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Abstract

The aim of this paper is to show the existence of metrics gε on Sn, where gε is a perturbation of the
standard metric g0, for which the Yamabe problem possesses a sequence of solutions unbounded in
L∞(Sn). The metrics gε that we find are of class Ck on Sn with (k ≤ n−3

4
). We also prove some

new multiplicity results.

1 Introduction

Let (Mn, g) be a compact Riemannian manifold of dimension n ≥ 3 with scalar curvature Rg. The

conformal deformation g′ = u
4

n−2 g of g, where u : M → R is a smooth positive function, has scalar
curvature Rg′ related to Rg by

−2cn∆gu+Rgu = Rg′u
n+2
n−2 ; cn = 2

(n− 1)

(n− 2)
,

where ∆g is the Laplace-Beltrami operator on (M, g), see [5]. The Yamabe problem consists in finding
some metric g′ in the conformal class [g] of g such that its scalar curvature Rg′ is a constant function.
Choosing Rg′ ≡ 1 then the problem is equivalent to finding a solution to the equation on M

(1) −2cn∆gu+Rgu = u
n+2
n−2 , u > 0.

A positive answer to the Yamabe problem has been given by Th. Aubin, see [4, 5], who proved that if
(Mn, g), n ≥ 6, is not locally conformally flat, then the Yamabe problem has at least one solution. The
locally conformally flat case and dimensions n = 3, 4, 5 have been handled by R. Schoen [18], see also [20].
For a detailed treatment of this topic see for example the review [12]. See also [6] and [7] for different
proofs.

In [19], R. Schoen announced the following compactness Theorem, giving a detailed proof for the
locally conformally flat case.

Theorem 1.1 Let (M, g) be a compact C∞ manifold not conformally equivalent to the standard sphere.
Then the set of solutions of problem (1) is compact in C2,α(M).

It is a natural question to see if Theorem 1.1 can be extended to Ck metrics on manifolds of arbitrary
dimension. The main purpose of our paper is to show that this is not the case. Let g0 denote the standard
metric on Sn. Our main result is the following.
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Theorem 1.2 Let k ≥ 2 and n ≥ 4k + 3. Then there exists a family of Ck metrics gε on Sn, with
‖gε − g0‖Ck(Sn) → 0 as ε→ 0, which possess the following property. For every ε small enough, problem

(1) on (Sn, gε) has a sequence of solutions viε with ‖viε‖L∞(Sn) → +∞ as i→∞.

Remark 1.1 It is an open problem to find the sharpest condition on n and k for which the above non-
compactness result is true.

The proof of Theorem 1.2 is based on a sharpening of a construction introduced in [3]; since this
paper is the starting point of our work we discuss it in more detail. There the authors consider on Sn a
suitable class of metrics gε = g0 + εh, perturbations of the standard one, and prove the existence of two
solutions of the Yamabe problem.

Using stereographic coordinates problem (1) for (M, g) = (Sn, gε) can be reduced to study

(2) −2cn∆gu+Rgu = u(n+2)/(n−2) in Rn, u > 0.

Here g = gε is the metric with components gij = z
− 4
n−2

0 gij , where z0 : Rn → R is given by

z0(x) = κn
1

(1 + |x|2)
n−2
2

, κn = (4n(n− 1))
n−2
4 .

Taking gε = g0 + εh, it turns out that

(3) gij = δij + εhij ,

for some symmetric matrix hij . The Weyl tensor Wg of the metric g in (3) can be expanded in powers of
ε as Wg = εWh + o(ε), where Wh depends only on h. The main result of [3] is the following.

Theorem 1.3 Let n ≥ 6, and let h be of the form

(4) h(x) = τ(x) + ω(x− x0),

where τ, ω are of class C∞, with compact support, and with W τ ,Wω 6≡ 0. Then there exists L > 0 such
that for |x0| ≥ L there exists ε̃ > 0 for which, for |ε| ≤ ε̃, there exist at least two different solutions u1,ε

and u2,ε of problem (2).

Coming back to the original problem on Sn, Theorem 1.3 implies the existence of at least two solutions
for problem (1) on (Sn, gε).

Solutions of (2) can be found as critical points of the functional fε : E = D1,2(Rn)→ R defined as

(5) fε(u) =

∫
Rn

(
cn|∇gu|2 +

1

2
Rgu

2 − 1

2∗
|u|2

∗
)
dVg, u ∈ E,

where 2∗ = 2n
n−2 . The positive solutions of f ′0 = 0 constitute an (n+ 1)-dimensional manifold Z given by

Z =

{
zµ,ξ = µ−

n−2
2 z0

(
x− ξ
µ

) ∣∣∣ µ > 0, ξ ∈ Rn
}
' R+ × Rn.

Using the Implicit Function Theorem it is shown, see [1], [2], that there exists a manifold Zε, perturbation
of Z, which is a natural constraint for fε, namely if f ′ε|Zε(u) = 0 for some u ∈ Zε, then also f ′ε(u) = 0.
In the case of (5) it turns out that

fε(zε) = b0 + ε2 Γ(zε) + o(ε2); b0 = f0(z0),
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for some Γ : Z → R. Hence, roughly, critical points of Γ give rise, for ε small, to solutions of (2). If
W 6≡ 0, then Γ admits some minima and, when |x0| is large, Γ inherits a double well structure: this
guarantes the existence of at least two solutions u1,ε, u2,ε of (2).

In this paper, the above result is extended by showing the existence of metrics on Sn, perturbations
of the standard one, for which problem (1) possesses infinitely many distinct solutions, which are not
bounded in L∞(Sn). This is done by considering on Rn a metric g = gε = δ + εh with

(6) h(x) =
∑
i∈N

σi τ(x− xi),

where τ : Rn → Mn×n is a C∞ matrix-valued function with compact support, W τ 6≡ 0, σi ∈ R, and
|xi| → +∞ as i→∞. Using the fact that the metric g possesses infinitely many “bumps”, we prove that
the function fε|Zε inherits infinitely many local minima provided the points xi are sufficiently far away
one from each other. The last step of the proof of Theorem 1.2 consists in proving that:

i) the metric gε gives rise to a Ck metric gε on Sn;

ii) for ε small, problem (1) for (Sn, gε) has a sequence of solutions whose L∞ norm blows up.

The method we use can be extended to prove some new multiplicity results. Let us recall that the
existence of multiple solutions for the Yamabe problem has been studied in [10], [19] and [17]. In [10]
multiplicity is obtained under symmetry assumptions while in [19] the author considers the specific case
of S1(T ) × Sn, where S1(T ) is the one dimensional circle of radius T . He proves that when T → +∞,
problem (1) possesses an increasing number of solutions. In [17] the author proves that, given any
manifold of dimension greater or equal than 3 and with positive scalar curvature, then, for some suitable
C0 perturbation of the metric, the solutions of (1) have a multibump structure.

Our multiplicity results are of two types:

1) we improve Therorem 1.3 by showing the existence of a non-minimal third solution, see Theorem 5.1;

2) in the specific case of the sphere Sn, we improve the result in [17], by proving the same result for Ck

perturbations of the standard metric, provided n ≥ 4k + 3, see Theorem 5.2.

The paper is organized as follows. Section 2 contains some preliminaries. Section 3 deals with the
construction of the natural constraint Zε for fε. In Section 4 Theorem 1.2 is proved, and in Section 5
some related results are treated. The Appendix contains some technical proofs.
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Notations

We denote by E = D1,2(Rn) the completion of C∞c (Rn) with respect to the Dirichlet norm ‖u‖2 =∫
Rn |∇u|

2dx. (u, v) is the standard scalar product
∫
Rn ∇u∇v dx, for u, v ∈ E. Given u ∈ E, the function

u∗ ∈ E is defined as

u∗(x) =
1

|x|n−2
u

(
x

|x|2

)
, x ∈ Rn.

If f ∈ C1(E), we denote by f ′ or ∇f its gradient. We set Crit(f) = {x ∈ E : f ′(x) = 0}. If f ∈ C2(E),
f ′′(x) : E → E is the linear operator defined by duality in the following way

(f ′′(x)v, w) = D2f(x)[v, w], ∀v, w ∈ E.
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If x ∈ Crit(f), we denote by m(x, f) the Morse index of f at x, namely the maximal dimension of
a subspace of E on which f ′′ is negative definite. We also denote by m∗(x, f) the extended Morse
index, the maximal dimension of a subspace of E on which f ′′ is non-positive definite. For all u ∈ E,

µ ∈ R and ξ ∈ Rn we set uµ,ξ = µ−
n−2
2 u

(
x−ξ
µ

)
. The map π denotes the stereographic projection

π : Sn =
{
x ∈ Rn+1 : |x| = 1

}
→ Rn through the north pole PN of Sn, PN = (0, . . . , 0, 1), where we

identify Rn with
{
x ∈ Rn+1 : xn+1 = 0

}
. The map R : Sn → Sn is the reflection through the hyperplane

{xn+1 = 0}, i.e. for (x′, xn+1) ∈ Sn, it is R(x′, xn+1) = (x′,−xn+1). Given a function v : Rn → R, we
define v] : Rn → R in the following way

v](x) = v

(
x

|x|2

)
, x ∈ Rn.

We set Sn = {h : Rn →M(n× n) : hij = hji,∀i, j} . In the following, for brevity, the positive constant C
will assume possibly different values from line to line.

2 Preliminaries

In this paper we consider metrics on Rn possessing ”infinitely many bumps”. In order to describe precisely
such metrics we introduce some notations.

Let τ : Rn → R be a C∞ function with compact support with W τ 6≡ 0, see formula (13). For A > 0,
let HA ⊆ Sn be defined by

(7) HA =

{
h : h(x) =

∑
i∈N

σi τ(x− xi), |xi − xj | ≥ 4 diam (supp τ), i 6= j,
∑
i

|σi|
n
2 ≤ A

}
.

We will consider the following class of metrics on Rn

(8) gij = (gε)ij = δij + εhij ,

where ε is a small parameter and h = hij ∈ HA.

Geometric preliminaries and expansion of fε

We recall some formulas given in [3] which will be useful for our computations. It will always be
understood that the expansions in ε below are uniform for h ∈ HA. We denote with gij = δij + εhij the
coefficients of the metric g and with gij the elements of the inverse matrix (g−1)ij . The volume element
dVg of the metric g is

(9) dVg = |g| 12 dx =

(
1 + ε

1

2
tr h+ ε2

(
1

8
(trh)2 − 1

4
tr(h2)

)
+ o(ε2)

)
dx.

The Christoffel symbols are given by Γlij = 1
2 [Digkj +Djgki−Dkgij ]g

kl. The components of the Riemann
tensor, the Ricci tensor and the scalar curvature are given respectively by

(10) Rlkij = DiΓ
l
jk −DjΓ

l
ik + ΓlimΓmjk − ΓljmΓmik; Rkj = Rlklj ; R = Rkjg

kj .

The Weyl tensor Wijkl is defined by

Wijkl = Rijkl −
1

n− 2
(Rikgjl −Rilgjk +Rjlgik −Rjkgil) +

R

(n− 1)(n− 2)
(gjlgik − gjkgil).
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For a smooth function u the components of ∇gu are (∇gu)i = gijDju, so we have

(11) (∇gu)i = ∇u (1 +O(ε)),

and moreover

(12) |∇gu|2 = |∇u|2 − ε
∑
i,j

hijDiuDju+ ε2
∑
i,j,l

hilhljDiuDju+ o(ε2).

Let Rε be the scalar curvature of g. There holds, see [3],

Rε(x) = εR1(x) + ε2R2(x) + o(ε2),

where
R1 =

∑
i,j

D2
ijhij −∆ tr h,

and

R2 = −2
∑
k,j,l

hkjD
2
lkhlj +

∑
k,j,l

hkjD
2
llhkj +

∑
k,j,l

hkjD
2
jkhll +

3

4

∑
k,j,l

DkhjlDkhjl

−
∑
k,j,l

DlhjlDkhjk +
∑
k,j,l

DlhjlDjhkk −
1

4

∑
k,j,l

DjhllDjhkk −
1

2

∑
k,j,l

DjhlkDlhjk.

Similarly we define the tensor W ijkl by

(13) Wijkl = εW ijkl + o(ε).

By formulas (9) and (11) the functionals u →
∫
|∇gu|2dVg, u →

∫
|u|2∗dVg are well defined for u ∈ E

and h ∈ HA. Moreover, for h ∈ HA, the supports of the functions τ(· −xi) are all disjoint, so there holds
Rgε ≤ |ε|Rh, with Rh ∈ L

n
2 (Rn), and ‖Rh‖Ln2 (Rn)

uniformly bounded, by the condition
∑
i |σi|

n
2 < A.

Hence also the map u→
∫
Rg u

2dVg is well defined. In conclusion the Euler functional fε : E → R

(14) fε(u) =

∫ (
cn|∇gu|2 +

1

2
Rgu

2 − 1

2∗
|u|2

∗
)
dVg, g = δ + ε h,

is well defined, provided h ∈ HA and ε is sufficiently small. The functional fε in (14) admits the following
expansion

∀u ∈ E, fε(u) = f0(u) + εG1(u) + ε2G2(u) + o(ε2),

where

f0(u) =

∫ (
cn|∇u|2 −

1

2∗
|u|2

∗
)
dx;

G1(u) =

∫ −cn∑
i,j

hijDiuDju+
1

2
R1u

2 +

(
cn|∇u|2 −

1

2∗
|u|2

∗
)

1

2
trh

 dx;

G2(u) =

∫ cn∑
i,j,l

hilhljDiuDju+
1

2
R2u

2 +

(
cn|∇u|2 −

1

2∗
|u|2

∗
)(

1

8
(tr h)2 − 1

4
tr(h2)

)

+
1

2
trh

1

2
R1u

2 − cn
∑
i,j

hijDiuDju

 dx.
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We now describe in some detail how problem (1) on Sn can be reduced to problem (2) on Rn, and
viceversa. The stereographic projection π : Sn → Rn induces an isomorphism ι : H1(Sn) → E defined
by

(15) (ιu)(x) = z0(x)u(π−1(x)), u ∈ H1(Sn), x ∈ Rn.

In particular the following relations hold for all u, v ∈ H1(Sn)

(16) 2cn

∫
Rn
∇ιu · ∇ιv =

∫
Sn

(2cn∇g0u · ∇g0v + uv) dVg0 ,

∫
Rn

(ιu)2∗−1ιv =

∫
Sn
u2∗−1v.

If g is a Riemannian metric on Sn, the Euler functional J : H1(Sn)→ R associated to problem (1) is

J(v) =

∫
Sn

(
cn|∇gv|2 +

1

2
Rgv

2 − 1

2∗
|v|2

∗
)
dVg, v ∈ H1(Sn).

Using stereographic coordinates on Sn, we define the metric g on Rn to be

(17) gij(x) = z
− 4
n−2

0 (x) gij(x)

and, associated to g, the functional f : E → R

f(u) =

∫
Rn

(
cn|∇gu|2 +

1

2
Rgu

2 − 1

2∗
|u|2

∗
)
dVg, u ∈ E.

The functional J is related to f from the equation

(18) J(u) = f(ι(u)), u ∈ H1(Sn).

From equality (18) one deduces immediately that the functions {ι−1zµ,ξ}µ,ξ are positive solutions of
J ′0 = 0.

Let gR be the pull back of g through R, see Notations. Then gR gives rise to the metric

(19) g]ij(x) := z
− 4
n−2

0 (x)(gR)ij(x), x ∈ Rn.

It turns out, using straightforward computations, that

(20)
∑
ij

g]ij(x) dxi dxj = δij +
∑
ij

(
gij

(
1

x

)
− δij

) (
dxi −

2xi
∑
k xk dxk
|x|2

) (
dxj −

2xj
∑
l xl dxl
|x|2

)
.

Denoting by f ] the functional on E associated to the metric g], there holds

(21) f(u) = f ](u∗), u ∈ E.

It is a simple calculation to check that

(22) (zµ,ξ)
∗ = zµ,ξ, with µ =

µ

µ2 + ξ2
, ξ =

ξ

µ2 + ξ2
.

Technical Lemmas

We now collect some technical Lemmas, proved in the Appendix, which will be useful in the sequel.
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Lemma 2.1 Let n ≥ 3 and p > 0. There exists C > 0, depending on p, such that for all a, b ∈ R

(23) |a+ b|p ≤ C (|a|p + |b|p);

(24)
∣∣∣|a+ b|2

∗
− |a|2

∗
− |b|2

∗
∣∣∣ ≤ C (|a|2∗−1 |b|+ |a| |b|2

∗−1
)

;

(25)
∣∣∣|a+ b|2

∗−2(a+ b)− |a|2
∗−2a− |b|2

∗−2b
∣∣∣ ≤ C (|a|q |b|r + |a|r |b|q) ,

where q = (n+2)2

2n(n−2) , and r = (n+2)
2n . Note that r + q = 2∗ − 1. Moreover, for n ≥ 6

(26)
∣∣∣|a+ b|2

∗−2 − |a|2
∗−2
∣∣∣ ≤ |b|2∗−2, ∀ a, b ∈ R.

Lemma 2.2 Let n ≥ 3. There exists C > 0 such that for all h ∈ HA and for all |ε| sufficiently small
there holds

(27) ∀u ∈ E, fε(u)− f0(u)− εG1(u)− ε2G2(u) = o(ε2)
(
‖u‖2 + ‖u‖2

∗
)

;

(28) ∀u ∈ E, ‖f ′ε(u)− f ′0(u)− εG′1(u)‖ ≤ C ε2
(
‖u‖+ ‖u‖

n+2
n−2

)
;

(29) ∀z ∈ Z, ‖f ′ε(z)‖ ≤ C |ε|;

(30) ∀u ∈ E, ‖f ′′ε (u)− f ′′0 (u)‖ ≤ C |ε|
(

1 + ‖u‖
4

n−2

)
;

(31) ∀u,w ∈ E, |fε(u+ w)− fε(u)| ≤ C ‖w‖
(

1 + ‖u‖
n+2
n−2 + ‖w‖

n+2
n−2

)
;

(32) ∀u,w ∈ E, ‖f ′ε(u+ w)− f ′ε(u)‖ ≤ C ‖w‖
(

1 + ‖u‖
4

n−2 + ‖w‖
4

n−2

)
;

(33) ∀u,w ∈ E, ‖G′1(u+ w)−G′1(u)‖ ≤ C ‖w‖
(

1 + ‖u‖
4

n−2 + ‖w‖
4

n−2

)
;

For n = 3, 4, 5 we have

(34) ∀u,w ∈ E, ‖f ′′ε (u+ w)− f ′′ε (u)‖ ≤ C ‖w‖
(
‖u‖

6−n
n−2 + ‖w‖

6−n
n−2

)
.

For n ≥ 6, the last expression becomes

(35) ∀ u,w ∈ E, ‖f ′′ε (u+ w)− f ′′ε (u)‖ ≤ C ‖w‖
4

n−2 .
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3 Reduction of the functional

The aim of this section is to construct the natural constraint Zε for fε. This will provide the existence
of solutions to (2) close to solutions of the unperturbed problem (36) below. The advantage of our
construction respect to [1] and [2] is that it works uniformly for all h ∈ HA and for ε sufficiently small.

The natural constraint

Our starting point is the following Proposition, see [2, 16].

Proposition 3.1 The unperturbed functional f0 possesses an (n+ 1)-dimensional manifold Z of critical
points, diffeomorphic to R+ × Rn, given by

Z =

{
zµ,ξ := µ−

n−2
2 z0

(
x− ξ
µ

) ∣∣∣ µ > 0, ξ ∈ Rn
}
' R+ × Rn,

namely every element zµ,ξ ∈ Z is a solution of

(36)

{
−2cn∆u = u

n+2
n−2 in Rn;

u > 0, u ∈ E.

Moreover f0 satisfies the following properties

(i) f ′′0 (z) = I −K, where K is a compact operator for every z ∈ Z;

(ii) TzZ = Kerf ′′0 (z) for all z ∈ Z.

From (i)-(ii) it follows that the restriction of f ′′0 to (TzZ)⊥ is invertible. Moreover, denoting by Lz its
inverse, there exists C > 0 such that

(37) ‖Lz‖ ≤ C for all z ∈ Z.

Through a Lyapunov-Schmidt reduction, using Proposition 3.1, we can reduce problem (2) to a finite
dimensional one.

For brevity, we denote by ż ∈ En+1 an orthonormal (n+ 1)-tuple in TzZ = span{Dµz,Dξ1z, . . . ,Dξnz}.

Proposition 3.2 Let n ≥ 3. Given A > 0, there exist ε0, C > 0, such that for every h ∈ HA there exists
a C1 function

(wε, αε) = (w(ε, z), α(ε, z)) : (−ε0, ε0)× Z → (E,Rn+1)

which satisfies

(i) w(ε, z) is orthogonal to TzZ ∀z ∈ Z, i.e. (w, ż) = 0;

(ii) f ′ε(z + w(ε, z)) = α(ε, z)ż ∀z ∈ Z;

(iii) ‖w(ε, z)‖ ≤ C |ε| ∀z ∈ Z.

From (i)-(ii) it follows that

(iv) the manifold Zε = {z + w(ε, z) | z ∈ Z} is a natural constraint for fε.

8



Proof. The unknown (w,α) satisfying (i) and (ii) can be implicitly defined by means of the function
H : Z × E × Rn+1 × R→ E × Rn+1

H(z, w, α, ε) =

(
f ′ε(z + w)− αż

(w, ż)

)
.

Since every z ∈ Z solves f ′0(z) = 0, it is H(z, 0, 0, 0) = 0 and we can write

H(z, w, α, ε) = 0 ⇔ ∂H

∂(w,α)
|(z,0,0,0)[w,α] +R(z, w, α, ε) = 0,

where we have set R(z, w, α, ε) = H(z, w, α, ε) − ∂H
∂(w,α) |(z,0,0,0)[w,α]. From (37) it is easy to check, see

[1], that ∂H
∂(w,α) |(z,0,0,0) is invertible and there holds

(38)

∥∥∥∥∥
(

∂H

∂(w,α)
|(z,0,0,0)

)−1
∥∥∥∥∥ ≤ C, ∀z ∈ Z.

Hence we can write

H(z, w, α, ε) = 0 ⇔ (w,α) = −
(

∂H

∂(w,α)
(z, 0, 0, 0)

)−1

R(z, w, α, ε) := Fz,ε(w,α).

We will prove that, for ρ and ε sufficiently small, the map Fz,ε( , ) is a contraction in some Bρ = {(w,α) ∈
E×Rn+1 : ‖w‖+|α| ≤ ρ}. First we show that there exists C > 0 such that for all ‖(w,α)‖, ‖(w′, α′)‖ ≤ ρ
small enough

(39)

 ‖Fz,ε(w,α)‖ ≤ C
(
|ε|+ ρmin{2, n+2

n−2}
)
,

‖Fz,ε(w′, α′)− Fz,ε(w,α)‖ ≤ C
(
|ε|+ ρmin{1, 4

n−2}
)
‖(w,α)− (w′, α′)‖.

By (38), condition (39) is equivalent to the following two inequalities

(40) ‖f ′ε(z + w)− f ′′0 (z)[w]‖ ≤ C
(
|ε|+ ρmin{2, n+2

n−2}
)

;

(41) ‖(f ′ε(z + w)− f ′′0 (z)[w])− (f ′ε(z + w′)− f ′′0 (z)[w′])‖ ≤ C
(
|ε|+ ρmin{1, 4

n−2}
)
‖(w,α)− (w′, α′)‖.

We now prove (40). Using formulas (29) and (30) we have, since ||z|| is bounded

f ′ε(z + w)− f ′′0 (z)[w] =
(
f ′ε(z + w)− f ′ε(z)− f ′′ε (z)[w]

)
+ f ′ε(z) +

(
f ′′ε (z)− f ′′0 (z)

)
[w]

=

∫ 1

0

(
f ′′ε (z + sw)− f ′′ε (z)

)
[w]ds+O(ε) +O(ε)‖w‖.

Hence, using (34) and (35), since ‖z‖ and ‖w‖ are bounded, we deduce that

‖f ′ε(z + w)− f ′′0 (z)[w]‖ ≤ C
(
|ε|+ ‖w‖min{2, n+2

n−2} + |ε| ||w||
)
≤ C

(
|ε|+ ρmin{2, n+2

n−2}
)
,

and (40) is proved. We turn now to (41). There holds

‖f ′ε(z + w)− f ′ε(z + w′)− f ′′0 (z)[w − w′]‖ =

∣∣∣∣∫ 1

0

(
f ′′ε (z + w + s(w′ − w))− f ′′0 (z)

)
[w′ − w]ds

∣∣∣∣
≤ sup

s∈[0,1]

‖f ′′ε (z + w + s(w′ − w))− f ′′0 (z)‖ ‖w′ − w‖.

9



Using again formulas (30), (34) and (35) we have that

||f ′′ε (z + w′ + s(w − w′))− f ′′0 (z)|| ≤ C
(
|ε|+ ρmin{2, n+2

n−2}
)
,

hence also (41) holds. Now that (39) is proved, if C
(
|ε|+ ρmin{2, n+2

n−2}
)
< ρ and if C (|ε|+ρmin{1, 4

n−2 }) <
1, then Fz,ε(w,α) is a contraction in Bρ. These inequalities are solved, for example, choosing ρ = 2C |ε|,
for |ε| ≤ ε0 with ε0 sufficiently small. Hence we find a unique solution (wε, αε) satisfying ‖(wε, αε)‖ ≤
2C |ε|. The fact that the map (w,α) is of class C1 is standard and follows from the Implicit Function
Theorem.

Expansion of fε|Zε

By Proposition 3.2-(iv) problem (2) is solved if one finds critical points of fε|Zε . This is done by expanding
fε|Zε in powers of ε as stated in Proposition 3.3 below. We recall that G1 and G2 denote the coefficients
of the expansion in ε of fε(u), see Section 2.

In [3] the following Lemma is estabilished.

Lemma 3.1 For all z ∈ Z it is G1(z) = 0. Hence G′1(z) ⊥ TzZ for all z ∈ Z.

The function wε(z) is estimated in terms of G′1(z) in the following Lemma.

Lemma 3.2 Let n ≥ 6. The following expansion holds

(42) w(ε, z) = −εLzG′1(z) +O
(
|ε|

(n+2)
(n−2)

)
.

Proof. We can write f ′ε(z + wε) = β1 + β2 + β3 + (f ′′0 (z)[wε] + εG′1(z)), where

β1 = f ′ε(z + wε)− f ′0(z + wε)− εG′1(z + wε); β2 = f ′0(z + wε)− f ′′0 (z)[wε];

β3 = εG′1(z + wε)− εG′1(z).

From (28), since ‖z + wε‖ is uniformly bounded, we have that ‖β1‖ = O(ε2). There holds

β2 =

∫ 1

0

(f ′′0 (z + swε)− f ′′0 (z))[wε]ds,

so (35) and (iii) in Proposition 3.2 imply ‖β2‖ = O
(
|ε|

(n+2)
(n−2)

)
. Then, from (33) it follows also that

‖β3‖ = O(ε2). Hence we deduce that β1 + β2 + β3 = O
(
|ε|

(n+2)
(n−2)

)
. Thus the relation f ′ε(z + wε) = αεż

can be written as f ′′0 (z)[wε] + εG′1(z) + O
(
|ε|

(n+2)
(n−2)

)
= αεż. Projecting this equation on (TzZ)⊥ and

applying the operator Lz, we obtain (42).

We finally furnish the expansion of fε|Zε .

Proposition 3.3 Let n ≥ 6. Given A > 0, the following expansion holds, uniformly in z ∈ Z and in
h ∈ HA

(43) fε(zµ,ξ + wε(zµ,ξ)) = b0 + ε2 Γ(µ, ξ) + o(ε2),

where Γ : R+ × Rn → R is defined by

(44) Γ(µ, ξ) = G2(zµ,ξ)−
1

2

(
Lzµ,ξG

′
1(zµ,ξ), G

′
1(zµ,ξ)

)
.

10



Proof. We can write fε(z + wε) = γ1 + γ2 + γ3, where

γ1 = fε(z), γ2 = f ′ε(z)[wε], γ3 = fε(wε + z)− fε(z)− f ′ε(z)[wε].

By (27), since G1|Z ≡ 0, we deduce that

γ1 = f0(z) + εG1(z) + ε2G2(z) + o(ε2) = b0 + ε2G2(z) + o(ε2).

Turning to γ2, from (28), (42) and from f ′0(z) = 0 we obtain

γ2 = (f ′0(z), wε) + ε (G′1(z), wε) + o(ε2) = −ε2
(
LzG

′
1(z), G′1(z)

)
+ o(ε2).

We now estimate γ3. We can write

γ3 =

∫ 1

0

(f ′ε(z + swε)− f ′ε(z), wε)ds.

Using (28) we have

γ3 =

∫ 1

0

(
(f ′0(z + swε)− f ′0(z)) + ε (G′1(z + swε)−G′1(z)) , wε

)
ds+ o(ε2).

Using (33), (35) and ‖wε‖ ≤ C |ε|, it follows that

γ3 =

∫ 1

0

(f ′0(z + swε)− f ′0(z), wε) ds+ o(ε2)

=

∫ 1

0

(∫ 1

0

(f ′′0 (z + tswε)− f ′′0 (z))[swε]dt

)
[wε]ds+

∫ 1

0

(∫ 1

0

f ′′0 (z)[swε]dt

)
[wε]ds+ o(ε2)

=
1

2
f ′′0 (z)[wε, wε] + o(ε2).

From the above estimates for γ1, γ2 and γ3, we deduce the Proposition.

Study of the function Γ

We report here the main properties of the function Γ, which are obtained in [3].

Proposition 3.4 The function Γ can be extended to the hyperplane {µ = 0} by setting

(45) Γ(0, ξ) = 0,

and there holds

(46) Γ(µ, ξ)→ 0, as µ+ |ξ| → +∞.

If n ≥ 6, then

(47)
∂Γ

∂µ
(0, ξ) = 0,

∂2Γ

∂µ2
(0, ξ) = 0,

∂3Γ

∂µ3
(0, ξ) = 0, ∀ξ ∈ Rn,

moreover

(48)


limµ→0 µ

−4Γ(µ, ξ) = −∞ if Wh(ξ) 6= 0, for n = 6;

∂4Γ
∂µ4 (0, ξ) < 0 if Wh(ξ) 6= 0, for n > 6.
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4 Infinitely many solutions

In this Section we prove our main result Theorem 1.2. We consider on Rn metrics g of the form (8).
Since these metrics possess infinitely many “bumps”, we expect that the function fε|Zε inherits infinitely
many local minima when the points xi are sufficiently far away one from each other.

Let f iε be the Euler functional corresponding to the metric gi(x) = giε(x) = δ + ε σi τ(x − xi). Since
σi τ(· − xi) ∈ HA, the construction of Proposition 3.2 can be performed also for f iε. We denote by
Zi = {z + wiε | z ∈ Z} the corresponding natural constraint. We will often set for brevity

Ai := supp τ(· − xi); ziε := z + wiε.

Let Γτ denote the function as in (44) associated to the metric δ(x) + ε τ(x). By Proposition 3.4, the
function Γτ possesses some negative minimum and tends to zero at the boundary of R+ ×Rn. Hence we
can find a compact set K of R+ × Rn such that{

y ∈ R+ × Rn : Γτ (y) ≤ 1

2
min Γτ

}
⊆ K.

In the following this compact set K will be kept fixed.
If (µ, ξ) ∈ K + (0, xi), then the functions zµ,ξ +wiε satisfies an uniform decay estimate. This is stated

precisely in the following Lemma.

Lemma 4.1 Let |ε| ≤ ε0. There exist C > 0, R > 1 such that for every i and for every (µ, ξ) ∈ K+(0, xi)
there holds

(49) |zµ,ξ + wiε| (x) ≤ C

|x− xi|n−2
, |∇(zµ,ξ + wiε)| (x) ≤ C

|x− xi|n−1
; |x− xi| ≥ R.

Proof. We can suppose without loss of generality that xi = 0 and the support of τ is contained in
B1 = {x ∈ Rn : |x| ≤ 1}.

The function ziε, satisfies ∇f iε(ziε) = αiεż, hence it solves the equation

−2cn∆(ziε)− |ziε|2
∗−2ziε = −αiε∆ż, in Rn \B1.

Performing the transformation (see the Notations for the definition of the map u→ u∗)

ziε(x)→ uiε(x) := µ
n−2
2 (ziε)

∗(µx),

one easily verifies that the function uiε solves

(50) −∆uiε(x) = |uiε|2
∗−2(x)uiε(x) + µ

n+2
2 qz(µx), in B1,

where qz = −αiε(z)∆(ż∗). Since (µ1, ξ1) belongs to the fixed compact set K, the norm

(51) ‖qz‖C3(B1) is uniformly bounded for (µ1, ξ1) ∈ K.

Moreover, since wiε is a continuous function of z, it turns out that

(52) ζµ = sup
(µ,ξ)∈K

∫
B1

|∇uiε|2 → 0, ηµ = sup
(µ,ξ)∈K

∫
B1

|uiε|2
∗
→ 0, as µ→ 0.

Under conditions (50), (51) and (52), the arguments in the proof of Proposition 1.1 in [13] imply that
for some µ = µ0 sufficiently small it is ‖uiε‖C1(B 1

2
) ≤ C uniformly in for (µ1, ξ1) ∈ K. From this one can

easily deduce that

ziε(x) ≤ C

µ
n−2
2

0

1

|x|n−2
, for |x| ≥ 2

µ0
; (µ1, ξ1) ∈ K,
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which is the first inequality in (49). The second inequality follows in the same way from the boundedness
of ‖uiε‖C1(B 1

2
).

Lemma 4.2 There exist C > 0, ε1 > 0 such that for |ε| ≤ ε1 there holds

(53) ||wε − wiε|| ≤ C ||∇fε(z + wiε)−∇f iε(z + wiε)||.

Proof. Let us consider the function

H : Z × E × Rn+1 → E × Rn+1 × R

with components H1 ∈ E and H2 ∈ Rn+1 given by

H1(z, w, α, ε) = ∇fε(z + wiε + w)− (αiε + α) ż,

H2(z, w, α, ε) = (w, ż).

We have

H(z, w, α, ε) = 0 ⇔ H(z, 0, 0, ε) +
∂H

∂(w,α)
|(z,0,0,ε)[w,α] +R(z, w, α, ε) = 0,

where R(z, w, α, ε) = H(z, w, α, ε)−H(z, 0, 0, ε)− ∂H
∂(w,α) |(z,0,0,ε)[w,α].

It is easy to see that for |ε| small enough there holds∣∣∣∣∣
(

∂H

∂(w,α)
|(z,0,0,ε)

)−1
∣∣∣∣∣ ≤ C ∀z ∈ Z.

Moreover we have
H(z, w, α, ε) = 0 ⇔ (w,α) = F ε,z(w,α),

where

F ε,z(w,α) := −
(

∂H

∂(w,α)
|(z,0,0,ε)

)−1 (
H(z, 0, 0, ε) +R(z, w, α, ε)

)
.

We claim that the following two estimates hold. For all ‖(w,α)‖, ‖(w′, α′)‖ ≤ ρ small enough

(54) ‖F ε,z(w,α)‖ ≤ C ‖∇fε(z + wiε)−∇f iε(z + wiε)‖+ C ρ
n+2
n−2 ,

(55) ‖F ε,z(w,α)− F ε,z(w′, α′)‖ ≤ C ρ
4

n−2 ‖w′ − w‖.

Let us prove (54). For all (w,α) ∈ Bρ

(56) ‖F ε,z(w,α)‖ ≤ C ‖H(z, 0, 0, ε)‖+ C ‖R(z, w, α, ε)‖

We have, using the same arguments of Proposition 3.2

‖R(ε, z, w, α)‖ =

∥∥∥∥H(z, w, α, ε)−H(z, 0, 0, ε)− ∂H

∂(w,α)
|(z,0,0,ε)[w,α]

∥∥∥∥
= ‖∇fε(z + wiε + w)−∇fε(z + wiε)−D2fε(z + wiε)[w]‖ ≤ C ‖w‖

n+2
n−2 .
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Since H(z, 0, 0, ε) = ∇fε(z + wiε) − ∇f iε(z + wiε), (54) follows from (56). Let us turn to (55). For all
(w,α), (w′, α′) ∈ Bρ it is

‖F ε,z(w,α)− F ε,z(w′, α′)‖ =

∥∥∥∥∥
(

∂H

∂(w,α)
|(z,0,0,ε)

)−1 (
R(z, w, α, ε)−R(z, w′, α′, ε)

)∥∥∥∥∥
≤ C

∥∥∥∥∫ 1

0

(fε)
′′(z + wiε + w′ + s(w − w′))− (fε)

′′(z + wiε)ds

∥∥∥∥
× ‖w′ − w‖ ≤ C ρ2∗−2 ‖w′ − w‖,

so (55) holds true. Now, arguing as in Proposition 3.2, we deduce that there exists a unique (wDε , α
D
ε )

such that

(i) (wDε , ż) = 0;

(ii) ∇fε(z + wiε + wDε ) = (αiε + αDε )ż;

(iii) ‖wDε ‖ ≤ C ‖∇fε(z + wiε)−∇f iε(z + wiε)‖ for ε sufficiently small.

The couple
(
wiε + wDε , α

i
ε + αDε

)
satisfies (i) − (iv) in Proposition 3.2, hence by uniqueness it must be

wε = wiε + wDε ; by (iii), inequality (53) follows.

In the next Lemma we estimate the quantity ||∇fε(zi0ε ) − ∇f i0ε (zi0ε )|| with respect to ε, {σi}i, and
{xi}i.

Lemma 4.3 There exist C > 0, L1 > 0 such that, if |xi0 − xi| ≥ L1 for all i 6= i0, then

(57) ||∇fε(zµ,ξ + wi0ε )−∇f i0ε (zµ,ξ + wi0ε )|| ≤ C |ε|
∑
i6=i0

σi
|xi − xi0 |n−2

,

for all (µ, ξ) ∈ (0, xi0) +K.

Proof. Since the metric gi0ε is flat on Ai for i 6= i0, for v ∈ E there holds

|(∇fε(zi0ε )−∇f i0ε (zi0ε ), v)| =

∣∣∣∣∣∣
∑
i6=i0

∫
Ai

2cn∇gzi0ε · ∇gv +Rgz
i0
ε v − |zi0ε |2

∗−2zi0ε v dVg

−
∑
i 6=i0

∫
Ai

2cn∇zi0ε · ∇v − |zi0ε |2
∗−2zi0ε v dx

∣∣∣∣∣∣ .
Using the Hölder inequality on each Ai we get

|(∇fε(zi0ε )−∇f i0ε (zi0ε ), v)| ≤ C |ε|
∑
i 6=i0

σi

∫
Ai

|∇zi0ε | |∇v|+ |zi0ε | |v|+ |zi0ε |2
∗−1|v| dx.

By Lemma 4.1 we know that for (µ, ξ) ∈ (0, xi0) +K

|zi0ε (x)| ≤ C

|x− xi0 |n−2
, |∇zi0ε (x)| ≤ C

|x− xi0 |n−1
for |x− xi0 | ≥ R.

Hence we deduce, using the Hölder and the Sobolev inequalities, if |xi0 − xi| ≥ L1, i 6= i0, with L1 ≥ R,
there holds

|(∇fε(zi0ε )−∇f i0ε (zi0ε ), v)| ≤ C |ε| ‖v‖
∑
i 6=i0

σi

(
1

|xi − xi0 |n−1
+

1

|xi − xi0 |n−2
+

1

|xi − xi0 |n+2

)
.
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This concludes the proof.

In the next Proposition we compare fε|Zε with the reduced functional f i0ε |Zi0 corresponding to one-
bump metrics.

Proposition 4.1 Set
Qi0 = fε(zµ,ξ + wε)− f i0ε (zµ,ξ + wi0ε ).

Then, if |xi0 − xi| ≥ L1 for all i 6= i0, for all (µ, ξ) ∈ (0, xi0) +K and for all |ε| < ε1 there holds

(58) |Qi0 | ≤ C |ε|
(∑
i6=i0

1

|xi − xi0 |n
)n−2

n

.

Proof. We have by (31), (53) and (57)

|Qi0 | = |fε(z + wε)− f i0ε (zi0ε )| ≤ |fε(z + wε)− fε(z + wi0ε )|+ |fε(zi0ε )− f i0ε (zi0ε )|
≤ C ||wε − wi0ε ||+ |fε(zi0ε )− f i0ε (zi0ε )| ≤ C ||∇fε(zi0ε )−∇f i0ε (zi0ε )||+ |fε(zi0ε )− f i0ε (zi0ε )|

≤ C |ε|
∑
i 6=i0

σi
|xi − xi0 |n−2

+ |fε(zi0ε )− f i0ε (zi0ε )|.(59)

Arguing as in Lemma 4.3 we deduce

|fε(zi0ε )− f i0ε (zi0ε )| =
∑
i6=i0

∫
Ai

cn|∇g(zi0ε )|2 +Rg(z
i0
ε )2 − 1

2∗
|zi0ε |2

∗
dVg

−
∑
i6=i0

∫
Ai

cn|∇(zi0ε )|2 − 1

2∗
|zi0ε |2

∗
dx

≤ C |ε|
∑
i6=i0

σi

∫
Ai

|∇(zi0ε )|2 + |zi0ε |2 + |zi0ε |2
∗
dx.

Then, using the fact that |xi − xi0 | ≥ L1

|fε(zi0ε )− f i0ε (zi0ε )| ≤ C |ε|
∑
i6=i0

σi

(
1

|xi − xi0 |2(n−1)
+

1

|xi − xi0 |2(n−2)
+

1

|xi − xi0 |2n

)
.

The last inequlity and (59) imply that |Qi0 | ≤ C |ε|
∑
i 6=i0

σi
|xi−xi0 |n−2 . Applying the Hölder inequality

and taking into account that
∑
i |σi|

n
2 < A, (58) follows.

Lemma 4.4 Let α > 1, γ > 1. There exists a constant C > 0 depending only on α and γ, such that∑
i6=i0

1

|iα − iα0 |γ
∼ C 1

i
(α−1)γ
0

, i0 → +∞.

Proof. For i0 large enough there holds∑
i<i0

1

|iα − iα0 |γ
∼
∫ (i0−1)

0

dx

(iα0 − xα)γ
,

∑
i>i0

1

|iα − iα0 |γ
∼
∫ ∞

(i0+1)

dx

(xα − iα0 )γ
.

Hence, we are reduced to estimate the above two integrals. Let us start with the first one: using the
change of variables i0y = x, we deduce that∫ (i0−1)

0

dx

(iα0 − xα)γ
= i0

∫ 1− 1
i0

0

dy

iαγ0 (1− yα)γ
=

1

iαγ−1
0

∫ 1− 1
i0

0

dy

(1− yα)γ
.
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Since (1− yα)γ ∼ C (1− y)γ , for y close to 1 it follows that
∫ 1− 1

i0
0

dy
(1−yα)γ ∼ C i

γ−1
0 . Hence it turns out

that
∫ (i0−1)

0
dx

(iα0−xα)γ ∼ C 1

i
(α−1)γ
0

. An analogous estimate holds for the other integral
∫∞

(i0+1)
dx

(xα−iα0 )γ .

This concludes the proof.

4.1 Proof of Theorem 1.2

Existence of infinitely many solutions

Fix a ∈ Rn with |a| = 1, and let h be of the form (6) with σi = i−β and xi = D iα a. We choose

(60) D =
C0

|ε|1/(n−2)
; α > 4k + 1; 2αk < β < 2αk +

α− (4k + 1)

2
,

where C0 is a constant to be fixed later. With the above choice of σi there holds
∑+∞
i+1 |σi|n/2 < +∞,

since β > 1 > 2
n . Since also α > 1, we have infi 6=j |xi−xj | > 4 diam(supp τ) for i, j large enough. Hence,

if we take σi = 0 for i sufficiently small, then h belongs to HA.
From the expansion in (43) we know that

f i0ε (zi0ε ) = b0 + ε2σ2
i Γτ(·−xi0 )(µ, ξ) + o(ε2σ2

i ), zi0ε = zµ,ξ + wi0ε ,

and so f i0ε |Zi0 attains absolute minimum in a point z̃i0ε = zµ̃,ξ̃ +wi0ε with (µ̃, ξ̃) ∈ (0, xi0) +K. Moreover
there exists a smooth open set U ⊆ K such that for σi0 sufficiently small

(61) min
(µ,ξ)∈∂U

f i0ε (zµ,ξ + wi0ε )− f i0ε (z̃i0ε ) ≥ 1

4
dτσ

2
i0ε

2; dτ = |min Γτ |.

We assume i0 to be so large that mini 6=i0 |xi0 − xi| ≥ L1, so (58) holds. Hence we have that

|Qi0 | ≤
C |ε|
D(n−2)

(∑
i 6=i0

1

|iα − i0α|n
)n−2

n

.

So, by Lemma 4.4, for i0 sufficiently large there holds

(62) |Qi0 | ≤
C |ε|
D(n−2)

1

i
(α−1)(n−2)
0

.

By our choice of σi and by (61), in order to find for ε small a minimum of fε|Zε near z̃i0ε , it is sufficient
that

(63) |Qi0 | ≤
1

8
dτ i0

−2β |ε|2.

Taking into account (62), inequality (63) is satisfied, for i0 large enough, when D = C0

|ε|1/(n−2) , C0 is

sufficiently large, and

(64) (α− 1)(n− 2) ≥ 2β.

We have then proved that if (64) holds, then for all i0 large enough and ε small enough fε(zµ,ξ + wε)

attains a minimum (µ̃i0 , ξ̃i0) ∈ (0, xi0) + K. Hence there are infinitely many distinct solutions viε of (1)
on (Sn, gε).

Regularity of the metrics
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Now we want to determine the regularity of gε on Sn. Clearly gε is of class C∞ on Sn \ PN . Moreover,
the regularity of gε at PN is the same as that of (gε)R at the south pole PS and so, recalling formula

(19), it is the same of g]ε in 0. From equation (20), it follows that the functions g]ij(x) are of the form

(65) g]ij(x) = δij +
∑
kj

Λijkl

(
x

|x|

)(
gkl

(
1

x

)
− δkl

)
,

where Λijkl are smooth angular functions. Set N i
ε = ‖(giε)] − δ‖Ck . Since (giε)

] − δ has support in

Ai :=
{
x ∈ Rn : x

|x|2 ∈ Ai
}

, and since diam(Ai) ∼ |xi|−2, one can easily check from (65) that N i
ε can be

estimated as
N i
ε ≤ C |ε| |σi| |xi|2k ≤ C |ε|1−

2k
n−2 i2αk−β .

Let g]ε,j be the metric constituted by the first j bumps of g]ε. Hence, since all the bumps of g]ε have
disjoint support, there holds

‖g]ε,j − g
]
ε,l‖Ck(Rn) ≤ sup

i=j+1,...,l
N i
ε ≤ C |ε|1−

2k
n−2 sup

i=j+1,...,l
i2αk−β ; j < l.

So, if 2αk − β < 0, the sequence g]ε,j is Cauchy in Ck(B1), and hence gε is also of class Ck. If moreover

there holds 1 − 2k
n−2 > 0, then ‖gε − g0‖Ck → 0 when ε → 0. The three inequalities we are requiring,

namely (64) and
β > 2αk; n− 2 > 2k

are satisfied with n ≥ 4k + 3 and our choices in (60). We have proved that gε are of class Ck and that
‖gε − g0‖Ck(Sn) tends to 0 as ε tends to 0.

Since the solutions uiε of (2) are close in E to some zµ̃i,ξ̃i with (µ̃i, ξ̃i) ∈ (0, xi) + K, the solutions

viε = ι−1uiε of (1) on Sn are close in H1(Sn) to ι−1zµ̃i,ξ̃i . From the fact that the functions ι−1zµ̃i,ξ̃i
blow-up at PN as i → +∞, one can deduce that ‖viε‖L∞(Sn) → +∞ as i → +∞. Standard regularity

arguments, see [9], imply that the weak solutions viε are indeed of class Ck on Sn. From the fact that
‖viε− ι−1zµ̃i,ξ̃i‖H1(Sn) is small and from the maximum principle, it is also easy to check that the solutions
we find are positive. This concludes the proof.

5 Further results

In this section we prove some multiplicity results, which are consequences of the method applied above.
We consider on Sn a smooth bilinear and symmetric form h, and the metric g = gε given by

(66) gε = g0 + ε h.

Let g be the metric on Rn associated to g by formula (17). Using the isometry ι, it is possible to prove
that the Euler functional fε : E → R corresponding to g is well defined, and one can repeat all the
arguments of Section 3. Let again Zε = {z + wε} denote the natural constraint for fε: to study fε|Zε ,
for brevity we define ϕε(µ, ξ) : R+ × Rn → R as

ϕε(µ, ξ) = fε(zµ,ξ + wε(zµ,ξ)).

We have the following Proposition, proved in the Appendix.
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Proposition 5.1 Suppose n ≥ 3. Let h be a smooth bilinear and symmetric form on Sn, and, for ε
small, let gε be given by (66). Then ϕε can be extended by continuity to {µ = 0} by setting

(67) ϕε(0, ξ) = b0, ξ ∈ Rn.

Moreover there holds

(68) lim
µ+|ξ|→+∞

ϕε(µ, ξ) = b0.

As a first application of Proposition 5.1 we improve Theorem 1.3.

Theorem 5.1 Under the same assumptions of Theorem 1.3 there exist L, ε̂ > 0 such that, for |x0| ≥ L
and for |ε| ≤ ε̂, problem (2) admits a third solution u3,ε. In the non-degenerate case this solution has
Morse index m(u3,ε, fε) ≥ 2, or in general extended Morse index m∗(u3,ε, fε) ≥ 2.

Proof. In [3] it is proved that for |x0| ≥ L large enough and for |ε| ≤ ε̂ small enough, ϕε possesses two
points e0, e1 of local minimum with ϕε(e0), ϕε(e1) < b0. These minima give rise to two solutions u1,ε and
u2,ε of problem (2). Now three cases can occur. The first one is that supR+×Rn ϕε > b0, the second is
that ϕε ≤ b0 and ϕε(µ, ξ) = b0 for some (µ, ξ) ∈ R+ ×Rn, and the third case is that ϕε(µ, ξ) < b0 for all
(µ, ξ) ∈ R+ × Rn. In the first two cases ϕε possesses an interior maximum, while in the third case, by
the mountain pass Theorem, there exists a critical level cε > max{ϕε(e0), ϕε(e1)}, cε < b0. In each case
there is a third solution u3,ε to problem (2). In the non-degenerate case we show that m(u3,ε, fε) ≥ 2.

The operator f ′′ε (u3,ε) is negative definite on the one-dimensional subspace {tu3,ε, t ∈ R}, so there it is
m(u3,ε, fε) ≥ 1. Suppose by contradiction that m(u3,ε, fε) = 1. Then, since we are in the non-degenerate
case, f ′′ε (u3,ε) would be positive definite on the finite dimensional space Tu3,εZε, and u3,ε would be a
strict minimum for fε|Zε . Clearly this is a contradiction when u3,ε is an interior maximum. When u3,ε

is a mountain pass critical point, the result follows from [11]. In the degenerate case, the same argument
shows that m∗(u3,ε, fε) ≥ 2.

Remark 5.1 As a byproduct of Proposition 5.1, we can immediately deduce that ϕε possesses a critical
point, and hence problem (1) admits a solution for g = gε. We point out that, in the present very specific
situation, we do not need to distinguish between different dimensions and between the locally conformally
flat or non-locally conformally flat case.

Our last result deals with thte existence of multibump solutions as in [17]. Given an integer ` > 0, an

`-bump solution of (1) is a function u satisfying (1) and such that u ∼
∑`
i=1 zµi,ξi .

Theorem 5.2 For all integers ` > 0, there exists ε0 > 0 such that for all ε with 0 < ε < ε0, there exists
a metric gε on Sn for which problem (1) possesses `-bump solutions. If k ≥ 2 and n ≥ 4k + 3 then gε
can be chosen in such a way that ‖gε − g0‖Ck(Sn) → 0 as ε→ 0.

For the sake of brevity we will only outline the main steps of the arguments, referring to [15] for more
details and complete proofs.

Step 1 We fix ` ∈ N and we take x1, . . . , x` ∈ Rn and gε of the form

gε(x) = δij + ε
∑̀
i=1

τ(x− xi), in Rn.

The multibump solution is found near the following set of functions

Z` = {z1 + · · ·+ z` : zi ∈ Z},
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obtained “gluing” together ` elements of Z. We show that

‖f ′ε(z)‖ = O

(
max
i6=j
|xi − xj |−

(n+2)(n−2)
2n + ε2

)
, z ∈ Z`.

Step 2 Following the arguments of [7], we use the last estimate to prove the existence of a manifold

Z`ε = {z + w : z ∈ Z`}, ‖w‖ = O(‖f ′ε(z)‖),

which is a natural constraint for fε. Moreover, it turns out that

fe(z + w) = ` b0 + ε2
∑̀
i=1

Γ(zi) +R,

where

(69) |R| = O

(
ε max

i6=j
|xi − xj |−

(n+2)(n−2)
2n + ε2

)
.

Step 3 Each of the functions Γ(zi) attains a minimum at zi = zµi,ξi with µi bounded above and below,
and with ξi close to xi. By means of equation (69), we prove that, if we choose maxi 6=j |xi−xj |−(n−2) ∼ ε2,
these minima persist, and we find a critical point of fε on Z`ε. Furthermore, the metric gε gives rise to a
metric gε on Sn with gε → g0 in Ck.

6 Appendix

Proof of technical Lemmas

Proof of Lemma 2.1. Equation (23) is a trivial consequence of the subadditivity of the function
t → |t|p for 0 < p ≤ 1, and of the convexity of t → |t|p for p > 1. When n ≥ 6, then the number
2∗ − 2 = 4

(n−2) is greater than 0 and smaller or equal to 1, so equation (26) is also a consequence of the

subadditivity of t → |t|p, with 0 < p ≤ 1. Turning to (25) it is sufficient, by homogeneity, to prove that
for every t ∈ R there holds

(70)
∣∣|1 + t|p−1(1 + t)− |t|p−1t− 1

∣∣ ≤ C (|t|r + |t|q) .

Equation (70) is satisfied near t = 0 for every C > 0, since 0 < r < 1. At infinity, the left-hand side goes
to +∞ as |t|p−1, while the right hand side goes to +∞ as |t|q, since q > r. Moreover p− 1 < q, so (70)
holds for C sufficiently large and for all t. Inequality (24) can be obtained reasoning in the same way.

Proof of Lemma 2.2 We start proving (35). Given two functions v1, v2 ∈ E, there holds

|(f ′′ε (u+ w)− f ′′ε (u))[v1, v2]| = (2∗ − 1)

∣∣∣∣∫ (|u+ w|2
∗−2 − |u|2

∗−2)v1v2dVg

∣∣∣∣
≤ (2∗ − 1) (1 +O(ε))

∣∣∣∣∫ ∣∣∣|u+ w|2
∗−2 − |u|2

∗−2
∣∣∣ |v1||v2|dx

∣∣∣∣ .
Using the Hölder and the Sobolev inequalities we deduce that∫ ∣∣∣|u+ w|2

∗−2 − |u|2
∗−2
∣∣∣ |v1||v2|dx ≤ C

(∫ ∣∣∣|u+ w|2
∗−2 − |u|2

∗−2
∣∣∣n2) 2

n

‖v1‖ ‖v2‖.
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For n ≥ 6, using inequality (26) with a = u(x), b = w(x), we deduce that
∣∣|u+ w|2∗−2 − |u|2∗−2

∣∣n2 ≤
C |w|2∗ , so (35) holds.

We now prove (30). Taking into account formulas (9) and (11), we have that

f ′′ε (u)[v1, v2] =

∫ (
∇v1 · ∇v2 (1 +O(ε)) +Rgv1v2 − (2∗ − 1)|u|2

∗−2v1v2

)
dx (1 +O(ε)).

From the Hölder and the Sobolev inequalities, and using the fact that the support of Rg is compact, it
follows that

(f ′′ε (u)− f ′′0 (u))[v1, v2] = O(ε)
(

1 +O(ε) + ‖u‖
4

n−2

)
‖v1‖ ‖v2‖,

and (30) is proved.
Let us turn to (32). For every v ∈ E there holds

(71) (f ′ε(u+ w)− f ′ε(u), v) =

∫ (
2cn∇gw · ∇gv +Rgwv + |u+ w|2

∗−2(u+ w)v − |u|2
∗−2uv

)
dVg.

This implies that

‖f ′ε(u+ w)− f ′ε(u)‖ ≤ O(1) ‖w‖ (1 +O(ε)) +

(∫ ∣∣∣|u+ w|2
∗−2(u+ w)− |u|2

∗−2u
∣∣∣ 2n
n+2

)n+2
2n

(1 +O(ε)).

Since

|u+ w|2
∗−2(u+ w)− |u|2

∗−2u = (2∗ − 1)

∫ 1

0

|u+ sw|2
∗−2w ds,

setting y(x) = (2∗ − 1)
∫ 1

0
|u + sw|2∗−2ds, we have |u + w|2∗−2(u + w) − |u|2∗−2u = y(x)w(x). Hence

there holds (∫ ∣∣∣|u+ w|2
∗−2(u+ w)− |u|2

∗−2u
∣∣∣ 2n
n+2

)n+2
2n

≤ C ‖w‖
(∫
|y|n2

) 2
n

.

Using again the Hölder inequality, we have that |y| ≤
(∫ 1

0
|u+ sw|2∗ds

) 2
n

. So from the Fubini Theorem∫
|y|n2 dx ≤

∫ ∣∣∣∣∫ 1

0

|u+ sw|2
∗
ds

∣∣∣∣ dx =

∫ 1

0

(∫
|u+ sw|2

∗
dx

)
ds ≤ sup

s∈[0,1]

‖u+ sw‖2
∗

2∗ .

Taking into account the Sobolev inequality, it turns out that, by (23)(∫
|y|n2

) 2
n

≤ sup
s∈[0,1]

‖u+ sw‖
4

(n−2) ≤ C (‖u‖
4

(n−2) + ‖w‖
4

(n−2) ).

In conclusion we obtain (32).
We now prove (28). Given v ∈ E, we have

(f ′ε(u), v) =

∫ (
2cn∇gu · ∇gv +Rguv − |u|2

∗−2uv
)
dVg.

Taking into account formulas (9) and (11), we deduce

(f ′ε(u), v) =

∫ 2cn∇u · ∇v − ε
∑
ij

hijDiuDjv +O(ε2)|∇u||∇v|+ εR1uv +O(ε2)|u||v| − |u|2
∗−2uv


×
(

1 +
1

2
εtr h+O(ε2)

)
dx.
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Expanding the last expression in ε, and O(ε2), and using again the Hölder and the Sobolev inequality,
we obtain (28). Formulas (27), (29), (31), (33) and (34) can be obtained with similar computations.

Proof of Proposition 5.1

Let fδε : E → R be the Euler functional (5) corresponding to the metric gδ(x) = g(δx), δ > 0. For all
u ∈ E there holds

(72) fδε (u) = fε

(
δ−

n−2
2 u(δ−1x)

)
= fε(uδ,0)

and inversely

fε(u) = fδε (δ
n−2
2 u(δx)).

The map Tδ : E → E defined by Tδ(u) := uδ,0 is a linear isometry and by (72) fδε is nothing but
fδε (u) = fε ◦ Tδ. In particular for all u ∈ E it is

(73) ∇fε(u) = Tδ∇fδε (T−1
δ u).

Since fδε is related to fε by the isometry Tδ, one can apply without changes the construction of Section
3 to fδε . Hence there exists wδε ∈ (Tz0Z)⊥ such that

∇fδε (z0 + wδε) ∈ Tz0Z.

Since ∇fε(zδ,0 + wε(zδ,0)) ∈ Tzδ,0Z, by uniqueness and by (73) it turns out that

(74) wδε(x) = δ
n−2
2 wε(zδ,0)(δx).

We consider also the functional

f0
ε (u) =

∫
Rn

cn∑
i,j

gij(0)DiuDju−
1

2∗
|u|2

∗

 dVg(0),

which corresponds to the metric in Rn which is identically equal to g(0). With respect to some orthonor-
mal system of coordinates the symmetric matrix gij(0) has the diagonal form (λ1, . . . , λn), where for
brevity we have omitted the dependence of λi from ε. We note that the numbers λi are positive since
gij(0) is close to the identity matrix.

Since f0
ε is a perturbation of f0, reasoning as above we find an unique w0

ε ∈ (Tz0Z)⊥ satisfying
∇ f0

ε (z0 + w0
ε) ∈ Tz0Z. We note that, by symmetry reasons, w0

ε must be an even function in Rn. In the
next Lemma we prove some further properties of w0

ε . Define

z̃0(x) = z0

(
x1√
λ1

, . . . ,
xn√
λn

)
.

Lemma 6.1 The function w0
ε satisfies ∇ f0

ε (z0 + w0
ε) = 0. Moreover there holds

w0
ε = Tµz̃0 − z0, for some µ > 0, and f0

ε (z0 + w0
ε) = b0.

Proof. The functional f0
ε is invariant under the transformations u → uµ,ξ, for all µ > 0 and ξ ∈ Rn.

From this fact one can deduce that f0
ε (zµ,ξ +w0

ε(zµ,ξ)) is independent of µ, ξ. Hence, by Proposition 3.2
(iv), the points zµ,ξ + w0

ε(zµ,ξ) are all critical for f0
ε , and in particular it is ∇ f0

ε (z0 + w0
ε) = 0.

The positive solutions u of ∇ f0
ε (u) = 0 can be completely classified. In fact, using the coordinates

introduced above, a critical point u of f0
ε is a solution of the problem

−2cn
∑
i

λiD
2
iiu = u2∗−1, u ∈ E.
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Using the change of variables xi = λiyi, and taking into account that the only solutions of −∆u = u2∗−1

are of the form zµ,ξ, one can deduce that z0 + w0
ε = Tµz̃0, for some µ > 0 (here we have used the fact

that w0
ε must be an even function).

Now we prove that f0
ε (z0 + w0

ε) = b0: in fact there holds

f0
ε (Tµz̃0) = f0

ε (z̃0) =

∫ (
cn
∑
i

λi
1

λi
|Diz0|2 −

1

2∗
|z0|2

∗

)(
x1√
λ1

, . . . ,
xn√
λn

)
|Πiλi|

1
2 dx.

Using again the change of variables xi = λiyi, we obtain the result. The proof of the Lemma is complete.

Proof of Proposition 5.1. For all u ∈ E there holds

(75) lim
δ→0
||∇fδε (u)−∇f0

ε (u)|| = 0;

(76) lim
δ→0

fδε (u) = f0
ε (u).

Equations (75) and (76) are easy to verify, for example starting with u ∈ C∞c (Rn) and proceeding by
density. Furthermore, arguing as in Lemma 4.2, one can deduce that for some C > 0 it is ‖wδε − w0

ε‖ ≤
C ‖∇fδε (z̃0) − ∇f0

ε (z̃0)‖ = C ‖∇fδε (z̃0)‖. Hence by (75), applied with u = Tµz̃0, and by Lemma 6.1, it
turns out that

(77) wδε → w0
ε = z̃0 − z0 as δ → 0.

Using (72) and (73) we deduce that

ϕε(δ, 0) = fε(zδ,0 + wε(zδ,0)) = fδε (z0 + wδε).

We can write

fδε (z0 + wδε)− f0
ε (z0 + w0

ε) =
(
fδε (z0 + wδε)− fδε (z0 + w0

ε)
)

+
(
fδε (z0 + w0

ε)− f0
ε (z0 + w0

ε)
)
.

There holds
fδε (z0 + wδε)− fδε (z0 + w0

ε) = fε(zδ,0 + Tδw
δ
ε)− fε(zδ,0 + Tδw

0
ε),

and from (31) it follows that

|fε(zδ,0 + Tδw
δ
ε)− fε(zδ,0 + Tδw

0
ε)| ≤ C ‖Tδwδε − Tδw0

ε‖.

By (77), and since Tδ is an isometry, it is fδε (z0 +wδε)− fδε (z0 +w0
ε)→ 0 as δ → 0. From (76) we deduce

that also fδε (z0 + w0
ε)− f0

ε (z0 + w0
ε)→ 0 as δ → 0. Hence fδε (z0 + wδε)− f0

ε (z0 + w0
ε)→ 0 as δ → 0. By

means of the last computations we have proved that

(78) lim
δ→0

ϕε(δ, ξ) = b0, ξ = 0.

Actually the above reasoning can be performed uniformly if ξ varies in a fixed compact set of Rn;
this implies (67). Equation (68) can be proved using the Kelvin transform. In fact, since the same
computations can be repeated in the same way for f ]ε , one has, by formula (22)

lim
µ+|ξ|→+∞

ϕε(µ, ξ) = lim
(µ,ξ)→0

ϕ]ε(µ, ξ) = 0.

This concludes the proof.
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