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Abstract

The mainstream recipe for long-run economic prosperity rests upon gen-
erating novel ideas and turning them into marketplace innovations. Such
innovations increase productivity, and an increase in productivity begets
economic growth. Nonetheless, uncovering the roots, mechanisms, and
consequences of the production and diffusion of ideas remains a crucial
challenge. Ideas and knowledge are “public goods” that markets fail to
deal with, causing distortions in the level and direction of research efforts.
For instance, insufficient resources support fundamental research on cru-
cial issues such as climate change. Fortunately, knowledge flows following
patterns that can now be tracked by exploiting big data, combined with
network and data science tools. Accordingly, this dissertation takes a
data-driven perspective to provide new evidence on how social, techno-
logical, and geographical proximity affects the production and diffusion
of knowledge.

The first essay provides evidence that centrality in the inter-sectoral
knowledge space positively affects the competitiveness of industries, but
only national knowledge flows have a significant impact. We shift the em-
phasis of the analysis from the bilateral knowledge flows that characterize
industrial relationships to the position of an industry in the entire inter-
sectoral knowledge space. We collect patent data on 14 manufacturing
industries in 16 OECD countries over the period 1995–2009 to track down
inter-sectoral flows, and then we investigate whether the relative posi-
tion of an industry affects its international competitiveness. The analysis
suggests that centrality in the inter-sectoral knowledge space positively
affects industries’ export market shares. Furthermore, national-level
knowledge flows’ impacts on international competitiveness are stronger
than international ones. Industries that can intercept knowledge flows
outperform their foreign counterparts. Interestingly, this is true as far
as national flows are concerned: geographical boundaries still limit the
transmission of tacit knowledge.

Next, the second essay shows that knowledge and social proximity
drive scientists’ research portfolio diversification, and social relationships
become crucial when scientists move far from their core specialization.
By looking at the research output of roughly 200k physicists and using
bipartite networks, we derive a measure of topic similarity and a mea-
sure of social proximity to investigate to what extent knowledge and
social proximity shape scientists’ research portfolio diversification. We
find that scientists’ strategies are not random and significantly affected
by both measures. However, social relatedness stands out in explain-
ing research diversification, suggesting that science is an eminently social
enterprise. In addition, a significant negative interaction between knowl-
edge and social relatedness signals that the farther scientists move from
their specialization, the more they rely on collaborations.

Finally, the third essay aims at quantifying knowledge spillovers stem-



ming from research efforts in “Negative Emissions Technologies” (NETs),
deemed as one of the leading potential solutions to tackle global warming.
As of today, however, NETs hardly represent fully developed technolo-
gies to be deployed at scale. By looking at scientific articles, patents,
and policy documents, we quantify the impact of NETs within and be-
yond the scientific realm. Our results suggest that knowledge spillovers
are non-negligible for NETs research. Yet, the impact of different NETs
varies greatly within science, and Direct Air Capture (DAC) is the option
that generates more impact beyond the academic world (measured by ci-
tations coming from patents). Finally, we also apply network analysis to
identify research hubs that can support future collaborations.

Science and technology policy will play a crucial role in shaping our
response to crises and societal challenges, such as global health issues or
climate change. The essays collected in this work contribute to the litera-
ture by offering novel insights into how scientific and technical knowledge
flows across our economies and societies, including policy-relevant recom-
mendations.

Keywords:
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“As long as scientists are free to pursue the truth wherever

it may lead, there will be a flow of new scientific knowledge

to those who can apply it to practical problems.”

Vannevar Bush (1945)

Chapter 1

Introduction

Innovation is the primary driver of long-run economic prosperity. Economists hardly

agree on anything, but they all agree on the staple role of knowledge and innova-

tion in fostering growth. The mechanism through which innovation affects growth

is pretty straightforward in theory: novel ideas turned into practical innovations

increase productivity, and a higher level of productivity fosters economic growth. In

other words, as of today, the ingredients of long-run growth are known, but the exact

recipe is still missing. The main reason behind this uncertainty is that knowledge is

not a common good (Nelson, 1959; Arrow, 1962). In short, two features characterize

goods: rivalry and excludability. Rivalry captures whether the value/availability of

the good decreases as more people consume it. On the other hand, excludability

elucidates whether the availability of the good can be restricted.

Knowledge is non-rival and, arguably, only partially excludable. Therefore, pro-

ducing new knowledge generates spillovers, constituting a positive externality. Posi-

tive externalities occur when producing a specific good benefits third-party economic

agents. The case of knowledge is quite intuitive: once a piece of valuable knowledge

has been produced, anyone can reuse it with nearly no constraints. For instance,

learning and applying the Pythagorean theorem does not reduce its value for anyone

else. Simply put, we can define knowledge spillovers as flows of useful information

that are not directly mediated by a market transaction. So, they might be consid-

ered a favorable occurrence, at least in principle. Unfortunately, however, they are

the root cause of a daunting market failure: under-investment in science and inno-

1



vation. If the benefits of working on novel ideas can not be entirely appropriated,

private organizations might have less incentive to undertake risky research projects

in the first place1.

Furthermore, there are signals that research productivity is slowing down, and

one possible explanation is that new ideas are getting harder and harder to find

(Jones, 2009; Bloom et al., 2020). Markets are not efficient in fixing the rate and di-

rection of innovation (Stiglitz and Greenwald, 2014). As a result, despite a sustained

increase in university research, productivity growth has stagnated over the past years

in many advanced economies. Too often, university and corporate research differ

in nature and scope, hampering the transmission of scientific knowledge towards

productivity-enhancing solutions (Arora et al., 2020). To put it simply, finding gen-

uinely innovative ideas is increasingly costly, and corporate labs shift away from

basic research. All told, globalization is crucially affecting the map of economic and

scientific activities. Nevertheless, proximity – in multiple dimensions – still plays

a leading role in our allegedly borderless economy, particularly for what concerns

innovative and creative endeavors. (Breschi and Lissoni, 2001; Breschi and Malerba,

2005; Carlino and Kerr, 2015; Balland et al., 2020).

Consequently, the following questions arise rather naturally: how can we un-

cover the nature of knowledge production and diffusion? What are the reach and

boundaries of knowledge flows, and how can we quantitatively measure them? To

answer the questions above, we need an alternative – data-driven approach. In 1992,

the Nobel laureate Paul Krugman argued that: “knowledge flows are invisible; they

leave no paper trail by which they may be measured and tracked,...”(Krugman,

1992). Nowadays, this is not entirely true. Indeed, thanks to data and network

science tools, coupled with the increasing availability of digital traces of innovation

activities, we can now shed some light on the production and diffusion of knowl-

edge (Fortunato et al., 2018b; Wang and Barabási, 2021). In a nutshell, this is the

essential purpose of the dissertation. In line with this view, the following chap-

ters provide new evidence on how social, technological and geographical proximity

1See Summers and Jones (2020) for a recent and rigorous treatment of the private vs. social
returns of innovation investments.
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shape the production and diffusion of knowledge, taking a computational social

science perspective.

1.1 Summary of main contributions

This section summarizes the main contributions of the thesis 2. Chapter 2 (see Panel

I for a graphical summary) investigates how inter-sectoral knowledge flows affect

the international competitiveness of industries. The relationship between technol-

ogy and the international competitiveness of industries has always been a central

topic for both academic inquiry and economic policy. For simplicity, we can con-

sider industries’ international competitiveness as a function of cost and technological

factors. Moreover, among technological factors, we can distinguish between inno-

vative activity per se (e.g., knowledge production, patent stocks) and the diffusion

of advanced knowledge (i.e., national and international knowledge spillovers). In

our empirical investigation, we focus on the knowledge diffusion channel by shifting

the emphasis of the analysis from the bilateral knowledge flows that characterize

industrial relationships to the position of an industry in the entire inter-sectoral

knowledge space. In more detail, we collect patent data on 14 manufacturing in-

dustries in 16 OECD countries over the period 1995–2009, and assess whether the

relative position of an industry affects its international competitiveness. We derive

national and international technological networks using co-occurrences in patent

classes and citation data. Then, we test two hypotheses; namely: (i) that being

central in the flow of information positively affects international competitiveness,

and (ii) that the relevant scale for making effective use of information is the na-

tional level. To capture the position of industries in our knowledge space, we pick

two relatively simple network measures: the strength (i.e., weighted degree central-

ity) and the local clustering coefficient. Given the persistency in the export market

shares, in our primary empirical strategy, we use a GMM estimator in a dynamic

panel setting to check whether centrality at the national and international level mat-

2I will refer to findings and analyses using plural first-person pronouns throughout the thesis.
Science is increasingly a team endeavor, and the articles this dissertation is based upon have been
co-authored.
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ters for competitiveness. Our results suggest that (i) centrality and local clustering

in the inter-sectoral knowledge space positively affect the export market shares of

the industry; (ii) these two effects are somewhat redundant (i.e., being central in a

knowledge space is far less relevant when the industry is already embedded within a

cluster); and (iii) national-level knowledge flows affect international competitiveness

much more than international ones. In short, our analysis suggests that the position

in the inter-sectoral knowledge space is more relevant than standard technological

indicators in explaining export market shares. Further, industries that can inter-

cept knowledge flows outperform their foreign counterparts. However, this is true

mostly as far as national flows are concerned: geographical boundaries still limit the

transmission of tacit knowledge.

Chapter 3 (see Panel II for a visual summary of the results) investigates how sci-

entists move and interact in knowledge space. Scientists, likewise innovators, may

work on several topics during their careers, and their choices are driven by a variety

of factors. Broadly speaking, there are at least two general mechanisms that may

affect scientists’ behavior: the first is the well-known trade-off between exploration

and exploitation. The second is the so-called burden of knowledge - which forces

scientists to seek a narrower specialization and rely on collaborations. Despite re-

cent efforts to better clarify the mechanisms that affect scientists’ diversification

strategies, the empirical evidence is still puzzling. On the one hand, we know that

most scientists change their research interests only slightly over time. Exploration

characterizes their career, but mostly within their area of expertise. On the other

hand, there are signals of an increasing trend for scientists to switch topics. The pur-

pose of this chapter is to disentangle and quantify the role of different contributing

factors, with a focus on knowledge and social relatedness. To do so, we reconstruct

the careers of approximately two hundred thousand physicists relying on the hierar-

chical structure of PACS classification codes (Physics and Astronomy Classification

Scheme). Then, using bipartite networks, we derive a measure of topic similarity

and one of social proximity to investigate to what extent knowledge and social prox-

imity shape scientists’ research portfolio diversification. We model the probability

that a scientist i, specialized in sub-field a, is also active in some sub-field b different
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from her own specialization as a function of the knowledge relatedness between the

two fields, the social relatedness between the author and authors in the target sub-

field, and including several control variables. In practice, to estimate the model, we

need three ingredients: the core specialization of scientists (captured using the Re-

vealed Comparative Advantage - RCA), a measure of knowledge relatedness among

physics subjects (measured using the cosine similarity among PACS codes), and

an indicator of social relatedness (measured as a dummy that captures whether a

given scientist can reach a certain sub-fields through direct social interactions). We

employ a logistic regression, and we find that scientists’ strategies are not random

and are significantly affected by both measures. Furthermore, a significant nega-

tive interaction between knowledge and social relatedness suggests that the farther

scientists move from their specialization, the more they rely on collaborations. To

quantify the relative role of various factors, we first run a group LASSO algorithm

to track how different predictors are excluded or included in the model as the reg-

ularization penalty varies. Then, we compute the relative contribution to deviance

explained - that is, the percentage of the logistic regression deviance that is captured

by each predictor. Interestingly, social relatedness stands out in explaining research

diversification, suggesting that science is an eminently social enterprise.

As mentioned before, too few resources are allocated to crucial issues such as

climate change. Worse, some innovations hardly leave academia to spread across

our societies. Chapter 4 (see Panel III for a minimalist storyboard) focuses on

the multidimensional nature of knowledge spillovers generated by Negative Emis-

sions Technologies (NETs), deemed one of the leading potential solutions to global

warming. NETs pursue the removal of CO2 from the atmosphere through technical

means; the latest (April 2022) report of the Intergovernmental Panel on Climate

Change (IPCC) claims that without employing NETs, it will be impossible to stay

within the 1.5 (or even 2) degrees temperature change threshold. Unfortunately, to

date, NETs do not yet represent fully developed technologies ready to be deployed

at scale; a lot of research and innovation are still needed to turn these technologies

into practical options. Against this backdrop, we use an innovation network per-

spective or, more precisely, a science of science perspective, to quantify knowledge
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spillovers from NETs scientific advances within and beyond the academic realm. Be-

cause tackling climate change requires basic scientific research, practical innovation,

and political support, we move beyond standard citation counts in our analysis. In

addition to collecting all NET-related articles from the Web of Science (WoS) using

keywords in titles and abstracts, we retrieve information from patents and policy

documents. Focusing on eight major NET domains, we evaluate knowledge spillovers

using article citation counts for the science dimensions, and citations in patents and

policy documents for the technology and policy dimensions. Our statistical analyses

employ Generalized Linear Models and we ensure stability constructing 30 suitable

control groups with an exact matching procedure, and re-estimate our models with

each. Our results suggest that NETs-related research generates significant, posi-

tive knowledge spillovers within science and from science to technology and policy.

However, significant differences exist across carbon removal solutions. For instance,

Direct Air Capture (DAC) is the only option linked to practical technological inno-

vation, while Bio-energy with Carbon Capture and Storage (BECCS) appear to lag

behind. Interestingly, policymakers tend to overlook advances in DAC, focusing on

solutions such as BECCS and Blue Carbon (BC). Finally, we also study the spatial

distribution of NET-related research with network analysis tools, identifying cities

and countries that can serve as research hubs for supporting future collaborations.

Science and technology policy will play a crucial role in shaping our response

to crises and societal challenges, such as global health issues or climate change.

The essays collected in this thesis (Chapters 2,3,4) contribute novel insights into

how scientific and technical knowledge flows across our economies and societies,

including policy-relevant recommendations. We end with final remarks in Chapter

5.

1.2 Data and schematic outline

This Section briefly describes the main data sources used in the thesis, most of which

are freely available patent and publication data. Figure 1.1 provides a schematic

summary highlighting data sources and key concepts used in each chapter. This
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stylized guide can help the reader navigate the different parts of this dissertation by

pointing out what kind of data, proximity measure, methodological approach, and

level of aggregation characterizes each empirical analysis.

Data sources

PATSTAT: The European Patent Office (EPO) releases PATSTAT Global,

which contains bibliographical data related to more than 100 million patent docu-

ments from leading industrialized and developing countries.

APS: The American Physical Society, upon specific request, provides data

concerning scientific publications – for use in research about networks and the social

aspects of science.

WoS: Web of Science is an extensive global citations database comprising in-

formation on millions of research articles. It is maintained by the private company

Clarivate.

RoS: Reliance on Science is a publicly available database that includes cita-

tions from both patents and scientific articles (Marx and Fuegi, 2020).

Altmetric: Altmetric is a curated database that collects metrics complemen-

tary to standard citation-based data, such as mentions on a diverse set of outlets.

Altmetric data is freely available for scientific purposes upon request.

STAN: The STructural ANalysis Database is a comprehensive OECD database

including a broad range of information related to productivity growth, competitive-

ness and general structural change at the industry level.

Replicability

All data and code to replicate the main plots of this thesis are available upon request.

Code and functions for regression and other statistical analyses/tests (e.g., for data
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cleaning and visualizations) are based on Python and R packages. More details are

provided within each chapter.

Additional preliminary notes

Parts of this thesis (i.e., Chapters 2,3,4), consist of self-contained essays based on

the following articles and working papers, with minor changes:

* Lamperti, F., Malerba, F., Mavilia, R., and Tripodi, G. Does the position

in the inter-sectoral knowledge space affect the international competitiveness

of industries? Economics of Innovation and New Technology, 29(5):441-488,

2020. Journal link

* Tripodi, G., Chiaromonte, F., and Lillo, F. Knowledge and social relatedness

shape research portfolio diversification. Scientific Reports, 10(1), 2020. Jour-

nal link

* Tripodi, G., Lamperti, F., Mavilia, R., Mina, A., Chiaromonte, F., and Lillo,

F. Quantifying knowledge spillovers from advances in negative emissions re-

search. Pre-print link.

The contents and style of the works presented here reflect the interdisciplinary en-

vironment of the Ph.D. program in Data Science – a joint doctoral program that

involved the Scuola Normale Superiore, the Scuola Superiore Sant’Anna, the Italian

National Research Council (CNR), the University of Pisa, and the IMT School for

Advanced Studies of Lucca. Further, these works greatly benefited from my research

fellowship at Scuola Superiore Sant’Anna, my collaborations at Bocconi University,

and my visiting research period at the Center for Science of Science and Innovation

(Kellogg School of Management, Northwestern University).
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Figure 1.1: Schematic outline.

Chapter II investigates how knowledge flows affect international competitiveness
at the industry level. It relies on patent and trade data and employs two central
notions of proximity: technological and geographical. From a methodological
standpoint, the analysis is based on patents’ networks in a dynamic panel setting, where
the Generalized Method of Moments (GMM) estimator ensures consistent estimates.

Chapter III investigates how social and knowledge proximity shape individual
authors’ research portfolios. With a focus on academic publications in physics (APS),
the primary empirical strategy is based on bipartite networks and generalized linear
models (GLMs), with the addition of a feature selection algorithm (LASSO) to capture
the relative contribution of each potential factor.

Chapter IV combines information about scientific articles, patents and policy
documents to quantify knowledge, technological and policy spillovers generated by
the emergent climate technologies defined as Negative Emissions Technologies (NETs).
The empirical framework relies on citation networks, an exact matching procedure and
GLMs. Network analysis is used to investigate the geographical dimensions of NETs
research activities.
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Chapter II

Giorgio Tripodi 3,4 Francesco Lamperti 1,3 Franco Malerba 2 Roberto Mavilia 2,3

1 Scuola Superiore Sant’Anna, 2Bocconi University, 3MEDAlics, 4Scuola Normale Superiore

In One Sentence

Significance The relationship between technology and the competitiveness of industries is central to academic research as well as economic policy.

Network approach We shift the emphasis of the analysis from the flows of knowledge related to bilateral industrial relationships to the position of an industry in
the entire inter-sectoral knowledge space.

Aim To investigate whether the relative position of industries in the transmission of technical knowledge affects international competitiveness, beyond the role
played by sector’s degree of innovativeness and controlling for cost-related factors.

Background

▶ International competitiveness Y is a function of technological T and cost
variables C :

Yij = f (Tij, Cij), with

{
i stands forSector
j stands forCountry

▶ Technological factors include:
▶ Innovative activity
▶ Diffusion of advanced knowledge

▶ Network of inter-sectoral flows of knowledge:
▶ National flows → co-occurrences of technological classes in patents
▶ International flows → patents citations

Our Propositions

Position: industries more central in the inter-sectoral knowledge space
perform at the international level better than industries that are not central

Geographical boundaries: the position of an industry in the inter-sectoral
knowledge space is more relevant at national level than at the international
level

Data

▶ Patent data on 14 manufacturing industries in 16 OECD countries over the
period 1995-2009 (PATSTAT)

▶ Competitiveness and key statistics at the industry level (STAN)

Table: Variables

Var. Name Description Data Source

XMS Country’s exports in the industry over the total industry’s export OECD-STAN

INV Ratio between industry expenditures on gross fixed capital formation and value added (current prices) OECD-STAN

WAGE Labour cost per employee OECD-STAN

POP Total population OECD-STAN

PATSH Share of national industry patents applications over the sum of the industry’s patents applications CRIOS-PatStat

d.w Degree centrality (technological class co-occurrence network) CRIOS-PatStat

ev Eigenvector centrality (technological class co-occurrence network) CRIOS-PatStat

am Local clustering (technological class co-occurrence network) CRIOS-PatStat

d.w.cit Degree centrality (citation network) CRIOS-PatStat

ev.cit Eigenvector centrality (citation network) CRIOS-PatStat

am.cit Local clustering (citation network) CRIOS-PatStat

Methodology
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To account for persistency in industries’ export performances, we rely on a GMM estimator in a
dynamic panel setting:

XMSijt = α0 + γXMSijt−1 + α1PATSHijt +

+ α2WAGEijt + α3INVij +

+ α4POPijt + β1d(w)ijt + β2amijt +

+ β3d .cit(w)ijt + β4am.citijt +
+ η1i + η2j + η3t + ϵijt

Results

Dependent variable: XMS
Baseline Robustness

(1) (2) (I) (II)

XMS−1 0.956∗∗∗ 0.956∗∗∗ 0.953∗∗∗ 0.954∗∗∗
(0.027) (0.027) (0.032) (0.031)

XMS−2 −0.028∗ −0.029∗ −0.047∗∗∗ −0.046∗∗∗
(0.016) (0.016) (0.015) (0.015)

PATSH −0.002 −0.003 −0.002 −0.004
(0.004) (0.004) (0.005) (0.005)

WAGE 0.0004 0.00005 0.001 0.001
(0.001) (0.001) (0.001) (0.001)

INV 0.001 0.001 0.002 0.001
(0.004) (0.004) (0.005) (0.005)

POP 0.002∗∗∗ 0.002∗∗∗ 0.002∗∗∗ 0.002∗∗∗
(0.0003) (0.0003) (0.0004) (0.0004)

d.w 0.005∗∗ 0.004∗∗
(0.002) (0.002)

am 0.030∗∗∗ 0.029∗∗∗
(0.009) (0.009)

d.w.cit 0.00005 −0.0004
(0.0004) (0.001)

am.cit −0.033 −0.030
(0.026) (0.029)

d.w:am −0.008∗∗∗ −0.007∗∗
(0.003) (0.003)

d.w.cit.control 0.005∗∗ 0.005∗∗
(0.002) (0.002)

am.cit.control 0.032∗∗ 0.029∗∗
(0.012) (0.012)

d.w.cit.control:am.cit.control −0.008∗∗ −0.007∗∗
(0.003) (0.003)

Time Dummies Yes Yes Yes Yes
Observations 2811 2811 2811 2811
AR(order1) −5.23∗∗∗ −5.24∗∗∗ −5.29∗∗∗ −5.30∗∗∗
AR(order2) −1.54 −1.55 −1.01 −1.09
Wald Test (coef.) 7703.89∗∗∗ 8047.81∗∗∗ 6071.79∗∗∗ 6258.51∗∗∗
Wald Test (int.) 477.00∗∗∗ 486.01∗∗∗ 422.93∗∗∗ 416.08∗∗∗

Sargan/Hansen (χ2) 55.02 55.01 12.89 12.94

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01.

Key Findings

Technological centrality matters, but geography still plays a role: for countries it is indeed important to promote inter-industry collaborations among firms.

▶ Centrality and local clustering in the inter-sectoral knowledge space positively affect industry competitiveness

▶ Being central in the inter-sectoral knowledge space is far less relevant when the industry is already embedded within a cluster

▶ National-level knowledge flows affect international competitiveness much more than international ones

- Panel I -



Chapter III

Giorgio Tripodi 1,2 Francesca Chiaromonte 2,4 Fabrizio Lillo 1,3

1 Scuola Normale Superiore, 2Scuola Superiore Sant’Anna, 3Bologna University, 4Penn State University

In One Sentence

Significance As the amount of knowledge necessary to reach the scientific frontier increases, for scientists to stay innovative and productive it is crucial to manage
their research endeavours wisely.

Network approach We use bipartite networks - PACS-Articles, Authors-Articles and PACS-Authors - respectively to compute a measure of similarity among
sub-fields, a measure of social proximity and identify patterns of exploration.

Aim To identify and quantify what are the possible drivers of exploration compared to key factors such as knowledge relatedness among research topics and social
relationships among authors.

Background

▶ Scientists and innovators’ activities often span several topics and their choices
of research endeavours are driven by an amalgam of factors:

▶ The ”essential tension” between exploration and exploitation

▶ The ”burden of knowledge” that increases over time

Data

▶ Publication history of ∼ 200k physicists (APS data)

Authors-Articles/PACS PACS-Articles

Methodology
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We model the probability that a scientist i , specialized in sub-field
a, is also active in some sub-field b different from her own
specialization as a function of the knowledge relatedness between
the two fields, the social relatedness between the author and the
target sub-field, plus a bunch of control variables that include
individual factors, sub-fields popularity and competition.

Y = ln(
p

1 − p
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Results

25
13

14
27

4
23

12
21

24
11

94
98

78
26

71
73

97
32

52
83

75
96

29
74

61
79

87
47

72
64

76
68

39
92

95
81

77
63

66
42

34
62

45
46

65
85

93
28

33
82

35
89

37
5
43

3
6
84

44
51

91
2
31

67
7

1
36

41
99

Negative
Random
Positive

Test of randomness

Nuclear Interdisc Plasma

Classical Astro High.energy

General Cond.matter Atomic

-2 -1 0 1 2 3 -2 -1 0 1 2 3 -2 -1 0 1 2 3

-5.0
-2.5
0.0

-5.0
-2.5
0.0

-5.0
-2.5
0.0

L
o

g
-O

d
d

s

Social Relatedness 0 1
a

2.25

2.50

2.75

3.00

-1 0 1 2

E
s
tim

a
te

d
 C

o
e

ff
ic

ie
n

t 
fo

r 
S

R
 b

y
 le

v
e

l o
f 

K
R

b

Nuclear Astro Plasma

Interdisc Atomic Classical

General High.energy Cond.matter

-2 -1 0 1 2 3 -2 -1 0 1 2 3 -2 -1 0 1 2 3

-8
-6
-4
-2
0

-8
-6
-4
-2
0

-8
-6
-4
-2
0

L
o

g
-O

d
d

s

Social Relatedness 0 1
c

4.05

4.10

4.15

4.20

4.25

4.30

-1 0 1 2

E
s
tim

a
te

d
 C

o
e

ff
ic

ie
n

t 
fo

r 
S

R
 b

y
 le

v
e

l o
f 

K
R

d

Knowledge Relatedness

Scientists’ research portfolio diversification

Groups
Knolewdge Relatedness
Social Relatedness

Field Core
Individual Features

Subfield Popularity & Competition
Subfield Attractiveness (Citations)

0

1

2

-10 -8 -6 -4 -2

a

0

1

2

3

4

-9 -6 -3

b

0

2

4

-9 -6 -3

c

0

1

2

3

4

-10.0 -7.5 -5.0 -2.5

d

0

1

2

3

-10.0 -7.5 -5.0 -2.5

e

0

1

2

3

4

-9 -6 -3

f

Ln(λ)

(G
ro

u
p

e
d

) 
C

o
e

ff
ic

ie
n

ts
' n

o
rm

0.0

0.1

0.2

0.3

Full diversification Full multiple Within single Within multiple Between single Between multiple

R
C

D
E

g

Relative importance of predictors

Key Findings

Science is more and more a social enterprise: the trade-off between exploration and the intellectual cost of diversification resolves trough collaborations.
▶ Diversification patterns are not random
▶ Both knowledge and social relatedness shape scientists’ diversification
▶ Social relationships are crucial especially when scientists move far from their primary expertise

- Panel II -



Chapter IV

Giorgio Tripodi 1,2 Francesco Lamperti 1,2 Roberto Mavilia 5

Andrea Mina 2 Francesca Chiaromonte 2,4 Fabrizio Lillo 1,3

1 Scuola Normale Superiore, 2Scuola Superiore Sant’Anna, 3Bologna University,
4Penn State University, 5Bocconi University, 6RFF-CMCC

In One Sentence

Significance Negative Emission Technologies (NETs) represent a key element to reach the net-zero emissions target (or to effectively smooth an undoubtedly
needed green transition).

Network approach Given the critical role played by climate-related technologies, we move beyond the standard citation networks to incorporate knowledge flows
to practical innovations (i.e., patents) and the public discourse (i.e., policy documents).

Aim To quantify the multidimensional nature of knowledge spillovers generated by 20 years of research in NETs, and identify cities and countries that can serve as
research hubs for supporting future collaborations.

Background

▶ By Negative Emissions we refer to “...the removal of CO2 from the atmosphere
through technical means”.

▶ NETs are not all alike (e.g., measurement, verification, accounting, costs,
and durability of carbon stored) → No universally superior option

▶ Despite the urgent need, NETs are hardly fully developed technologies ready
for large-scale deployment → Policy support

Data

▶ Articles related to NETs from 1998 to 2017 (Web of Science)
▶ Citations from patents (Reliance on Science/Altmetric)
▶ Citations from policy documents (Altmetric)
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Methodology
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We rely on econometric methods based on GLMs and exact matching to estimate the size of
knowledge spillovers. Our preferred specifications employ negative binomial regressions for
citations counts and logistic regressions for citation likelihoods.

g(E(Sikt|NETik,Tit,Xi)) = α +
∑

k

βkNETik +
∑

t

γtTit + δXi (1)

Results

A B C

NETs spillovers to science, technology and policy. Coefficients
(exponentiated) of the regression models of Eq. (1). Results are obtained by
fitting 30 negative binomial regressions (A) and 30 logistic regressions (B–C) on
one-to-one matched samples with year dummies.

(A) Incident Rate Ratio (IRR) for each NET on the number of scientific citations.
(B) Odds Ratio (OR) for each NET on the probability of being cited by a patent.
(C) Odds Ratio (OR) for each NET on the probability of being cited by a policy
document.

Key Findings

Knowledge spillovers play a key role, but NETs can only be complementary to more general emissions reduction pathways.

▶ Negative emissions research is highly heterogeneous and spread across different hubs
▶ DAC appears to be the most promising as far as practical technological innovations are concerned
▶ Science, technology, and policy need to be better coordinated to boost the efficacy of research endeavors

- Panel III -



Chapter 2

Technology, geography, and trade

This chapter is largely based on the following published article:
Lamperti et al. (2020)

2.1 Introduction

The relationship between technology and the international competitiveness of in-

dustries - defined as the ability of a given country or industry to compete with

its foreign counterparts (Castellacci, 2008) - has been central to academic research

as well as economic policy. A large body of both theoretical and empirical litera-

ture has investigated the role of technology and technological change in influencing

international competitiveness at micro, meso and macro levels (see, for example,

Fagerberg, 1988, Amendola et al., 1993, and more recently, Laursen and Meliciani,

2010 and Dosi et al., 2015). Taking an industry-level perspective, the present chap-

ter proposes a complementary view to these contributions by isolating a novel and

significant factor that explains the dynamics of competitiveness. We build on the

notion of knowledge flows and rely on a network perspective to investigate whether

the relative position of an industry within a relevant knowledge space affects the

international competitiveness of that industry.

With respect to the emphasis on economies of scale and geography, relative

productivity and wages that is typical in the new and new new theories of trade
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(Krugman, 1980, 1992; Melitz, 2003), we aim at examining the nature and compo-

sition technical knowledge produced within industries. In the trade literature the

investigation of technological factors in addition to cost-related ones dates back to

the seminal work of Posner (1961), who posits that one of the main sources of (abso-

lute) advantage of a country comes from its relative technological position against its

competitors in any one activity. Since then and, particularly, since the second half of

the 1980s, the literature has spurred. Following the evolutionary and disequilibrium

perspective of Dosi et al. (1990), trade flows have been considered primarily driven

by sector-specific absolute advantages, in turn stemming from widespread technolog-

ical asymmetries between countries, due to differences in the capabilities to produce

innovative products (i.e. which other countries are not yet capable of producing,

irrespective of relative costs), to develop new process innovations or to use existing

processes more efficiently or more rapidly. Along these lines, one may reasonably

argue that the ultimate driver of sector specific advantages rests in the technical

knowledge behind both product and process innovations (see also Dosi (1988) for a

more general discussion). Indeed, following Fagerberg (1996), we can formally spec-

ify country-industry competitiveness as a function of both technological and cost

factors.

Among technological factors, one may distinguish between innovative activity

and the diffusion of advanced knowledge. Both factors have been widely examined

in the literature. As far as innovation activity is considered, many have focused

on the effects of knowledge production, patent stocks, R&D activities and national

innovation systems on the competitiveness of industries and countries (Nelson and

Winter, 1977; Freeman et al., 1982; Dosi, 1988; Dosi et al., 1990). With respect

to the diffusion of advanced knowledge, while Grossman and Helpman (1991, 1995)

have underlined the role of national and international knowledge spillovers, Laursen

and Meliciani (2000, 2002) stressed the role of inter-sectoral linkages in affecting

trade competitiveness. Our analysis builds on this last group of contributions.
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In particular, the purpose of the present chapter is to empirically investigate how

technology affects competitiveness not just directly, via the production of technical

knowledge, but also indirectly, characterizing an industry’s position in the network

of inter-sectoral flows of knowledge - which we call the inter-sectoral knowledge

space. The core idea, better detailed in the remaining of the chapter, is that the

position of industry might allow both the acquisition and the diffusion of relevant

pieces of knowledge. In addition, we allow for a dynamic specification tracking how

industries change their position in the network of knowledge flows. Our approach

considers both national and international relationships among industries and makes

use of patent data to identify and quantify links among them. In that, our repre-

sentation of knowledge flows differs from the stream of research on the role played

by the position in product space (Hidalgo et al., 2007; Tacchella et al., 2012), as

we directly map technological relationships - using patent data - and their effects

on the competitiveness of industries (rather than countries)1. We follow Breschi

et al. (2003) in the construction of a ”national” knowledge network in terms of

co-occurrences of all pairs of technological classes included in the patent stock of

each country. In addition, to study international flows, we focus on patent citations

(Jaffe and Trajtenberg, 2002). Results show that (i) centrality and local clustering

in the inter-sectoral knowledge space positively affect the export market shares of

an industry of a country, (ii) such two effects are rather redundant, i.e. being cen-

tral in a knowledge space is far less relevant when the industry is highly connected

within a cluster and, finally, (iii) national-level knowledge flows affect international

competitiveness much more than international ones do. Actually, the latter are even

not significant in boosting export performances.

The chapter is organized as follows. Section 2.2 presents a critical overview of

the literature, while Section 2.3 provides a discussion of mechanisms influencing

1Network methods have been employed to quantitatively measure the impact of relatendeness
on diversification/specialization patterns of countries and regions. Recently, Alshamsi et al. (2018)
and Petralia et al. (2017) provided evidence that the probability of diversification in terms of
products, research areas and technologies increases with the number of related activities.
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international competitiveness and derives two main propositions. Sections 2.4 offers

a description of the data and the econometric strategy used in the analysis. Then

Section 2.5 summarizes the results and Section 2.6 concludes the chapter.

2.2 The Relationship between Technology and

Competitiveness

2.2.1 Technology, Costs and International Competitiveness

When examining international competitiveness, Schumpeterian insights have shifted

the focus from cost-related variables towards technological factors. In this vein,

following Dosi et al. (1990), a general formulation can be specified as a simple

function of technological (T ) and cost (C) variables:

Yij = f(Tij, Cij), with





i stands forSector

j stands forCountry

(2.1)

where Yij is an indicator of international competitiveness such as export market

share or trade balance.

The estimation of equations of type (1) generated a relevant stream of empirical

literature pointing to the crucial role played by innovative activities and knowledge

flows in explaining the international competitiveness of industries and countries.

Due to data constraints, most of the empirical work within the “technological gap”

framework has been carried out at country or industry-country level. In a pioneering

empirical work, Soete (1981, 1987) provides some evidence of the relevance of techno-

logical factors as determinants of competitiveness. In a sample of OECD countries,

across several sectors, results show a strong relationship between patent activities

(as a proxy for technological performance) and export performance. At the country

level, Fagerberg (1988) examines the effect of technological factors (patents, R&D)
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and of investments over unit labor cost (as a proxy for competitiveness) in order to

explain growth in export market shares. Results are consistent with the so-called

“Kaldor paradox” (Kaldor, 1978, was among the first authors to show that export

market shares and relative unit costs or prices move towards the same direction.).

Greenhalgh (1990) supports as well the idea that innovations sustain export perfor-

mances and also finds (focusing on UK) stark heterogeneity across industries, with

relative prices negatively affecting export only in few sectors. As far as the time

dimension is concerned, Amendola et al. (1993) report a positive and significant

effect of technological variables (patents and investments) on export shares in the

long-run. Unit labor cost plays a role only in the short-run.

Such results have been confirmed by analyses at level of country and industry. In

particular, taking into account twenty countries and forty sectors, the cross-sectional

analysis of Dosi et al. (1990) supports previous findings. Indeed, they clearly show

that technological variables (investments and patent shares) positively affect several

export measures, whereas cost-related factors (wages and unit labor cost) appear to

have little or no effect.

Following a similar econometric approach, Magnier and Toujas-Bernate (1994)

and Amable and Verspagen (1995) confirm the positive results for different inno-

vation proxies (patents, investments and R&D). In addition, Wakelin (1998) uses

bilateral trade flows and shows that R&D intensity and patents are crucial in high

and low-technology sectors. Cost variables are instead significant only in medium

and low knowledge-intensive sectors. Finally, Carlin et al. (2001) measure export

market performance of OECD countries finding ambiguous results. Both costs and

technology play a role in describing changes in export positions: however neither is

sufficiently strong to fully explain such performances.

More recently, Guarascio and Pianta (2017) have analyzed the complexity of the

so-called ”virtuous circles” that link technological innovation, international compet-

itiveness and profit dynamics. Building on previous work (Guarascio et al., 2015,
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2016), they stress the relevance of gains from technology (vis-á-vis cost factors) in

boosting trade competitiveness, confirming results in Dosi et al. (2015).

2.2.2 The Role of Spillovers and Inter-sectoral Knowledge

Flows

In general, technology affects competitiveness not just directly, but also indi-

rectly through technological spillovers. Griliches (1979) distinguishes two types of

spillovers: ”rent-spillovers” and ”pure knowledge spillovers”. Such distinction arises

from several different mechanisms through which knowledge and technology can

spread. In particular, spillovers embodied in products represent the specific cate-

gory of rent-spillovers. Thus rent-spillovers cannot be assumed as pure externalities

since they are intrinsically dependent on the market structure of supplying and

using industries. Conversely, pure knowledge spillovers are mainly related to the

technology and may constitute true externalities.

Along these lines, Grossman and Helpman (1991, 1995) theoretically investi-

gate how international trade in commodities may boost the exchange of intangible

knowledge and ideas as well as how differences between international and national

spillovers contribute to the formation of the knowledge base.

In parallel to international trade analysis, evolutionary scholars have focused on

the effect of innovation on the dynamics of firms and industries (Nelson and Winter,

1982; Dosi, 1988; Dosi et al., 1990; Freeman et al., 1982; Malerba et al., 2016)

and on the role played by institutions and national innovation systems in affecting

the growth and competitiveness of countries (Nelson, 1993; Freeman, 1987). The

evolutionary and Schumpeterian literature has associated spillovers to technology

and knowledge and shifted the focus from automatic pure spillovers to flows of

knowledge that may run across firms and countries in less automatic way, often

related to the role of absorptive capabilities of the recipient firm and country (Cohen

and Levinthal, 1989, 1990; Cimoli et al., 2009; Dosi et al., 2008).
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One key aspect of knowledge flows refers to inter-sectoral flows. This is related to

the importance that has been given to industries and sectors in the examination of

the international performance of countries. Inter-sectoral knowledge flows has been

intensively studied with input-output data and technology flows matrices based on

patents (Scherer, 1982; Putnam and Evenson, 1994; Verspagen, 1997a,b; Laursen

and Drejer, 1999).

As far as input-output links are concerned, Scherer (1982) and Putnam and

Evenson (1994) follow an approach based on the relationships between supplier and

user industries2. As input-output links, a certain innovation/product generated by

an industry A can then be used by an industry B. Clearly, this way of reasoning is

consistent with the notion of what we defined rent-spillovers (Griliches, 1979).

As far as technology flows matrices are concerned, Verspagen (1997a,b) proposes

three different approaches to analyze pure technological spillovers. The first matrix

they use relies on data from EPO and it is constructed on the basis of main and sup-

plementary IPC codes. Such step is employed for claimable knowledge. The second

matrix is derived following the same principle, although it takes into consideration

the supplementary codes for unclaimable knowledge3. In practice the main code

identifies knowledge producing-sectors, whereas spillovers are eventually captured

through the relationships with supplementary IPC codes. Finally, the third matrix

is constructed using citations in the US patent database. It is argued, of course, that

knowledge flows from the cited to the citing patent sector. An alternative approach

is proposed by Jaffe (1986), who measures technological distance among US firms

on the basis of the distribution of firms’ patenting activities4. It must be noted

that most of the aforementioned works have been carried out with the purpose of

quantifying the impact of spillovers on productivity and innovative activities5.

2The method is the backbone of the so-called ”Yale-matrix” that relies on the Canadian Patent
Office data.

3In the EPO data supplementary classes may contain invention information (claimable) and
additional information (unclaimable).

4Formally, Jaffe (1986) employs the so-called cosine index to capture such distance.
5See Griliches (1998); Jaffe and Trajtenberg (2002) for a complete treatment of the topic.
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In addition to the studies on spillovers, the “home market hypothesis” literature

considers the effect of technological spillovers on international trade dynamics and

specialization6. Particularly, it suggests that domestic inter-sectoral linkages are

of paramount importance in explaining trade flows and specialization. The ”home

market hypothesis” has been empirically investigated by Fagerberg (1992, 1995)7.

However, his empirical analysis only considers ”backward linkages” and makes use

of trade statistics and Revealed Comparative Advantage (RCA) to measure both

competitiveness of the producers of technology and how advanced the domestic

users are. Based on actual I-O data, Laursen and Drejer (1999) introduce upstream

and downstream linkages as a possible technological source of export specialization.

Such findings prove inter-sectoral linkages to be a determinant of specialization.

However, the importance differs according to the type of sector (e.g. following the

Pavitt taxonomy). Subsequenly, Laursen and Meliciani (2000, 2002) find a positive

effect of national R&D linkages on competitiveness. Interestingly, they find that

only national spillovers have a clear impact on trade balance. Differently, Laursen

and Meliciani (2010) investigate the role of ICT knowledge flows and conclude that

in ICT industries both national and international linkages have a positive effect on

export market shares.

2.3 Industries’ position, knowledge space and in-

ternational Competitiveness

2.3.1 Position

In this chapter, we propose a novel way to look at inter-sectoral flows of knowledge.

We shift the emphasis from the flows of knowledge related to bilateral industrial

6We will discuss the home market effect in greater detail later in the chapter.
7Moreover, Fagerberg (1997) examined the effect of domestic and foreign R&D on export per-

formance.
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relationships to the position of an industry in the entire inter-sectoral knowledge

space. The reason for such change is that the position of an industry in a tech-

nological space in terms of links with the other industries, both nationally and

internationally, provides a more complete and articulated representation of all di-

rect and indirect inter-sectoral knowledge flows that an industry has. For example,

Antonelli et al. (2017) recently showed that the composition of local knowledge is

a major determinant of innovative activities. Our approach also benefits from the

literature concerning the measurement of technological relatedness and proximity in

a broader sense. Indeed, the interaction among different dimensions of proximity

results of paramount importance for learning and innovation (Breschi et al., 2003;

Engelsman and van Raan, 1994; Boschma et al., 2014; Kogler et al., 2013). We

advance the claim that an industry that is central in the flows of knowledge among

sectors and that is highly connected with the other sectors, obtains major benefits

in terms of competitiveness. We propose that the following three mechanisms may

explain our claim.

Variety in knowledge and opportunities. A first mechanisms is that an indus-

try that is central in the flows of knowledge across industries enlarges its opportuni-

ties to come across pieces of potentially useful knowledge and, hence, its chances to

boost its market performances. This is consistent with the so-called ”specialization-

based” trade growth, which links trade performances to the ability to exploit above

average technological opportunities arising in certain sectors (see Laursen, 1999, and

references therein). In such a context, technological opportunities have been usu-

ally measured through growth rates in patenting activity (Cantwell and Andersen,

1996; Meliciani, 1998). However, Laursen (1999) shows that there is little empirical

support for the hypothesis that being initially specialized in fast-growing industries

yields a positive effect on trade performances. As extensively argued in Klevorick

et al. (1995), technological opportunities in one industry can be enriched by techno-
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logical advances that are achieved in others. Further, such an extra-industry source

of technological opportunities positively and significantly correlates with both pro-

cess and product innovation in the relevant industry. The relationship between

opportunities and innovation has been investigated in various ways. Malerba and

Orsenigo (1997) suggest that the the specific pattern of innovative activity of a sector

can be explained by the structure of the underlying knowledge, which seize opportu-

nities together with learning processes (see also Dosi, 1988). Empirically, Becker and

Peters (2000) and Oltra and Flor (2003) confirm that technological opportunities

from other industries sustain innovative performances in a sample of German and

Spanish firms respectively. Cohen and Malerba (2001) point out that greater di-

versity in innovative activities results positively associated with faster technological

change. Moreover, the existence of an inverted-U relationship between technological

diversification and firms’ technological performance (Leten et al., 2007; Garcia-Vega,

2006) suggests that the effect of broadening technological opportunities enhances

performances, provided it does not become too high. Furthermore, the larger is the

pool of opportunities and technological linkages, the lower are the chances that firms

in a given industry remain locked in to inferior technologies. This effect comes from

being exposed to a large learning basin and having the possibility to mold such flows

into effective knowledge due to connections (Boschma, 2005; Balland et al., 2015).

Recombination. A second mechanism is that inventions and innovations develop

more easily, and have a greater impact on the economic system (and therefore also

on competitiveness), when firms combine knowledge across different technological

domains, which in turn may belong to different sectors (Ferguson and Carnabuci,

2017; Fleming and Sorenson, 2001; Basalla, 1988). Scholars have found that a large

part of technological advances comes to a good extent from multidisciplinary R&D

(Kodama, 1986; Rosenberg et al., 1992). Moreover, both theoretical and empirical

literature provide evidence that spanning knowledge domains might give inventors
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a wider vision of technological opportunities (Ferguson and Carnabuci, 2017; Har-

gadon and Sutton, 1997; Hargadon, 2002) while knowledge complexity substantially

influences the diffusion dynamics (Sorenson et al., 2006). The idea that recom-

bination might help creating something new and potentially useful goes back to

Schumpeter (1934)[pag. 65]. Drawing on Galunic and Rodan (1998), we claim that

recombination of resources - including knowledge - facilitate the creation of novel

systems. Following these lines, being exposed to several different technological flows

coming from different industries may reduce uncertainty and significantly increase

the usefulness of innovation (Fleming, 2001). Hence, knowledge flows and techno-

logical linkages boost the possibility of recombining knowledge. Knowledge diffusion

and the network structure of inter-sectoral relationships clearly affects the possibility

to integrate different pieces of knowledge, especially for multidisciplinary innovation

(Sorenson et al., 2006).

Improvement of absorptive capabilities. A third mechanism is that an in-

dustry exposed to knowledge coming from different other industries increases its

absorptive capabilities of selecting, identifying and using various pieces of knowl-

edge that can be relevant for its problem solving (Von Hippel, 1994; Owen-Smith

and Powell, 2004) and innovative activities (Cohen and Levinthal, 1989, 1990; Lund-

vall and Johnson, 1994). In that, an increase in the absorptive capacities within an

industry results from a successful process of learning and external knowledge man-

agement, which may be influenced by different - both geographically localised and

not - factors (Boschma, 2005; Boschma and ter Wal, 2007; De Noni et al., 2017).

Centrality in the knowledge flows increases the experience of firms in an industry

in managing different types of knowledge. In addition, being exposed to knowledge

coming from different industrial contexts increases the capability of understanding

different application contexts (Christensen et al., 1998). If market success ultimately

depends on the ability to channel R&D for attracting final demand rather spend-
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ing in research activities per se (Iansiti, 1995), then being central in a network of

knowledge flows from different industries increase the amount of information on

fields in which a technology can be successfully exploited. Finally, Burt (2004) has

witnessed how crucial network position (brokerage) and the development of orga-

nizational abilities are in influencing firms’ innovative performance. To sum up,

being exposed to knowledge flows may help industries develop technological as well

as managerial capabilities to effectively master different technologies and eventually

match them with the most appropriate context.8

We believe that a knowledge space approach offers new insights and fill the gap

existing in the literature by merging together both social networks and absorptive

capabilities lines of research. Recently, Duernecker and Vega-Redondo (2017) the-

oretically show that the social network is the main channel through which agents

exploit new opportunities. In their empirical companion paper they found that cen-

trality is a very significant variable in explaining differences in countries’ growth

performances (Duernecker et al., 2015). Operti and Carnabuci (2011) and Torto-

riello (2015) provide additional empirical evidence consistent with the theoretical

framework formulated here. A more structured modelization of knowledge space

has been adopted by Tomasello et al. (2016) and Vaccario et al. (2017) in study-

ing R&D alliances and knowledge exchange among firms. Finally, to these three

factors related to knowledge, it is possible to add some remarks about the vari-

ety of channels and organizational forms through which knowledge crosses industry

boundaries. While the channels that have been most widely studied refer to informal

mechanisms (see for example Fagerberg et al. (2006)), personnel mobility between

firms (for example Saxenian (1990); Almeida and Kogut (1999)), vertical integra-

tion (for example Helfat (2015)) and inter–organzational agreements (for example

Hagedoorn (2002)), recently also channels related to new firms originated in the

upstream or downstream industries that enter a focal industrial sector -i.e. vertical

8Along these lines, the interested reader may want to look also at the literature on the role of
embeddedness in boosting performances at different levels (e.g. Ahuja, 2000; Andersen, 2013).
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spinouts- have been studied (Adams et al., 2016, 2018). While this chapter does not

aim to examine the informal, individual or organizational channels through which

knowledge flows across industries, it must be emphasized here that a channel may

affect how much and what type of knowledge is transmitted. For example, in the

case of new firms spinning out from upstream or downstream industries and entering

a focal industry, the knowledge transmitted that passes through industry boundaries

is application knowledge for downstream spinouts and technological knowledge for

upstream spinouts.

By combining the aforementioned arguments, we can advance the first proposi-

tion to be tested empirically:

Proposition I - Position in inter-sectoral knowledge space: Industries

more central in the inter-sectoral knowledge space perform at the international

level better than industries that are not central.

Rethinking centrality in a knowledge space as a composite measure of innova-

tiveness, we can appreciate the moderating effect of learning by being exposed to

knowledge flows. As a matter of fact, the greater the amount of information passing

through a certain node, the greater will be the capacity of that node to retain and

process knowledge flows. Such learning channels may well be captured by degree

centrality and local clustering. As we will discuss in depth in the methodological

Section 2.4, degree centrality and local clustering measure how likely a node ends

up being susceptible to all kind of information running through the network, giving

us the possibility to measure its ”skills” as a recipient of technological flows. Sum-

ming up, the centrality of industries in the inter-sectoral knowldge space allows us

to capture several possible mechanisms through which technology flows can boost

international competitiveness. To some extent, either too much or to little proxim-

ity may result detrimental to innovativeness and effective learning (Boschma, 2005).

On the one hand, a larger learning basin lead to a wider set of opportunities (supe-

rior technologies, innovative products, cost reductions, diffusion of best practices).
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However, such advantages take place if and only if there are sufficient strong link-

ages to support knowledge transfer. All told, using network position as a proxy for

a richer set of opportunities and capabilities, we can try to incorporate them into

our model.

2.3.2 Geographical boundaries

In this chapter, we propose that not only the position in the the knowledge space,

but also the geographical boundaries matter in the inter-sectoral flows of knowledge.

We argue that the effects of inter-sectoral knowledge flows on international compet-

itiveness are more relevant at the country level due to the geographical boundaries

that affect knowledge flows. In a nutshell, the agglomeration literature posits that

knowledge spillovers have clear geographical reach and they are subject to a signifi-

cant spatial decay. The diffusion of tacit knowledge, to some extent, requires close

and frequent interactions, i.e. geographical proximity (Lissoni and Miguelez, 2014).

The geographical concentration of people and jobs enhances a rapid and effective

spread of tacit knowledge, resulting in a boon for innovative activities. Although the

specific mechanism behind such knowledge transfer is not completely disentangled,

there is nowadays substantial empirical evidence confirming the localized nature of

knowledge diffusion (Arzaghi and Henderson, 2008; Rosenthal and Strange, 2003;

Audretsch and Feldman, 1996; Adams and Jaffe, 1996; Carlino and Kerr, 2015).

Here we present two different possible explanations on why “local” knowledge flows

are expected to be more effective in sustaining competitiveness.

Localized knowledge flows. First, effective mechanisms of knowledge exchange

require close interactions, frequent meetings and development of trust among eco-

nomic agents. Within this framework, spatial proximity boosts the flow of ideas by

sharply reducing the cost of trading knowledge, enhancing skilled worker mobility

and providing better conditions for cooperation among among firms and individuals
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(Breschi and Lissoni, 2001). Hence, localized flows are relatively richer of easily

exploitable ideas. Further, contrarily to codified knowledge, the diffusion of tacit

knowledge might be seriously affected by proximity, which enhance shared routines,

similar technology attitudes and trust (Bathelt et al., 2004). Since the first tests on

the role of spatial proximity in fostering scientific collaborations (see e.g. Jaffe et al.,

1993), the economic geography literature has largely extended the line of research

concerning the geographical breath of knowledge flows and their features (Carlino

and Kerr, 2015). More in detail, inventors are not very likely to relocate in space and

their (bounded) mobility - as well as their co-invention networks - circumscribe the

geographical diffusion of knowledge (Singh, 2005; Breschi and Lissoni, 2009; Sonmez,

2017). One of the emerging results suggests that national-scale interactions allow for

a more effective transmission and exchange of tacit knowledge than on broader scale.

For example, so-called Jacob externalities may result more effective at national or

regional level, where the heterogeneity in the composition of the knowledge base can

be managed more easily and flows integrated at a lower absorption cost (Antonelli

et al., 2017). Indeed, in their review of the literature, Breschi and Lissoni (2001) un-

derline that although there is variety of mechanisms behind the spread of ideas and

expertise, such a diffusion remains, however, largely bounded in space even though

exact co-location might not be essential (see also Gallaud and Torre, 2005; Torre,

2008). Moreover, inventor mobility and co-invention networks have been proved to

account for a large francion of the spatial proxinty of knowledge diffusion

”National institutions and home market effect”. Basically, the idea is that

a country’s domestic market may act as a supportive and protective environment

for new products, then ready to be successfully exported to foreign markets. The

product-life cycle model, introduced by Vernon (1966), supports the idea that ge-

ographical proximity is conducive to innovative activities due to the ease of com-

munication and that, at least at the beginning of the product-life cycle, domestic
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market matters, providing easier, faster and more complete access to information

and knowledge. Country’s domestic markets can be thought as a space serving as

“nurturing grounds” for new products (Linder, 1961; Hirschman, 1958; and more

recently, Diodato et al., 2018 and Li et al., 2018). With respect to the home market’s

role emphasized in Krugman (1980), which largely depends of the size of the domes-

tic market, we hypothesize that it is the domestically developed technical knowledge

that positively affects competitiveness. Hence, if national-level institutions matter

in the process by facilitating the flows of knowledge (see also Gittelman, 2006), it

is reasonable to argue that they will be also more helpful to innovation and trade

than international ones (Laursen and Drejer, 1999). In addition, the literature on

national systems of innovation has frequently emphasized the pivotal role of within

country knowledge flows and of national institutions as determinant of economic

performances (Lundvall, 1988, 1992).

On the basis of these mechanisms we conjecture, in our second proposition, that

a central position is still important but less relevant at the international level, where

knowledge flows are more codified and available to all countries and competitors.

Proposition II - Geographical boundaries of inter-sectoral knowledge

flows: The position of an industry in the inter-sectoral knowledge space is

more relevant at national level than at the international level.

To summarize, a variety of mechanisms point to the fact that knowledge flows

suffer from geographical boundaries. Both knowledge production and diffusion entail

a local dimension linked to the easier interaction of different actors. Further, part

of the literature supports the idea that the national dimension matters, due to

role of common institutions and a relatively more supportive market. Building on

such premises, we conjecture that industries benefit more from their position in

their national knowledge network rather than the one they have in the international

space.
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Table 2.1: List of Countries

Country Code Country Code

Austria AT United Kingdom GB
Belgium BE Italy IT
Canada CA Japan JP
Germany DE Luxembourg LU
Denmark DK Netherlands NL
Spain ES Norway NO
Finland FI Sweden SE
France FR United States US

2.4 Data and methodology

2.4.1 Data

The empirical analysis of this chapter is based on two main sources of data: the

ICRIOS-PatStat database and the STAN database (OECD). The STAN database

for industry analysis provides comprehensive information to investigate industry

performance across countries. The ICRIOS-PatStat contains the full set of biblio-

graphic variables for patents applied at EPO and USPTO (Coffano and Tarasconi,

2014)9.

More in detail, for patents we consider all the applications with priority date in

the time interval 1995-2009. By merging and elaborating the aforementioned inputs,

we obtain a dataset that includes information about 14 manufacturing industries in

16 OECD countries for 15 years10. A similar approach has been used in order to

collect citation data. The following tables (2.1 and 2.2) and figures (2.1 and 2.2)

provide a more quantitative and exhaustive description of our data and our industry

classification based on ISIC3 codes11.

9PatStat (i.e. EPO Worldwide PATent STATistical Database) is a single patent statistics raw
database, held by the European Patent Office (EPO) and developed in cooperation with the World
Intellectual Property Organisation (WIPO), the OECD and Eurostat.

10The timespan for which we collected and analyzed the data stops in 2009. Such choice is driven
by the occurrence of the Great Recession, that severely affected all the OECD countries in our
dataset.

11For compatibility reasons our classification is based on ISIC3 codes. The initial NACE2 clas-
sification has been converted into ISIC3 by means of standard conversion tables.
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Table 2.2: Industry Classification

Industry ISIC3 CODE APPLICATIONS CITATIONS

% # % #

Food, beverages and tobacco 15-16 A 1,17% 44091 0.80% 437616
Textiles, wearing, leather 17-19 B 1,55% 58900 3,18% 1723416
Wood 20 C 1,05% 39944 2,44% 1318938
Paper and printing 21-22 D 1,57% 59407 3,20% 1737386
Coke 23 E 0.28% 10402 0,33% 181814
Chemicals 24 F 13,31% 504805 12,40% 6720031
Rubber and plastic 25 G 2,50% 94891 4,05% 2200584
Non-metallic (mineral products) 26 H 2,99% 113633 4,45% 2409767
Basic metals 27 I 0.70% 26383 0,60% 328165
Fabricated metals (products) 28 L 2,75% 104441 3,81% 2068636
Machinery 29 M 19,90% 754265 17,70% 9601586
Computing and electrical (machinery) 30-33 N 38,82% 1472210 32,75% 17761391
Transport 34-35 O 5,44% 206271 4,79% 2595884
Other manufacturing 36-37 P 7,97% 301956 9,50% 5147308
Total 100% 3791599 100% 54232522

Notes: If an application (citation) has been assigned to two (or more) industries according to original IPC codes then
it is counted twice (or more). The total number of applications (citations) has been derived accordingly.

2.4.2 Knowledge flows and the network of industries

The approach used in this chapter basically follows a two steps procedure. The first

step consists in mapping technology flows among the 14 industries included in our

dataset. Taking into consideration the empirical evidence in Laursen and Meliciani

(2002, 2010), we consider both national and international knowledge flows. Con-

sequently, we distinguish between the national and the international dimension of

the flows. In order to do so, we obtain two sets of symmetrical matrices that will

constitute the adjacency matrices for our networks. This methodology represents

the framework to construct a national and an international technology space in the

form of a network. Such networks provide a representation of inter-sectoral relation-

ships and a characterization of industries’ position in our space of knowledge flows.

Moreover, this framework allows us to eventually capture the relative centrality of

industries. The network representation of a knowledge space has been adopted by

Kogler et al. (2013) and Boschma et al. (2014) in order to link technological sectors

according to their relatedness. Yet, the goal of our analysis is to capture flows.

The main source of information is given by patent classification codes. As we

explain later in this Section, relying on classification codes has a number of ad-

vantages with respect to patent citations (Joo and Kim, 2009). However, some
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methodological issues arise in capturing international flows. We aim to overcome

technical difficulties by approximating such relationships through a patent citation

network (Verspagen, 1997b; Jaffe and Trajtenberg, 2002).

Following the methodology employed in Engelsman and van Raan (1994) and

Breschi et al. (2003), we can perform a co-classification analysis based on co-

occurrences according to our classification of industrial sectors12 As pointed out by

Breschi et al. (2003), Hinze et al. (1997) and several other WIPO documents, main

and supplementary IPC codes cannot be used to disentangle knowledge-producing

and knowledge-incorporating sectors. Hence, contrary to Verspagen (1997a,b) we

do not infer anything about the direction of the flows. Our purpose is simply to map

technological relationships among industrial sectors regardless of formal spillover

effects.

Our choice of using co-occurrences based on patent classification codes (with re-

spect to patent citations) derives from several methodological considerations. Patent

citations provide a great source of information, although it has been shown that they

present several drawbacks in certain applications. For instance, citations are a fully

reliable measure in scientific academic settings. Indeed, Joo and Kim (2009) clearly

state that the channels through which classification and citations are generated may

lead to substantial differences. Alcacer and Gittelman (2006) show how citations

added by patent examiners generate noise in the data resulting in a relevant mea-

surement error. Conversely, IPC codes are carefully assigned by patent examiners

of the issuing office in accordance to strict WIPO requirements. Leydesdorff (2008);

Cockburn et al. (2002) and Criscuolo and Verspagen (2008) argue that citations are

subject to authors and examiners choices and that may be the result of legal and

strategic factors (Meyer, 2000). Finally, Breschi et al. (2003) show that citations do

12From patent data we match technology classes (IPC) with industry classes (ISIC3). In particu-
lar, we rely on the information on the NACE code associated to patents from the PatStat database
(see Van Looy et al., 2015 for the conversion table IPC-NACE2) and then use the EUROSTAT
RAMON coversion tables to move from NACE to the desired ISIC classification employed by the
OECD STAN database.
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not add any relevant information to track simple technology flows.

Unfortunately, co-classification is not feasible for examining international tech-

nology flows since available information does not allow us to fully disentangle in-

dustry classes for couples of countries and industries. As a result, we need to rely

on patent citations13. Notwithstanding all the shortcomings outlined above, patent

citations provide a good approximation for a measure of knowledge flows among in-

dustries of different countries (Jaffe and Trajtenberg, 2002, 1999; Verspagen, 1997b).

EPO and USPTO data which are, indeed, sufficiently complete to have a good cover-

age of innovative activities for all countries that we take into consideration (Joo and

Kim, 2009). For all these reasons, we believe that our approach to map knowledge

flows across industries is the most suitable in this specific application14.

Summing up, the first step of our methodological approach is essentially driven

by two factors: the superiority of co-classification analysis in mapping technology

flows across sectors and the impossibility to replicate the exact procedure for interna-

tional relationships. However, for completeness we perform a robustness check using

citation data for both national and international flows. The results can be found in

Table 2.6 and prove that citations can eventually represent a good approximation

of international knowledge flows.

In what follows, we formally describe our procedure to build a national knowledge

space. We apply an almost identical methodology in order to construct a citation

network to control for international relationships.

Let A be the set of all patent applications. Then, Act ⊂ A is the set of all patent

applications for a given country c at a certain point in time t15. Each act ∈ Act has

13Investigations of citation patterns in our dataset show a clear tendency of a country-specific
dimension. See Figure A.2 in the appendix.

14The distinction between national and international measures is not a matter of differences
among countries/industries, it rather concerns the nature of co-occurrence and citation data. Using
co-occurrences, we are not able to disentangle, and thus to count in a meaningful way, every IPC-
country link. We overcome such difficulty by relying on citations, which include, in a way, an
additional layer of information to map within-country industry relationships as well as across-
country industry linkages.

15c ∈ {AT, . . . , US} ≡ C and t ∈ {1995, . . . , 2009} ≡ T
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been assigned to one or more industry class. Let Piactbe a function such that

Piact =





1 if act has been assigned to industry i

0 otherwise

with i ∈ {A, . . . , P} ≡ I. Thus, for each country c at time t, the total number

of patent applications that has been assigned to code i ∈ I can be written as

Tict =
∑

act∈Act
Piact ; while the total number of patent applications classified in both

industrial sectors i and j is simply given by Cijct =
∑

act∈Act
PiactPjact . By repeating

the count for every pairs of possible industry codes, we obtain a symmetric co-

occurrences matrix Cct, of dimension (14 × 14), for every country at each point in

time.

We consider such matrices as adjacency matrices of our networks. That is,

Cct formally defines a network of inter-sectoral relationships among industries for

country c at time t. We use the notation Γct = (I, L) where I = {A, . . . , P} is the

set of nodes and L ⊆ I × I is the set of links.

As long as we consider a weighted network, the matrix representation takes the

following form:

cct =





Cijct if (i, j) ∈ L

0 Otherwise

with Cijct ∈ N+. Figure 2.3 is an illustrative example of networks derived through

the above mentioned procedure and describes the national (Italian) and interna-

tional knowledge space in 2009. More in detail, in (a) nodes’ sizes are set according

to the degree centrality and links’ widths are proportional to weights Cijct. In (b) the

entire space - aggregated by country - is mapped to visualize international connec-

tions, within-country relationships are empathized. In the next Sections, we derive

more insightful network measures and we rely on such measures to construct the

econometric strategy of our analysis.
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2.4.3 Variables & descriptive statistics

The variables used in order to study the relationship between the competitiveness

of industries and their position in our knowledge space are summarized in Table 2.3.

As a general measure of international competitiveness we consider export market

shares (XMS). Such measure is derived by taking into account country’s exports in

a given industry (current dollars) over the total industry’s exports from all countries

included in our dataset. The choice of some regressors follows Dosi et al. (2015).

More in detail, tech-related variables are represented by Patent-share (PATSH) and

Investments (INV). Patent-share captures the share of national industry patent ap-

plications (USPTO and EPO) over the total industry’s patent applications of all

countries in the dataset. Investments is defined as the ratio between industry ex-

penditures on gross fixed capital formation and value added (current prices). More-

over, we include in the analysis a price-related variable: Labor-cost-per-employee

(WAGE). Total population (POP) controls for possible size effects.

The impact of industries’ position in our knowledge space captures the inter-

sectoral diffusion of advanced knowledge. Several measures of centrality have been

developed in order to capture different features of the network structure and identify

key players. Here it is necessary to briefly review the most important ones. Freeman

(1978) formalizes three different basic measures of centrality: degree, closeness and

betweenness. The most direct measure of popularity is the degree centrality, which

is defined as the number of links a node has in the network. It can be interpreted in

terms of the immediate risk of a given node for catching whatever is flowing through

the network. Instead, closeness centrality is defined as the inverse sum of shortest

paths to all other nodes from a given node in the network and it measures whether

a node is in the position of reaching information quickly. Betweenness centrality

is defined as the geodesic path that passes through a given node and it captures

the property of controlling information flows within a given graph. Therefore, it
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can be used to identify who plays the role of a broker or a gatekeeper. As Burt

(2004) points out, such bridging position can represent power and can be associated

with consistent advantages since knowledge and information must pass through such

nodes. Finally, Bonacich (1987) develops a more sophisticated measure to evaluate

the most influential nodes which is called Eigenvector centrality. Such measure

assigns different weights to links according to the relative influence of a node and

it has been widely applied in the literature to assess power, the structure of inter-

organizational networks and the role of an individual or an entity in a general social

network.

The local clustering coefficient of a node in a network is used to quantify how

connected its neighbors are and whether they form a clique (complete graph) or not.

Watts and Strogatz (1998) in their seminal paper constructed a model that accounts

for both local clustering and small-world property of networks. Despite most of

such measures have been initially developed for binary networks, they can easily be

generalized for weighted networks (Opsahl et al., 2010; Barrat et al., 2004). For our

purpose, we choose two simple network measures for both networks (co-occurrences

and citations): the weighted degree centrality and the local clustering coefficient16.

Formally, we can define weighted degree centrality for a network Γ = (I, L) as

follows:

d.wi =
∑

j∈I

Cij (2.2)

Such simple measure captures network centrality in a direct and immediate fash-

ion (Borgatti, 2005). Indeed, weighted degree can be interpreted as the opportunity

to influence as well as be influenced directly. As a result, central actors are more

likely to be exposed to what is flowing through the network, in this specific case

knowledge.

16For completeness, in the appendix we include the unweighted degree centrality and the eigen-
vector centrality.
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For what concerns the local clustering coefficient, we use the generalization for

weighted networks proposed by Barrat et al. (2004). The analytical expression in

which we removed the dependence from time to ease notation, reads as follows:

ami =
1

d.wi(ki − 1)

∑

j,h

Cij + Cih

2
ξijξihξjh, (2.3)

where ki is the number of industries linked to i and ξij is an indicator function

that takes value 1 if industry i is linked to j and 0 otherwise. This coefficient is

a measure of the local cohesiveness that takes into account the importance of the

clustered structure on the basis of the amount of interaction intensity actually found

on the local triplets. Indeed, ami counts, for each triplet formed in the neighborhood

of the vertex i, the weight of the two participating edges of i. Using this measure

we are considering not just the number of closed triplets in the neighborhood of a

vertex but also their total relative weight with respect to the strength of the vertex.

The normalization factor d.wi(ki−1) accounts for the weight of each edge times the

maximum possible number of triplets in which it may participate, and it ensures

that the local clustering coefficient always falls between 0 and 1.

Within this setting the neighborhood of a node can play a crucial role. Even if

an industry would result not particularly central according to the weighted degree,

it might belong to a clique and such embedness in the network can guarantee a

competitive advantage anyway. Therefore, the weighted local clustering coefficient

helps us to eventually capture the impact of such connectiveness.

By looking at Table 2.4 below we can observe how the two network measures cor-

relate with our baseline variables through a cross-correlation matrix. For instance,

at national level we can notice how weighted degree (d.w) is positively associated

with both export market share and patent share. Such positive relationship holds for

local clustering (am) as well. We will focus on the two network measures described

above for all the aforementioned reasons, although some alternative specification are

summarized in the appendix (Table A.1).
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Table 2.4: Cross-correlation Matrix

XMS PATSH WAGE INV POP d.w am d.w.cit am.cit

XMS 0.13 0.19 -0.01 0.16 0.13 0.22 0.1 -0.06

PATSH 0.2 -0.16 0.95 0.79 0.22 0.68 -0.28

WAGE 0.09 0.16 0.13 0 0.19 -0.17

INV -0.14 -0.13 0.01 -0.07 0.03

POP 0.78 0.24 0.67 -0.27

d.w 0.16 0.91 -0.22

am 0.12 0.12

d.w.cit -0.2

am.cit

Note: The correlation coefficients between export market shares (XMS) and its first
and second lag are respectively: 0.84 and 0.73.

Moreover, to describe the relative position of industries in a national knowledge

space, Figure 2.4 compares how industries in Italy in 2009 are ranked according to

our network measures. It captures the possible heterogeneity in terms of centrality

and local clustering among industries. The closer two triangles are in the plot, the

bigger is the ”difference” in terms of degree and clustering for a given industry.

For instance, sector A (i.e., Food, Beverage and Tobacco) has a relative low degree

but its embedded into a well connected cluster. Finally, Figure 2.5 describes the

evolution over time of our network measures in Italy.

In the next Sections, we will investigate whether the network structure and the

relative position of industries - as indicated by centrality and local clustering - in the

space of knowledge flows is positively associated to export performances. Of course,

beyond the national network of industries we also take into account international

relationships (Laursen and Meliciani, 2002, 2010). As mentioned above, given the

impossibility of using co-occurrence information, we characterize the latter dimen-

sion relying on patent citations.
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2.4.4 Econometric strategy

In this chapter we use two different econometric specifications. First, we follow Dosi

et al. (2015) in exploring the link between export market shares and both technolog-

ical and cost factors in a standard panel framework, with the obvious difference that

we do not estimate the model in each industry separately because we are interested

in inter-sectoral knowledge linkages. Secondly, once we have underlined the high

persistence of export market shares over time, we move to a dynamic model with an

autoregressive structure in the dependent variable akin to Amendola et al. (1993)

and Laursen and Meliciani (2002). Both the two specifications may also have an evo-

lutionary interpretation as specifying the selection dynamics linking “fitness” and

expansions or contractions of export shares at the sectoral level. When a country is

better in terms of cost and technology competitiveness relatively to its counterparts,

it will increase its exports more than the counterparts. Fitness is captured both by

cost competitiveness and technological features, notably including the relative posi-

tion of each industry in the network of knowledge flows. This view also helps justify

the choice of our dependent variable. Moreover, as reported in Laursen and Meli-

ciani (2010), from an econometric point of view, exports normally grow over time

(as world income does) and a variable measuring exports in absolute terms is very

likely to be non-stationary. By contrast, an export market share variable is much

more likely to be stationary, at least in the first moment.

The baseline model, from which we obtain the different specifications estimated

in the chapter, is:

XMSijt = α0 + γXMSijt−1 + α1PATSHijt + α2WAGEijt + α3INVij +

+ α4POPijt + β1d.wijt + β2amijt + β3d.w.citijt + β4am.citijt +

+ η1i + η2j + η3t + ϵijt, (2.4)
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where the coefficients αh are associated to the standard control variables, βh

capture the effects of industries’ positions in the inter-sectoral knowledge network

and ηh represent different kinds of fixed effects we control for. Moreover, in many

specifications we introduce the interaction effect between our network centrality and

local clustering measures, for the national or international networks. This allows

us to test whether, for an industry, the importance of being in a central position

with respect to the flows of knowledge diminishes as long as it becomes more and

more embedded in a tied cluster. All the variables, with exception of fixed effect

dummies, are in logarithms and vary in the cross-sector, cross-country and cross-

time dimensions. When an estimated coefficient in our model obtains a positive sign

(as we expect in the majority of cases) this implies that when the country increases

(decreases) its relative technology (knowledge flows, investment, etc.) in a given

industry, the country increases (decreases) its market share in that industry. As it

is standard in the literature, we expect unit labor costs to have a negative impact

on export share dynamics (although this effect could be null considering that the

dependent variable is expressed in current prices), while technology variables to have

a positive effect on export share. The novelty of the work consists in the analysis of

the role of technological factors in sustaining international competitiveness, with a

particular emphasis on the effects driven by industries’ position in the networks of

knowledge flows and distinguishing between national and international flows.

The estimation strategy we adopt clearly differs in the case we test a dynamic

model with an autoregressive component or we remain with the baseline model

proposed in Dosi et al. (2015), which is simply obtained imposing γ = 0. When

estimating the specification that does not consider an autoregressive element we

start by pooling OLS with sector, year and country dummies. However, as it is

well known, the presence of unobserved heterogeneity possibly correlated with other

regressors makes our estimates biased and inconsistent; furthermore, the number of

cross-sectional observations in our sample is rather restricted. To attenuate these

44



two problems, and considering that our main variables of interest have been shown

in Section 2.4.3 to vary, often considerably, over time, we estimate our model using

a Fixed Effect (FE) within estimator.

Of course we know that failing of the strict exogeneity assumption would make

our FE estimator inconsistent. In our context, in particular, the presence of a dy-

namic structure in the true data generating process is likely (Amendola et al., 1993;

Laursen and Meliciani, 2002, 2010). This would imply some degree of persistence

in the competitiveness of industries, suggesting that path dependence might play

a non trivial role. Moreover, as a rough observation, we report that unconditional

correlation between XMS and its first and second lags is relatively high (see Ta-

ble 2.4). Since we use a within estimator, in presence of long enough samples, the

asymptotic bias we might incur in is well known to converge to zero under suitable

stability conditions. However, we only have T = 14 periods, which make it difficult

to argue in favor of a sufficiently small bias. To account both for an autoregressive

component in our model specification and to solve the presence of such a negative

bias (under the assumption that γ > 0) affecting the within estimator, we move

to a different strategy. In particular, we use the Blundell-Bond (BB) Generalised

Method of Moments (GMM) estimator, which gives consistent estimates provided

that there is no second order serial correlation among the errors, and we report

tests for first and second order autocorrelation. This BB-GMM specification is pre-

ferred to the original Arellano and Bond estimator due to the high persistence in

the series (see discussion in Blundell and Bond, 1998 and Laursen and Meliciani,

2010). We assume, as it is standard in this literature, exogeneity of all explanatory

variables. The exogeneity of relative prices is a common hypothesis in estimating

export equations and is based on the idea that the export supply price elasticities

facing any individual country are infinite. Technology variables are assumed to be

exogenous since they should capture structural characteristics that may respond

only very slowly to changes in export shares.
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2.5 Technological centrality and national bound-

aries

Our propositions have been confirmed by the empirical analysis. Indeed, results

support both conjectures concerning the centrality of industries in the inter-sectoral

knowledge space as well as the greater role of the national dimension of technological

flows. Our empirical strategies (pooled OLS/FE and GMM) coherently show that

centrality and clustering in the national network positively associate with export

market shares, the effects are significant and the interaction term displays a negative

sign.

More in detail, table 2.5 presents the estimates of both pooled and FE model

specifications, taking into account national (columns 1-2) and international (columns

3-4) boundaries. Interestingly, including both geographical dimensions (columns

5-6), centrality measures, operationalized by means of weighted degree and local

clustering, appear to positively and significantly explain export performances. Fur-

thermore, only national-wise measures yield significant estimates, maintaining the

existence of geographical boundaries to the diffusion of knowledge flows. The nega-

tive sign of the interaction term between the two network measures, instead, provides

support for our intuition: being central in a knowledge space is far less relevant when

the industry is highly connected within a cluster. Such estimates remain robust after

including country, industries and year dummies.

As mentioned in the previous Section, despite being informative, static models

fail to ensure unbiased estimates within this setting due to persistence in industries’

export performances. To overcome methodological difficulties, we chose to employ

the dynamic panel estimator (a.k.a. Blundell-Bond estimator), introduced in Section

2.4.4. Estimation results obtained using a model with an autoregressive component

are collected in Table 2.6. The first two columns refer to national and international

baseline model specifications. Both our propositions are robustly confirmed, even
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within the dynamic setting with time dummy included. However a remarkable dif-

ference applies. When the persistent nature of export performance is conveniently

taken into account (i.e. including lags), it emerges that the effect of technologi-

cal variables is captured by industry’s relative position in the national network of

knowledge flows, which is expressed through its centrality and local clustering, and

by persistence in export performances, while the effects of patenting activities is

not significant anymore. Such evidence points to the usefulness of our approach in

capturing relevant information concerning knowledge generation and diffusion.

The redundancy of being central and well locally-clustered is confirmed and,

further, we find that when both national and international network measures are

included (column 2), just the former produce a significant effect on competitive-

ness. However, it is worth recalling that they are constructed using different data

sources (IPC co-occurrence vs. patent citations), which might make the two set of

regressors not fully comparable. To tackle such an issue, we have run a robustness

check (columns I and II) using citations to construct both the national and inter-

national knowledge space17. The standardization of network measures’ derivation,

while dispelling any operational concerns, does not alter results, which remain fairly

robust. Additional robustness checks in a static setting, related to the choice of

a different centrality measure, can be found in the Appendix. The Arellano-Bond

test for autocorrelation is performed and reported for each and every specification

as well as Hansen-Sargan for the validity of the instruments. As a matter of fact,

centrality measures as well as their interaction keep behaving as expected.

Our network approach, however fairly simple, has proven particularly useful to

conclude that centrality plays a crucial role in explaining industries’ export perfor-

mances and that geographical proximity is a firm moderating factor.

17Figure A.1 in Appendix A shows how our measures (including the ones derived from national
citation networks) correlate with each other.
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Table 2.5: Regression Results for Model without Autoregressive Component

Dependent variable: XMS

National (Co-occurrences) International (Citations) Final (Co-occurrences and citations)

(pooled) (FE) (pooled) (FE) (pooled) (FE)

PATSH 0.071∗∗∗ 0.387∗∗∗ 0.074∗∗∗ 0.350∗∗∗ 0.064∗∗∗ 0.350∗∗∗

(0.021) (0.068) (0.021) (0.067) (0.021) (0.070)

WAGE 0.016∗∗∗ 0.010∗ 0.013∗∗∗ 0.008 0.014∗∗∗ 0.008
(0.004) (0.005) (0.003) (0.005) (0.003) (0.005)

INV 0.046∗∗∗ 0.029∗∗∗ 0.047∗∗∗ 0.030∗∗∗ 0.045∗∗∗ 0.028∗∗∗

(0.008) (0.008) (0.008) (0.008) (0.008) (0.008)

POP −0.058∗ 0.002 −0.033 0.014 −0.049 0.007
(0.032) (0.029) (0.032) (0.028) (0.032) (0.029)

d.w 0.018∗∗∗ 0.013∗∗ 0.012∗∗ 0.010∗

(0.006) (0.005) (0.006) (0.005)

am 0.076∗∗∗ 0.062∗∗ 0.076∗∗∗ 0.061∗∗

(0.029) (0.027) (0.029) (0.027)

d.w.cit 0.018 0.026∗ 0.005 0.021
(0.011) (0.014) (0.013) (0.017)

am.cit 0.014 0.153 −0.103 0.089
(0.116) (0.130) (0.141) (0.168)

d.w:am −0.015∗ −0.014∗ −0.014∗ −0.014∗

(0.008) (0.008) (0.008) (0.008)

d.w.cit:am.cit −0.017 −0.031 0.0005 −0.022
(0.017) (0.021) (0.019) (0.025)

Country dummies Yes Yes Yes Yes Yes Yes
Industry dummies Yes Yes Yes Yes Yes Yes
Year dummies Yes Yes Yes Yes Yes Yes

Observations 2,778 2,778 2,811 2,811 2,778 2,778
R2 0.561 0.379 0.561 0.385 0.563 0.381
Adjusted R2 0.551 0.347 0.551 0.353 0.553 0.349
F Statistic 69.796∗∗∗ 73.933∗∗∗ 71.934∗∗∗ 76.847∗∗∗ 67.627∗∗∗ 65.271∗∗∗

(df = 50; 2727) (df = 21; 2546) (df = 49; 2761) (df = 21; 2579) (df = 52; 2725) (df = 24; 2543)
Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 2.6: Regression Results for Model with Autoregressive Component
(Blundell-Bond Estimator)

Dependent variable: XMS

Baseline (Co-occurrences and citations) Robustness (Citations)

(1) (2) (I) (II)

XMS−1 0.956∗∗∗ 0.956∗∗∗ 0.953∗∗∗ 0.954∗∗∗

(0.027) (0.027) (0.032) (0.031)

XMS−2 −0.028∗ −0.029∗ −0.047∗∗∗ −0.046∗∗∗

(0.016) (0.016) (0.015) (0.015)

PATSH −0.002 −0.003 −0.002 −0.004
(0.004) (0.004) (0.005) (0.005)

WAGE 0.0004 0.00005 0.001 0.001
(0.001) (0.001) (0.001) (0.001)

INV 0.001 0.001 0.002 0.001
(0.004) (0.004) (0.005) (0.005)

POP 0.002∗∗∗ 0.002∗∗∗ 0.002∗∗∗ 0.002∗∗∗

(0.0003) (0.0003) (0.0004) (0.0004)

d.w 0.005∗∗ 0.004∗∗

(0.002) (0.002)

am 0.030∗∗∗ 0.029∗∗∗

(0.009) (0.009)

d.w.cit 0.00005 −0.0004
(0.0004) (0.001)

am.cit −0.033 −0.030
(0.026) (0.029)

d.w:am −0.008∗∗∗ −0.007∗∗

(0.003) (0.003)

d.w.cit.control 0.005∗∗ 0.005∗∗

(0.002) (0.002)

am.cit.control 0.032∗∗ 0.029∗∗

(0.012) (0.012)

d.w.cit.control:am.cit.control −0.008∗∗ −0.007∗∗

(0.003) (0.003)

Time Dummies Yes Yes Yes Yes

Observations 2811 2811 2811 2811
AR(order1) −5.23∗∗∗ −5.24∗∗∗ −5.29∗∗∗ −5.30∗∗∗

AR(order2) −1.54 −1.55 −1.01 −1.09
Wald Test (coef.) 7703.89∗∗∗ 8047.81∗∗∗ 6071.79∗∗∗ 6258.51∗∗∗

Wald Test (int.) 477.00∗∗∗ 486.01∗∗∗ 422.93∗∗∗ 416.08∗∗∗

Sargan/Hansen (χ2) 55.02 (df = 100) 55.01 (df = 102) 12.89 (df = 96) 12.94 (df = 98)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01. The robust one-step GMM estimator is used. The number of lags used to instrument the endogenous
variable go from the fourth onwards.The first two lags of our dependent variable are included in model specification. Time dummies included
when specified but coefficients not reported. AR (1) and AR (2) are Arellano-Bond tests that average autocovariance in residuals of respectively
order 1 and 2 are zero. Wald tests for intercepts and slopes suggest rejection of homogeneity. Sargan/Hansen accounts fro the validity of the
instruments.
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2.6 Discussion

This work proposes a novel factor that affects the international competitiveness of

industries: the position of an industry in the inter-sectoral knowledge space. The

recent literature has suggested that innovation and technological change are more

relevant than cost-related factors in explaining industries’ competitiveness, coher-

ently with the interpretation of trade as a partial-disequilibrium process where het-

erogeneous firms compete, innovate, specialize and transfer knowledge across time

and space in an imperfect and often unpredictable manner. In such a context, the

impact of cost-based factors is limited. This analysis adds to stream of contributions

suggesting that innovation, R&D activities and the stock of knowledge are relevant

determinant of competitive advantage (Dosi et al., 2015; Laursen and Meliciani,

2000, 2002, 2010); beyond such indicators of innovation stock, we find that the po-

sition of industries within the inter-sectoral flows of knowledge matters. From our

estimates, it is not the innovative effort of an industry or the direct knowledge links

among industries that affect international competitiveness when the position within

the inter-sectoral knowledge flow is accounted for. Rather, industry’s performance

is robustly and positively affected by the being central and locally well connected

to other industries’ knowledge stocks. Notably, our results suggest that competitive

advantage positively relates to the position of an industry in the national (rather

than international) knowledge space: being conveniently located within the streams

of knowledge generated within the country matters more than being so in the whole

knwoledge space.

Shortly, we find that (i) industries that are more central in the inter-sectoral

knowledge space of their respective countries outperform their foreign competitors

and that (ii) the relevant geographical dimension in determining such an effect is

the national one. To obtain such results we have combined the use of firm level

patent data - which have been duly aggregated into sectoral variables - and industry
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- level data on exports and costs for a set of 16 OECD economies over a time span

of 15 years (1995-2009). Results from our regressions robustly confirm that trade

performance is positively affected by network measures characterizing the position

of industries in the knowledge space. In particular, being either central or clustered

in the network of knowledge flows (the knowledge space) significantly boost export

market shares. However, these two effects are found to be redundant: being central

in a knowledge space is far less relevant when the industry is highly connected within

a cluster. Interestingly, such effects almost completely capture the role of industries’

innovativeness, which turns out not to be significant when our network measures

are included in the model (see tables 2.5, 2.6). It must be emphasized that we do

not claim that innovation activities per se are not important in explaining trade

competitiveness of industries; rather, we point out that with respect to knowledge

and innovation, our approach leads to develop a variable which is more informative

than the patent share of an industry, which completely neglects inter-sectoral flows

of knowledge. In addition, our second proposition finds confirmation in the results

which suggest that the most relevant network for an industry - i.e. the network where

being central matters - is the one of national knowledge flows. We also provide some

possible explanations regarding the role of the inter-sectoral knowledge space (see

Section 2.3). A first mechanism involves the concept of variety of opportunities (see

for example Boschma (2005) and Balland et al. (2015)): being a central industry

in the flows of knowledge across industries enlarges its opportunities to innovate

and to eventually exploit such innovations on the market. A second mechanism

points to recombination (Ferguson and Carnabuci, 2017): if innovation requires the

recombination of knowledge, then being exposed to several different technological

flows coming from different industries may significantly increase innovativeness and,

hence, the possibility to benefit from them in the market. Third, being exposed to

a variety of knowledge flows coming from other industries may help an industry to

develop technological as well as managerial capabilities to perfectly master different
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technologies and eventually match them with the industry’s application and market

context (Christensen et al., 1998; Cohen and Levinthal, 1990). Similarly, regarding

the importance of the national dimension of knowledge flows we believe that the

localized nature of knowledge flows and the presence of ”home market bias” effects

(Vernon, 1966; Linder, 1961) offer reasonable explanations for the larger importance

of national rather than international connections.

More generally, our claim that industries have direct and indirect knowledge rela-

tionships with other industries which positively affect international competitiveness

point to a still rather unexplored dimension of innovation and technological change:

the various ways in which industries are tied together and affect each other in terms

of knowledge, innovation and performance. This can be related to the broader

issues of what constitutes an industry knowledge base and which are the various

direct and indirect inter-sectoral channels which feed and generate this knowledge

base (Breschi et al., 2003; Malerba, 2002; Dosi and Nelson, 2010). In fact, knowl-

edge in an industry does not automatically spills over from its ”production” within

the industry (Dosi, 1988; Dosi et al., 2015), but it may originate and diffuse in

various ways and through various channels from other industries: through vertical

linkages (Hirschman, 1958; Lundvall, 1992); tacit knowledge flows (Breschi and Lis-

soni, 2001), movement of people and new firms that carry knowledge across industry

boundaries (Adams et al., 2018) or broader links and inter-sectoral relationships at

the organizational or institutional or organizational level, such as diversification or

vertical integration (Helfat and Campo-Rembado, 2016; Li et al., 2018).

All such elements point to interesting areas for future of research. First, it is

important to examine in detail and empirically assess the relevance of the various

mechanisms proposed in this chapter through which inter-sectoral knowledge flows

affect the competitiveness of an industry. Second, our analysis is focused only on

14 industries. More disaggregated analysis with more fine grained data is necessary.

For instance, regional level data would provide useful information to further investi-
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gate to what extent geographical boundaries matter - we only distinguish beetween

national versus international flows. Third, the number of countries examined in this

work is limited and focuses on OECD countries. Our reasoning does not necessarily

holds for several emerging countries in which some local industries are not developed

and therefore are not present.

In conclusion, this chapter adds a novel insight to the analysis of export per-

formance of countries and has also interesting implications for public policy. For

countries, it is indeed important to promote and raise innovation and R&D in in-

dustries. However, we support the idea that they should also foster inter-industry

collaborations among firms and links among industries. This second type of policy

complements and does not substitute the first one: only industries and firms that

are innovative and do R&D are able to benefit from inter-industry knowledge flows

and increase their international competitiveness. Finally, geographical boundaries

must be taken into account if we want to design effective policies.
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Chapter 3

Relatedness, collaborations, and

research diversification

This chapter is largely based on the following published article:
Tripodi et al. (2020)

3.1 Introduction

The activities of scientists and innovators often span several areas, with choices of

research endeavours driven by a variety of factors. The ”essential tension” between

exploration and exploitation described by Kuhn certainly characterizes research ca-

reers (Kuhn, 1977), but scientists can evolve ways to handle this trade-off. On

the one hand, advances in science and technology create a ”burden of knowledge”

(Jones, 2009); the sheer amount of information required to move forward has grown,

and larger educational costs may force scientists and innovators towards a narrower

specialization. On the other hand, contemporary science is dominated by teams

that bring together different expertise - albeit at a cost in terms of coordination and

credit sharing (Wuchty et al., 2007). This chapter focuses on the analysis of sci-

entists’ research portfolio, investigating the roles of knowledge relatedness (among

research topics) and social relatedness (among authors), as well as their interaction,

as drivers of diversification.
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Recent efforts to better characterize patterns in research and innovation activi-

ties produced valuable insights. For instance, based on a knowledge network created

using MEDLINE articles annotated with chemical entities, Foster et al. (2015) quan-

titatively analyzed the dichotomy between exploration and exploitation. According

to their taxonomy, each new article can expand or consolidate the knowledge space

by generating a new chemical relationship (i.e., a new combination) or contribute

to an existing one. Results show that research strategies (i.e., the types of articles

produced) are stable over time and exploitation is preferred over exploration, de-

spite a growing number of opportunities. Exploration is riskier, with rewards (i.e.,

citations) that are higher but insufficient to compensate the risk. In the domain of

physics, Pan et al. (2012) focused on the temporal evolution of interdisciplinary re-

search. The authors constructed and analyzed yearly snapshots of the connections

among physics sub-fields uniquely identified through PACS codes. Results show

that connectivity, and thus interdisciplinarity within physics, increased - but in a

non-random way that reflects the hierarchical structure of sub-fields. In particular,

condensed matter and general physics acted as hubs for the increasing number of

connections. Recently, Sun and Latora (2020) proposed a novel framework, based on

time-varying networks, to track knowledge flows within and across physics sub-fields.

Such a method is able to highlight the increasing general trend towards interdisci-

plinary research as well as identify interesting patterns of influence among sub-fields

over time. More directly related to our purposes, Battiston et al. (2019); Aleta

et al. (2019); Jia et al. (2017) collected compelling empirical evidence on physicists’

research endeavours. Battiston et al. (2019) provided a comprehensive census of aca-

demic physicists active in recent decades. The authors charted a thorough picture of

the evolution of various fields in terms of number of scientists, productivity (includ-

ing impact and recognitions such as Nobel prizes), team size and role of chaperones

- highlighting a rich heterogeneity among specializations. Moreover, Battiston et al.

(2019) mapped ”migration” flows by comparing the field in which a given scientist
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published her first paper with the one characterizing her later research interests.

Also Aleta et al. (2019) mapped flows among physics sub-fields, with the aim of

investigating the ”essential tension” in the evolution of scholars’ research interests.

The authors defined a measure of exploration comparing early- and late-career ranges

of actives, and tracked flows using origin-destination matrices among fields. Results

suggest a preference for exploration over exploitation, but concentrated within the

same broad area of research, and non-random transitions among different areas.

Jia et al. (2017) observed that the frequency of scientists decays exponentially as

one considers increasing degrees of change in interests. In order to reconstruct

the macroscopic patterns that drive such evolution, the authors proposed a random

walk model over a stylized knowledge space, which reproduces empirical observations

thanks to the inclusion of key features such as heterogeneity, subject proximity and

recency. Finally, Zeng et al. (2019) analysed the dynamics of ”topic switching”

by exploring co-citing networks. Results suggest a growing propensity to switch

among topics but also that such a strategy might hamper productivity, especially

for early-career researchers.

Despite the growing body of evidence and stylized facts provided by this liter-

ature, much remains to be done to disentangle and quantify the roles of different

contributing factors. To make progress in this direction, we investigate scientists’

research portfolio diversification by quantifying potential drivers of exploration, or,

to put it differently, the hurdles faced by scientists when they move out of their

immediate specialization. We use a network approach to compute a measure of sim-

ilarity among research sub-fields, define a measure of social relatedness and track

scientists’ diversification patterns. We build our empirical strategy upon the intu-

ition of Breschi et al. (2003), who used patent data to explore the nature and degree

of coherence in firms’ technological diversification.

Our analysis proceeds as follows. First, we test and reject the hypothesis that

research portfolio diversification is random. Second, we use regression techniques
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to characterize how subject and social proximity affect diversification, controlling

for possible confounding factors. Third, we quantify the relative importance of our

relatedness measures. We provide robust empirical evidence that knowledge and so-

cial relatedness are both significant statistical predictors of diversification, as is their

interaction - which corroborates the notion that collaborations modulate knowledge

acquisition, especially when scientists move far from their own specialization. Like

many of the articles mentioned above, we analyze data concerning physicists. This

focus is due in part to the central role of physics among the hard sciences, and in

part to the reliability of data collected labeling articles through the PACS codes.

Nevertheless, our approach is fully general and could be used in different domains.

3.2 APS overview

We use the American Physical Society (APS) dataset to reconstruct the activities of

197,682 physicists who published at least one paper in one of the APS outlets in the

period ranging from 1977 to 2009 (see Section 3.9.1 for details). All articles in APS

journals are classified according to hierarchical codes that map into physics fields

and sub-fields (i.e., PACS codes). For our analyses (see Section 3.9.5), we filter out

authors and sub-fields that appear only sporadically in the data. Specifically, we

focus on 105,558 authors who published at least two articles, covering a minimum of

two sub-fields over a restricted set of 68 PACS which appear in at least four articles.

Figure 3.1 provides a general description of the data and some insights. Fig-

ure 3.1-a shows the popularity, in terms of number of articles, of fields and sub-fields

(one- and two-digit level PACS codes, respectively). As expected, PACS popularity

is highly heterogeneous and reflects the prominence of condensed matter research in

the last decades. Figure 3.1-b shows scientists’ degree of diversification and their

relative specialization, as defined in Section 3.9.3. The research portfolio of most

scholars in our dataset is fairly limited in scope, with a large majority of scientists
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Figure 3.1: Popularity of fields and scientists’ degree of diversification/special-
ization. (a) Circular bar-chart showing the number of articles assigned to each sub-field
in the one-digit PACS codes, taking into account their hierarchical structure. The chart
highlights the popularity of Condensed Matter research in both size and scope. (b) Distri-
bution of scientists’ degree of diversification (the number of sub-field they explored; orange
bars) and of their relative specialization (the number of sub-fields in which they have a
scientific advantage; red dots). Scientists explore several sub-fields, but specialize in only
a few - despite the existence of some individuals with a truly interdisciplinary path, by
and large research portfolios are fairly limited in scope. Inset: pictorial description of a
scientist who explored three sub-fields (orange) but has only one specialization (PACS 05:
red).

diversifying in no more than 5 sub-fields. The choice of subjects, however, is not

random - as we demonstrate in the next Section.

3.3 Diversification is not random

Do scientists, much like firms (Teece et al., 1994; Breschi et al., 2003), shape their

research portfolios based on specific strategies and constraints? To address this

question quantitatively, we draw a parallel with ecology: as species may co-occur in

distinct sites, sub-fields may overlap in research portfolios. Measuring the related-

ness of species based on their geographical co-occurrence is analogous to measuring

the relatedness of sub-fields based on their overlap in scientists’ ranges of activity.
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Thus, the PACS-Authors binary bipartite network resembles a presence-absence

matrix (Veech, 2013). The monopartite projection of this bipartite network (see

Section 3.9.2) on the PACS layer carries a critical piece of information: for each pair

of PACS, it tells us how many scientists are active in both sub-fields irrespective of

the number of articles, drawing a diversification network.

We can assess this network contrasting it against an appropriate null model.

Which sub-fields overlaps are over- or under-represented relative to what we would

expect under the assumption that scientists picked research topics at random, but

taking into account the popularity of sub-fields? Under a random model, the proba-

bility that x scientists are active both in sub-field a and in sub-field b, given that Sa

and Sb scientists are active in these sub-fields, follows a hypergeometric distribution

(Tumminello et al., 2011)

P (X = x) =

(
Sa

x

)(
S−Sa

Sb−x

)
(
S
Sb

) (3.1)

where S is the total number of scientists in the sample.

Figure 4.3 describes the steps of our procedure. Starting from the bipartite net-

work (panel a), we derive its monopartite projection (panel b) and test whether

the resulting structure is non-random, summarizing statistically validated diver-

sification patterns (panel c). Out of 2,278 pairs of PACS, 72% are classified as

non-random with a Bonferroni-corrected p-value < 0.05. Of these, 1,151 pairs show

a positive association and 486 a negative one. Given the severity of the Bonfer-

roni correction (i.e., power decreases significantly as the number of tests increases)

and possible issues related to dependency, we also employ the False Discovery Rate

(FDR): Benjamini-Hochberg and Benjamini-Yekutieli correction (see Section B.2

and Table B.2). These results strongly support a coherent nature of scientists’ di-

versification choices, but do not provide a direct quantification of the role played by

specific features in shaping such coherence. Next, we investigate potential drivers

of diversification considering measures of cognitive and social proximity.
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Figure 3.2: Diversification patterns. (a) A stylized picture of the original PACS-
Authors bipartite network representing scientists’ diversification patterns. (b) The di-
versification network (the monopartite projection on PACS): links represents the number
of scientists active in each pair of sub-fields. (c) Visual summary of the hypergeometric
test, providing evidence of the coherent nature of scientists’ diversification choices: 72%
of pairs are classified as non-random (p < 0.05 after Bonferroni correction).

3.4 Knowledge and social relatedness predict di-

versification

The relationships among scientific fields, like those among technologies, can be

mapped using network science tools. To chart a knowledge space we need a measure

of distance between fields. Several different metrics have been proposed to quantify

the relatedness of technologies or scientific domains (see Bowen and Jianxi (2016) for

a review). When we consider the monopartite projection on the PACS layer of the

bipartite PACS-Articles network, counting the co-occurrences of all pairs of PACS

produces a first approximation of the relatedness of sub-fields. A similar approach

was used in Lamperti et al. (2019) for patent data. However, we need a measure

of proximity that: (i) does not depend on the absolute popularity of the fields, and

(ii) is symmetric. The most straightforward metric that fulfils both requirements is

the cosine similarity (see Figure 3.3-a/b/c, Section 3.9.4). As expected, the proxim-

ity matrix has a clear hierarchical block structure, with blocks largely overlapping

with fields. Interestingly, several off block elements show the proximity of sub-fields

belonging to different PACS fields.
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As science becomes an increasingly ”social” enterprise, it is also important to

capture the relatedness of scholars, which can be done by analysing co-authorships

(Wuchty et al., 2007). Similar to what we did for knowledge relatedness, we con-

struct a measure of social relatedness starting from the bipartite Authors-Articles

network. The monopartite projection on the Authors defines the co-authorship net-

work from which we compute our desired metric. In addition, to investigate whether

diversification is associated with the exploitation of social relationships, we include

information on authors’ specialization as node attributes in the network and we in-

troduce a dummy SRib equal to 1 if scientist i can reach sub-field b through direct

social interactions (see Figure 3.3-d, Section 3.9.4).

Next, we evaluate the effects of knowledge and social relatedness on diversifi-

cation with logistic regression. The binary dependent variable encodes whether a

scientist is active in a sub-field, the main explanatory variables are our measures

of cognitive and social proximity, and a control is introduced for the core field. In

practice, each scientist is assigned to a core sub-field (specialization) and can pos-

sibly diversify in one or more target sub-fields different from her own (see Section

3.9.3). In this first set of regressions, each scientist appears 67 times, one for every

possible target PACS different from her own specialization (see Section 3.9.5 for

more details).

Figure 3.4 provides evidence that both social and knowledge relatedness are

associated with scientists’ diversification strategies. Social relatedness matters ir-

respective of the field, as scientists who can acquire new knowledge through social

relationships are more likely to be active in a sub-field different form their own

specialization (panel a). Also knowledge relatedness increases the probability of a

scientist being active out of her own specialization, and again this is true for all

fields (panel b). These results strongly suggest that cognitive and social proximity

do contribute to shaping diversification strategies.

61



Figure 3.3: Knowledge and social relatedness. (a) A stylized example of the
bipartite PACS-Articles network. (b) The PACS co-occurrence network (monopartite
projection on PACS codes). (c) The cosine similarity matrix, which ”maps” the physics
knowledge space and identifies clusters corresponding to fields. (d) A table illustrating how
co-authorship and specialization information are combined to produce the augmented co-
authorship network shown in the figure, which includes nodes attributes (specializations).
The nodes represent individual scientists (in black) and specializations (in red). Our
measure of social relatedness (SRib) is defined as a dummy that captures whether scholar
i can reach a certain sub-field b through social interactions; SRib = 1 if d(i, b) = 2,
where d(i, b) is the geodesic distance between scholar i and sub-field b. For instance,
SRDavid,45 = 1 since David could directly exchange knowledge with Alice (specialized in
sub-field 45), while SRDavid,21 = 0.
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Figure 3.4: Probabilities of scientists diversifying in a sub-field different from
their own specialization. Predicted probabilities of a scientist being active in a sub-
field different from her own specialization as a function of (a) (binary) social relatedness,
and (b) (standardized) knowledge relatedness. Results are obtained by fitting a logistic
regression with only one control variable - the scientist’ core field. All coefficients are
statistically significant (p < 0.01).

3.5 Model extensions and robustness checks

To move further in our investigation of research portfolio diversification, we broaden

our analysis in several ways. First, we expand our logistic regression model including

a larger set of control variables, such as the number of co-authors or the popularity

and citations of the target sub-field (see Table B.3 for a complete list). All numerical

variables in the expanded model are normalized, and log-transformed to reduce

right-skew when necessary (see Section 3.9.5 for more details). Since the effect of

knowledge relatedness on the probability of diversification may be modulated by

social relatedness, we also include an interaction term in our analysis.
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Second, we tackle two potential limitations of our original analysis; that is, defin-

ing a single specialization for each scientist (while core specializations may actually

be multiple), and not separating sub-field movements within and between fields,

i.e., one-digit PACS codes (which may be differently affected by various features).

We run additional model fits allowing scientists to have multiple specializations (see

Section 3.9.3) and separating within and between field diversification. Specifically,

we perform the following fits: (i) single specialization with full diversification, (ii)

multiple-specialization with full diversification, (iii) single specialization with within

field diversification, (iv) multiple specialization with within field diversification, (v)

single specialization with between field diversification and (vi) multiple specializa-

tion with between field diversification.

Third, we account for the fact that the data employed in our fits are ”clustered”,

with several observations associated to each scientist and a potential heteroskedas-

ticity across clusters/scientists. We estimate clustering-robust standard errors using

the clustered sandwich estimator from the R package sandwich (Zeileis, 2004).

Fits for specifications (i)-(iv), all including the interaction between knowledge

and social relatedness and clustering corrected standard errors, are summarized in

Table 3.1, confirming the high significance of the relatedness metrics in shaping

research diversification. Figure 3.5 focuses on the full diversification case. Panels

a (single specialization, (i)) and c (multiple specialization, (ii)) show the log-odds

difference in the probability of diversification as a function of knowledge and social

relatedness, accounting for all controls. Social relatedness positively affects the

chances of diversification and the effect is moderated by knowledge relatedness in

both specifications, though more markedly in (i) than in (ii). Panels b (for (i)) and

d (for (ii)) further illustrate this, showing how the estimated coefficient of social

relatedness decreases as knowledge relatedness increases. This result indicates that

when diversifying toward ”close” sub-field, the role of social relatedness becomes

less crucial.
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Table 3.1: Regression results. Coefficients of the logistic regressions of Eq. 3.8, i.e.
the model including the interaction term between knowledge and social relatedness, under
different specialization settings. The table reports clustering corrected standard errors (in
parenthesis) and significance level:∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01.

Dependent variable: Prob(diversification)

Full Diversification Within Field Diversfication Between Field Diversfication

single multiple single multiple single multiple

(i) (ii) (iii) (iv) (v) (vi)

Knowledge Relatedness 0.936∗∗∗ 0.688∗∗∗ 0.184∗∗∗ 0.121∗∗∗ 0.702∗∗∗ 0.511∗∗∗

(0.003) (0.009) (0.005) (0.013) (0.003) (0.011)

Social Relatedness 2.827∗∗∗ 4.243∗∗∗ 2.272∗∗∗ 3.968∗∗∗ 2.914∗∗∗ 4.284∗∗∗

(0.006) (0.019) (0.008) (0.021) (0.008) (0.021)

field core-Atomic −0.332∗∗∗ −0.428∗∗∗ 0.056∗∗ −0.276∗∗∗ −0.303∗∗∗ −0.385∗∗∗

(0.010) (0.007) (0.025) (0.021) (0.010) (0.008)

field core-Classical −0.490∗∗∗ −0.477∗∗∗ −1.001∗∗∗ −0.932∗∗∗ −0.313∗∗∗ −0.328∗∗∗

(0.010) (0.007) (0.029) (0.023) (0.010) (0.008)

field core-Cond.matter −1.088∗∗∗ −0.761∗∗∗ −1.110∗∗∗ −0.892∗∗∗ −1.263∗∗∗ −0.903∗∗∗

(0.012) (0.009) (0.024) (0.020) (0.017) (0.013)

field core-General −0.722∗∗∗ −0.537∗∗∗ −0.927∗∗∗ −0.823∗∗∗ −0.632∗∗∗ −0.422∗∗∗

(0.011) (0.007) (0.028) (0.021) (0.012) (0.008)

field core-High.energy 0.219∗∗∗ 0.168∗∗∗ 1.806∗∗∗ 1.176∗∗∗ −0.360∗∗∗ −0.060∗∗∗

(0.010) (0.006) (0.027) (0.023) (0.013) (0.008)

field core-Interdisc −0.557∗∗∗ −0.553∗∗∗ −0.357∗∗∗ −0.724∗∗∗ −0.365∗∗∗ −0.367∗∗∗

(0.010) (0.007) (0.026) (0.021) (0.011) (0.008)

field core-Nuclear 0.463∗∗∗ 0.164∗∗∗ 0.969∗∗∗ 0.692∗∗∗ 0.068∗∗∗ −0.161∗∗∗

(0.010) (0.006) (0.024) (0.021) (0.011) (0.009)

field core-Plasma −0.269∗∗∗ −0.419∗∗∗ −0.155∗∗ −0.361∗∗∗ −0.074∗∗∗ −0.256∗∗∗

(0.013) (0.008) (0.068) (0.058) (0.015) (0.009)

# of PACS 0.882∗∗∗ 0.806∗∗∗ 0.769∗∗∗ 0.497∗∗∗ 1.003∗∗∗ 0.944∗∗∗

(0.002) (0.003) (0.005) (0.004) (0.004) (0.004)

# of papers 0.010∗∗∗ 0.113∗∗∗ 0.065∗∗∗ 0.252∗∗∗ −0.032∗∗∗ 0.050∗∗∗

(0.002) (0.003) (0.005) (0.004) (0.004) (0.004)

# of co-authors −0.406∗∗∗ −0.347∗∗∗ −0.240∗∗∗ −0.145∗∗∗ −0.488∗∗∗ −0.444∗∗∗

(0.002) (0.004) (0.004) (0.004) (0.003) (0.006)

PACS target popularity 1.130∗∗∗ 0.611∗∗∗ 1.370∗∗∗ 0.774∗∗∗ 1.108∗∗∗ 0.559∗∗∗

(0.002) (0.002) (0.005) (0.003) (0.003) (0.002)

∆ crowd 0.239∗∗∗ 0.358∗∗∗ 0.131∗∗∗ 0.345∗∗∗ 0.320∗∗∗ 0.393∗∗∗

(0.002) (0.003) (0.003) (0.003) (0.003) (0.003)

∆ PACS citations −0.273∗∗∗ −0.332∗∗∗ −0.208∗∗∗ −0.313∗∗∗ −0.369∗∗∗ −0.354∗∗∗

(0.002) (0.003) (0.004) (0.003) (0.004) (0.003)

∆ field citations −0.156∗∗∗ −0.070∗∗∗ ✗ ✗ −0.196∗∗∗ −0.143∗∗∗

(0.004) (0.004) (0.006) (0.005)

KR:SR −0.255∗∗∗ −0.061∗∗∗ −0.047∗∗∗ −0.001 −0.234∗∗∗ −0.067∗∗∗

(0.004) (0.010) (0.007) (0.013) (0.005) (0.011)

Constant −3.812∗∗∗ −5.903∗∗∗ −1.882∗∗∗ −4.250∗∗∗ −4.168∗∗∗ −6.165∗∗∗

(0.010) (0.020) (0.022) (0.028) (0.010) (0.022)

Observations 7,072,386 35,968,615 1,000,230 5,407,404 6,072,156 30,154,990

Log Likelihood −1,086,281.000 −7,303,198.000 −334,697.300 −2,166,803.000 −716,398.900 −4,971,497.000

Akaike Inf. Crit. 2,172,600.000 14,606,434.000 669,430.600 4,333,642.000 1,432,836.000 9,943,033.000
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Figure 3.5: Scientists’ research portfolio diversification: full diversification,
single and multiple specialization. (a) Log-odds as function of (binary) social relat-
edness and (standardized) knowledge relatedness, accounting for multiple control variables,
for the single specialization specification (i). (b) Estimated coefficient for social related-
ness conditional on knowledge relatedness, and distribution of knowledge relatedness (on
top, similarity color coded as in Figure 3.3-c), for the single specialization specification
(i)). (c), (d) Same as (a) and (b) for the multiple specialization specification (ii).

Next, we contrast scientists moving within their specialization field (between two

sub-fields, i.e. two-digit PACS codes, belonging to the same field, i.e. one-digit PACS

code; e.g. PACS 12 Specific theories and interaction models; particle systematics and

PACS 13 Specific reactions and phenomenology, both belonging to PACS 1 High

Energy physics) and scientists moving out of their field and towards a completely

different subject (i.e. a different one-digit PACS code). These choices may be driven

by different factors. Scientists moving within their field may be less dependent

on external collaborations, since such a diversification strategy requires a smaller

learning effort. Our estimates do highlight differences. Looking at the within field

diversification case, single specialization (Table 3.1, (iii)), we see that knowledge and

social relatedness, as well as their interaction, are still significant - but the magnitude
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of the coefficients is smaller with respect to the full diversification case. When we

consider multiple specialization (Table 3.1, (iv)), coefficients shrink even further

and the interaction is no longer significant (see also Figure B.2). On the contrary,

looking at the between field diversification case, the general trends outlined for

the full diversification case are confirmed - including the negative interaction term

remaining sizeable and significant for both single and multiple specialization (see

Table 3.1, (v) and (vi), and Figure B.3). These results are in line with expectations:

while having a co-author in a different sub-field may well be useful, knowledge is not

a barrier to entry when scientists move within the same general area of inquiry. This

explains why the interaction between social and knowledge relatedness becomes less

prominent or non-significant in our estimates.

3.6 Quantifying the relative importance of knowl-

edge and social relatedness

Can we quantify the (relative) role of knowledge and social relatedness in explaining

research portfolio diversification? How important are these quantities when eval-

uated in the presence of several control covariates, and under a range of model

specifications? To answer these questions we follow two approaches.

First, we run a LASSO feature selection procedure to gauge the relative impor-

tance and role of different predictors by tracking how they are excluded/included in

a model as one varies the regularization penalty. Since our predictors include cat-

egorical variables (i.e., groups of dummies), as well as naturally grouped variables

(e.g., scientists’ individual characteristics, sub-fields’ popularity and competition,

etc.) we run a group LASSO algorithm (Yuan and Lin, 2006) with features grouped

as shown in Table B.3. Moreover, to counteract collinearity and finite sample issues

which can render the LASSO unstable (Mullainathan and Spiess, 2017), we split our

data forming ten random subsamples of 1,000 scientists each, and repeat the group
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LASSO fit on each of the subsamples for all the considered model specifications.

Panels (a)-(f) of Figure 3.6 show the (grouped) coefficient norms as a function of

the penalization parameter λ. Results clearly demonstrate the crucial role played

by social and knowledge relatedness. They also confirm that the role of knowledge

relatedness weakens markedly in the case of within-field diversification (panels (c)

and (d)).

Second, we compute the Relative Contributions to Deviance Explained (RCDEs;

see Section 3.9.5 for details). This index captures what percentage of the logistic re-

gression deviance is captured by a predictor. Panel g of Figure 3.6 strongly supports

a prominent role for social relatedness, with RCDEs around or above 30% across

all specifications. The RCDEs of knowledge relatedness are smaller, around 5-10%,

and again become negligible in the case of within-field diversification. In summary,

our results provide additional evidence that both social and knowledge proximity

shape scientists’ diversification strategies, but highlight social interactions as the

dominant channel through which knowledge is exchanged and acquired.

3.7 Digging deeper: multidisciplinarity and time

Next, we tackle two additional potential limitations of our original analysis, which

might overestimate the probability of diversification for truly multidisciplinary sci-

entists and suffer from reverse causality issues. To investigate diversification into

truly unexplored sub-fields, we fitted the model specification (i) (see Section 3.5)

considering scientists’ specialization (see Section 3.9.3) and limiting their diversifi-

cation choices to sub-fields in which they have no revealed scientific advantage (see

Section B.5). To at least partially address causality in the effects of knowledge and

social relatedness on diversification, we included a temporal dimension: we split

the original dataset in three time periods, re-computed our measures of related-

ness in each, and used them to predict scientists’ diversification introducing time
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Knowledge

Figure 3.6: Relative importance of predictors. (a)-(f) Group LASSO paths for (a)
full diversification, single specialization; (b) full diversification, multiple specialization; (c)
within-field diversification, single specialization; (d) within-field diversification, multiple
specialization; (e) between-field diversification, single specialization; (f) between-field di-
versification, multiple specialization. In each panel, variables in the same group are color
coded, and their average coefficient norm is plotted (as a single path) against the penalty
parameter (log λ). The multiple paths for each color correspond to separate group LASSO
runs on 10 random sub-samples of 1,000 scientists. (g) Relative Contributions to Deviance
Explained for knowledge relatedness (black) and social relatedness (red) across all fits.

lags (see Section B.5). In both exercises, results confirmed our previous findings:

social relatedness shapes scientists’ diversification strategies more than knowledge

relatedness.

Finally, and again related to time, our findings may be influenced by underly-

ing trends in the temporal evolution of PACS co-occurrence networks - and thus

knowledge proximity. A detailed study of the evolution of relationships among sub-

fields, which is of course of interest per se, is beyond the scope of the present article.

Nevertheless, to gather at least some approximate sense of its potential impact, we

recomputed our measure of knowledge relatedness separately for each of the dif-
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ferent decades in the original dataset. Based on results shown in Section B.4, the

physics knowledge space remained rather stable over the time span considered. A

valuable alternative approach to take into account the temporal evolution of the

physics knowledge space is provided by Chinazzi et al. (2019).

3.8 Discussion

Scientists try to balance the ”tension” between exploitation and exploration, but

the exploration phase is, to some extent, constrained by the ”burden of knowledge”.

To tackle the rising complexity of producing new knowledge, scientists adapt their

diversification strategies leveraging social interactions; that is, proximity to other

scientists. Our analysis attempts to identify and quantify drivers of research port-

folio diversification. Based on data concerning a very large sample of physicists we

find that, while knowledge relatedness plays a role, contemporary science is a pro-

foundly social enterprise. When scientists move out of their specialization, they do

so through collaborations. And the further the move, the more these collaborations

matter.

Limitations in the methodology we employed for this study point towards needed

future developments. First and foremost, we are not assessing causal effects; we anal-

yse research diversification patterns irrespective of the mechanisms which determine

the similarity among sub-fields and the co-authorship network. Indeed, knowledge

relatedness and collaborations may themselves be affected by scientists’ diversifica-

tion strategies. We believe that the observed negative interaction between knowledge

and social relatedness helps us rule out, at least partially, the contingency of reverse

causality for social relatedness: if diversification were causally driving the link, we

would expect a positive interaction. There is no reason to believe that new collabo-

rators are easier to find in sub-fields far from a scientist’s own specialization; in fact,

the opposite may be more likely - the closer the sub-fields, the higher the chances
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to collaborate. Moreover, since the structure of the knowledge space appears fairly

stable over time, the direction of causality is more likely from subject proximity to

diversification - not the other way around. Additional analyses with methods that

fully exploit the temporal trajectories of scientists’ activities will be instrumental to

elucidating the causal interplay between individual strategies and collaborations. In

the Supplement we do provide results for the checks we were able to run based on

the data and methods at our disposal.

Another critical development will be expanding the investigation to scientific

and/or technological domains beyond physics - shedding further light on behaviours

and potential sources of heterogeneity. Our initial focus on physics was due to its

central role in the natural sciences and to the availability of reliable and abundant

data. Nevertheless, the approach used in this study is fully applicable to different

domains. Patents and publications records would both be useful grounds to validate

and extend our results - thus providing a quantitative benchmark to inform science

and technology policy.

From a policy perspective, our current results already provide some insights.

They support the notion that social interactions constitute the core medium to fos-

ter new scientific venues, allowing scientists to overcome knowledge barriers. Thus,

social interactions should be a focus of efforts aimed at improving cross-disciplinary

team formation. Institutions should strive to create environments that favor so-

cial proximity and collaboration, and funding for interdisciplinary research should

reward matches among scholars specialized in very distant domains.

3.9 Data and Methodology

3.9.1 Data

We use the American Physical Society (henceforth APS) dataset, which is maintained by

the APS and publicly available for research purposes upon request (see APS website).
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Each article in the dataset is labeled with up to 5 PACS codes. As an example, the

PACS code 42.65.-k refers to nonlinear optics; the first digit represents a broad field

(Classical Physics), and the second a more specific sub-field (Optics). A brief description

of the one-digit level fields is provided in Table B.1. In our analyses, we work at the

level of sub-fields; our measure of knowledge relatedness is based on similarity of PACS

at two-digit level. Based on our aims (analysing research diversification strategies), we

created a dataset based on two requirements: (i) the ability to reconstruct the career of

each individual, and (ii) a standardized classification system for each article. (i) poses

several issues related to name disambiguation, which have been successfully investigated

in previous studies. We rely on the disambiguated dataset made available by Sinatra

et al. (2016). (ii) concerns the classification scheme applied to physics articles. The PACS

classification has been broadly employed from 1970 to 2016, but then the APS adopted

a different labelling procedure (Physics Subject Headings; PhySH). We limit our analysis

to a period entirely covered by the PACS system. Our final dataset includes information

regarding 197,682 scholars that published at least one article in one of the 9 APS journals

in the period ranging from 1977 to 2009. Figure B.1 shows the number of papers (panel

a) and the number of papers per author (panel b) over time.

3.9.2 Monopartite projections of bipartite networks

A bipartite network is a graph whose nodes can be divided into two distinct sets (layers)

such that no edge connects a pair of nodes belonging to the same set. A binary undirected

bipartite network is identified by a rectangular biadjacency matrix b of dimensions NR ×

NC . The number of rows NR is the number of nodes in layer R, and the number of columns

NC is the number of nodes in layer C (Saracco et al., 2017). Being binary simply means

that the elements of the matrix are

brc =





1 if node r ∈ R and c ∈ C are linked

0 otherwise

(3.2)
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The weighted monopartite projection on one of the layers is constructed counting so-called

V-motifis: we draw a link in the projected network if two nodes share a neighbour in the

bipartite network. For instance, to derive the weighted monopartite projection on layer

R, we count co-occurences in the bipartite network and construct the square NR × NR

matrix M with elements

mrr′ =

NC∑

c=1

brcbr′c (3.3)

For our analyses, we derive weighted monopartite projections from three binary bipartite

networks; namely, Subfields-Articles, Authors-Articles and Subfields-Authors.

3.9.3 Scientists’ specializations

Our analyses require us to assign specializations (single or multiple) to individuals. Un-

fortunately, there is no standard way to approach this problem - in part because, unlike

articles or patents which can often be unambiguously linked to a limited number of classes,

scientists can explore the knowledge space quite extensively. For our purposes, a suitable

assignment should take into account both the relative specialization of a scientist and the

distribution of publications across areas. Share-based metrics can be used to construct

effective assignments. An instance is the Revealed Scientific Advantage (RSA) recently

used in Battiston et al. (2019), which is akin to a metric originally used in Balassa (1965)

to analyse comparative international trade advantages among countries. We consider the

normalized metric; for each author i and sub-field (two-digit PACS) s this is defined as

RSAis =

wi,s∑
s wi,s∑
i wi,s∑
i,s wi,s

, (3.4)

where wi,s is the number of articles author i has published in sub-field s. By construction,

RSAis ∈ [−1, 1], and a positive value indicates an advantage for author i in sub-field s.

To assign a single specialization to i, we simply take s(i) = argmaxs{RSAis}.

To assign multiple specializations to i, we take S(i) = {s s.t. RSAis > 0}. In this

case we actually create a fictitious ”copy” of i for each of the sub-fields in S(i) - keeping
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all individual characteristics but the specialization for each copy. This overcomes possible

biases stemming from classification errors or marked heterogeneity in the distribution of

articles across sub-fields.

3.9.4 Measures of knowledge and social relatedness

We define knowledge relatedness among sub-fields (two-digit PACS) from the bipartite

network PACS-Articles. Specifically, we derive the monopartite projection on the PACS

layer (a 68× 68 co-occurrence matrix) and then apply the cosine similarity to construct a

knowledge relatedness matrix. The procedure is illustrated in Figure 3.3: panel (a) shows

a stylized example of the bipartite network PACS-Articles, panel (b) shows the network

of co-occurrences of all pairs of PACS (the monopartite projection on the PACS layer),

and panel (c) shows the cosine similarity matrix describing proximity among physics sub-

fields.

We define social relatedness from the initial co-authorship network G(V,E). Specifi-

cally, we build an augmented graph G′(V ′, E′) to integrate scientists’ specializations: for

each node (author) V ∈ G, we create an individual node in G′ and for each edge E ∈ G

we draw the corresponding edge in G′. Then for each PACS s, we create an attribute node

in G′. Next, we add further edges to G′ considering the specialization(s) of each scientist

and creating an edge between her individual node and the her specialization(s)’s attribute

node(s) (panel (d) of Figure 3.3 provides a simple example). Finally, we capture social

relatedness with a binary variable based on whether an author has at least one coauthor

specialized in a sub-field different from her own; that is

SRis =





1 if d(i, s) = 2

0 otherwise

(3.5)

where d(i, s) is the geodesic distance between scientist i and sub-field s in the augmented

graph.
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3.9.5 Modeling and assessment of predictors’ contributions

Consider an author i specialized in the sub-field a. The probability that she is also active

in sub-field b ̸= a is modeled as

p := f(KRab, SRib, IFi,SCb,Citb) (3.6)

where KRab is the knowledge relatedness between the two sub-fields, SRib is the social

relatedness between the author and the sub-field b, IFi is a vector of author’s charac-

teristics, SCb is a vector of variables capturing the sub-field popularity and competition

(i.e., for each sub-field, number of papers and number of specialized scientists), and Citb

is a vector of variables capturing the relative attractiveness of the sub-field. A full list

of the variables comprised in these vectors is provided in Table B.3. We reformulate the

model as a logistic regression and consider two baseline specifications, with and without

the interaction term between knowledge and social relatedness:

Y = ln(
p

1− p
) = α+ βKRab + γSRib + θ · IFi + η · SCb + ϕ ·Citb (3.7)

Y = ln(
p

1− p
) = α+βKRab+γSRib+ζ(KRab×SRib)+θ ·IFi+η ·SCb+ϕ ·Citb (3.8)

For both the single-and multiple-specialization settings, we fit these logistic regressions

in three scenarios; namely, full (no constraint on sub-fields a and b), within field (a and b

in the same field; i.e. one-digit PACS code) and between field (a and b in different fields)

diversification.

In order to quantify the roles of knowledge and social relatedness, we compute the

Relative Contribution to Deviance Explained (RCDE) for each of these variables (Campos-

Sánchez et al., 2016). For a generic predictor X this is defined as

RCDEX =
(Dnull −Dfull)− (Dnull −Dfull\X)

(Dnull −Dfull)
(3.9)
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where Dnull is the null deviance, Dfull is the residual deviance of the full model (including

all predictors) and Dfull\X is the residual deviance of the model obtained by removing X

(in our case KR or SR). The RCDE thus quantifies the percentage of the total logistic

deviance attributable X.
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Chapter 4

Science, technology and climate

change

This chapter is largely based on the following working paper:
(Tripodi et al., 2022)

4.1 Introduction

There is increasingly robust evidence that meeting ambitious climate targets, per-

haps with limited temperature overshooting (Riahi et al., 2021), will require remov-

ing large stocks of carbon dioxide from the atmosphere (Allen et al., 2019; Shukla

et al., 2022). Tackling climate change by removing CO2 from the atmosphere has

been a tantalizing idea for quite some time (Baes et al., 1980). Planting trees, or

more precisely, designing forest management programs, has probably been the first

solution to arise (Dyson, 1977). Over time though, a broader set of technical solu-

tions have been developed, generally going under the label of Negative Emissions

Technologies (NETs).

Recently, as stressed in the last IPCC report, a large majority of Integrated

Assessment Models (IAMs) mention NETs as a pivotal element to meet the Paris

Agreement requirements and thus tackle global warming (Rogelj et al., 2015; Clarke

et al., 2014; Shukla et al., 2022). According to these models, the transition to-

ward zero emissions will require the extensive deployment of NETs to balance the
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inevitable difficulties of cutting short-term emissions even more drastically (Van Vu-

uren et al., 2017). Furthermore, NETs might contribute to smooth out the so-called

green transition, which will prove challenging from an economic, social, technologi-

cal, and, of course, political perspective (de Coninck et al., 2018).

As of today, there are doubts on the possibility of immediate large-scale de-

ployment of NETs, and their use as technical or policy panacea could not only be

implausible, but even hazardous (Anderson and Peters, 2016; Van Vuuren et al.,

2018; Grubler et al., 2018; Lane et al., 2021). The inclusion of these technologies

in the design of climate policy pathways could risk delivering misleading guidelines

if it underestimates the long and uncertain process that moves from basic research

to the systemic diffusion of complex technical artifacts (Tavoni and Socolow, 2013;

Fuss et al., 2014; Vaughan and Gough, 2016; Dosi, 1988; Dosi and Nelson, 2010;

Probst et al., 2021). In addition, little is known about how NETs at full regime

could interact with other Sustainable Development Goals (SDGs) (Fuss et al., 2014;

Fuhrman et al., 2020). NETs are indeed a peculiar set of technologies, whose eco-

nomic value and market size largely depends on the strength of current and future

climate policy, as well as from the global trajectory of emissions (Meckling and

Biber, 2021). Against this backdrop, the available evidence about how different

NETs could develop and diffuse is inconclusive.

Our analysis provides new evidence about the relationships between scientific re-

search in NETs, its diffusion and policy coverage, as well as their technological devel-

opments. In particular, we quantify the likelihood that scientific advances in NETs

research (i) stimulate the production of further knowledge, (ii) foster technological

innovation, and (iii) enter the policy debate. Moreover, we investigate the geograph-

ical distribution of NETs-related knowledge production, using relative comparative

advantage and network analytic measures to identify the scientific specializations of

countries and single out the main research hubs of the global innovation system.

Our work contributes to a recent stream of studies acknowledging a relatively

marginal role of NETs-related research within the broader climate discourse (Minx

et al., 2017), and emphasise the need to better understand the scientific trends,

the diffusion and up-scaling issues of NETs (Minx et al., 2018; Fuss et al., 2018;
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Nemet et al., 2018), as well as their broader economic challenge. Different NETs

have been mostly evaluated along five dimensions (Figure 4.1B): negative emissions

potential (i.e., Gt Ceq per year), energy and natural resource requirements (i.e.,

land and water use) and economic costs (US$ per t Ceq) (Smith et al., 2016; Smith,

2016). Overall, no universally superior option has been identified (Rueda et al.,

2021). This chapter provides novel dimensions to the multi-faceted comparison of

various carbon removal technologies and provides the first estimates of knowledge

spillovers generated by research in NETs.

We focus on the following list of options (see Figure 4.1A and Table C.1 for

a summary description): Afforestation and Reforestation (AR), Bio-energy with

Cabon Capture and Storage (BECCS), Biochar, Blue carbon (BC), Direct Air Cap-

ture (DAC), Enhanced weathering (EW), Ocean fertilization (OF), and Soil carbon

sequestration (SCS). DAC does not explicitly include storage options (Fuss et al.,

2016); see Section 4.7.1 and C.1 for more details.

We measure knowledge spillovers by using citations networks, as is standard in

the innovation and applied economics literature (Jaffe et al., 1993; Dechezleprêtre

et al., 2013; Jaffe and De Rassenfosse, 2019). Given the critical role played by

climate-related technologies, we move beyond the standard citation counts to incor-

porate knowledge flows to practical innovations (i.e., patents) and the public dis-

course (i.e., policy documents) (Ahmadpoor and Jones, 2017; Yin et al., 2021a,b).

We also include the broader public impact of NETs research through different media

channels to take into account a more complete and multidimensional set of knowl-

edge spillovers. More in detail, by analyzing 20 years of academic literature via

network and regression techniques (Verdolini and Galeotti, 2011; Popp, 2016), we

first provide a quantitative comparison of the impact of different NETs. Next, we

focus on knowledge spillovers of NETs research in science, technology, and policy.

Finally, we provide additional geographical and network analyses to study the spatial

heterogeneity of cities and countries that can serve as research hubs for supporting

future collaborations.

In extreme synthesis, by unpacking the multidimensional impact of knowledge

spillovers, this work suggests the existence of coordination gaps between science,

79



technology and policy in the domain of carbon removal solutions. Our results show

that (i) knowledge spillovers in science play a non-negligible role in the development

of negative emissions solutions, (ii) in terms of impact, NETs are characterized by

great heterogeneity, and only very few options are substantially linked to market-

place inventions, and (iii) negative emissions research activities are geographically

concentrated around hubs with different specialisations from the viewpoint of the

global division of labour. Interestingly, DAC appears as the most promising solution

concerning technological developments (as indicated by patent citations); however,

it is still relatively overlooked by policymakers (as indicated by policy reports cita-

tions).

4.2 Knowledge base and spillovers: the landscape

of negative emissions research

Technological and scientific breakthroughs are often the result of knowledge recom-

bination processes, wherein past scientific advances become themselves knowledge

components of future, often unexpected, innovative research paths (Dosi, 1982, 1988;

Fleming, 2001; Xiao et al., 2021). Our exploration of the NETs’ research landscape

starts by mapping the knowledge base (i.e., scientific fields on which NETs rely

upon) and the potential spillover directions (i.e., scientific sub-fields influenced by

NETs research developments). To identify them, we collected a large amount of bib-

liometric information related to NETs articles published in scientific journals (see

Section 4.7.1). We retrieve NETs papers by querying Web of Science (WoS) on the

basis of keywords and their combinations in titles and abstracts (Fuss et al., 2016;

Minx et al., 2017). From 1998 to 2017, we collect 3301 published articles, distin-

guishing eight different NETs and considering a general residual category. Figure

4.1c shows the growing number of publications per year, with details for the dif-

ferent NETs. Next, we collect citations data from scientific papers, patents, and

policy documents, along with non-technical media mentions (e.g., in social media,

newspapers, blogs). To do so, we integrate several data sources, namely: Web of

Science (WoS), Reliance on Science (RoS) and Altmetric (see Sections 4.7.1 and C.1
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Figure 4.1: Negative emissions research. (A) The list of eight NETs included in our
analysis. (B) A multidimensional comparison among different NETs (authors assessment
adapted from (Smith et al., 2016; Smith, 2016; Fuss et al., 2018)). (C) NETs articles
from 1998 to 2017 collected though WoS text search. The category General is defined as a
residual class including articles that match NETs keywords but do not specifically include
words patterns in their titles or abstracts. (D) A stylized representation of the diverse
sources of data necessary to keep track of knowledge flows to science, technology and policy.
(*) The aforementioned references provide a detailed review of each NET. Summary radars
concerning OF and BC not included (fewer conclusive information currently available
(Strong et al., 2009; Bertram et al., 2021)).
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for more details). Figure 4.1d provides a schematic representation of the different

sources of data used in our analysis to keep track of the multidimensionality of

knowledge spillovers.

Negative emissions technologies are not all alike: crucial differences have been re-

ported in relation to measurement, verification, accounting, and durability of carbon

stored (Joppa et al., 2021), as well as to costs and requirements (Smith et al., 2016;

Smith, 2016). Against this background, we investigate the heterogeneity that char-

acterizes NETs’ knowledge base and spillover directions (Figure 4.2). Nature-based

and technology-based approaches differ in both aspects. Figures 4.2A,B,C,D show

a qualitative comparison between two nature-based methods (i.e., forest manage-

ment and soil carbon sequestration) with the most popular technological solutions

(BECCS and DAC). As expected, nature-based NETs are scientifically grounded in

soil science and ecology, while solutions such as BECCS and DAC are engineering-

driven methods. More interestingly, NETs build on different scientific fields, and

the directions of potential spillovers follow accordingly. To better illuminate this, we

show the overlap rates among subjects most frequently reported in the knowledge

base (Figure 4.2E) and in set of spillover directions of each NETs pair (Figure 4.2F).

Overall, our descriptive observation signals a prominent feature of NETs: the scien-

tific heterogeneity of their knowledge base closely reflects the direction of spillovers

effects. Some NETs can certainly be compatible in applications, but they are not

synergic in the knowledge they develop and build upon.

In the following Sections, we investigate the impact of negative emissions research

on several dimensions, revealing that NETs generate substantial but heterogeneous

spillovers, and that research activities are not evenly distributed from a geographical

perspective.

4.3 Multidimensional impact of NETs research

As mentioned above, NETs comprise a heterogeneous group of carbon capture solu-

tions stemming from a diversified range of scientific disciplines. In this Section, by

exploiting the richness of different sources of data, we characterize, for the first time,
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Figure 4.2: NETs knowledge base and spillovers. (A–D) Flows diagrams for AR,
BECCS, DAC, and SCS. Top 10 WoS subjects that affect (backward citations) and are
affected (forward citations) by NETs research. The first ten subjects comprise the large
majority of citations (see figure C.6 for details). (A) Afforestation and Reforestation –
AR. (B) Bio-energy with Carbon Capture ans Storage – BECCS. (C) Direct Air Capture
– DAC. (D) Soil Carbon Sequestration – SCS. (E) Matrix of overlapping subjects in
NETs knowledge base (% values). (F) Matrix of overlapping subjects in NETs knowledge
spillovers (% values). Full list of flows charts included in C.5.
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the multidimensional nature of NETs impact, measuring their spillovers within and

beyond their scientific reach.

Our quantitative comparison among scientific articles relies on identifying suit-

able control groups. Therefore, we employ a matching procedure to construct a

“baseline” control, including articles published in the same year and the same jour-

nal, not directly related to NETs. In addition, to better characterize the role of

NETs within the broader climate change academic debate, we construct a second

control group (i.e., “climate control”), following the same strategy but focusing on

the climate change literature. (see Section 4.7.1 and C.2 for more detailed infor-

mation related to our matching strategy). It is worth noticing that our matching

procedure has the purpose of balancing the comparison taking into account articles

of the same age and ideally the same quality. However, such a matching scheme does

not guarantee an exact counterfactual; it ensures that we compare articles with some

key common characteristics.

Using Altmeric data, we compute the normalized number of mentions for each

NET to gauge how the different streams of research are covered in academic, policy,

technical, and media outlets. Figure 4.3 summarizes a first quantitative comparison

in terms of impact (with the control group fixed at 1): each radar chart (Figure

4.3A–I) shows the multidimensional impact profile that characterizes research ar-

ticles belonging to different NETs. We perform the same empirical exercise using

as benchmark the climate control group (see Figure C.7). Two main observations

must be made: first, as NETs are intrinsically different, their impact mirrors such

differences both from a qualitative and a quantitative perspective. Some negative

emissions solutions have momentum beyond the academic realm, with some of them,

such as BECCS or Blue Carbon, being relatively popular in policy documents and

media outlets. In addition, EW research has been discussed on social media such

as Facebook. Second, very few options are linked to practical technological develop-

ments (i.e., mentions in patents), the only exception being DAC. Given the crucial

role of the nexus between science, technology, and policy for developing specialized

climate solutions, we investigate these three dimensions in greater detail in the next

Section.
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Figure 4.3: Multidimensional coverage of NETs research. (A–I) Radar charts for
each NET, showing multidimensional spillovers (control group fixed at 1). (A) General.
(B) Afforestation and reforestation – AR. (C) Bio-energy with Carbon Capture and
Storage – BECCS. (D) Biochar. (E) Blue Carbon – BC. (F) Direct Air Capture – DAC.
(G) Enhanced weathering – EW. (H) Ocean fertilization – OF. (I) Ocean fertilization –
OF.
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4.4 Quantifying knowledge flows to science, tech-

nology and policy

It has widely been argued that tackling climate change will require novel scientific

research, practical technological innovations as well as policy support.1 This Section

quantifies the impact that knowledge accumulation in NETs produces on technology,

policy, and science itself.

We rely on econometric methods based on generalized linear models to estimate

the size of knowledge spillovers. Our preferred specifications employ negative bino-

mial regressions for citations counts and logistic regressions for citation likelihoods.

We run a set of regressions on one-to-one matched samples to check the stability of

our results and to quantify the uncertainty around our estimates (see Section 4.7.2

and C.2 for econometric and matching details). Results are summarized in Figure

4.4. In particular, Figure 4.4A highlights that several negative emissions options

generate relative more spillovers than control groups. For instance, Biochar, BECCS

and DAC articles collect, on average, 2.59, 1.84 and 1.83 times more citations than

the non-NET control group, respectively. However, it is just for few NETs that

scientific advances significantly impact on technological development (Figure 4.4B).

Namely, DAC and Biochar research is somehow related to patenting activities, with

a significant gap in favor of DAC. Indeed, DAC scientific advances are 7.89 times

more likely to be cited by a patent. Contrarily, when looking at the probability of

being cited by a policy document, BECCS and BC stand out among all the options

(see Figure 4.4C).

To better quantify the variability of our point estimates as possible control groups

vary, we compute the confidence interval around our mean effects size (i.e., β∗
k). Ta-

ble 4.1 summarizes the mean effects for each coefficient across different runs of our

statistical model (i.e., point estimates for all our NETs) and its variability. Our es-

timates prove relatively stable to possible differences in the matched control groups.

Nevertheless, as far as scientific spillovers are concerned, we notice some differences

1See, for example, calls for attention by the EU Commission and the UK government.
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between the baseline and climate control. As expected, climate change is a very

active area of research, leading to smaller coefficients in our setting. In addition, we

re-estimate our model including controls related to fields (or combination of fields)

and whether articles are open access (see Figure C.14 and C.15). To further check

the robustness of our results, we run our analysis using alternative control groups,

different data sources, and alternative models (see Section C.6 for all the details).

The insights of our empirical investigation are confirmed irrespective of specifica-

tions, data sources, and alternative measures. While there is plenty of evidence

that citations, at least partially, capture positive knowledge spillovers for science

and technology advances (Fortunato et al., 2018a; Jaffe et al., 2000), little is known

about the references in policy documents. Hence, to better understand the role

of citations coming from policy documents, we select a subset of policy reports to

measure their overall sentiment. Our analysis shows that the overall sentiment of

the documents citing NETs articles is positive (see Section C.3).

Our results already bring important implications for climate and innovation pol-

icy: NETs constitute an active research area with great potential and attract sub-

stantial attention within the scientific community. Nevertheless, our multidimen-

sional spillovers estimates signal that most NETs hardly move beyond the scientific

realm: only DAC research turns into marketplace innovations. In addition, the pol-

icy dimension seems to be relatively disconnected from the general scientific and

technological trends. Finally, to better understand the trends that characterize

NETs research efforts, we focus on the geography of NETs research and collabora-

tions in the next Section.
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Figure 4.4: NETs spillovers to science, technology and policy. Coefficients (expo-
nentiated) of the regression models of Eq. (1). Results are obtained by fitting 30 negative
binomial regressions (A) and 30 logistic regressions (B–C) on one-to-one matched sam-
ples with year dummies. (A) Incident Rate Ratio (IRR) for each NET on the number
of scientific citations. (B) Odds Ratio (OR) for each NET on the probability of being
cited by a patent (BC estimates set to zero since there is no patent documents citing BC
papers). (C) Odds Ratio (OR) for each NET on the probability of being cited by a policy
document.
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Table 4.1: Point estimates variability for baseline and climate control. IRRs
and ORs (i.e. average exponentiated coefficients β∗

k) estimated through regression models
– Eq. (1) – and relative variability of point estimates βk [C.I. 95%].

Baseline control Climate control

NET Science Technology Policy Science Technology Policy

General 1.71 0.75 2.88 1.40 0.99 1.93
[1.55,1.88] [0.720,0.77] [2.81,2.94] [1.39,1.42] 0.961,1.03] [1.90,1.96]

AR 1.23 0.042 2.66 0.96 0.06 1.75
[1.10,1.39] [0.0412,0.04] [2.61,2.72] [0.95,0.97] [0.0629,0.07] [1.73,1.78]

BECCS 1.84 1.32 5.58 1.55 1.43 3.74
[1.54,2.21] [1.27,1.37] [5.45,5.71] [1.53,1.56] [1.38,1.49] [3.68,3.80]

Biochar 2.59 2.34 1.28 2.18 3.26 0.88
[2.29,2.95] [2.26,2.43] [1.25,1.31] [2.16,2.20] [3.14,3.38] [0.864,0.89]

BC 2.19 ✗ 4.67 1.78 ✗ 3.19
[1.75,2.78] [4.57,4.78] [1.76,1.80] [3.13,3.25]

DAC 1.83 7.89 2.08 1.82 12.3 1.47
[1.54,2.19] [7.59,8.19] [2.04,2.13] [1.17,1.20] [11.9,12.8] [1.44,1.49]

EW 1.46 2.50 4.27 1.19 4.02 2.50
[1.11,1.97] [2.41,2.59] [4.13,4.40] [1.17,1.20] [3.85,4.18] [2.46,2.53]

OF 0.896 0.401 2.27 0.70 1.03 1.34
[0.702,1.16] [0.39,0.42] [2.21,2.33] [0.69,0.71] [1.00,1.06] [1.31,1.37]

SCS 1.68 0.138 3.81 1.37 0.20 2.49
[1.47,1.92] [0.133,0.14] [3.72,3.89] [1.36,1.39] [0.198,0.210] [2.45,2.53]

Note: No valid estimates for BC in Technology due to absence of citations
from patent documents.
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4.5 The geography of NETs research collabora-

tions

So far, we have provided empirical evidence on the heterogeneity of NETs research

in terms of knowledge base, scientific impact, and spillovers to practical applications.

Empirical evidence shows that proximity matters for complex activities and,

more precisely, that innovation is disproportionately concentrated in cities (Carlino

et al., 2007; Catalini, 2018; Balland et al., 2020). So, in this Section, we turn our at-

tention to the geography of negative emissions research. First, we geo-localize NETs

scientific articles using author affiliation data from WoS. Then, we derive countries’

relative specializations by looking at the geographical distribution of research activ-

ities. Finally, we map scientific collaborations (at both the country and city level)

to eventually shed some light on the identification of potential research hubs (see

Section 4.7.1 for more details on the geo-localization of NETs articles).

Figure 4.5A depicts the aggregate geographical distribution of research activi-

ties. The map shows the total number of articles related to NETs, the centrality

(i.e., nodes’ strengths) both at the city and country level and the overall collabo-

ration network. For the sake of clarity, we filter out cities that appear less the ten

times in our sample (see Section 4.7.3 for network construction details). Beijing

stands out as the city associated with the most significant number of articles and

appears to be the most central city in the collaboration network. At the country

level, though, the USA maintain their role as the primary research hub worldwide.

However, the aggregate collaboration network can hardly allow us to dig deeper into

a single technology, as it might be influenced by the distribution of articles across

specific NETs. Therefore, we focus on different NETs separately. First, to better

capture the relative specialization of countries in different NETs, we compute the

Relative Scientific Advantage (RSA, see 4.7.3 for more details). Figure 4.5B sum-

marizes the values of the RSA for a subset of countries, signaling, for instance, the

greater specialization of European countries and the USA concerning engineering-

based options such as BECCS and DAC. Intuitively, relative specializations still
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Figure 4.5: NETs geography and collaborations. (A) Geographical distribution of
NETs research activities across cities (i.e., total number of NETs publications). Cities and
countries centrality (i.e., node strength) scores are computed by analyzing the aggregate
collaboration networks. (B) Revealed Scientific Advantage of selected countries (white
spaces indicate values lower than 1). (C) Centrality ranking in the research collaboration
networks related to AR, BECCS, DAC, and SCS.

underline the links between research potentials and local opportunities. According

to the RSA, Switzerland appears primarily specialized in DAC research, while In-

donesia – one of the largest reserves of coastal forests – is almost fully specialized in
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BC. Next, we construct collaboration networks for all the NETs in our sample. For-

mally, we identify the largest connected component (i.e., the largest subset of nodes

that can be reached from one another) and pin down the most central cities for each

specific negative emissions option. As in Figure 4.2, we focus on AR, BECCS, DAC,

and SCS (see Section 4.7.3 for all NETs). Figure 4.5C points out that basic network

measures can already allow us to spot different geographical specializations: Beijing

and Canberra result as the most central locations as far as AR is concerned. Post-

dam and College Park are the most important hubs for BECCS research, while Fort

Collins stands above in the SCS research. Finally, Zurich appears as the most central

city for DAC research. Interestingly, the company that first made it to the market

with a commercial DAC solution was founded as spin-off of the ETH in Zurich (as

of today, several companies are active in the DAC sector). The Zurich example

highlights the importance of basic scientific research in developing technologically

viable climate solutions and the role of geographical proximity between science and

technology hubs. Innovative activities benefit from co-location, allowing scientists

and inventors to form collaborations and share valuable knowledge. The potential

research hubs identified above might well pave the way to accelerate advances in

NETs.

4.6 Discussion

The urgent need for a rapid scale-up of NETs development and deployment should

go hand in hand with extensive R&D efforts worldwide. Indeed, keeping track of

the knowledge flows generated by negative emissions research would be crucial to

inform scientists, market players, and policymakers on the potential opportunities

for such technologies in the next few years. Our analysis provides a first quantitative

comparison among different negative emissions solutions from the science-innovation

nexus standpoint. Looking at knowledge spillovers within and outside the academic

world, we find that negative emissions research is highly heterogeneous and spread

across different hubs. Only a few options will eventually turn into marketplace

inventions. As of today, DAC appears to be the most promising as far as practical
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technological innovations are concerned.

A quantitative benchmark of multidimensional spillovers for NETs can be con-

sidered as a starting point to evaluate the potential impact of NETs technological

trajectories (or different climate-related technologies) from science to practical ap-

plications. In other words, it is an instrument that can be used by climate scientists

and policymakers to keep track of scientific and technological trends from a system-

atic quantitative perspective.

Our empirical analysis is not without limitations, and some of these limitations

point towards future research directions. First, the scientific literature on negative

emissions is growing fast and in an interdisciplinary way. We follow a well-defined

query strategy for the retrieval of data, relying on specific patterns and keywords.

However, identifying the relevant articles and their disciplinary span might need

more advanced criteria in the future. Machine learning/NLP models might prove

helpful in finding better clusters of articles and consequently the direction of their

spillovers. Second, we employ a matching procedure and propose an intrinsically

stable re-sampling strategy to compare similar articles robustly. Nevertheless, we

do not identify causal mechanisms or the impact of funding on the trajectories of

such negative emission options. Relatively small advances might lead to sudden

and sizeable changes for early-stage technologies. We can not rule out the possibil-

ity that some universally superior NET will appear in the following years or that

some technological breakthroughs would make some existing ideas more likely to be

patented. Finally, citations are only an imperfect measure of knowledge spillovers.

Although our methodology relies on different data sources, our quantification might

still be subject to possible measurement errors.

From a policy perspective, our findings provide at least two clear insights. First,

when considering the applicability of a diversified portfolio of NETs, their knowl-

edge base, spillovers and trajectory of development should be considered carefully.

Indeed, our analysis support evidence of little synergies between various NETs. Sec-

ond, given the current distance of negative emissions research from the technological

frontier, the prospective diffusion of NETs at scale would benefit from both conven-

tional and unconventional innovation policies (Meckling and Allan, 2020; Hanna
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et al., 2021; Gross and Sampat, 2021b,a). In practice, R&D subsidies, public pro-

curement, grants as well as the reinforcement of university-industry linkages could

be coupled with the proposal of innovation prizes (e.g., XPRIZE) and Advance Mar-

ket Commitments (AMC, e.g., Frontier), previously used to serve different scientific

and policy purposes (Kremer et al., 2020). In addition, the evidence of strong posi-

tive knowledge spillovers could support a mission-oriented approach towards NETs

(Mazzucato, 2013). Innovation can play an essential role in dealing with the climate

change crisis (Nature-editorial, 2022); however, science, technology, and policy need

to be better coordinated to boost the efficacy of research endeavors.

4.7 Data and Methodology

4.7.1 Data & matching

To track down the evolution of NETs research, we use three main sources of data:

Web of Science (WoS), Reliance on Science (RoS), and Altmetric. WoS is a large

global citations database collecting millions of research articles information and

maintained by the private company Clarivate. RoS is a publicly available database

that includes citations from patents to scientific articles Marx and Fuegi (2020).

Altmetric is a curated database that collects metrics complementary to standard

citation-based data, such as mentions on a diverse set of outlets. Altmetric data can

be freely available upon request for scientific purposes.

To identify the first sample of NETs relevant articles, we look at keywords, titles,

and abstracts in WoS, as previously done in the literature Minx et al. (2017, 2018).

We retrieve a total of 3301 scientific articles from 1998 to 2017 for 8 different NETs.

Note that the queries we used to filter DAC articles do not explicitly include storage

(see C.1), contrary to BECCS and in line with previous studies Minx et al. (2017,

2018). All the articles that match the keywords search with no explicit reference

in their titles or abstracts are included in the NET category General (see section

C.1 to find further descriptions of the sample and the full queries). Most of the

articles retrieved from WoS are also covered in Altmetric (∼ 62%). From WoS and
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Altmetric we can collect all cited and citing articles of our focal NETs sample. We

use both RoS and Altmetric to recover patents-articles citation links, and Altmetric

to keep track of all mentions from policy documents, mainstream media outlets as

well as blogs and social media platforms such as Facebook or Twitter.

As far as the geo-localization of NETs scientific output is concerned, starting

from authors’ affiliation data, we use OpenStreetMap and the R package tmap to

identify the coordinates of the cities linked to the publications in our sample. After

a manual inspection, we can geo-localize a total of 3255 articles (∼ 98% of the initial

set of articles).

To quantify multidimensional spillovers of NETs research, taking care of possible

sources of bias, we employ an exact matching procedure and construct two controls

groups: a “baseline” and a “climate” specific sample. First, for each focal negative

emissions paper, we select up to 10 articles published in the same year and the

same journal (the final pool of articles includes about 23k articles). Then, for

our regression analysis, we further refine our procedure to match articles one-to-

one. In detail, to check the stability of our results we create 30 sub-samples with

replacement. We repeat the aforementioned procedure to construct a second set of

control groups, specifically designed to match climate-change related articles. We

retrieve climate-specific papers by querying WoS as in Grieneisen and Zhang (2011)

(the final pool of climate-specific articles includes about 20k articles). Sections C.2

and C.1 describe in greater detail the matching scheme, the queries to collect the

climate-specific control, and the overall compatibility among our different sources of

data.

4.7.2 GLM regressions

To quantify knowledge spillovers in sections 4.4, we employ generalized linear re-

gression models. After the construction of our one-to-one matched sub-samples, we

estimate a negative binomial regression to model citation counts coming from sci-

entific papers. Next, we use logistic regressions to model the probability of being

cited by a patent or a policy document. The baseline specification can be written

as follows:
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g(E(Sikt|NETik, Tit,Xi)) = α +
∑

k

βkNETik +
∑

t

γtTit + δXi (4.1)

where Sikt is the number of forward citations (alternatively, the occurrence of a

citation from a patent or a policy document), NETik refers to the corresponding

technology and Tit represents a year dummy, andXi a vector of control variables such

as free accessibility of the articles or sub-fields categories (see section C.6 for more

details). Within this setting, the link function allows us to derive the relationship

between the linear predictions and the expected value of the response variable (in

our case a measure of knowledge spillovers). The link functions used for the binomial

and negative binomial case are the following:

if g(·) = log µ
1−µ

with µ = E(Sikt|NETik, Tit) −→ Logistic regression

if g(·) = logµ with µ = E(Sikt|NETik, Tit) −→ Poisson/Negative Binomial regres-

sion

In practice, we estimate the models 30 times, to check the stability our results as the

matched control groups vary. The boxes in figure 4.4 highlight the average effect:

β∗
k = 1

30

∑30
c=1 βkc, where c = {1, . . . , 30} represent different matched control groups.

The lower and upper bound of the boxes are instead the average confidence interval

⟨C.I.⟩, corresponding to the average value of the 95% confidence intervals across our

estimates. In Table 4.1 we collect βk and quantify the range of variation of these

coefficients around their mean β∗
k (C.I. 95%).

4.7.3 Geographical specialization and collaboration net-

works

We employ the Revealed Scientific Advantage (RSA) to gauge countries’ relative

specialization. Such a metric was initially developed in Balassa (1965) to analyze

comparative international trade advantages among countries (i.e., Revealed Compar-

ative Advantage – RCA). Later it has been extensively used in several applications

beyond trade Tripodi et al. (2020); Hidalgo (2021). Within our setting, for each
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country or location l and NET k, this is defined as

RSAlk =

wl,k∑
k wl,k∑
l wl,k∑

l,k wl,k

, (4.2)

where wl,k is the number of articles published in country l covering NET k. RSA

values greater the 1 signal relative specialization.

By exploiting the geo-localization of NETs articles, we construct collaboration

networks among cities to better understand where and how novel developments in

negative emissions take place. The most straightforward way to analyze collabo-

rations at different geographical levels is by using bipartite networks. A bipartite

network is defined as a graph in which nodes are split into two separate sets (or

layers). No link connects pairs of nodes that belong to the same layer. In our case,

the two layers represent articles and cities, respectively. The binary case is simply

described by a bi-adjacency matrix of dimensions NA × NC . The number of rows

NA is the number of nodes in layer A (i.e., articles), and the number of columns NC

is the number of nodes in layer C (i.e., cities), as follows:

bac =




1 if node a ∈ A and c ∈ C are linked

0 otherwise

(4.3)

In this setting, we draw a link in the bipartite network if any of the authors of

a NET research article a is affiliated with an institution of a given city c. A

weighted monopartite projection on the article layer is constructed by counting

the co-occurrences in the bipartite network and takes the form of a square NC ×NC

matrix M with elements:

mcc′ =

NA∑

a=1

bacba′c (4.4)

Before computing our centrality measures (i.e., nodes’ strength), we first derive the

largest connected component to filter out unconnected nodes (or groups of irrelevant

nodes). Having information about cities, we can also derive the aggregate network

at the country level. See section C.7 for an additional description of our network

analysis results.
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‘If I have seen further it is by standing on the shoulders

of Giants”

Isaac Newton (1675)

Chapter 5

Final Remarks

Science and innovation are our most valuable weapons to face and tackle the most

pressing issues of our time (Jones, 2021). As pointed out in various parts of this dis-

sertation, studying the production and diffusion of knowledge is challenging from a

technical standpoint. Ideas are “public goods”, and markets fail to provide sufficient

resources for novel research avenues. Moreover, standard economic models hardly

capture the actual scope of knowledge flows in a globalized economy. Fortunately,

big data allow us to zoom into the origins of scientific and technical advances, ex-

ploiting micro-level information, and to identify what factors drive the behavior of

innovators (i.e., scientists, inventors, and firms) – offering a promising opportunity

to tackle the complexity that characterizes the production and diffusion of knowl-

edge. Across the chapters of this thesis, we investigated how social, technological,

and geographical proximity affect innovative activities. By employing network anal-

ysis and statistical models, we could keep track of knowledge flows at different scales

(i.e., industries, scientists, research areas) and link them to knowledge production

and diffusion.

In chapter II, we provided evidence that the position of industries in the inter-

sectoral knowledge space boosts their competitiveness. However, geography still

moderates the transmission of tacit knowledge. Next, in chapter III, we showed

that knowledge and social proximity drive scientists’ research portfolio diversifica-

tion, but science is more and more a social enterprise. When scientists move far from

their core specialization, they rely more heavily on collaborations. Lastly, in chapter
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IV, we focused on one of the leading climate change mitigation technologies: Nega-

tive Emissions Technologies (NETs). We quantified the multidimensional nature of

knowledge spillovers generated from basic negative emissions research. Our analysis

suggests that NETs are still relatively far from practical, innovative applications,

except for Direct Air Capture (DAC), which shows the most significant potential

in terms of technological developments. Interestingly, policymakers overlook DAC

research relative to other NET options, preferring, e.g., Bio-energy with Carbon

Capture and Storage (BECCS); currently, DAC is close to the technological frontier

but distant from the social and policy debate.

Overall, through the chapters of this thesis, we argued that proximity - in sev-

eral dimensions - still plays a crucial role in shaping how knowledge flows and why

it matters. Yet, science and technology are inherently complex systems, defined

by intertwined and evolving networks of ideas, publications, inventions, individual

innovators, and organizations. The evidence collected in this dissertation only rep-

resents a starting point – with all the limitations we articulated in each chapter.

The essential question then becomes: where do we go from here? We believe there

are at least two potential directions worth exploring.

First, it would be valuable to build a general framework to characterize the het-

erogeneity of innovative activities – akin to those used for mobility patterns and so-

cial interactions. In other words, a data-driven framework to analyze mobility in the

knowledge space. Thanks to dimension reduction tools, we can map scientific fields

and technologies into locations of an abstract knowledge space, where patent and

publication sequences can be charted as trajectories. Accordingly, human mobility

models and measures can be adapted to analyze patterns of technological innovation

and scientific discovery in a rich and novel fashion. Moreover, once such trajecto-

ries in the knowledge space are obtained, many insightful mobility measures, such

as the radius of gyration or the entropy of individual whereabouts, become readily

extendable to this context. The first step in this direction is to investigate how

mobility patterns in the knowledge space affect productivity and impact of authors,

disentangling the role of exploration and specialization.

Second, it would be valuable to quantify the role of scientific advances in climate-
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related technologies and linking them to practical innovation. As in other historical

challenges (e.g., COVID-19, World War II), innovation may play an essential role in

dealing with the climate crisis. Indeed, the so-called green transition will inherently

be a technological transition whose hurdles and complexities are hard to quantify.

As a first potential step toward a quantitative assessment of the science-technology

nexus in mitigation technologies, we plan to investigate how geographical, social,

and technological proximity between scientists and inventors affect the development

of mitigation technologies.

In the long-run, economic prosperity critically depends on a “black-box” called

technological progress. Thus, a quantitative understanding of how scientific and

innovative endeavors unfold is crucial for designing effective policy responses to

global challenges. Interdisciplinarity will be key for boosting the effectiveness of our

research efforts. As Christopher Freeman pointed out in 1974 “Innovation is far too

important to be left to scientists and technologists. It is also far too important to

be left to economists or social scientists.”(Freeman, 1974).
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Appendix A

Supplementary Information

Chapter2

A.1 Additional measures & figures

The empirical analysis confirmed a prevalent effect of the ”National” dimension in

a knowledge space. Table A.1 summarizes some basic results we obtained using two

alternative centrality measures and estimating the corresponding specifications by

pooled OLS. In particular, we consider degree centrality (unweighted) and eigenvec-

tor centrality. Formally, for a network Γ = (I, L) with adjacency matrix A whose

elements are such that:

aij =




1 if (i, j) ∈ L

0 Otherwise

we can write degree centrality as the number of ties that involve a given node:

di =
∑

j∈I

aij

Furthermore, eigenvector centrality can be written as the principal eigenvector of

the adjacency matrix of the network:

λv = Av
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Figure A.1: Correlation Matrix including Robustness Measures (.control)

where λ is the eigenvalue and v the eigenvector. Of course, different centrality mea-

sures produce different results since they capture different features of the network

(see Section 2.4.3 and Borgatti (2005) for a brief and intuitive description of cen-

trality measures). Nevertheless, we can see that the alternative specifications we use

provide insights that go in the same direction of the effects highlighted and discussed

in the main text. In particular, both degree and eigenvector centrality at national

level are positively associated with export market shares, although in a much less

robust way.

Figure A.1 summarizes how our network measures correlate with each other.

Control variables, used as robustness check (d.w.cit.control and am.cit.control) refer,

respectively, to weighted degree and local clustering, computed at the national level

but using citations instead of co-occurrences.

Figure A.2 describes two knowledge networks based on patent citations in two

different points in time (1995 and 2009). To be as clear as possible, we aggregate

data by country and by industry. Edges’ colors are set according to intra-industry
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(a) 1995 - by Country (b) 1995 - by Industry

(c) 2009 - By Country (d) 2009 - by Industry

In graphs (a) and (b) industry E for Luxembourg has been dropped for ease of visualization.

Figure A.2: Citation Networks by Country and by Industry

(intra-country) relationships in order to capture citations’ patterns. It’s worth notic-

ing that both intra-industry and intra-country links can help us to understand the

underline mechanism of network formation. Figure A.3:A.18 show the ”national”

knowledge space evolution over time across all countries in our dataset.
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(a) 1995 (b) 1996 (c) 1997

(d) 1998 (e) 1999 (f) 2000

(g) 2001 (h) 2002 (i) 2003

(j) 2004 (k) 2005 (l) 2006

(m) 2007 (n) 2008 (o) 2009

(Co-occurences)

Figure A.3: Austria - Knowledge Space
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(a) 1995 (b) 1996 (c) 1997

(d) 1998 (e) 1999 (f) 2000

(g) 2001 (h) 2002 (i) 2003

(j) 2004 (k) 2005 (l) 2006

(m) 2007 (n) 2008 (o) 2009

(Co-occurences)

Figure A.4: Belgium - Knowledge Space
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(a) 1995 (b) 1996 (c) 1997

(d) 1998 (e) 1999 (f) 2000

(g) 2001 (h) 2002 (i) 2003

(j) 2004 (k) 2005 (l) 2006

(m) 2007 (n) 2008 (o) 2009

(Co-occurences)

Figure A.5: Canada - Knowledge Space
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(a) 1995 (b) 1996 (c) 1997

(d) 1998 (e) 1999 (f) 2000

(g) 2001 (h) 2002 (i) 2003

(j) 2004 (k) 2005 (l) 2006

(m) 2007 (n) 2008 (o) 2009

(Co-occurences)

Figure A.6: Germany - Knowledge Space
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(a) 1995 (b) 1996 (c) 1997

(d) 1998 (e) 1999 (f) 2000

(g) 2001 (h) 2002 (i) 2003

(j) 2004 (k) 2005 (l) 2006

(m) 2007 (n) 2008 (o) 2009

(Co-occurences)

Figure A.7: Denmark - Knowledge Space
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(a) 1995 (b) 1996 (c) 1997

(d) 1998 (e) 1999 (f) 2000

(g) 2001 (h) 2002 (i) 2003

(j) 2004 (k) 2005 (l) 2006

(m) 2007 (n) 2008 (o) 2009

(Co-occurences)

Figure A.8: Spain - Knowledge Space
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(a) 1995 (b) 1996 (c) 1997

(d) 1998 (e) 1999 (f) 2000

(g) 2001 (h) 2002 (i) 2003

(j) 2004 (k) 2005 (l) 2006

(m) 2007 (n) 2008 (o) 2009

(Co-occurences)

Figure A.9: Finland - Knowledge Space

112



(a) 1995 (b) 1996 (c) 1997

(d) 1998 (e) 1999 (f) 2000

(g) 2001 (h) 2002 (i) 2003

(j) 2004 (k) 2005 (l) 2006

(m) 2007 (n) 2008 (o) 2009

(Co-occurences)

Figure A.10: France - Knowledge Space
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(a) 1995 (b) 1996 (c) 1997
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(g) 2001 (h) 2002 (i) 2003

(j) 2004 (k) 2005 (l) 2006

(m) 2007 (n) 2008 (o) 2009

(Co-occurences)

Figure A.11: United Kingdom - Knowledge Space

114
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(g) 2001 (h) 2002 (i) 2003

(j) 2004 (k) 2005 (l) 2006

(m) 2007 (n) 2008 (o) 2009

(Co-occurences)

Figure A.12: Italy - Knowledge Space
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Figure A.13: Japan - Knowledge Space
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Figure A.14: Luxembourg - Knowledge Space
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Figure A.15: Netherlands - Knowledge Space
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Figure A.16: Norway - Knowledge Space
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Figure A.17: Sweden - Knowledge Space
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Figure A.18: United States - Knowledge Space
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Appendix B

Supplementary Information

Chapter3

B.1 Data

The American Physical Society (APS) grants access to data containing information

about papers published in 9 journals: Physical Review A, B, C, D, E, I, L, ST and

Review of Modern Physics. The APS makes available, under request, two datasets

including over 450,000 articles metadata and citations from 1893 onwards. Each

article has a unique identifier and most of them contain reference codes that map

into physics sub-fields (PACS codes). As mentioned in Section 3.9.1, we make use

of such a classification to keep track of scientists’ diversification patterns. Moreover,

we use a disambiguated list of authors made available by Sinatra et al. (2016). As

a result, we analyse a sub-sample for which we have access to all the necessary

information: it includes more than 300,000 articles published by 197,682 authors

over the period 1977-2009. Figure B.1 provides simple statistical properties of the

dataset.
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Figure B.1: Statistical properties of the APS data. a, The time series of papers over
time shows that the number of papers published in APS outlets increased substantially
from 1977 to 2009. b, The distribution of the number of papers per author is fat-tailed:
the large majority of authors published just few articles while some authors have been
extremely productive.
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Table B.1: One-digit PACS codes

PACS Field Description

0 General Mathematical Methods, Quantum Mechanics, Relativity, Nonlinear Dynamics and Metrolog

1 High-energy Physics of Elementary Particles and Fields

2 Nuclear Nuclear Structure and Reactions

3 Atomic Atomic and Molecular Physics

4 Classical Electromagnetism, Optics, Acoustics, Heat Transfer, Classical Mechanics and Fluid Dynamics

5 Plasma Physics of Gases, Plasmas and Electric Discharges

6 - 7 Condensed Matter Structural, Mechanical and Thermal Properties, Electronic Structure and Electrical, Magnetic and Optical Properties

8 Interdisc Interdisciplinary Physics and Related Areas of Science and Technology

9 Astro Astrophysics, Astronomy and Geophysics

B.2 Test of randomness - multiple hypothesis cor-

rection

As stated in Section 3.3, under the hypothesis that scientists diversify their re-

search portfolio at random, the probability that exactly x authors are active in

two sub-fields follows a hypergeometric distribution (Tumminello et al., 2011). A

clear advantage of such a formulation is that we can easily associate a p-value to

each element (i.e., link in the projected network) ans evaluate the statistical signif-

icance. However, since we are performing hypothesis testing, we need to set a level

of statistical significance accordingly.

Table B.2: Test of randomness in scientists’ research portfolio diversi-
fication

Positive Negative % Non-Random

No correction 1361 616 86.8

Bonferroni 1151 486 71.8

BH 1339 580 84.2

BY 1264 547 79.4

Note: 2,278 pairs analyzed, 68 sub-fields, 197,682 scientists. Analysis performed
employing the R package cooccur.
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B.3 Additional estimation results

As mentioned Section 3.9.5 and 3.4, we use a multivariate logistic regression to

estimate the probability that a scientist diversifies in a sub-field different from

her own specialization. Table B.3 summarizes our independent variables and in-

cludes information about our grouping strategy. Here, we provide results for each

and every specification: (i) single specialization (full diversification), (ii) multiple-

specialization (full diversification), (iii) single specialization (within field diversifi-

cation), (iv) multiple specialization (within field diversification), (v) single special-

ization (between field diversification) and (vi) multiple specialization (between field

diversification).
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Table B.3: Variables and grouping strategy

Name Group Description

Knowledge relatedness 1 - KR Cosine similarity among sub-fields

Social relatedness 2 - SR Scientist’ co-authors specialized in the sub-field different from her core one (dummy)

Field core 3 - IF macro-field specialization (categorical)

# of PACS 4 - IF Number of PACS explored

# of papers 4 - IF Number of papers published

# of co-authors 4 - IF Number of co-authors

PACS target popularity 5 - SC Number of articles assigned to the target sub-field

∆ crowd 5 - SC Difference in the number of specialized scientists between core and target sub-field

∆ PACS citations 6 - Cit Difference in the number citations between core and target sub-field

∆ field citations 6 - Cit Difference in the number citations between core and target macro-field

Full diversification - Specification (i) and (ii) Results are summarized in

Table B.4 and B.5, where the first column refers to the baseline model (without the

interaction term between social and knowledge relatedness), column (2) refers to

the model including the interaction term while column (3) presents the same results

with clustering corrected standard errors. Figure 3.5-a/c show the differences in

the probability of diversification as a function of knowledge and social relatedness,

taking into account all the control variables. Figure 3.5-b/d provide evidence of the

moderating role played by the similarity across sub-fields on the estimated coefficient

of social relatedness
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Table B.4: (i) Single specialization - full diversification.

Dependent variable: P(diversification)

Baseline Interactions Robust SE

(1) (2) (3)

Knowledge Relatedness 0.846∗∗∗ 0.936∗∗∗ 0.936∗∗∗

(0.002) (0.002) (0.003)
Social Relatedness 2.647∗∗∗ 2.827∗∗∗ 2.827∗∗∗

(0.004) (0.005) (0.006)
field core-Atomic −0.332∗∗∗ −0.332∗∗∗ −0.332∗∗∗

(0.009) (0.009) (0.010)
field core-Classical −0.480∗∗∗ −0.490∗∗∗ −0.490∗∗∗

(0.010) (0.010) (0.010)
field core-Cond.matter −1.094∗∗∗ −1.088∗∗∗ −1.088∗∗∗

(0.010) (0.010) (0.012)
field core-General −0.710∗∗∗ −0.722∗∗∗ −0.722∗∗∗

(0.010) (0.010) (0.011)
field core-High.energy 0.221∗∗∗ 0.219∗∗∗ 0.219∗∗∗

(0.011) (0.011) (0.010)
field core-Interdisc −0.546∗∗∗ −0.557∗∗∗ −0.557∗∗∗

(0.009) (0.009) (0.010)
field core-Nuclear 0.438∗∗∗ 0.463∗∗∗ 0.463∗∗∗

(0.009) (0.009) (0.010)
field core-Plasma −0.258∗∗∗ −0.269∗∗∗ −0.269∗∗∗

(0.014) (0.014) (0.013)
# of PACS 0.891∗∗∗ 0.882∗∗∗ 0.882∗∗∗

(0.003) (0.003) (0.002)
# of papers −0.007∗∗ 0.010∗∗∗ 0.010∗∗∗

(0.003) (0.003) (0.002)
PACS target popularity 1.130∗∗∗ 1.130∗∗∗ 1.130∗∗∗

(0.003) (0.003) (0.002)
∆ crowd 0.239∗∗∗ 0.239∗∗∗ 0.239∗∗∗

(0.002) (0.002) (0.002)
# of co-authors −0.382∗∗∗ −0.406∗∗∗ −0.406∗∗∗

(0.003) (0.003) (0.002)
∆ PACS citations −0.272∗∗∗ −0.273∗∗∗ −0.273∗∗∗

(0.003) (0.003) (0.002)
∆ field citations −0.167∗∗∗ −0.156∗∗∗ −0.156∗∗∗

(0.003) (0.003) (0.004)
KR:SR −0.255∗∗∗ −0.255∗∗∗

(0.004) (0.004)
Constant −3.749∗∗∗ −3.812∗∗∗ −3.812∗∗∗

(0.008) (0.008) (0.010)

Observations 7,072,386 7,072,386 7,072,386
Log Likelihood −1,088,731.000 −1,086,281.000 −1,086,281.000
Akaike Inf. Crit. 2,177,498.000 2,172,600.000 2,172,600.000

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table B.5: (ii) Multiple-specialization - full diversification

Dependent variable:

Y
Baseline Interactions Robust SE

(1) (2) (3)

Knowledge Relatedness 0.628∗∗∗ 0.689∗∗∗ 0.689∗∗∗

(0.001) (0.005) (0.009)
Social Relatedness 4.221∗∗∗ 4.243∗∗∗ 4.243∗∗∗

(0.005) (0.005) (0.019)
field core-Atomic −0.427∗∗∗ −0.427∗∗∗ −0.427∗∗∗

(0.004) (0.004) (0.007)
field core-Classical −0.475∗∗∗ −0.475∗∗∗ −0.475∗∗∗

(0.005) (0.005) (0.007)
field core-Cond.matter −0.761∗∗∗ −0.760∗∗∗ −0.760∗∗∗

(0.004) (0.004) (0.009)
field core-General −0.537∗∗∗ −0.537∗∗∗ −0.537∗∗∗

(0.004) (0.004) (0.007)
field core-High.energy 0.165∗∗∗ 0.165∗∗∗ 0.165∗∗∗

(0.005) (0.005) (0.006)
field core-Interdisc −0.552∗∗∗ −0.552∗∗∗ −0.552∗∗∗

(0.004) (0.004) (0.007)
field core-Nuclear 0.163∗∗∗ 0.163∗∗∗ 0.163∗∗∗

(0.004) (0.004) (0.006)
field core-Plasma −0.409∗∗∗ −0.409∗∗∗ −0.409∗∗∗

(0.007) (0.007) (0.008)
# of PACS 0.768∗∗∗ 0.768∗∗∗ 0.768∗∗∗

(0.001) (0.001) (0.003)
# of papers 0.117∗∗∗ 0.117∗∗∗ 0.117∗∗∗

(0.001) (0.001) (0.003)
PACS target popularity 0.611∗∗∗ 0.611∗∗∗ 0.611∗∗∗

(0.001) (0.001) (0.002)
∆ crowd 0.359∗∗∗ 0.359∗∗∗ 0.359∗∗∗

(0.001) (0.001) (0.003)
# of co-authors −0.346∗∗∗ −0.346∗∗∗ −0.346∗∗∗

(0.001) (0.001) (0.004)
∆ PACS citations −0.333∗∗∗ −0.333∗∗∗ −0.333∗∗∗

(0.001) (0.001) (0.003)
∆ field citations −0.071∗∗∗ −0.070∗∗∗ −0.070∗∗∗

(0.001) (0.001) (0.004)
KR:SR −0.062∗∗∗ −0.062∗∗∗

(0.005) (0.010)
Constant −5.855∗∗∗ −5.877∗∗∗ −5.877∗∗∗

(0.006) (0.007) (0.020)

Observations 35,562,394 35,562,394 35,562,394
Log Likelihood −7,299,777.000 −7,299,692.000 −7,299,692.000
Akaike Inf. Crit. 14,599,590.000 14,599,421.000 14,599,421.000

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Within field diversification - Specification (iii) and (iv). Figure B.2-a/b

plots the results for the single specialization case: knowledge and social relatedness

are still significant as well as their interaction, but the magnitude of the coefficients

is smaller with respect to the full diversification case. In addition, when we consider

the multiple specialization case (Figure B.2-c/d), coefficients shrink further and the

interaction term between social and knowledge relatedness is no longer significant

(see Table B.6 and B.7 for details).
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Figure B.2: Scientists’ research portfolio diversification - (within field diver-
sification) single and multiple specialization. a, Log-odds as a function of social
and (standardized) knowledge relatedness, controlling for all the confounding variables
- specification (iii). b, Estimated coefficient for social relatedness conditional on (stan-
dardized) knowledge relatedness - specification (iii). c, Log-odds as a function of social
and (standardized) knowledge relatedness, controlling for the all confounding variables -
specification (iv). d, Estimated coefficient for social relatedness conditional on (standard-
ized) knowledge relatedness - specification (iv). b and d include the distribution of the
conditional variable (i.e., knowledge relatedness). The color palette is in accordance with
the similarity matrix (Figure 3.3-c.

Between field diversification - Specification (v) and (vi). As far as the

between field diversification is concerned, the general trends in terms of social and
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Table B.6: (iii) Single specialization - within field diversification

Dependent variable:

Y
Baseline Interactions Robust SE

(1) (2) (3)

Knowledge Relatedness 0.166∗∗∗ 0.184∗∗∗ 0.184∗∗∗

(0.004) (0.004) (0.005)
Social Relatedness 2.265∗∗∗ 2.272∗∗∗ 2.272∗∗∗

(0.008) (0.008) (0.008)
field core-Atomic 0.059∗∗∗ 0.056∗∗ 0.056∗∗

(0.022) (0.022) (0.025)
field core-Classical −1.003∗∗∗ −1.001∗∗∗ −1.001∗∗∗

(0.026) (0.026) (0.029)
field core-Cond.matter −1.108∗∗∗ −1.110∗∗∗ −1.110∗∗∗

(0.021) (0.021) (0.024)
field core-General −0.931∗∗∗ −0.927∗∗∗ −0.927∗∗∗

(0.026) (0.026) (0.028)
field core-High.energy 1.809∗∗∗ 1.806∗∗∗ 1.806∗∗∗

(0.025) (0.025) (0.027)
field core-Interdisc −0.353∗∗∗ −0.357∗∗∗ −0.357∗∗∗

(0.024) (0.024) (0.026)
field core-Nuclear 0.978∗∗∗ 0.969∗∗∗ 0.969∗∗∗

(0.021) (0.021) (0.024)
field core-Plasma −0.149∗∗ −0.155∗∗ −0.155∗∗

(0.068) (0.068) (0.068)
# of PACS 0.769∗∗∗ 0.769∗∗∗ 0.769∗∗∗

(0.005) (0.005) (0.005)
# of papers 0.064∗∗∗ 0.065∗∗∗ 0.065∗∗∗

(0.006) (0.006) (0.005)
PACS target popularity 1.372∗∗∗ 1.370∗∗∗ 1.370∗∗∗

(0.006) (0.006) (0.005)
∆ crowd 0.130∗∗∗ 0.131∗∗∗ 0.131∗∗∗

(0.004) (0.004) (0.003)
# of co-authors −0.239∗∗∗ −0.240∗∗∗ −0.240∗∗∗

(0.005) (0.005) (0.004)
∆ PACS citations −0.209∗∗∗ −0.208∗∗∗ −0.208∗∗∗

(0.005) (0.005) (0.004)
KR:SR −0.047∗∗∗ −0.047∗∗∗

(0.007) (0.007)
Constant −1.883∗∗∗ −1.882∗∗∗ −1.882∗∗∗

(0.020) (0.020) (0.022)

Observations 1,000,230 1,000,230 1,000,230
Log Likelihood −334,720.800 −334,697.300 −334,697.300
Akaike Inf. Crit. 669,475.700 669,430.600 669,430.600

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table B.7: (iv) Multiple specialization - within field diversification

Dependent variable:

Y
Baseline Interactions Robust SE

(1) (2) (3)

Knowledge Relatedness 0.121∗∗∗ 0.121∗∗∗ 0.121∗∗∗

(0.009) (0.009) (0.013)
Social Relatedness 3.968∗∗∗ 3.968∗∗∗ 3.968∗∗∗

(0.010) (0.010) (0.021)
field core-Atomic −0.276∗∗∗ −0.276∗∗∗ −0.276∗∗∗

(0.011) (0.011) (0.021)
field core-Classical −0.932∗∗∗ −0.932∗∗∗ −0.932∗∗∗

(0.013) (0.013) (0.023)
field core-Cond.matter −0.892∗∗∗ −0.892∗∗∗ −0.892∗∗∗

(0.011) (0.011) (0.020)
field core-General −0.823∗∗∗ −0.823∗∗∗ −0.823∗∗∗

(0.012) (0.012) (0.021)
field core-High.energy 1.176∗∗∗ 1.176∗∗∗ 1.176∗∗∗

(0.012) (0.012) (0.023)
field core-Interdisc −0.724∗∗∗ −0.724∗∗∗ −0.724∗∗∗

(0.012) (0.012) (0.021)
field core-Nuclear 0.692∗∗∗ 0.692∗∗∗ 0.692∗∗∗

(0.011) (0.011) (0.021)
field core-Plasma −0.361∗∗∗ −0.361∗∗∗ −0.361∗∗∗

(0.041) (0.041) (0.058)
# of PACS 0.497∗∗∗ 0.497∗∗∗ 0.497∗∗∗

(0.002) (0.002) (0.004)
# of papers 0.252∗∗∗ 0.252∗∗∗ 0.252∗∗∗

(0.002) (0.002) (0.004)
PACS target popularity 0.774∗∗∗ 0.774∗∗∗ 0.774∗∗∗

(0.002) (0.002) (0.003)
∆ crowd 0.345∗∗∗ 0.345∗∗∗ 0.345∗∗∗

(0.002) (0.002) (0.003)
# of co-authors −0.145∗∗∗ −0.145∗∗∗ −0.145∗∗∗

(0.002) (0.002) (0.004)
∆ PACS citations −0.313∗∗∗ −0.313∗∗∗ −0.313∗∗∗

(0.002) (0.002) (0.003)
KR:SR −0.001 −0.001 −0.001

(0.009) (0.009) (0.013)
Constant −4.250∗∗∗ −4.250∗∗∗ −4.250∗∗∗

(0.014) (0.014) (0.028)

Observations 5,407,404 5,407,404 5,407,404
Log Likelihood −2,166,803.000 −2,166,803.000 −2,166,803.000
Akaike Inf. Crit. 4,333,642.000 4,333,642.000 4,333,642.000

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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cognitive proximity are confirmed. Moreover, the negative interaction term remains

statistically significant and not negligible in magnitude for both model specifications

(single and multiple specialization). Figure B.3, Table B.8 and Table B.9 summarize

the results.
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Figure B.3: Scientists’ research portfolio diversification - (between field diver-
sification) single and multiple specialization. a, Log-odds as a function of social
and (standardized) knowledge relatedness, controlling for all the confounding variables -
specification (v). b, Estimated coefficient for social relatedness conditional on (standard-
ized) knowledge relatedness - specification (v). c, Log-odds as a function of social and
(standardized) knowledge relatedness, controlling for all the confounding variables - spec-
ification (vi). d, Estimated coefficient for social relatedness conditional on (standardized)
knowledge relatedness - specification (vi). b and d include the distribution of the condi-
tional variable (i.e., knowledge relatedness). The color palette is in accordance with the
similarity matrix (Figure 3.3-c).
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Table B.8: (v) Single specialization - between field diversification

Dependent variable:

Y
Baseline Interactions Robust SE

(1) (2) (3)

Knowledge Relatedness 0.622∗∗∗ 0.702∗∗∗ 0.702∗∗∗

(0.002) (0.003) (0.003)
Social Relatedness 2.768∗∗∗ 2.914∗∗∗ 2.914∗∗∗

(0.006) (0.006) (0.008)
field core-Atomic −0.292∗∗∗ −0.303∗∗∗ −0.303∗∗∗

(0.010) (0.010) (0.010)
field core-Classical −0.304∗∗∗ −0.313∗∗∗ −0.313∗∗∗

(0.010) (0.010) (0.010)
field core-Cond.matter −1.294∗∗∗ −1.263∗∗∗ −1.263∗∗∗

(0.013) (0.013) (0.017)
field core-General −0.628∗∗∗ −0.632∗∗∗ −0.632∗∗∗

(0.011) (0.011) (0.012)
field core-High.energy −0.352∗∗∗ −0.360∗∗∗ −0.360∗∗∗

(0.013) (0.014) (0.013)
field core-Interdisc −0.356∗∗∗ −0.365∗∗∗ −0.365∗∗∗

(0.010) (0.010) (0.011)
field core-Nuclear 0.060∗∗∗ 0.068∗∗∗ 0.068∗∗∗

(0.011) (0.011) (0.011)
field core-Plasma −0.062∗∗∗ −0.074∗∗∗ −0.074∗∗∗

(0.014) (0.014) (0.015)
# of PACS 1.010∗∗∗ 1.003∗∗∗ 1.003∗∗∗

(0.004) (0.004) (0.004)
# of papers −0.050∗∗∗ −0.032∗∗∗ −0.032∗∗∗

(0.004) (0.004) (0.004)
PACS target popularity 1.114∗∗∗ 1.108∗∗∗ 1.108∗∗∗

(0.003) (0.003) (0.003)
∆ crowd 0.322∗∗∗ 0.320∗∗∗ 0.320∗∗∗

(0.003) (0.003) (0.003)
# of co-authors −0.461∗∗∗ −0.488∗∗∗ −0.488∗∗∗

(0.003) (0.003) (0.003)
∆ PACS citations −0.375∗∗∗ −0.369∗∗∗ −0.369∗∗∗

(0.004) (0.004) (0.004)
∆ field citations −0.209∗∗∗ −0.196∗∗∗ −0.196∗∗∗

(0.004) (0.004) (0.006)
KR:SR −0.234∗∗∗ −0.234∗∗∗

(0.004) (0.005)
Constant −4.115∗∗∗ −4.168∗∗∗ −4.168∗∗∗

(0.009) (0.009) (0.010)

Observations 6,072,156 6,072,156 6,072,156
Log Likelihood −717,839.000 −716,398.900 −716,398.900
Akaike Inf. Crit. 1,435,714.000 1,432,836.000 1,432,836.000

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

133



Table B.9: (vi) Multiple specialization - between field diversification

Dependent variable:

Y
Baseline Interactions Robust SE

(1) (2) (3)

cos 0.446∗∗∗ 0.511∗∗∗ 0.511∗∗∗

(0.001) (0.005) (0.011)
Social Relatedness 4.261∗∗∗ 4.284∗∗∗ 4.284∗∗∗

(0.006) (0.006) (0.021)
field core-Atomic −0.384∗∗∗ −0.385∗∗∗ −0.385∗∗∗

(0.005) (0.005) (0.008)
field core-Classical −0.328∗∗∗ −0.328∗∗∗ −0.328∗∗∗

(0.005) (0.005) (0.008)
field core-Cond.matter −0.904∗∗∗ −0.903∗∗∗ −0.903∗∗∗

(0.005) (0.005) (0.013)
field core-General −0.421∗∗∗ −0.422∗∗∗ −0.422∗∗∗

(0.005) (0.005) (0.008)
field core-High.energy −0.060∗∗∗ −0.060∗∗∗ −0.060∗∗∗

(0.005) (0.005) (0.008)
field core-Interdisc −0.367∗∗∗ −0.367∗∗∗ −0.367∗∗∗

(0.005) (0.005) (0.008)
field core-Nuclear −0.160∗∗∗ −0.161∗∗∗ −0.161∗∗∗

(0.005) (0.005) (0.009)
field core-Plasma −0.255∗∗∗ −0.256∗∗∗ −0.256∗∗∗

(0.007) (0.007) (0.009)
# of PACS 0.944∗∗∗ 0.944∗∗∗ 0.944∗∗∗

(0.001) (0.001) (0.004)
# of papers 0.050∗∗∗ 0.050∗∗∗ 0.050∗∗∗

(0.001) (0.001) (0.004)
PACS target popularity 0.559∗∗∗ 0.559∗∗∗ 0.559∗∗∗

(0.001) (0.001) (0.002)
∆ crowd 0.392∗∗∗ 0.393∗∗∗ 0.393∗∗∗

(0.002) (0.002) (0.003)
# of co-authors −0.444∗∗∗ −0.444∗∗∗ −0.444∗∗∗

(0.001) (0.001) (0.006)
∆ PACS citations −0.354∗∗∗ −0.354∗∗∗ −0.354∗∗∗

(0.002) (0.002) (0.003)
∆ field citations −0.143∗∗∗ −0.143∗∗∗ −0.143∗∗∗

(0.002) (0.002) (0.005)
KR:SR −0.067∗∗∗ −0.067∗∗∗

(0.005) (0.011)
Constant −6.142∗∗∗ −6.165∗∗∗ −6.165∗∗∗

(0.007) (0.008) (0.022)

Observations 30,154,990 30,154,990 30,154,990
Log Likelihood −4,971,576.000 −4,971,497.000 −4,971,497.000
Akaike Inf. Crit. 9,943,188.000 9,943,033.000 9,943,033.000

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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B.4 Temporal evolution of the physics knowledge

space

The structure of the knowledge space can evolve over time, and sharp differences

might undermine our strategy. To check whether such changes are significant, we

split our initial dataset into three subsets, one for each decade: 1980-1989, 1990-

1990, 2000-2009. We compare the structure of the physics knowledge space in the

last decade of our sample with the one referring to the entire period. Figure B.4

compares popularity of one- and two-digit PACS in the last decade with the one

for the full sample. Figure B.5 shows how the network and, as a consequence, the

cosine similarity matrix have changed in the last ten years. Figure B.6 shows the

popularity of one- and two-digit PACS in the three decades. Data confirm the rise

of interdisciplinary physics within an otherwise stable distribution of interests, as

much as it was observed in previous works (Pan et al., 2012).
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(d) Last 10 years

Figure B.4: Popularity of fields and sub-fields over time. We focus on a subset
including articles published from 2000 to 2009 (last 10 years in our data) to compare the
popularity of physics fields and sub-fields over time (i.e., number of articles assigned to a
given field/sub-field). The distribution of topics remains fairly stable, except for the rise
of interdisciplinary physics.
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(d) Last 10 Years

Figure B.5: Knowledge relatedness over time. We focus on a subset including ar-
ticles published from 2000 to 2009 (last 10 years in our data) to evaluate the evolution of
the physics knowledge space over time. Despite a slightly general increase of interdisci-
plinarity, subject proximity indicates a stable structure among sub-fields.
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Figure B.6: Popularity of fields and sub-fields through decades. The plots com-
pare the popularity of physics fields and sub-fields over time (i.e., number of articles
assigned to a given field/sub-field).

Since our measure of knowledge relatedness depends on PACS co-occurrences in
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research articles, we provide a more robust quantitative test to check whether the

relationships among sub-fields have changed significantly over time. To do so, we

first construct the difference between the cosine similarity matrix in two decades

(see Figure B.7 and B.8). Then we validate the resulting difference matrices against

the null of zero difference by sampling with replacement and generating 1,000 ad-

ditional of such matrices. Finally, we compute the confidence interval (α = 0.05)

for each element of the difference matrix to assess its statistical significance, taking

into account multiple hypothesis testing issues (Bonferroni correction). Figure B.9

shows the results of the bootstrap validation procedure (statistically significant pairs

in black). In general, the number of significant element is not large, especially for

consecutive decades, indicating a fairly stable structure of the physics knowledge

space. More importantly, the analysis discussed in Section B.5, where past knowl-

edge space is used in the regression, shows that changes in knowledge relatedness do

not affect the main conclusions on the drivers of research portfolio diversification.
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(c) Difference

Figure B.7: Knowledge relatedness evolution over the first two decades. The
top panels show the cosine similarity matrix between two-digit PACS in two decades, while
the bottom panel shows their difference.
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(b) 2000-2009
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Figure B.8: Knowledge relatedness evolution over three decades. The top pan-
els show the cosine similarity matrix between two-digit PACS in two decades, while the
bottom panel shows their difference.
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Figure B.9: Bootstrap validation. Bootstrap validation of the difference matrices
computed over decades by sampling with replacement and generating 1,000 additional
difference matrices (showing only PACS codes present in each decade). The confidence
interval (α = 0.05) for each element of the matrix assesses the statistical significance
(elements in black), taking into account multiple hypothesis testing correction (Bonferroni
correction).
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B.5 Alternative estimation strategies

Multidisciplinarity

Keeping track of diversification patterns for truly multidisciplinary scientists is a

non-trivial task. Indeed, some scientists might have several core specializations

leading to a positive bias in the previous estimates. To take into account this

issue, we present an additional robustness check to validate further our empirical

strategy: we assign each scientist to a single specialization - the one corresponding

to the maximum value of RSA - but we constrain the choices of each scientists by

eliminating from the regression the possibility to diversify in any of the PACS for

which RSA > 0. In other words, we take into account only truly unexplored sub-

fields. Figure B.10 confirms that scientists research portfolio diversification depends

on social and knowledge relatedness, and the two measures interact with each other.

Table B.10 summarizes the results.
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Figure B.10: Scientists’ research portfolio diversification - constrained diver-
sification. (a) Log-odds as a function of (binary) social relatedness and (standardized)
knowledge relatedness, accounting for multiple control variables. (i). (b) Estimated co-
efficient for social relatedness conditional on knowledge relatedness, and distribution of
knowledge relatedness. The analysis is performed considering only truly unexplored sub-
fields (see text).

Time dimension

The temporal dimension is of paramount importance when evaluating scientific ac-

tivities, especially to disentangle the direction of causality. Over time, our measures

of knowledge and social relatedness might be affected by scientists’ research diversi-

fication themselves. We tackle this issue by running an additional robustness check

to isolate the effect of our measures on scientists’ diversification strategies. First, we

split our dataset into three time periods (i.e., three decades: 1980-1989, 1990-1990,

2000-2009) and we identify 15,466 scientists active in all periods. Then, we compute

our measures of knowledge and social relatedness for each period to predict authors’

diversification in a given decade using relatedness measures of a past decade. As be-

fore, we use a logistic regression where our dependent variable is a binary one (being
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Table B.10: Constrained diversification.

Dependent variable:

Y
Baseline Interactions Robust SE

(1) (2) (3)

Knowledge Relatedness 0.507∗∗∗ 0.586∗∗∗ 0.586∗∗∗

(0.005) (0.006) (0.007)
Social Relatedness 1.268∗∗∗ 1.398∗∗∗ 1.398∗∗∗

(0.012) (0.013) (0.014)
field core-Atomic 0.036 0.029 0.029

(0.025) (0.025) (0.023)
field core-Classical −0.034 −0.043∗ −0.043∗

(0.026) (0.026) (0.024)
field core-Cond.matter 0.341∗∗∗ 0.342∗∗∗ 0.342∗∗∗

(0.027) (0.027) (0.028)
field core-General −0.092∗∗∗ −0.105∗∗∗ −0.105∗∗∗

(0.027) (0.027) (0.026)
field core-High.energy 0.426∗∗∗ 0.418∗∗∗ 0.418∗∗∗

(0.030) (0.030) (0.027)
field core-Interdisc 0.040 0.023 0.023

(0.026) (0.026) (0.024)
Nuclear 0.326∗∗∗ 0.341∗∗∗ 0.341∗∗∗

(0.027) (0.027) (0.024)
field core-Plasma 0.063∗ 0.058 0.058∗

(0.036) (0.036) (0.032)
# of PACS 0.761∗∗∗ 0.753∗∗∗ 0.753∗∗∗

(0.007) (0.007) (0.006)
# of papers 0.374∗∗∗ 0.389∗∗∗ 0.389∗∗∗

(0.007) (0.007) (0.006)
PACS target popularity 1.478∗∗∗ 1.473∗∗∗ 1.473∗∗∗

(0.006) (0.006) (0.006)
∆ crowd 0.193∗∗∗ 0.192∗∗∗ 0.192∗∗∗

(0.006) (0.006) (0.006)
# of co-authors −0.099∗∗∗ −0.116∗∗∗ −0.116∗∗∗

(0.006) (0.006) (0.006)
∆ PACS citations −0.380∗∗∗ −0.381∗∗∗ −0.381∗∗∗

(0.007) (0.007) (0.006)
∆ field citations 0.309∗∗∗ 0.320∗∗∗ 0.320∗∗∗

(0.008) (0.008) (0.009)
KR:SR −0.230∗∗∗ −0.230∗∗∗

(0.009) (0.010)
Constant −5.179∗∗∗ −5.209∗∗∗ −5.209∗∗∗

(0.024) (0.024) (0.024)

Observations 1,503,010 1,503,010 1,503,010
Log Likelihood −165,560.600 −165,263.900 −165,263.900
Akaike Inf. Crit. 331,157.100 330,565.900 330,565.900

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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active in a sub-field different from specialization), but this time we use knowledge

and social relatedness computed at time t− 1 and t− 2. Formally, we use three

econometric specifications:

Yt−1 = α + βKRt−2 + γSRt−2 + ζ(KRt−2 × SRt−2) + δfield core (B.1)

Yt = α + βKRt−1 + γSRt−1 + ζ(KRt−1 × SRt−1) + δfield core (B.2)

Yt = α + βKRt−2 + γSRt−2 + ζ(KRt−2 × SRt−2) + δfield core (B.3)

where t indicates the last decade (2000-2009). Such additional tests provide in-

dication of the direction of causality since we take in account social and cognitive

proximity prior to the scientists’ choice to diversify. Moreover, we only consider sub-

fields never explored before by each author so to approximate a quasi-experimental

setting. Results confirm the role played by knowledge and social relatedness as well

as the negative interaction between our two measures (see Figure B.11 and Table

B.11).

146



Nuclear Plasma

Cond.matter High.energy Interdisc

Astro Atomic Classical

0 25 50 75 100 0 25 50 75 100

0 25 50 75 100

-3

-2

-1

0

-3

-2

-1

0

-3

-2

-1

0

Knowledge Relatedness

L
o

g
-O

d
d

s

Social Relatedness 0 1

A

C
o

n
d

iti
o

n
a

l C
o

e
ff
ic

ie
n

t 
S

R

a Yt−1 = α + βKRt−2 + γSRt−2 + ζ(KRt−2 × SRt−2) + δfield core

Nuclear Plasma

Cond.matter High.energy Interdisc

Astro Atomic Classical

0 25 50 75 100 0 25 50 75 100

0 25 50 75 100

-3

-2

-1

-3

-2

-1

-3

-2

-1

Knowledge Relatedness

L
o

g
-O

d
d

s

Social Relatedness 0 1

C
o

n
d

iti
o

n
a

l C
o

e
ff
ic

ie
n

t 
S

R

b Yt = α + βKRt−1 + γSRt−1 + ζ(KRt−1 × SRt−1) + δfield core

Nuclear Plasma

Cond.matter High.energy Interdisc

Astro Atomic Classical

0 25 50 75 100 0 25 50 75 100

0 25 50 75 100

-3

-2

-1

-3

-2

-1

-3

-2

-1

Knowledge Relatedness

L
o

g
-O

d
d

s

Social Relatedness 0 1

C
o

n
d

iti
o

n
a

l C
o

e
ff

ic
ie

n
t 
S

R

c Yt = α + βKRt−2 + γSRt−2 + ζ(KRt−2 × SRt−2) + δfield core

Figure B.11: Models with lagged variables. Log-odds as function of social and
(standardized) knowledge relatedness and (bottom right panel), estimated coefficient for
social relatedness conditional on (standardized) knowledge relatedness.
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Table B.11: Diversification (lag)

Dependent variable:

Yt−1 Yt
lag1 lag1 lag2

(1) (2) (3)

KRt−2 0.030∗∗∗ 0.023∗∗∗

(0.0003) (0.0003)
SRt−2 1.165∗∗∗ 0.703∗∗∗

(0.037) (0.047)
KRt−1 0.023∗∗∗

(0.0003)
SRt−1 0.941∗∗∗

(0.035)
field core-Atomic −0.350∗∗∗ −0.378∗∗∗ −0.296∗∗∗

(0.043) (0.053) (0.054)
field core-Classical −0.371∗∗∗ −0.334∗∗∗ −0.333∗∗∗

(0.047) (0.058) (0.059)
field core-Cond.matter −0.495∗∗∗ −0.434∗∗∗ −0.383∗∗∗

(0.039) (0.049) (0.049)
field core-High.energy −0.393∗∗∗ −0.104∗ −0.194∗∗∗

(0.046) (0.057) (0.057)
field core-Interdisc −0.471∗∗∗ −0.490∗∗∗ −0.428∗∗∗

(0.046) (0.060) (0.061)
field core-Nuclear −0.188∗∗∗ −0.194∗∗∗ −0.198∗∗∗

(0.042) (0.053) (0.054)
field core-Plasma −0.416∗∗∗ −0.395∗∗∗ −0.319∗∗∗

(0.050) (0.062) (0.063)
KRt−2 : SRt−2 −0.008∗∗∗ −0.007∗∗∗

(0.001) (0.001)
KRt−1 : SRt−1 −0.005∗∗∗

(0.001)
Constant −3.075∗∗∗ −3.010∗∗∗ −2.964∗∗∗

(0.038) (0.047) (0.048)

Observations 766,519 618,352 618,352
Log Likelihood −180,229.100 −142,158.800 −143,114.400
Akaike Inf. Crit. 360,480.300 284,339.500 286,250.900

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Appendix C

Supplementary Information

Chapter4

C.1 Data

This work relies on three primary sources of data: Web of Science, Reliance on

Science, and Altmetric. The identification of all NETs research articles follows a

standard search strategy used in the literature (Minx et al., 2017, 2018). Using

WoS, we retrieve 3301 articles for the time window 1998-2017. We consider eight

different NETs, using keywords and patterns in titles and abstracts. The articles

that match NETs keywords but do not include such words or patterns in titles or

abstracts are listed in a residual category (i.e., General). The query NETs WoS in

this section and Table C.1 includes all the details and a brief summary description.

Some articles might belong to more than one category. Accordingly, we count such

articles in each potential category. For details, see the matrix of overlap in Figure

C.1. Working on quantifying knowledge spillovers, we are interested in keeping track

of citation flows (in several dimensions). Therefore, we only include articles that

received at least one academic citation for the analysis and for which the DOI was

retrievable. Around 62% of the original WoS sample is also included in Altmetric

(see Table C.2 for a quick comparison, taking into account also the relative share of

articles cited by patents or policy documents).

149

https://clarivate.com/webofsciencegroup/solutions/web-of-science/
http://relianceonscience.org.
http://relianceonscience.org.
https://www.altmetric.com/products/free-tools/


Query NETs WoS

(TS = (biochar* AND ((carbon OR CO2) NEAR/3 (sequest* OR storage OR

stock OR accumulat* OR capture))) OR TS = (ocean NEAR/5 iron NEAR/5

(fertili*ation OR enrichment) NOT natural NOT ice* NOT glaci*) OR TS =

((soil NEAR/3 (carbon OR CO2) NEAR/3 (sequest* OR storage)) AND (”climate

change” OR ”global warm*”) AND (manag* OR practice* OR restoration OR land-

use)) OR TS = ((afforestation OR reforestation) AND ((carbon OR CO2) NEAR/3

(sequest* OR storage))) OR (TS = ((”ocean liming”) AND (removal OR storage)

AND (CO2 OR carbon*)) OR TS = ((geoengineer*) AND (silicate OR olivine

OR albite OR CACO3)) OR TS = ((silicate OR olivine OR albite OR CACO)

AND (mitigat* NEAR/3 (”climate change” OR ”global warming”))) OR TS =

((”ocean alkalini*”) AND (remov* OR storage OR mitigat* OR sequest*) AND

(CO2 OR carbon*)) OR TS = (((enhance* OR artificial*) NEAR/2 weathering

) AND ((carbon OR CO2 OR ”climate change” OR ”global warming”) NEAR/3

(remov* OR sequest* OR storage OR sink OR mitigat* OR reduc*)))) NOT TS

= (glaci* OR ice* OR ordovic* OR Aptian OR Cenozo* OR Paleo* OR Mezoso*)

OR (TS = (((capture OR extraction OR absorbtion) NEAR/3 (air OR atmosph*))

AND (ambient OR ”atmosph* pressure*”) AND (CO2 OR carbon)) OR TS =

(((captur* OR extract) NEAR/3 (direct* OR ”carbon dioxide”) NEAR/3 (air OR

atmosph*)) AND (CO2 OR carbon)) OR TS = ((*sorbent OR amine) AND capture

AND (carbon OR CO2) AND (”ambient air”)) OR TS = ((captur* NEAR/3 CO2

NEAR/3 (air OR atmosph*)) AND solar)) NOT TS = (phenolic OR PCB* OR

particulate OR NOx OR isotope OR ”heat pump” OR polycyclic OR *bacteria*

OR lignin OR sink OR pollution OR photosynth* OR biofuel* OR sugar) OR

TS = (BECCS OR ((biomass OR bioenerg*) AND (”CCS” OR ”Carbon capture

and Storage” OR ”Carbon dioxide capture and Storage” OR ”CO2 capture and

storage”)) NOT ”co-fir*” NOT ”co-generat*” NOT cogeneration NOT coal) OR TS

= ((seagrass OR mangrove* OR macroalgae OR ”blue carbon”) AND ((carbon OR

CO2) NEAR/3 (sequest* OR accumulat* OR storage OR capture)) AND ( defor-

est* OR afforest* OR conserv* OR restor* OR manag* )) OR (TS = ((CDR AND
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( CO2 OR carbon* )) OR ”negative carbon dioxide emission*” OR ”negative CO2

emission*” OR ”negative GHG emission*” OR ”negative greenhouse gas emission*”

OR ”carbon-negative emission*” OR (”negative emission*” NEAR/10 carbon) OR

(”negative emission*” NEAR/10 CO2)) OR TS = ( geoengineering AND ((carbon

OR CO2) NEAR/3 (sequest* OR accumulat* OR storage OR capture))) OR TS =

((”geoengineering” OR ”climate engineering”) AND CDR)) NOT TS = (N2O OR

nitrogen OR NOX)) NOT TS = (”bioactive equivalent combinatorial components”

OR ”bandwidth-efficient-channel-coding-scheme” OR ”bronchial epithelial cell cul-

tures” OR ”california current system” OR comet OR mars OR exoplanet* OR

”competition chambers” OR gastric OR (mercury NEAR/3 capture) OR (image

NEAR/3 capture) OR ”canary current system” OR ”heavy metal” OR eicosanoid

OR ”companion cells” OR ”calcium carbonate sand” OR ”copper chaperone”

OR ”commercial cane sugar” OR ”Cindoxin reductase” OR ”coupled dissolution

reprecipitation” OR ”carbon dioxide reforming” OR rats OR ”complementarity

determining regions” OR deoxycytidine)
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Table C.1: Data description

NET Code Description N %

Afforestation/Reforestantion AR Forest management and restoration programs increase the CO2 captured from the atmosphere and stored in living biomass. 677 (603) 21 (21)

Bio-energy with Cabon Capture and Storage BECCS Biomass is grown and used to power as a source of thermal energy. The CO2 produced is captured and stored in geological reservoirs. 247 (206) 7 (7)

Biochar Biochar The pyrolysis of biomass produce charcoal (i.e., biochar). It can be used as soil additive, with positive effect in terms of carbon capture and stored in soil. 555 (478) 17 (17)

Blue Carbon BC Blue carbon refers to carbon captured by the world’s ocean and coastal ecosystems, such as sea grasses, mangroves, or salt marshes. 121 (96) 4 (3)

Direct Air Capture DAC CO2 is absorbed directly from the atmosphere through chemicals and stored. 245 (214) 7 (8)

Enhanced Weathering EW Minerals that can absorb CO2 are grinded and spread in lands or oceans. 71 (63) 2 (2)

Ocean Fertilization OF Nutrients (such as iron) can stimulate the growth of phytoplankton. Consequently, the absorbed CO2 is naturally sequestered in the ocean. 113 (102) 3 (4)

Soil Carbon Sequestration SCS More efficient agricultural practices enhance soils carbon absorption potential. 410 (354) 12 (12)

General General NETs scientific articles with no specific keywords in titles or abstract. 1059 (906)

Total (with citation info WoS) The total only includes unique articles (they might belong to more than one category). 3301 (2850)
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Figure C.1: NETs overlap in articles. Each entry of the matrix shows the number
of articles including more than one NET category. Along the diagonal the total sum for
every NET.
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Table C.2: Share of NETs articles linked to technology and
policy – Altmetric vs. (WoS–RoS)

NET N % with policy citation % with patent citation

General 556 (906) 39 3 (3)

AR 354 (603) 43 0.2 (1)

BECCS 135 (206) 49 5 (3)

Biochar 293 (478) 20 8 (9)

BC 78 (96) 44 0 (0)

DAC 143 (214) 32 27 (23)

EW 54 (63) 44 11 (9)

OF 78 (102) 42 3 (8)

SCS 247 (354) 47 0.8 (2)

The total number of articles retrieved via Altmetric is 2040. The

number of articles for which we have both WoS and Altmentic data,

coupled with citations data and DOI information in both dataset

is 1800. Articles might belong to more than one NET category

as shown in C.1. The information collected through Reliance in

Science (RoS) allow us to compare the coverage in terms of patent

citations for a larger sub-sample.

C.2 Matching

Our empirical analysis relies on quantitative comparisons. Therefore, we rely on a

matching strategy to avoid reaching misleading interpretations based on potentially

biased estimates. The first step of our matching scheme is to construct a control

group by collecting – through WoS – up to 10 articles (with replacement) published

in the same year and the same journal. Consequently, we obtain up to 10 twin

articles for each NETs paper of interest. As far as the regression analyses are

concerned, we further enhance our matching strategy. In practice, we generate 30

one-to-one matched sub-samples (without replacement) to control our estimates’

stability. Figure C.2 depicts the steps of our matching scheme. Furthermore, we
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use the same strategy to construct a second set of control groups specifically linked

to the climate-related literature. We retrieve climate-specific articles following the

Query climate control WoS (listed below and already validated in the literature

(Grieneisen and Zhang, 2011)). Finally, Figure C.3 shows a treemap of the most

popular venues that publish NETs articles. We list venues that appear at least 10

times in our sample.
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Query climate control WoS

SO=(Climate Alert OR Climate Dynamics OR Climate Policy OR Climatic Change

OR Global and Planetary Change OR Global Change Biology OR International

Journal of Greenhouse Gas Control OR Mitigation and Adaptation Strategies for

Global Change) OR TS=(((CO2 OR ”carbon dioxide” OR methane OR CH4 OR

”carbon cycle” OR ”carbon cycles” OR ”carbon cycling” OR ”carbon budget*”

OR ”carbon flux*” OR ”carbon mitigation”) AND (climat*)) OR ((”carbon cy-

cle” OR ”carbon cycles” OR ”carbon cycling” OR ”carbon budget*” OR ”carbon

flux*” OR ”carbon mitigation”) AND (atmospher*))) OR TS=(”carbon emission*”

OR ”sequestration of carbon” OR ”sequester* carbon” OR ”sequestration of CO2”

OR ”sequester* CO2” OR ”carbon tax*” OR ”CO2 abatement” OR ”CO2 cap-

ture” OR ”CO2 storage” OR ”CO2 sequester*” OR ”CO2 sequestration” OR ”CO2

sink*” OR ”anthropogenic carbon” OR ”captur* of carbon dioxide” OR ”captur*

of CO2” OR ”climat* variability” OR ”climat* dynamic*” OR ”chang* in climat*”

OR ”climat* proxies” OR ”climat* proxy” OR ”climat* sensitivity” OR ”climat*

shift*” OR ”coupled ocean-climat*” OR ”early climat*” OR ”future climat*” OR

”past climat*” OR ”shift* climat*” OR ”shift in climat*”) OR TS=(”atmospheric

carbon dioxide” OR ”atmospheric CH4” OR ”atmospheric CO2” OR ”atmospheric

methane” OR ”atmospheric N2O” OR ”atmospheric nitrous oxide” OR ”carbon

dioxide emission*” OR ”carbon sink*” OR ”CH4 emission*” OR ”climat* policies”

OR ”climat* policy” OR ”CO2 emission*” OR dendroclimatolog* OR (”emission* of

carbon dioxide” NOT nanotube*) OR ”emission* of CH4” OR ”emission* of CO2”

OR ”emission* of methane” OR ”emission* of N2O” OR ”emission* of nitrous oxide”

OR ”historical climat*” OR IPCC OR ”methane emission*” OR ”N2O emission*”

OR ”nitrous oxide emission*”) OR TS=(”climat* change*” OR ”global warming”

OR ”greenhouse effect” OR ”greenhouse gas*” OR ”Kyoto Protocol” OR ”warm-

ing climat*” OR ”cap and trade” OR ”carbon capture” OR ”carbon footprint*”

OR ”carbon neutral” OR ”carbon offset” OR ”carbon sequestration” OR ”carbon

storage” OR ”carbon trad*” OR ”changing climat*” OR ”climat* warming”)
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Figure C.2: Matching scheme. A schematic representation of the matching procedure
used in the empirical analysis. The right end side refer to the construction of the baseline
control group; while the left end side refers to the climate control.
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Figure C.3: Top NETs Venues. Treemap listing the most representative venues for
NETs articles. The map include academic journals that published at least 10 paper related
to NETs.
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C.3 Policy sentiment analysis

Citations coming from policy documents are collected through Altmetric (see section

4.7.1. While academic and patent citations have historically been used to keep track

of knowledge flows Fortunato et al. (2018a); Jaffe and De Rassenfosse (2019), there

is little evidence that policy citations capture positive mentions for scientific results.

To partly tackle this issue, we explore the sentiment of a subset of policy doc-

uments that cite our focal articles. First, we select 208 (English) documents and

then analyze their entire text using NLP methods. Although working on the entire

text is subject to potential measurement errors, the overall sentiment ratio of each

document gives us a first indication of the orientation. We define the sentiment ratio

by simply counting the number of positive words over the total number of words

(see Figure C.4).

To derive our measure, we use a dictionary-based approach, that is, a list of

general-purpose lexicons collected for text analysis studies and freely available

through the R package tidytext (Hu and Liu, 2004).

-1.0

-0.5

0.0

0.5

1.0

AR BC BECCS Biochar DAC EW OF SCS

S
e

n
tim

e
n

t 
ra

tio

Figure C.4: Sentiment of policy documents. Violin plots showing the sentiment
ratio of policy documents citing scientific articles related to NETs.
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C.4 Knowledge flows

As mentioned in Section 4.3, we collect all backward and forward citations (through

WoS) for all the NETs articles in our sample. The purpose is to identify the knowl-

edge base and the potential direction of scientific spillovers. The flow diagrams de-

picted in Figure C.5 highlight the differences between nature-based and technology-

based negative emissions options. We consider the 10 largest sub-fields to clarify the

scientific linkages concerning different NETs better. The 10 most important fields

account for more than 75% of the total citations. Figure C.6 shows the exact distri-

bution for all our NETs options. To summarize the main trends: forestry, ecology,

and soil science dominate in the nature-based NETs, while advances in chemistry

and chemical engineering shape DAC and BECCS developments. EW and Biochar

can be placed between these two groups, sharing some nature-based knowledge com-

ponents and technical features. Not surprisingly, OF and BC disproportionally link

to oceanography and marine biology.
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Figure C.5: Knowledge flows. Top 10 WoS subjects that affect (backward citations)
and are affected (forward citations) by NETs research. (AR) Afforestation and Refor-
estation. (BECCS) Bio-energy with Carbon Capture ans Storage. (Biochar) Biochar.
(BC) Blue Carbon. (DAC) Direct Air Capture. (EW) Enhanced Weathering. (OF)
Ocean Fertilization. (SCS) Soil Carbon Sequestration.
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Figure C.6: Pareto plot. Cumulative percentage of the total number of forward and
backward scientific citations by NETs. The horizontal reference line marks the 75% of
total citations. The vertical reference line indicates the 10 largest scientific sub-fields.
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C.5 Radar - climate control

A B C

D E F

G H I

Figure C.7: NETs multidimensional impact – Climate control (A–I) Radar
charts for each NET, showing multidimensional spillovers (climate control group fixed at
1). (A) General. (B) Afforestation and reforestation – AR. (C) Bio–energy with Carbon
Capture and Storage – BECCS. (D) Biochar. (E) Blue Carbon – BC. (F) Direct Air
Capture – DAC. (G) Enhanced weathering – EW. (H) Ocean fertilization – OF. (I)
Ocean fertilization – OF.
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C.6 Regressions - Robustness

We perform a long series of robustness checks to validate our results. First, as

mentioned in Section 4.7.2, we estimate our baseline models 30 times, with varying

control groups. The boxes depicted in Figure 4.4 show the average point estimate

β∗
k and the average confidence intervals ⟨C.I.⟩ across the 30 runs of our statistical

model (see Table C.3 for more details). Second, we run the analysis using different

control groups, focusing, for instance, on the climate change literature (Section C.2

covers details on the construction of the climate control). Figure C.4 and Table C.4

summarize the result of our analysis with the climate control groups as reference.

In addition, we repeat our analysis using a linear model instead of GLMs. For-

mally, we used the following specification:

log(Sikt) = α +
∑

k

βkNETik +
∑

t

γtTit + ϵ (C.1)

where Sikt is the number of forward citations in the science, technology, or policy

dimensions, NETik refers to the corresponding NET and Tit represent a year dummy,

as in Section 4.4. Results are summarized in Figure C.9 and Table C.5 with the

baseline control, and in Figure C.15 and Table C.6 with the climate control.

To further evaluate the consistency of our results and control for potential dif-

ferences in coverage between WoS and Altmetric, we repeat the analysis, comparing

the quantitative trends highlighted so far in terms of scientific and technological

spillovers. Following the empirical strategy of Section 4.4, we first use WoS – in-

stead of Altmetric – to quantify scientific spillovers, namely: citations and scope (i.e.,

# of different fields that cite a given article). Figure C.11,C.12 and Table C.7, C.12

summarize the results concerning both the baseline and the climate control groups.

Then, we also use RoS to keep track of the science-technology links. We repeat the

analysis using logistic regressions as in Section 4.4. Figure C.13 and Table C.9 con-

firm the overall distance of NETs from the technological frontier, and the relative

advantage of DAC. We also perform an additional robustness check by estimating
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the models of Section 4.4 including two potentially relevant control variables: a field

(or combinations of fields) indicator extracted via Altmetric and whether the article

is open access. A categorical field variable (Fif ) allows us to control for disciplinary

differences in citation patterns within and beyond science. A dummy that captures

whether articles are open access (OAi) controls for the possibility of broader/more

accessible diffusion of knowledge.

More formally, we employ the following specification:

g(E(Sikt| . . . )) = α +
∑

k

βkNETik +
∑

t

γtTit +
∑

f

δfFif + µOAi (C.2)

Figure C.14,C.15 and Table C.10,C.11 include all details. Some coefficients shirk

vis-a-vis our baseline model of Section 4.4, as the field control is sufficiently strong to

clean out the disciplinary heterogeneity that distinguishes, for instance, engineering-

based articles from marine biology or generally less cited sub-fields.

Lastly, we finally check the robustness of our results by running individual re-

gressions for some NETs with NET-specific control groups. In detail, Figure C.16

show the estimates for AR, BECCS, DAC, and SCS. The outcomes confirm that

only DAC has a significant association with technological developments. Overall,

the many specifications we have explored corroborate our main results, with coeffi-

cients’ values ranging across specific specifications and control groups.
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Table C.3: Coefficients and C.I. Figure 4.4

Science Technology Policy

NET exp β ⟨C.I.⟩ exp β ⟨C.I.⟩ exp β ⟨C.I.⟩

General 1.68 [1.53,1.86] 0.70 [0.45,1.1] 2.85 [2.26,3.58]
AR 1.25 [1.11,1.41] 0.04 [0.01,0.18] 2.66 [2.03,3.47]
BECCS 1.88 [1.58,2.27] 1.29 [0.6,2.66] 5.65 [3.8,8.41]
Biochar 2.61 [2.3,2.97] 2.29 [1.48,3.53] 1.31 [0.93,1.82]
BC 1.88 [1.5,2.39] ✗ 4.36 [2.62,7.18]
DAC 1.86 [1.57,2.23] 7.48 [5,11.34] 2.06 [1.36,3.09]
EW 1.39 [1.05,1.88] 2.47 [1.03,5.63] 4.70 [2.49,8.87]
OF 0.92 [0.72,1.21] 0.39 [0.09,1.32] 2.31 [1.32,4.01]
SCS 1.63 [1.43,1.88] 0.14 [0.03,0.44] 3.75 [2.76,5.1]
Year dummies ✓ ✓ ✓

Matched samples 30 30 30
# of obs. 3392 3392 3392

Table C.4: Coefficients and C.I. Figure C.8

Science Technology Policy

NET exp β ⟨C.I.⟩ exp β ⟨C.I.⟩ exp β ⟨C.I.⟩

General 1.40 [1.28,1.55] 0.99 [0.57,1.64] 1.93 [1.56,2.38]
AR 0.96 [0.85,1.08] 0.06 [0,0.3] 1.75 [1.36,2.25]
BECCS 1.55 [1.3,1.86] 1.43 [0.52,3.34] 3.74 [2.58,5.42]
Biochar 2.18 [1.93,2.47] 3.26 [1.97,5.23] 0.88 [0.64,1.19]
BC 1.78 [1.42,2.26] ✗ 3.19 [1.98,5.13]
DAC 1.82 [1.53,2.18] 12.34 [7.61,19.68] 1.47 [0.98,2.16]
EW 1.19 [0.92,1.57] 4.02 [1.5,9.3] 2.50 [1.41,4.39]
OF 0.70 [0.55,0.9] 1.03 [0.26,2.92] 1.34 [0.79,2.25]
SCS 1.37 [1.2,1.58] 0.20 [0.04,0.66] 2.49 [1.87,3.31]
Year dummies ✓ ✓ ✓

Matched samples 30 30 30
# of obs. 3716 3716 3716
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A B C

Figure C.8: NETs spillovers to science, technology and policy (climate). Co-
efficients of the regression models of Eq. (3). Results are obtained by fitting 30 negative
binomial regressions (A) and 30 logistic regressions (B–C) on one-to-one matched sam-
ples with year dummies. (A) Estimated coefficients (exponentiated) for each NET on the
number of scientific citations. (B) Estimated coefficients (exponentiated) for each NET
on the probability of being cited by a patent (BC estimates set to zero since there is no
patent documents citing BC papers). (C) Estimated coefficients (exponentiated) for each
NET on the probability of being cited by a policy document.
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Science Technology Policy
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Figure C.9: NETs spillovers to science, technology and policy - OLS

Table C.5: Coefficients and C.I. Figure C.9

Science Technology Policy

NET β ⟨C.I.⟩ β ⟨C.I.⟩ β ⟨C.I.⟩

General 0.39 [0.29,0.49] -0.02 [-0.05,0.01] 0.28 [0.22,0.33]
AR 0.12 [0,0.24] -0.08 [-0.12,-0.05] 0.24 [0.18,0.31]
BECCS 0.54 [0.35,0.72] 0.01 [-0.05,0.06] 0.42 [0.32,0.52]
Biochar 0.92 [0.79,1.05] 0.06 [0.02,0.1] 0.05 [-0.02,0.12]
BC 0.62 [0.39,0.86] -0.04 [-0.11,0.03] 0.34 [0.21,0.47]
DAC 0.63 [0.46,0.81] 0.29 [0.24,0.35] 0.21 [0.11,0.3]
EW 0.42 [0.13,0.72] 0.07 [-0.02,0.16] 0.33 [0.17,0.49]
OF -0.07 [-0.33,0.19] -0.07 [-0.15,0.01] 0.17 [0.03,0.31]
SCS 0.37 [0.24,0.51] -0.06 [-0.1,-0.02] 0.34 [0.26,0.42]
Year dummies ✓ ✓ ✓

Matched samples 30 30 30
# of obs. 3392 3392 3392
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Figure C.10: NETs spillovers to science, technology and policy - OLS (climate)

Table C.6: Coefficients and C.I. Figure C.10

Science Technology Policy

NET β ⟨C.I.⟩ β ⟨C.I.⟩ β ⟨C.I.⟩

General 0.21 [0.12,0.31] 0.00 [-0.02,0.03] 0.21 [0.15,0.26]
AR -0.06 [-0.18,0.06] -0.05 [-0.08,-0.02] 0.15 [0.08,0.22]
BECCS 0.38 [0.2,0.56] 0.02 [-0.03,0.06] 0.34 [0.23,0.44]
Biochar 0.79 [0.67,0.92] 0.08 [0.05,0.12] -0.04 [-0.11,0.04]
BC 0.58 [0.35,0.81] -0.02 [-0.08,0.04] 0.33 [0.2,0.47]
DAC 0.53 [0.35,0.7] 0.34 [0.29,0.38] 0.15 [0.05,0.26]
EW 0.31 [0.04,0.58] 0.09 [0.02,0.16] 0.21 [0.05,0.37]
OF -0.28 [-0.53,-0.03] -0.02 [-0.08,0.05] 0.05 [-0.1,0.19]
SCS 0.22 [0.08,0.35] -0.03 [-0.06,0] 0.28 [0.21,0.36]
Year dummies ✓ ✓ ✓

Matched samples 30 30 30
# of obs. 3716 3716 3716
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Figure C.11: NETs spillovers to science - WoS citations

Table C.7: Coefficients and C.I. Figure C.11

Citations Scope

term exp β ⟨C.I.⟩ exp β ⟨C.I.⟩

General 1.55 [1.4,1.71] 1.32 [1.25,1.4]
AR 1.22 [1.09,1.38] 1.13 [1.06,1.22]
BECCS 1.75 [1.46,2.11] 1.39 [1.25,1.55]
Biochar 2.37 [2.1,2.69] 1.75 [1.63,1.89]
BC 1.36 [1.09,1.73] 1.37 [1.19,1.58]
DAC 2.12 [1.79,2.53] 1.56 [1.41,1.72]
EW 1.26 [0.95,1.71] 1.30 [1.09,1.55]
OF 0.99 [0.78,1.29] 1.08 [0.94,1.25]
SCS 1.40 [1.22,1.61] 1.23 [1.14,1.34]
Year dummies ✓ ✓

Matched samples 30 30
# of obs. 3392 3392
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Figure C.12: NETs spillovers to science - WoS sample (climate) control

Table C.8: Coefficients and C.I. Figure C.12

Citations Scope

term exp β ⟨C.I.⟩ exp β ⟨C.I.⟩

General 1.31 [1.2,1.45] 1.18 [1.12,1.25]
AR 0.96 [0.86,1.08] 1.01 [0.94,1.07]
BECCS 1.46 [1.23,1.74] 1.27 [1.15,1.41]
Biochar 2.01 [1.78,2.27] 1.59 [1.48,1.71]
BC 1.29 [1.04,1.63] 1.30 [1.14,1.49]
DAC 1.99 [1.69,2.38] 1.46 [1.32,1.61]
EW 1.12 [0.87,1.48] 1.22 [1.04,1.43]
OF 0.76 [0.6,0.97] 0.95 [0.83,1.08]
SCS 1.19 [1.04,1.36] 1.12 [1.04,1.21]
Year dummies ✓ ✓

Matched samples 30 30
# of obs. 3716 3716
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Figure C.13: NETs spillovers to science & technology - WoS/RoS sample

Table C.9: Coefficients and C.I. Figure C.13

Science Technology

term exp β ⟨C.I.⟩ exp β ⟨C.I.⟩

General 1.53 [1.41,1.65] 0.99 [0.65,1.5]
AR 1.16 [1.06,1.27] 0.27 [0.11,0.55]
BECCS 1.55 [1.34,1.81] 1.05 [0.43,2.18]
Biochar 2.54 [2.3,2.82] 3.74 [2.52,5.49]
BC 1.68 [1.37,2.09] ✗

DAC 2.08 [1.8,2.41] 8.96 [6.12,13.27]
EW 1.43 [1.1,1.89] 3.05 [1.14,7.05]
OF 1.32 [1.08,1.64] 2.19 [1.05,4.47]
SCS 1.47 [1.31,1.65] 0.68 [0.31,1.32]
Year dummies ✓ ✓

Matched samples 30 30
# of obs. 5822 5822

170



Science Technology Policy

1 2 3 0.0 2.5 5.0 7.5 10.0 12.5 3 6 9

SCS

OF

EW

DAC

BC

Biochar

BECCS

AR

General

exp(β)

Figure C.14: NETs spillovers to science, technology and policy - Additional
controls

Table C.10: Coefficients and C.I. Figure C.14

Science Technology Policy

NET exp β ⟨C.I.⟩ exp β ⟨C.I.⟩ exp β ⟨C.I.⟩

General 1.73 [1.57,1.91] 0.90 [0.51,1.61] 2.78 [2.18,3.55]
AR 1.28 [1.14,1.44] 0.08 [0.01,0.6] 2.42 [1.82,3.22]
BECCS 1.94 [1.62,2.34] 0.90 [0.35,2.32] 5.41 [3.5,8.35]
Biochar 2.40 [2.11,2.74] 2.13 [1.19,3.79] 1.30 [0.91,1.86]
BC 1.83 [1.45,2.3] ✗ 4.19 [2.46,7.13]
DAC 1.73 [1.44,2.07] 3.24 [1.88,5.59] 3.51 [2.19,5.63]
EW 1.40 [1.04,1.87] 2.35 [0.78,7.1] 5.02 [2.55,9.89]
OF 0.94 [0.72,1.24] 1.60 [0.3,8.42] 1.74 [0.91,3.32]
SCS 1.64 [1.43,1.88] 0.24 [0.06,1.06] 3.35 [2.41,4.65]
Year dummies ✓ ✓ ✓

Controls ✓ ✓ ✓

Matched samples 30 30 30
# of obs. 3378 3378 3378
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Figure C.15: NETs spillovers to science, technology and policy - Additional
controls (climate)

Table C.11: Coefficients and C.I. Figure C.15

Science Technology Policy

NET exp β ⟨C.I.⟩ exp β ⟨C.I.⟩ exp β ⟨C.I.⟩

General 1.40 [1.27,1.55] 1.22 [0.67,2.23] 1.99 [1.58,2.51]
AR 1.01 [0.89,1.13] 0.10 [0.01,0.81] 1.79 [1.36,2.34]
BECCS 1.62 [1.36,1.94] 0.78 [0.28,2.14] 3.66 [2.44,5.5]
Biochar 2.04 [1.8,2.32] 2.50 [1.4,4.47] 0.95 [0.68,1.33]
BC 1.72 [1.36,2.16] ✗ 3.18 [1.91,5.31]
DAC 1.54 [1.29,1.85] 3.97 [2.3,6.86] 2.33 [1.48,3.66]
EW 1.15 [0.88,1.51] 3.29 [1.19,9.11] 2.77 [1.5,5.1]
OF 0.67 [0.51,0.88] 2.50 [0.6,10.36] 1.04 [0.55,1.95]
SCS 1.37 [1.2,1.57] 0.29 [0.07,1.28] 2.41 [1.76,3.3]
Year dummies ✓ ✓ ✓

Controls ✓ ✓ ✓

Matched samples 30 30 30
# of obs. 3518 3518 3518
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Figure C.16: NETs spillovers to science, technology and policy - Separate
matching control (AR) Afforestation and Reforestation. (BECCS) Bio-energy with
Carbon Capture ans Storage. (DAC) Direct Air Capture. (SCS) Soil Carbon Seques-
tration.
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C.7 Geography
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Figure C.17: Geographical distribution of NETs research. Geographical distri-
bution of negative emissions articles at city-level by category (% values). The total map
depicts the aggregate unweighted density of cities where NETs research is performed. Geo-
localized data are described in Section 4.7.3.
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Figure C.19: Correlation between RSA and total number of articles. Scatter
plots for a subset of countries (i.e., countries with at least 10 articles in NETs) for each
NET category. The RSA horizontal reference line fixed at 1 indicates relative advantage.
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