
J. Chem. Phys. 153, 124110 (2020); https://doi.org/10.1063/5.0018314 153, 124110

© 2020 Author(s).

Unsupervised search of low-lying
conformers with spectroscopic accuracy: A
two-step algorithm rooted into the island
model evolutionary algorithm
Cite as: J. Chem. Phys. 153, 124110 (2020); https://doi.org/10.1063/5.0018314
Submitted: 16 June 2020 • Accepted: 02 September 2020 • Published Online: 24 September 2020

 Giordano Mancini,  Marco Fusè,  Federico Lazzari, et al.

COLLECTIONS

Paper published as part of the special topic on Machine Learning Meets Chemical Physics

ARTICLES YOU MAY BE INTERESTED IN

OrbNet: Deep learning for quantum chemistry using symmetry-adapted atomic-orbital
features
The Journal of Chemical Physics 153, 124111 (2020); https://doi.org/10.1063/5.0021955

The ORCA quantum chemistry program package
The Journal of Chemical Physics 152, 224108 (2020); https://doi.org/10.1063/5.0004608

Molecular force fields with gradient-domain machine learning (GDML): Comparison and
synergies with classical force fields
The Journal of Chemical Physics 153, 124109 (2020); https://doi.org/10.1063/5.0023005

https://images.scitation.org/redirect.spark?MID=176720&plid=1881977&setID=378408&channelID=0&CID=692124&banID=520764556&PID=0&textadID=0&tc=1&type=tclick&mt=1&hc=86d397fca7366e8290b08b980fe656c74718ae64&location=
https://doi.org/10.1063/5.0018314
https://doi.org/10.1063/5.0018314
http://orcid.org/0000-0002-1327-7303
https://aip.scitation.org/author/Mancini%2C+Giordano
http://orcid.org/0000-0003-0130-5175
https://aip.scitation.org/author/Fus%C3%A8%2C+Marco
http://orcid.org/0000-0003-4506-3200
https://aip.scitation.org/author/Lazzari%2C+Federico
/topic/special-collections/mach2020?SeriesKey=jcp
https://doi.org/10.1063/5.0018314
https://aip.scitation.org/action/showCitFormats?type=show&doi=10.1063/5.0018314
http://crossmark.crossref.org/dialog/?doi=10.1063%2F5.0018314&domain=aip.scitation.org&date_stamp=2020-09-24
https://aip.scitation.org/doi/10.1063/5.0021955
https://aip.scitation.org/doi/10.1063/5.0021955
https://doi.org/10.1063/5.0021955
https://aip.scitation.org/doi/10.1063/5.0004608
https://doi.org/10.1063/5.0004608
https://aip.scitation.org/doi/10.1063/5.0023005
https://aip.scitation.org/doi/10.1063/5.0023005
https://doi.org/10.1063/5.0023005


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

Unsupervised search of low-lying conformers
with spectroscopic accuracy: A two-step
algorithm rooted into the island model
evolutionary algorithm

Cite as: J. Chem. Phys. 153, 124110 (2020); doi: 10.1063/5.0018314
Submitted: 16 June 2020 • Accepted: 2 September 2020 •
Published Online: 24 September 2020

Giordano Mancini,1,a) Marco Fusè,1 Federico Lazzari,1 Balasubramanian Chandramouli,2
and Vincenzo Barone1

AFFILIATIONS
1Scuola Normale Superiore, Piazza dei Cavalieri 7, 56125 Pisa, Italy
2Super Computing Applications and Innovation, CINECA, Via Magnanelli, 6/3, Casalecchio di Reno, BO, Italy

Note: This paper is part of the JCP Special Topic on Machine Learning Meets Chemical Physics.
a)Author to whom correspondence should be addressed: giordano.mancini@sns.it

ABSTRACT
The fruitful interplay of high-resolution spectroscopy and quantum chemistry has a long history, especially in the field of small, semi-rigid
molecules. However, in recent years, the targets of spectroscopic studies are shifting toward flexible molecules, characterized by a large num-
ber of closely spaced energy minima, all contributing to the overall spectrum. Here, artificial intelligence comes into play since it is at the basis
of powerful unsupervised techniques for the exploration of soft degrees of freedom. Integration of such algorithms with a two-stage QM/QM′

(Quantum Mechanical) exploration/refinement strategy driven by a user-friendly graphical interface is the topic of the present paper. We
will address in particular: (i) the performances of different semi-empirical methods for the exploration step and (ii) the comparison between
stochastic and meta-heuristic algorithms in achieving a cheap yet complete exploration of the conformational space for medium sized chro-
mophores. As test cases, we choose three amino acids of increasing complexity, whose full conformer enumeration has been reached only
very recently. Next, we show that systems in condensed phases can be treated at the same level and with the same efficiency when employing
a polarizable continuum description of the solvent. Finally, the challenging issue represented by the vibrational circular dichroism spectra
of some rhodium complexes with flexible ligands has been addressed, showing that our fully unsupervised approach leads to remarkable
agreement with the experiment.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0018314., s

I. INTRODUCTION

Artificial intelligence methods are increasingly employed with
remarkable success in several fields of chemistry like, e.g., quan-
tum chemistry,1,2 organic synthesis,3,4 spectroscopy,5 or analytical
chemistry.6 Here, we will be concerned with the identification of
low-lying energy minima (conformers, rotamers) related to the soft
degrees of freedom of flexible molecular systems. This topic has been
investigated in a large number of recent studies,7–10 pointing out
that the search of the global energy minimum is not sufficient to

analyze the experimental outcome in a number of cases like, e.g.,
high-resolution spectroscopy11,12 or kinetics.13,14 In the same vein,
the crystal structures of protein-ligand complexes have shown that
bioactive conformations tend to be more extended than random
ones15 and may lie up to a few tens of kJ/mol above their respective
global energy minima.16 In other words, molecules of nontrivial size
cannot be described in terms of a single three-dimensional struc-
ture, but, rather, as ensembles of low-lying conformers with time
dependent local fluctuations or, in extreme cases, even global defor-
mations. Hence, an incomplete ensemble of conformers can easily
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generate an unsatisfactory modeling of physical-chemical proper-
ties, essentially equivalent to a wrong equilibrium structure in the
case of semi-rigid molecules.

On these grounds, several semi-automated packages such as
CONFAB,17 CONFLEX,18 and CREST19 have been developed to
explore Potential Energy Surfaces (PES) using different approaches.
General criteria for the classification of search methods can be based
either on the computational model used to accept or reject new
conformations or on the nature (deterministic or stochastic) of the
algorithm employed to generate new tentative structures. The
former criterion may refer to different flavors of energy and,
possibly, gradient evaluations [by Quantum Chemistry (QC) or
Molecular Mechanics (MM) methods], or to simple geometrical
criteria.20 Systematic search methods (based on chemoinformat-
ics) are computationally cheap, but of limited applicability, so that
stochastic search methods are the most used. In the limit of very
long simulations, stochastic methods such as Monte Carlo (MC) and
deterministic ones, like molecular dynamics (MD), should be able to
sample effectively the conformational space of a (macro)molecule in
condensed phase, but the efficiency of the latter approaches is lim-
ited for isolated molecules or low-pressure gas-phases.21 The most
widely employed methods for conformational searches include,
besides MC, several types of metaheuristic algorithms (e.g., genetic
algorithms,22–25 artificial bee colony,26,27 differential evolution,28

particle swarm optimization,29 and ant colony30). Metaheuristic,
nature-inspired algorithms are able to produce solutions beyond
those that are normally generated in a quest for local optimiza-
tion,31 learning from past moves to improve candidate solutions by
means of suitable trade-offs between randomization and local search
(exploitation vs exploration). Each method has its own strengths and
limits, but, since none of them is the best for all situations, selection
of the most suitable approach for a specific problem requires careful
testing and validation.32

In addition to a search strategy, a general conformational explo-
ration approach requires an effective yet reliable method to evaluate
energies (or other physical chemical properties). For some applica-
tions (e.g., virtual screening and pharmacophore modeling) where
well-tested specialized force fields (FF) are available (e.g., AMBER33

or Optimized Potentials for Liquid Simulations34) and only ener-
getic properties are of interest, MM is often the method of choice.
However, robust tools aiming at the prediction of spectroscopic
properties35,36 require either robust and general FFs under active
development37 or fast quantum chemical methods. In a previous
study,38 we have followed the second alternative, showing that last
generation semi-empirical (SE) methods (in particular DFTBA,39

PM7,40 and ”HF-mini”41) yield sufficiently accurate geometries to be
employed in a two-step procedure, in which final energies are eval-
uated at a higher level of theory.19 The present contribution builds
on these premises with two main purposes: (i) to further assess the
performance of SE approaches, adding the recently proposed GFn-
xTB model42 to the set of tested methods and (ii) to improve the
effectiveness of the exploration step by switching from the Monte
Carlo sampling to an evolutionary algorithm.43 As showcase sys-
tems, we selected organic and coordination compounds both in the
gas phase44 and in solution. For the method assessment, we selected
some neutral amino acids in the gas phase because (i) they pos-
sess several low lying energy minima, (ii) they are important sys-
tems in investigations broadly related to the origin of the life, (iii) a
large number of state-of-the-art quantum chemical results are avail-
able, providing ideal validation and benchmarking data sets, and
(iv) they are challenging systems for high resolution spectroscopic
techniques. In particular, we have studied threonine,45 serine,46 and
cysteine47 (see Fig. 1). Next, we switched to systems in condensed
phases by analyzing bulk solvent effects on the conformational land-
scapes of the anionic, zwitterionic, and cationic forms of threonine
in the framework of an implicit solvent approach. Finally, we have
tackled a challenging spectroscopic problem, namely the vibrational
circular dichroism (VCD) spectra of two related chiral rhodium
complexes (see Fig. 2) involving quite flexible ligands48 in a non-
innocent solvent like acetonitrile, which can be involved in some
specific solute–solvent interaction.

The paper is organized as follows: we start by illustrating
the selection and validation of suitable EA methods, including the
essential details of the management of chemical topology. Then,
we introduce a new graphical user interface (GUI) for driving the
PES exploration and provide the computational details of quantum

FIG. 1. Neutral and charged amino acids
used as test systems in the present
study. Upper row: neutral forms of thre-
onine (T), cysteine (C), and serine (S)
with rotatable bonds highlighted. Bottom
row: anionic (Ta), zwitterionic (Tz), and
cationic (Tc) forms of threonine.
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FIG. 2. In the top panels, the [Rh2(O-Phe-Ac) (O-Ac)3] (Rh2Ac) and the coordina-
tively saturated complex (Rh2Ac-MeCN) are sketched, whereas in the bottom ones
the O-Ohe-Cbz complexes are represented (Rh2Z and Rh2Z-MeCN, respectively).
Larger spheres indicate atoms blocked during the quantum chemical geometry
optimization.

chemical calculations. In the results section, after pointing out the
importance of topology and chirality checks in the pipeline, we first
assess the performance of GFN-XTB with respect to DFTBA and
PM7 employing a Monte Carlo sampling, and the performance of
direct Density Functional Theory (DFT) energy evaluations on SE
geometries with respect to the most reliable (but more costly) geom-
etry re-optimization at the DFT level in retrieving the complete set
of 56 minima for neutral threonine.45 Then, the most promising SE
method has been employed to compare the performance of Monte
Carlo sampling with respect to different evolutionary algorithms
(see Sec. III C). The best combination of the search algorithm and
QC method is next tested for serine and cysteine in the gas-phase,
different protomeric forms of threonine in aqueous solution, and the
VCD spectra in acetonitrile solution of two flexible rhodium com-
plexes with and without axial ligands. Additional technical details
are given in the supplementary material.

II. METHODS
A. Search methods
1. The (λ + μ) algorithm

Evolutionary algorithms have been previously applied to sev-
eral problem involving soft degrees of freedom, such as drug can-
didates24 and metal49 or metallorganic complexes.50 After their first

introduction in 1970,51 several variants and modifications of genetic
algorithms have been proposed, most of which have been critically
reviewed by Whitley.52 A short list of the basic GA terminology used
in the following is given in the supplementary material.

At variance with other search methods,53 evolutionary algo-
rithms do not rely on a simple physical model, thus typically requir-
ing several parameters, like the specific strategy and the probability
threshold for applying a specific operator. A comprehensive study
of the application of canonical genetic algorithms to searches in the
space of dihedral angles24 concluded that, when applied to small
or medium sized molecules, these methods behave like hill climbers
rather than hyperspace samplers52 and that the mutation rate is the
most critical parameter with a sort of sweet spot for small population
sizes around values of 0.5. In the canonical genetic algorithms, the
entire population is replaced by new chromosomes at each genera-
tion; however, this choice can remove potentially important, albeit
sub-optimal, genomes, especially when they are considerably differ-
ent from the best ones. When aiming, as in our case, to a nearly
complete PES exploration, a slightly different algorithm, the (λ + μ)
Evolution Strategy is more suitable.52,54 In the (λ + μ) algorithm, at
each generation, μ parents generate λ offspring, then survival occurs
and the population size is reduced back to μ. In our implementa-
tion, we always employ a unitary λ/μ ratio and λ = s ⋅ P, where s is
the selection rate and P is the population size. For analogous rea-
sons, the selection operator was determined by the so called rank
selection or elitism method for the last 10% of the planned itera-
tions, whereas tournament was used at the start. Figure 3 shows a
flow chart of the complete procedure. To facilitate the submission
of searches (for a future release of the software), we have create a
Tk based GUI, whose main windows are shown in Fig. 4. Full details
about the evolutionary algorithm and GUI implementation are given
in the supplementary material.

2. Structure manipulation and chirality detection
The searches for all amino acids were performed in the space of

the soft dihedral angles (see Fig. 1) discretizing the [−π, π] domain
with a resolution of 30○. Each time a new dihedral value was gener-
ated, the selected bin was smoothed by a gaussian with a half-height
width of 5○. Crossover operations on dihedral angles were carried
out directly by interpolating values and then checking for periodic-
ity. Searches for rhodium complexes were carried out either using
the same procedure for a subset of dihedral angles (see Fig. 2), or
employing cartesian coordinates. In the latter case, crossover oper-
ations were carried out using the Simulated Binary Crossover, as
proposed by Llanio-Truillo et al.50 Mutations were carried out by
“rattling” the atomic positions of non-blocked atoms (see Fig. 2 and
Sec. II C), i.e., by changing the atomic positions by superimpos-
ing three dimensional gaussians with widths of 0.15 Å and then
picking new values. In all cases, each time a new conformation
was generated, we checked the new topology as recently proposed
by Ferro-Costas and Fernández-Ramos,55 but using the Proxima
library.56 In particular, we checked that covalent bonds and R/S chi-
ral atoms did not change either because of coordinate manipulation
by the evolutionary algorithm or after the geometry optimization by
a quantum chemical method. As for covalent bonds, the adjacency
matrix of the bond graph56 was compared with the starting one.
Conversion between cartesian and internal coordinates was done
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FIG. 3. Flowchart of the search procedure.

using the algorithm devised by Parsons et al.57 Chiral sp3 R/S centers
were checked with a novel procedure implemented in the Proxima
library and based on standard priority rules. Accidental clashes were
always avoided by checking that the minimum distance between
non-bonded atoms was always larger than 0.7 Å.

3. The island model (IM)
As a further alternative, we extended the single population

(λ + μ) method to a multi-population version using the so called
island model.58 In this method, after the generation of the ini-
tial population, chromosome sub-populations (called islands) are
defined by dividing the obtained fitness values in a histogram and
then assigning structures from each bin to different islands enforcing
comparable average fitness. During the search, islands evolve inde-
pendently, i.e., genetic operators of selection and crossover work
only within islands, which are arranged in a ring topology and are
allowed to exchange chromosomes (migration) at fixed generation
intervals (migration frequency). Following Withely et al.,58 we used
a round robin mechanism: at the first migration, an island sends a
fixed amount (here 5%) of its best chromosomes to its right neigh-
bor and swaps an equal amount of its worst chromosomes with the
best ones sent by the left-lying island. During the next migration
cycle, the operation is repeated using second nearest neighbors and
so on. The main advantages of the island model in the present con-
text are: (i) it should maintain a large degree of diversity, being thus
able to explore wider regions of the PES before convergence; (ii) on
large systems with separate weakly interacting moieties, islands can

be faster in finding sub-optimal genomes; and (iii) it allows an effec-
tive implementation of multi-node parallel searches for electronic
structure codes offering only shared memory parallelism.

A last point deserves attention. All metaheuristic methods are
able to find only sub-optimal solutions and, despite all efforts, they
can remain trapped in local minima. In the present context, this is a
serious drawback as the search will either fail to find all the relevant
structures or waste a large number of costly quantum chemical cal-
culations. Aiming to a wide coverage of PESs, we have implemented
a linear-search restart24 to deal with premature convergence when a
search failed to retrieve all the structures in a given reference dataset
or if the best fitness is not improved when elitism was applied.

4. Analysis of obtained structures
Comparison against a reference dataset composed of m struc-

tures was based on the full (weighted) Root Mean Square Distance
(RMSD) matrix between different structures (excluding non-polar
H atoms) and checking that all structures in the reference set had at
least one neighbor within a given threshold. For rhodium complexes,
we combined a clustering procedure and energy considerations to
analyze the results of the search in analogy to what was done in
our previous paper and as recommended in the CREST method.19

In particular, we discarded all the structures outside a given energy
threshold above the global energy minimum (see the Results sec-
tion) and then tried to extract a subset of the sampled struc-
tures, retaining the most relevant features by means of a clustering

J. Chem. Phys. 153, 124110 (2020); doi: 10.1063/5.0018314 153, 124110-4

Published under license by AIP Publishing

https://scitation.org/journal/jcp


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

FIG. 4. The main panels of the GUI. (a)
The main configuration panel on the
left with the COM generator panel on
the right and the JMol window in the
background. The options are divided in
electronic structure code options and
evolutionary algorithm options. The
background color of the JMol window
can be selected from the TouchBar
portion (at the bottom of the image).
(b) In this panel, the user can select
the rotatable bonds to be used in
the computation. Each time a torsion
is selected, the atoms involved are
highlighted in the JMol interface.

performed with the Partition Around Medoids (PAM) algorithm59

and using cluster centroids as representative structures. The PAM
algorithm optimizes the partition of objects in the dataset into k (an
input parameter) distinct groups; the determination of the best value

of k is usually performed by running the algorithm over a range of
values and then applying some external validation criteria able to
measure cluster compactness and separation.60,61 We used three cri-
teria: the change in the slope of the Within Sum of Squares error
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(WSS) curve (the so-called elbow), together with the Silhouette (SI)
and Davies Bouldin (DBI) indexes. Noted is that the best partition
is obtained by maximizing SI and minimizing DBI. The choice of
PAM was made for different reasons: (i) it is straightforward to val-
idate a unique parameter and (ii) in the present case, we are seeking
a relatively high number of clusters, hence it is less problematic to
assume a local spherical domain. We have already used PAM62 with
success when clustering structures for spectroscopic or biological
applications.63,64 Clustering methods are applied over a feature space
upon which a distance definition is employed in order to evaluate
the similarity/dissimilarity of data points. We built the feature space
as follows: for all the structures selected after the application of the
energy threshold, we calculated the RMSD matrix of the non-frozen
atoms (scaled in the [0, 1] interval) and the inertia tensors (scaled in
the [0, 1] interval and then divided by three), and then used RMSD
and the differences of inertia tensor elements as features to calculate
the L1 dissimilarity.

B. Case studies
The first set of showcase systems includes threonine, serine,

and cysteine in their neutral forms. As mentioned above, in these
cases, conformational searches were carried out entirely in inter-
nal coordinates using the rotatable bonds highlighted in Fig. 1. The
low-lying energy minima of these three systems in the gas-phase
have been previously studied at several QC levels. In particular,
Szidarovszky and co-workers systematically explored the conforma-
tional space of threonine by performing 7776 energy evaluations
at the B3LYP/6-311++G∗∗ level;45 next, seven of these conformers
were identified using microwave spectroscopy65 and refined at the
MP2/6-311++G(d,p) level. It is also noteworthy that the full space of
dihedral angles with a 30○ resolution would include 2 × 106 points
in this case (threonine having six rotatable bonds). A comparable
effort was made by He and Allen,46 who carried out an exploration
of the conformational space of serine by performing 15 552 HF/6-
31G∗ geometry optimizations that resulted in 89 unique minima,
reduced to 85 by refinement at the MP2/cc-pVTZ level. Wilke and
co-workers47 performed an analogous exploration for cysteine by
running 11 664 calculations at the HF/3-21G level, which yielded
71 structures after refinement at the MP2/cc-pVTZ level. Finally,
we performed a systematic exploration of the conformational space
of two rhodium complexes originally investigated in Ref. 48 as a
prerequisite for computing their VCD spectra.

C. QC calculations
Monte Carlo calculations were carried out performing geom-

etry optimizations with DFTBA,39 PM7,40 or GFN-xTB42 semi-
empirical methods. The searches for amino acids by evolutionary
algorithms were carried out at either the DFTBA or PM7 level, fol-
lowed by B3LYP/6-31G+(d) single point energy calculations66 with
the addition of empirical dispersion67 using the Gaussian suite of
programs.68

Soft degrees of freedom used in the preliminary searches were
kept frozen in the final QC geometry optimizations. Selected struc-
tures of charged threonine underwent a second stage optimization
using the double hybrid B2PLYP69 functional including empirical
dispersion (D3BJ)70 in conjunction with the jun-cc-pVTZ71,72 basis

set (hereafter B2), which has proven to provide reliable results in
the characterization of conformers in solution73 at a not too-high
computational cost. Starting structures were built with the help of a
molecular editor and then relaxed with the UFF force field.74 DFT
calculations on rhodium bimetallic complexes were carried out at
the B3LYP level including empirical dispersion (D3BJ)70 in con-
junction with the Jul-cc-pVDZ71,72 basis set on light atoms and the
Stuttgard (SDD) valence basis set75 with the corresponding pseu-
dopotential76 on Rh atoms (hereafter B3). The initial structures were
built from the crystallographic structure of rhodium(II) acetate77

and then optimized at the B3 level of theory. In this case, the lack
of parameters ruled out DFTBA and the computational cost forced
us to eliminate the DFT single point energy evaluation. Note that the
presence of two heavy metal atoms results in a huge computational
cost, and thus, optimizations were performed freezing the inner core
of the complex (see larger atoms in Fig. 2). Further optimizations
and spectroscopic calculations were performed at the B3 level of
theory on the structures obtained from the clustering procedure.

III. RESULTS AND DISCUSSION
A. Chirality detector

We performed a number of dry runs (in which structures were
generated using random numbers in place of energy evaluations
in order to assign fitness) in order to set the minimum distance
threshold and test the ability of the software to preserve topology
and chirality. Figure 5 shows two structures obtained in a dry run
without R/S check, in which the chiral carbon atom in the first
dirhodium complex has changed its chirality; it is also worth not-
ing that, with the distance checks in place, the distance between
the hydrogen atoms approaches but never goes below the cutoff of
0.7 Å. In addition, we used dry runs to compare the ratio of collisions
generated by internal or cartesian moves, by performing four runs
(two in cartesian and two in internal coordinates) for each complex.
Since 49.5 % of attempted moves was refused, we abandoned the use
of cartesian moves for all the production runs.

FIG. 5. Structures with different chirality in dirhodium complexes obtained in dry
runs; the chiral carbon atom is shown in green; the distance between two close
hydrogen atoms is also shown.
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TABLE I. Summary statistics for stochastic samplings. The first (Q1) and third (Q3)
quartiles of the relative energies along with the maximum (ΔE), the number of
retrieved structures, and the RMSE are reported. Energetic values in kJ/mol.

Method Acc. ratio Q1 Q3 ΔEmax No. of found RMSE

DFTBA 9.22 13.12 20.44 41.11 39 10.8
PM7 5.53 9.05 17.69 44.60 26 10.6
XTB 7.16 9.86 17.90 79.90 27 9.1

B. Performance of semiempirical methods
As a first step, the performances of the GFN-xTB42 semiem-

pirical method were compared with those of PM740 and DFTBA39

by adopting the same protocol used in our previous study,38 i.e.,
a Monte Carlo search with geometry optimization and restart and
one of the same case studies, namely threonine. More in detail, we
carried out conformational explorations of threonine, with PM7,
DFTBA, and GFN-xTB geometries and energies and compared the
effectiveness of each method in retrieving as many structures as pos-
sible from the reference dataset45 using as a benchmark the two-level
approach of our previous study. For each method, three independent
conformer searches were performed using the stochastic method
setting the number of iterations, target temperature, and grid res-
olution to 5000 K, 400 K, and 30○, respectively. During the search,
trial geometries were generated changing three out of five dihe-
dral angles at random and assigning to the current geometry the
highest energy located so far when the search remained stuck for
more than 2% of the planned steps. After the search, all generated
structures were post filtered using energetic (structures below the
third energy quartile) and geometric (heavy atom RMSD larger than
0.5 Å) descriptors; these reduced datasets underwent further DFT
optimizations. Table I summarizes the results of the searches

carried out using the Monte Carlo method. It can be observed that
DFTBA yields an higher acceptance ratio and a wider energy spread
as compared to the other methods. Panel (a) in Fig. 6 shows that
comparable energy distributions of different structures are obtained
by the three semi-empirical methods (RMSD distribution is also
shown in Fig. S1 of the supplementary material). Unique energy
minima, thus identified, are shown in a 2D plane defined by their
relative energy vs dipole moment [panel (b)]. The plot confirms
that all the employed models successfully identified the conformers
lying less than 12 kJ/mol above the global energy minimum, includ-
ing the experimentally detected conformers. Beyond this threshold,
the identified minima differ among the various models, none of
which was able to retrieve all the 56 conformers of the reference
dataset. However, this may be related to the non-exhaustiveness of
the searches; also the accuracy in distinguishing equivalent struc-
tures is likely to be more important in more demanding applications.
To address this point, we compared the root mean square error
(RMSE) of single point energies obtained with each of the low-level
models on a set of 150 GFN-xTB geometries against the DFT-D3
ones and indeed the GFN-xTB energies showed the smallest error
with respect to the DFT-D3 values. However, from a practical point
of view, it is worth observing that all the methods are able to identify
the seven structures of gas phase neutral threonine that have been
observed experimentally.38,65

C. Threonine
1. Gas phase: (λ + μ) vs Monte Carlo

Initial searches were performed using a population of 28 chro-
mosomes either with a single population or using the island model
(see Table II, low end values). These runs produced 1394 and 532
structures, respectively, before stalling or reaching the programmed
maximum number of generations. Comparison of the sampled
structures against the reference dataset45 using RMSD (cutoff of

FIG. 6. Results of Monte Carlo searches for threonine using DFTBA, PM7, and XTB. Panel (a) distribution of relative energies with respect to the GEM for the three SE
methods tested. Panel (b) relative energy and dipole moment specific structures present in the reference dataset and retrieved by the three methods; the dashed line is the
12 kJ/mol threshold used to select structures to be refined.
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TABLE II. Run parameters and values for L-threonine searches.

Parameter Single population Island model

Population size 28–100 28–100
Number of generations (max) 50 50
Selection rate 0.5 0.5
Selection method Tournament Tournament
Tournament size 2 2
Elitism (last 10% generations) T T
Crossover method SBX SBX
Crossover probability 0.5 0.5
Mutation rate (parents) 0.3 0.3
Mutation rate (children) 0.5 0.5
Number of islands 1 4
Migration frequency NA 4
Migration size (IM) NA 0.05

0.2 Å) shows that both evolutionary algorithms missed 8 structures
out of 56, but with significantly different convergence rates: while
the single population runs had a similar behavior, slowly improv-
ing until the last few generations, the run performed with the island
model was able to converge in just 25 generations or about 550 QC
calculations. Anyway, even the worst outcome represents a signif-
icant improvement with respect to stochastic methods like Monte
Carlo (less than 1400 calculations vs 3000). Panel (a) in Fig. 7 shows
a comparison of the completeness achieved in the best runs by dif-
ferent search algorithms in conjunction with DFT geometry/energy
evaluation.

Since in all these searches some structures below a threshold
of 15 kJ/mol were still missing, we tried to force the evolutionary

algorithm to explore less accessible regions of the PES by enlarg-
ing the population size to 100, while leaving other parameters
unchanged. On the basis of the Monte Carlo results, we carried out
three pairs of runs employing 27 or 100 chromosomes, respectively:
one pair with PM7 using one population and two pairs with the
island model using either DFTBA or PM7. For the single popula-
tion run, the enlargement of the size slightly increased the num-
ber of retrieved structures (6 and 4) at a considerably higher cost
(2250 and 2600 calculations, respectively). The island model led to
a further improvement: DFTBA retrieved 53 out of 56 structures in
both replica, stalling at 1600 and 2250 calculations, whereas PM7
missed just one structure (number 21 at 19.45 kJ/mol above the
global energy minimum) stalling at 2800 and 3200 calculations. The
overall performance can be appreciated looking at panel (b) of Fig. 7
where the number of missing structures (average of replicas) vs the
number of calculations carried out is shown (roughly 60 points for
each generation); it is apparent that both the runs performed with
the island model converge faster than the single population one and
that PM7 offers an additional (small) advantage. Taken together,
the results show that less than 10 generations should be sufficient
to sample a system with these numbers of degrees of freedom with
an accuracy largely sufficient to obtain converged estimates of most
observables.

2. Threonine in aqueous solution
After the extensive exploration of threonine in the gas phase,

we proceeded to characterize its charged forms in solution, employ-
ing the conductor-like polarizable continuum model (CPCM)78 to
take into account bulk solvent effects. In this case, run-time topol-
ogy checks are critical since proton transfers may take place during
the search. The computations were performed using the settings
shown in Table II, carrying out a single search using PM7 in view

FIG. 7. Panel (a) structures retrieved in searches for L-threonine using a population of 28 chromosomes with a RMSD threshold of 0.2 Å. Reference structures45 are shown
as cyan circles, neighbors found by MC as green hexagons, neighbors found by single population EA with a smaller red circle, and neighbors found with the IM with a yellow
star. Panel (b) the number of missing structures as a function of calculations done using 100 chromosomes for a single population (PM7, black circles), IM/DFTBA (red
squares), and IM/PM7 (blue triangles).
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TABLE III. ΔG at B2 level of theory of the unique structure obtained from the
optimization of the selected structure in the MC searches.

Anion Zwitterion Cation

Conf. ΔG Conf. ΔG Conf. ΔG

T-A-1 0.0 T-Z-1 0.0 T-C-1 0.0
T-A-2 0.4 T-Z-2 1.6 T-C-2 7.2
T-A-3 1.5 T-Z-3 4.2 T-C-3 19.0
T-A-4 11.9 T-Z-4 20.0

T-Z-5 20.1

of the reduced conformational freedom of charged species in solu-
tion. Structures within 25 kJ/mol from the global energy minimum
were then re-optimized at higher level of theory in order to obtain
a better estimate of relative stabilities (see Sec. II C); no clustering
was carried out since the dataset was already small enough. Relative
stabilities of the low lying conformers are reported in Table III.

As well known, in aqueous solutions at neutral pH, the zwit-
terionic form of amino acids is more stable than its neutral coun-
terpart. PH changes then lead to either protonation of the carboxy-
late group or deprotonation of the NH3 moiety. Thus, an extensive
exploration of the charged forms of threonine is pivotal to analyze
the relationships among the low-lying conformers of the different
charged species and to identify the preferred paths for protona-
tion or deprotonation. In Fig. 8, the geometries and relative free
energies of the low-energy conformers (within 12 kJ/mol above the
global energy minimum of each form) for anionic, zwitterionic, and
cationic forms of threonine are reported, with orange lines con-
necting closely related structures. The most stable conformer of the
cationic form (the blue energy level in Fig. 8) is characterized by
hydrogen bonds of the positively charged NH3 group with both the

carboxylic and hydroxylic oxygens. This structure is closely related
to the second low-energy conformer of the zwitterionic form, which
is only 1.5 kJ/mol above the global energy minimum of this form.
Interconversion between the two conformers is ruled by rotation of
the hydroxyl hydrogen atom. Only slight structural rearrangements
occur during the deprotonation of the carboxylic group. In the case
of the anionic form, after deprotonation of the ammonium group,
the strongest hydrogen bond is formed between one carboxylic oxy-
gen and the hydrogen of the hydroxyl group (rather than with an
aminic hydrogen). The interaction between the NH2 and OH groups
is retained in the less stable T-A-3 and T-A-4 conformers, which
represent the possible connections between the zwitterionic and the
anionic forms upon NH3 deprotonation.

Though beyond the scope of the present work, we recall that a
complete knowledge of the most stable conformers of each species
and of the possible paths of proton dissociation gives access to the
estimation of the acid dissociation constants. Considering the same
experimental conditions, the pKa values can be obtained evaluating
the ΔΔG between the conformers of the amino acid under study and
the conformers of a related amino acid whose experimental values
are known.

3. Serine and cysteine
Having evaluated the performance of the (λ + μ) IM strategy,

we proceeded to test it further with the next two systems, i.e., serine
and cysteine.

For serine (Fig. 9), we run two replicated runs using PM7 (with
the same settings employed for cysteine) and another pair using
DFTBA, with the single population model and 100 chromosomes.
In all cases, the populations stopped to improve between 14 and
35 generations (i.e., between 1150 and 2000 SE/DFT calculations),
being unable to find a single structure among the 85 present in the
dataset, even after a linear search restart. This missing conformer
was actually the highest-energy structure, lying 214.7 kJ/mol above

FIG. 8. Energy levels below 12 kJ/mol
of the anionic (red), zwitterionic (green),
and cationic (blue) forms of L-threonine
are reported. Orange lines connect
structures upon acid dissociation. The
insets show 3D representations of the
conformers.
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FIG. 9. Panel (a): structures retrieved in searches for serine with RMSD thresholds of 0.2 and 0.125 Å, respectively. Reference structures47 are shown as cyan circles,
neighbors within 0.2 Å with a smaller red circle, and neighbors within 0.125 Å with a yellow star. Panel (b): the number of missing structures as a function of calculations for
PM7 (black circles) and DFTBA (red squares).

the global energy minimum. Superimposition between the latter
structure and its nearest neighbor (see Fig. S2 in the supplementary
material) yielded a RMSD of 0.0128 Å. Lowering the RMSD thresh-
old made the number of missing structures jump to 25 in both PM7
runs with an average energy difference of these missing conformers
with respect to the global energy minimum of 56.3 kJ/mol and 52.0
kJ/mol, respectively. Note that, at variance with cysteine, even with
a low threshold, all but two structures within 15 kJ/mol were still
detected. The number of missing structures at the PM7 and DFTBA
levels [panel (b) of Fig. 9] and the energies of the missing structures

(see Fig. S3 in the supplementary material) show the quite good
convergence of both methods at about 8–9 generations.

For cysteine, we run two replicated PES explorations with the
settings used for the second set of threonine runs (see Table II, third
column) using only PM7 (owing to the lack of sulfur parameters in
DFTBA) and single point DFT evaluations. The results are shown in
Fig. 10: looking at panel A, it can be observed that, using the RMSD
between heavy atoms and polar hydrogens and a threshold of 0.2 Å,
the single population model was able to retrieve all the structures
in the reference dataset (within 36 generations, i.e., optimizations)

FIG. 10. Panel (a): structures retrieved in searches for cysteine with a RMSD thresholds of 0.2 Å and 0.125 Å, respectively. Reference structures47 are shown as cyan circles,
neighbors within 0.2 Å with a smaller red circle, and neighbors within 0.125 Å with a yellow star. Panel (b): the number of missing structures as a function of calculations for
the two replicas.
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in one replica and all but one in the other replica (all at least
44.3 kJ/mol above the global energy minimum [using geometries
from the reference dataset optimized at the B3LYP-D3/6-31+G(d)
level)]. Lowering the RMSD threshold to 0.125 Å increased the num-
ber of non-retrieved structures to 22 and 23, respectively; with a
single exception (see below), all these structures were above the
15 kJ/mol threshold (on average 71 kJ/mol). Comparison of SE/DFT
and pure DFT searches did not highlight any significant difference.
Superimposition between the global energy minimum in the refer-
ence dataset and its nearest neighbor (Fig. S4 in the supplementary
material) yielded a RMSD of 0.155 Å. It is worth observing that use
of the (λ + μ) evolutionary algorithm allows us to keep high fitness
chromosomes during the whole exploration, thus seeming better
suited for our needs: even if this feature may slow down the conver-
gence, finding the lowest lying structures was never an issue in our
tests. Finally, the speed of exploration is in line with those already
observed for the other two amino acids.

D. Rhodium complexes
The last set of case studies includes the four rhodium coordi-

nation complexes described in Ref. 48. The remarkable robustness
of the exploration of amino acid PES’s convinced us to retain the
same parameter set for these systems, see Table II. However, due
to the huge computational cost of evaluating even single point DFT
energies at each fitness calculation, the search was carried out using
PM7 geometries and energies; in addition, we limited the number
of generations to 30 and the number of chromosomes to 70. For
each system, we carried out a replicated search using either cartesian
or internal coordinates. The role of two explicit solvent molecules
(CD3CN) filling the axial positions of the octahedral coordination
shell of rhodium atoms was also investigated. Among the structures
found during the searches, only those lying less than 25 kJ/mol above

the GEM were retained and grouped by means of clustering, thus
finally obtaining a small set of highly descriptive structures.

Figure 11 shows the validation scores obtained for the four
dirhodium complexes used to select the best value of k, i.e., the num-
ber of structures used in the second step (see Sec. II). Taking into
account that neither of the used validation scores is rigorous (from
a general point of view, the same concept of correct clustering is ill
defined), we are actually seeking either a consensus among the scores
or a strong signal. It is also worth remembering that the internal vari-
ance in clusters is inversely proportional to k, so that the smallest
best k is actually sought. For Rhac (blue lines), WSS and SI were
not very informative (there are neither big changes in slope in WSS
nor peaks in SI), so that the value of k obtained by DBI (18) was
selected (the structures collapsed to 15 after full DFT optimization);
for Rhac-MeCN (orange lines), SI clearly indicates 14 clusters and
DBI 10; however, the value of DBI at k = 14 is small enough to
convince us to retain this value. In analogy with Rhac, we selected
k = 16 for Rhz (green lines) and k = 24 for Rhz-MeCN (red lines)
since only DBI gave sufficient information.

In the second stage of the general two-step procedure, the
resulting candidates underwent a full DFT geometry optimization
(see Sec. II C) followed by computation of spectroscopic parameters.
The clustering procedure ended with 14–24 representative struc-
tures for each complex, some of which collapsed to the same minima
after B3 geometry optimization, thus further reducing the final set
of structures tuning the overall spectra. The reduction was particu-
larly significant for RhAc, where only 5 of the initial 15 structures
survived after geometry re-optimization.

In Fig. 12, the experimental VCD spectra of the four com-
plexes are compared to those issuing from Boltzmann averaging
of the computed harmonic spectra of all the final structures for
each complex. As always, the computed harmonic frequencies in
the 1300 cm−1–1800 cm−1 region have been scaled by 0.99 to take

FIG. 11. WSS, SI, and DBI scores for the four dirhodium complex as a function of the number of clusters.
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FIG. 12. Experimental (black lines) and theoretical harmonic vibrational circular dichroism spectra of the four lowest energy conformers and Boltzmann averaged spectra at
298 K (bold lines) of Rh2Ac (left panel) and Rh2Z (right panel). The spectra of the conformers with explicit acetonitrile molecules are reported in shade of red, whereas the
coordinatively unsaturated conformers are reported in shades of blue. The percentage probability of occurrence estimated at 298 K is reported. The theoretical line-shapes
have been convoluted by means of gaussian distribution functions with half-widths at half-maximum of 10 cm−1.

into account anharmonicity. The computed spectra show signifi-
cant differences among the various conformers, thus confirming the
paramount role of a comprehensive exploration of the conforma-
tional space. For instance, the isolated signal at about 1700 cm−1

(the gray areas in Fig. 12) is characteristic of the amide group
and its position and intensity depend on both the orientation and
the local environment of this moiety within the molecular system.
Indeed, small variations of the conformation can even lead to sign
changes and none of the conformers, taken alone, reproduces the
experimental spectrum. Proper description of the extremely sensi-
tive amide transition requires also the inclusion of explicit acetoni-
trile molecules in axial positions, since their presence led to small,
but non-negligible changes of the conformer populations. In par-
ticular, only Boltzmann averaging of the low-energy conformers of
the coordinatively saturated complex (RhAc-MeCN) reproduces the
small bisignate signal of the experimental high-resolution spectrum
of RhAc (the red bold line in the left panel in Fig. 12). Since the
only source of chirality is the stereogenic center of the acetate lig-
ands, some general features were expected to be shared among the
different complexes. Indeed, the −, +, − sequence of signals of the
spectra in the 1450 cm−1–1600 cm−1 region is found in most of the
conformers; nevertheless, significant differences in the peak inten-
sity are present, which, only after tuning by the populations of the
different conformers, approach the experimental shapes.

IV. CONCLUSIONS AND PERSPECTIVES

The identification and characterization of the most statistically
significant (low-energy) minima of flexible medium-size molecular
systems is a demanding task due to the high dimensionality of the
problem and the ruggedness of the potential energy surfaces. Two
general tools are needed to accomplish this task, namely, an effec-
tive way to cross barriers in the PES and an equally efficient way of
evaluating properties at a given geometry.

In this contribution, we set up a general strategy, which tries
to fulfill both goals, combining, in the best possible way, speed, fea-
sibility for large systems, and accuracy in the exploration of multi-
dimensional rugged surfaces with many shallow minima. We vali-
dated our procedure using as test cases some amino acids (which
have their own specific interest in high resolution spectroscopy and
astrochemistry) by retrieving almost complete datasets of several
minima at a fraction of the computational cost of more conven-
tional approaches. The goal was achieved by tuning and combining
some well-known techniques for our needs: in particular, use of the
(λ + μ) variant in place of a conventional genetic algorithm allows
us to retain in the selected population good performing structures
even if their geometrical parameters are not closely related to the
best ones. Furthermore, use of large populations for fewer genera-
tions, combined with the island model, helps in keeping a degree of
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diversity in the population. Finally, the island model is particularly
effective for parallelization and distribution among nodes. Concern-
ing next the evaluation of energies, we extended the benchmarks
reported in a previous study, confirming the effectiveness of semi-
empirical quantum chemical methods, which are able to combine
general applicability and good accuracy to reasonable computational
cost.19

One strength of our framework is the integration of the explo-
ration layer of the software with the Proxima library, which allows
for checking and manipulating topological properties in an easy and
transparent way; in the future, when more features will be added to
Proxima, this may allow us to explore different chemical phenom-
ena by accepting or rejecting newly generated geometries based on
topological properties (e.g., the presence of an hydrogen bond, just
to mention one of the simplest cases). This is actually linked to one
of the most important improvements we plan to introduce in future
releases, i.e., the optimization of genomes based on general internal
coordinates, generated automatically by the software and/or selected
by the user, rather than on just torsions or cartesian coordinates. As
a matter of fact, torsions (or other internal coordinates, e.g., ring
puckering) are much more efficient than cartesian coordinates in
exploring large amplitude motions, whereas the latter are simpler
and can be used in any problem, but their tuning is intrinsically not
easy. In fact, this aspect has been taken into account, at least partially,
since the geometry optimization by an electronic structure code is
done precisely in that way freezing the genome degrees of freedom.
However, we are currently restricted to very basic genomes. At the
same time, the sub-optimal efficiency of cartesian based searches can
be outflanked in different ways: for instance, the use of metadynam-
ics implemented in CREST seems to be a quite effective approach.
More general coordinate manipulation would also allow combining
systematic and metaheuristic approaches55 by carrying out an initial
pruning of candidate structures, possibly on a less dense grid, using
only topological properties.

Another aspect that deserves further analysis is the type of local
relaxation carried out on candidate structures, which, in our case, is a
geometry optimization, while other authors used molecular dynam-
ics. From the perspective of an evolutionary algorithm, these choices
are interchangeable, since they can be viewed as an additional muta-
tion operator, which carries away a chromosome from its initial
state. In this respect, it would be interesting to combine evolution-
ary algorithms with local Monte Carlo simulations in condensed
phase (in place of molecular dynamics), whose implementation in
generalized curvilinear coordinates is quite straightforward. Finally,
although our software can use different electronic structure codes,
its very effective interface with the Gaussian software allows for
combining cartesian and internal coordinates and performing mul-
tilayer [QM/QM, (Quantum Mechanical) QM/MM, etc.] computa-
tions, thus further enlarging the range of applications of conformer
searches.

Three further aspects are, in our opinion, particularly signif-
icant for future developments: first, while we have used a general
recipe in all the presented case studies, a wider generalization (and
perhaps a metaEA optimization) will be perhaps needed when a
general coordinate manipulation stack will be implemented; sec-
ond, the implementation of multi-objective evolutionary algorithms,
able to optimize simultaneously energy and other properties, would
be very useful in spectroscopic applications; and third, automatic

procedures should not completely overcome domain competences
and chemical intuition and in this respect the use of perception tools
and immersive virtual reality may be of significant help, as hinted in
recent studies.63,79

In conclusion, we think that, even pending those future
enhancements, we already dispose hic et nunc of a robust and gen-
eral platform aiding the spectroscopic analysis of large and flexible
systems in a user-friendly and effective way.

SUPPLEMENTARY MATERIAL

The supplementary material files include further information
on metaheuristic methods, details on the implementation of the GUI
and its functioning, and additional results. In particular, the latter
include distribution of energies in MC searches and the superimpo-
sition between global energy minima of amino acids found in EA
searches and present in reference datasets.
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