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For Kolmogorov equations associated to finite dimensional stochastic differential 
equations (SDEs) in high dimension, a numerical method alternative to Monte Carlo 
simulations is proposed. The structure of the SDE is inspired by stochastic Partial 
Differential Equations (SPDE) and thus contains an underlying Gaussian process 
which is the key of the algorithm. A series development of the solution in terms of 
iterated integrals of the Gaussian process is given, it is proved to converge - also in 
the infinite dimensional limit - and it is numerically tested in a number of examples.
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1. Introduction

Kolmogorov equations are parabolic equations with a structure directly related to stochastic differential 
equations (SDEs). The SDEs considered here are in a finite dimensional space but they are inspired by the 
spatial discretization of stochastic Partial Differential Equations (SPDE). When the noise is additive and 
the nonlinearity is time-independent, a general form of such SDEs is

{
dXt = (AXt + B (Xt)) dt + σ

√
QdWt,

X0 = x,
(1.1)

where x ∈ Rd, (Wt)t≥0 is a Brownian motion in Rd (namely Wt =
(
W 1

t , . . . ,W
d
t

)
where the W i

t ’s are inde-
pendent real valued Brownian motions), defined on a probability space (Ω,F ,P ) with a filtration (Ft)t≥0, 
σ is a positive real number measuring the strength of the noise, Q is a d × d positive definite symmetric 
matrix (the so called covariance matrix of the noise) describing the spatial structure of the noise and 

√
Q
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is its square root, A is a d × d matrix and B : Rd → Rd is a function with the degree of regularity specified 
below. Obviously we could include the scalar σ2 inside the matrix Q but for certain practical arguments 
it is useful to distinguish between them. The solution (Xt)t≥0 is a continuous adapted process in Rd. The 
associated Kolmogorov equation is

⎧⎪⎨
⎪⎩
∂tu(t, x) = σ2

2 Tr
(
QD2u(t, x)

)
+ 〈Ax + B (x) , Du(t, x)〉 ,

u(0, x) = u0(x),
(1.2)

where u : [0, T ] ×Rd → R, Du(t, x) and D2u(t, x) denote respectively the vector of first partial derivatives 
and the matrix of second partial derivatives, Tr

(
QD2u(t, x)

)
is the trace of the d × d matrix QD2u(t, x)

and 〈·, ·〉 denotes the scalar product in Rd. Both for the SDE and the Kolmogorov equation we have used 
notations which may be adapted to the infinite dimensional case, when Rd is replaced by a Hilbert space 
(see Section 2 for the general theory); however, the aim of this work is numerical and all objects in the 
introduction will belong to Rd. The link between the Kolmogorov equation and the SDE is

u(t, x) = E [u0(Xx
t )] ,

where E denotes the mathematical expectation on (Ω,F ,P ) and Xx
t is the solution of the SDE above, 

where the initial condition x is explicitly indicated. Several elements of theory both in finite and infinite 
dimensions for SDEs and associated Kolmogorov equations can be found in many books, like [7,9,11,24,25].

Solving the Kolmogorov equation with suitable initial condition u0 is a way to compute relevant expected 
values and probabilities associated to the solution of an SDE. For instance, when u0(x) = 1{‖x‖>R}, u(t, x)
is the probability that the solution exceeds a threshold R:

u(t, x) = E
[
1{‖x‖>R} (Xx

t )
]

= P (‖Xx
t ‖ > R) .

The classical method of computing these expected values is the Monte Carlo method (with important 
variants, see for instance [17,27]): several realizations of the process (Xx

t )t≥0 are simulated by solving the 
SDE – typically by Euler method – and then the corresponding values of u0(Xx

t ) are averaged. Going beyond 
this strategy is a fundamental issue, due to its limitations in relevant applications like Geophysics and 
Climate change projections [23], especially concerning extreme events. The question is whether Kolmogorov 
equation can be efficiently solved numerically without using the simulation of the SDE. But the problem 
is that the dimension d is extremely high in these examples and common numerical methods for solution 
of parabolic equations already require strong computational power when d = 3, [6,26]. A grid of N points 
in R, repeated for all dimensions, gives rise to Nd grid points, numerically impossible when, for instance, 
N = 10, d = 10 (which still would be an extremely poor approximation). Spectral methods seem to meet 
the same restrictions: Nd is the cardinality of basis elements obtained by tensorization of N basis elements 
for each space variable.

The problem of dimensionality, the limitations of present methodologies and several motivations (for in-
stance in Finance and in Geophysical researches) are recalled in various recent works. Some of them are based 
on deep learning [3,12,18,2,22] or statistical ideas [8, Introduction]. Several other works introduced iterations 
based on a perturbation formulation [14,13,19–21], including the case with the gradient of solution in the 
perturbation part; from these viewpoints our work has similarities with this part of the literature. However, 
the present paper seems to be the first one which is inspired by infinite dimensional stochastic equations 
and makes use of their specific structure. The Gaussian semigroup arising in infinite dimensions is very 
different from the heat kernel in finite dimensional spaces, in particular it satisfies dimension-independent 
bounds, which are revealed in our main theoretical result of convergence and have some consequences at 
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the computational level. However, a detailed analysis of the error and the computational cost depending on 
the dimension is among the nontrivial open problems left for future research.

Our aim is to take advantage of the probabilistic structure of the problem to devise numerical schemes 
for the Kolmogorov equation, in particular using Gaussian analysis. We implement a perturbative schema 
which links the solution of the Kolmogorov equation to a Gaussian process, the solution (Z0

t )t≥0 of the 
linear stochastic equation

{
dZ0

t = AZ0
t dt +

√
QdWt,

Z0
0 = 0.

(1.3)

The idea of this paper comes from theoretical investigations of infinite dimensional Kolmogorov equations 
associated to SPDEs, see for instance [11,10]. We modify and adapt this idea giving an explicit formula in 
terms of a series of Gaussian integrals. We provide here a first glance at the strategy by writing the final 
formula:

u(t, x) =
∞∑

n=0
vn(t, x),

where

v0(t, x) = E
[
u0
(
etAx + σZ0

t

)]
and for n ≥ 1

vn(t, x) =
t∫

0

drn

rn∫
0

drn−1 · · ·
r2∫
0

dr1

E

[
u0
(
etAx + σZ0

t

) n∏
i=1

〈
Ξσ(ri+1 − ri)B

(
eriAx + σZ0

ri

)
, Z0

ri+1
− e(ri+1−ri)AZ0

ri

〉]
.

The matrix Ξσ(t) will be defined in the next section, see (2.3); it is easily computed by A and Q, and it 
depends on the parameters t and σ. A theoretical analysis of this series is made, proving the following result.

Theorem 1.1. Assume that u0 and B are bounded. Then, under suitable conditions on A and Q (see Hy-
pothesis 2.1 for details), we have the following uniform estimate:

‖vn(t)‖∞ ≤ ‖u0‖∞‖B‖n∞Cn
δ tn(1−δ) Γ(1 − δ)n

Γ(1 + n(1 − δ)) , t > 0,

where Γ(·) is the Gamma function, Cδ > 0 is a constant and δ ∈ (0, 1) the parameter in (iv) of Hypothesis 2.1.

This theorem sustains the numerical method and stresses the independence on the dimension of certain 
issues of the method (obviously others, like getting a sample of Z0

· , have a cost which increases with d). 
When Rd is replaced by a Hilbert space H (and below we shall formulate the theorem with assumptions in 
a Hilbert space) it contains also some theoretical novelties with respect to the literature, especially because 
it provides an explicit formula.

The numerical evaluation of the terms vn(t, x) relies on Monte Carlo averages taken over independent 
versions of an Euler-Maruyama approximation of the solution (Z0

t )t≥0. This is a typical choice when the 
solution cannot be simulated exactly. These samples can be simulated once, store for ever, and reuse several 
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times to calculate u(t, x) for different values of t, x, σ, u0 and even of B. This is a main strategy invoked 
here.

This new method is aimed to replace direct Monte Carlo simulations. We should therefore accurately 
compare them. If the purpose is to make one single computation, the classical Monte Carlo algorithm 
wins: the Gaussian method above still requires Monte Carlo simulations of the linear problem, which is 
less expensive than the nonlinear one but then one has to compute possibly several terms vn(t, x); some 
experiments clearly show that classical Monte Carlo is less expensive for a comparable degree of precision. 
Our method has a significant advantage when we want to vary parameters, since the Gaussian method for 
given (A, Q) allows to reuse the samples stored before for several values of the parameters, just having to 
compute the averages over the Gaussian samples which give us the terms vn(t, x). On the contrary, the 
classical Monte Carlo method requires simulating the solution to the nonlinear problem (1.1) for each new 
value of the parameters. By “parameters”, as we have already mentioned above, we mean t, x, σ, u0, B. Let 
us comment on the interest in changing them.

The interest in changing t is obvious. In certain applications it is necessary to change the initial condition 
x and compare or collect the results. We consider, for example, the ensemble method in weather prediction. 
Here, a first guess is made on the basis of physical observations, since the initial condition is uncertain. This 
value has to be perturbed in various directions to obtain the final results by suitable averaging methods. 
See also [2,22], where the need to change (t, x) is stressed.

Changing the strength σ of the noise is a very important issue, related also to Large Deviation Theory. 
We have to advise that the precision of our simulations degenerates as σ → 0, or the number of iterates 
needed to maintain a reasonable precision blows up, but at least one can detect some tendency by moving 
σ in a finite range without arriving to too small values.

Concerning the change of function u0, unfortunately, the main comment is in favor of Monte Carlo: having 
at disposal a number of samples of the process (Xx

t )t≥0 immediately gives a way to compute E [u0(Xx
t )]

for different functions u0. Hence the best we can say on this issue is that our formula allows for such 
computations with a moderate additional effort – but not with an improvement over Monte Carlo.

Finally, changing the nonlinearity B is of theoretical interest for the investigation of the performances 
of the method, and in applications it may be of interest in those – very common – cases when some 
parameters of B are not precisely known and different simulations may be useful for comparison or for 
ensemble averaging methods performed over the range of those parameters.

Let us now present a brief description of numerical results. In Section 3, we present some numerical 
results based on the method proposed here in the finite dimensional settings with d ≥ 10. The results, even 
if not fully satisfactory yet, should be compared with the fact that the innovative attempts to solve the 
Kolmogorov equation in d > 3 by direct methods, see [8], are often restricted to dimensions smaller than 
10. Large dimension is therefore a very difficult problem that deserves strong effort for improvement, and 
some of our results – although not in all examples – are quite promising.

As a final comment, we explicitly mention that the class of Kolmogorov equations studied here is par-
ticular, because of the additive and very non-degenerate noise and because we have treated only relatively 
mild nonlinearities. We have not considered relevant cases from fluid mechanics which have more severe 
nonlinearities and activation of more scales; after a few initial tests on dyadic models – we point in particu-
lar to the recent models on trees which may be very relevant for turbulence theory, see [1,4,5] – it was clear 
that covering these examples with this approach requires further research and improvements. Extension to 
multiplicative transport noises [15,16] is another challenging open question.

2. The iteration schema for Kolmogorov equations on Hilbert spaces

In this section we work in an infinite dimensional separable Hilbert space H and study the iteration 
schema for the Kolmogorov equation:



F. Flandoli et al. / J. Math. Anal. Appl. 493 (2021) 124505 5
∂tu(t, x) = 1
2Tr

(
QD2u(t, x)

)
+
〈
Ax + B(x), Du(t, x)

〉
, u(0, ·) = u0. (2.1)

Here A : D(A) ⊂ H → H is an unbounded linear operator, Q is a nonnegative self-adjoint bounded linear 
operator on H, B : D(B) ⊂ H → H is a nonlinear measurable mapping and u0 : H → R is a real valued 
measurable function. In this section Q plays the role of σ2Q to simplify notation. In the following we write 
L(H, H) for the Banach space of bounded linear operators on H with the norm ‖ · ‖L(H).

Throughout this section we assume the following conditions:

Hypothesis 2.1.

(i) A : D(A) ⊂ H → H is the infinitesimal generator of a strongly continuous semigroup (etA)t≥0.
(ii) Q is a nonnegative self-adjoint operator in L(H, H) satisfying Ker(Q) = {0}, and for any t > 0 the 

linear operator

Qt =
t∫

0

esAQesA
∗
ds (2.2)

is of trace class.
(iii) We have etA(H) ⊂ Q

1/2
t (H) for any t > 0.

(iv) Letting Λ(t) = Q
−1/2
t etA, we assume there exist δ ∈ (0, 1) and Cδ > 0 such that

‖Λ(t)‖L(H) ≤ Cδ/t
δ, t > 0.

The assumptions (i)–(iii) are quite standard in the literature, see for instance [9, Hypothesis 2.1 and 
2.24]. The operator Ξσ(t) appeared in the introduction has the form

Ξσ(t) = σ−1Q
−1/2
t Λ(t) = σ−2Q−1

t etA; (2.3)

we remark that, in the setting of the introduction, the operator Q in (2.2) should be replaced by σ2Q when 
computing Qt. The following example is taken from [9, Example 2.5] which verifies all the assumptions.

Example 2.2. Let O = [0, π]d with d ∈ N. We choose H = L2(O), and

Ax = Δx, x ∈ D(A) = H2(O) ∩H1
0 (O),

where Δ is the Laplacian operator with Dirichlet boundary condition. A is a self-adjoint negative operator 
in H, and

Aek = −|k|2ek, k ∈ Nd,

where for k ∈ Nd, |k|2 = k2
1 + · · · + k2

d and

ek(ξ) = (2/π)d/2 sin(k1ξ1) · · · sin(kdξd), ξ ∈ [0, π]d.

Choose Q = (−A)−α, α ∈ [0, 1), so that

Qx =
∑
k∈Nd

|k|−2α〈x, ek〉ek, x ∈ H.

For any t > 0, if α > d/2 − 1, then
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Tr(Qt) =
∑
k∈Nd

1
2|k|2+2α

(
1 − e−2t|k|2

)
< ∞.

So (ii) is satisfied.
Next, (iii) can be checked by explicit computations. Moreover,

Λ(t)x =
∑
k∈Nd

√
2 |k|1+α

√
e2t|k|2 − 1

〈x, ek〉ek, x ∈ H.

From this we deduce that

‖Λ(t)‖L(H) ≤
√

2Cα

t(1+α)/2 ,

where

Cα = sup
θ>0

θ1+α

e2θ − 1 < +∞.

Thus (iv) holds with δ = (1 + α)/2 ∈ [1/2, 1).

We also need the following technical conditions.

Hypothesis 2.3. The initial datum u0 : H → R and the nonlinear part B : H → H in (2.1) are bounded and 
measurable.

This section is organized as follows. In Subsection 2.1, we recall some basic facts in Gaussian analysis on 
Hilbert space and give the formula for the first term v1(t, x) of the iteration (2.8). We give in Section 2.2
the details for calculating the second term v2(t, x), which will help us to guess and prove the formula for 
general terms vn(t, x) in Section 2.3. In the last part, we estimate the uniform norm of vn(t, x) and show 
the convergence of the iteration schema. The limit is the unique mild solution of (2.1), see Theorem 2.15.

2.1. Some preparations

Let W be a cylindrical Brownian motion on H:

Wt =
∞∑
k=1

W k
t ek, t ≥ 0,

where {ek}k≥1 is a complete orthonormal basis of H and {W k}k≥1 is a family of independent one dimensional 
standard Brownian motions defined on some probability space (Ω, F , P ). Under the conditions (i) and (ii) 
in Hypothesis 2.1, the linear SDE

dZx
t = AZx

t dt +
√

QdWt, Zx
0 = x ∈ H (2.4)

has a unique solution with the expression

Zx
t = etAx + WA(t), t > 0,

where WA(t) is the stochastic convolution:
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WA(t) =
t∫

0

e(t−s)A
√

QdWs.

For any t > 0, WA(t) is a centered Gaussian variable on H with covariance operator Qt. We denote its law by 
NQt

(dy). Accordingly, the law of Zx
t is denoted as NetAx,Qt

(dy). Recall that for any h ∈ H, 
〈
h, Q−1/2

t WA(t)
〉

is a centered real Gaussian variable with variance

E
〈
h,Q

−1/2
t WA(t)

〉2 = |h|2H .

We shall write B(H) for the space of bounded measurable functions on H and C1
b (H) the space of Fréchet 

differentiable functions, bounded with bounded derivatives. When f ∈ C1
b (H), its Fréchet derivative will be 

denoted by Df . For any f ∈ B(H) and t ≥ 0, let

Stf(x) := Ef(Zx
t ) =

∫
H

f(y)NetAx,Qt
(dy) =

∫
H

f
(
etAx + y

)
NQt

(dy).

This defines a Markov semigroup on H. We have the following important result which implies St is strong 
Feller (see [9, Proposition 2.28] for a proof).

Proposition 2.4. Assume the conditions (i)–(iii) in Hypothesis 2.1. Then for all f ∈ B(H) and t > 0, we 
have Stf ∈ C1

b (H) and for any h ∈ H,

〈h,DStf(x)〉 = E
[
f(Zx

t )
〈
Λ(t)h,Q−1/2

t

(
Zx
t − etAx

)〉]
. (2.5)

Moreover,

‖DStf‖∞ ≤ ‖f‖∞‖Λ(t)‖L(H). (2.6)

Using the semigroup (St)t≥0, the mild formulation of the Kolmogorov equation (2.1) is

u(t, x) = (Stu0)(x) +
t∫

0

(
St−s〈B,Du(s)〉

)
(x) ds. (2.7)

This suggests us to consider the iterative schema:

un+1(t, x) = (Stu0)(x) +
t∫

0

(
St−s〈B,Dun(s)〉

)
(x) ds

with u0(t, x) = (Stu0)(x) = Eu0(Zx
t ). We define v0(t, x) = u0(t, x) and

vn(t, x) = un(t, x) − un−1(t, x), n ≥ 1,

then the new functions satisfy the iteration procedure: for all t > 0 and x, y ∈ H,
⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

vn+1(t, x) =
t∫

0

(St−sk
n
s )(x) ds,

kns (y) = 〈B(y), Dvn(s, y)〉,
v0(t, x) = Eu (Zx).

(2.8)
0 t
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Before concluding this section, we show how to obtain the first term v1(t, x). Since u0 ∈ B(H), Proposi-
tion 2.4 implies v0(t) ∈ C1

b (H) for any t > 0, and thus 〈B, Dv0(t)〉 ∈ B(H). Denote by (Ft)t≥0 the filtration 
generated by the cylindrical Brownian motion (Wt)t≥0.

Lemma 2.5. For any t > 0 and 0 < s < t, it holds that

(
St−sk

0
s

)
(x) = E

[
u0(Zx

t )
〈
Λ(s)B(Zx

t−s), Q−1/2
s

(
Zx
t − esAZx

t−s

)〉]
.

Proof. By (2.8) and (2.5),

k0
s(y) = 〈B(y), Dv0(s, y)〉 = E

[
u0(Zy

s )
〈
Λ(s)B(y), Q−1/2

s (Zy
s − esAy)

〉]
.

Using the Markov property,

k0
s(Zx

t−s) = E
[
u0(Zy

s )
〈
Λ(s)B(y), Q−1/2

s (Zy
s − esAy)

〉]
y=Zx

t−s

= E
[
u0(Zx

t )
〈
Λ(s)B(Zx

t−s), Q−1/2
s (Zx

t − esAZx
t−s)

〉∣∣Zx
t−s

]
= E

[
u0(Zx

t )
〈
Λ(s)B(Zx

t−s), Q−1/2
s (Zx

t − esAZx
t−s)

〉∣∣Ft−s

]
.

Noticing that 
(
St−sk

0
s

)
(x) = E

[
k0
s(Zx

t−s)
]
, we immediately obtain the identity. �

The above lemma implies

Corollary 2.6. For any t > 0 and x ∈ H,

v1(t, x) =
t∫

0

E
[
u0(Zx

t )
〈
Λ(s)B(Zx

t−s), Q−1/2
s

(
Zx
t − esAZx

t−s

)〉]
ds. (2.9)

Moreover,

‖v1(t)‖∞ ≤ ‖u0‖∞‖B‖∞
t∫

0

‖Λ(s)‖L(H) ds

and

‖Dv1(t)‖∞ ≤ ‖u0‖∞‖B‖∞
t∫

0

‖Λ(t− s)‖L(H)‖Λ(s)‖L(H) ds.

Proof. The formula (2.9) follows directly from Lemma 2.5. Next, by the definition (2.8) of the iteration, for 
any s > 0 and y ∈ H,

∣∣k0
s(y)

∣∣ ≤ |B(y)| |Dv0(s, y)| ≤ ‖B‖∞|DSsu0(y)| ≤ ‖B‖∞‖u0‖∞‖Λ(s)‖L(H), (2.10)

where the last inequality follows from (2.6). Therefore,
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|v1(t, x)| ≤
t∫

0

∣∣(St−sk
0
s

)
(x)
∣∣ds ≤

t∫
0

∥∥k0
s

∥∥
∞ ds ≤ ‖u0‖∞‖B‖∞

t∫
0

‖Λ(s)‖L(H) ds

which yields the estimate on ‖v1(t)‖∞. The inequality (2.10) implies that k0
s ∈ B(H) for all s > 0, hence by 

Proposition 2.4, St−sk
0
s ∈ C1

b (H) and

Dv1(t, x) =
t∫

0

D
(
St−sk

0
s

)
(x) ds.

Finally, by (2.6),

‖Dv1(t)‖∞ ≤
t∫

0

∥∥D(St−sk
0
s

)∥∥
∞ ds ≤

t∫
0

∥∥k0
s

∥∥
∞‖Λ(t− s)‖L(H) ds,

which, together with (2.10), gives us the last estimate. �
2.2. The term v2(t, x)

In this part, we compute the second term in the iteration to illustrate the ideas. First we prove

Lemma 2.7. One has, for any t > 0 and x ∈ H,

k1
t (x) =

t∫
0

E
[
u0(Zx

t )
〈
Λ(s)B(Zx

t−s), Q−1/2
s (Zx

t − esAZx
t−s)

〉

×
〈
Λ(t− s)B(x), Q−1/2

t−s (Zx
t−s − e(t−s)Ax)

〉]
ds.

Proof. By Corollary 2.6, for any t > 0, v1(t) ∈ C1
b (H) and

k1
t (x) =

〈
B(x), Dv1(t, x)

〉
=

t∫
0

〈
B(x), D

(
St−sk

0
s

)
(x)
〉
ds.

Recall that (2.10) implies k0
s ∈ B(H), thus by Proposition 2.4,

k1
t (x) =

t∫
0

E
[
k0
s(Zx

t−s)
〈
Λ(t− s)B(x), Q−1/2

t−s

(
Zx
t−s − e(t−s)Ax

)〉]
ds.

According to the proof of Lemma 2.5, we have

k0
s(Zx

t−s) = E
[
u0(Zx

t )
〈
Λ(s)B(Zx

t−s), Q−1/2
s (Zx

t − esAZx
t−s)

〉∣∣Ft−s

]
.

Note that 
〈
Λ(t − s)B(x), Q−1/2

t−s

(
Zx
t−s − e(t−s)Ax

)〉
is Ft−s-measurable. Substituting this equality into the 

one above and using the property of conditional expectation, we obtain the desired result. �
Now we are ready to present the expression and estimates for the second iteration.
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Proposition 2.8. For any t > 0 and x ∈ H,

v2(t, x) =
t∫

0

s∫
0

E
[
u0(Zx

t )
〈
Λ(r)B(Zx

t−r), Q−1/2
r (Zx

t − erAZx
t−r)

〉

×
〈
Λ(s− r)B(Zx

t−s), Q
−1/2
s−r (Zx

t−r − e(s−r)AZx
t−s)

〉]
drds.

Furthermore,

‖v2(t)‖∞ ≤ ‖u0‖∞‖B‖2
∞

t∫
0

s∫
0

‖Λ(s− r)‖L(H)‖Λ(r)‖L(H) drds

and

‖Dv2(t)‖∞ ≤ ‖u0‖∞‖B‖2
∞

t∫
0

s∫
0

‖Λ(t− s)‖L(H)‖Λ(s− r)‖L(H)‖Λ(r)‖L(H) drds.

Proof. By Lemma 2.7, for any s > 0 and y ∈ H,

k1
s(y) =

s∫
0

E
[
u0(Zy

s )
〈
Λ(r)B(Zy

s−r), Q−1/2
r (Zy

s − erAZy
s−r)

〉

×
〈
Λ(s− r)B(y), Q−1/2

s−r (Zy
s−r − e(s−r)Ay)

〉]
dr.

We have

E
[
k1
s(Zx

t−s)
]

= E

{ s∫
0

E
[
u0(Zy

s )
〈
Λ(r)B(Zy

s−r), Q−1/2
r (Zy

s − erAZy
s−r)

〉

×
〈
Λ(s− r)B(y), Q−1/2

s−r (Zy
s−r − e(s−r)Ay)

〉]
y=Zx

t−s

dr
}

=
s∫

0

E
[
u0(Zx

t )
〈
Λ(r)B(Zx

t−r), Q−1/2
r (Zx

t − erAZx
t−r)

〉

×
〈
Λ(s− r)B(Zx

t−s), Q
−1/2
s−r (Zx

t−r − e(s−r)AZx
t−s)

〉]
dr,

where the second step follows from the Markov property. Therefore,

v2(t, x) =
t∫

0

(
St−sk

1
s

)
(x) ds =

t∫
0

E
[
k1
s(Zx

t−s)
]
ds

=
t∫

0

s∫
0

E
[
u0(Zx

t )
〈
Λ(r)B(Zx

t−r), Q−1/2
r (Zx

t − erAZx
t−r)

〉

×
〈
Λ(s− r)B(Zx

t−s), Q
−1/2
s−r (Zx

t−r − e(s−r)AZx
t−s)

〉]
drds.
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Next, by the definition of k1
s and the last inequality in Corollary 2.6,

∥∥k1
s

∥∥
∞ ≤ ‖B‖∞‖Dv1(s)‖∞ ≤ ‖u0‖∞‖B‖2

∞

s∫
0

‖Λ(s− r)‖L(H)‖Λ(r)‖L(H) dr. (2.11)

This immediately implies

|v2(t, x)| ≤
t∫

0

∥∥k1
s

∥∥
∞ ds ≤ ‖u0‖∞‖B‖2

∞

t∫
0

s∫
0

‖Λ(s− r)‖L(H)‖Λ(r)‖L(H) drds,

and we obtain the estimate on ‖v2(t)‖∞. Moreover, by Proposition 2.4,

|Dv2(t, x)| ≤
t∫

0

∣∣D(St−sk
1
s

)
(x)
∣∣ ds ≤

t∫
0

∥∥k1
s

∥∥
∞‖Λ(t− s)‖L(H) ds,

which, combined with (2.11), gives us the second estimate. �
2.3. The general terms vn(t, x)

In order to do further iteration, we rewrite the formula in Proposition 2.8 as

v2(t, x) =
t∫

0

ds2

s2∫
0

ds1 E
[
u0(Zx

t )
〈
Λ(s1)B(Zx

t−s1), Q
−1/2
s1 (Zx

t − es1AZx
t−s1)

〉

×
〈
Λ(s2 − s1)B(Zx

t−s2), Q
−1/2
s2−s1(Z

x
t−s1 − e(s2−s1)AZx

t−s2)
〉]
.

Moreover, denoting by s0 = 0, then we have

v2(t, x) =
t∫

0

ds2

s2∫
0

ds1

E

[
u0(Zx

t )
2∏

i=1

〈
Λ(si − si−1)B(Zx

t−si), Q
−1/2
si−si−1

(
Zx
t−si−1

− e(si−si−1)AZx
t−si

)〉]
.

From this we can guess the general formulae.

Theorem 2.9. Let s0 = 0. For all n ≥ 1 and for any t > 0, x ∈ H,

vn(t, x) =
t∫

0

dsn

sn∫
0

dsn−1 · · ·
s2∫
0

ds1

E

[
u0(Zx

t )
n∏

i=1

〈
Λ(si − si−1)B(Zx

t−si), Q
−1/2
si−si−1

(
Zx
t−si−1

− e(si−si−1)AZx
t−si

)〉]
.

(2.12)

Moreover,



12 F. Flandoli et al. / J. Math. Anal. Appl. 493 (2021) 124505
‖vn(t)‖∞ ≤ ‖u0‖∞‖B‖n∞
t∫

0

dsn

sn∫
0

dsn−1 · · ·
s2∫
0

ds1

n∏
i=1

‖Λ(si − si−1)‖L(H)

and, letting sn+1 = t,

‖Dvn(t)‖∞ ≤ ‖u0‖∞‖B‖n∞
t∫

0

dsn

sn∫
0

dsn−1 · · ·
s2∫
0

ds1

n+1∏
i=1

‖Λ(si − si−1)‖L(H).

Proof. We proceed by induction. Indeed, in view of the proofs in Section 2.2, we shall also prove inductively 
the formula

knt (x) =
t∫

0

dsn

sn∫
0

dsn−1 · · ·
s2∫
0

ds1

E

[
u0(Zx

t )
n+1∏
i=1

〈
Λ(si − si−1)B(Zx

t−si), Q
−1/2
si−si−1

(
Zx
t−si−1

− e(si−si−1)AZx
t−si

)〉]
,

where s0 = 0 and sn+1 = t. The discussions in Sections 2.1 and 2.2 show that the assertions on v hold for 
n = 1, 2, and the above formula of k holds with n = 1. Now we assume the assertions on v (resp. on k) hold 
for n (resp. for n − 1), and try to prove them in the next iteration.

By the induction hypotheses, we have vn(s) ∈ C1
b (H) for all s > 0 and thus, by the definition of the 

iteration (2.8), kns ∈ B(H) with

∥∥kns ∥∥∞ ≤ ‖B‖∞‖Dvn(s)‖∞

≤ ‖u0‖∞‖B‖n+1
∞

s∫
0

dsn

sn∫
0

dsn−1 · · ·
s2∫
0

ds1

n+1∏
i=1

‖Λ(si − si−1)‖L(H),

where sn+1 = s. Proposition 2.4 implies St−sk
n
s ∈ C1

b (H) for all s ∈ (0, t), and from the formula

vn+1(t, x) =
t∫

0

(
St−sk

n
s

)
(x) ds

we deduce readily the estimates on ‖vn+1(t)‖∞ and ‖Dvn+1(t)‖∞.
Next, we prove the formula for knt (x) (note that the induction hypothesis gives us the expression of 

kn−1
t (x)). We have

knt (x) = 〈B(x), Dvn(t, x)〉 =
t∫

0

〈
B(x), D

(
St−sk

n−1
s

)
(x)
〉
ds

=
t∫

0

E
[
kn−1
s (Zx

t−s)
〈
Λ(t− s)B(x), Q−1/2

t−s (Zx
t−s − e(t−s)Ax)

〉]
ds,

(2.13)

where we used Proposition 2.4 in the last step. By the induction hypothesis,
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kn−1
s (y) =

s∫
0

dsn−1

sn−1∫
0

dsn−2 · · ·
s2∫
0

ds1

E

[
u0(Zy

s )
n∏

i=1

〈
Λ(si − si−1)B(Zy

s−si), Q
−1/2
si−si−1

(
Zy
s−si−1

− e(si−si−1)AZy
s−si

)〉]
,

where s0 = 0 and sn = s. Therefore, by the Markov property,

kn−1
s (Zx

t−s)

=
s∫

0

dsn−1

sn−1∫
0

dsn−2 · · ·
s2∫
0

ds1

E

[
u0(Zx

t )
n∏

i=1

〈
Λ(si − si−1)B(Zx

t−si), Q
−1/2
si−si−1

(
Zx
t−si−1

− e(si−si−1)AZx
t−si

)〉∣∣∣∣Ft−s

]
.

Inserting this identity into (2.13) and noticing that 
〈
Λ(t − s)B(x), Q−1/2

t−s (Zx
t−s − e(t−s)Ax)

〉
is measurable 

with respect to Ft−s, we obtain

knt (x) =
t∫

0

ds
s∫

0

dsn−1 · · ·
s2∫
0

ds1 E

{〈
Λ(t− s)B(x), Q−1/2

t−s (Zx
t−s − e(t−s)Ax)

〉

× u0(Zx
t )

n∏
i=1

〈
Λ(si − si−1)B(Zx

t−si), Q
−1/2
si−si−1

(
Zx
t−si−1

− e(si−si−1)AZx
t−si

)〉}
.

Renaming s as sn gives us the formula of knt (x) in the new iteration for all t > 0 and x ∈ H.
Finally, we prove the expression for vn+1(t, x). We have

vn+1(t, x) =
t∫

0

(
St−sk

n
s

)
(x) ds =

t∫
0

E
[
kns (Zx

t−s)
]
ds.

Using the formula we have just proved for kns (y) and the Markov property, we can obtain the expression for 
vn+1(t, x) in a similar way as above. �

We give a slightly different formula which is more appropriate for numerical purpose.

Corollary 2.10. For all n ≥ 1 and t > 0, x ∈ H,

vn(t, x) =
t∫

0

drn

rn∫
0

drn−1 · · ·
r2∫
0

dr1

E

[
u0(Zx

t )
n∏

i=1

〈
Λ(ri+1 − ri)B

(
Zx
ri

)
, Q

−1/2
ri+1−ri

(
Zx
ri+1

− e(ri+1−ri)AZx
ri

)〉]
,

(2.14)

where rn+1 = t. Accordingly,

‖vn(t)‖∞ ≤ ‖u0‖∞‖B‖n∞
t∫
drn

rn∫
drn−1 · · ·

r2∫
dr1

n∏
i=1

‖Λ(ri+1 − ri)‖L(H)
0 0 0
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and, setting r0 = 0,

‖Dvn(t)‖∞ ≤ ‖u0‖∞‖B‖n∞
t∫

0

drn

rn∫
0

drn−1 · · ·
r2∫
0

dr1
n∏

i=0
‖Λ(ri+1 − ri)‖L(H).

Proof. We change variables as follows:

ri = t− sn+1−i, 1 ≤ i ≤ n.

The domain of integration becomes

{
(r1, · · · , rn) : 0 < r1 < · · · < rn < t

}
;

and si − si−1 = rn+2−i − rn+1−i, 1 ≤ i ≤ n. Therefore, by (2.12),

vn(t, x) =
t∫

0

drn

rn∫
0

drn−1 · · ·
r2∫
0

dr1

E

[
u0(Zx

t )
n∏

i=1

〈
Λ(rn+2−i − rn+1−i)B

(
Zx
rn+1−i

)
,

Q
−1/2
rn+2−i−rn+1−i

(
Zx
rn+2−i

− e(rn+2−i−rn+1−i)AZx
rn+1−i

)〉]
.

In the product, letting j = n + 1 − i, we get the desired formula (2.14). The proofs of the two estimates are 
similar. �
Remark 2.11. Due to the convolution structure (2.8), it seems that (2.14) is not suitable for the induction 
argument in the proof of Theorem 2.9.

2.4. Convergence of the iteration schema (2.8)

We need the following technical result, where we use the Gamma function Γ(α):

Γ(α) =
∞∫
0

θα−1e−θ dθ, α > 0.

Lemma 2.12. Assume δ ∈ (0, 1) and n ≥ 1. Let r0 = 0 and rn+1 = t. One has

t∫
0

drn

rn∫
0

drn−1 · · ·
r2∫
0

dr1
n∏

i=1

1
(ri+1 − ri)δ

= Γ(1 − δ)n

Γ(1 + n(1 − δ)) t
n(1−δ)

and

t∫
drn

rn∫
drn−1 · · ·

r2∫
dr1

n∏
i=0

1
(ri+1 − ri)δ

= Γ(1 − δ)n+1

Γ((n + 1)(1 − δ)) t
n(1−δ)−δ.
0 0 0
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Proof. First we prove

t∫
0

drn

rn∫
0

drn−1 · · ·
r2∫
0

dr1
n∏

i=1

1
(ri+1 − ri)δ

= tn(1−δ)
n∏

i=1
B
(
1 − δ, 1 + (i− 1)(1 − δ)

)
, (2.15)

where B(α, β) is the Beta function:

B(α, β) =
1∫

0

θα−1(1 − θ)β−1 dθ, α, β > 0.

We proceed by induction. For n = 1, noting that r2 = t, we change the variable θ = r1/t and get

t∫
0

dr1
(t− r1)δ

= t1−δ

1∫
0

dθ
(1 − θ)δ = t1−δ

1∫
0

θ0(1 − θ)−δ dθ = t1−δB(1 − δ, 1).

Therefore the equality holds when n = 1. Now suppose the equality holds for n − 1, we prove it for n. By 
the induction hypothesis,

rn∫
0

drn−1 · · ·
r2∫
0

dr1
n−1∏
i=1

1
(ri+1 − ri)δ

= r(n−1)(1−δ)
n

n−1∏
i=1

B
(
1 − δ, 1 + (i− 1)(1 − δ)

)
,

thus, noticing that rn+1 = t,

t∫
0

drn

rn∫
0

drn−1 · · ·
r2∫
0

dr1
n∏

i=1

1
(ri+1 − ri)δ

=
n−1∏
i=1

B
(
1 − δ, 1 + (i− 1)(1 − δ)

) t∫
0

r
(n−1)(1−δ)
n

(t− rn)δ drn.

We have, by changing variable θ = rn/t,

t∫
0

r
(n−1)(1−δ)
n

(t− rn)δ drn = tn(1−δ)
1∫

0

θ(n−1)(1−δ)(1 − θ)−δ dθ = tn(1−δ)B
(
1 − δ, 1 + (n− 1)(1 − δ)

)
.

Substituting this result into the previous one gives us the identity (2.15).
Next, it is well known that

B(α, β) = Γ(α)Γ(β)
Γ(α + β) .

Therefore,

n∏
i=1

B
(
1 − δ, 1 + (i− 1)(1 − δ)

)
=

n∏
i=1

Γ(1 − δ)Γ(1 + (i− 1)(1 − δ))
Γ(1 + i(1 − δ)) = Γ(1 − δ)n

Γ(1 + n(1 − δ) .

Combining this with (2.15) we obtain the desired formula.
The proof of the second identity is similar, by first establishing the identity

t∫
drn

rn∫
drn−1 · · ·

r2∫
dr1

n∏
i=1

1
(ri+1 − ri)δ

= tn(1−δ)−δ
n∏

i=1
B
(
1 − δ, i(1 − δ)

)
.

0 0 0
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We omit the details here. �
As a consequence, we have the following estimates.

Corollary 2.13. Under the Hypotheses 2.1 and 2.3, for any n ≥ 0 and t > 0,

‖vn(t)‖∞ ≤ ‖u0‖∞‖B‖n∞Cn
δ t

n(1−δ) Γ(1 − δ)n

Γ(1 + n(1 − δ)) (2.16)

and

‖Dvn(t)‖∞ ≤ ‖u0‖∞‖B‖n∞Cn+1
δ tn(1−δ)−δ Γ(1 − δ)n+1

Γ((n + 1)(1 − δ)) .

Proof. The case n = 0 follows directly from (2.6). Combining Lemma 2.12 and Corollary 2.10, we obtain 
the general cases. �

Now we can prove the existence of limit for the iteration schema (2.8).

Proposition 2.14. Assume the Hypotheses 2.1 and 2.3. For any T > 0, the series

∞∑
n=0

vn(t, x)

converge uniformly on [0, T ] ×H. Moreover, for any t0 ∈ (0, T ), the series

∞∑
n=0

Dvn(t, x)

converge uniformly on [t0, T ] ×H.

Proof. We only prove the first assertion; the proof of the second one is similar. By Corollary 2.13 and using 
the ratio test, it is sufficient to show that

lim
n→∞

Γ(1 + n(1 − δ))
Γ(1 + (n + 1)(1 − δ)) = 0.

This follows from elementary calculations. Indeed, setting α = 1 − δ for simplicity of notation,

Γ(1 + nα)
Γ(1 + (n + 1)α) = nα

(n + 1)α · nα− 1
(n + 1)α− 1 · · · 1 + (nα)

1 + α + (nα) · Γ((nα))
Γ(α + (nα)) ,

where (nα) is the decimal part of nα. Using the simple inequality log(1 +x) < x for all x ∈ (−1, 0), we have

log
(

nα− k

(n + 1)α− k

)
= log

(
1 − α

(n + 1)α− k

)
< − α

(n + 1)α− k
.

Hence,

log Γ(1 + nα)
Γ(1 + (n + 1)α) < −α

(
1

(n + 1)α + 1
(n + 1)α− 1 + · · · + 1

1 + α + (nα)

)
+ log Γ((nα))

Γ(α + (nα)) .

Note that the first part on the right hand side tends to −∞ as n → ∞, while the last part is uniformly 
bounded in n, thus we conclude the result. �
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Thanks to Proposition 2.14, we can define the limit

u(t, x) = lim
n→∞

un(t, x) = lim
n→∞

n∑
i=0

vi(t, x);

moreover, for any t > 0, one has u(t) ∈ C1
b (H) and

Du(t, x) = lim
n→∞

Dun(t, x) = lim
n→∞

n∑
i=0

Dvi(t, x)

which holds uniformly on [t0, T ] ×H for any 0 < t0 < T . Finally we can prove the main result.

Theorem 2.15. The limit u(t, x) is the unique solution to the Kolmogorov equation (2.1) in the following 
sense:

(a) for any T > 0, u(t, x) is uniformly bounded for (t, x) ∈ [0, T ] ×H, and u(t) ∈ C1
b (H) for any t > 0;

(b) for any T > 0, one has 
∫ T

0 ‖Du(t)‖∞ dt < ∞;
(c) it satisfies the mild formulation (2.7) for any t > 0 and x ∈ H.

Proof. Obviously our limit verifies (a). Next,

‖Du(t)‖∞ ≤
∞∑

n=0

∥∥Dvn(t)
∥∥
∞ ≤ ‖u0‖∞

∞∑
n=0

‖B‖n∞Cn+1
δ tn(1−δ)−δ Γ(1 − δ)n+1

Γ((n + 1)(1 − δ)) .

Therefore,

T∫
0

‖Du(t)‖∞ dt ≤ ‖u0‖∞
∞∑

n=0
‖B‖n∞Cn+1

δ

Γ(1 − δ)n+1

Γ((n + 1)(1 − δ))

T∫
0

tn(1−δ)−δ dt

= ‖u0‖∞
∞∑

n=0
‖B‖n∞Cn+1

δ

Γ(1 − δ)n+1

Γ((n + 1)(1 − δ))
T (n+1)(1−δ)

(n + 1)(1 − δ) ,

(2.17)

which shows that (b) is also satisfied. Moreover, for any t > 0 and x ∈ H,

∣∣∣∣
t∫

0

(
St−s〈B,Du(s)〉

)
(x) ds

∣∣∣∣ ≤
t∫

0

‖〈B,Du(s)〉‖∞ ds ≤ ‖B‖∞
t∫

0

‖Du(s)‖∞ ds.

This implies the integral in the signs of absolute value makes sense.
It remains to check that u(t, x) verify (2.7). By the iteration schema (2.8), one has, for any n > 1,

un(t, x) = u0(t, x) +
t∫

0

(
St−s

〈
B,Dun−1(s)

〉)
(x) ds for all t > 0, x ∈ H. (2.18)

The left hand side converges uniformly to u(t, x) on [0, T ] ×H for any T > 0. It suffices to show the uniform 
convergence of the right hand side. We have
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∣∣∣∣
t∫

0

(
St−s

〈
B,Dun−1(s)

〉)
(x) ds−

t∫
0

(
St−s〈B,Du(s)〉

)
(x) ds

∣∣∣∣

≤
t∫

0

∥∥〈B,Dun−1(s) −Du(s)
〉∥∥

∞ ds ≤ ‖B‖∞
∞∑
i=n

t∫
0

∥∥Dvi(s)
∥∥
∞ ds.

Similarly to the calculations in (2.17), we can show that the right hand side vanishes as n goes to infinity. 
Therefore we let n → ∞ on both sides of (2.18) and conclude that u(t, x) satisfies (2.7) uniformly in 
(t, x) ∈ [0, T ] ×H.

Finally we prove the uniqueness of solutions. Suppose u(t, x) and ũ(t, x) are two solutions to (2.1) with 
the properties (a)–(c). Then, for any t > 0 and x ∈ H,

u(t, x) − ũ(t, x) =
t∫

0

St−s

(
〈B,D(u(s) − ũ(s))〉

)
(x) ds.

Therefore,

|u(t, x) − ũ(t, x)| ≤ ‖B‖∞
t∫

0

‖Du(s) −Dũ(s)‖∞ ds. (2.19)

Moreover, by Proposition 2.4,

|D(u(t, x) − ũ(t, x))| ≤
t∫

0

∣∣DSt−s

(
〈B,D(u(s) − ũ(s))〉

)
(x)
∣∣ds

≤
t∫

0

∥∥〈B,D(u(s) − ũ(s))〉
∥∥
∞‖Λ(t− s)‖L(H) ds

≤ ‖B‖∞
t∫

0

‖Du(s) −Dũ(s)‖∞‖Λ(t− s)‖L(H) ds.

Hence,

t∫
0

‖Du(s) −Dũ(s)‖∞ ds ≤ ‖B‖∞
t∫

0

s∫
0

‖Du(r) −Dũ(r)‖∞‖Λ(s− r)‖L(H) drds

= ‖B‖∞
t∫

0

‖Du(r) −Dũ(r)‖∞ dr
t∫

r

‖Λ(s− r)‖L(H) ds

≤
[
‖B‖∞

t∫
0

‖Λ(s)‖L(H) ds
] t∫

0

‖Du(r) −Dũ(r)‖∞ dr.

Under Hypothesis 2.1-(iv), there is some t1 > 0 such that ‖B‖∞
∫ t1
0 ‖Λ(s)‖L(H) ds < 1. Then

t∫
‖Du(s) −Dũ(s)‖∞ ds = 0 for all t ≤ t1.
0
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Table 1
Model parameters, e stands for the vector with all components identically 1.

Parameter Value Description
d 10 dimension of the problem
y0 2e parameter of the nonlinearity B, polynomial case
x e values where the solution u(t, x) is computed
σ 1 noise
T 1 final time of computation for u(t, x0)
H 1 threshold for the initial condition u0(x)

Combining this with (2.19) we see that u(t, x) = ũ(t, x) for any (t, x) ∈ [0, t1] ×H. Next, by the semigroup 
property, it is easy to show that, for t ∈ (0, t1],

u(t + t1, x) = Stut1(x) +
t∫

0

St−s

(
〈B,Du(t1 + s)〉

)
(x) ds.

Repeating the above procedure we can prove the uniqueness on the interval [t1, 2t1] and so on. Thus we 
complete the proof. �
3. Numerical simulations

In this section we propose some experiment of the iteration schema (2.8) studied in Section 2 in the 
finite dimensional setting. We have in mind the framework of Example 2.2, i.e. A = Δ. Since we are in 
the finite dimensional setting this choice corresponds to take A ∈ Rd ⊗ Rd as the diagonal matrix where 
Ak,k = −k2, k = 1, . . . , d. Moreover we consider the matrix Q = σ2Id×d where Id×d is the identity matrix 
over Rd, and the parameter σ will be specified below (see Table 1 for reference parameters).

We will consider two main classes of examples as a benchmark for our approximation schema. First, we 
consider the nonlinear vector field

B(x)i = sin(xi), i = 1, . . . , d, (3.1)

i.e. we apply the sine function to all the components. This nonlinearity will be the easier one of our examples 
since it is close to linear, at least for small values of x. We will also consider some variation of the previous 
example, made by

B(x)i = sin(xi)(Bmx)i, i = 1, . . . , d, (3.2)

where Bm ∈ Rd ×Rd is the skew symmetric matrix

(Bm)i,j =

⎧⎪⎪⎨
⎪⎪⎩

1 if i < j;
−1 if i > j;
0 if i = j,

i.e. the Toeplitz matrix with all one above the diagonal and minus one below. This example is more complex 
than the previous one. It is significant since it deals with skew symmetric matrices, inducing rotations, which 
are a first simple step in the direction of fluid dynamics. The vector field Bmx is also multiplied by the 
function sin(x) in order to make example (3.2) nonlinear. Notice that this last example is not covered by 
our present theory, since it does not satisfy Hypothesis 2.3. However, even if (3.2) is not bounded, it satisfies 
a linear growth condition. We hope to improve our theory and the generality of the assumptions in such 
direction in a future research, and limit ourselves to some numerical experiments for the present work.
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Fig. 1. Sine case (3.1). Left: trajectory of u(t, x) for t ∈ [0, T ], d = 10. Right: difference between consecutive iterations and error 
with respect to the reference case, X-axis number of iterations. (For interpretation of the colors in the figures, the reader is referred 
to the web version of this article.)

Second, we consider the following class of polynomial nonlinearities

B(x)i = ‖y‖ (yi − xi) |yi − xi|p−1

‖y‖ + ‖y − x‖p , i = 1, . . . , d (3.3)

where y ∈ Rd is fixed. Note that this example appeals to the one dimensional case

B(x) = (y − x) |y − x|p−1
,

for which the dynamical system

ẋ(t) = B(x(t))

has the singleton {y} as a stable attractor. The reason behind the example (3.3) is the following: it is close 
to a polynomial nonlinearity, so that it makes a significant test case; at the same time, the normalization 
by the factor ‖y‖ /(‖y‖ + ‖y − x‖p) makes it a bounded operator, so that it fulfills Hypothesis 2.3.

In all the examples above we adopt the following choice of initial condition

u0(x) = 1{‖x‖≥H},

where the parameter H is set to 1 (see Table 1).

3.1. Approximation schemes

Standard Monte Carlo approach. Since an explicit solution for Equation (1.2) is not available we will always 
compare to the solution obtained by means of Monte Carlo simulation of the nonlinear process (Xx

t )t≥0:

u(t, x) = E [u0(Xx
t )] � 1

Ns

Ns∑
i=1

u0
(
Xx,i

t

)
, (3.4)

where Ns is the number of samples considered, and the processes (Xx,i
t )t≥0, i = 1, . . . , Ns are independent 

copies of (Xx
t )t≥0. To compute samples of the process (Xx,i

t )t≥0 we use the Euler-Maruyama schema with a 
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Fig. 2. Polynomial bounded quadratic case (3.3) with p = 2, d = 10. Left: trajectory of u(·, x) for t ∈ [0, T ]. The purple line is 
obtained by applying a moving average smoothing to the last iteration. Right: difference between consecutive iterations and error 
with respect to the reference case, X-axis number of iterations.

very fine time step in order to get a good approximation to be used as a comparison. The solution computed 
by (3.4) will always be referred to in what follows as the reference case.

Iterations approach based on OU semigroup. To reduce the number of superscripts, we write (Ẑt)t≥0 for 
the solution of the linear equation (1.3); this will be useful in the description of the Numerical iteration 
schema below.

Under our assumption, since A and Q are diagonal, we can rewrite the equations for the processes (Ẑt)t≥0

and (Zx
t )t≥0 in a simple way: for k = 1, . . . , d,

{
dẐk

t = −k2Ẑk
t dt + dW k

t ,

Ẑk
0 = 0

(3.5)

and

Zx,k
t = e−k2txk + σẐk

t . (3.6)

We remark that, differently from (Ẑt)t≥0, the process (Zx
t )t≥0 depends also on the parameter σ, but we 

do not explicitly write (Zx,σ
t )t≥0 for ease of notation. Note that the process (Ẑt)t≥0 depends only on the 

operators A. This opens the possibility of computing (Zx
t )t≥0, and hence also u(t, x), for many values of 

x without repeating the computations for (Ẑt)t≥0. The same reasoning holds for different values of σ, see 
Fig. 6. Note also that this strategy cannot be applied to the process (Xx

t )t≥0 since in that case the problem 
is nonlinear.

Once realizations of the process (Zx
t )t≥0 are computed, we can proceed with the iteration algorithm (2.8). 

In order to compute numerically the quantity vn(t, x) appearing in Theorem 2.9 one needs to be able to 
compute first

〈
Λ (s)B

(
Zx
t−s

)
, Q−1/2

s

(
Zx
t − esAZx

t−s

)〉
. (3.7)

Since A and Q are diagonal and explicit (see the beginning of this section), one has
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Fig. 3. Left block: Sine times skew-symmetric case (3.2) with d = 10. Right block: Polynomial bounded cubic case (3.3) p = 3, 
d = 10. The purple line is obtained by applying a moving average smoothing to the last iteration.

(Qt)k,k =
t∫

0

(
esA

)
k,k

Qk,k

(
esA

∗)
k,k

ds =
t∫

0

e−2sk2
σ2 ds = σ2

2k2

(
1 − e−2tk2)

,

(
Q

−1/2
t

)
k,k

=
√

2k
σ
√

1 − e−2tk2
, (Λ (t))k,k =

√
2ke−tk2

σ
√

1 − e−2tk2
,

and thus,
〈
Λ (s)B

(
Zx
t−s

)
, Q−1/2

s

(
Zx
t − esAZx

t−s

)〉

=
d∑

k=1

2k2e−sk2

σ2(1 − e−2sk2)
B
(
Zx
t−s

)
k

(
Zx,k
t − e−sk2

Zx,k
t−s

)
. (3.8)

Hence, when integrating expression (3.7), by change of variable we have

t∫
0

〈
Λ (s)B

(
Zx
t−s

)
, Q−1/2

s

(
Zx
t − esAZx

t−s

)〉
ds

=
t∫

0

〈
Λ (t− s)B (Zx

s ) , Q−1/2
t−s

(
Zx
t − e(t−s)AZx

s

)〉
ds

=
t∫

0

d∑
k=1

2k2e−(t−s)k2

σ2(1 − e−2(t−s)k2)
B (Zx

s )k
(
Zx,k
t − e−(t−s)k2

Zx,k
s

)
ds. (3.9)

Changing variable provides a significant advantage when performing numerical integration. In fact it is more 
complex to compute Zx

t−s than Λ(t − s) (resp. Q1/2
t−s) since Zx is random, and hence we would have been 

obliged to reverse the time for every sample of the process. On the other hand the matrix Λ(t − s) (resp. 
Q

1/2
t−s) is deterministic so that changing time s �→ t − s can be done only once.
Moreover, thanks to Corollary 2.10, it is possible to compute vn(t, x) with a single time integration from 

the previous step. Introduce for n ≥ 1

In(t, x) =
t∫

0

drn

rn∫
0

drn−1 · · ·
r2∫
0

dr1
n∏

i=1

〈
Λ(ri+1 − ri)B

(
Zx
ri

)
, Q

−1/2
ri+1−ri

(
Zx
ri+1

− e(ri+1−ri)AZx
ri

)〉
(3.10)

and notice that, due to Equation (2.14), we have
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Table 2
Numerical parameters.

Parameter Value Description

Δet 10−4 time step for Euler schema
Δqt 10−2 time step for numerical integration
Ns 105 number of samples averages
tol 10−3 tolerance for stopping iterations

vn(t, x) = E
[
u0(Zx

t )In(t, x)
]
, I0(t, x) ≡ 1.

Since

In+1(t, x) =
t∫

0

〈
Λ (t− s)B (Zx

s ) , Q−1/2
t−s

(
Zx
t − e(t−s)AZx

s

)〉
In(s, x) ds, (3.11)

once we have computed In, computing In+1 is a matter of a single one dimensional integration. Of course one 
could also adopt a different strategy and apply directly equation (3.10). By doing so one may rely on Monte 
Carlo Integration methods (see e.g. [19]), instead of classical quadrature methods, since the dimensionality of 
the integral to be approximated is equal to the number of iteration. However, thanks to the iterative structure 
expressed in (3.11), we can reduce the computation of each iteration to a single one dimensional integration 
based on the previous one. This is really crucial because, otherwise, by using the direct expression (2.12) in 
Theorem 2.9, to compute vn(t, x) one should have done an n-dimensional numerical integration independent 
of the previous iteration. By using this iterative approach instead one can use the information from the 
previous step to save on the computational time of numerical approximation of the integrals involved. We 
will always rely on this iterative approach and hence apply a deterministic quadrature method, specifically 
rectangle method, to approximate In+1 from In as in (3.11). This integration step can be replaced by any 
quadrature method with due modification. Here we prefer to keep everything at the simplest level to have 
a better understanding of the core mechanisms involved.

Mixed-time-step strategy. To perform numerical simulation of SDEs and numerical integration we adopt a 
mixed-time-step strategy. When we compute the reference solution, through the simulation of the process 
(Xx

t )t≥0 in (1.1), as well as when computing samples of the linear process (Ẑt)t≥0 in (3.5), we adopt a time 
step Δet (Δe for “Euler”). On the other hand when we perform numerical integration of the expression (3.11)
to compute successive iterations, we adopt a time discretization parameter Δqt � Δet in our deterministic 
quadrature method (Δq for “Quadrature”), see Table 2. This is due to the fact that, in equation (1.1), 
as well as in (3.5), a coefficient −k2 is present in the k-th component of the drift of the equation. This 
coefficient, and hence the Lipschitz constant of the drift, is growing as the square of the dimension d of 
the problem. This is caused by the intrinsic exponential decay of equation (3.5), which requires a high level 
of precision in computation. Differently, in equation (3.9), part of this exponential decay is absorbed by 
the convolutional structure of the integration. The determination of the proper ratio between Δet and Δqt

is a difficult topic which needs a more precise investigation. For the present paper we only highlight the 
numerical result obtained, and hope to improve the theoretical counterpart in a future work. In what follows 
we will always assume that the ratio (Δqt/Δet) is an integer.

Numerical iteration schema. Before presenting the pseudocode of our algorithm we need to fix the notation. 
In this paragraph we will often refer to Table 2 for the numerical parameters used in the algorithms.

We first start computing Ns independent samples of the process (Ẑt)t≥0 as in equation (3.5). These 
samples are obtained by means of Euler-Maruyama method with time step Δet, hence we use the notation
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Ẑi,Δet
tj =

(
Ẑi,1,Δet
tj , . . . , Ẑi,d,Δet

tj

)
, i = 1, . . . , Ns

for different samples of the d-dimensional vector of the process (Ẑt)t≥0 computed at time tj = j · Δet for 
j = 0, . . . T/Δet. Since, as explained in the previous paragraph, we will make use of the mixed-time-step 
strategy for numerical integration, assuming (Δqt/Δet) is an integer, we also introduce

Ẑ
i,Δqt
t′j

=
(
Ẑ

i,1,Δqt
t′j

, . . . , Ẑ
i,d,Δqt
t′j

)
, i = 1, . . . , Ns

where, for j = 0, . . . , T/Δqt, t′j = t
j

Δqt

Δet

and

Ẑ
i,Δqt

t′j
= Ẑi,Δet

t
j
Δqt
Δet

Doing so the previous expression is nothing else than the process Ẑi,Δet
tj obtained by Euler-Maruyama 

schema with step Δet, but considered only at integer multiples of Δqt. Of course the values of Ẑi,Δqt

t′j
depend also on the parameter Δet, but we omit the superscript in the notation for a matter of simplicity. 
One should also always remember that the original approximation of the process (Ẑt)t≥0 (depending on Δet) 
influences all the subsequent computations in a cascade. Coherently with equation (3.6) we also introduce 
the discretization of the process (Zx

t )t≥0:

Z
x,i,Δqt

t′j
=
(
Z

x,i,1,Δqt

t′j
, . . . , Z

x,i,d,Δqt

t′j

)
, i = 1, . . . , Ns

where

Z
x,i,k,Δqt

t′j
= e−k2(j·Δqt)xk + σZ

i,k,Δqt

t′j
.

Introduce now the approximating functions for un(t, x) and vn(t, x), we define

u
0,x,Ns,Δqt
t′j

= 1
Ns

Ns∑
i=1

u0

(
Z

x,i,Δqt
t′j

)
= v

0,x,Ns,Δqt
t′j

.

We will label the functions approximating un(t, x) and vn(t, x) at the n-th iteration by

u
n,x,Ns,Δqt

t′j
and v

n,x,Ns,Δqt

t′j

which are defined below.
We also need to introduce the functions used to implement the numerical integration following (3.11). 

Let In,x,i,Δqt
t′j

be the approximation of In(t, x) obtained from numerically integrating by the rectangle rule 

the i-th sample of the process Zx,i,Δqt

t′j
at the n-th iteration. Formally we set

I
0,x,i,Δqt

t′j
≡ 1 ∀ i = 1, . . . , Ns and j = 0, . . . , T/Δqt

and for n ≥ 0, for every i = 1, . . . , Ns, we define In+1,x,i,Δqt

t′j
= 0 if j = 0, and

I
n+1,x,i,Δqt

t′j
= Δqt

j∑〈
Λ
(
t′j−l+1

)
B
(
Z

x,i,Δqt

t′l

)
, Q

−1/2
t′j−l+1

(
Z

x,i,Δqt

t′j
− e(t′j−l+1)AZ

x,i,Δqt

t′l

)〉
I
n,x,i,Δqt

t′l
(3.12)
l=1
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if j ≥ 1. Note that the inner product depending on the deterministic functions Λ(s) and Q−1/2
s can be 

expressed explicitly as in equation (3.8). In the previous formula we are integrating in time each sample 
path coming from Zx

t . Hence we define the approximating functions as a Monte Carlo average for each 
j = 1, . . . , T/Δqt

v
n,x,Ns,Δqt

t′j
= 1

Ns

Ns∑
i=1

u0

(
Z

x,i,Δqt

t′j

)
I
n,x,i,Δqt

t′j
, u

n,x,Ns,Δqt

t′j
= u

n−1,x,Ns,Δqt

t′j
+ v

n,x,Ns,Δqt

t′j
.

Stopping conditions. Since the numerical schema is iterative and since an exact solution is not available, 
we adopt a consecutive-iterations stopping condition. At every step we measure the difference between 
consecutive iterations and stop when this difference is below a certain threshold tol. Specifically we adopt 
two strategies in different situations: when we compute the entire trajectory of u(t, x) for t ∈ [0, T ], we 
measure

err(n) := sup
j=1,...,T/Δqt

∣∣∣vn,x,Ns,Δqt

t′j

∣∣∣
and stop the iterations if err(n) < tol (see Figs. 1 and 2); when we are interested only in u(T, x) for a fixed 
T , then

err(n) :=
∣∣∣∣vn,x,Ns,Δqt

t′T/Δqt

∣∣∣∣
and adopt the same stopping rule (Figs. 6 and 7).

Pseudocode of the iteration schema. The entire procedure can be summarized in the following schema:

Assign T and x;
Result: u

n,x,Ns,Δqt
t′j

for j = 1, . . . , T/Δqt approximating the function u(t, x).

Compute Ns samples of the process (Ẑt)t≥0, labeled Zi,Δqt
t′∗

;
Compute Ns samples for (Zx

t )t≥0 starting from (Ẑt)t≥0, labeled Zx,i,Δqt
t′∗

;
Compute u0,x,Ns,Δqt

t′∗
= 1

Ns

∑Ns

i=1 u0
(
Z

x,i,Δqt
t′∗

)
= v

0,x,Ns,Δqt
t′∗

by Monte Carlo average;
Set err = 1, n = 0;
while err > tol do

foreach j = 0, . . . , T/Δqt do
foreach i = 1, . . . , Ns do

Compute In+1,x,i,Δqt

t′j
as in equation (3.12);

end
Compute vn+1,x,Ns,Δqt

t′j
= 1

Ns

∑Ns

i=1 u0

(
Z

x,i,Δqt

t′j

)
I
n+1,x,i,Δqt

t′j

end
Set un+1,x,Ns,Δqt

t′∗
= u

n,x,Ns,Δqt
t′∗

+ v
n+1,x,Ns,Δqt
t′∗

;

Set err = supj=1,...,T/Δqt

∣∣∣vn,x,Ns,Δqt
t′j

∣∣∣;
Set n = n + 1;

end
return u

n,x,Ns,Δqt
t′∗

.
Algorithm 1: Iteration schema.
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3.2. Examples

Here we collect the results obtained, and all the parameters involved in the simulations. Parameters are 
divided into two categories: those related to the mathematical problem, and those strictly related to the 
numerical approximations, see Tables 1 and 2. Those are our reference parameters: we will specify each time 
any modifications.

In all the figures below, when showing the entire trajectory of the solution u(t, x) for t ∈ [0, T ], we 
also plot the 0-th order iteration. This corresponds to the solution of the linear case for (1.2), i.e. the 
Kolmogorov equation with B ≡ 0. This will allow us to compare with the linear case, in order to be sure to 
have introduced a significant nonlinearity into the problem.

Positive results. For the simpler test case, the sine case (3.1), see Fig. 1, convergence is obtained in five 
iterations. This is due to the simplicity of the example, as sinx is almost linear near the origin. The situation 
is different when dealing with some more concrete examples like the polynomial case. In Fig. 2, where we 
use formula (3.3) with p = 2, we see that the number of iterations to convergence is much bigger (26 in 
our example). At the same time the difference between the last iteration and the reference case is quite 
small, comparable to the sine case. However, we notice that the oscillation of the solution computed via our 
iteration schema, related to the variance of the estimator, is a bit bigger than that of the reference case. 
This discrepancy is not completely clear yet, even if we expect it to be due to the low number of samples 
used to compute averages. In Fig. 2 we also add a moving-average smoothing of the solution, to make more 
perceivable this last intuition.

The same behavior is obtained in the variations of the previous examples. In Fig. 3 we see that the 
same fast convergence as in the sine case, is obtained also in the sine times skew-symmetric case (3.2). 
The polynomial cubic case (3.3) with p = 3 has the same level of complexity as the case with p = 2, 
even if it requires a higher number of iterations to obtain convergence, and presents the same type of 
oscillations.

We also perform the same tests in much higher dimension. In Fig. 4 we show the results of the same 
examples, performed in dimension d = 50 with Ns = 104 samples. We see that the number of iterations 
required for convergence are comparable with the result in d = 10: this confirms the estimate (2.16), which is 
done in the infinite dimensional framework and hence is independent of any dimension. The small variations 
in the number of iterations, as well as the slight increase of the oscillations in the quadratic case, can be 
explained by the reduction in the number of samples used to compute empirical averages. It is also important 
to remark that, in the current example, the estimate (2.16) is still too rough: by computing the right-hand 
side of (2.16) one finds that the number n of iterations needed to have |vn(t, x)| < tol is far bigger than 
what we find in the numerical test (in fact, it should be bigger than one hundred).

Fig. 4. Left block: Sine case (3.1) in dimension d = 50, Ns = 104. The purple line is obtained by applying a moving-average 
smoothing to the last iteration. Right block: Polynomial bounded quadratic case (3.3) p = 2 in dimension d = 50, Ns = 104.
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Fig. 5. Sine times skew symmetric matrix (3.2). Left dimension d = 20, Ns = 104. Right dimension d = 50, Ns = 104.

Fig. 6. Sine times skew symmetric matrix (3.2), d = 10. Left: Y-axis value of u(1, x) for different values of σ. X-axis different values 
of σ in the reverse order. Right: Y-axis computational time measured in seconds to compute the solution u(1, x) for various values 
of σ. The measurement of time is cumulative: we give the cost of computing u(1, x) for several values of σ, starting from σ = 1 in 
decreasing order. X-axis different values of σ in the reverse order. The red line refers only to the time to compute iterations. The 
yellow line includes also the time to compute samples of (Ẑt)t≥0 one time at the beginning of the simulation.

In Fig. 6 we follow a different approach: we fix the test case as the sine times skew-symmetric matrix (3.2), 
and analyze what is the limit of u(1, x) as σ goes to zero. Also in this case the solution computed through 
the iteration schema is quite close to the reference case. At the same time, on the right side of Fig. 6, we 
can appreciate the great advantage in time-saving of the iteration schema. We remark that the plot on the 
right side is cumulative, meaning that it takes into account the time spent to compute the solution multiple 
times. In particular, we note that the reference case is a straight line, since the computational time does 
not depend on the different values of σ. On the other hand, for the iteration schema there is a change in 
the number of iterations for different values of σ that justifies the nonlinear shape. Moreover, we see that, 
even if we include the time of computing samples of the process (Ẑt)t≥0 that can be done only once (since 
σ does not appear in (3.5)), we still have a great advantage in time.

As remarked in the introduction, this kind of advantage is a main feature of the new method proposed 
here and applies also to the variation of other parameters than σ. In particular, it applies to the change of 
initial conditions x, one of the most fundamental problems in weather and climate prediction, related to the 
ensemble forecasting method, see [23, Chapter 6]. Again, the standard Monte Carlo method pays linearly 
with the number of variations of x, while our method pays the bulk (i.e. (Ẑt)t≥0 in (3.5)) only once and 
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Fig. 7. Polynomial quadratic bounded case (3.3), p = 2, d = 10. Left: Y-axis value of u(1, x) computed by the iteration schema, 
with different values of σ. X-axis different values of σ in the reverse order. Right: Sine times skew symmetric matrix (3.2), d = 10. 
Difference of u(1, x) with respect to u(1, x ±ek) for k = 1, . . . , 10. Blue positive values are obtained by comparing with u(1, x +ek), 
orange negative by comparing with u(1, x − ek). X-axis different values of k = 1, . . . , 10.

then (here for the initial conditions) roughly linearly in the number of different x’s, but with a linear slope 
much smaller than the one of Monte Carlo, similarly to the initial slope of Fig. 6 right side. We illustrate 
the interest in varying x by Fig. 7 right side, where it is illustrated the relative importance of different 
variations.

Difficulties with small σ and high dimension. However, not every situation is well behaved as those pre-
sented above: in Fig. 7 left side, we present the plot for different values of σ in the polynomial quadratic 
case. Here the approximation tends to degenerate for smaller values of σ (already around 0.5). This is due to 
the higher level of nonlinearity of the polynomial case with respect to (3.2). It is also important to mention 
that the number of iterations to convergence is really important for what concerns the computational time. 
In the polynomial quadratic (and also cubic) case, since the number of iterations to convergence is much 
higher than in the simpler case, the advantage in the computational time is less relevant. Still for what 
concerns negative results we also show in Fig. 5 that, when the dimension grows (left d = 20, right d = 50), 
the sine times skew-symmetric case (3.2) tends to degenerate. Iterations are still converging but the limit 
is far from the reference solution. This is definitively the most difficult of our examples since it is the only 
one which mixes strongly all the components and produces a strong energy flux between them. However, 
we also remark that at present time this case is not covered by our theory, but is still relevant since it has 
the rotational behavior which appeals to fluid dynamics.
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