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Abstract. Human mobility data play a crucial role in understand-
ing mobility patterns and developing analytical services across various
domains such as urban planning, transportation, and public health. How-
ever, due to the sensitive nature of this data, accurately identifying pri-
vacy risks is essential before deciding to release it to the public. Recent
work has proposed the use of machine learning models for predicting
privacy risk on raw mobility trajectories and the use of shap for risk
explanation. However, applying shap to mobility data results in expla-
nations that are of limited use both for privacy experts and end-users. In
this work, we present a novel version of the Expert privacy risk predic-
tion and explanation framework specifically tailored for human mobility
data. We leverage state-of-the-art algorithms in time series classification,
as Rocket and InceptionTime, to improve risk prediction while reduc-
ing computation time. Additionally, we address two key issues with shap
explanation on mobility data: first, we devise an entropy-based mask to
efficiently compute shap values for privacy risk in mobility data; second,
we develop a module for interactive analysis and visualization of shap
values over a map, empowering users with an intuitive understanding of
shap values and privacy risk.
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1 Introduction

The analysis of human mobility data is very important for the development of
analytical services and for supporting decision-making processes in many sectors:
urban planning [33], health [16] or tourism [7]. During the COVID-19 pandemic,
for example, studying human mobility data helped understand and explain to the
public how the infection spreads and propose good practices to stop it. Analyses
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in this field are usually conducted on large datasets containing information on
the temporal sequences of locations visited by individuals, such as GPS tracks.
This type of data, however, is very sensitive, as it can lead to the disclosure of
personal information about an individual, such as the home location and place
of work. For example, it has been proven that four spatiotemporal points may
be sufficient to identify 95% of the individuals within a mobility dataset [20].
To address privacy risks associated with mobility data, various methodologies
have been proposed to protect the privacy of the users, but they often involve
modifying the data or Machine Learning (ml) models, compromising overall
performance. Striking a balance between privacy protection and data quality
requires reliable and efficient methods to quantify privacy risk. Pratesi et al.
[25] proposed a risk assessment framework that computes privacy risk through
the definition and simulation of various attack scenarios. While effective, this
framework has drawbacks, including high time complexity and the need to re-
compute the privacy risk for all data when new samples are added.

To mitigate these problems, Pellungrini et al. [22] proposed a ml approach
for the computation of privacy risk based on individual and collective mobility
features extracted from the data. Further improvements have been proposed by
Naretto et al. [21] with the Expert framework, which implements a Long Short
Term Memory neural network (Lstm) able to predict privacy risk directly from
mobility data trajectories. In compliance with the EU General Data Protection
Regulation, Expert also ensures the “right to explanation”, proposing the use
of shap (SHapley Additive exPlanations) [17], a well-known explainer based on
shap values, which is commonly used for its stability and robustness. However,
Expert has several limitations: L1) the Lstm training is time demanding and
requires deep models to be effective; L2) shap can be efficiently applied only with
specific heuristics tailored on specific ml models, like DeepExplainer, whereas
general prediction models require a lot of time to be explained, since they rely
on the combinatorial evaluation of the shap values; L3) the explanation provided
by shap in the context of mobility data is not easy to interpret, given the high
number of dimensions, and it gives limited information to non-technical users.
Therefore, in this paper, we propose Exphlot, a framework tailored towards
human mobility data that solves the aforementioned problems. To tackle L1 we
employ state-of-the-art ml models for sequential data (as InceptionTime [14]
and Rocket [8]) to speed up the training process. For L2, we propose a novel
optimization heuristic based on entropy masks to execute efficiently shap permu-
tation explainer for mobility data. For L3, we propose a visualization dashboard
specifically tailored for the analysis of human mobility focused on both privacy
risk and explanation, thus improving the fruition of the system for non-technical
users.
The paper is structured as follows: in Sect. 2, we present the most relevant papers
in the related literature; in Sect. 3 are reported the necessary definitions and
notation; in Sect. 4 is presented our proposed framework; in Sect. 5 we show an
application of our proposed framework to real human mobility data and provide
an empirical evaluation.
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2 Related Works

Privacy Risk Assessment. In our work, we use the PRUDEnce framework
from Pratesi et al. in [25], which allows for a systematic computation of pri-
vacy risk in a data-driven way. At its core, PRUDEnce is based on the principle
of k-anonymity [29] as it computes privacy risk based on the size of the k-sets
for each individual represented in the data. PRUDEnce has been extensively
used in privacy risk assessment for a diverse range of data [23,24]. The high
computational cost of PRUDEnce lead to the development of ml approaches
that try to predict privacy risk instead of computing it. Pellungrini et al. [22]
developed an approach based on Individual Mobility Profiles extracted from the
data. Naretto et al. [21] proposed the Expert framework, which improves PRU-
DEnce in two ways: first, by developing a ml methodology able to predict risk
directly from sequential data, secondly by explaining the privacy risk predic-
tion using a set of methodologies like shap [17] and lime [26]. Our Exphlot
starts from the Expert and adds new improvements by integrating models and
solutions that leverage domain-specific characteristics of mobility data. Several
works are related to privacy risk assessment, mainly focused on applying classic
risk assessment techniques to various privacy problems [32]. One of the most
recent and relevant works in the field of privacy risk assessment is the work from
Silva et al. [30], in which the authors provide an application of CRISP method-
ology and fuzzy logic to natural language processing tasks. Their work relies
on the definition of a sensitivity level for the features possibly extracted from
an individual’s text and therefore is not entirely data-driven like our approach.
For location-based data, Khalfoun et al. [15] proposed EDEN, a federated learn-
ing approach to location anonymization that is based on the FURIA federated
learning framework for re-identification risk assessment. In their setting, they
consider three types of attack: AP-Attack, POI-Attack, and PIT-Attack, con-
sidering spatial, temporal, and aggregated features. EDEN then selects the best
privacy preservation technique with respect to this kind of assessment.

Predictive Models for Human Mobility Data. In this section, we present
the latest solution in the context of predictive models for human mobility data.
Exphlot predicts the privacy risk directly on mobility data. For this task, one of
the most applied ml models is the Long Short-Term Memory networks (Lstm)
[13], a specific architecture belonging to Recurrent Neural Network (Rnn), that
are able to overcome some of the shortcomings of Rnn, e.g., vanishing gradient
in fully connected Rnn. Lstm have been applied to human mobility data in
many works [7,21,34]. Song et al. [31] use a Lstm network to develop a sys-
tem for simulating and predicting human mobility and transportation model at
a citywide level, while Altché et al. [1] use a Lstm to model vehicular move-
ment on highways. Lstm have been also applied to predict the privacy risk
in human mobility data [21]. However, the application of Lstm requires deep
models to be effective and hence also a long training time. Recently, Fawaz et
al. proposed InceptionTime [14], an ensemble of deep inception modules. This
model achieves comparable performance as the Lstm reducing the learning time.
Another recent proposal is Rocket [8]. It is an ensemble method based on convo-
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lutional kernels which transform the time series into features that are then used
to train a linear classifier. This approach is very efficient and stable, allowing
good generalization capabilities. In Exphlot we exploit both InceptionTime
and Rocket models to overcome the time limitation of Expert.

2.1 Explainability

Explainability is one of the most important modern lines of research in AI as it
is crucial in achieving Trustworthy Artificial Intelligence. [3] provides a compre-
hensive overview of existing techniques for interpretability in ml, identifying two
main types of explanation models: global and local explainers. Local explainers
focus on explaining the results of predictions on single instance [11,18,27] while
global explainers explain the logic of the whole machine learning model [5,6,10].
With Exphlot, we aim at explaining to the end user the reasons why he/she
has a privacy risk exploiting local explanations for time series. In this context
there are many recent methods, however, the majority of them are computa-
tionally inefficient and require a long training time [12]. In this work, we provide
explanations by using shap [17], a well-known explainer based on shap values,
which is commonly used for its stability and robustness of results.

3 Background

3.1 Privacy Risk Assessment Framework

In this paper, we consider each individual’s mobility as a trajectory, i.e., a
temporally ordered sequence of pairs, Tu = (l1, t1), (l2, t2), . . . , (lm, tm), where
li = 〈xi, yi〉 is the location identified by the latitude xi and longitude yi, while
ti (i = 1, . . . , m) denotes the corresponding timestamp such that ∀1 ≤ i ≤ m
ti < ti+1. We denote by D = T1, . . . , Tn the mobility dataset that describes
the movements of n individuals. In this paper, we simulate a privacy attack on
human mobility data to acquire the ground truth to train our predictive model.
Our attack is simulated using the PRUDEnce framework.

As mentioned in Sect. 2, PRUDEnce is based on k-anonymity [29], in which
the privacy risk computation relies on the size of k-sets for each individual in
the data. PRUDEnce has been utilized for privacy risk assessment in various
data domains, such as purchase and mobility data [23,24]. The framework pro-
vides an effective approach to quantifying privacy risks and has demonstrated
its applicability in diverse contexts. For these reasons, we have chosen the PRU-
DEnce methodology as the pre-processing step for computing privacy risk on
raw mobility data in our work.

Technically, the privacy risk computation procedure of PRUDEnce is general
and requires the definition of a privacy attack. The privacy risk computation
defined in Prudence is the following:

1. Define an attack, based on a specific background knowledge category B;
2. Consider a set of background knowledge configurations B1, B2, ..., Bm;
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3. For all the configurations B1, B2, ..., Bm, compute all the possible instances
b ∈ Bk and its probability of re-identification;

4. For each individual, select the maximum privacy risk, defined as the maximum
probability of re-identification across all the instances b ∈ Bk.

Therefore PRUDEnce adopts an exhaustive privacy risk evaluation technique,
by considering all the possible background knowledge the attacker could have
over a given dataset (or dataview of the original dataset). For our purpose, we
consider the case where each individual is represented by a single trajectory Tu

in D. Formally, given a single individual u, the probability of re-identification is:

PrD(Tu|b) =
1

∑
Ti∈D{matching(Ti, b)} (1)

where D is the dataset under analysis, b the background knowledge instance
considered and Tu the trajectory under analysis. In essence, we compute the
support for b with respect to each trajectory in the dataset. The matching
function formalizes how an adversary matches background knowledge b to the
data. b is generated systematically, i.e., PRUDEnce performs exhaustive privacy
risk assessment, among all possible b ∈ Bk. We simulate an attack where we
assume that an adversary has access to some of the points in the trajectory of
an individual, knowing a subsequence of the original trajectory with the relative
order of the points.

Let h be the number of locations lj of an individual u known by the adversary
and let L(Tu) be the complete sequence of locations lj ∈ Tu visited by u (i.e.,
regardless of time). The location sequence background knowledge is a set of
configurations based on h locations, defined as Bh = L(Tu)[h], where L(Tu)[h]

denotes the set of all the possible h-subsequences of the elements in the set
L(Tu), i.e., each instance b ∈ Bh is a subsequence of locations of length h. In
each b, the order among the elements is preserved and known to the adversary.
The matching function for this privacy attack is therefore defined as:

matching(Ti, b) =

{
1, if b ⊆ L(Tu)
0, otherwise

(2)

Privacy Risk is the maximum probability of re-identification across all b:

Risk(u,D) = max(PrD(d = u|b)) (3)

Fig. 1. The general structure of the proposed framework.
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3.2 EXPERT

PRUDEnce is not suited for providing personalized recommendations in terms of
risks associated with personal mobility: for any new user requiring risk evaluation,
the system should re-compute the privacy risk against the whole dataset. In addi-
tion, it does not provide any explanation of the privacy risk derived by the sys-
tem. To overcome these drawbacks, Expert [21] predicts the user’s privacy risk
to increase individual awareness, by also providing an explanation of the deriva-
tion of the risk associated with sharing sensitive location information. Expert
implements a privacy risk prediction module which takes as input the user’s tra-
jectory and predicts the privacy risk level of that user by means of a ml model. It
also uses an explanation module to produce the explanation of the predicted risk.
The output of the privacy risk prediction module is the predicted privacy risk as a
binary value (high risk vs low risk). The output of the risk explanation module
is an explanation of the ml model for the predicted risk label. Expert is mod-
ular with respect to the explainer, allowing the use of any explanation method
which outputs a local explanation, suitable to the type of data under analysis.
The authors use shap, and lore in the original paper [21] (Fig. 1).

4 EXPHLOT

In this paper we propose Exphlot, an improved version of Expert tailored
for Human Mobility Data. Our aim is to provide analysts with an actionable
framework to predict and visualize privacy risk with an integrated explanation.
The general architecture of Exphlot is shown in Fig. 1.

4.1 EXPHLOT Predictive Model

Exphlot objective is to predict the privacy risk of a human trajectory while
providing the analyst with also an explanation to increase user awareness. Pri-
vacy risk is a continuous value in the interval [0, 1]. However, we decide to model
the problem as a binary classification. Indeed, we are interested in distinguishing
between high risk and low risk users, in such a way that higher-risk users can be
protected. Technically, we discretize the privacy risk obtained from the location-
based attack: low risk or 0 (privacy risk ≤ 0.5) and high risk or 1 (privacy risk
>0.5). The Γ vector generated in this way is then joined to the mobility dataset
D and we use 〈D,Γ 〉 to train a classification model. To avoid the problem of hav-
ing to craft and compute features to be used as input data, Naretto et al. [21]
propose to use methods applicable to raw sequences. In particular, they propose
to solve the privacy risk classification problem using a Long-Short Term Memory
network (Lstm). Our goal is, therefore, to use novel, state-of-the-art models to
solve this prediction task, and to compare the performance and time-efficiency
results of the new models with those of the Lstm. We propose two recent models,
Rocket and InceptionTime, introduced in Sect. 2. Rocket is a fast and accu-
rate time series classification algorithm that uses random convolutional kernels.
It is composed of two parts: a first part in which k randomly generated convo-
lutional kernels are used to calculate a feature map from which, for each kernel,
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two aggregated features are extracted (ppv and maximum value); a second part
in which the aggregated features are passed to a linear classification algorithm
to obtain the actual result. The number k of kernels is the only hyper-parameter
of the model. In theory, Rocket can be used for both variable-length and fixed-
length time series. To be applied to variable length time series, the kernels must
be shorter than the length of the shortest time series. In the case where the length
of the series varies greatly, as in our case, this approach is very inconvenient, as
finding the right kernel would be time-consuming. We, therefore, chose a fixed-
length approach, using low amplitude or zero padding to keep the result of the
convolution operation on those segments close to zero and constant, cutting it off
the calculation of the features (ppv and maximum value). We chose Rocket over
Minirocket [9] as the latter eliminates the random component in the choice of
kernels’ characteristics. Therefore, even though Minirocket is generally faster,
we believe that a set of varied kernels fits better for our case, to capture the most
diverse pattern possible. InceptionTime is an ensemble time series classification
algorithm based on an ensemble of inception architectures. The Inception model
is composed of convolutional layers and simultaneously applies several filters of
different lengths to the input time series. This structure alleviates the vanishing
gradient problem by enabling a direct flow of the gradient. It cannot be used on
time series of variable length. To choose the best models, we focused on the recall
of both classes, giving priority to class 1, and the precision of both classes. This is
because we want to protect high-risk users by preventing them from being classi-
fied as low-risk, so that their sensitive data would not be threatened. Moreover,
we wanted to maximize the possibility of sharing the data of low-risk users, thus
preventing them from being classified as high-risk.

Fig. 2. Exphlot analytical pipeline. Starting from the generalized trajectories (a)
a privacy prediction model (d) is trained from a set of observations generated by a
privacy risk model (b). The prediction is explained by means of shap values (e) that
are visualized within an analytical dashboard (f)
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4.2 Exphlot Risk Explanation Module

For the Explanation Module of Exphlot our goal is to provide an explanation
that is informative for experts and users in the dominion of Human Mobility data
(Fig. 2). We chose to employ shap to generate an attribution-based explanation
for our models. Our aim is to indicate, for each individual, what parts of his
movement lead to higher privacy risks. Given the nature of our specific ml mod-
els, we must employ the Kernel Explainer, which is the agnostic explainer of the
shap library. Clearly, depending on the size of the given data, the computation
is more accurate but also longer in time. One possible solution, suggested also by
the authors of shap, is to exploit K-means clustering by selecting a large k and
then feeding all the centroids obtained to the Kernel Explainer. In this way, we
are able to represent all the space under analysis by considering a small number
of trajectories. However, this solution for mobility data is not enough: shap con-
siders each location of the trajectory as a variable and for computing the shap
values all the permutations of variables are calculated as well as their relative
interactions. This procedure is exponential in time if the number of variables is
high, as in our case. Computation of shap values becomes therefore unfeasible
in a reasonable time. Mitchell et al. [19] propose several sampling strategies that
can in theory speed up shap values computation. However, many of the proposed
strategies work under assumptions of bounds to the possible values or shape of
the data. For human mobility, these bounds may not hold. For these reasons, we
decide to apply the PermutationExplainer with a dynamic mask. This method
can take as input a user-defined mask that allows certain features to be hidden,
thus decreasing the individual evaluations made on these and the complexity
of the calculation. In our setting, each feature corresponds to a location of the
geographical map of our human mobility data. We used a binary mask to hide
the features with the highest entropy, fully evaluating the locations with the
lowest entropy. We formally define location entropy for each location i in the
dataset with the Shannon Entropy equation: Ei = −∑

u∈Ui
pu log2 pu, where

pu is the probability that individual u visits location i and Ui is the set of all
individuals visiting location i. The importance of location entropy for privacy
is thoroughly discussed by Rodriguez-Carrion et al. [28], while in the work of
Pellungrini et al. [22] entropy is proven to be one of the most important predic-
tive features/locations also in ml models. The intuitive concept behind it is that
location entropy is a measure of anonymity, in the sense that if a user passes
through high-entropy locations, where therefore many different other people pass
through, the uniqueness of his mobility profile is lost as it is blurred by the gen-
eral movement. We, therefore, hide the top 70% of the highest entropy locations,
evaluating only the 30% with the lowest entropy. In this way, we are focusing on
those locations that have fewer individuals visiting in a more sporadic way and
thus we are focusing on explaining high-risk predictions. Thus, we are able to
speed up the computation of the shap values.
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4.3 Exphlot Risk and Explanation Visualization Module

The effective visualization of mobility properties can provide a boost to gaining
deeper insights into spatial and temporal patterns. To manage the complexity of
spatial resolutions, a widely adopted solution leverages spatial aggregation based
on spatial partitioning [2,4]. The process organizes close entities into groups
and, for each group, a single centroid point is determined. Then the centroid
points are used as seeds to partition the territory. In the scope of our work,
the data related to geography is linked to multiple dimensions and attributes,
like mobility indicators, privacy risk prediction, and feature relevance. Moreover,
many of these indicators may have multiple spatial scales, for example ranging
from an urban building block resolution to a city district.

Thus, we designed a visual interface where the set of locations of each tra-
jectory is presented within two linked displays: a dynamic map with embedded
graphics and a bubble chart (see Fig. 4). The dynamic map shows for each loca-
tion a visual mark, a circle, whose visual properties are linked to internal indi-
cators of the location it represents. Each circle is driven by two visual variables,
the area of the circle and the fill color, which both encode the same quantitative
value. Without loss of generality, we can assume that these quantitative values
are mapped to the [0, 1] interval, in order to implement a pair of scale functions
to determine the area and the color of each circle. The Bubble Chart contains
the same set of circles of the map (to create conceptual links between the two
displays) located accordingly to the respective values on the two axes. The user
can decide which attributes are associated with which value. Any selection/filter
activated on the Bubble Chart is propagated to the map (and viceversa).

The shap values are computed for every single individual trajectory. How-
ever, the domain expert is interested in the analysis of collective behavior. Thus,
we aggregate the individual explanations into a global one using the aggregation
procedure available within the shap library. This is especially important for all
those instances where the data is not public or is under strict confidentiality con-
straints. From a geographical point of view, we considered for each location l the
set of all the trajectories crossing l. For this subset of trajectories, a set of indica-
tors is computed, such as number of trajectories, and risk of re-identification. For
the latter, we compute statistical indicators to have a compact representation of
the distribution: min, max, first quartile, third quartile, median, and average.

This design achieves multiple objectives. First, it provides a user-driven
exploration of the shap values, since the analyst can evaluate and compare
the contribution of each location to the risk prediction and let the user visu-
ally identify zones containing locations with similar characteristics. Second, the
possibility of navigating the map allows for a deeper investigation of local areas
and provides a solution to limit cluttering when the number of locations is high.
Third, geographic mapping allows a topological exploration of close locations,
enabling the identification of general patterns, i.e. urban areas versus rural areas.
Fourth, the expert can exploit the linked display to investigate relevant cases that
are not directly evident from the map. The possibility of cross-selecting visual
elements enables better identification of patterns and rules of the data.
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5 Experiments

For validating Exphlot we used GPS tracks of private vehicles, provided by
Octo Telematics1, an insurance company. We selected trajectories from the city
area of Prato and Pistoia (Italy), with 8651 users observed in a period of one
month, from 1st May to 31st May 20112. The dataset considered is composed of a
trajectory for each user. Hence, each trajectory contains all the points visited by
the user in temporal order. On these trajectories, we applied a transformation,
in the following called voronoi, in which the territory is split in tiles based
on a data-driven Voronoi tessellation [2]. This approach considers the traffic
density of an area to create the tiles. Then, we used the cells of this tessella-
tion to generalize the original trajectories. The algorithm applies interpolation
between non-adjacent points3. The outliers were removed using DBScan algo-
rithm obtaining 1473 different locations, with an average length of 240.2 per tra-
jectory. Given the processed dataset D, for an in-depth validation of Exphlot,
we considered four background knowledge configurations Bh using h = 2, 3, 4, 5
obtaining four different risk datasets, Γh=2,3,4,5 where, we recall, h represents the
length of the background knowledge of the simulated attacker. We discretized
the risk values in two classes: low, when the privacy risk is in [0, 0.5] and high
in ]0.5, 1]. At this point, we merged the privacy risk data with the trajectories
to obtain the classification datasets for our supervised learning task, following
the methodology explained in Sect. 3.1. Hence, we obtained 4 different datasets
for our experiments. We remark that the datasets with the highest and lowest
background knowledge are highly imbalanced, having the Dh=2 with the 71% of
users belonging to the low class, while for Dh=5 has the 63% of trajectories in
the high class. This is to be expected, as when the knowledge of the attacker is
small, such as h = 2, the attack is less effective, having fewer people re-identified.
In addition, we remark that we compute the privacy risk of the entire dataset
D, splitting the data after privacy risk computation. This decision is based on
the fact that if we calculate the privacy risk separately for the training and
testing sets, the final result will differ from the computation performed on the
complete dataset, due to k-anonymity (Sect. 3.1). It has been demonstrated that
the models still generalize well and possess transfer learning capabilities [22].

5.1 Exphlot Privacy Risk Prediction Module

For all the models we split our datasets into 80% for training and validation
(10%) and 20% for testing. The predictive performance of Rocket, Incep-
tionTime, and Lstm are reported in Table 1. All the models perform well,
achieving good precision and recall for both classes, even in unbalanced settings.
For the most unbalanced case, which is the h = 2, Rocket and InceptionTime

1 https://www.octotelematics.com/it/.
2 Data are collected by GPS devices that detect the position every 30 s, if the vehicle

is not in motion the device automatically stops recording.
3 Voronoi tessellation obtained using http://geoanalytics.net/V-Analytics.

https://www.octotelematics.com/it/
http://geoanalytics.net/V-Analytics
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Table 1. Metrics of Rocket (R), InceptionTime (IT) and Lstm (LS) compared for
each dataset h. For precision P and recall R we present the values for both classes
(high and low risk. From a privacy perspective Rhigh is the most important value as
it represents the fraction of correctly predicted high risk individuals.

h = 2 h = 3

Rocket InceptionTime Lstm Rocket InceptionTime Lstm

Acc 0.81 0.84 0.80 0.88 0.87 0.88

Plow 0.91 0.88 0.90 0.89 0.86 0.90

Phigh 0.63 0.72 0.62 0.88 0.88 0.88

Rlow 0.81 0.89 0.81 0.84 0.85 0.84

Rhigh 0.80 0.70 0.76 0.91 0.89 0.92

F1 0.78 0.80 0.76 0.88 0.87 0.88

h = 4 h = 5

Rocket InceptionTime Lstm Rocket InceptionTime Lstm

Acc 0.90 0.89 0.89 0.91 0.90 0.92

Plow 0.90 0.87 0.90 0.87 0.86 0.89

Phigh 0.90 0.91 0.89 0.93 0.93 0.94

Rlow 0.86 0.89 0.84 0.88 0.88 0.89

Rhigh 0.93 0.90 0.92 0.92 0.92 0.93

F1 0.90 0.89 0.89 0.90 0.90 0.91

Table 2. Training and test times for ROCKET and InceptionTime. Overall Rocket
is the fastest model in training.

InceptionTime Rocket Lstm

Dataset Training Test Time Training Test Training Test

h = 2 16h49min 6sec 2min32sec 44sec 8h50min 60sec

h = 3 20h7min 6sec 3min 40sec 5h30min 60sec

h = 4 4h 4sec 7min 16sec 5h50min 60sec

h = 5 9h24min 5sec 8min 17sec 6h15min 60sec

perform better than Lstm, showing better generalization capabilities. However,
Rocket achieves the highest recall on class high, which is the most important
class for our setting, being the class of the users with high risk of privacy. Incep-
tionTime, instead, while having generally good metrics, does not perform well
on the recall for high class. The real benefit of Rocket over other models is in
training time, as can be seen in Table 2. While training the Lstm can take many
hours, the other models are faster. Rocket is the quickest, with a training time
of just a few minutes, allowing us to achieve the online interaction with the end
user we are aiming at.
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Fig. 3. Shap Force Plot visualization of the contributions towards high risk. The stan-
dard visualization does not provide significant information to domain experts.

5.2 Mobility Privacy Risk Explanation

Applying shap we obtain a local explanation based on feature importance: for
each feature we have a value associated to it that represents how important the
feature is for the prediction at hand. Local explanations can be summed up to
obtain a global explanation as shown in Fig. 3. This plot represents the explana-
tion for all trajectories predicted as high risk. A large number of features makes
it very difficult for the analyst to understand which are the most relevant loca-
tions that contribute to the high (or low) risk. Clearly, this linear layout has
two main limitations: first, the high number of features does not allow a clear
reading of those locations with smaller contributions; second, the topological and
spatial relations among locations are not evident. The visual interface introduced
in Sect. 4.3 addresses these two limitations. Figure 4 shows a screenshot of the
interface showing the shap values associated with the prediction of high risk for
each location4. This visualization allows an analyst to immediately understand
which areas of the map present the highest contribution for the model towards
risk classification. Our map allows for a more intuitive understanding of the con-
tributions of each location with respect to the original shap visualization. Our
visualization can help the analyst understand the dependence of privacy risk on
the mobility behaviors of the collectivity. In the figure, there is a cluster of loca-
tions along a country road with a high contribution to the high risk, confirming
the intuition that low-traffic roads are more prone to privacy exposures. More-
over, the urban surroundings present a lower level of risk, even if it is possible to
visually detect different privacy levels in two close municipalities: the south-east
town has very low-risk levels; the north-west town has a higher risk level.

4 The interactive maps of the experiments in this paper are available at this link.

http://kddstatic.isti.cnr.it/sax/exphlot/
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Fig. 4. Visual interface for the exploration of explanation and prediction of privacy
risk. Each circle represents the contribution to the prediction of high risk

6 Conclusion

In this paper, we proposed Exphlot, a privacy assessment prediction and expla-
nation framework tailored towards human mobility data. We improve on pre-
vious privacy risk assessment frameworks by employing specific ml models for
sequential data and develop custom heuristic techniques for computing shap
values in feasible times and a visualization tool tailored for human mobility data
analysis. Our framework can accurately predict privacy risk in human mobility
data and effectively explain the predictive models with fast shap value calcula-
tion and an intuitive and interactive visualization tool that maps the essential
contribution and information about the problem onto a dynamic map. We vali-
dated our framework on real, confidential human mobility data and showed how
it is possible to immediately gain new insight into the nature of privacy risk.
Our work provides privacy analysts and experts in the field with an interactive
and actionable tool to understand the privacy risk of human mobility data in
an interactive and fast way. As a future work, we are working on exploiting our
visual analytics environment to validate the effeect of different privacy mitiga-
tion techniques. This would be a “what-if” simulation module to allow analysts
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to interactively assess privacy risk, providing a new tool in the development of
privacy protection measures based on generalization or deletion. Another inter-
esting direction is the integration of additional data quality measures, to allow
further experimentation of protection measures on the data before release.
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Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.
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