or all of odd type. 

If is an additive basis for V as a graded Fp-vector space, then we define a 
skyline diagram decorated in as a skyline diagram decorated in V whose 
decorations are elements of that basis. 

  

    
 

 
 



.  
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We  now assume V  = H∗(X; Fp). 

Proposition 4.6. Let p be a prime number and let X be a topological space and be 

a basis for H∗(X; Fp). There is a bijective correspondence between the set of skyline 
diagrams decorated in and Hopf monomials with respect to the given basis in HEP 
∗(X+) as in Definition 4.1.  Stacking boxes on top of each other corresponds to 
taking the cup product of the associated cohomology classes (restricted to the relevant 

component) and placing columns next to each other horizontally corresponds to 

taking their transfer product. 

Proof. If c is a column with decoration x, we associate with it the decorated gath- 
ered block Γ(c) x[w], where w is the width of the column and Γ(c) is the gathered 

block in HEP 
∗(S0) corresponding to c.  We  then associate to a decorated    skyline 

diagram the transfer product of the decorated gathered blocks corresponding to its 
constituent decorated columns. It is easy to deduce from Proposition 4.4 that this 

is a bijection. D 

By taking only decorated skyline diagrams whose columns are all of even type, 

we obtain a basis for n≥0 H
∗(D̃ 

n(X); Fp). 
Our next aim is to describe a way to compute the structural morphisms via 

skyline diagrams. The rough graphical interpretation of the cup product of gathered 
blocks is “splitting and piling the corresponding columns one on top of the other.” 

However,  if p  > 2,  this procedure does not always yield an “allowable”   column. 

Hence, we must use our cup product relations in H∗(  n; Fp) or H∗(  n; Fp      sgn) 
to write that stack of rectangles as a multiple of an allowable column as follows. 

Proposition  4.7.  The cup product of classes in HEP 
∗(X+)  represented by single 

columns of width npk,p f n, proceeds as follows: 

We stack the hollow boxes of the two columns, and we substitute the two 

solid parts (if any) with a single solid rectangle whose height is the sum of 

the height of the two original solid boxes 

• Assume that the two solid boxes correspond to two increasing subsets S = 
s1  <       < sk   and S I =    sI

1, . . . , sl
I  .  We multiply the result by a scalar 

coefficient λ. If the two sequences have a common entry, λ = 0. Other- 
wise, it is equal to ±1, the sign being that of the permutation that puts the 

sequence (s1, . . . , sk, sI
1, . . . , sI

l) in increasing order. 
When n = 1 and the given columns are odd-dimensional and of even type 

or even-dimensional and of odd type, we add a hollow rectangle of height 

2(1 pk) and lower the solid part accordingly to preserve the total height of 
the column. 

The cup product of columns decorated in H∗(X) is obtained by cup-multiplying the 

underlying non-decorated columns and choosing as decoration the cup product of the 

original decorations. 

We  are  now  ready  to  describe  the  two products  , ,  and  the  coproduct Δ 
graphically: 

We obtain the transfer product of two skyline diagrams by juxtaposing 
them horizontally. If there are two columns of width n and m having the 
same decoration and boxes with the same heights (i.e., gathered blocks with 
the same profile), we merge them into a single column whose width is n+m, 

• 

• 

• 



.  
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∈ 

∈ 

⊗  → 

(ι  (x)   , α  ∗ ··· ∗ α  ) = ±    (ι  (x), α  ), 

≥ 

 with a 

coefficient 
(

n+m
)
, or 0 if p > 2 and the two    decorated columns 

are 
odd-dimensional. 
The coproduct of a Hopf monomial is computed via the fact that the gen- 
erators are standard non-nilpotent of primitive and the bialgebra property 
of Δ and . Graphically, this corresponds to drawing vertical dashed lines 
inside the rectangles as explained above, separating each column into two 
along vertical lines (dashed or not) of full height in all the possible ways, 
and arranging the new columns into two diagrams. Each new column is as- 
signed the decoration of the old column from which it arises. Equivalently, 

one  can  divide  rectangles  corresponding  to  x[n],  x     HEP 
∗(X+)  evenly  in 

parts of width 1 using internal dashed lines. 
The cup product of two skyline diagrams is obtained by first drawing all 
the dashed lines internal to the fundamental boxes. Then, divide the two 
diagrams into columns, either using the original boundaries or along the 
dashed lines that run entirely through the height of an existing column. Fi- 
nally, if possible match the columns arising from the first diagram bijectively 
with those coming from the second, respecting width, and cup-multiply the 
matched columns as in Proposition 4.7 and use them to create a new skyline 

diagram (with a suitable coefficient if p > 2). 
We remark that there is no clear graphical description of the divided power 
operations. 

4.2. Analyzing the pairing. To prove our main theorem we need a preliminary 
technical lemma. 

Lemma 4.8.  Let ιX : H∗(X ; Fp)   ρ HEP 
∗(X+) be the homomorphism that iden- 

tifies the domain with the component-1 algebra of the codomain.  Let π : HEP 
∗(S0) 

→ HEP 
∗(X+) the morphism naturally induced by the terminal map X → {∗}.  For 

all m ∈ N, for all x ∈ H∗(X; Fp) the following statements are true. 

(1) For all αi H∗(X; Fp), the Kronecker pairing between homology and coho- 

mology satisfies 

 
 

 
while 

n 
[n] 

X 1 n X i 

i=1 

(ιX (x) 
[n] 

, qI1(α1) ∗ · · ·  ∗ qIr (αr)) = 0  

if I1 , . . .  , Ir are admissible sequences of KADL operations with at least one 
qIi  different from q0 . . . q0. 

(2)  For all x, xI ∈ H∗(X; Fp) ⊗ ρ (both of even total degree if p > 2), ιX (x)[n] · 
ιX (xI)[n] = ιX (xxI)[n]

 

(3)   For  all  y ∈ H∗(Sn; ρ),  (ιX(x)[n] · π(y))[m]  = ιX (x)[nm] · π(y)[m]. 

Proof. We provide the proof for p > 2. The case p = 2 can be proved in the same 
way, without the complication of the sign representation. The statement for n = 1 
is trivial, thus we assume that n      2. 

The first statement follows from the formula for the coproduct of divided pow- 
ers and the fact that in component n = 1 the Kronecker pairing coincides with 

the Kronecker pairing between H∗(X; Fp) and H∗(X; Fp). For the last statement, 
exploiting again the coproduct formula of divided powers, we    reduce to the case 

r = 1. 

• 

• 

• 
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ε 

ε 

I 0 0 I ∗ pk ∗ p Spk 

k Spk 

k 

ε 

d(y) 

· · 

id ⊗μkn(y) 

→ 

 

 

Thus we  only need to prove  that (ιX (x)[p ], qI (α)) = 0 if I  is an   admissible 
sequence of KADL operations of length k different from q0 . . .  q0. To prove this, we 
pick a suitable cochain representative of ιX (x)[m]. Assume that x ∈ Hd(X; Fp) ⊗ ρ. 

Then for all m ≥ 2, the class ιX (x)[m] is in HEP 
∗(X)dm,m,e, where e =  0 if d is 

even, e =  1 if d is odd.  Almost by construction, ιX (x)[m] is represented by   the 
cochain 

x⊗m W 
Sm → F H∗(X; F )⊗m ⊗ sgne, 

0 p  → p 

where W Sm → F  → 0 is a free resolution of F  as an F [S ]-module. This is a well- ∗ p 
⊗m p p    m ∗ ⊗m 

defined cocycle because x is invariant under the action of Sm in H   (X; Fp) ⊗ 
 

sgne. If q  is different from q ... q  , then q  (α) ∈ H  (S   ; H  (X; F  )⊗p ⊗ ρ) is 
represented by  a cycle of the form y ⊗S

pk α
⊗   , with y    ∈ Wl and l > 0.  Such a 

p 

cycle must pair trivially with the cochain representative for ιX (x)[p  ]  above. 
I [n] 

S ε xI⊗n 

Similarly, ιX (x ) can be represented at the cochain level by W0 
n → Fp → 

H∗(X; Fp)⊗n ⊗ sgne(xI). Since the diagonal of the resolution W∗ must preserve the 

augmentation ε, composing the tensor product of the cochains representing ιX (x)[n]
 

and ιX (xI)[n]
 with  the  diagonal  we  obtain  W0

Sn
 → Fp 

(xxI)⊗n
 

→ H ∗(X; Fp)⊗n ⊗ 

sgne(x)+e(xI), which represents both ιX (x)[n] · ιX (xI)[n] and ιX (xxI)[n]. 
We can assume that y is tri-homogeneous and that k ≥ 2. If t(y) is odd, then the 

statement is trivial because both (x[n] · y)[k] and x[nk] · y[k] are zero, so we assume 

that t(y) is even.  Represent y by an S n(y) -equivariant cocycle f : W 
Sn(y) → sgne(y). 

Let tr : W 
Sn(y)k → W Sk ⊗(W 

Sn(y))⊗k be a chain-level representative of the transfer 
map. ∗ our represen ∗ of ι (x)[m] and combining with the diagonal  map, 

Using tative X 

we immediately have  that both ιX (x)[n(y)k]   π(y)[k] and (ιX(x)[n(y)]   π(y))[k]   are 
represented by the same cocycle 

 

S   tr  S 
 

 

Sn(y) ⊗k ε⊗f ⊗k
 

 
e(y) 

W∗ 
nk W∗ 

k ⊗ (W∗    ) sgn 

 

x⊗kn(y) H∗(X; F )⊗kn(y) ⊗   sgne ⊗ sgne(y) H∗(X; F  )⊗kn(y)  ⊗ 
 

 

sgne+e(y) . 

p Skn(y) p Skn(y) 

D 
 

We can now prove the main result of this  paper. 

Proof of Theorems 2.37 and 2.38. We only prove the theorem for p > 2, because 
the assertion for p = 2 is similar and significantly simpler. 

Let Halg be the component super-Hopf rig with additive divided powers having 
the algebraic presentation given. Since we know from Lemma 4.8 (statements (2) 

and (3)) that there are classes in HEP 
∗(X) satisfying the relations stated by the 

theorem, there is a morphism of component super-Hopf rigs preserving the divided 

powers structure Halg     HEP 
∗(X+).  We show that this map is an isomorphism. 

First, as above we invoke well-known results about structure of Hopf algebras 
[MM65, And71] to see that the graded linear dual of a bicommutative divided pow- 
ers super-Hopf algebra H is the free graded commutative algebra primitively gen- 
erated by P (H)∨, the dual space of the subspace of primitives P (H) ⊆ H. To prove  

that  the  map  Halg → HEP 
∗(X+)  is  an  isomorphism,  it  is  enough  to  check that 

the induced pairing between P (Halg) and the space Q of indecomposables  of 

k 



.  

1 2 r 

1 2 r 

S 

·   [p  ] 

⊗ 1→ 

{∗
} 

⊗ → ⊗ → 

[n] [n] 

  

(HEP 
∗(X+))∨ is perfect.  We achieve this by performing an ad-hoc analysis, which is 

the most delicate part of the proof. 
We need to have explicit descriptions of the space Q of indecomposables of 

HEP 
∗(X+)∨ and the space P  of primitives of Halg.  The graded dual of HEP 

∗(X+) 
is described in terms of KADL operations, extended to the sign representation case 
as described in Section 3. Precisely, Q has a basis B∗ given by classes of the form 

βε1qi β
ε2qi . . .  β

εr qi (α), 

where  (ε1, i1,... , εr, ir) is  a  strongly  admissible  sequence  of  KADL operations, 

ij+1 − εj+1 have the same parity for all j, and where α varies on a given additive 

basis of H∗(X ; Fp).  Since HEP 
∗(X+) is tri-graded and its structure maps preserve 

degrees,  (HEP 
∗(X+))∨ and  Q  are  also  tri-graded.   The  homological  dimension  of 

a basis element βε1qi βε2qi ... βεr qi (α), when α is tri-homogeneous, is computed 
from d(α) via the usual dimension formulas for KADL operations. Its component 
is prn(α).     Its sign degree is 0 if d(α) and ir have the same parity, 1 otherwise. 

P  = P (Halg) can be described directly in terms of the Hopf monomial basis   of 
Halg. Indeed, by the construction of Section 4.1, a basis B∗ of P is given by the  set 

of classes of the form b · x 
[pn] 

, where b ∈ H ∗(Spn; ρ) is a primitive gathered block 
in the twisted or untwisted cohomology of a symmetric group   pn and x belongs   
to a given additive basis of H∗(X; Fp).  The cohomological degree, the component 

n 

and the sign degree of b  x in H 

2) respectively. 
alg are d(b) + d(x)pn, pn, e(b) + d(x) (modulo 

Let P{∗} and Q{∗} be the module of primitives of HEP 
∗(S0) and that of indecom- 

posables for HEP 
∗(S0)∨, respectively.  By the description above there are isomor- 

phisms P{∗} ⊗ H∗(X ; Fp) =∼ P  and Q{∗} ⊗ H∗(X ; Fp) ∼= Q given by b ⊗ x b · x[n] 

and qI   α    qI (α), respectively.  We claim that, under these isomorphisms, the 
pairing between P and Q is equivalent to the tensor product of the Kronecker pair- 
ings P{∗} Q{∗}  Fp and H∗(X; Fp)  H∗(X; Fp)  Fp.  This  claim reduces  the  
calculation to the special case X =            already discussed in Section 3 and would 
thus complete the proof. 

To prove this claim, we first use May’s formulas for the coproduct Δ· dual to cup 
product of KADL operations and we obtain that, for all b ∈ P{∗}, x ∈ H∗(X; Fp), 
qI ∈ Q{∗}, α ∈ H∗(X; Fp), 

(b · x   , qI (α)) =    
 

 ±(b ⊗ x   , qJ (α(1)) ⊗ qK (α(2))). 
J+K=I Δ·(α)=α(1)⊗α(2) 

By Statement (1) of Lemma 4.8, (x[n], qK(α(2))) is zero unless qK = q0 . . .  q0 and the 
homological degree of α(2) is the same as the cohomological degree of x. Moreover, b 

being the pullback of a class from HEP 
∗(S0), (b, qJ (α(1))) is 0 unless the homological 

degree of α(1)  is 0.   These conditions can only be satisfied for a single addend:      
α = α(2), α(1) is a zero-dimensional class, qJ = qI and qK = q0 . . .  q0, for which we 
obtain ±(b, qI )(x, α). D 

5. Further cohomology ring calculations 

We  use  our  description  of  H∗(D̃ X ; Fp)  to  obtain  a  presentation  of  the  related 
algebras H∗(DX; Fp), H∗(CX; Fp) and H∗(QX; Fp). These results are all new 
except for H∗(QX ; F2) for which an equivalent result  has  been obtained by  Dũng 
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−→ 
S  I 

≤ → 

H∗(X) 
[r−m+n] 

[r] 

 

[Dun92]. The techniques used in that paper are different from ours, though, and 
we believe that our approach leads to a simpler proof. 

5.1. General extended powers. First, we describe HEP 
∗(X) when X is not 

necessarily obtained from a topological space by adjoining a disjoint basepoint. 
The following result is a consequence of our main theorems. 

Corollary 5.1. Let X be a pointed topological space. Let BI be a graded basis for 

H̃ ∗(X ; Fp)  and let B =  BI ∪ {1X } be the basis of the unreduced cohomology of X 

obtained by adding the unit of H∗(X[∗]; Fp), where X[∗] is the connected component 
of X containing the basepoint.  HEP 

∗(X) is isomorphic to the sub-Hopf rig with 

additive divided powers of HEP 
∗(X+)  consisting of the unit and the linear span of 

decorated Hopf monomials (with respect to the basis B) with decorations different 

from  1X . 

Proof. The map π : X+ → X that sends ∗ to the basepoint of X induces a map 

π∗ : HEP 
∗(X) → HEP 

∗(X+) that is both a morphism of Hopf rings and of divided 
powers structures. The dual map π∗ in homology is an epimorphism of algebras 
whose kernel is the ideal generated by qI ( ), with I admissible and non-empty. 
Consequently, π∗ must be injective. From the proof of Theorem 2.38 given in the 

previous  section,  we  see  that  the  Kronecker  pairing  between  HEP 
∗(X+)  and  the 

homology of D(X+) with coefficient in  ρ restricts to  a  perfect pairing  between 
the primitive gathered blocks not decorated with 1X and indecomposables of the 

homology of D(X+) not in ker(π∗).      We  deduce that the image of π∗ must be the 
sub-Hopf ring identified in the statement of the corollary. D 

5.2. Infinite extended powers. Given a pointed topological space X with base- 
point ∗, we take into consideration the space D∞X defined as 

D̃ 
∞X = {p ×S∞ (x1, . . . , xn, . . . ) : |{n : xn     ∗}| < ∞} ⊆ E(S∞) ×S∞ X

N, 

where S∞ = lim
n 
Sn is the infinite symmetric group.  (In Dũng’s paper, this space is 

denoted by    ∞ X .)  The calculation of the cohomology of D̃ 
∞X is a straightforward 

consequence of our main theorems. 

Corollary 5.2. Let X  be  a topological space and let B be  a basis of H∗(X; Fp)  

as an Fp-algebra that contains 1H∗(X) and extends an additive basis of the reduced 

cohomology of X.  For all n      m, let ρn,m : H∗(D̃ 
mX ; Fp)       H∗(D̃ 

nX ; Fp)  be the 
vector space homomorphism that maps a Hopf monomial x into 0 if x does not 
have a constituent block of the form 1

[r] 
with r ≥ m − n, or into y 8 1 if 

H∗X 

x = y 81H∗X , where y is another Hopf monomial not containing any divided power 

of 1H∗X  as an  8-factor. 
Then, all the maps ρn,m are ring homomorphisms and form an inverse system of 

Fp-algebras.  Moreover, the mod p cohomology ring of D̃ 
∞X  is naturally isomorphic 

to its inverse  limit 
lim H∗(D̃ 

nX ; Fp). 

←
n
− 

Proof.  By  construction  D̃ 
∞X  is  the  direct  limit  of  the  topological  spaces  D̃ 

nX . 
The embedding of D̃ 

nX  into D̃ 
mX  for n ≤ m is given by the functions 

fn,m : D̃ 
nX = E(Sn) ×Sn X    → E(Sm) ×S   X = D̃ 

mX, (n ≤ m) 
n m 

m m 



.  

S  → S → 

m−n 

H∗(D̃ nX;Fp) p p p 

←− 

≥ 

∈ 

∈M  
8 ≥ 

B ∈ M  
M 

+ 

n 

  

corresponding to the standard monomorphism n < m, and the inclusion Xn < 

Xm that maps Xn identically onto the first n coordinates of Xm and makes the 
last m − n coordinates equal to the basepoint. 

For  all  n ≤ m,  the  induced  morphism  fn
∗
,m : H

∗(D̃ 
mX ; Fp)  → H∗(D̃ 

nX ; Fp)  is 
equal to ρn,m. This fact follows directly from Theorem 2.37 and Theorem 2.38 
because we can identify fn

∗
,m with the composition of the iterated coproduct 

 

H∗(D̃ 
mX ; Fp) → H∗(D̃ 

nX ; Fp) ⊗ H∗(D̃ 1X; Fp)⊗
 

∼= H∗(D̃ 
nX ; Fp) ⊗ H∗(X ; Fp)⊗

 

 

with id ⊗ε⊗ ,  where ε : H∗(D̃ X ; F  ) ∼= H∗(X ; F  ) → F is the aug- 

mentation given by evaluation against the class of the basepoint of  X. 
Since the maps ρn,m are epimorphisms, taking the cohomology of the given limit 

of spaces yields the desired isomorphism between H∗(D̃ 
∞X ; Fp) and 

lim   H∗(D̃ 
nX ; Fp). D 

 

 

Corollary 5.2 provides a practical way to calculate cup products in the cohomol- 
ogy  of  D̃ 

∞X  by  restriction  to  D̃ 
nX  with  n  finite.   Suppose  X  is  connected,  and 

α1, α2 ∈ H∗(D̃ 
∞X ; Fp) are cohomology classes of dimension d1 and d2 respectively. 

The map ρn,m is an isomorphism in dimension less than or equal to d1+d2, provided 
that n, m d1 + d2. This fact is easily seen directly, but we can also view it as a 
consequence of homological stability. Therefore the natural restriction morphism 

ρn : Hd1+d2(D̃ 
∞X ; Fp) → Hd1+d2(D̃ 

nX ; Fp) is an isomorphism for all n ≥ d1 + d2. 

Hence, to calculate α1 · α2 is sufficient to apply ρd1+d2 and perform the computation 

in H∗(D̃ 
d1+d2; Fp). 

We use this method to extract a complete set of generators and relations for 
H∗(D̃ 

∞X ; Fp).  In what follows, until the end of this section, we will always assume 

that  BI  is  an  additive  basis  of  H̃ ∗(X ; Fp)  as  an  Fp-vector  space,  and  that  B  = 

BI ∪ {1} is the basis of the unreduced cohomology of X obtained by adding the 

unit 1 H∗(X[∗]; Fp), where X[∗] is the connected component of X containing the 
basepoint. In this section, we will often consider only connected spaces X. In those 
cases, 1 will be the unit of the cohomology ring of  X. 

 

Definition 5.3.  Let        be the skyline diagrams basis of H∗(D̃ X ; Fp) constructed 
from    .  The effective  width of an  element x is the width of  the skyline 
diagram obtained from x by removing any column with decoration 1 and height 0. 
In terms of gathered monomials, the effective width of x is the component of the 

unique gathered monomial  y  such  that x = y     1[r]  for some  r      0.  We  say  that 
x is pure is its width is equal to its effective width or, equivalently, if  x does 

not have any constituent block of the form  1[r]. 

 

Lemma  5.4.  Let  x  ∈ H∗(D̃ 
nX ; Fp)  be  a  pure  Hopf  monomial.  There  is  a  class 

x 81[∗] in lim   H∗(D̃ 
nX ; Fp) ∼= H∗(D̃ 

∞X ; Fp) which maps to x 81[r] in H∗(DmX) 

when m =
←
n
−n 

r. 

m−n 

m−n 

1 



.  

8 

X; F  )  
   ⊗1   

H∗(D̃ p 

8 

     Δn+m−1,1         
H∗(D̃   id ⊗ε  ˜ 

[m] 
id ⊗Δm−1,1     ˜ ˜ 

n p n p p) n p p p 

   ⊗id   
H∗(D̃   id ⊗ε  ˜ 

[m] 

n p n p p) H p p p 

⊗ ⊗ 

8 ∈ 

 

Proof. It is sufficient to check that the following equalities hold to see there is such 
a class in the inverse limit 

•  ρn−1,n(x) = 0  

• ∀m > 0 : ρn+m−1,n+m(x 8 1[m]) = x 8 1[m−1]. 

To prove the first identity, remember that ρn−1,n is equal to the iterated coprod- 
uct composed with augmentation ε on one tensor factor. Let V be the Fp-subspace 

of H∗(D̃ X ; Fp) generated by pure Hopf monomials.  Since the coproduct preserves 
the decorations of columns, Δ(V ) ⊆ V ⊗ V . Thus ρn−1,n is equal to a sum of terms 

of  the  form  ε(y)z,  where  y  ∈ H∗(X ; Fp)  and  z  ∈ H∗(D̃ 
n−1X ; Fp)  are  pure  Hopf 

monomials.  By  definition,  pure  Hopf  monomials  in  the  cohomology  of  X  ,.. D̃ 
1X 

are the elements of BI, and, as a consequence, they belong to the kernel of ε. Hence 
ρn−1,n(x)  =  0. 

In order to prove the latter identity, we observe that ρn+m−1,n+m(x 1[m]) is 
the image of x under the morphism 

 

H∗(D̃ 

 

[m] 
 

 

n p nX; Fp) ⊗ H∗(D̃ X; F  )  
      

H∗(D̃ 

 

n+m X; Fp) 

 

n+m−1X; Fp) ⊗ H∗(X; Fp) H∗(Dn+m−1X; Fp). 

 
Since Δ and form a bialgebra, this is equal to the sum of the   following two 

composition of maps, where τ exchanges two factors: 
 

H∗(D̃   X; F  ) 
⊗1       

H∗(D̃   X; F  ) ⊗ H∗(D̃ X; F H∗(D  X; F  ) ⊗ H∗(D X; F ) ⊗ H∗(X; F ) 

 

n+m−1X; Fp) ⊗ H∗(X; Fp) H∗(Dn+mX; Fp), 

 

H∗(D̃   X; F  ) 
⊗1       

H∗(D̃   X; F  ) ⊗ H∗(D̃ X; F 
Δ n−1,1⊗id ∗(D̃ X; F  ) ⊗ H∗(X ; F  ) ⊗ H∗(D̃ X; F ) 

 

     ( ⊗id)◦τ       
H∗(D̃ 

n+m−1X ; Fp) ⊗ H∗(X; Fp)  
  id ⊗ε   

H∗(D̃ 
n+mX; Fp). 

 
The first composition is equal to 1[m−1],  because  Δm−1,1(1[m]) =  1[m−1]

 

1 and ε(1) = 1.  Pure Hopf monomials belong to the kernel of the second one, 
because, as we have already seen, the coproduct preserves the subspace generated 
by them and every pure monomial in H∗(X; Fp) lies in the kernel of ε. Thus, 
ρn+m−1,n+m(x 8 1[m]) = x 8 1[m−1]. D 

Lemma  5.5.  The  set  {x 8 1[∗]   :   x  ∈  M pure}  is  linearly  independent in 

H∗(D̃ 
∞X ; Fp).  Moreover, if X  is connected, it is a basis for that vector space. 

Proof. Given a finite set of elements of the form x 1[∗], for N N large enough, their 
restrictions to H∗(D̃ 

N X ; Fp) are linearly independent, which implies the linear 
independence of the original elements. If X is connected, given k ∈ N, for N large  

enough  dependent  on  k  the  map  ρN : Hk(D̃ 
∞X ; Fp)  → Hk(D̃ 

N X ; Fp)  is  an 

isomorphism, thus the given set is a basis for Hk(D̃ 
∞X ; Fp), because it restricts to 

a basis for Hk(D̃ 
N X ; Fp). D 

m m−1 

m n−1 m 

m 



.  

∗ 

  

  

J 

8 

i 1 r 

  
⊗

 

x · (b 8 1 ) =    (x · b) 8 xi , 

∈ 

· 
∈ ∈ 

· 8 −  8 

1 r−1 

r 

  

If  X  is  not  connected,  we  can  reduce  the  computation  of  H∗(D̃ 
∞X ; Fp)  to  the 

connected case as follows. Let {Xα}α∈π0(X) be the set of the connected compo- 
nents of X. Let [  ] denote the element of π0(X) corresponding to the   component 
containing the basepoint. Then there is a natural homotopy equivalence 

D̃ 
∞X ,.. 

α∈π0(X)\{[∗]} 

D̃ Xα × D̃ 
∞X[∗], 

which induces an isomorphism of the cohomology algebras 

H∗(D̃ 
∞X ; Fp) =∼ 

{nα}α∈N

 

π0(X)\{[∗]} 

H∗(D̃ 
nαXα; Fp) ⊗ H∗(D̃ 

∞X[∗]; Fp). 
α 

We next analyze cup product computations for the classes x81[∗]. As a technical 

tool, we will exploit the existence of an increasing filtration {FnH∗(D̃ 
∞X ; Fp)}n≥0 

of Fp-vector spaces, where FnH∗(D̃ 
∞X ; Fp) is the linear span of the elements x   1[∗] 

arising from pure Hopf monomials x with a width lower than or equal to n. Lemma 

5.5 guarantees that n≥0 FnH∗(D̃ 
∞X ; Fp) = H∗(D̃ 

∞X ; Fp) when X  is connected. 

Lemma  5.6.  Let  b1, . . . , br  be  primitive  gathered  block  in  H∗(D̃ X ; Fp)  and  let 

n1,... , nr be strictly positive integers. Then 

 
(b

[ni] 
8 1[∗]) − b

[n1] 
8 · · · 8 b[nr] 8 1[∗] ∈ Fw−1H∗(D̃ 

∞X ; Fp), 
 

 

 

where w is the sum of the widths of b
[n1]

,... , b
[nr]. 

1 r 

Proof.  The argument boils down to restricting to H∗(D̃ 
N X ; Fp) with N     N large 

enough and perform the calculations there, where the claim is a straightforward 
consequence of our Hopf ring presentation. 

Explicitly, we observe that Δ preserves the effective width. Formally, if the 
effective width of a Hopf monomial x is w, then its coproduct can be written 

as Δ(x) = i xI
i x

I
i
I where the sum of the effective widths of xI

i and xI
i
I is w.   

Moreover, our cup product formulas imply that given a non-trivial gathered block 

b     H∗(D̃ 
nX ; Fp)  and  a  Hopf  monomial  (not  necessarily  pure)  x      H∗(D̃ 

nX ; Fp) 
belonging to the same component, the cup product x b is always the sum of pure 

Hopf monomials (when it is not zero). These two facts together with the Hopf ring 
distributivity formula guarantee that, given x ∈ H∗(D̃ 

nX ; Fp) with effective width 

w, and a non-trivial gathered block b ∈ H∗(D̃ 
mX ; Fp) whose width is less than or 

equal to n − w, the following equality holds: 

[n−m] I
i
 II 

i 

where the effective width of xI
i
I  is less than or equal to w, and we  have  equality     

in  a  single  case  in  which  xI
i  = 1[m]  and  xI

i
I  = ρn−m,n(x).  Therefore  the  difference 

x (b 1[n−m]) b  ρn−m,n(x) is a linear combination of Hopf monomials whose  
effective widths are strictly less than n. 

We can now prove our claim by induction on r. For r = 1 the statement is 

trivial. For r > 1, the previous argument with x = b
[n1] 

8 ··· 8 b
[nr−1] 

8 1[N] and 

b = b
[nr] 8 1[M ], with N, M  ∈ N big enough, completes the induction. D 

i=1 

i=1 

r 



.  

•    2k 

i=1 

i=1 

= n + N . 

i j 

∈ ∈ ∈ 

(b[n] 8 1 )k =     
 

 j=0 

k 

  

B 

p 

• A 
k 

{ } 
A 

j=0 

 k−1 k 

j=0 [a ]  
),k−1 

ν (2k  i) ∈ { k} 

 

Lemma  5.7.  Let b  ∈ H∗(D̃ X ; Fp)  be a gathered block.  If p >   2  we  also assume 

that b is even-dimensional. Then (b 8 1[∗])p = bp 8 1[∗]. 

Proof. First, we prove an auxiliary formula. For any a ∈ N, define νj(a) ∈ {0, 1} as 
the coefficient of 2j in the dyadic expansion of a.  Given n, k, N ∈ N, let An,k,N    be 

 

the set of 2k-tuples (a  ,... ,a  ) ∈ N2   that satisfy the following two conditions: 
1 

• ∀0 ≤ j < k :    
2k

 

 

  

2k 

a ν (2k − i) = n 

 

  

For all n, k N, for all N N large enough, and for all b H∗(D̃ X ; Fp) primitive 
gathered block of width w, the following equality holds: 

2k 

[Nw(b)] 

X 

 
(b[ai])

),k−1 
νj (2

k−i). 

a∈An,k,N i=1 

We prove this formula by induction on k. For k = 1 it is trivial, and the induction 
step is a straightforward application of Hopf ring distributivity. 

We  now construct a permutation σ  ∈ S2k that maps An,k,N  into     itself,  when 

acting  on  N2   by  permutation  of  the  2k coordinates.   Given  τ  ∈ Sk,  we define 

τ ∈ S2k by the formula 
    k−1 

   ∀1 ≤ i ≤ 2k : τ (i) = 2k − 2jντ (j+1)−1(2k  − i). 
j=0 

We let σ = τ where τ ∈ Sk is a k-cycle. Observe that: 

• σ has order k and its fixed points in {1 , . . . ,  2k} are 1 and 2k; 

• σ(An,k,N ) = An,k,N ; 
Two 2 -tuples in n,k,N that belong to the same σ-orbit give rise to addends 
in the formula above that differ only by a permutation of the transfer 
product factors. 

These remarks imply that the fixed points of σ in  n,k,N are the 2k-tuples that  

are constant on the σ-orbits of   1 , . . .  , 2k  . 
We specialize to the case k = p to complete the proof. Since, under this condition, 

σ has order p, the sum of all the addends in the previous equality that do not 

correspond to fixed points  of σ  in An,p,N  is zero,  because  of  the commutativity 

of  8.   Moreover, the function νj(2   − )  is  constant  on the  orbits  of  σ  in 

{1,... , 2k}.  Therefore, in the addends corresponding to a 2k-tuple a ∈ An,k,N such 

that σ(a) = a, the factor (b  i ) j   −   appears at least p times if i /  1, 2   . 
Due to the properties of divided power algebras, all these addends are zero, except 

when ai = 0 for all i ∈/ {1, 2k}.  This leaves only one addend, easily seen to be equal 

to (b[n])p 8 1[Nw].  Passing to the limit completes the proof. D 

We are finally ready to produce our presentation for H∗(D̃ 
∞X ; Fp).  In order to 

do so, we need to impose some restrictions on the basis for H∗(X; Fp).  Recall  
that the Frobenius homomorphism makes H∗(X; Fp) an abelian restricted Lie al- 
gebra over Fp. If it is of finite type, then it can be decomposed as a direct sum of 

monogenerated abelian restricted Lie algebras, of the form F {x, xp,... , xpk 

} with 

deg(x) = d ∈ N, k ∈ N, and xpk+1 

= 0. The bases {x, xp,... , xpk 

} on those sub- 
spaces and the existence of that decomposition determine a basis BF of H∗(X; Fp). 

i a 

i a 

k 



.  

8  [∗]  p 

8 

( 
{ ∈ } 

8 

∈ 

8 ∈ 

  

p  8 

  
 

Theorem 5.8 (After Dũng [Dun92] for p = 2).  Let X be a connected space of finite 
type.   Let  BF  be  the  basis  constructed  above.   Then  H∗(D̃ 

∞X ; Fp)  is  the  graded 

commutative Fp-algebra generated by the set of classes of the form b  1[∗], where b 

is a gathered block (or decorated column, in the language of skyline diagrams) whose 

width is a power of p satisfying at least one of the following conditions: 

the decoration of the column is not a pth power in  H∗(X; Fp) 

at least one of the constituent rectangles of the column appears a number 

of times that is not divisible by p 

• the column has a non-trivial solid part (if p >   2) 

Moreover, a complete set of relations for these generators is given by equalities of 
h(b) 

the form (b   1  )      = 0, with b even-dimensional. If x denotes the decoration of 
b, we define h(b) through the following formula: 

 

min  n N : xpn  

= 0 if p = 2 or b has no solid  part, 
h(b) =  

1 otherwise. 

 

Proof.  Lemma 5.7 guarantees that the given relations hold in H∗(D̃ 
∞X ; Fp).  Thus 

we need to prove two facts, namely that the given classes generate that cohomology 
algebra, and that there are no other independent relations. 

In  order  to  prove  the  first  claim,  we  use  the  filtration  {FnH∗(D̃ 
∞X ; Fp)}n≥0 

of  the  cohomology  of  D̃ 
∞X  by  effective  width  defined  previously.   We  prove  by 

induction on n that FnH∗(D̃ 
∞X ; Fp) is contained in the subspace V  generated by 

our selected elements b 8 1[∗]. For n = 0, the claim is obvious. So assume that n > 

0 and that Fn−1H∗(D̃ 
∞X ; Fp) ⊆ V . 

First, for any gathered block b whose width is a power of p, b    1[∗]    V , even  if 
b does not satisfy any of the three required conditions. Indeed, because of Lemma 
5.7, any such element is the (pk)th power, for some k N, of some other class of the 

form bI   1[∗] arising from a gathered block bI that meets one of those conditions. 
Second, for any pure Hopf monomial x of width n, x can be written as a multiple 

of the transfer product of some gathered blocks b1 , . . .  , br whose widths are powers 
of p.  By Lemma 5.6 we have  that 

 
r 

x ∈ (bi 8 1[∗]) + FnH∗(D̃ 
∞X ; Fp) ⊆ V 

i=1 

 

and this proves our first claim. 

In order to prove that the given relations suffice to describe H∗(D̃ 
∞X ; Fp) com- 

pletely, it is sufficient to check that the Poincaré series of this cohomology algebra 
and the graded commutative Fp-algebra A∞(X) defined by the given presentation 
are equal. 

On the one hand, we observe that 

 
A∞(X) =  

b,deg (b) even 

F [b 1[∗]] 

(b 8 1[∗])h(b) 
⊗ Λ{b, deg(b) odd}, 

 

where Λ is the exterior algebra functor and the tensor product is over gathered 
blocks b satisfying the conditions in the statement of this theorem. 

• 
• 



.  

k 

8  [∗]  p 

∼= 
n

α∈π  (X)\{[∗]} 
˜ 

α  × [∗] 

k 

→ 

8 

8 8 

 

On the other hand,  the subspace (isomorphic to H∗(D̃ 
∞X ; Fp) by Lemma 5.5) 

generated by pure Hopf monomials in H∗(D̃ X ; Fp) is a subalgebra under the trans- 
fer product, and is isomorphic to 

b,deg (b) even 

Fp[b] 

(b 
p
) 
⊗ Λ{b, deg(b) odd}. 

Here the tensor product is performed over all the gathered blocks whose width is a 

power of p that are different from 1[p  ], regardless of the stated conditions. 

As we  already observed,  for every generator b 8 1[∗]  and every 1 ≤ k <    h(b), 

the power (b 1[∗])p is again a class of the form bI 1[∗],  where bI is  another non-
trivial gathered block whose width is a power of p. Conversely, any such element 
can be obtained by iteratively applying the Frobenius homomorphism to one of 
the generators of A∞(X).     This implies that in any degree d, (A∞(X))d and 

Hd(D̃ X ; Fp) have the same dimension. D 

5.3. Free E∞ spaces. We move to the cohomology of CX, the free E∞-space 
generated by X, as defined in Cohen–May–Lada [CLM76]. 

Let X+ be the pointed topological space obtained from X by adding a disjoint 
basepoint  ∗.   Observe  that  C(X+)  =∼ D(X+)  ∼=  D̃ X .   The  map  p : X+  → X  that 

sends  ∗ to the basepoint  of X  induces  a surjective function Cp : D̃ X  ∼= C(X+) → 
CX .  This map factors through the projection D̃ X → D̃ 

∞X . 

The description of the functor H∗(C ; Fp) given in [CLM76, part I, Theorem 
4.1]  and  the  surjectivity  of  the  map  p∗ : H∗(X+; Fp) → H∗(X ; Fp)  imply  that  the 

induced morphism in homology (Cp)∗ : H∗(D̃ X ; Fp) → H∗(CX ; Fp) and, as a direct 

consequence, H∗(D̃ 
∞X ; Fp) → H∗(CX ; Fp) are epimorphisms.  Dually, this means 

that  H∗(CX ; Fp)  → H∗(D̃ 
∞X ; Fp)  is  a  monomorphism.   Therefore,  we  identify 

H∗(CX ; Fp) with a subring of H∗(D̃ 
∞X ; Fp). 

At  the  level  of  homology,  (Cp)∗ :  H∗(D̃ X ; Fp)         H∗(CX ; Fp)  is  the  unique 
morphism of algebras over the Dyer–Lashof algebra that extends the map p∗ : 

H∗(X+; Fp) → H∗(X ; Fp).  Let  [x0] ∈ H∗(X ; Fp)  being  the  class  in  H0(X ; Fp) 

corresponding to the basepoint x0 ∈ X. Then, using homology operations, the 
kernel can be described as the ideal generated by qI ([x0]), with I non-empty, along 
with 1 − [x0], Dualizing yields the following. 

Corollary 5.9. Let X be a connected space of finite type. Then H∗(CX; Fp) is 

naturally  isomorphic  to  the  subring  of  H∗(D̃ 
∞X ; Fp)  generated  by  classes  of  the 

form (b 1[∗]) satisfying the criteria stated in Theorem 5.8 and the additional 

condition that the decoration of b is different from   1. 
h(b) 

Moreover, the relations (b 1   ) = 0 among those generators are sufficient 

to give a complete description of H∗(CX; Fp) as an algebra. 

Although Corollary 5.9 holds only for connected spaces X, we can reduce the 

general calculation of H∗(CX; Fp) to this particular case. It is enough to note that, 
if {Xα}α∈π0(X) is the set of the connected components of X, then there is a natural 

homeomorphism CX D(X  )    C(X    ), and to apply the Künneth 
0 

isomorphism. 

5.4. Free infinite loop spaces. We conclude this section with an analogous de- 
scription of the cohomology of QX.  When X  is connected, CX  and QX  are    also 
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connected and the natural map CX  QX  induces an isomorphism in cohomol-  
ogy. When X is not connected, CX is not connected, and its commutative H-space 
structure makes π0(CX) a commutative monoid.  Using the description above, we 
immediately see that π0(CX) ∼= Nπ0(X)\{[∗]} and that the component correspond- 

ing to k = {kα}α∈π0(X)\{[∗]} is homeomorphic to     α D̃
 
kα(Xα) × C(X[∗]).  We name 

this component (CX)k. 
We recall the existence of a natural isomorphisms of Hopf algebras H∗(QX ; Fp) ∼= 

H∗(CX; Fp)     π  (CX) Fp[G],  where  G  =  Zπ0(X)\{[∗]}  is  the  group  completion  of 

π0(CX), and Fp[G] is its group algebra over Fp. This isomorphism is classically 
well-known and is discussed in [CLM76, part I, Theorem 4.2]. 

Let Π be the poset Nπ0(X)\{[∗]} = π0(CX) with order 

{kα}α ≤ {nα}α ⇔ ∀α ∈ π0(X) \ {[∗]} : kα ≤ nα. 

For all k, n ∈ Π with k ≤ n, let  fk,n :  H∗((CX)k; Fp)  → H∗((CX)n; Fp)  be  de-  

fined by multiplication with [xn−k], the class of a point xn−k  (CX)n−k.  These  
maps define a direct system, whose limit is isomorphic to each component of 
H∗(CX; Fp) ⊗π0(CX) Fp[G]. The topological counterpart of this is the homotopy 

equivalence QX Q0X G, where Q0X is the connected component of QX  con-  
taining the basepoint. Indeed, the direct limit above is isomorphic to the homology 

of Q0X. 
Therefore describing the cohomology of QX is equivalent to calculating the dual 

of that direct limit, i.e. the inverse limit of the inverse system made by the dual 

spaces.  Note that the morphisms fk
∗
,n : H

∗((CX)n; Fp) → H∗((CX)k; Fp) are anal- 
 

ogous  to  the  maps  ρn,m used  to  compute  H∗(D̃ 
∞X ; Fp)  in  Lemma  5.5,  but  with 

blocks of the form 1[r] replaced with any gathered block of dimension zero. Explic- 

itly,  they are of the   form 1
[r] 

for  some  α  ∈ π0(X) if  the  basis B contains 

all the units 1H∗(Xα;Fp). Thus, we can replicate the argument used to compute the 

cohomology of D̃ 
∞X to determine H∗(QX ; Fp), by replacing pure Hopf monomials 

with Hopf monomials that do not contain columns of height zero or with decoration 
1. We give below the precise statements. 

Definition  5.10.  Let  x  be  a  Hopf  monomial  in  H∗(D̃ X ; Fp).   We  say  that  x  is 
full-width if it does not have any gathered block of dimension 0. 

Lemma 5.11. Assume that the chosen basis B of H∗(X; Fp) contains 1α = 
1H∗(Xα;Fp) for all  α  ∈  π0(X). Then,  to  every  full-width  Hopf  monomial  with- 

out constituent blocks with 1[∗] as decoration, we can associate an element x∞  ∈ 
lim 

k∈Π H
∗((CX)k; Fp) ∼= H∗(Q0X ; Fp) defined by the formula 

(x   )|  ∗ 

  

= 

(
(x 8 
 

α∈π0(X)\{[∗]} 1
[kα−nα]

) 8 1[∗]   if k ≥ n , 
∞   H  ((CX)k;Fp) 

0 otherwise, 

where nx is the unique element of Π = π0(CX) such that x 81[∗] ∈ (CX)n . These 

elements x∞ form a basis of H∗(Q0X; Fp) as an Fp-vector space. 

Theorem 5.12. Chose the basis B of X as we did for Theorem 5.8. Moreover, 

assume that 1H∗(Xα;Fp)    for all α    π0(X).  Consider the set of elements b∞,    
where b is a full-width gathered block of width equal to a power of p, whose decoration 

is different from 1[∗], and that satisfies at least one of the following conditions: 

• the decoration of the column is not a pth power in  H∗(X; Fp) 



.  

p 

 

at least one of the constituent rectangles of the column appears a number 

of times that is not divisible by p 

• the column has a non-trivial solid part (if p >   2) 

This set generates H∗(Q0X; Fp) as a graded commutative algebra, with relations 

given by (b∞ 
h(b) 

) = 0, where we define h(b) as in Theorem 5.8. 

Proof. Since the obvious analogs of Lemma 5.6 and Lemma 5.7 also hold in this 
case, the statement can be proved with the same argument used for Theorem 5.8, 

by  replacing CX with Q0X  and b 8 1[∗]   with b∞. D 
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(French), Massachusetts Institute of  Technology,  Mathematics  Department,  Cam- 

bridge, MA, 1955. MR79332 

[CLM76] Frederick R. Cohen,  Thomas  J.  Lada,  and  J.  Peter  May,  The homology of iterated 

loop spaces, Lecture Notes in Mathematics, Vol. 533, Springer-Verlag, Berlin-New 

York, 1976. MR436146 
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Università  di  Roma  Tor  Vergata,  Italy 

Email  address :  salvator@mat.uniroma2.it 
 

Department of Mathematics, University of Oregon 

Email address : dps@uoregon.edu 

https://mathscinet.ams.org/mathscinet-getitem?mr=3623678
https://mathscinet.ams.org/mathscinet-getitem?mr=506881
https://mathscinet.ams.org/mathscinet-getitem?mr=2520991
https://mathscinet.ams.org/mathscinet-getitem?mr=281196
https://mathscinet.ams.org/mathscinet-getitem?mr=263100
https://mathscinet.ams.org/mathscinet-getitem?mr=174052
https://mathscinet.ams.org/mathscinet-getitem?mr=494093
https://mathscinet.ams.org/mathscinet-getitem?mr=193127
https://mathscinet.ams.org/mathscinet-getitem?mr=584466
https://mathscinet.ams.org/mathscinet-getitem?mr=224681
https://mathscinet.ams.org/mathscinet-getitem?mr=1410468
https://mathscinet.ams.org/mathscinet-getitem?mr=54964
https://mathscinet.ams.org/mathscinet-getitem?mr=99029
https://mathscinet.ams.org/mathscinet-getitem?mr=1802339
mailto:guerra@mat.uniroma2.it
mailto:salvator@mat.uniroma2.it
mailto:dps@uoregon.edu

