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Abstract. We introduce a stochastic version of the Proudman—Taylor model, a 2D-3C fluid
approximation of the 3D Navier—Stokes equations, with the small-scale turbulence modeled by a
transport-stretching noise. For this model we may rigorously take a scaling limit leading to a deter-
ministic model with additional viscosity on large scales. In certain choice of noises without mirror
symmetry, we identify an anisotropic kinetic alpha (AKA) effect. This is the first example with a
3D structure and a stretching noise term.
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1. Introduction.

1.1. General comments. The purpose of this paper is proving that a certain
model of a 3D fluid, incorporating small-scale turbulence by means of a suitable
stochastic modification, manifests the property of dissipation on large scales predicted
by Joseph Boussinesq in 1877 (cf. [4]). See section 1.3 below for an illustration of
the property in the framework of stochastic 3D Navier—Stokes equations in vorticity
form; the latter will be heuristically derived in section 1.2 as a starting point of
investigation of the Boussinesq property. This property is at the foundation of large
eddy simulation (LES) models, but its validity is critical [16, 24]. And its proof under
suitable circumstances is a question which may count a number of contributions but
not a definite answer; see, for instance, [3, 16, 18, 27].

From the numerical or experimental side, it is perhaps true that this property
is better verified in certain 3D cases. In two dimensions, inverse cascade seems to
deteriorate the structure of small-scale turbulence and scale separation needed to
have dissipation at large scales, so the result is true but for a limited time [5], and
after a while perturbations appear which even lead to a phenomenon often referred to
as negative viscosity. In three dimensions, small-scale turbulence is more persistent
and thus better oriented to the validity of the property investigated here; however,
other elements in three dimensions may work against the Boussinesq property (for
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instance, the direct cascade) and the picture is perhaps more difficult than in two
dimensions (see, e.g., [27]).

Concerning simplified models in two dimensions with stochastic inputs as those
discussed in [7, 9, 13, 19], it has been proved that an additional positive turbulent
viscosity emerges (the validity of such result compared to direct numerical simulations
[5] is limited to an initial time range). Similar unpublished computations, however,
seem to indicate that the property fails for some 3D fluid models, due to a lack of
control of the stochastic stretching term, as discussed in section 1.3 (see also [12, 20]
which involve only the transport noise). There emerges, among the possible ideas,
the one that only a suitable geometry of the involved vector fields could remedy the
excess of fluctuations in the stretching term. In particular, if the large-scale vorticity
field and the small-scale turbulent velocity field were orthogonal, this would cancel
the above-mentioned stretching contribution. But such geometry is too extreme and
essentially boils down to the 2D problem.

Here we investigate a model which is in between the 2D and 3D ones, the so-
called 2D-3C model (also called 2.5D model [25]), where the dependence on space
variables is 2D, but the vector fields have three components. The physics behind this
simplification has been identified by Proudman [22] and Taylor [26] and corresponds
to situations with large Coriolis or rotation forces [1, 2]. In the transient, corrections
to the 2D-3C model should be included, but they will be the object of future inves-
tigation. We think that the phenomena appearing in the simple 2D-3C model are
interesting enough to justify a separate study.

The model is formulated in section 1.4. The small scales are modeled by a noise,
and in a suitable scaling limit we prove the existence of the additional dissipation at
large scales predicted by Boussinesq [4].

The noise, as opposed to most previous works [7, 9, 15] where it was defined by
Fourier decomposition, is modeled on idealized but still meaningful 3D vortex struc-
tures, following [11]. A Fourier description is possible and is illustrated in section 2.2,
but the assumptions on the covariance function are suggested by the vortex structure
interpretation. In section 1.2 we explain the heuristic behind this choice. This new
noise has been essential for us to identify the presence of the so-called AKA (aniso-
tropic kinetic alpha) effect [27]. Tt is the presence of a term with first order derivatives,
in addition to the dissipative second order term predicted by Boussinesq. As shown
below and in analogy with previous studies based on different models and techniques
like [27], the AKA effect is absent when mirror symmetry (namely parity invariance)
is imposed on the small-scale turbulence. Removing mirror symmetry, still we might
or might not have the AKA effect (as in [27]); we provide examples of both cases.

In the rest of the introduction, we first describe, via the idea of separation of
scales, the origin of noise in the vorticity formulation of 3D Navier—Stokes equations,
then we discuss the Boussinesq hypothesis for such stochastic fluid equations, and
finally we specialize the system in the 2D-3C setting to get the stochastic model
studied in the paper.

1.2. Origin of noise in stochastic 3D Navier—Stokes equations. Consider
a 3D Newtonian viscous fluid described, in vorticity form, by the equations

Oiw~+v-Vw—w-Vv=rAw,
w = curlv,
Wlt=t, = w(to),

where v > 0 is the fluid viscosity, w is the vorticity field, and v the velocity field. In
the rigorous analysis below we shall assume that the space variable is in a torus, in
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order to avoid the difficult question of vorticity at a solid boundary and inessential
troubles with the lack of compactness of full space.

We have taken as initial condition a time tg because the heuristic idea described
here is that if at a certain time ¢y the vorticity w(tp) is the sum of a large-scale
component wy,(tp) plus a small-scale component wg(ty) made of several small vortex
structures w(tp), i.e.,

N
w (to) = wr (to) + Y ws (to),

i=1
then, at least on a short time interval [tg,to + A], the system

Owwr, +v-Vwr —wr, - Vo =vAwy,
Owy +v - Vwyg —wy - Vo =vAwy,
wilt=t, =wr(to), Wsli=t, =ws(to)

represents quite well the evolution of the different vortex structures. This kind of
approach has been used, for instance, to investigate the small vortex-blob limit to
point vortices [21] in two dimensions. The idea is that for a short while the small
vortex structures wh maintain their integrity, as individual objects, before complicated
merging and instability mechanisms take place. The system above is equivalent to
the original one, in the sense that if (wr,wg, ..., wév) is a solution of the system, then
w=uwr, + Zf\il wk is a solution of the original equation.

The next step is to consider only the equation for the large scales, isolating the
term which is not closed, namely depends on the small scales:

N
6twL—|—vL-VwL—wL-VUL—VAwL:—Z(Ufg-VwL—wL-vag).

=1

Here vy, with divwy = 0, has the property curlvy = wr; namely vy, is reconstructed
from wy, by the Biot—Savart law: vy, = K % wy, where K is the Biot—Savart kernel;
and Ug corresponds to wg in the same way.

Until now we have not modified the true Navier—Stokes equations; they are just
rewritten in a suitable way. The reformulation may not have the desired properties
when the vortex structures w start to merge or the large-scale field wy, starts to
develop small-scale instabilities, but it is reasonable to expect that in a short time
the structure is roughly maintained.

Now we make a relevant approximation, whose validity is a major open problem.
We idealize the small-scale structures v by a stochastic process, a priori given, delta
correlated in time. The idealization of delta correlation in time is very strong, vaguely
motivated by the very short time-scale of wg compared to wy. The idealization of
Gaussianity and independence on wy, are strong limitations which should be better
investigated in the future. A large body of rigorous activity exists (see, for instance,
[6, 14]), aimed to justify this approximation starting from the original model, suitably
perturbed or simplified.

Essentially, the modeling assumption made below replaces the small-scale velocity
field 3277, v (¢, ) by

AWE
Xk:%(%‘) dt '
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where {0y}, are suitable divergence free fields and {W}}; are independent scalar
Brownian motions. In the replacement, Stratonovich integrals are used, in accordance
with the Wong—Zakai principle (see rigorous results in [6, 14]).

1.3. Boussinesq hypothesis and its difficulty in 3D fluids. The presen-
tation of this subsection is heuristic, the purpose being only to describe what we
mean by Boussinesq hypothesis for the class of stochastic 3D Navier—Stokes equa-
tions derived above and to explain why it is difficult in general to solve the problem
(motivating the detailed analysis of the particular case treated in this work). From
now on we omit the subscript L for the large scales, since many other indices will
appear. But the reader should remember, as a matter of interpretation, that v and
w are large-scale fields and {oy }, describe the small-scale turbulent components. We
also conventionally set to = 0. To simplify notation, for two vector fields X and Y,
we write LxY for the Lie derivative LxY =X -VY —-Y - VX.

Motivated by the heuristic discussions in the previous subsection, we consider the
following stochastic 3D Navier—Stokes equations:

dwe + (Lo, we — VAwe) dt = — Z Locwe o thk7
k
we|t:0 = wO’

where {07} } are given vector fields, now parametrized by € > 0; hence also the solution
we depends on e. The stochastic multiplication is understood in the Stratonovich
sense, which is formally equivalent to the following It6 equation with a correction
term:

1
dwe + (Lo, we — vAwe) dt = — Z Loewe dWF + 3 ZEUZ Lyewedt.
k k

We say that the Boussinesq hypothesis holds for a family of coefficients {0} if
we converges as € — 0, in an appropriate sense, to a solution w of the deterministic
equation

8 + L = (VA + D),

w‘t:O :wov

where 7 = K *w and D is a suitable second order differential operator, the limit
of %Zk LoeLoe as € — 0. This operator represents the enhancement of viscosity
produced by the noise in the scaling limit, and possibly incorporating other effects in
addition to viscosity, such as the AKA effect. Loosely speaking, we may consider the
Boussinesq hypothesis as a mean field result.

Finding families {of }; such that the iterated Lie derivative operator 3, Loe Loe
has a nontrivial and interesting limit D is not difficult. The difficulty is proving that
the It6 terms fOT Loewe(t) dW} converge to zero in a certain sense (in the heuristic
mean field vision, they are the fluctuations). And, to be more precise, the difficulty
in proving this result for the It6 terms lies in the control of w.. Imposing assumptions
on the noise covariance in order to have convergence to zero of expressions like

r k
; /0 (F(£) Lo 6) W]
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for a given process f and smooth test function ¢, assumptions compatible with those
leading to a nontrivial limit D of %Zk Lg; Eg;, is possible. But a control of w, is
needed and this is highly nontrivial for 3D models.

The difficulty is only marginally due to the nonlinear term £, w.. The same
difficulty arises in the investigation of the Boussinesq hypothesis for a passive magnetic
field M.:

dM. =AM dt == Ly M. 0 dWF,
k
Ms‘t:O = MO

(n>0). The mean field equation

M|—o=M"°
is, in this linear case, rigorously obtained as the limit of the average of M, (see, for
instance, [17]). However, the difficulty in the control of M, remains and is due to the

fact that the random stretching terms M. - Vo, have a stronger and stronger effect
as € = 0.

1.4. The stochastic 2D-3C model and main result. As in the last subsec-
tion, we start from the following stochastic version of the 3D Navier—Stokes equations:

dw+(v~Vw7w-Vv71/Aw)dt:fZ(ok'Vw7w~Vak)othk,
(1.1) -
w|t:0 = wy-
We still consider this equation at a formal level (but only to shorten the next prelim-
inary steps, since this could be made rigorous).

Assume that, with the notation © = (1,22, x3), the initial condition and the noise
are independent of x3:

wo = wo (z1,22), o =0y (z1,22).

However, all vector fields still take values in R and we denote the canonical basis
of R® by {e1,e2,e3}. Under the previous assumption, a solution of the stochastic
equations above is given by

v(t,z1,22) =vy (t,21,22) + v3 (t, 21, 72) €3,

w(t, w1, m2) =wpy (t,x1,22) +ws (t,21,22) €3,
where v, wy live in the horizontal plane, namely taking values in the span of {e1,es}.
Notice that the relation w = curlv implies

1 1
w3=-Vg vg, wyg=Vgus,

so the horizontal and vertical components are interlaced. Here, V4 = (02, —0;) with
0; = 8%' The model incorporates some degree of helicity (vorticity and velocity are
not orthogonal). Decompose also the noise:

W= ngw’“ = ZJ;CLIVV}C + Zoﬁwkeg,

ke kel kel
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where Z is some index set. Then we get the model (Vg = (01,0:) and Ay = 9?2 +93)

dws+(vy - Vyws—wpy - Vygvs—vAgws) dt = —Z (Uf -Vyws—wg - VHU,?;) Oth’“7
k
dvs + (vyg - Vaus —Z/Ava)dt:—ng.VHz;gothk,
k
w3|t:0=wg, U3|t:0=Ug,

with obvious meaning of w) and vJ, given wy. Indeed, taking curl of the second
equation, and using the simple identity

VE(U . VHU;),) =Uu- VHUJH — Wy - VHU

which holds for any 2D divergence free vector field u, we obtain the first two com-
ponents of the initial vorticity equations (1.1). We remark that the stretching term
wyg - Vygvs in the equation for ws vanishes because wy = Vﬁvg is orthogonal to
V yvs. Before moving forward, let us mention that vs satisfies a stochastic advection-
diffusion equation with pure transport noise, and thus it enjoys nice pathwise energy
estimates; see (5.2) below. Combining this fact with the properties of noise given in
Hypothesis 3.3, we can derive a uniform bound on w3 in spite of the presence of the
stretching part of noise; such uniform estimates play an important role in the scaling
limit arguments in section 5.1. Similar results are not available in the true 3D problem
illustrated in section 1.3; see, for instance, [12, section 6].

In the next sections we make a rigorous analysis of the above stochastic 2D-3C
model and its scaling limit. Roughly speaking, under a suitable scaling limit of the
noise introduced in section 2.1, we will show that the above stochastic model converges
weakly to the following deterministic system:

{atwg + vy -Vyws = (VAH —|—£Q)w3 +Vy- (Awp),

(1.2)
Ovs +vg - Vyvy = (I/AH +£Q)U3,

where @ and A are 2 x 2 constant matrices, Q being nonnegative definite and Lof=
%VH . [Q VHf]; see Theorem 3.4 below for more details. The system (1.2) can be
rewritten in the more familiar vorticity formulation as follows: taking curl of the
second equation leads to

Owy +vyg -Vywyg —wy - Vyvg = (I/AH +‘C’Q) WH;

recalling that wy - Vgvs = 0, we combine the first equation in (1.2) and the above
equation to obtain

Ow +vyg -Vyw —wy -Vgv= (VAH+EQ)w+VH -(Awg) es.

Since d3w = d3v = 0, the nonlinear part can be further written as v - Vw — w - Vo
with V = (01,02,03). We see that there is an extra dissipation term Lgw predicted
by Boussinesq’s hypothesis, and a first order term Vg - (Awg)es responsible for
the possible AKA effect; the latter is a scalar object multiplied by e3, but we may
also write it in the general 3D form, which reduces to the above one due to special
cancellations of our setup.

We conclude the introduction with the organization of the paper. We introduce in
section 2 the vortex noise which will be used to perturb the model. Section 3 contains
the statements of our main results, including the well-posedness of stochastic 2D-3C
models and a scaling limit result to the deterministic model mentioned above. We
prove these results in sections 4 and 5, respectively.
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2. The vortex noise. In this section let us describe in detail the vortex noise
W that we will use to perturb the 2D-3C model introduced above.

2.1. The covariance function. Let T? = ]RQ/Z2 be the 2D torus; we may

identify it as [—3,2]* with periodic boundary condition. Recall that for i € {1,2},

0;= 6%1-» Vi =(01,02), and Vi = (92, —h).

Let us assume that the velocity field of a vortex takes the form
o(z)=ou(z)+o3(x)es, xeT?

where oz (z) = (01(x),02(z)) is a divergence free vector field on T?; {o;}3 | are
smooth periodic functions. For simplicity, we shall assume the vortex to be symmetric,
namely,

(2.1) op(—2)=—oy(x), o3(—x)=o03(zx), zcT>
As a typical example, we may take
(2.2) cg=TK=x0, o3=79GxY,

where ',y > 0 are vortex intensities, K is the Biot—Savart kernel and G the Green’s

function on T?, and 0, y € C>® ((—%, %)2) are symmetric functions.

The associated vorticity field
w(z) =wy(z) +ws(x)es
is determined by the following relations:
Wl = Vﬁag, w3 = —Vﬁ -OH-

Let X be a uniform random variable with values in T?; we can now define the
velocity field of the random 3D vortex as follows:

Y(z)=0(r—X)=0op(x—X)+o3(x—X)es, T

Remark 2.1. We describe here the “intuitive picture” of the vortex noise: choose
a random location X in the horizontal torus T2, and create a vertical 3D vortex
object, similar to a sort of “vertical cylinder,” with a certain velocity component in
the vertical direction. Repeating this choice at high frequency, choosing at random
the location X and the orientation (namely, multiply w(z) by £1), we get a “random
walk” of vortex structures that converges to a noise in a suitable scaling limit; see
[11].

Consider the covariance matrix function of the random field X:
Qz,y) =E[X(z) @ X(y)] =E[o(z - X) @ oy — X)] = /w oz —z)®ao(y—z)dz.
Tt is space-homogeneous, that is, equal to Q(x — y) with
(2.3) Q(a) :/Tr? ola—w)®o(—w)dw,

where we use the change of variables y — z = —w in the integral above. As a matrix
valued function, Q is smooth on T2.
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We decompose Q(a) in the form

_( Qu(a) Qmna(a)
Q(a)‘(Qg,Hm) Qg‘z’a))’

where, using (2.1),

o

T

&
I

—/TQ or(a—2) ® op(z) dr,
Qg(a):/w oa(a — ) ® 0g(x) da,

Qus(a)= /Tz oy(a—1z)®o3(z)d,

Qs.11(a) = —/W o3(a— ) ® ox(x) da.

Remark 2.2. Recall that, by the definition of covariance,
and that mirror symmetry means

which also means that @Q(a) is a symmetric matrix. Notice that the covariance matrix
of a random vector is always positive definite but, in spite of the name, Q(a) is not the
covariance matrix of a vector but rather the mutual covariance between two vectors,
which may have any sign.

We have, by (2.1),
QH(—a):—/T2 GH(fa—:v)®crH(:c)dx:/T2 og(a+z)Qoy(x)d;

changing variable z = —z yields
Qu(—a)= / on(a—2z)@op(—2)dz=Qu(a).
T2

Similarly,

Q3(—a) =Qs3(a),
QS,H(—(I) = _QS,H(G)7
Qu3(—a)=—-Qmu3(a);

hence mirror symmetry does not hold.

Remark 2.3 (diagonality of Q(0)). Let the horizontal velocity field oy be given
as in (2.2); by the definition of horizontal covariance function Q g, we have

QH(O):/Tz JH(x)®UH(x)dx:F2/ (K *0)(x)® (K % 0)(x)dx

T2

= r2/ (VHEG % 0)(z) ® (VG *0)(z) dx.
T2
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If we assume that 6 is radially symmetric, then Qg (0) = 2kl for some k > 0;
here I, is the 2 x 2 unit matrix. Indeed, we have

Q' (0)=T? / (026 6) ()] de, Q%2(0) =T? / (0,6 # 6) ()] da.
T2 T2
Using the radial symmetry of 0, one can easily show that
(02G % 0)(x2,21) = (1G % 0)(x1,22);

therefore, changing variable (z1,x2) — (z2,x1), we have
1H(0)=T7? /1r2 [(02G = 9)(x2,m1)]2 dxodzy
—1? /T [(01G * 0) (w1, 72)] darydwy = Q%2 (0).
Next, for the off-diagonal entries,

QL7(0) = T / (02G * 0)(x) (D1G *0) () d = Q41(0).

T2

Again by the radial symmetry of 6, one can show that

(81G*9)(—x17x2)=—(81G*9)(x1,x2), (81G*9)(x1,—x2) :(81G*9)($1,1'2),
(02G #0)(—z1,22) = (02G * 0) (21, 22), (G x0)(21,—22)  =—(02G*0)(x1,2).

These properties immediately imply that Q}f(O) = ?1’,1(0) = 0. Thus the assertion
holds with x = Q% (0) = 1 Tr(Qr (0)).

Remark 2.4. Later on we Will make a scaling of the vortex noise: for £ € (0,1), let
Oo(x) =£720(¢'z) and define o%; =TK x0y. Then, as £ —0, o approaches a point
vortex. In this case, if 6 is a probability density with compact support in ( —5, 5)2, it
is a classical result that its energy is of order log ¢~!; more precisely,

F2
(2.5) Tr(Qu(0)) ~ 4—log€*1 as £ — 0;
7

see Proposition 3.6 and its proof in section 5.2, for instance, Lemma 5.5.

Let Qg (resp., Q3) be the covariance operator associated to the covariance ma-
trix Qg (resp., covariance function @3) defined above. We conclude this part with
estimates on the operator norms of Qg and Q3 when the vortex velocity field is given
by (2.2). Recall that the covariance operators are defined as follows:

(QuV)(x /QHx— W) dy=(Qu *V)(x), xeT? VelL*T?R?);
(Qsf)(x / Qs(x—y)f(y)dy=(Qs * f)(x), xe']I‘Q,fELQ(']I‘Q,R).

LEMMA 2.5. Assume that the vortex velocity field is defined as in (2.2); then one
has

1Qr N2 ze STAK|LIONL:  and  [QsllLesze <A IGIL IXIIL:-
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Proof. We only prove the first estimate since the other proof is similar. By the
classical inequality for convolution, one has

1Qa VL = Qe * VL2 <|Qmll L[V L2

which implies ||Qgllrz—r2 < ||Qu||1:-
Recalling the definition of @, we have

Qulls = [ | [ oute =) @onty) | s

< [louldy [ loute =y s

= oz

Noting that oy =T'K % 0, we use again the convolutional inequality and get
Q]| <T?|IK *0l|7, < T K72 10117

Combining the above estimates, we finish the proof. 0

2.2. Series expansion of noise. The smoothness of () implies that the corre-
sponding covariance operator Q is of trace class. Let {fx}r be a complete orthonor-
mal system of H = L2 (T* R?) (sol means solenoidal fields) consisting of eigenvectors

sol
of Q:
Qfx = efr, M2>20, k>1

For simplicity, we assume A\ > 0 for all £ > 1. From the above identity we deduce
that the field fi depends only on the horizontal variable x = (z1,x3). Indeed, for any
&= (z,z3) € T, by the definition of Q,

MA@ = [ Qa=h@di= [ Q=) di

:/TQQ(:U—y)[Afk(y7y3)dy3]dya

where y is the horizontal part of § € T®. The right-hand side depends only on z, and
thus fi(Z) = fr(x,x3) is independent of x3; this implies [} fi(y,y3) dys = fr(y). The
above equality can be rewritten as

M) = [ Q= fita) v
The property of convolution implies that f is also smooth on TZ.

Now let W = {W(¢)}+>0 be a Q-Brownian motion on #; then there exists a
sequence of independent real Brownian motions {W¥};>; such that

W(t) = Z thkfk = ZUkWtkv
k k

where we have denoted for simplicity that o =/ Ak fx, £ > 1. We remark that

(2.6) Q(x —y) :ZUk(x)@)ak(y) for all z,y € T?,
k
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and, since @ is smooth, the series converges in C””(TI‘2 X ']I‘Z) for any m > 1. Similarly,
we write the field oy, as

or(z) = oy (z) + o} (x) es,
where the horizontal part ol = (o1,02) is a divergence free field on T2. Accordingly,
we can write the noise W (¢) as

W(t,x) =Wy (t,z) + Ws(t,x)es,
Wa(tz)=> of (@)W}, Ws(tz)=> of(z)W/.
k k

3. Main results. In this section we first show in section 3.1 the well-posedness
of the stochastic 2D-3C models perturbed by the vortex noise introduced above; then
in section 3.2 we rescale the noise and show that the stochastic models converge to
a deterministic 2D-3C model which might exhibit the AKA (short for anisotropic
kinetic alpha) effect.

In what follows, since the space variables x are always 2D, we omit for simplicity
the subscript H in Ay, Vg, VJH, ete, but we still write vy, wy to distinguish them
from vz, w3. We denote the usual Sobolev spaces on T? as H® = H*(T?), which will
also be used for vector valued functions. When we want to specify the target space,
we write more explicitly as H®(T?,R?). The norm in H* is written as || - |z- and
in case s =0, we write H® as L? with the norm | - ||pz. We assume the spaces H®
consist of functions with zero spatial mean on T2. The notation (-,-) will be used for
the scalar product in L? or the duality between H* and H~*. Sometimes we denote
the norm in LP(0,T; H®) simply as || - ||Lems, p > 1,5 € R. In what follows, we write
a S b if there exists some unimportant constant C' > 0 such that a < Cb; the notation
<v,r means that the constant C' is dependent on v, T'.

3.1. Well-posedness of stochastic 2D-3C models. Let (Q,F,(F;),P) be
a filtered probability space and {W*}; a family of independent standard Brownian
motions. Recall the vector fields {c}}; and functions {7 };, introduced in section 2.2.
Motivated by the discussions in section 1.4, we consider the following stochastic 2D-3C
model:

dws + (vg - Vws — vAws) dt = —Z (a,f -Vws —wy - VU,‘Z) ) thk,

3.1 b
(3-1) dvs + (vg - Vg —vAwvg) dt :720£~V"v30thk,

k
where od means Stratonovich stochastic differential. We recall that

w3 = B VA vy, WH= VJ_’U?,.

The latter identity explains why the stretching term wp - Vus vanishes in the first
equation; however, the random stretching terms ), wg - Va,?; o thk remain, and,
depending on certain conditions, they might be the origin of the AKA term. Moreover,
by the Biot—Savart law, vy = K *ws, where K is the Biot—Savart kernel on T2. In Ito
formulation, the system becomes (see section 4.1 for the derivations)

dws + (vpr - Vws — vAws) dt = — Z (off - Vws —wpy - Va}) dw}
k
(3.2) +(Lws + V- [VQu 3(0)wy]) dt,
dvs + (vyg - Vg — vAwvz)dt =— Zo’;{.{ - Vs thk + Lvz dt,
k
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where VQ g 3(0) is a constant matrix given by

_ (1@Q13(0)  92Q1,5(0)
(3.3) VQH73(O)_(31Q2§(O) 82Q2,2(0)>

and L is a second order differential operator given by
1
£f=5 goé’ V(i V), feCHT?).
As the vector fields {oi}; are divergence free, we have

(34) L= 3V [(of VNl = 3 SV [(of ©of)VS] = V- [Qu(0)7 7],
k k

where the last step is due to the horizontal part of (2.6).
We first give the meaning of solutions to the system (3.2).

DEFINITION 3.1. Let (w§,0§) € (L?)2. A pair of stochastic processes (ws3,v3)
defined on some stochastic basis (0, F,(F;),P) with (F;)-Brownian motions {W*}y,
which are (F;)-predictable and have trajectories in

L>=(0,T; L*) N L2(0,T; HY),

is called a weak solution to (3.2) if for any ¢ € H'(T?), P-a.s. for all t € [0,T], one
has

(3.5)
<w3(t),¢>>=<w§,¢>>+/0 <w3(8),vH(8)~V¢>ds—/O (wr(s),(VQmu3(0)) Vo) ds

- /Ot <Vo.)3(s), <u12 + ;QH(0)> v¢> ds

+3 [ Hestoholt Vo)~ (oban(s)-¥e)) aw:

(v3(t), ) = (v3, ) + / (v3(s), v (s) - Vo) ds+y / (v3(s),0% - V) dW
0 PREAL

- /O t <V1}3(3), (VJQ + ;QH(O)> v¢> ds.

We remark that if w3, vs € L? (Q, L>(0,T;L?) N L*0,T; Hl)), then all the terms
in (3.5) and (3.6) are well defined. According to the above definition, any solution
(w3, v3) can be decomposed as

w3(t) =w§ + Vi (t) + Mo (t), vs(t) =vg + Vi (t) + My (t),

where V,,, V,, take values in W'2(0,T; H~1), while M,,, M, are L?-valued continuous
local martingales. For instance, one has

t
Vw(t) :A (— vyH - ng + VA(Ug + £W3 +V- [VQHyg(O) OJHD(S) dS,

t
M, (t) = _Z/o (of  Vws —wp - Voi)(s) AWk,
k
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similar (and simpler) expressions hold for V,(¢t) and M,(t). Using the regularity
properties of ws and vy = K * ws, it is easy to see that

lvm (s) - Vws(s)l| g1 = IV - (v (s)ws(5)) |- < lve (s)ws(s)] L2
S lws(s)llz2llvm ()l 2 S llwsll oo 2 ws (s) |

and thus P-a.s. vy - Vws € L2(0,T; H1); the other terms in the expression of V,
clearly enjoy the same property, and therefore 9;V,, € L(0,T; H~'). The regularity
on the martingale part M, can also be verified by classical estimates; cf. [8, Lemma
3.2] for detailed computations. From these discussions we see that the conditions
in [23, Theorem 2.13] are verified; thus the It6 formula therein is applicable, which
implies that ¢ — |lws(t)||z2 is continuous. We conclude from this and the continuity
of (ws(t),¢) in ¢ that ws has continuous trajectories in L?. The same result holds
for wvs.

The purpose of this part is to show the well-posedness of the system (3.2). Let
Il lar be a norm on the space of 2 x 2 matrices.

THEOREM 3.2. Let QQ be the smooth covariance matriz function as defined in
section 2.1. For any (w3,v9) € (L?)?, the stochastic 2D-3C model (3.2) admits a
probabilistically weak solution (ws,vs) in the sense of Definition 3.1, satisfying the
bounds

t
(3.7) P-a.s. for allt €[0,T), |lvs(t)|3: + 21// [Vs(s)||22 ds < |02,
0

T
(3:8)  E| sup [lws(t)]Z: + V/ [Vws(s)l|72 ds] < Cuq(llvslZe + llwsliZ2),
t€[0,T] 0
where C,, g is a constant depending on v,||VQm 3(0)|ar, [|V2Q3(0)||as-
Moreover, if |V2Q3(0)||a < 2v, then pathwise uniqueness holds for (3.2) and thus
the system has a unique probabilistically strong solution.

This result will be proved in section 4. The existence part follows from the classical
Galerkin approximations and compactness arguments; therefore, we only provide some
a priori estimates needed for showing tightness of laws of approximating solutions.
Concerning the proof of pathwise uniqueness, the discussions below Definition 3.1
allow us to apply the Ité formula in [23, Theorem 2.13]; then the uniqueness follows
from some relatively standard arguments.

3.2. Scaling limit for stochastic 2D-3C models. In this part, following the
recent works [7, 15, 19], we want to take a suitable scaling limit of the noise W in (3.1)
and show that the solutions converge to some limit which solves a deterministic 2D-3C
model with an extra dissipation term and possibly also a first order term responsible
for the AKA effect. The latter has been discussed in the physics literature for a long
time (see, e.g., [27]), but has escaped from rigorous mathematical treatment so far.

To this purpose, we shall take a family of vortex noise, defined as in section 2.1,
where the velocity field now depends on some parameter £ € (0,1):

ol(x)=0%(x) +ob(x)es, x€T?

satisfying the symmetry property (2.1). Accordingly, we have the corresponding co-
variance matrix function

_ _ _ ([ Q) b.3(x) 2
Qe(x)—/EQaz(x y) @' ( y)dy—<QgiI(x) ci-f?x ) zeT?,
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where qu, qu’g, and Q% admit similar expressions as in (2.4). We can define the
covariance operator Q° associated to QY, acting on functions in LQ(']I‘Q,R3) and with
operator norm ||Q||z2_,72; in the same way, we have the operators Q% and Q% with
associated norms. Moreover, we denote

L (01Q! () angg(m)
V@0 = <81Q€,3(0) 925 4(0) )

Our basic assumptions on the covariance functions are as follows.

HYPOTHESIS 3.3.
a) The limit Q :=limy_,o Q% (0) exists and is a nonnegative definite 2 x 2 matriz.
H
(b) It holds that limgﬁo ||Q€H||L2~>L2 \Y ”QgHL2ﬁL2 =0.
c) The limit A:=limy_,o VQY; 4(0) exists (might be a zero matriz).
H,3
(d) It holds that supye o 1 [|V2Q5(0)||ar < +o0.

Let W¢={W*(t)};>0 be a Q*-Brownian motion in H; similarly to section 2.2, we
decompose W* as follows:

Wt z) =W (t,z) + Wi(t, x)es,

Wht,z)=> o @WF, Wita)=> o (@)W},
k k

where ai’H = (02’1,02’2). Now we consider the stochastic 2D-3C model driven by W*:

duh + (vl - Ve —vAwh) dt = =" (op" - Ve — wip - Voi®) o dW,

k
dvl + (v% -Vl — VA'Ug) dt =-— O’i’H Vb o dWF,
k
where wé = V4§ and wf = -V v, The associated It6 formulation is

dw§+vfy - Vwhdt == (o™ Vw§ —wl - Vo ?) df
k
(3.9) +(VA+ LYYW dt + V- [VQY 5(0) wh] dt,
dv + vty - Vobdt = — ai’H -Vl dWF + (vA+ Eg)wg dt,
k

where the operator £L/f =1V - [Q%(0)Vf]. Given f-independent initial data (w;(0),
v3(0)), under Hypothesis 3.3, Theorem 3.2 asserts that the system has probabilisti-
cally weak solutions (w§,v§), satisfying the bounds (3.7) and (3.8) which are uniform
in £ € (0,1). We remark that if we strengthen condition (d) in Hypothesis 3.3 to
be sup,e 0,1 [V2Q4(0)|[ar < 2v, then the solutions (w§,v§) are also strong in the
probabilistic sense.

Our main result reads as follows.

THEOREM 3.4. Assume Hypothesis 3.3; for any £ € (0,1), let (w§,v5) be a prob-
abilistic weak solution to (3.9) with the same initial data (w3(0),v5(0)). Then the
Jamily {n*}Yee0,1) of laws of {(w§,v§)}ee0,1) is tight on L2(0,T;L?), and any weakly
convergent subsequence of {ne}ge(o}l) converges to a limit probability measure which
is supported on the weak solution (ws,vs) of the deterministic 2D-3C model:

(3.10) {3tw3+vH-Vw3 :(VA+£Q)w3+V~(AwH),

Oz +vg - Vs = (I/A + EQ)vg,
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where Lo f = %V~ [QVf] and, as usual, w3 = —Vt vy and wy = V4us.
Moreover, if the matrices @ and A satisfy

(3.11) r-Qr+y-Qu+2x-Ayt >0 for any z,y € R?,

then the system (3.10) admits a unique weak solution (wsz,vs) in the class L*°(0,T;
L2)NL2(0,T; HY); in this case, the whole family {(w$,v4)}ie(,1) converges in law, in
the topology of L*(0,T;L?), to (ws3,v3).

This result will be proved in section 5.1, where the key ingredient is to prove
that the martingale parts vanish in a weak sense. The proof of uniqueness of (3.10)
is standard and follows by applying the Lions-Magenes lemma. As @ is nonnegative
definite, it is clear that (3.11) holds in the case A = 0; in the example given below
Remark 3.5, we have Q = 2k and thus (3.11) also holds if g defined in (3.14) belongs
to the interval [—1,1].

Remark 3.5. Let us interpret the above result. First, Boussinesq hypothesis is
verified, but, as expected from the geometric structure of the problem, the additional
dissipation acts in the horizontal direction only. Second, the presence of a random
stretching term (absent in previous works) may give rise to a first order term, V -
(Awg), which could increase exponentially the size of the vorticity, as in the dynamo
problem of magnetic fields subject to turbulence [25].

Next, we provide an example of vortex noise verifying the above conditions. We
begin with heuristic discussions on how to choose the right scaling of noise. Recall
(2.2) for typical choices of velocity fields of the vortex. We assume that the function
6 € C°((—1/2,1/2)?) is a radially symmetric probability density function; then by
Remark 2.3, the horizontal covariance matrix Qg (0) is diagonal. In this case, the
second order differential operator £ in It6 equations (3.2) takes the form

£= 1T @u(0)A,

As in Remark 2.4, we define rescaled vortex: 6y(z) = (720(¢"'z), z € T?, where
£€(0,1) stands for the “size” of the vortex. Then we define

U%:FgK*Qz.

We have to determine the dependence of the (horizontal) vortex intensity I'; on . By
(2.5), if T’y were a constant independent of ¢, then Tr(Qx(0)) ~ || K * 6%, explodes
at the rate of logf~'. In order for the vortex to have constant energy as £ — 0, we
choose I'y to be a function of ¢ in such a way that Q%(O) is a constant matrix. Thus,
we fix some x >0 and define

(3.12) Ty =2k || K %0 2 ~ (log =)~ 1/2,
It remains to introduce the rescaled vertical velocity o4 of the vortex:
(3.13) o =7 G * e,

where  vanishes as £ — 0, G is the Green’s function on T?, and x € C° ((=1/2,1/2)?)
is radially symmetric; we remark that v, may not be the same as I'y.
Having a% and ¢4 in mind, we can finally define as above the covariance matrices

Q' QY%, etc. and the associated operators QF, Q%. Then by Remark 2.3 and (3.12),
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Q%(0) =2k, is a constant matrix and thus condition (a) in Hypothesis 3.3 is verified;
in particular,

Tr(Q%(0)) =4x.

Moreover, by Lemma 2.5, one has ||Q% |72z < I'?||K||2, because 6 is a probabil-
ity density; (3.12) implies that |Q%||r2_sz> vanishes as £ — 0. In the same way,
Q4N 222 <AZ2IIGI121 ||xl|%: vanishes as well in the limit £ — 0. Therefore, condition
(b) in Hypothesis 3.3 holds, too.

In order to verify conditions (c¢) and (d) in Hypothesis 3.3, we need some other
assumptions.

PROPOSITION 3.6. Assume that 0, x € C° ((—%, 3)?) are radially symmetric prob-
ability density functions.
(1) If v¢ = o(T'y) as £ — 0, then the limit A := limy_,¢ VQﬁm(O) is null, i.e.,
A=0.
(2) Assume that
e

(3.14) go = lim T, #0;

0 1
AZQHQO <_1 0>

(3) If ve=0O(I') as £ — 0, then sup,e (o 1) 1V2Q5(0)||ar < +oo.

Remark 3.7. Assume condition (3.14). From the proof of Lemma 5.4 in section 5.2,
it is clear that we can relax the nonnegativity condition on y, but assuming ag :=
fTQ x dx # 0; of course, the constant in A would be different. In this case, one can
show as in the proof of Lemma 5.4 that

then the matriz

(0;Ggz2) * x(x) ~ ag 0;Grz(x) for |z|>1,

where Gge is the Green’s function on R?. However, if ag = 0, then (9;Gg2) * x ()
decays too fast as |x| — oco; this would result in A being the trivial null matrix.

4. A priori estimates and proof of Theorem 3.2. This section consists of
three parts: in section 4.1 we first provide the computations which lead the system
(3.1) to its It6 formulation (3.2), then we derive in section 4.2 the a priori estimates
necessary for proving the existence of solutions, and finally we give a sketched proof
of Theorem 3.2 in section 4.3, focusing on the pathwise uniqueness of (3.2).

4.1. It6—Stratonovich corrector. Recall the stochastic 2D-3C model in
Stratonovich form:

dws = (—vg - Vws + vAws) dt — Z (off  Vws —wp - Voi) o dWF,

4.1 k
(4.1) dus :(—UH~V03+VA03)dt—ZUf -vaothk.

k

As the equation for vs is driven by pure transport noise, it is well known that the
corresponding It6 equation is
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dvs = (—vg - Vs + vAvs + Los) dt — ZJ;{,{ Vg dWF,
where the second order differential operator £ is defined as in (3.4).
We turn to deriving the It6 equation for ws:
dws + (vy - Vws — vAws) dt = —Z ( H . Vs —wy - VO’%) thk
(4.2)
—de -Vws —wg - Vak,Wk]
Noting that wy = V=+ws, it holds that
d(of! - Vws —wpy - Vop) = o - V(dws) — V*(dvs) - Vo,
=Vdt - Zag . V(alH -Vws —wp - VO’ZS) o dW}
1
+ Z (VA (ol - Vu3) - Vo}) o dW],

where V dt is the finite variation part with
V=08 -V(—vy - Vws +vAws) — V(v - Vg + vAwvs) - Vo,
thus

d[a,ﬁf -Vws —wp - VU,%,Wk]t
=—ofl. V(af Vws —wy - Voy) dt + (Vl(af - Vus) - Voy) dt

Therefore, the last term in (4.2) (modulo dt) is

1
5 Zaf . H . Vws —wy - Vak ZVJ‘ -Vus) - Vo3
k

1 1
=§ZUf~V(0’f?-VW3)—§ZO’k -V (wy - Voy)
k

—= Z Vi (o} - Vus) - Vo

(4.3)

=: Lws — §(I+J).

It is sufficient to compute the last two sums, denoted by I and J, respectively.

LEMMA 4.1. One has

5 _ o (22k(010y)) - Voy
I=J= Z -Vwy) - Vo (Zk(ﬁzak) Vol |-

Proof. We have

I:Zof-V(wH-Va;z)
k

—Z -Vwy) - Vop +wpy - <ZO’,?'V(VO’2)>.
k
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The second term can be slightly simplified: for ¢ € {1,2},

Zak -V (0;03) Zak -0;(Va3)

where we have used the fact that
2
ZO’k VO'k = ZZU%@U% = —Zanj,g(O)
j=1 k =1

is a constant, due to the space homogeneity of covariance function. From this we
immediately get the expression for I.
It remains to compute

J=Y V*(of - Vus)- Vo
= ZVL(U,iawg + 07dav3) - Vo
—Z [(01v3)VEop, + (0203) V0] - Vo

+ Z akV 811]3) + akV (821]3)] . VO‘;Z .
k
Note that V+(9;v3) = 0; V4t vs = Ojwy; thus,

J=(01v3) > V'op-Voi+ (03) > V'op- Vo
k k

+ Z [Ué@le + 0'1362(.&)[—[] . Va,?;
k

_ . Zkvlai-VUﬁ 3
=Wy <—Zkvl0é'v0i +Z VOJH VO'k.

We see that I and J contain a common term; in order to show that they coincide,
it suffices to check that the remaining terms are the same. Indeed,

0ot —0y02
H_ (010 _ 205\ _ ol 2
010}, (810;%) ( 102 V-=oy.
In the same way, 8205 = VJ‘O',i; as a consequence, I =J. ]

Now we show that the second addend in I and J vanishes.

LEMMA 4.2. It holds that

(4.4) I=J= Z -Vwy) - Vap.
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Proof. First, we prove a simple fact: let @ = (Q;;)i<ij<3 be the covariance
matrix; then for any 4,j € {1,2,3}, m,n € {1,2}, it holds that

(4.5) 0 0,Qi;(0 Zamo—k Za oL () Ol (x).

Indeed, recall that for 4,5 € {1,2,3},
Qij(x—y)=> oi(x)ol(y), =yeT?
k
thus we have
O, 0y, [Qi g (& = 9)] = Y O, 0}(2) By, ] (1),
k

that is,

8 &LQ” Zamgk 8 Uk;( )

Letting x =y gives the first identity. For the second one, we have

aivn a"hn [szj €= Z awn UkJ 8"/7n Uk‘ (y)

from here we get the equality in the same way as above.
Now we start proving equality (4.4). Recalling that

3 ) —zk(alaf)-wg
1= (k' Vion) Vi + un (C5: o) 5ot

we have

Z(@laf) -Voi = Z (010}, 010} + D107 Do)

k k

= z (— 0207 0103 + Drof D20},
k

where we have used 9104 + 0207 =0. By the above identity (4.5),
2(8105) . VO’]?; = 8182Q273(0) — 318262273(0) = 0
k
In the same way,

2(820';?) . VU% = Z (820']& 810’}3 + 820';3 820'2)

k k
= Z (820’;% 810',?; — 810';1 620'2)
k
= —0102Q1,3(0) + 0102Q1,3(0) = 0.
This implies (4.4) and completes the proof of Lemma 4.2. d

Recall the constant matrix VQ g 3(0) defined in (3.3); we can further simplify
I =J as follows.
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PROPOSITION 4.3. Let Qu3(x) = (Q1)3(x),Q2,3(x))* (z € T?) be a vector valued
function. Then,

I=J=-V. [VQH,g(O)wH].
Proof. Recalling equality (4.4), we have
I = Z [(6102) O’}:I . le + ((920';2)0';:1 . Vw2}

<0k510k) Vo + Z (akagak) Ve

01Q1,3(0) _ (02Q13(0) w
<51Q23 0) Ven <52Q2,3(0>> Ve

=-01Qu3(0) - Vwi — 0:Qp,3(0) - Vw,.
Then,
I=-V [w15Qpu3(0)] =V [w20:Qu,30)] ==V - [VQu,3(0) w],
which finishes the proof. ]
Combining (4.2), (4.3), and (4.4), we obtain
dws + (vg - Vws — vAws)dt ==Y (of - Vws — wy - Voip) AW/

(4.6) k
+ <£w3 + V- [VQH,;),(O) wH]) dt,

where VQp3(0) and the operator £ are defined, respectively, in (3.3) and (3.4).

2. A priori estimates. This section is devoted to proving a priori estimates
for the stochastic 2D-3C model (4.1) (i.e., (3.1)). First, as v3 satisfies a stochastic
advection-diffusion equation with divergence free fields vy and af , one has, P-a.s.,

t
(4.7) o) +20 [ [Voas)|Feds < oS3 for al 20,
0
Next, we turn to dealing with the estimate on ws; recall that || - ||as is a matrix
norm.

LEMMA 4.4. We have

48) E <o ([v8ll72 + llwsl ),

T
sup [lws(t)|25 + v / | Vews(s) 22 ds
0

te[0,T)

where C,, g is a constant depending on v,||VQu 3(0)|ar, [|VZQ3(0)||as-

Proof. In what follows, we will write V+v3 instead of wyy, in order to make use
of the equation for vs. By the first equation in (4.1), we have

dlws|)2s +2v || Vws|)3, dt = —2 Z(ng -Vtus,03) o dWFE.
3

Transforming this into Ito differential yields
dlws7> + 2v || Ves||72 dt = =2 (Vws - Vs, o) AW/
k

4.9
( ) _ZdRng-VLUs,U;%%Wk]t-
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We have
d(Vws - V*tvs,03) = (V(dws) - V> vs,00) + (Vws - VH(dvs), o),
and, using the equations in (4.1) for w3 and v,

d(Vws - Vivg,of) =Vdt =Y (V(of' - Vws) - Vs, 0} ) o dW}
l
+ Z (V(Vtvs-Voi)- VLU3,0£> o dW}
l

= (Vws - V(o Vuy),03) 0 dW,
l

where V dt is the finite variation part; as a result,

—d[(ng . VL’U370'2>, Wk]t = <V( . Vws) - V4s, a,‘z> dt
—(V(Vtv3-Vo}) Vivs,op)dt
+ (Vws - V(o - V), 07) dt.
Integrating by parts yields

—d[(Vws - V'us,00), W, = —((of' - Vws) V03, Vo) dt
(4.10) +((V+v3 - Vop)Vius, Vop ) dt
—{(Vws)(of - Vvs),VEap)dt

Let us consider the first term on the right-hand side:
{(of - ng)Vng,Vo,@ = /(Uf -Vws)(V4vs - Vob) d

= /(ng)*af(V(fz)*Vng dx.

We have
1 3 1 3
H 3\x __ G'k,alo‘k a’k82a-k
ZUk (Vo) = Z <0']%8101:3 0’13820';3)
e (0:00a(0) 0:01(0)
1Q1,3(0 hQ1,3(0
== ’ ’ = — 0):
(81Q273(O) 32Q273(0)> VQmu3(0);
as a result,

= (ot - Vws)Vivs,Voi) = /(vmg)*VQH,g,(o)vag da
k

<IVQu3(0)|ar[[Vwsl[ 2| Vs 2

4 IVQr,3(0)]13
< 2 Vg 30 + O 2,
The third term in (4.10) can be estimated in the same way; thus
fz d - Vws) V>, Vo) *Z<(V(M3)(O’]€I - Vus), VEop)

(4.12) P
S v||Vws[72 + v IVQu3(0)[3, Vs 2.
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Next, for the second term in (4.10), we have

(4.13) > (Vs Vo) Vies, Voi) =Y ||[V6vs - Va2,
k k

Recall that
Q?)( ) Q33 r—y ZU}C 7 $7y€T2§

by the computations at the beglnnlng of the proof of Lemma 4.2, it holds that
~0;0:Q3(0 Zaak ) 007 ().

In matrix form, it reads as

(4.14) —v2Q3(0) ngk (z))*.
Therefore,
ZHVJ‘vg-VU,?;HQL,Z:Z/(VLvyVaifd:E
k k
=3 [(VHu) (Vab) (Vo) (7Hea) da
k

—— [(V-00) 2Qu(0) (V0 do
—<VLU3, V2Q3(0) (VLU3)>.
As a result, by (4.13),

(4.15) D (Vs - Vo) Vihes, Voi) = —(VEus, V2 Q5(0) (VHug))
. k

< V2Q5(0) [ Vws]| 2.
Combining the above estimate with (4.10) and (4.12), we arrive at

=3 d[(Vws - Vhvg,08), W, <v||Vws|7 dt + Cuql Vusl|7 dt,

where C~’,,7Q is a constant defined as

Coo=v""IVQus(0)[3r + V*Q5(0)|as-
Substituting this estimate into (4.9) and noticing that (Vws-V-+vs, 0%) = —{w3, V+us-
Vo3), we arrive at
(416) d||UJ3||2L2 + I/va3||2L2 dt S QZ<W3, VLU:; . v0'2> thk + C~’%Q||Vv3||2L2 dt.
k

Let M(t) be the martingale part and define the stopping times 7, = inf{t > 0 :
llws(t)||L2 > n}, n>1; then

T
+ c%Q/ Vs (8)] 22 dt
0

El sup w3(tATn)L21 < |lw§llZ: +E

sup |M(t A1)
t€[0,7) te[0,T]

< |lw§llZ: +E +Cov W82,

sup |M(t A1)
t€[0,T
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where the second step is due to (4.7). We have

E
te[0,T]

i TNATp 1/2
sup |M(t A Tn)] <E <Z/ <W3(t)7 Vlvs(t) . VU,%>2 dt)
L k O

1/2

[ TATy,
<E </ s (8172 |V -us(t) - Voi 2, dt)
0 k

TNATn 1/2
<CQE (/O lws ()N 721V s (£)]]72 dt) ,

where the last step follows from (4.15) and Cg = ||V2Q3(0)||}V§2. Therefore, by (4.7)
and Cauchy’s inequality,

E
te[0,T] te[0,T]

T ) 1/2
sup |M(tA7,)|| <CQE | sup ||w3(t/\7n)||L2(/0 Vo032 at)

<CQE[1/1/2|1)§|L2 sup ||w3(t/\7'n)||L21
te[0,T]

)
2

<SE| sup [lws(tA )l

+ 5 o8le.
t€(0,T]

N

Combining the above estimates, we obtain

<Cuq(llvslze + llwlZz)-

El sup [ws(t A%
te[0,T]

By Fatou’s lemma, letting n — oo yields the first estimate. We deduce the estimate
on E [ ||[Vws(t)[|2.dt casily from (4.16). O

In order to apply the compactness method for proving existence of weak solutions,
we also need to establish the following estimates.

LEMMA 4.5. Fiz some a € (0,1/2). It holds that

T ||’U3 —’U3 H 2 r Hw3 )”H 2 ~
[ [ IO [ ) o

Proof. Using the equation for vs, it is not difficult to show that

(4.17) E([lvs(t) = va ()l F-2) < Cuour(t — ) (1 + lwSll72 + [[05]72)-
We omit the proof here since it is easier than that of the estimate on ws given below.
By (4.6) for w3, we have

t

wg(t)—wg(s):—/ (UH'VUJ3)(7")d7’+/ [VAws + Lws +V - (VQu,3(0) wg)] (r) dr

S

t
- Z/ (off - Vws —wpy - Vo) (r) dW};
k S
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therefore,
lws (t) = ws($)| -2 ST + L2 + I3,

where

L<(t-s) / | (or - Vews) () |12

t
IL<(t—s) / H [VAwg, + Lws + V- (VQu3(0) wH)] (7“)Hi,,2 dr,
2

I3 <

t
> / (o8l - Vws —wpr - Vop) (r) dW}
k S

H-2

First, note that vy is a divergence free vector field on T?; it holds that
(e - Vws)(r)l| -2 S llom (r) ws(r)g—1 Sllva (r)ws(r)lpse < lva (r)l s llws(r)]] L2,

where in the last two steps we have used the embedding L3/2 < H~! and Holder’s
inequality. Using the Sobolev embedding H' < LS, we arrive at

1(vr - Vws)(r)llzr-2 < llv ()| Jws (1)l 22 < lws(r) 122

since vy (r) = K * w3(r), where K is the Biot-Savart kernel on T?. Recalling the
definition of I, we arrive at

t
BL S (t-5) [ B(lla(r)lL2) dr S (6= 5) (lofllfs + o8]122)
where in the second step we have used Lemma 4.6 at the end of this section.

Next, for I, recalling that Lws = %V- [QH(O)ng] (see (3.4)) and wy = V4tws,
we have

t
BE(=s) [ [Plenli +1Qu(OTwsr) s + 7 Qua0) 7 0s(r)[} ] ar
t
Sua(t=3) [ Ta(r)lBs + loar) 2] drs
therefore, by Lemma 4.4 and (4.7), it holds that

El Suqur (t = s)* ([wsll7e + [[051122).

Finally, we have

t
EI; SE lZ/ Haf Vws(r) — VYo (r) ~VU,§HZ,2 dr]
k S

t
SE [Z/ (ot - Ve ()| ya + [ vsr) - V5 dr} .
k? S
As {Uf i are divergence free, it holds that

S llot - Vws ()32 S ot ws ()30 S ot ws ()| STe(Qu (0))lws (r)[323
k k k
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moreover,

DIV testr) Voillya =3IV (os(r) Vo) [y-2 S 3 flosr) Vi s
k k k
IV Qs s (r) 2.

where in the last step we have used similar derivations of (4.15). Substituting these
estimates into the inequality above, we obtain

t
El3 <q E/ (lws ()2 + llvs(r)llZ2) dr Sva.r (t = s)(lwslZs + lvs]Z2)-
S
Summarizing the above estimates on Iy, I3, and I3, we arrive at
E(|lws(t) = ws(s)1F-2) < Cugr(t =) (1 + llwslz + lvslz2)-
Combining this estimate with (4.17), we immediately obtain the desired result. d

In the estimate of I; in the above proof, we have used the following result.

LEMMA 4.6. One has, for all t €[0,T],
E(lws()lz2) < Cuq(lwglize + l103]172)-
Proof. By (4.16) and It6’s formula, we have

dllws||z> =2llws| 72 dllws ]|z + dlllws]Z2, lws]|72],

< 2llwsllF2 (= V[ Vws|72 + CuqllVosll7z) dt+4 (ws, VEvs - Voi)? dt
k

+Alws|72 Y (ws, Vivs - Voi) dWF,
k

where C, o =v7|[VQu3(0)|3; + [|V2Q3(0)||as. By Cauchy’s inequality,
Y (ws, Vs - Vo) <llwsl72 D IV s - Vol |7
k k
where the sum on the right-hand side is the same as (4.13), and thus by (4.15),

D (w3, Vhus - Vo) < [lws| 211 V2Q3(0) | ar [ Vs [7--
k

Substituting this estimate into the inequality above gives us

(4.18) d”w?,”%z < C’V,QHUJ?,”QLQ ||V’Ug||%z dt + 4||w3||%2 Z<W3,VLU3 . V0'2> thk.
k

Introduce the stopping time 7, =inf{t > 0: |lws(t)| 12 > n}; we have

E / " ws(s) 142 D fea(e): ¥t oa(s) Vo s

tATH
< 1| V2Q3(0) o E / Vo352 ds
0

<n°[|V2Qs3(0)llar v lu5 22,
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where the last step follows from (4.7). This implies the last term in (4.18) is a locally
square integrable martingale; thus we have

tATR
E(llws(t ATa)llz2) < lwsliz> + Cuq E/ lws (s)l[7211Vvs ()72 ds
0

t
< llw§llzz + CroE l e H%(S)H%/() IVs(s)l22 dS]

< wslze +Cu V‘llvgliﬂl sup Ist(S)Iizl ;

s€[0,T]
which, combined with Lemma 4.4, gives us
E(l|lws(t A Ta)llz2) < Cuq (lwsllzs + [I051172) -

By Fatou’s lemma, letting n — oo we finish the proof. 0

4.3. Proof of Theorem 3.2. This subsection is devoted to the proof of The-
orem 3.2. To show the existence of weak solutions with desired regularity, we can
adopt the classical methods of Galerkin approximation and compactness arguments.
Thanks to the a priori estimates in section 4.2, the proof is quite standard and can be
found in many references; see, for instance, [10, 7] and also [8, section 3]. Therefore,
we omit the details of the proof of existence part and concentrate on the pathwise
uniqueness.

Proof of Theorem 3.2: Pathwise uniqueness. Let (ws,v3) and (@3,73) be two
solutions to (3.2) defined on the same probability space €2 corresponding to the same
initial data and Brownian motions {W*},., such that &3 and w3 (resp., 73 and ©3) fulfill
the estimate (3.8) (resp., (3.7)). According to the discussions following Definition 3.1,
we have the decompositions

w3 :=Ww3 — W3 ZVJJS — V@3 +M5J3 —Mg,a, V3 :=V3 — U3 =V173 — V@S —|—]\453 _Mﬁs’
where V., Ve, and Vg,, Vi, take values in W12(0,T; H-1), while Mg,, My, and
Mg, , My, are L?-valued continuous local martingales. One can check that the condi-
tions of [23, Theorem 2.13] are verified for w3 and vs, and thus the It6 formula therein
is applicable.
More precisely, letting (K is the Biot-Savart kernel on T?)

vg =0y — g =K % (03 —@3) = K * ws,

~ — 1/~ ~ 1
wH:wH—wH:V (U3—7)3):V Vs,
we have

dW3 = (— VH * V(IJg — vy - VW3 + VAwg + Ew:; + V. [VQH,g(O) wH]) dt
- Z (Ufj -Vws —wpr - Voi) thk,
k

dvs = (—UH~V€)3 —@H~VU3+VAU3+£U3) dt—Zaf~V03thk.
k
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By the It6 formula in [23, Theorem 2.13],

dHLU3||2L2 = —2<UJ3,UH . VCIJ3> dt — 2V||VOJ3||2L2 dt — <VLU3, QH(O)V(U3> dt

— 2<V(U3,VQH,3(O) wH> dt + 22<(U3,0JH . V0'2> thk
k

+ 3 |0k - Vws —wy - Vo [, dt,
k

where we have used (w3, U7 - Vws) =0 = (w3, 0l - Vws) since vy and o are divergence
free. It is easy to know that

I:= Z Haf -Vws —wp - VJ;;’H;
k
=" (ot Ves|a + - Voi [} = 2ol Ves,wn - Voi))
k

= (Vws, Qu(0)Vws) — (wir, V2Q3(0) wrr) + 2(Vws, VQr 3(0) wi),

where in the last step we have used (4.11) and (4.14); therefore, the identity above
reduces to

dl|ws|3 2 = —2{ws, vy - V@3) dt — 2v||Vws]|3 2 dt
(4.19) +23 " (wsywir - Voi) AW — (wir, V2Qs(0)wir) dt.
k

In the same way,
(4.20) d||vs]|3s = —2(v3, vy - Viiz) dt — 2v||Vus]|3. dt.

The estimate of the first term on the right-hand side of (4.19) is quite standard:
recalling that vy = K * w3, we have

(4.21)
(ws,vr - Vs )| <lwsllp2[lve L= [ V@s] L2 < llwsllp2 | K * ws g2 | Vos]| 2

- v 1 -
< lws |z lwsllan [ V@sllz < 51 Vewsllze + o llws | 7alI Va2,
and as a result,

dl|ws| 72 + || Vw72 dt < v H|ws||72l|Vas|72 dt — (wi, V2Q3(0) wir) dt
+2> (ws,wn - Vo) dW/.
k

Similar calculations yield
2 2 2 -1 2 ~ 12
dl|vs||ze + 2v([Vos||z2 dt < v[[Vws||zz di + v vs]| 72| Vs|[ 72 di.
Taking the sum of the two estimates above, we arrive at

d(|lwslZ2 + llvslZ2) < = (201 Vuslliz + (wrr, V2 Qs(0)war)) dt

+2 Z<W3,(JJH Vo) dw}
k

+v 7 (IVasllEe + [VOslZ2) (lwslZz + llvsllZ2) dt.
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Recall that we assume [|[V2Q3(0)||as < 2v; hence,
[{wi, V2Q3(0)wrr)| < wir || 22 V2Q3(0) wr |l 2 < 2vlwir |22 = 20| Vs |72,
and thus, denoting by M; the martingale part, we obtain

(4.22)
d(|lws[l72 + [|vsl|72) < dMy + v ([IV@sll7 +|V0s]|72) (lwsl 72 + [Jvsl|72) dt.

We have, by [t6’s isometry and Cauchy’s inequality,

;/O (ws(s),wr(s) - V02>2d31
5 [ sl o) Vol ds]
k

t
ssuﬂa[ / w3<s>%z||wH<s>||%2ds]
0

E[M], =4E

<4E

where we have used (4.15) and the bound ||V2Q3(0)|[as < 2v. Noting that wy =
V4ivs = V43 — V4os, by (3.7), we have

s€[0,T]

T
E[M]tSE%vEK sup IW:s(S)I%z)/O Vva(S)IIQBdS]

s€(o,

SCIIv§||i2E< sup ||w3(5)||i2>

2
<Cuq (lvslZe + llw8lIZ2)"

where in the third step we have used (3.8). This implies that M; is a square integrable
martingale. Define a positive and decreasing process

¢
Pt = exp |:—1/1/ (HV@3(S)HZL2 + HV’I~]3(8)||2L2) d8:| , t Z 0;
0
then dp, = —v 1 p, (| V@s(t)|2, + || VOs(t)[|2.) dt. By (4.22) and Ito’s formula,

d[pe(lwslFz + llvsll2)] < pr dM.

Integrating from 0 to ¢ and taking expectation lead to
t
(st + es)32)] <E [ pods, <o

where in the last step we used the fact that {fot Ps dMs}t is a martingale since 0 <
pt <1 and {M,;}; is a square integrable martingale. We conclude that ||ws(t)||r2 =
|lvs(t)||z =0, and the proof is finished. d

5. Scaling limit and proof of Theorem 3.4. In this part we first show that,
under Hypothesis 3.3 in section 3.2, the stochastic 2D-3C models (3.9) with the noise
W* converge weakly to the deterministic model; then we prove the technical results
in Proposition 3.6.
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5.1. Proof of Theorem 3.4. We first recall the setting: we are given covariance
functions {Q*}se(0,1) satisfying Hypothesis 3.3, and {Q"},¢(o,1) are the corresponding
covariance operators; let W* be a Qf-Wiener process with the expression

We(t,z) = Wk+Z(T Wkes,
k

where ai’H = (aﬁl,oﬁQ) are divergence free vector fields on T?, and {W*}, are

independent standard Brownian motions. For any ¢ € (0,1), by Theorem 3.2, the
system

dwb + vy -Vl dt = — Z (oﬁ’H VWi — Wl - Vai’?’) dwk

k
(5.1) +(vA+ LOYwsdt + V - [VQiy 5(0) wyy ] dt,
A+l Vobdt == ot Vel dWE + (VA + LY whdt
k

has a probabilistic weak solution (wf,v$) satisfying the estimates

t
(52)  P-as. forallte[0,7], |vs(t)]%, +2y/ V05 (s)|[2. ds < [[o3(0)]|22,
0

(5.3) E

T
sup [|wh(®)%, + v / [V ()| ds] < 00 ([[v3(0) |22 + [|lws (0)]22),
te[0,T] 0

where Cy, ¢ depends on v, sup,¢ g 1) ||VQ‘}I73(O)||M, and supye (0,1 1V2Q%(0)||ar, which
are finite by Hypothesis 3.3. We point out that, since we are dealing with weak
solutions, the probability and expectation should be written more accurately as P*
and E’, but we omit such dependence for simplicity of notation. Finally, using the
equations in (5.1), we can also obtain estimates similar to those in Lemma 4.5.

Let 7’ be the law of (w§,v%), £ € (0,1); then the above arguments show that
{n’}, is bounded in probability in L2(0,7;H') N W*2(0,T; H=?), the latter being
compactly embedded in L2(0,7;L?). Therefore, the family of laws {1}, is tight
on L2(0,T;L?). Then, by the Prohorov theorem, we can find a subsequence (not
relabelled for simplicity) of {n‘}¢ converging weakly, in the topology of L?(0,T;L?),
to some probability measure 1. Moreover, by Skorohod’s representation theorem,
there exist a new probability space (Q F, IP’) a sequence of processes (W5, 9%), and a
limit process (ws,?3) defined on Q such that

o (©3,03) ~n and (&4, vg) n* for any ¢ € (0,1);

o Pas. , (@, 05) converges as £ — 0 to (@3,03) in the topology of L?(0,T; L?).
We remark that the family {(@4,95)} fulfills the same estimates as (5.2) and (5.3)
with respect to P and IE respectively. Thus, up to a further subsequence, (W5, %)
converges weakly in LZ(Q,LOO(O,T, L*)n LZ(O,T;Hl)) to (w3,d3); in particular, the
limit processes (w3, ¥3) enjoy the same bounds. Meanwhile, we can also obtain the
existence of a family of Brownian motions {(We’k)kzl}ge(o,l) on €, such that for
any £ € (0,1), (@5, 05, (W5*)x>1) has the same law as (w,v§, (W*)>1); we omit the
details here.

For any ¢ € C°°(T?), since (0§, 05, (W%*)>1) has the same law as (W5, v§, (WF)>1),
we have
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(5.4)
(@5(1), 6) = (wa(0), ) + / (@4(5),0%(s) - Vo) ds — / (@4 (5). (VQYy 5(0))" V) ds
0 0

- /ot <va§(s)7 (VIQ + %Q%(O))V¢> ds

3 [ Gaho) ok 96) — (ol o)y i
k

(5.5)
(04(t),0) = (v3(0),6) + / (04(s), 0% (s) - V) ds + ; / (h(s),00™ - Vo) dWl*

- /Ot <W§(s), (,,[2 + %Q%(O))v@ ds.

It remains to take the limit £ — 0 in (5.4) and (5.5); thanks to the discussions
in the previous paragraphs, it is standard to show the convergence of all the terms,
including the nonlinear ones, except those involving stochastic integrals, which are the
key ingredients for proving that the pair of limit processes (w3, 03) is a weak solution
to the deterministic system (cf. (3.10))

. 003 + 0y - Vg = (VA+£Q)QA)3,
where @3 = —V* -0y, @ = V+03. Therefore, we concentrate on the martingale parts

in (5.4) and (5.5), trying to show that they vanish in a certain sense.

LEMMA 5.1. Assume Hypothesis 3.3(b); then as £ — 0, the martingale part
t
Mi(0)i= Y [ (ehl).0t Vo) ari®
= Jo

tends to 0 in the mean square sense.

Proof. By It6’s isometry,
E(M{(t)*) =E (Z/ (04(s), 0™ - V¢>2ds>
= Jo
=E @ / /( p(BEVO) @] @) )] (050 Ve) ) dmdyds>
—E ( [ 1656 76) @) Qe — ) (05 V6) ) dwdyds> ;
0 J(12)2
recalling the definition of the covariance operator Q%, we have
E(Mi(1)*) = JE( /0 (05(s)V, Qi (25 (5) V) ) ds)

t
SE( /0 u@g<s>v¢u;u@mrmzds)
<N|Qfi o, 2 V@< Tlles (O)13,
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where in the last step we have used estimate (5.2). Thanks to condition (b) in Hy-
pothesis 3.3, we conclude that the last quantity vanishes as £ — 0. 0

Using the uniform bound (5.3), we can show in the same way that

i
=3 [ (ohte) o vyt
k 0

vanishes in the sense of mean square; indeed, the last step of Lemma 5.1 becomes

E(M5(1)2) < [|Q |l o, 1 IVOIE < E [ [|@5(5)]]}. ds
< Q% |l 1oy 12 IVBI 7T Co g (I3 (0) 172 + llws(0)]172)

which tends to 0 as £ — 0. Finally, we consider the other martingale in (5.4).

LEMMA 5.2. Assume condition (b) in Hypothesis 3.3. The martingale part
=3 [ (ot atyte) - V) arie*
= Jo

vanishes as £ — 0.

Proof. Again by It6’s isometry, we have

E(M. /Z (o0 @y (s) - Vo) d
It holds that
(o al(s)- Vo) = | Qe = )@h()- V) @hr(s) - Vo) w) drdy
k
= (@} (s)- Vo, @?(we (s)- Vo))
<N Q|| oy 2 l0E (5) - &
< Q4| o, 2 IIVON < IV O5(5) 172,

where we have used 0% = V494, Thanks to the estimate (4.7), we arrive at

B0 < |Gl VOl B [ 195615 ds
S Q8] o oIV s OV

the last quantity vanishes due to condition (b) in Hypothesis 3.3. ]
Finally we present the following proof.

Proof of Theorem 3.4. Summarizing the arguments starting from Lemma 5.1, we
see that the martingale parts in (5.4) and (5.5) vanish in the sense of mean square.
Moreover, the discussions preceding Lemma 5.1 give us the convergence of other terms
n (5.4) and (5.5). Therefore, we have proved the first assertion in Theorem 3.4.

We turn to showing the uniqueness of weak solutions to the system (3.10) in
the class L>(0,T;L?) N L?(0,T; H'); the proof is similar to the uniqueness part of
Theorem 3.2, using now the Lions-Magenes lemma. Letting (w3,73) and (w3,73) be
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two weak solutions to (3.10) in L>°(0,T; L?)NL?(0,T; H'), with the same initial data,
define w3 = W3 — w3, v3 = ¥3 — U3; then we have

Ows +vg - Vs + vy - Vws = (Z/A + EQ)wg +V- (AwH),
Oz +vy - Vi3 +0g - Vg = (Z/A + ﬁ@)vg,,

where vy = vy — vy and wy = Wy — wy. Similarly to the discussions following
Definition 3.1, we have ws € L?(0,T;H') and dws € L*(0,T;H~'); thus by the
Lions—Magenes lemma,

d 5 _
&ngﬂig = —2(ws,vy - Vz) — 21/||Vw3||%2 —(Vws,QVws) — 2(Vws, Awg)

< —v|[Vws|Ze + v lwsl|Z: [ Vs Ze — (Vws, QVws) — 2(Vws, Awp),
where in the second step we have used the estimate (4.21). Similarly,
d B _
—llvsllZ: vl Vws|Zz + v~ Hlvsl VT3l 2 — 20[Vus|Z2 — (Vvs, QVs).
dt
Note that wy = V4 v3; summing up the above two inequalities leads to
d _ - N
7 Ulwslzz + lluslIZ2) < vt (IV@sllZe + 1V 33172 ) (lwsllZe + llvs72)
— (Vws, QVws) — (Vuz, QVus) — 2(Vws, AV+vs3)
<v (IVasllZ: +1IVTslZ2) (lwsllZe + llvslZ2)

where the second step follows from condition (3.11). Since &3 and 3 belong to
L?(0,T; H'), we finish the proof by applying Gronwall’s inequality. d

5.2. Proof of Proposition 3.6. We first make some preparations. Recall that
G is the Green’s function on T?; the Green’s function on R? admits the expression

1
GR2(I):_%IOg‘5E|§

there exists a smooth function ¢ : T> — R such that

(5.7) G(z) = Gge(x) +((z), xeT2
Given a function f € C(T?) with compact support in (f%,%)Q, we will regard it
also as a function on R?, still supported in (—%, %)2; for any ¢ € (0,1), we denote

fe(z) =072f(¢" 2), 2 € T Let Tj—1 = [—4¢71, 207112 be the torus of size £~1. We
first prove the following formula.

LEMMA 5.3. Let ¢, € Ce((—
<82G * QSZ)ajG * W)
_ /T (9,Gre * 6)(x) (8;Gre ) (x) d

¢—1

e f , (0Ge 2 9)E) | [Locteta- 2yt as) ao

1.1)2). Then we have

+/ [ . 0iC(l(z — 2)) p(2) dz} (0;GRrz * ) (x) dz

2
']1‘1(71

+ 02 /T . { 00w —2)6(2) dz} { 0;¢(0(x — 2))(2) dz} dz.

T2
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Proof. We have
@G 00w = [ a6 -newdy= [ a6t-)ow)dy.
T2 T_,

where in the second step we have changed the variable y = fy’. As ¢ has compact

support in (—1,1)2, we arrive at

06+ 00(a) = [ | 2:6(—ty) o) dy
in the same way,
(9,6 % tbe) () = /T 0,Gx — £2) (2 dz.
Therefore,
(0iG * g, 0;G * 1y)
- /T [ [ 06— t)o(y) dy] [/T 9,G(x — £2) (=) dz] dz

e[ | oo - o] | [ a6t - ) dsar

where we have changed variable = = ¢z’. Note that 9;Gge({x) = £~10,Gyz(x) for any
z € R*\ {0}; therefore,

0iGr2 (U2’ —y)) $ly) dy = €7 (9 G2  6)(2').
T
Combining this fact with (5.7), we obtain the desired expression. o

The next simple result shows that the convolution of VG2 and a probability
density, with compact support, is close to VGp2 in the region far from the origin. Let
Bgr C R? be the open ball centered at the origin with radius R > 0.

LEMMA 5.4. Let ¢ € C.(Bg) be a probability density function. Then there exists
a constant C'r > 0 such that

(VG # ) () — Vs (2)] < <8

FE for all |z| > (2R) V 1.

Proof. Note that

(VG #)(x) — VGiga (i) = — / LY ) dy

27 Jp, |z =yl 2m [af?
1 -y x )
=== — 3 VW) dy;
o o (=~ )2
therefore,
r—y

1
(V6w )(@) = Vet < o [ |l ety

B 1/ |l2?(z —y) — |2 — y[*=|
Br

S 2m |z —yl?[a]?

Y(y) dy.
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Since |z|*(z — y) — |z — y|?2 = —|z|?y — |y|*x + 2(z - y)x, we have
1 |2yl + [y1?|2] + 2|2 - y| ||
d
(VG #4)(@) = VGaa(e)| < o [ WPt )
1 |z|>R + R?|x| + 2R|z|?
< —
S
R>+3R 1
< Ply)dy
2 Br |7 —y[? )
for all |z| > 1. Now if |z| > (2R) V 1, we have
R?+3R |o|?
— < d
(V6as w0)(e) = VGaa(a)| < Tt [ g uay
2
< 2(R*+3R)
mlz|?

since lef‘;Q <4 for |y| < R and |z| > 2R, and 1 is a probability density function. 0O
The next lemma gives the limit behavior of integrals of 0;G outside a fixed ball.

LEMMA 5.5. For any R>0, i=1,2, we have

1 .,
) log (— 1/T2 \BR(&GRZ(Q;)) dm*ﬂ'

Proof. Since 0;Gg2(z) =

1
— 5= |m|2, we have

/ (01 G (2))2 dar = — / K
2 =
T2_,\Bg PR 4 T2_,\Br |z[*

By a change of variable (z1,z2) — (z2,21), this is equal to

1 / 73 4 / (092G (2))2d
xr = 2(T xZ.
4m? T2_\Br [ER T2 \Bg R

Therefore,

(5.8) /T . (0,Gge(2))2 dx = 1 da

82 T2_,\Br |33‘2

We have, for any £ < R™!,
/ dx </ dx </ dx
2 = 2 = 27
R<|z|<(20)—1 || T?_,\Br || R<|z|<e—1 ||

gfl
27rlog—</ 2<27r10g—.
T2 ,\Br |z R

thus,

This implies

. 1 dx
£—0 logé Ti,l\BR |l‘|
Combining this limit with (5.8), we finish the proof. |

We are ready to prove the following key result.
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PROPOSITION 5.6. Let ¢, € Co((—3,3)?) be radially symmetric probability den-
sity functions. Then fori,j € {1,2},
<aiG*¢g,ajG*1/)g> 1

I L5
50 log /=1 4

where §; ; is Kronecker’s delta, i.e., it equals 1 ifi=7 and 0 if i # j.
Proof. Recall Lemma 5.3 for the expression of (0;G * ¢¢, 0;G * 1),); we denote the
four terms by If,n=1,2,3,4.
Step 1. We first show that
73]
50 log 1

(5.9) =0, n=2,3,4.

Indeed, for I%, since ¢ € C°°(T?), we have

9;C(L(z = 2)) () dz

T2

<loyClli [, vl dz= 10,¢lus
therefore,

BI<l0,cle~ [, 10Gro +)(w)] do

T™_,
_£||3jCL°°(/B Jr/Tz \B )|(3¢GR2 *¢)(x)|dx

for some fixed R € [1,(2¢)71). The first integral is bounded by some constant Cr; by
Lemma 5.4, one has |(89;Gge * ¢)(x)’ < C%/|z| for all |z| > R, and thus

!
/ |(0iG2 * ¢) ()| dar S/ %dxzmrcg(é—l —R).
T2_,\Br R<|a|<e—1 |7]

Summarizing these estimates we arrive at |I5| < Cy pl+C3 g, which implies that (5.9)
holds for n =2. The proofs for the other two limits are similar.
Step 2. Now we consider the term I{ and denote it with more precise notation

gt = /T (0, * §) () (8;Cgz ) (2) dw, 1< i,j<2.
-1
We begin with showing that the off-diagonal terms
Ta=t= [ (@G % 0)(0)@eGiso < 0)(z) do
TZ
¢e—1

vanish for any ¢ € (0,1). Indeed, by symmetry of ¢ and 1, one can show that

(01GR2 * @) (—x1,x2) = —(01GR2 * ¢)(x1, x2),
(O1GRz * ¢) (21, —22) = (01 G2 * ¢) (21, 22),
(02Gre2 *¥)(—21,22) = (02GRe * V) (21, 22),
(02GR2 %) (x1, —x2) = —(O2GR2 * ) (21, x2).
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Due to cancellation of integrals in the four quadrants, we easily conclude that
(5.10) Jio=J5,=0.

Next, we show that Jf’l has a nontrivial limit; a similar proof works for Jfﬁz. We
have

Ha=(f 4], . )@ 0@ oG v

where Bp is the ball centered at the origin with radius R > 1. It is clear that

1
0 log ¢—1

/B (01GR2 * @)(x)(01 Gz * ) (x) dx =0,

R

and thus it holds that

. Jf,1 . 1
(5.11) l}gr(l) log (T —}gr(l) Tog—1 /T2 \BR(alGRz * $)(2)(01GRre *¥)(x) dz.
—1

We have

|(01Gr2 * ) (2) (D1Gz * ) (2) — (01Gre (2))?|
<|(01Gr2 #9) ()] [(01G2 * ¢) () — 1 G2 ()]
+ 101 Gre2 ()] (91 Gre2 * ¥)(2) — 01 G2 (2);

thanks to Lemma 5.4, for any |z| > R > 1,
|(01Gr2 % ) (@) (D1 G2 + ) () — (01 Gz ()| < =5
Since

1 1
limsupi_l/ C—idmﬁlimsupi_l/ C—Igdx:(),
—o  logt T2 \Bnr || t—0 logl r2\ By |7

we conclude from (5.11) that

P (1 G (2))2 dir = —
e%logé*l _elan%logﬂfl T2 \Bg 1oRAL))OF =
2
where the last identity follows from Lemma 5.5. 0

Recall the definition of I'y in (3.12):
Py =205 K 6,71,
Then we have
Ak =T7|| K * 0l|7> = 2T7 (101G % Ol 7 5
by Proposition 5.6, we deduce that

(5.12) lim I log ¢~ = 87k.
—0
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Now we are ready to provide the following proof.

Proof of Proposition 3.6. First we derive the expression for VQQ?,(O). By the
definition of Q%}S, we have

fisla) = [ oti(@)ajfa—a)ds
Lo [ (K *00(0) (G~ o) da.
TZ
Then,

VQ§173(a) =Ty /E2 (K x0p)(x) @ (VG * x¢)(a — x) dz,

and thus,

VQ%;;(O) =Ty /T2 (K % 0p)(x) @ (VG * x¢) () dx

—_T <32G * 9@, 81G * Xg> <32G * 95, 82G * X€>
N 101G % 00,00G 1) —(01G * 0y, 02G % x)

S 0 <8QG * 0@, 82G * X(>

T 0,G * 0,,01G % xe) 0 ’

where the last step is due to similar proofs of (5.10).

Combining this formula with Proposition 5.6 and the limit (5.12), we immediately
deduce that if 4, = o(T'¢), then all the entries of the matrix VQ%L?) (0) have zero limit.
Thus we obtain assertion (1) of Proposition 3.6.

We turn to proving assertion (2). If v,/T'y — qo as £ — 0, using again Proposi-
tion 5.6 and (5.12), we arrive at

82G * 9@, 82G * Xg>
log ¢—1

lim Ty (02G * 0y, 02G * x¢) = lim Je (T?loge™t) { = 2Kkqo
) =0T
which yields the desired result.

Finally we prove assertion (3) of Proposition 3.6. We have, for i, j € {1,2},

&@Qé(o) = —’}/lg /ﬂ‘2 (&G * X@)(Z‘) (6JG * X@)(JJ) dr = —’}/KQ <(91G * X1, 8JG * X@>.

Noting that v =O(I'y) as £ — 0, it is clear from the above computations that all the
terms are uniformly bounded in ¢ € (0,1). O
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