
Chaos, Solitons and Fractals 186 (2024) 115279

0
n

Contents lists available at ScienceDirect

Chaos, Solitons and Fractals

journal homepage: www.elsevier.com/locate/chaos

Interbank network reconstruction enforcing density and reciprocity
Valentina Macchiati a,∗, Piero Mazzarisi b, Diego Garlaschelli c,d,e

a Scuola Normale Superiore, P.zza dei Cavalieri 7, Pisa, 56126, Italy
b Università degli Studi di Siena, P.zza S.Francesco, 7-8, Siena, 53100, Italy
c IMT School of Advanced Studies, P.zza San Ponziano, 6, Lucca, 55100, Italy
d Lorentz Institute for Theoretical Physics, University of Leiden, Niels Bohrweg, 2, Leiden, NL-2333 CA, The Netherlands
e INdAM-GNAMPA Istituto Nazionale di Alta Matematica, Piazzale Aldo Moro, 5, Roma, 00185, Italy

A R T I C L E I N F O

Keywords:
Financial networks
Network reconstruction
Systemic risk
Spectral properties

A B S T R A C T

Networks of financial exposures are the key propagators of risk and distress among banks, but their empirical
structure is not publicly available because of confidentiality. This limitation has triggered the development of
methods of network reconstruction from partial, aggregate information. Unfortunately, even the best methods
available fail in replicating the number of directed cycles, which on the other hand play a crucial role in
determining graph spectra and hence the degree of network stability and systemic risk. Here we address this
challenge by exploiting the hypothesis that the statistics of higher-order cycles is strongly constrained by that
of the shortest ones, i.e. by the amount of dyads with reciprocated links. First, we provide a detailed analysis
of link reciprocity on the e-MID dataset of Italian banks, finding that correlations between reciprocal links
systematically increase with the temporal resolution, typically changing from negative to positive around a
timescale of up to 50 days. Then, we propose a new network reconstruction method capable of enforcing,
only from the knowledge of aggregate interbank assets and liabilities, both a desired sparsity and a desired
link reciprocity. We confirm that the addition of reciprocity dramatically improves the prediction of several
structural and spectral network properties, including the largest real eigenvalue and the eccentricity of the
elliptical distribution of the other eigenvalues in the complex plane. These results illustrate the importance
of correctly addressing the temporal resolution and the resulting level of reciprocity in the reconstruction of
financial networks.
1. Introduction

Networks serve as a valuable tool for analyzing complex systems,
as they clearly illustrate the interactions between components. Often,
the structure of these underlying networks is not readily available due
to confidentiality, making it challenging to accurately estimate key
systemic properties such as resilience to shock propagation. This is
particularly true for interbank market networks, where nodes represent
financial institutions, links indicate financial ties (loans), and access to
bilateral exposures is limited. Instead, we rely on aggregated exposures
that are publicly reported in balance sheets. Systemic risk analysis
typically involves reconstructing the underlying network using avail-
able information and employing either deterministic or probabilistic
approaches. The former yields a unique reconstructed configuration,
meaning the first configuration found by the greedy algorithm that
is compatible with the given constraints. However, this approach is
implicitly biased, as the probability that such a unique configuration
is identical to the empirical one is almost zero. In contrast, the proba-
bilistic approach generates a set of configurations compatible with the
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available information. Each of these configurations is assigned a prob-
ability value, forming an ensemble in statistical mechanics parlance.
While the imposed constraints are perfectly matched in deterministic
approaches, they are only matched on average in the ensemble of
probabilistic ones. Nevertheless, in [1], the authors analyze the prob-
lem of network reconstruction using ensemble methods and show that
reconstructability is achieved when all the constraints, apart from being
replicated on average, are also ‘sufficiently close’ to their expected
value in individual typical realizations of the ensemble.

With a focus on financial networks, the review [2] shows that
reconstruction methods can be classified depending on the link density
of reconstructed configurations, in particular into dense reconstruction
methods [3–5], density-tunable reconstruction models [6–9], exact-
density methods [10–13], and probabilistic approaches such as the
copula method for reconstruction [14], the Bayesian approach [15], a
mixed deterministic and stochastic approach leveraging balance sheet
information [16], a block modeling method [17], and the Minimum
Density algorithm [18]. In [19], the authors access empirical data from
960-0779/© 2024 The Author(s). Published by Elsevier Ltd. This is an open access ar
c-nd/4.0/).
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25 markets across 13 jurisdictions and focus on testing the performance
of different models [4,6,11,14,17,18,20] capable of reconstructing the
network based solely on aggregated positions. They demonstrate that
the Fitness Induced Directed Configuration model (F-DCM) [11] out-
performs other ensemble methods across various financial markets.
In [21], a similar test is conducted for the payment messages network,
concluding that the F-DCM model is a suitable choice for sparse ma-
trices. In the context of the energy trade network, F-DCM continues
to emerge as the winner in the horse race among different network
reconstruction methods, as highlighted in [22]. The F-DCM model is
recommended when no exogenous information is available in addition
to the aggregated exposures, as it performs well on both large sparse
networks and small dense networks in terms of edge probabilities
and edge values. Given these results, the F-DCM model successfully
reconstructs the main structural properties of the empirical network.
Furthermore, this model also replicates the dynamic properties [11],
such as bond percolation properties, the shortest path length distribu-
tion, and DebtRank values for synthetic networks. Henceforth, we refer
to it as the state-of-the-art.

Graph spectra, particularly the principal eigenvalue 𝜆𝑚𝑎𝑥, are pivotal
n assessing systemic stability. This importance stems from their ability
o capture the loops and cycle structures, which drive the propagation
nd amplification of an initial shock within the system. In [23], the
uthors conduct a linear stability analysis of large dynamical systems
n random directed graphs, which are oriented and locally tree-like.
hey demonstrate that the leading eigenvalue of these random graphs
epends solely on a few system parameters, including the mean de-
ree and a parameter characterizing the correlations between in- and
ut-degrees. Interestingly, they show that dynamical systems on such
irected graphs can remain stable even when the degree distribution
as unbounded support. In contrast, in the undirected case, such a
ystem becomes unstable if the system size is sufficiently large. The
ndirected case and the locally tree-like structure can be viewed as
xtremes in terms of stability and reciprocity structure. In the former,
ll links are bidirected, while in the latter, there are no bilateral links.
hen considering not just the leading eigenvalue but the entire spec-

rum, we observe that it lies in the real domain for the undirected case
nd in the complex domain for the directed case. In [24], it is shown
hat the average eigenvalue distribution of square real random non-
ymmetric matrices (directed case) is uniform in an ellipse, with real
nd imaginary axes dependent on the reciprocity value. When all links
re bidirected (undirected case), Wigner’s semicircle law is recovered.
n [25], the authors analyze the occurrences of dyadic motifs, i.e. the
umber of reciprocated, non-reciprocated, and empty dyads, in the
uarterly Dutch interbank network from 1998 to 2008. They compute
he z-score to quantify the difference between these occurrences in the
mpirical network and those generated by random null models. When
he considered null model is the directed random graph (DRG), the
RG consistently underestimates the empirical reciprocity. In contrast,

he directed configuration model (DCM) initially underestimates it from
998 to 2004, albeit performing better than the DRG, and then begins
o overestimate it until the network configuration collapses in 2008.

In the banking system, reciprocity corresponds to the presence of
redits and loans between counterparties within a given period. The
ain reason banks enter the deposit market is to extend loans to each

ther to match the capital requirements imposed by regulation day by
ay. As such, banks can behave as lenders and borrowers depending
n their monetary needs. There are two main reasons for increasing
he chances of observing credits and loans between counterparties si-
ultaneously. First, the typical maturity of credit is one day (overnight
arket), one week, or one month, like in the Italian electronic Market

f Interbank Deposit (e-MID) analyzed below. Moreover, the loan terms
re defined at the moment of credit extension and cannot be changed
ereafter. As such, a credit and a loan between two counterparties

‘overlapping’’ over some period can be described as a pair of recip-
2

ocated links in the interbank network. Second, preferential lending
(i.e. the tendency of extending loans with preferential counterparties)
is recognized as a key aspect of a credit market; e.g. see [26] for a
quantitative analysis of the e-MID market. It also represents a (sta-
tistically significant) explanation for the stability (i.e. persistence) of
links (credits) in both directions for the e-MID market, see [27]. All
these aspects justify the inclusion of reciprocity as a key feature of
the interbank network, in particular for large aggregation scales within
which preferential lending plays a major role. Finally, the presence of
‘‘credit cycles’’ is crucial in terms of systemic risk: a missed payment of
a bank to a counterparty can induce financial distress, which feeds back
to the first bank in the case of bilateral credit exposures. The presence
of network cycles has been recognized as crucial for risk propagation,
e.g. see [28], and its impact on systemic risk is related to the largest
eigenvalue of the adjacency matrix [29].

Given the relevance of reciprocity in both spectral distribution and
system stability, we would like to concentrate on it and our case study
is the interbank market network. In the scientific literature, there exist
models capturing reciprocity patterns in networks as opposed to the
F-DCM. However, they are not devised for reconstruction, typically.
For example, the Reciprocal Configuration Model (RCM) describes all
possible dyadic configurations at the node level, distinguishing both
outward and inward links, and if they are reciprocated or not. Also,
DCM has been generalized to account for reciprocity at the network
level, i.e. globally in [30]. Both of them require, however, the degree
sequence as an input of the method. In general, such information is not
available for interbank networks due to data confidentiality. Our goal is
to propose an extension of the F-DCM that accounts for link reciprocity
at the network level, thus representing one more parameter only to
be tuned to solve the reconstruction problem. Interestingly, similar
to network density, the empirical value of reciprocity is generally
available in the literature; see, e.g., [31–33].

The remainder of the paper is structured as follows: Section 2
provides a brief overview of the exponential random graph models and
introduces our model. Section 3 describes the dataset we use to corrob-
orate our findings. Section 4 presents the results. Section 5 is for final
remarks and conclusions. Appendix sections contain supplementary
material supporting the results.

2. Methods

Within the probabilistic framework, network reconstruction meth-
ods can be classified into three groups depending on the particular
estimation approach adopted for applications. Bayesian methods rely
on probabilistic models to estimate network parameters, incorporating
prior knowledge and updating beliefs based on observed data. These
methods are robust in handling uncertainty but can be computationally
intensive; see, e.g., [15,34]. Statistical approaches, such as correla-
tion or regression analysis, identify relationships between variables to
reconstruct networks. They are generally simpler and faster but may
struggle with capturing non-linear interactions or dependencies. When
complemented with machine learning techniques, such drawbacks can
be overcome to achieve better performances. For example, compressed
sensing, a recently developed paradigm in convex optimization, is
suggested in [35] to recover sparse signals or structures from incom-
plete data. LASSO [36] and Signal LASSO [37] extend this method by
incorporating regularization to promote sparsity, helping to identify
the most significant connections in complex networks. Adaptive Signal
LASSO [38] further enhances this capability by dynamically adjusting
penalties based on data. In the same context, in order to overcome
the issue of hidden nodes, a robust two-stage reconstruction method is
proposed in [39] to infer the complete topology from available time se-
ries data of accessible nodes. Moreover, deep learning techniques [40]
can enhance the inference of network structure using least squares
generative adversarial networks. In [41], e.g., fuzzy neural networks
and a predictive model are used to adapt and control complex industrial

processes under varying conditions. These methods can handle complex
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and high-dimensional data, offering high accuracy and scalability, but
they often require extensive training data and computational resources.

Finally, in the general context of statistical methods, the maximum
entropy approach [2,42] represents the best compromise to achieve
high flexibility, scalability, and control in reconstructing networks
from limited information. Relying on the point estimation of max-
imum entropy distributions, it derives the least biased probability
distribution consistent with the limited information encoded in several
constraints, representing the available information about the network
to be reconstructed. Its effectiveness largely depends on the available
network data and whether local or global constraints are used. Lo-
cal constraints are specific to nodes, such as the degree sequence or
strengths, while global constraints pertain to the overall system, like
link density or reciprocity. It is clear that the more information is avail-
able, the better the reconstruction will be. In this paper, we propose
a new network reconstruction method within the general context of
the maximum entropy approach by using partial information on global
density and reciprocity, together with aggregated banks’ exposures, for
reconstructing the interbank network.

Matrix representation. The weighted adjacency 𝑊 = {𝑤𝑖𝑗} is the 𝑁 ×𝑁
atrix representation of a network with 𝑁 nodes, where the generic

lement 𝑤𝑖𝑗 denotes the weight of the link from node 𝑖 to node 𝑗.
The adjacency matrix 𝐴 = {𝑎𝑖𝑗} represents the binary version of 𝑊 ,
with generic element 𝑎𝑖𝑗 = 1 if 𝑤𝑖𝑗 > 0 (and 0 otherwise). We define
in/out-degree and strengths of the node 𝑖: 𝑘𝑖𝑛𝑖 =

∑

𝑗 𝑎𝑗𝑖, 𝑘𝑜𝑢𝑡𝑖 =
∑

𝑗 𝑎𝑖𝑗 ,
𝑠𝑖𝑛𝑖 =

∑

𝑗 𝑤𝑗𝑖, 𝑠𝑜𝑢𝑡𝑖 =
∑

𝑗 𝑤𝑖𝑗 , respectively.
Exponential Random Graphs (ERGs) [42–44] are characterized

as the ensemble of graphs where the probability 𝑃 (𝐺) is determined
by two distinct optimization processes. The first process, entropy maxi-
mization, ensures that the derived probability distribution only encodes
information from the selected constraints. 𝑃 (𝐺) is the probability asso-
ciated with the graph 𝐺 in the ensemble 𝒢 . This probability is chosen
by maximizing the Shannon-Gibbs entropy 𝑆

𝑆 = −
∑

𝐺∈𝒢
𝑃 (𝐺) ln𝑃 (𝐺) (1)

such that the expectation value of the observables {⟨𝐶𝑖(𝐺)⟩𝒢 } are equal
to the observed values {𝐶∗

𝑖 }
∑

𝐺∈𝒢
𝑃 (𝐺)𝐶𝑖(𝐺) = 𝐶∗

𝑖 ,
∑

𝐺∈𝒢
𝑃 (𝐺) = 1. (2)

By introducing the Lagrange multipliers 𝜈, 𝜃𝑖 the maximum entropy
probability distribution is obtained by:

𝜕
𝜕𝑃 (𝐺)

{

𝑆 + 𝜈
(

1 −
∑

𝐺∈𝒢
𝑃 (𝐺)

)

+
∑

𝑖
𝜃𝑖
(

𝐶∗
𝑖 −

∑

𝐺∈𝒢
𝑃 (𝐺)𝐶𝑖(𝐺)

)

}

= 0 (3)

The solution is then:

𝑃 (𝐺|𝜃) = 𝑒−𝐻(𝐺,𝜃)

𝑍(𝜃)
(4)

where 𝐻(𝐺, 𝜃) =
∑

𝑖 𝜃𝑖𝐶𝑖 is the graph Hamiltonian and 𝑍(𝜃) is the
artition function which properly normalizes the probability distribu-
ion. The second process, likelihood maximization, ensures that the
alue of the imposed constraints aligns with the observed value without
ny statistical bias. The value Lagrange multipliers 𝜃s are obtained by
og-likelihood maximization.

When the imposed constraints are the in and out degree sequences,
he corresponding ERG model is called Directed Configuration Model
DCM). The DCM Hamiltonian and the link probability are, respec-
ively,

𝐷𝐶𝑀 =
𝑁
∑

𝑖=1
𝛼𝑖𝑘

𝑜𝑢𝑡
𝑖 + 𝛽𝑖𝑘

𝑖𝑛
𝑖 =

𝑁
∑

𝑖=1

𝑁
∑

𝑗≠𝑖=1
(𝛼𝑖 + 𝛽𝑗 )𝑎𝑖𝑗 , (5)

𝐷𝐶𝑀
𝑖𝑗 =

𝑥𝑖𝑦𝑗
1 + 𝑥𝑖𝑦𝑗

, (6)

where 𝑥𝑖 = 𝑒−𝛼𝑖 , 𝑦𝑖 = 𝑒−𝛽𝑖 are the exponential of the Lagrange
multipliers that are associated with the out- and in-degree, respectively.
In the case of DCM, there are 2N Lagrange multipliers [�⃗�, 𝑦] to be tuned
or estimated.
3

2.1. Fitness-directed configuration model

However, the use of the Directed Configuration Model is not feasible
when the degrees of nodes are unknown, a situation that often arises
due to confidentiality or data scarcity. This issue can be addressed by
employing the fitness ansatz [45], which posits that the connection
robability between any two nodes is determined by peculiar non-
opological properties of the involved nodes. More specifically, it is
ostulated that the ‘activity’ of each node 𝑖 in the network is en-
apsulated by an inherent quantity known as fitness, which is likely
inked to the Lagrange multipliers 𝑥𝑖, 𝑦𝑖 that control that node’s out-
nd in-degree through a monotone functional relationship.

In this paper, the focus is on the interbank market network whose
odes are banks and links denote lending relationships between them.
ue to confidentiality, the only local data available are the total

nterbank assets/liabilities from the public balance sheets of institutions
strengths), but the empirical values of a few global topological metrics
an be found in the literature [31]. In this context, the fitness ansatz has
een successfully validated in previous studies [2,9,11] by observing
strong linear correlation between the Lagrange multipliers of nodes’

egrees and the total assets (𝒜 ) and liabilities (ℒ ) values of the
orresponding banks: 𝑥𝑖 ≡

√

𝑏𝒜𝑖 and 𝑦𝑖 ≡
√

𝑐ℒ𝑖. In the Fitness induced
Directed Configuration Model (F-DCM) the link probability in Eq. (6) is
transformed as follows:

𝑝𝐹−𝐷𝐶𝑀
𝑖𝑗 =

𝑧𝒜𝑖ℒ𝑗

1 + 𝑧𝒜𝑖ℒ𝑗
(7)

where 𝑧 =
√

𝑏𝑐 is the free parameter that is tuned by imposing the
link density, denoted as 𝑑. This parameter 𝑧 is found by solving the
ollowing nonlinear equation:
∑

,𝑗≠𝑖
𝑝𝐹−𝐷𝐶𝑀
𝑖𝑗 = 𝑁(𝑁 − 1)𝑑 (8)

here 𝑑 is the link density of the network, namely the total number of
inks divided by all the possible pairs of distinct nodes. As aforemen-
ioned, this model is considered state-of-the-art for interbank market
etworks. In [19], the performance of various reconstruction methods
as evaluated using empirical bilateral data from 25 markets across
3 jurisdictions. These markets included interbank networks, payment
etworks, networks of repurchase agreements, foreign exchange deriva-
ives, credit default swaps, and equities. F-DCM [11] demonstrated
uperior performance and was identified as ‘‘the clear winner among
nsemble methods’’.

.2. Encoding the loop structure

An effective reconstruction method should aim at replicating as
any topological properties of the real network as possible, while still

equiring as input as little aggregate empirical information as possible,
iven what can be known and observed about the real system. Loop
tructures are indeed crucial as they determine whether an initial
hock is propagated and amplified. However, the Directed Configuration
odel does not consider any information on cycle structure, unlike the
eciprocal Configuration Model (RCM) and the Global Reciprocity Model
GRM) [46]. All three models constrain the degree sequences, but the
RM and RCM also constrain the number of loops of order two; the
RM does this globally, while the RCM does it locally at the node level.
Global Reciprocity Model constraints the in/out-degree and the global

umber of bidirected links 𝐿↔ =
∑

𝑖≠𝑗 𝑎𝑖𝑗𝑎𝑗𝑖. The GRM Hamiltonian and
he link probability are:

𝐺𝑅𝑀 =
𝑁
∑

𝑖=1

𝑁
∑

𝑗≠𝑖=1
(𝛼𝑖 + 𝛽𝑗 )𝑎𝑖𝑗 + 𝛾

∑

𝑖≠𝑗
𝑎𝑖𝑗𝑎𝑗𝑖, (9)

𝐺𝑅𝑀→
𝑖𝑗 =

𝑥𝑖𝑦𝑗
2

, (10)

1 + 𝑥𝑖𝑦𝑗 + 𝑥𝑗𝑦𝑖 + 𝑧 𝑥𝑖𝑦𝑗𝑥𝑗𝑦𝑖
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Fig. 1. Empirical density, reciprocity and number of active nodes in the period 1999–2014. Different colors correspond to different aggregation periods. (For interpretation of
the references to color in this figure legend, the reader is referred to the web version of this article.)
𝑝𝐺𝑅𝑀↔
𝑖𝑗 =

𝑧2𝑥𝑖𝑦𝑗𝑥𝑗𝑦𝑖
1 + 𝑥𝑖𝑦𝑗 + 𝑥𝑗𝑦𝑖 + 𝑧2𝑥𝑖𝑦𝑗𝑥𝑗𝑦𝑖

(11)

where 𝑥𝑖 = 𝑒−𝛼𝑖 , 𝑦𝑖 = 𝑒−𝛽𝑖 , 𝑧 = 𝑒−𝛾 are the exponential of the
Lagrange multipliers that are associated with the out-degree, in-degree
and number of cycle of order two, respectively. In the case of GRM,
there are 2N+1 Lagrange multipliers [�⃗�, 𝑦, 𝑧] to be tuned or estimated.

Reciprocal Configuration Model constraints separately the non-
reciprocated out-degree sequence 𝑘→𝑖 =

∑

𝑗≠𝑖 𝑎𝑖𝑗 (1 − 𝑎𝑗𝑖), the non-
reciprocated in-degree sequence 𝑘←𝑖 =

∑

𝑗≠𝑖 𝑎𝑗𝑖(1 − 𝑎𝑖𝑗 ) and the recip-
rocated degree sequence 𝑘↔𝑖 =

∑

𝑗≠𝑖 𝑎𝑖𝑗𝑎𝑗𝑖. The RCM Hamiltonian and
the mono- and bi-directed link probability are:

𝐻𝑅𝐶𝑀 =
𝑁
∑

𝑖=1
𝛼𝑖𝑘

→
𝑖 + 𝛽𝑖𝑘

←
𝑖 + 𝛾𝑖𝑘

↔
𝑖 , (12)

𝑝𝑅𝐶𝑀→
𝑖𝑗 =

𝑥𝑖𝑦𝑗
1 + 𝑥𝑖𝑦𝑗 + 𝑥𝑗𝑦𝑖 + 𝑧𝑖𝑧𝑗

, (13)

𝑝𝑅𝐶𝑀↔
𝑖𝑗 =

𝑧𝑖𝑧𝑗
1 + 𝑥𝑖𝑦𝑗 + 𝑥𝑗𝑦𝑖 + 𝑧𝑖𝑧𝑗

(14)

where 𝑥𝑖 = 𝑒−𝛼𝑖 , 𝑦𝑖 = 𝑒−𝛽𝑖 , 𝑧𝑖 = 𝑒−𝛾𝑖 are the exponential of the
Lagrange multipliers that are associated with the non-reciprocated out-
degree, the non-reciprocated in-degree and the reciprocated degree,
respectively. In the case of GRM, there are 3𝑁 Lagrange multipliers
[�⃗�, 𝑦, 𝑧] to be tuned or estimated.

2.3. Fitness-global reciprocity model

In the context of interbank networks, the only available local data
are the total interbank assets and liabilities. As previously mentioned,
4

the Fitness-induced Directed Configuration Model [11] requires a lo-
cal constraint (the strengths) and a global constraint (the number of
connections). This paper seeks to enhance this state-of-the-art model to
achieve a cycle structure more akin to the empirical one. To this end,
we introduce an additional constraint: the number of bidirected links.
This is a global property, the value of which can be found in the litera-
ture. While we could have imposed other constraints, particularly local
ones, they are unfortunately not available. By imposing the empirical
number of cycles of order two, we expect to better capture the structure
of higher-order cycles.

As F-DCM follows from the directed configuration model by impos-
ing the fitness ansatz, our model the Fitness induced Global Reciprocity
Model (F-GRM), is derived from the global reciprocity model by im-
posing the same fitness ansatz, 𝑥𝑖 ≡

√

𝑏𝒜𝑖 and 𝑦𝑖 ≡
√

𝑐ℒ𝑖. The GRM
Hamiltonian is given in Eq. (9). By introducing the fitness ansatz, the
probabilities of mono- and bi-directed links are transformed as follows:

𝑝𝐹−𝐺𝑅𝑀→
𝑖𝑗 =

𝑢𝒜𝑖ℒ𝑗

1 + 𝑢𝒜𝑖ℒ𝑗 + 𝑢𝒜𝑗ℒ𝑖 + 𝑢2𝑣2𝒜𝑖ℒ𝑗𝒜𝑗ℒ𝑖
(15)

𝑝𝐹−𝐺𝑅𝑀↔
𝑖𝑗 =

𝑢2𝑣2𝒜𝑖ℒ𝑗𝒜𝑗ℒ𝑖

1 + 𝑢𝒜𝑖ℒ𝑗 + 𝑢𝒜𝑗ℒ𝑖 + 𝑢2𝑣2𝒜𝑖ℒ𝑗𝒜𝑗ℒ𝑖
(16)

where 𝑢 =
√

𝑏𝑐, 𝑣 = 𝑒−𝛾 are the free parameters that are tuned by
imposing that the observed values for link density 𝑑 and reciprocity 𝑟
(namely the number of links in both directions divided by the number
of total links) match their expected values according to the model. The
generic probability of a link between nodes 𝑖 and 𝑗 is

𝑝𝐹−𝐺𝑅𝑀 = 𝑝𝐹−𝐺𝑅𝑀→ + 𝑝𝐹−𝐺𝑅𝑀↔. (17)
𝑖𝑗 𝑖𝑗 𝑖𝑗
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The parameters 𝑢, 𝑣 are estimated by solving the following system of
onlinear equations1:

∑

𝑖,𝑗≠𝑖
𝑝𝐹−𝐺𝑅𝑀
𝑖𝑗 = 𝑁(𝑁 − 1)𝑑

∑

𝑖,𝑗≠𝑖 𝑝
𝐹−𝐺𝑅𝑀↔
𝑖𝑗

∑

𝑖,𝑗≠𝑖 𝑝
𝐹−𝐺𝑅𝑀
𝑖𝑗

= 𝑟
(18)

here 𝑑 and 𝑟 are the observed values for link density and reciprocity.

. e-MID data

The electronic Market for Interbank Deposits (e-MID) is a trading
latform for unsecured money-market loans, accessible to both Ital-
an and foreign banks. We have access to the interbank transactions
inalized on e-MID.2 from January 1999 to December 2014. For each
ontract, we have access to the amount exchanged, the date, the IDs of
he lender and the borrower banks, and the contract maturity.

Our analysis is limited to transactions among Italian banks, not
nly because they constitute the majority both in number (98%) and
n volume (85%) in 2011, but also due to their relatively minor
luctuations in terms of active nodes over the years. In Fig. 1(c), we
bserve a gradual decrease in the number of active banks over the
ears. This decline has remained consistently stable over the years.
hile previous literature extensively explores the evolution of the e-
ID network across different years and aggregation periods, the focus

ften centres on the emergence of preferential lending relationships
ather than a detailed examination of the relationship between density
nd reciprocity. In [47], authors assert that a quarterly aggregation
rovides the best trade-off, capturing both the emergence of prefer-
ntial relationships and the dynamic evolution of the system. Daily
ggregation tends to exhibit a less informative random structure, while
early aggregation might be problematic due to the potential rapid
volution of the banking network, especially during unstable times.
n [48], observations indicate that the reduction in interbank lending
uring the 2008 financial crisis primarily resulted from the activity
eduction of core banks. The e-MID overnight market is also influenced
y the ECB’s unconventional measures, such as long-term refinancing
perations (LTROs) at the beginning of 2012. In [49], findings illustrate
hat under normal conditions, the most likely network structure is
ipartite. However, following the LTRO, the network adopts a random
rganization. Moreover, depending on the granularity of the data, other
tructures than core–periphery can better fit the data [50].

.1. Description of empirical networks

e-MID and interbank markets in general can be easily represented
s a directed network, where interbank loans constitute the direct
xposures between banks and allow for the propagation of financial
istress in the system. The generic entry 𝑎𝑖𝑗 of the adjacency matrix
= {𝑎𝑖𝑗}𝑖,𝑗=1,…,𝑁 takes value 𝑎𝑖𝑗 = 1 if there is at least one lending

relation between bank 𝑖 (lender) and 𝑗 (borrower) in the aggregation
period under investigation, otherwise 𝑎𝑖𝑗 = 0. Self-loops, namely links
that connect nodes with themselves, are not admitted, meaning that
𝑎𝑖𝑖 = 0.

In this work, we introduce a new reconstruction model F-GRM that
goes beyond F-DCM by incorporating not only the link density (𝑑) but
also the link reciprocity (𝑟). We begin by analyzing the relationship
between density and reciprocity across various aggregation periods and
different years. This is essential to determine under which conditions
link reciprocity can be reproduced by simpler reconstruction models,

1 Further details on the parameters’ estimation procedure could be found
n Appendix A.

2 Further details are available in Appendix B.
5

such as the directed random model and the F-DCM, and when a more
complex method, like ours, becomes necessary. It is

𝑑 = 𝐿
𝑁(𝑁 − 1)

=
∑

𝑖≠𝑗 𝑎𝑖𝑗
𝑁(𝑁 − 1)

, (19)

𝑟 = 𝐿↔

𝐿
=

∑

𝑖≠𝑗 𝑎𝑖𝑗𝑎𝑗𝑖
∑

𝑖≠𝑗 𝑎𝑖𝑗
, (20)

where 𝐿 is the number of links, 𝐿↔ is the number of bilateral links,
𝐴 = {𝑎𝑖𝑗} is the adjacency matrix and 𝑁 is the number of active nodes.

In Figs. 1(a) and 1(b), we investigate the evolution of density and
eciprocity across different aggregation periods. For directed random
etworks, the link probability is 𝑝 and the link density and reciprocity

have the same value 𝑑 = 𝑟 = 𝑝. Using the random case as the bench-
mark, we observe that daily (yearly) empirical networks are under-
(over-) reciprocated, while quarterly networks are comparable. This
implies that in the quarterly case, a random model that only imposes
link density can also capture the reciprocity value. Additionally, both
density and reciprocity exhibit less stability as the aggregation period
increases. Specifically, a notable decline in density and reciprocity
values has emerged from early 2009, contrasting with the relatively
stable decrease in the number of active nodes depicted in Fig. 1(c).
Upon analyzing the evolution of density and reciprocity values from
daily to yearly aggregations, we note that density increases at a slower
rate than reciprocity. This suggests a higher likelihood of a borrower
becoming a lender, or vice versa, as the aggregation period increases,
compared to observing a new lending relationship. This observation
supports the presence of preferential lending, potentially linked to the
cost of ‘‘trusting’’ new counterparties. Similar behavior is observed in
other economic networks, such as the World Trade Network [51]. Fig. 1
illustrates that density values cannot be used to infer reciprocity due
to the non-trivial relation between them, depending in particular on
either the aggregation scale or the year of analysis. In conclusion, this
empirical evidence supports our objective of advancing the F-DCM by
imposing not only link density but also reciprocity. Indeed, the latter
provides additional information to the model compared to the former.

4. Results

This paper aims to enhance F-DCM to generate a network ensem-
ble with spectra and loop structures that better reproduce empirical
observations. While the F-DCM model ensures the correct number of
links (𝐿), in our model, we also constrain the number of bilateral links
(𝐿↔). The scarcity of data due to confidentiality constraints prevents
the use of local constraints to achieve a more refined ensemble. Thus,
we explore how imposing only the empirical value of global link reci-
procity allows us to obtain spectra that closely align with the empirical
ones. The link reciprocity of our model is, by definition, equal to the
constrained empirical reciprocity (𝑟𝐹 -𝐺𝑅𝑀 = 𝑟𝑒𝑚𝑝), while in the case of
F-DCM, it is directly derived by the constrained link density, which is

𝑟𝐹 -𝐷𝐶𝑀 =

∑

𝑖≠𝑗 𝑝
𝐹 -𝐷𝐶𝑀
𝑖𝑗 𝑝𝐹 -𝐷𝐶𝑀

𝑗𝑖
∑

𝑖≠𝑗 𝑝
𝐹 -𝐷𝐶𝑀
𝑖𝑗

(21)

where 𝑝𝐹 -𝐷𝐶𝑀
𝑖𝑗 is given by Eq. (7).

4.1. Empirical and expected reciprocity

First, we analyze which aggregation period the F-DCM replicates
the empirical link reciprocity. It is worth noting that F-GRM predicts
𝑟𝑒𝑚𝑝 = 𝑟𝐹 -𝐺𝑅𝑀 by construction. To quantify the difference between
the empirical reciprocity 𝑟𝑒𝑚𝑝 and the expected reciprocity by F-DCM
𝑟𝐹 -𝐷𝐶𝑀 , we define the following variable:

𝜌𝐹 -𝐷𝐶𝑀 =
𝑟𝑒𝑚𝑝 − 𝑟𝐹 -𝐷𝐶𝑀 . (22)

1 − 𝑟𝐹 -𝐷𝐶𝑀
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Fig. 2. 𝜌𝐹 -𝐷𝐶𝑀 when we consider different aggregation periods 𝛥𝑡 (daily unit) in the period 1999–2014. Different colors correspond to different years. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)
When 𝜌𝐹 -𝐷𝐶𝑀 approaches zero, F-DCM aligns with the empirical reci-
procity. However, for positive (negative) values, the ensemble of net-
works generated by the F-DCM model tends to under (over) estimate
the empirical reciprocity. This is illustrated in Fig. 1. The topological
properties of the e-MID network exhibit instability over the considered
period. We initially segment the dataset into different years and subse-
quently examine all possible aggregation periods 𝛥𝑡 (in days) ranging
from daily to yearly. In Fig. 2, a consistent pattern emerges over the
years: at the daily level, 𝜌𝐹 -𝐷𝐶𝑀 is negative but close to zero, then
decreases, reaches a minimum, crosses zero, turns positive, and peaks
at the yearly aggregation level.

Fig. 3 provides a more detailed illustration of the relationship
between the expected reciprocity by F-DCM (𝑟𝐹 -𝐷𝐶𝑀 ) and the em-
pirical reciprocity (𝑟𝑒𝑚𝑝) as the aggregation period varies. Notably,
we observe distinct patterns in different years. In 1999, F-DCM over
(under) estimates the empirical reciprocity for short (long) aggregation
periods, while matching it for quarterly networks. Conversely, in 2007,
F-DCM accurately reproduces the empirical reciprocity up to quarterly
networks, after which the model begins to underestimate it. For the
sake of readability, we present the results for 1999 and occasionally for
2007 in this section. Additional plots can be found in Appendix D. For
a more systematic analysis of F-DCM’s performance, Table 1 presents
the aggregation periods corresponding to the minimum, maximum, and
values closest to zero for 𝜌𝐹 -𝐷𝐶𝑀 in each year. 𝑡𝑚𝑖𝑛 and 𝑡0 undergo
significant changes across the years. They exhibit relative stability
during the period 1999–2006, undergo variations in the pre-crisis
and crisis periods of 2007–2008, and further adjustments in 2012
after the LTRO measures. Viewed from a different angle, this table
reinforces the earlier observation. The value of the link reciprocity
and its dynamical evolution are difficult to match and guess when
only the link density is given. Indeed, 𝑡0 varies from a monthly to a
quarterly range. This further underscores the necessity of introducing
an additional parameter related to reciprocity, as presented in our
model, F-GRM, to complement F-DCM. In Figs. 4, we present a com-
parison of link probabilities between F-DCM and our model F-GRM,
considering three different aggregation periods. Figs. 4(a) and 4(c)
showcase the cases of the minimum and maximum values of 𝜌𝐹 -𝐷𝐶𝑀 ,
while Fig. 4(b) represents the case where 𝜌𝐹 -𝐷𝐶𝑀 ∼ 0. On the left,
we illustrate the F-DCM unconditional probability 𝑝𝐹 -𝐷𝐶𝑀

𝑖𝑗 (Eq. (7))
versus the F-GRM probability 𝑝𝐹 -𝐺𝑅𝑀

𝑖𝑗 (Eq. (17)). In the center, we
show the mono-directed probability 𝑝𝐹 -𝐷𝐶𝑀→

𝑖𝑗 = 𝑝𝐹 -𝐷𝐶𝑀
𝑖𝑗 (1 − 𝑝𝐹 -𝐷𝐶𝑀

𝑗𝑖 )
with respect to 𝑝𝐹 -𝐺𝑅𝑀→, and on the right, we illustrate the bi-directed
probability 𝑝𝐹 -𝐷𝐶𝑀↔

𝑖𝑗 = 𝑝𝐹 -𝐷𝐶𝑀
𝑖𝑗 𝑝𝐹 -𝐷𝐶𝑀

𝑗𝑖 versus 𝑝𝐹 -𝐺𝑅𝑀↔
𝑖𝑗 . Since both

models constrain the total number of links 𝐿 =
∑

𝑖≠𝑗 𝑝𝑖𝑗 , the sum of the
unconditional link probability is the same in both models, even if they
are differently distributed. What changes is the repartition into mono
and bidirected probabilities. As expected, when 𝜌 ∼ 0, in the
6

𝐹 -𝐷𝐶𝑀
Table 1
Aggregation periods that correspond to the minimum (𝑡𝑚𝑖𝑛), closest to zero (𝑡0) and
maximum (𝑡𝑚𝑎𝑥) value of 𝜌𝐹 -𝐷𝐶𝑀 in each year in the period 1999–2014. In a year, if
there are multiple crossing times (𝑡0) due to fluctuations of 𝜌𝐹 -𝐷𝐶𝑀 around the zero
(see Fig. 2), 𝑡0 is the maximum one.

Year 𝜌𝑚𝑖𝑛𝐹 -𝐷𝐶𝑀 𝑡𝑚𝑖𝑛 𝑡0 𝑡𝑚𝑎𝑥 𝜌𝑚𝑎𝑥𝐹 -𝐷𝐶𝑀 Year 𝜌𝑚𝑖𝑛𝐹 -𝐷𝐶𝑀 𝑡𝑚𝑖𝑛 𝑡0 𝑡𝑚𝑎𝑥 𝜌𝑚𝑎𝑥𝐹 -𝐷𝐶𝑀

1999 −0.05 17 45 256 0.13 2007 −0.01 15 17 245 0.19
2000 −0.04 14 52 253 0.16 2008 −0.01 8 18 255 0.18
2001 −0.02 17 47 250 0.16 2009 −0.01 8 13 242 0.10
2002 −0.06 7 59 254 0.14 2010 −0.03 17 27 257 0.14
2003 −0.04 16 52 253 0.20 2011 −0.02 13 37 238 0.11
2004 −0.04 24 47 258 0.18 2012 −0.007 9 16 243 0.14
2005 −0.03 11 22 252 0.22 2013 −0.02 28 52 248 0.11
2006 −0.02 10 37 254 0.26 2014 −0.015 11 20 255 0.13

center, the link probabilities of the two models overlap, demonstrating
that our extension aligns with the state-of-the-art. In the cases of
negative and positive 𝜌𝐹 -𝐷𝐶𝑀 , we observe opposite distributions of link
probabilities into mono and bidirected probabilities.

Using link probabilities predicted by the two models, we compare
in Appendix C the accuracy of F-DCM and F-GRM in reconstructing
single links using both ROC curve and cross-entropy loss as evaluation
metrics. We find that both models have comparable performances on
average, with F-GRM systematically outperforming F-DCM at large
aggregation scales. Since F-GRM uses the information on global reci-
procity for reconstruction, it is expected that it outperforms the F-DCM
benchmark when employing higher-order network metrics rather than
ROC curve and cross-entropy loss, which consider single links only for
comparison. For this reason, we present below a comparative analysis
between the two models in terms of spectral properties.

4.2. Spectral properties

The interbank market model is depicted as a network, providing
a visual representation of lending interactions among its constituents
and facilitating an understanding of how its stability is influenced by
the underlying topology. To mitigate risk and instability in a dynamic
system, it is crucial to identify the topological properties that stabi-
lize the interaction network. Graph spectra, particularly the leading
eigenvalue 𝜆𝑚𝑎𝑥, play a key role in terms of systemic stability, as they
account for the loops and cycle structure determining the propagation
and amplification of an initial shock. However, assessing the systemic
risk of the interbank network poses an additional challenge. Since we
lack direct access to the empirical network, we must reconstruct it
and ensure that the crucial graph spectral properties of the empirical
network are faithfully preserved. This guarantees that the ensemble
of reconstructed networks serves as a reliable proxy for the empirical

one, particularly concerning stability properties. The results presented
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Fig. 3. Expected reciprocity by F-DCM 𝑟𝐹 -𝐷𝐶𝑀 vs. empirical reciprocity 𝑟𝑒𝑚𝑝 w.r.t. different aggregation periods, in 1999 and 2007.

Fig. 4. Link probability, 1999. Comparison between F-DCM and F-GRM. On the left there are the unconditional probabilities, on the center there are the mono-directed probabilities
and on the right, there are the bi-directed probabilities. Different colors correspond to different aggregation periods 𝛥𝑡: in red (top) and brown (bottom) there are the cases of the
minimum and maximum value of 𝜌𝐹 -𝐷𝐶𝑀 while in purple (center) there is the case of 𝜌𝐹 -𝐷𝐶𝑀 ∼ 0. (For interpretation of the references to color in this figure legend, the reader
is referred to the web version of this article.)
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Fig. 5. 𝑧𝑠𝑐𝑜𝑟𝑒 of the maximum eigenvalue as the aggregation period increases, 1999 and 2007. Horizontal black lines show the values 𝑧𝑠𝑐𝑜𝑟𝑒 ± 4. F-DCM in blue and F-GRM in
orange. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
below demonstrate that our model outperforms the state-of-the-art (F-
DCM) in terms of spectral properties of the adjacency matrix, namely
the distribution of the eigenvalues of 𝐴 at different aggregations. The
comparison involves generating an ensemble of 1000 realizations for
both F-DCM and F-GRM.

Maximum eigenvalue. To assess the performance of F-DCM and F-GRM,
Fig. 5 presents the 𝑧𝑠𝑐𝑜𝑟𝑒 of the leading eigenvalue, defined as:

𝑧𝑠𝑐𝑜𝑟𝑒(𝜆𝑚𝑎𝑥) =
𝜆𝑒𝑚𝑝𝑚𝑎𝑥 − 𝑚𝑒𝑎𝑛(𝜆

𝑒𝑛𝑠
𝑚𝑎𝑥 )

𝑠𝑡𝑑(𝜆
𝑒𝑛𝑠
𝑚𝑎𝑥 )

(23)

where 𝜆𝑒𝑚𝑝𝑚𝑎𝑥 is the maximum eigenvalue of the empirical adjacency
matrix, and 𝜆

𝑒𝑛𝑠
𝑚𝑎𝑥 is the list of the maximum eigenvalues of each

adjacency matrix in the generated ensemble. We successfully validate
the normal distribution of the 𝜆

𝑒𝑛𝑠
𝑚𝑎𝑥 through the Kolmogorov–Smirnov

test. In the case of F-GRM, the 𝑧𝑠𝑐𝑜𝑟𝑒 remains almost constant and
negative as the aggregation period increases. This indicates that this
model consistently overestimates the empirical maximum eigenvalue.
Notably, F-GRM performs better in 2007 than in 1999, and its absolute
value remains below 4 even in 1999. For F-DCM, a similar trend to
𝜌𝐹 -𝐷𝐶𝑀 is observed. As the aggregation period increases, the 𝑧𝑠𝑐𝑜𝑟𝑒(𝜆𝑚𝑎𝑥)
reaches the minimum, then zero, and finally the maximum at the yearly
level. When considering |𝑧𝑠𝑐𝑜𝑟𝑒(𝜆𝑚𝑎𝑥)| < 4 as the confidence interval, F-
DCM fails to reconstruct the empirical maximum eigenvalue when the
aggregation period is below quarterly or above biannual. Conversely,
in the case of F-GRM, the value of 𝑧𝑠𝑐𝑜𝑟𝑒(𝜆𝑚𝑎𝑥) always falls within the
confidence interval. Additionally, the maximum eigenvalue is consis-
tently overestimated, ensuring that the systemic risk associated with the
generated network is never underestimated compared to the empirical
networks. The observations in Fig. 5 are consistent across other yearly
plots in the period 1999–2014 that are reported in Appendix D. To
assess systemic risk effectively, it is important to have a model with
stable performance in terms of under/overestimation. In this context,
F-GRM emerges as a robust reconstruction model, since it provides an
upper bound in terms of spectral properties w.r.t. the empirical ones
and it always falls within the confidence interval. It is important to
note that F-DCM performs similarly to F-GRM in aggregation periods
where 𝜌𝐹 -𝐷𝐶𝑀 ∼ 0. However, since these periods vary over the years,
providing a general recommendation on whether F-DCM or F-GRM is
more suitable becomes challenging. Despite F-GRM outperforming F-
DCM, a practical approach might be to conserve computing resources
by utilizing F-DCM when the aggregation period is approximately
quarterly (i.e., when 𝜌𝐹 -𝐷𝐶𝑀 ∼ 0), while employing F-GRM for lower
and higher frequency periods.

Bulk of the spectrum. In the case of the interbank networks, nodes are
not equivalent both in terms of interbank assets and liabilities and
also the link probability in F-DCM and F-GRM takes into account these
8

Fig. 6. Histogram of 𝜏𝑖𝑗 , 1999. Different colors correspond to different aggregation
periods 𝛥𝑡 (days): in red and brown there are the cases of the minimum and maximum
value of 𝜌𝐹 -𝐷𝐶𝑀 while in purple there is the case of 𝜌𝐹 -𝐷𝐶𝑀 ∼ 0. (For interpretation of
the references to color in this figure legend, the reader is referred to the web version
of this article.)

heterogeneities. Regarding the properties of the bulk of the spectrum,
there are theoretical results regarding the random directed matrices.
In [24], the authors examine an ensemble of 𝑁 × 𝑁 large random
real asymmetric matrices 𝐽 . These matrices are defined by a Gaussian
distribution with a zero mean and correlations: 𝑁[𝐽𝑖𝑗 ]𝐽 = 1 and
𝑁[𝐽𝑖𝑗𝐽𝑗𝑖]𝐽 = 𝜏, where the brackets [… ]𝐽 denote the ensemble average,
and −1 ≤ 𝜏 ≤ 1. The study reveals that the average eigenvalue
distribution is uniform in an ellipse in the complex plane, with the real
and imaginary axes being 1+𝜏 and 1−𝜏, respectively. The correlation 𝜏
is also associated with link reciprocity 𝑟: in the case of an antisymmetric
network, 𝜏 = −1 and 𝑟 = 0, while 𝜏 = 1 and 𝑟 = 1.

We want now to adapt these results in our heterogeneous case of
the interbank network. To meet the initial assumption, we first need
to rescale the adjacency matrix 𝐴 to fulfill the initial conditions of
mean and correlations of the matrix ensemble in [24]. Details on the
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Fig. 7. Bulk of the spectra of the adjacency matrix in the complex plane, 1999. Different colors correspond to different models: F-DCM in blue and F-GRM in orange. Black dots
represent the eigenvalue of the empirical adjacency matrix. On the left and the right, there are the cases of the minimum and maximum value of 𝜌𝐹 -𝐷𝐶𝑀 , respectively, while in
the center there is the case of 𝜌𝐹 -𝐷𝐶𝑀 ∼ 0. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
calculations can be found in Appendix E. The resulting expression is:

𝐽𝑖𝑗 =
𝐴𝑖𝑗 − 𝑝𝑖𝑗

√

𝑁𝑝𝑖𝑗 (1 − 𝑝𝑖𝑗 )
(24)

⟨𝐽𝑖𝑗𝐽𝑗𝑖⟩ =
𝑝↔𝑖𝑗 − 𝑝𝑖𝑗𝑝𝑗𝑖

𝑁
√

𝑝𝑖𝑗 (1 − 𝑝𝑖𝑗 )𝑝𝑗𝑖(1 − 𝑝𝑗𝑖)
=

𝜏𝑖𝑗
𝑁

(25)

where 𝑝𝑖𝑗 is the unconditional link probability, and 𝑝↔𝑖𝑗 is the bidirected
link probability of the considered method. In [24], the correlation 𝜏 is
not node-dependent, unlike the interbank network case, as shown in
Eq. (25). In the case of F-DCM, each link is independently sampled, so
𝑝𝐹 -𝐷𝐶𝑀↔
𝑗𝑖 = 𝑝𝐹 -𝐷𝐶𝑀

𝑖𝑗 𝑝𝐹 -𝐷𝐶𝑀
𝑗𝑖 and 𝜏𝑖𝑗 = 0 ∀𝑖, 𝑗.

What F-GRM imposes is the global reciprocity 𝑟 but this also has an
effect at the node level. 𝜏𝑖𝑗 is instead a characteristic of the model, that
reflects how the global reciprocity is distributed over pairs of nodes
and its value depends on the nodes’ fitness, i.e., their heterogeneity in
total interbank assets and liabilities; for more details, see Appendix E. In
Fig. 6, we present the distribution of the correlation 𝜏𝑖𝑗 ; different colors
correspond to different aggregation periods in 1999. A correlation is
observed between the 𝜏𝑖𝑗 distribution and the value of 𝜌𝐹 -𝐷𝐶𝑀 ; not only
all 𝜏𝑖𝑗 values have the same sign as 𝜌𝐹 -𝐷𝐶𝑀 , but the amplitude of the
𝜏𝑖𝑗 distribution increases as the absolute value of 𝜌𝐹 -𝐷𝐶𝑀 increases. For
completeness, Fig. 7 reports the bulk of the spectra of the ensemble
of the generated adjacency matrices; F-DCM in blue and F-GRM in
orange. Black dots represent the eigenvalues of the empirical network.
The aggregation period that corresponds to the minimum (maximum)
value of 𝜌𝐹 -𝐷𝐶𝑀 is shown in Fig. 7(a) (Fig. 7(c)). Fig. 7(b) reports the
case of 𝜌𝐹 -𝐷𝐶𝑀 ∼ 0. A comparison with the theoretical results in [24]
can be made, taking into account that Fig. 7 reports the bulk of the
adjacency matrix 𝐴, not the rescaled matrix 𝐽 . In the case of F-DCM, we
observe that the bulk of the spectra forms a circle for any aggregation
period, consistent with the results in [24], where 𝜏𝑖𝑗 is equal to zero,
and the real and imaginary axes are equal. Similarly, in the case of
F-GRM, the results align with those in [24]. At the bottom of Fig. 7(a)
(Fig. 7(c)), we have the case of negative (positive) 𝜌 and 𝜏 (see
9

𝐹 -𝐷𝐶𝑀 𝑖𝑗
red (brown) histogram in Fig. 6), corresponding to an ellipse whose
imaginary axis is longer (shorter) than the real one. Analogously, at the
bottom of Fig. 7(b), we recover the circular shape. Examining Fig. 7,
we also observe that the elliptical bulk of the spectrum in the F-GRM
case better fits the eigenvalues of the empirical network.

5. Conclusions

In this paper, we present an extension of the state-of-the-art F-
DCM, which incorporates constraints not only on link density but also
on global link reciprocity. Although our case study focuses on the
interbank market network, our proposed model, F-GRM, is versatile and
applicable in any network context characterized by data scarcity.

Our model contributes to the literature on reconstruction methods
in several ways. Firstly, we observe that reciprocity strongly varies
with different aggregation periods, and it cannot be inferred from
link density by analyzing empirical interbank market networks (e-MID
data). This empirical evidence supports our objective of enhancing F-
DCM by constraining not only the link density but also the reciprocity,
as the latter provides additional information to the model compared
to the former. Secondly, we demonstrate that F-GRM generates an
ensemble of networks with spectral properties closer to empirical ones.
This is crucial because the spectra of graphs, particularly the leading
eigenvalue 𝜆𝑚𝑎𝑥, play a key role in terms of systemic stability by
accounting for loops and cycle structures that influence the propagation
and amplification of an initial shock. Thirdly, when assessing systemic
stability, it is important to have a model with stable performance
in terms of under/overestimation of the maximum eigenvalue and
thus systemic risk. In this regard, F-GRM is a reliable reconstruction
model, generating an ensemble of networks with spectral properties
consistently upper-bounding empirical ones and always within the
confidence interval. We show that our model effectively preserves
spectral properties, showing comparable performance to F-DCM when
the aggregation period is approximately quarterly, i.e. when the ex-
pected global reciprocity is close to the empirical one. In contrast,
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F-GRM outperforms F-DCM when the empirical reciprocity deviates
from F-DCM expectations, occurring for periods shorter or longer than
quarterly.

In conclusion, we propose an extension of F-DCM that also considers
link reciprocity. We demonstrate that our model, F-GRM, outperforms
F-DCM, especially in resembling the spectral properties of the empirical
adjacency matrices. It is worth noting that our model can be applied
to directed networks of any type and can be particularly useful when
the empirical network exhibits significant under- or over-expression of
reciprocity compared to the hypothesis of random connections.

Future work involves integrating reciprocity into existing recon-
struction models for weighted matrices. In the case of the interbank
network, the only local information available is the total interbank
assets and liabilities, representing nodes’ out- and in-strength. To re-
construct bilateral exposure from these aggregated measures, additional
reconstruction models must be considered. These models can be deter-
ministic, such as the IRF and RAS algorithms [13,52], or probabilistic,
as demonstrated in [11,53]. All of these models require the adja-
cency matrix as input, so F-GRM could be considered an enhanced
plug-and-play attachment that incorporates link reciprocity when im-
puting the weighted structure of these models. A potential future
research direction entails expanding the current reconstruction method
for weighted matrices to include weighted reciprocity, discerning be-
tween mono- and bi-directed weighted links. This extension follows a
similar approach to that of F-GRM for adjacency matrices.
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Algorithm 1:
Trust Region Reflective (TRF) Algorithm with Bound Constraints

Input: 𝑓 , 𝑥0=1, bounds=(0,∞)
Output: x

𝑘 ← 0;
while not converged and 𝑘 < max_iterations do

∇𝑓 ← computeGradient(x);
H← computeHessian(x);
p← solveSubproblem(H,∇𝑓, bounds);
𝛼 ← lineSearch(x,p);
x ← x + 𝛼p;
converged ← checkConvergence(∇𝑓, 𝛼,p);
𝑘 ← 𝑘 + 1;

end

Appendix A. Parameters’ estimation procedure

Exponential Random Graph Models (ERGMs) are usually estimated
using network data by using the generalized method of moments [54]:
the parameters of the models are estimated by matching the observed
values of network metrics with their expected values over the net-
work ensemble. In practice, the estimation process consists of solving
a system of nonlinear equations defined in a constrained parameter
space. The parameter domain3 is constrained to ensure that the generic
link probability remains positive and within the range of 0 to 1. The
solution of the nonlinear equations is found using the Trust Region
Reflective (TRF) Algorithm with Bound Constraints4 whose pseudocode
is available in Alg. 1.

It is worth remembering that F-DCM has one parameter to tune
and one constraint (link density), while F-GRM has two parameters to
tune and two constraints (link density and reciprocity). The estimation
process thus depends on solving a system of two (one) nonlinear equa-
tions defined in a constrained parameter space for F-GRM (F-DCM) as
shown in Eq. (18) (Eq. (8)). Other ERG models are even more complex;
the estimation process in the DCM, GRM, and RCM requires solving a
system of 2𝑁 , 2𝑁 + 1, and 3𝑁 equations, respectively, where 𝑁 is the
number of nodes in the network.

Despite F-GRM requiring solving an additional non-linear equation
compared to F-DCM, the estimation process results as efficient. In the
case of 1999, when the number of nodes is the highest (𝑁 = 212) in
the e-MID dataset, parameter tuning for all aggregation periods (256
snapshots) lasts 4 s in F-DCM and 35 s in F-GRM.5 We consider both
computing times acceptable6 since each set of parameters has to be
tuned only once for each network snapshot.

Appendix B. e-MID data

We have access to two distinct e-MID datasets spanning the period
from 1999 to 2014, with an overlapping duration of Sept/2010 to 2012.
Consequently, our initial task involves reconciling these datasets. Ini-
tially, we focus on overnight loans, constituting the majority (95%) in

3 Parameters, being the exponential of Lagrange multipliers, are constrained
n the positive real domain.

4 TRF algorithm is implemented in the python library scipy [55], in the
least squares method scipy.optimize.least_squares.

5 These results are obtained by running the optimization of the two models
n the same laptop (locally, not on a distributed server), by choosing the same
olerance, and setting the initial value of each parameter to one in both cases.

6 The optimization algorithm to solve F-GRM could be further optimized,

ut that goes beyond the scope of this paper.

https://netres.imtlucca.it
https://pnrr.sobigdata.it/
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Fig. C.8. Receiver Operating Characteristic (ROC) curve.
terms of both transactions and volumes during the period 2010–2014.
Subsequently, we address the challenge of reconciling the anonymized
identification codes for loan takers and givers across the two data
sources. To address this, we concentrate on the overlapping period and
consider the volumes of transactions unique to each day, creating a
mapping between the differing anonymization keys. It is noteworthy
that the two datasets exhibit slight discrepancies during the overlap
period. Consequently, we retain only those transactions reported in
both datasets and exclusively those banks with clearly identified map-
pings.7 Our decision to map the anonymization of the second dataset
into the first, rather than vice versa, is influenced not only by the
longer coverage period of the first dataset but also by the increased
activity of more banks in the e-MID during that timeframe. Specifically,
only a bank reported in the second dataset is absent in the first, and
given its involvement in only one transaction over the entire period,
we have excluded it. The resulting dataset encompasses 99% (98%) of
the transactions and 99% (93%) of the volumes from the first (second)
dataset.

Appendix C. Single-link reconstruction performance of F-DCM and
F-GRM

We compare the link probabilities (𝑝𝑖𝑗 ∈ [0, 1]) as described by both
F-DCM and F-GRM with the sequence of observed links (𝐴𝑖𝑗 ∈ {0, 1})
to analyze the accuracy of the network reconstruction in terms of ROC
curves. We first compute the ROC curve for each aggregation period.
We report in Fig. C.8, the ROC Curve related to the three aggregation
periods analyzed in the paper, i.e., the minimum, maximum, and
closest to zero value of 𝑟𝐹 -𝐷𝐶𝑀 , in 1999 and 2007. Notably, F-GRM
slightly outperforms the F-DCM model in terms of AUC for negative and
positive 𝜌𝐹−𝐷𝐶𝑀 (and this result is systematic for large aggregation),

7 In cases where the mapping is not unique, we assign the label of the
most probable one (more than 95%). One bank possesses a spurious mapping,
leading to its removal from the dataset.
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Fig. C.9. Comparison between Area Under Curve (AUC) in the case of F-DCM and
F-GRM, 1997 and 2007.

see the left and right subplots of Fig. C.8, while displaying comparable
performance with F-DCM when 𝜌𝐹−𝐷𝐶𝑀 = 0, see the middle plot
of Fig. C.8. The latter result is expected since both models predict
(approximately) equal link probabilities. Moreover, in Fig. C.9, we an-
alyze the Area Under Curve (AUC) values across different aggregation
periods in 1999 and 2007. Again, F-GRM slightly outperforms F-DCM.
Notice that the AUC for F-GRM is systematically larger than the one
for F-DCM for large aggregation, signaling that the reconstruction is
consistently better even if the signal is small. We expand our analysis
on the accuracy performance by considering a multiclass classification
scenario with four classes. Given a couple of nodes 𝑖, 𝑗, we have four
possible outcomes; mono-directed link from 𝑖 to 𝑗 or from 𝑗 to 𝑖, bi-
directed link, no link. The cross-entropy loss evaluates the disparity
between the link probabilities predicted by the models and the true
labels provided by the empirical networks. In Fig. C.10, we find the
reported values of the cross-entropy loss for both F-DCM and F-GRM. As
a loss metric, lower values indicate better reconstruction accuracy. We
observe that F-DCM and F-GRM demonstrate comparable performances
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Fig. C.10. Cross Entropy loss in the case of F-DCM and F-GRM, 1997 and 2007. Different colors correspond to different aggregation periods (days). (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)
Fig. D.11. 𝑟𝐹 -𝐷𝐶𝑀 vs. empirical reciprocity 𝑟𝑒𝑚𝑝 w.r.t. different aggregation periods in the years 1999–2014.
in 1999 and 2007 across all aggregation periods. However, there is a
slight performance improvement for F-GRM with longer aggregation
periods.

Since the F-GRM model aims to capture the presence of loops in
network data (i.e., reciprocated links), while the F-DCM model does
not, we expect that the former’s superior performance would appear
more clearly when using higher-order network metrics (as opposed
to the ROC curve and cross-entropy loss, which considers single links
only). For this reason, our focus in the paper shifts to metrics that
take into account spectral and cycle structures. Moreover, these struc-
tures are pivotal for systemic stability, offering a more comprehensive
12
approach that accounts for crucial factors beyond standard statistical
comparisons.

Appendix D. Additional plots

D.1. Reciprocity

Fig. D.11 shows the relationship between the expected reciprocity
by F-DCM 𝑟𝐹 -𝐷𝐶𝑀 and the empirical one 𝑟𝑒𝑚𝑝 as the aggregation periods
vary, in the years 1999–2014.
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Fig. D.12. Link probability, 2007. Comparison between F-DCM and F-GRM. On the left there are the unconditional probabilities, on the center there are the mono-directed
probabilities and on the right, there are the bi-directed probabilities. Different colors correspond to different aggregation periods 𝛥𝑡: in red (top) and brown (bottom) there are the
cases of the minimum and maximum value of 𝜌𝐹 -𝐷𝐶𝑀 while in purple (center) there is the case of 𝜌𝐹 -𝐷𝐶𝑀 ∼ 0. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)
D.2. Link probability

In Figs. D.12, we present a comparison of link probabilities between
F-DCM and our model F-GRM, considering three different aggregation
periods, in 2007.

D.3. z-score

Fig. D.13 presents the 𝑧𝑠𝑐𝑜𝑟𝑒 of the leading eigenvalue in the years
1999–2014, defined in Eq. (23).

D.4. Histogram of 𝜏

Fig. D.14 shows the distribution of the correlation 𝜏𝑖𝑗 ; different
colors correspond to different aggregation periods in 2007.
13
D.5. Bulk of the spectra

Fig. D.15 reports the bulk of the spectra of the ensemble of the
generated adjacency matrices in 2007; F-DCM in blue and F-GRM in
orange. Black dots represent the eigenvalues of the empirical network.
From the left to the right, there are reported aggregation periods that
correspond to the minimum, zero and maximum value of 𝜌𝐹−𝐷𝐶𝑀 ,
respectively.

Appendix E. Hypothesis of elliptical spectra

In [24] it was found that the eigenvalue density for a square real
asymmetric matrix 𝐽 , under assumptions specified below, is uniform
over an ellipse in the complex plane, whose real and imaginary axes



Chaos, Solitons and Fractals: the interdisciplinary journal of Nonlinear Science, and Nonequilibrium and Complex Phenomena 186 (2024) 115279V. Macchiati et al.
Fig. D.13. 𝑧𝑠𝑐𝑜𝑟𝑒 of the maximum eigenvalue as the aggregation period increases, in the period 1999–2014. Horizontal black lines show the values 𝑧𝑠𝑐𝑜𝑟𝑒 ± 4. F-DCM in blue and
F-GRM in orange. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Fig. D.14. Histogram of 𝜏𝑖𝑗 , 2007. Different colors correspond to different aggregation
periods 𝛥𝑡 (days): in red and brown there are the cases of the minimum and maximum
value of 𝜌𝐹 -𝐷𝐶𝑀 while in purple there is the case of 𝜌𝐹 -𝐷𝐶𝑀 ∼ 0 . (For interpretation of
the references to color in this figure legend, the reader is referred to the web version
of this article.)

are 1 + 𝜏 and 1 − 𝜏, respectively. The assumptions are:

⟨𝐽𝑖𝑗⟩ = 0 (E.1)

⟨𝐽 2
⟩ = 1∕𝑁 (E.2)
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𝑖𝑗
⟨𝐽𝑖𝑗𝐽𝑗𝑖⟩ = 𝜏∕𝑁 (E.3)

We consider the adjacency matrix A. In order to obtain zero mean we
should impose 𝐽 0

𝑖𝑗 = 𝐴𝑖𝑗 − 𝑝𝑖𝑗 . Then,

⟨(𝐽 0
𝑖𝑗 )

2
⟩ = ⟨(𝑎𝑖𝑗 − 𝑝𝑖𝑗 )2⟩ = 𝑝𝑖𝑗 (1 − 𝑝𝑖𝑗 ) (E.4)

⟨𝐽 0
𝑖𝑗𝐽

0
𝑗𝑖⟩ = ⟨(𝑎𝑖𝑗 − 𝑝𝑖𝑗 )(𝑎𝑗𝑖 − 𝑝𝑗𝑖)⟩ = 𝑝↔𝑖𝑗 − 𝑝𝑖𝑗𝑝𝑗𝑖 (E.5)

In order to also obtain ⟨𝐽 2
𝑖𝑗⟩ = 1∕𝑁 , we consider 𝐽 1

𝑖𝑗 =
𝐴𝑖𝑗−𝑝𝑖𝑗

√

𝑁𝑝𝑖𝑗 (1−𝑝𝑖𝑗 )
Then:

⟨𝐽 1
𝑖𝑗𝐽

1
𝑗𝑖⟩ =

1
𝑁

⟨

𝐴𝑖𝑗 − 𝑝𝑖𝑗
√

𝑝𝑖𝑗 (1 − 𝑝𝑖𝑗 )

𝐴𝑗𝑖 − 𝑝𝑗𝑖
√

𝑝𝑗𝑖(1 − 𝑝𝑗𝑖)
⟩ =

𝑝↔𝑖𝑗 − 𝑝𝑖𝑗𝑝𝑗𝑖
𝑁√𝑝𝑖𝑗(1−𝑝𝑖𝑗 )𝑝𝑗𝑖(1−𝑝𝑗𝑖)

(E.6)

E.1. GRM model

We consider a simpler functional form than our model (only one
free parameter):

𝑝→𝑖𝑗 =
𝑥𝑖𝑦𝑗

1 + 𝑥𝑖𝑦𝑗 + 𝑥𝑗𝑦𝑖 + 𝑣2𝑥𝑖𝑦𝑗𝑥𝑗𝑦𝑖
(E.7)

𝑝↔𝑖𝑗 =
𝑣2𝑥𝑖𝑦𝑗𝑥𝑗𝑦𝑖

1 + 𝑥𝑖𝑦𝑗 + 𝑥𝑗𝑦𝑖 + 𝑣2𝑥𝑖𝑦𝑗𝑥𝑗𝑦𝑖
(E.8)

𝑝𝑖𝑗 = 𝑝↔𝑖𝑗 + 𝑝→𝑖𝑗 . (E.9)

We define the denominator 𝑤𝑖𝑗 = 1 + 𝑥𝑖𝑦𝑗 + 𝑥𝑗𝑦𝑖 + 𝑣2𝑥𝑖𝑦𝑗𝑥𝑗𝑦𝑖.
We have:

𝑝↔𝑖𝑗 − 𝑝𝑖𝑗𝑝𝑗𝑖 =
𝑥𝑖𝑥𝑗𝑦𝑖𝑦𝑗

𝑤2
𝑖𝑗

[𝑣2𝑤𝑖𝑗 − (1 + 𝑣2𝑥𝑖𝑦𝑗 + 𝑣2𝑥𝑗𝑦𝑖 + 𝑣4𝑥𝑖𝑦𝑗𝑥𝑗𝑦𝑖)]

=
𝑥𝑖𝑥𝑗𝑦𝑖𝑦𝑗

𝑤2
𝑖𝑗

[𝑣2 + 𝑣2𝑥𝑖𝑦𝑗 + 𝑣2𝑥𝑗𝑦𝑖 + 𝑣4𝑥𝑖𝑥𝑗𝑦𝑖𝑦𝑗 − 1 − 𝑣2𝑥𝑖𝑦𝑗

− 𝑣2𝑥 𝑦 − 𝑣4𝑥 𝑦 𝑥 𝑦 ]
𝑗 𝑖 𝑖 𝑗 𝑗 𝑖
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Fig. D.15. Bulk of the spectra of the adjacency matrix, 2007, different aggregation periods: whose 𝜌𝐹−𝐷𝐶𝑀 is the yearly minimum, zero and maximum. Comparison between
F-DCM in blue, and F-GRM in orange. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
=
𝑥𝑖𝑥𝑗𝑦𝑖𝑦𝑗

𝑤2
𝑖𝑗

[𝑣2 − 1], (E.10)

𝑝𝑖𝑗 (1 − 𝑝𝑖𝑗 ) =
𝑥𝑖𝑦𝑗 (1 + 𝑣2𝑥𝑗𝑦𝑖)(1 + 𝑥𝑗𝑦𝑖)

𝑤2
𝑖𝑗

, (E.11)

𝑝𝑖𝑗 (1 − 𝑝𝑖𝑗 )𝑝𝑗𝑖(1 − 𝑝𝑗𝑖) =
𝑥𝑖𝑥𝑗𝑦𝑖𝑦𝑗

𝑤4
𝑖𝑗

[(1 + 𝑣2𝑥𝑗𝑦𝑖)(1 + 𝑣2𝑥𝑖𝑦𝑗 )

× (1 + 𝑥𝑗𝑦𝑖)(1 + 𝑥𝑖𝑦𝑗 )]

=
𝑥𝑖𝑥𝑗𝑦𝑖𝑦𝑗

𝑤4
𝑖𝑗

[1 + (𝑣2 + 1)(𝑥𝑖𝑦𝑗 ) + (𝑣2 + 1)(𝑥𝑗𝑦𝑖)

+ (𝑣2 + 1)2(𝑥𝑖𝑥𝑗𝑦𝑖𝑦𝑗 ) + 𝑣2𝑥2𝑖 𝑦
2
𝑗 + 𝑣2𝑥2𝑗𝑦

2
𝑖

+ 𝑣2(𝑣2 + 1)(𝑥𝑖𝑦𝑗 )(𝑥𝑖𝑥𝑗𝑦𝑖𝑦𝑗 )

+ 𝑣2(𝑣2 + 1)(𝑥𝑗𝑦𝑖)(𝑥𝑖𝑥𝑗𝑦𝑖𝑦𝑗 ) + 𝑣4𝑥2𝑖 𝑥
2
𝑗𝑦

2
𝑖 𝑦

2
𝑗 ]

=
𝑥𝑖𝑥𝑗𝑦𝑖𝑦𝑗

𝑤4
𝑖𝑗

𝑓 2
𝑖𝑗 , (E.12)

where

𝑓 2
𝑖𝑗 = 1 + (𝑣2 + 1)[𝑥𝑖𝑦𝑗 + 𝑥𝑗𝑦𝑖] + (𝑣2 + 1)2𝑥𝑖𝑥𝑗𝑦𝑖𝑦𝑗 + 𝑣2𝑥2𝑖 𝑦

2
𝑗

+ 𝑣2𝑥2𝑗𝑦
2
𝑖 + 𝑣2(𝑣2 + 1)(𝑥𝑖𝑥𝑗𝑦𝑖𝑦𝑗 )[𝑥𝑖𝑦𝑗 + 𝑥𝑗𝑦𝑖] + 𝑣4𝑥2𝑖 𝑥

2
𝑗𝑦

2
𝑖 𝑦

2
𝑗 . (E.13)

Then:

⟨𝐽 1
𝑖𝑗𝐽

1
𝑗𝑖⟩ = (𝑣2 − 1)

√

𝑥𝑖𝑥𝑗𝑦𝑖𝑦𝑗
𝑁𝑓𝑖𝑗

. (E.14)

Recall that:

𝑤2
𝑖𝑗 = 1 + 2𝑥𝑖𝑦𝑗 + 2𝑥𝑗𝑦𝑖 + 2(𝑣2 + 1)𝑥𝑖𝑥𝑗𝑦𝑖𝑦𝑗 + 𝑥2𝑖 𝑦

2
𝑗 + 𝑥2𝑗𝑦

2
𝑖

+ 2𝑣2(𝑥𝑖𝑦𝑗 )(𝑥𝑖𝑥𝑗𝑦𝑖𝑦𝑗 ) + 2𝑣2(𝑥𝑗𝑦𝑖)(𝑥𝑖𝑥𝑗𝑦𝑖𝑦𝑗 ) + 𝑣4𝑥2𝑖 𝑥
2
𝑗𝑦

2
𝑖 𝑦

2
𝑗 (E.15)

so in the case 𝑣2 = 1, we have 𝑓𝑖𝑗 = 𝑤𝑖𝑗 . To reconcile our notation
with [24],

⟨𝐽 1
𝑖𝑗𝐽

1
𝑗𝑖⟩ =

1
𝑁

(𝑣2 − 1)

√

𝑥𝑖𝑥𝑗𝑦𝑖𝑦𝑗
𝑓𝑖𝑗

= 𝜏
𝑁

. (E.16)

In the case 𝑣2 = 1 the numerator is zero so ⟨𝐽 1
𝑖𝑗𝐽

1
𝑗𝑖⟩ = 0. In this case,

where 𝑝↔ = 𝑝 𝑝 by comparing with the notation in [24], 𝜏 = 0 that
15

𝑖𝑗 𝑖𝑗 𝑗𝑖
corresponds to the fully asymmetric ensemble in which 𝐽𝑖𝑗 and 𝐽𝑗𝑖 are
independent. In this case, the bulk of the spectra is a circle.

If we reintroduce the missing free parameter 𝑢 that tunes the den-
sity, we have the following transformation:

𝑥𝑖𝑦𝑗 → 𝑢𝒜𝑖ℒ𝑗 (E.17)

where 𝒜 ,ℒ are respectively the total interbank assets and liabilities.
We define

𝑔2𝑖𝑗 = 1 + 𝑢(𝑣2 + 1)[𝒜𝑖ℒ𝑗 +𝒜𝑗ℒ𝑖]

+ 𝑢2(𝑣2 + 1)2𝒜𝑖𝒜𝑗ℒ𝑖ℒ𝑗 + 𝑢2𝑣2𝒜 2
𝑖 ℒ

2
𝑗 + 𝑢2𝑣2𝒜 2

𝑗 ℒ
2
𝑖

+ 𝑢3𝑣2(𝑣2 + 1)(𝒜𝑖𝒜𝑗ℒ𝑖ℒ𝑗 )[𝒜𝑖ℒ𝑗 +𝒜𝑗ℒ𝑖] + 𝑢4𝑣4𝒜 2
𝑖 𝒜

2
𝑗 ℒ

2
𝑖 ℒ

2
𝑗

(E.18)

thus

⟨𝐽 1
𝑖𝑗𝐽

1
𝑗𝑖⟩ =

1
𝑁

𝑢(𝑣2 − 1)

√

𝒜𝑖𝒜𝑗ℒ𝑖ℒ𝑗

𝑔𝑖𝑗
=

𝜏𝑖𝑗
𝑁

. (E.19)

E.2. F-DCM model

For F-DCM, since ⟨(𝐴𝑖𝑗 − 𝑝𝑖𝑗 )(𝐴𝑗𝑖 − 𝑝𝑗𝑖)⟩ = 0, it is 𝜏 = 0. As a
consequence, the bulk of the spectra is always a circle.
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