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A B S T R A C T

The detection of gravitational waves emitted by black hole binaries opens a
window to test the theory of General Relativity and to probe the dynamics
of gravity in regimes otherwise inaccessible. To fully exploit this opportu-
nity, it is necessary to understand which are the consistent and detectable
deviations from General Relativity. To single out these possible deviations,
one must also be able to recognize effects due to environmental perturba-
tions of the binary system, as these may lead to departures within General
Relativity from the waveform of an ideal isolated binary. In this thesis, we
approach some aspects of both these theoretical challenges from the point of
view of effective field theory. First, we study how to narrow down the space
of theories that can describe detectable deviations from General Relativity
based on consistency with the fundamental principles of our description of
nature. We consider the simple example of General Relativity modified by
the presence of a shift-symmetric scalar field coupled only to gravity. In this
context, we first show that only a specific scalar-graviton interaction can lead
to black holes different from what General Relativity predicts while being
consistently included in an effective field theory description. Then we study
how causality, unitarity and locality constrain this interaction. We show that
if this interaction is strong enough to leave an imprint detectable with the
next gravitational wave interferometers, then causality would require new
degrees of freedom to appear at very low energies. In the second part of this
work, we consider one example of environmental perturbation that can af-
fect black hole mergers: a distant third body orbiting the black hole binary.
To study efficiently such a system, we derive a worldline effective action
describing the relativistic effects due to the third body on timescales much
longer than the orbital periods. Using techniques from non-relativistic Gen-
eral Relativity, we obtain a description of the two orbits as two interacting
particles endowed with multipole moments. We carry out these computa-
tions up to quadrupole order in the three-body interaction, including the
leading relativistic corrections. This approach allows to study novel long
timescale effects that can enhance the rate of orbital flips of the inner binary.
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1
I N T R O D U C T I O N

The formulation of Einstein’s theory of General Relativity (GR) in the
last century marked a paradigm shift in our understanding of gravity,
introducing dynamic degrees of freedom to describe the gravitational
interaction. This description of gravity revolutionized our comprehension
of nature, establishing the dynamic role of spacetime and making possible
to draw important analogies between gravity and other areas of particle
physics. In this thesis we explore how these analogies can be leveraged to
study the phenomenology of dynamical gravity in GR and beyond.

Among the several features predicted within the dynamical paradigm
brought by GR, one of the most unique ones is the propagation of energy
and momentum in the form of gravitational waves. Gravitational waves
are dynamic disturbances in the geometry of spacetime, inducing repeated
contractions and expansions of distances between different points. These
are generally emitted when a source of gravitational field is accelerated.

Through immense scientific endeavors spanning decades, today the
scientific community has developed the ability to detect gravitational waves.
This by precision interferometers which measure microscopic variations
in the path lengths traveled by light beams. Due to the weak nature of
gravitational interactions, current detection capabilities are limited to
capturing gravitational waves originating from exceptional events, such as
the collision of stellar mass objects at least as compact as neutron stars.
Such collisions usually take place between objects that form a gravitation-
ally bound binary system. In these cases the energy loss in gravitational
waves and possibly internal friction determines a progressive shrinking of
the binary orbit until the collision is unavoidable and the objects merge
together. The more the objects are compact, the more the orbit will shrink
before the collision, determining larger accelerations and a greater emission
of gravitational waves. In particular, if the bodies are as compact as neutron
stars, then the merger becomes a relativistic event that fully display the
non-linear nature of gravitational interaction at length-scales comparable
with the size of the components of the binary, typically tens of kilometers.
As of today, the LIGO-Virgo-Kagra collaboration has detected 90 such
events in a radius of 135 Mpc [1–3].

These outstanding results follow a rich history of experimental probes
of the phenomenology predicted by GR in the past century. Notable
examples include the cosmological evolution [4, 5], gravitational time delay
[6, 7], gravitational lensing of light rays [8] and various effects in planetary
as well as lunar and stellar motion [9–12]. These observations allowed to
test GR in special configurations in which the sources of gravitational field
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introduction 3

are highly symmetric or evolve negligibly due to the gravitational fields
being weak.

Even when compared to these milestones, the detection of gravita-
tional waves represents an unprecedented opportunity to explore gravity.
Indeed, at the most fundamental level gravitational waves allow to study
directly the degrees of freedom that characterize gravity, encoded in
the graviton. To date, the most striking result in this direction was the
deduction of a bound on the speed at which gravitational waves propagate,
thanks to the simultaneous detection of gravitational and electromagnetic
signatures of a merger between two neutron stars, the GW170817 - GRB
170817A event [13, 14].
In addition to probing these fundamental aspects, detecting gravitational
waves emitted by mergers of compact objects allows to test GR in a
regime in which the dynamics of the gravitational sources is affected
non-perturbatively by gravitational interactions. With no evident symmetry
simplifying the dynamics, this setup probes the full complexity of Einstein’s
equations.
Similarly, gravitational waves produced by binary mergers give the unique
opportunity of probing the nature of the most compact stellar-sized objects
in the universe, making possible to study how matter behaves under
extreme conditions.

Besides requiring sophisticated technology, detecting gravitational waves
demands producing templates of the possible waveforms in order to single
out the signal against the multiple sources of noise. This makes extremely
important to study the dynamics of mergers across the binary phase-space.
In this regard the complexity displayed by mergers of compact objects
represents both an opportunity and a challenge, as it allows to probe a new
regime of gravity but poses an obstacle to predicting the outcome of these
extreme events. To handle this difficulty, various analytical techniques have
been developed to study the early and late phases of the merger, the so
called inspiral and ringdown phases, see e.g. [15, 16]. Even so, all known
approaches bring little help in describing the instants surrounding the
collision itself, when the components of the binary are very close to each
other and reach relativistic speed. Currently, this phase of the merger can
only be studied at the cost of running heavy numerical simulations [17–20].

Despite this technical challenge, it is still possible to draw some im-
portant and sharp predictions about the physics that governs the entire
merger by studying analytically the inspiral and ringdown phases. Qualita-
tively, the inspiral phase describes the orbital motion of the bodies and the
shrinking of the orbit, which can be characterized in terms of the orbital
parameters as well as the deformability of the bodies and their interactions.
Studying the dependence of the waveform on these details and comparing
it with data, one can infer quantities like the mass and angular momentum
of the two components of the binary. The ringdown phase of the merger,
in which the final product of the collision reaches its stationary state, can
be described efficiently in terms of perturbations of the final object itself.
In other words, the gravitational radiation emitted only a short time after
the collision can be described purely in terms of the stable, non-dynamical
state that is eventually reached.



4 introduction

When it comes to compact objects in astrophysics, GR’s prediction are
impressively sharp. Infact, one of the most popularized achievements of
this theory is to precisely describe the exterior of a black hole, that is a body
which is so compact to have an escape velocity as high as the speed of light
[21]. The boundary at which the escape velocity reaches the speed of light
is called the black hole event horizon. Not only GR describes these objects
precisely, but predicts their uniqueness up to three parameters: the mass,
the angular momentum, and the electric charge of the black hole. This
statement of uniqueness is the content of the so-called no-hair theorems1

[22–28]. Besides describing these objects as solutions, GR predicts their
formation as a result of gravitational collapse [29, 30]. This makes black
holes, together with neutron stars, the natural candidates for stellar mass
compact objects responsible for gravitational waves emitted during mergers.

Classically no excitation or particle traveling subluminally or at the
speed of light can escape from the event horizon. For this reason, gravi-
tational waves propagating away from the location of a black hole must
respect boundary conditions that are infalling at the horizon. This translates
into the fact that the perturbations of the gravitational field of a black hole
that travel away from the horizon are exponentially damped oscillations
with a discrete frequency spectrum, the so-called quasi-normal modes
[31]. This distinguishing feature of black holes opens the possibility of
performing a spectroscopic analysis of the ringdown radiation, in principle
allowing for a direct test of the nature of compact objects [32].

The current precision of gravitational wave detection allows to mea-
sure the real and imaginary part of the longest-lived quasi-normal mode
frequency with a precision of few ten per cents [33]. This allow to compare
total mass and angular momentum of the final black hole with what
is predicted numerically given the inspiral signal. The higher accuracy
expected in the next generation of gravitational wave detectors, e.g. LISA
[34–36], Einstein Telescope [37, 38], Cosmic Explorer [39], makes black hole
spectroscopy a concrete opportunity to test the nature of compact objects in
GR.

While the ringdown radiation is suppressed exponentially as time
passes and can only be detected for fractions of a second, the radiation
emitted during the inspiral phase is detectable for a much longer time. Cur-
rently, the gravitational waves are detected starting tens of seconds before
the collision. However in the future, it will become possible to trigger a
detection several months before the collision [40]. On one hand, this feature
of the inspiral radiation allows to extract a large amount of information
about the system, possibly allowing to probe gravitational dynamics with
extreme precision. On the other hand, over the long duration of this phase
feeble perturbations can pile up and bring non-negligible changes in the
emitted waveform. For this reason, the inspiral phase can be affected more
strongly by environmental effects. This makes the inspiral a less direct way
to probe GR with respect to the ringdown. At the same time however it
gives access to information about the surroundings of the binary, which can
in principle allow to study interesting physical phenomena that may take
place e.g. in the accretion disks of black holes.

1 Likely named after a pictorial comparison between the would-be extra features of black holes
and unconventional hairdos of people
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Therefore, analyzing the inspiral phase makes both interesting and
necessary to parametrize systematically how the environment surrounding
the binary affects its dynamics, be it gas, other astrophysical bodies, or
other sources of perturbations.

Beyond the next generation gravitational wave interferometers such as
LISA, the Einstein Telescope and Cosmic Explorer, which improve on
the designs of the current detectors, other ideas are being explored. One
example is given by pulsar timing arrays (PTA) [41–43], which allow to
study the correlation in the signals received by an ensemble of pulsars to
deduce whether a gravitational wave passed through the array, introduc-
ing time delays between the various signals. Given their size spanning
galactic scales, these networks are sensitive to gravitational waves with
exceptionally low frequencies, such as those that may be produced by
mergers of supermassive black holes as heavy as 108 solar masses [44, 45].
More recent proposals with novel setups involve also microwave cavities
[46, 47] as well as precision astrometry [48]. Besides the detection of
gravitational waves, an other revolutionary development in the observation
of gravitational phenomena is the imaging of accretion disks surrounding
supermassive compact objects, by the Event Horizon Telescope [49, 50].
Such objects are found at the center of galaxies, and today have been
photographed in the Milky Way as well as the M87 galaxy. This source
of data allows to probe the strongly non-linear regime of gravity through
the geodesics that are close to the innermost stable circular orbit (ISCO) [49].

These impressive progresses usher in a new era of exploration of the
dynamics of gravity, allowing us to probe GR in regimes never accessed
before. This makes possible not only to better understand the phenomenol-
ogy of GR, but also to test whether nature deviates from GR predictions. In
other words, gravitational wave detection gives the remarkable opportunity
to test physics beyond GR (BGR) in the full non-linear regime at the scales
that characterize binary mergers, that is the kilometer.
From the theoretical point of view, this possibility is particularly interesting
as it might offer new perspectives on open questions in cosmology [51–55],
such as modeling Dark Energy, Dark Matter or the early-time cosmological
dynamics.

This opportunity comes with challenges. From the point of view of
model-building, BGR physics that might be tested in the future must
satisfy important constraints. From the outset, a model of BGR physics
should not only predict deviations from GR but also be consistent with GR
predictions that have been tested so far, within the current precision of the
experiments. Much less trivially, the theories that one considers should be
compatible with our theoretical understanding of how interactions work at
the length-scales that characterize the new physics.
Moreover, from the point of view of fitting data, testing new physics makes
all the more crucial understanding and identifying environmental effects
as well as finite size effects (e.g. tidal deformability of neutron stars), since
effects beyond GR might be similar to these departures from the ideal
picture of an isolated black hole binary in GR. The vast size of parameter
space of the possible perturbations and finite size effects make necessary to
develop analytic tools to describe and classify these contributions.
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Among the various theoretical tools and ideas developed in the con-
text of high energy particle physics, effective field theory (EFT) stands
out as the most appropriate one to address these challenges. Generally
speaking, an EFT is a way to describe a given physical system in a chosen
range of energies by singling out the degrees of freedom and interactions
that are relevant for the dynamics. This is achieved by exploiting the
separation of scales displayed by most physical systems, deriving power
counting rules to compute e.g. the corrections due to microscopic, high
energy (UV) dynamics on macroscopic, low energy (IR) observables. In this
way, EFTs offer a highly versatile framework to understand and encode
the structure governing the dynamics of a physical system across different
scales.
For instance, an EFT can be very helpful in model building as it allows to
parametrize efficiently models having similar degrees of freedom and sym-
metries at low energies, but possibly very different underlying microscopic
UV descriptions. This bottom-up approach has been followed for instance
in studying condensed matter systems, [56–59], as well as theories beyond
the Standard Model of particle physics, see e.g. [60–62] and more recent
works [63–67]. In the case of BGR physics, the bottom-up EFT approach
simplifies the task of understanding whether a given interaction can fit
with our current knowledge of gravitational phenomenology and whether
it can be tested in future gravitational wave detections. Moreover, as we will
discuss at length, this approach makes it simple to contrast a given model
of BGR physics with the knowledge of how different interactions should be
interconnected according to perturbation theory.
Similarly, given a system with a known microscopic dynamics, the EFT
approach can be fruitfully used to derive a simplified description of its
macroscopic, low-energy dynamics with no need of including the micro-
scopic, high-energy degrees of freedom. Examples of this kind range from
large-scale structure in the universe [68] to aspects of the Standard Model of
particle physics, e.g. the weak force [69]. This top-down approach can also
help simplifying the description of binaries, as proposed in the so-called
Non Relativistic General Relativity (NRGR) method [70, 71]. Thanks to its
versatility, this approach can be used to include finite size effects and is
suitable to describe the effects due to environmental perturbations piling
up over the inspiral phase.
With this in mind, in the following we will leverage on the insights gained
through EFT in the context of particle physics and employ EFT methods to
study compact objects and their dynamics in GR and beyond.

In particular, in the first part of this thesis we will use the bottom-up
EFT approach to explore the space of theories that modify GR in a way
that might be testable in the coming future. This approach allows to
study the possible BGR theories in a way that is as much agnostic as
reasonably possible with respect to the UV processes that govern physics
on microscopic scales. From this point of view, we will analyze which of
the models describing interesting gravitational dynamics are compatible
with the rest of our knowledge and experience of the physical laws.
In Chapters 2 and 3, we will use EFT to study the predictivity of some
models that could be phenomenologically interesting as well as their
implications in terms of microscopic physics and causality.
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In the second part of this thesis, we will take the direction of using
the top-down approach to disentangle environmental effects from the
dynamics of the merger. To this purpose, we will employ the EFT approach
to describe binary systems as simple composite particles, using the NRGR
formalism as well as an averaging technique [72]. In the specific, we will
derive a simplified description of the evolution of a relativistic binary
system perturbed by a distant third body. In this case the EFT point of
view allows to exploit the separation of scales characterizing the system,
encoded in the distances between the bodies, to simplify the dynamics.
We will develop in Chapter 4 the description of the first non-trivial effects,
while we will refine the construction to include subtler effects in Chapter 5.

Two additional sections at the beginning of the two parts of this the-
sis are devoted to a more detailed introduction of the two main topics. In
the following we will use natural units in which both the reduced Planck
constant and the speed of light are set to unity, h̄ = c = 1, and we choose
the metric signature to be mostly positive: (−,+,+,+).



Part I

R E S T R I C T I N G T H E O R I E S B E Y O N D G R





P H Y S I C S B E Y O N D G R F R O M T H E E F T P O I N T O F V I E W

As mentioned in Chapter 1, the detection of gravitational waves emitted
during binary mergers makes possible to probe the fully non-linear strong-
field dynamics of gravity at lengthscales of order of kilometers. In this way,
it is possible to test to which extent the dynamics of gravity is described
by GR as opposed to theories that depart from GR predictions in the
context of astrophysical binary mergers. Therefore, in practice one wants
to parametrize theories beyond GR that are compatible with all current
observations but predict deviations that would become testable in future
experiments.
The bottom-up EFT approach represents a very efficient way to explore
the parameter space of different models, allowing to keep track of which
interactions affect more markedly the dynamics. In addition to this, EFTs
are the natural way to frame our understanding of GR. Indeed, in analogy
with the Standard Model, GR should be understood as a description of
gravity only valid at low energies2, determined by the symmetry under
the Lorentz group of Special Relativity and by the presence of a massless
spin-two particle, the graviton [74–76].

Technically, the physics described by GR in empty, asymptotically flat
space-time can be encoded in the so-called Einstein-Hilbert action:

SEH =
∫

d4x
√
−g

MPl
2

2
R , (1.1)

where g is the determinant of the metric gµν, R is the Ricci scalar obtained
by the same metric and MPl is the Planck mass, related to the Newton’s
constant by MPl

2 = 1/8πG . In this action, two degrees of freedom, the
gravitons, are packaged into the metric gµν. This geometric interpretation
of gravity can be seen both as a result of describing a massless spin 2

field, the graviton, in a relativistic theory [74, 75] and as a result of the
principle of general covariance. This principle states that different frames of
reference and coordinate systems lead to equivalent descriptions of nature
and translates in a symmetry under diffeomorphisms of the space-time
manifold. For a thorough exploration of the geometric interpretation of
GR, see e.g. [77]. In the presence of matter, GR describes gravitational
interaction through minimal coupling, that is replacing partial derivatives ∂
with covariant (Levi-Civita) derivatives ∇ in the matter action and adding
a factor

√−g to its integration measure. This ensures invariance of the
theory under diffeomorphisms and implies the universality of gravitational
attraction on point-like objects, i.e. the weak equivalence principle of GR.

In this setup one can go beyond GR by writing an effective action
that contains the Einstein-Hilbert contribution of GR plus additional
operators. This strategy allows to control how much GR is being deformed,
making easier to understand which theories are compatible with our
experimental knowledge of gravity. The operators appearing are fixed
by the symmetries of the low energy descriptions and by the low energy

2 Due to its non-renormalizability, GR has long been known as a microscopically inconsistent
description of gravity and space-time [73].
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degrees of freedom. Once the symmetries and degrees of freedom are fixed,
the theory will be specified by the dimensionful coefficients that multiply
each of the allowed operators in the Lagrangian.

The most straightforward possibility is to consider operators that are
invariant under the same symmetry group as GR, that is diffeomorphisms,
without adding any other field besides the metric. This leads to an EFT
in which the operators are geometric quantities built by fully contracting
the tensor indices of powers of the Riemann tensor Rµνρσ and covariant
derivatives. Such theories have been studied extensively, see e.g. [78, 79].
In D = 4 space-time dimensions, all of the non-trivial operators of this kind
lead to equations of motion of order higher than second. The most natural
expectation, according to the EFT point of view, is that such theories are
only valid at energies low enough to make the higher-derivative contribu-
tions small. This is for instance the case of chiral perturbation theory [62].
At higher energies a UV completion of the EFT including new degrees
of freedom will instead take over and modify the dynamics. Indeed, the
larger set of initial conditions needed to determine the evolution of the
system when higher derivatives cannot be neglected would indicate the
presence of extra degrees of freedom if the theory were extrapolated to high
energy. A result known as the Ostrogradsky theorem, see e.g. [80, 81], states
that generically in such cases the dynamics would develop instabilities,
such as the runaway behavior in the Abraham-Lorentz radiation reaction
force [82, 83]. This means that the theory loses consistency when higher
derivatives are not perturbatively small.

The next-to-minimal way to parametrize theories beyond GR is to ex-
plicitly introduce one degree of freedom coupled to gravity. The simplest
case is adding a scalar field ϕ, which is done in the so-called scalar-tensor
EFTs beyond GR. The extra degree of freedom in these cases does not need
to be ghost-like as in the case of Riemmannian EFTs, instead it is a physical
low-energy degree of freedom that can be consistently described by the
EFT.
Despite being a very simple deformation of GR, adding a scalar field to
the gravitational sector makes possible to describe a considerably rich
phenomenology beyond GR. This has received significant attention in the
literature, see e.g. [84] and references therein. In the following we will
mainly focus on a specific kind of scalar-tensor theories, in which the
interactions enjoy a symmetry under constant shifts of the scalar field:
ϕ → ϕ + c , c being an arbitrary constant. The shift symmetry makes
natural for the scalar field to be massless, allowing to envision it playing
an important role in the dynamics on cosmological and astrophysical scales.

This possibility makes interesting to understand whether binary merg-
ers can become a probe of these dynamical components of cosmological
dynamics for instance if the presence of the scalar field alters the physics
of compact objects [85]. In the last decade, this question has been ad-
dressed in the context of black hole physics, trying to determine whether
a shift-symmetric scalar field can modify black holes and produce hair, by
acquiring a non-trivial profile. Remarkably, a quite general no-hair theorem
was proven in this context [86], leading to the understanding that only a
few exceptional operators could lead to sizable, static non trivial solutions
for ϕ in shift-symmetric scalar tensor theories [87, 88]. See [89] for other
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types of hair in black hole geometries.

Despite being a remarkable insight, understanding which operators
can endow black holes of features that are not predicted by GR does not
make clear which theories are viable for describing testable effects in binary
mergers. Here we tackle this question and explore the features of EFTs
that include a sizable hair-inducing interaction, by taking into account
two important points. First, the fact that the coefficients of the various
operators in an EFT are not arbitrary, rather they are interconnected by the
perturbative EFT structure. For instance this makes necessary to include
other operators with non-suppressed coefficients besides those one wants to
focus on, which might substantially alter the signatures expected in binary
mergers. Second, the fact that any choice of values for the coefficients of an
EFT determines the energy scale at which the EFT description breaks down,
as well as the underlying microscopic dynamics that takes place at higher
energies, the so-called UV completion. This fact can be especially relevant
when the EFT breaks down at scales that can be accessed with experiments.
These two aspects help us understanding the physical meaning of certain
technical issues that can arise in the theories of interest. In particular, we
will see that for the exceptional models that lead to shift-symmetric black
hole hair, either certain quantities become divergent or certain excitations
travel superluminally. Giving a physical interpretation of these issues will
allow us to gain insight on whether models that predict shift-symmetric
black hole hair are likely to be observed in future experiments. In stronger
words, the EFT point of view will make possible to narrow down the space
of theories that produce testable deviations from GR in binary mergers.

More in detail, as we will show in Chapter 2, in the case of non-spinning
black holes only one of the hair-inducing operators leads to a theory free
of divergent local, scalar quantities in regions of space-time surrounding a
hairy black hole. These scalar quantities would generically appear in the
EFT as operators, with a non-vanishing coefficient. The presence of such
divergent operators, neglected when computing the background solution
for the hairy black hole, would mean that the theory is not predictive and
the solution cannot be trusted.
This analysis based on predictivity of the theories rules out all of the
hair-inducing interactions besides one, the so-called scalar-Gauss-Bonnet
(sGB) operator:

αMPl ϕR2
GB , (1.2)

where α is a length square and R2
GB = RµνρσRµνρσ − 4RµνRµν + R2 is the

Gauss-Bonnet invariant, a topological density quadratic in the Riemann
tensor. Since this invariant is a total derivative, the sGB operator respects
the shift symmetry of ϕ. As we will see, the topological origin of this
operator is also the reason why its presence does not induce the divergence
of local, scalar quantities, making it possible to consistently include this
operator in an EFT. Moreover, despite containing contributions with four
derivatives and three fields, this operator contributes to the equations of
motion with terms that have at most second derivatives [90, 91].

With this result, one knows that any EFT containing the sGB operator
will describe black holes with scalar hair. For this reason, black hole
phenomenology in such models has been the focus of considerable efforts
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[92–97].
As one might expect, the importance of the effects introduced by the sGB
operator is controlled by the size of α. In particular, if α were as large as
km2, then the emission of scalar waves in addition to gravitational waves
would determine an excessive energy loss during the inspiral phase of a
black hole merger compared to what has been observed3 [98]. This upper
bound makes interesting to investigate values of α that are close to the
detectability threshold, in order to characterize the signatures of the sGB
operator that might be tested with the next generation of gravitational wave
detectors.

With this perspective, in Chapter 3 we will explore the features of
shift-symmetric theories that include the sGB operator with a sizable coef-
ficient, with special attention to the cases in which its coefficient α is close
to km2. While in GR minimal coupling ensures that any probe traveling in
a gravitational field accumulates a universal Shapiro time delay [6], in a
theory in which non-minimal gravitational interactions are included, such
as in the case of sGB, one can expect the Shapiro time delay to get modified
and to depend on the details of the probe, for instance its spin. In particular,
studying these questions in the context of EFTs including the sGB operator,
we will diagnose the presence of superluminal excitations around black
holes. This by finding that a time advance becomes unavoidable for specific
states, much like in the case of a non-minimal three-graviton interaction
[99]. In more precise terms, our result states that certain superpositions of
scalar and graviton excitations travel faster than the speed at which light
travels in flat space-time, when they propagate below a certain impact
parameter with respect to a black hole. This happens when the impact
parameter is of order of or lower than

√
α.

This result, however interpreted, means that theories describing the sGB
interaction do not fit painlessly in the usual relativistic picture of causal
dynamics. A simple way to reconcile this finding with the standard
understanding of causality is to attribute the prediction of superluminal
propagation to a technical fault of our approach. Namely, assuming that
the computations carried out in the EFT fail when the impact parameter
becomes too small, leading to unphysical predictions. This will be the
case when new degrees of freedom appear at length-scales lower than

√
α,

altering the dynamics. In other words, the natural expectation is that a UV
completion of the EFT will appear at those scales, modifying the faulty
predictions of the EFT and restoring causality. Strikingly, this resolution of
the tension with causality implies that the EFT description breaks down at
energies much lower than what one would expect based on NDA, since all
of the higher derivative contributions are still well suppressed when the
impact parameter is lowered to the value giving superluminality.
The conclusion that new degrees of freedom should appear at low energies,
above a scale ΛUV ∼ 1/

√
α, can be read as a bound in the EFT, stating

that in a theory free of superluminal propagation, for a fixed cutoff, the
coefficient of the sGB operator will have to be bounded by the cutoff:
α ≲ 1/Λ2

UV .
As we will argue, if α were close to values that would make it detectable,

3 Another upper bound on α comes from requiring the predictivity of the theory, i.e. absence
of singularities, close to the black hole horizon [92]. As we will discuss in Chapter 3, if one
poses that the EFT only describes black holes that are of astrophysical (or larger) mass, then
the observational bound is the most restrictive. Moreover this bound becomes weaker when
other operators are included in the EFT [85].
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then this UV completion would call for an infinite tower of very light
spinning particles, with masses as low as 10−10eV. Having no experience of
such particles altering gravity at scales below the kilometer, we conclude
that the most likely explanation is that the sGB interaction, if present,
has a much smaller coefficient than what would become testable in the
foreseeable future.

In addition to analyzing the shift-symmetric scalar-tensor cases, we
will consider the analogous class of models describing a shift-symmetric
parity-breaking coupling to gravity. In this context, the dynamical Chern-
Simons (CS) operator, of the form ϕ RµνρσR̃µνρσ, with R̃ the dual of the
Riemann tensor, plays the same role of the sGB operator [100]. The main
differences between the two operators is that the dynamical CS operator
leads to third order equations of motion and produces hair only for
spinning black holes. We will show that the same superluminality issues
found in the sGB case arise for this operator.

Moving beyond the shift-symmetric theories, we will briefly consider
the case of another operator that breaks minimal coupling, ϕ2 R2

GB, which
can be considered as a proxy for interactions giving rise to scalarized
black holes [101–103]. Despite not finding an equally strong result as in
the previous cases, we will point out various facts suggestive of a similar
conclusion, i.e. that tensions with causality may force the EFT to break
down at energies much lower than what would be inferred by NDA.

This analysis shows how theoretical considerations can help exploring
the space of theories that might be of phenomenological interest. A com-
plementary approach to diagnosing superluminal propagation is that of
studying the S-matrix and its analytic structure. The analytic structure of
the S-matrix has been actively explored in the last sixty years [104–106],
see for a pedagogical review [107], with the last twenty years seeing many
interesting applications to the study of EFTs [108–123]. In the context of
two-to-two S-matrix elements, the control over the analytic structure of the
scattering amplitude with respect to the Mandelstam invariants, combined
with unitarity, locality and crossing symmetry, allows to apply the Cauchy
residue theorem and derive constraints over the coefficients that charac-
terize the low energy EFT description of the system. These constraints
take the form of sum rules expressing the low energy EFT coefficients in
terms of integrals over the real axis of e.g. the s−Mandelstam complex
plane. In many cases these integrals are positive, leading to positivity
bounds for the EFT coefficients, in complete analogy with what is found in
Kramers-Kronig relations, see e.g. [124, 125]. Owing to this analogy, these
sum rules are usually dubbed dispersion relations.
Dispersion relations have been shown to give similar constraints to those
derived by requiring the absence of superluminality [108]. In quantum
mechanics, this can be understood by the fact that causality implies the
analyticity properties that are used to derive sum rules, precisely as in the
Kramers-Kronig case. However, in quantum field theory an equally sound
argument connecting causality to analyticity of S-matrix elements is still
lacking. For this reason, the interplay between the two approaches is still
not fully understood and remains an active field of research [126].
For instance, diagnosing superluminality can produce constraints for
operators that depend on more than four fields, while no dispersion
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relation has been derived for higher point amplitudes yet. Conversely,
in the cases we study, we will see that our superluminality bounds are
parametrically close to those recently found with dispersion relations
[127, 128], which are however sharper due to the optimization procedure
that can be implemented when deriving dispersion relations4.
More importantly, the approach of studying dispersion relations for two-
to-two scattering amplitudes can be employed to efficiently derive bounds
on the relative size of different operators in the EFT, see e.g. [116, 119].
As we discuss in Chapter 3, deriving such bounds in the presence of
gravitational interactions is more complex than in other cases. In technical
terms, the long range Newtonian potential makes the two-to-two scattering
amplitude divergent when the scattering angle is zero, i.e. in the forward
limit. This prevents deriving the usual positivity bounds, and implies that
a certain negativity is allowed for the coefficients of the EFT [118, 129].
Furthermore, the presence of loop effects makes important to introduce
a new approach to derive dispersion relations for gravitational scattering
amplitudes, which we will describe schematically [130]. Through the sGB
example, this analysis illustrates how the predictions of a simplified model
with a minimal set of interactions are affected by the operators that will
appear in a generic EFT.

4 An analogous optimization strategy is not known for superluminality bounds, and it would
require scanning efficiently different backgrounds while computing the propagator of the avail-
able excitations.



2
B L A C K H O L E H A I R I N S H I F T- S Y M M E T R I C T H E O R I E S

Do black holes have hair? Fifty years have passed since this question was
first formulated but it still fuels new ideas. One of the reasons behind its
longevity is that both the theoretical and the experimental context surround-
ing it have changed dramatically in the last half a century. For instance,
while the original emphasis was on characterizing the possible existence of
additional parameters—in addition to the black hole mass, charge and an-
gular momentum—that can be seen from far away, after the beginning of
the era of gravitational wave astronomy, a more promising perspective has
come out. Indeed, the presence of a non-trivial background at length scales
of order of the light ring can modify the quasi normal mode spectrum and
leave a detectable imprint in the black hole ringdown, which can therefore
serve as a window on the dynamics of the gravitational sector. At least from
this point of view, today there is no reason to prefer long over short hair.

In the present Chapter, we will readdress once again the aforementioned
question, focusing on a somehow specific though significant situation of
scalar hair in shift-symmetric theories. Indeed if a scalar field is, with the
exception of a cosmological constant, the most plausible ingredient to be
added to General Relativity to explain e.g. the accelerated expansion of the
Universe, the presence of a shift symmetry represents the minimal choice to
guarantee that such a field will be almost massless and hence relevant on
cosmological scales.

Within this specific setting a clear answer, for spherically symmetric and
time-independent solutions going to a constant asymptotically, was ob-
tained in [86]. In this proof that black holes have no shift-symmetric, scalar
hair, a crucial role is played by the covariantly conserved current Jµ associ-
ated with the shift symmetry. The invariance under shifts ϕ → ϕ+ c actually
implies that the scalar equation of motion can be written as the conserva-
tion of this current, which depends on the field only through its derivatives.
Because of the assumed spherical symmetry and static nature of the scalar
and metric backgrounds, the only non-vanishing component can be Jr. As
we will explain in detail at the beginning of the next section, for a black
hole solution to be consistent with the paradigm of EFT, at the horizon ev-
ery physical and local scalar quantity, and Jµ Jµ in particular, must be finite.
This implies that Jr has to vanish at the horizon, since grr diverges on that
surface. Using now the conservation of the current, Ref. [86] argues that
Jr ≡ 0 everywhere. At this point, one can argue that if the dependence on ϕ
in the Lagrangian starts quadratically then the current will be proportional
to ϕ′:

Jr = ϕ′F[ϕ′, g, g′] with F a regular function , (2.1)

where the absence of ϕ′′ and higher derivatives of the field is ensured if
the theory has second-order equations of motion. The presence of a kinetic

16
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term for the scalar field translates in the fact that F approaches a non-zero
constant as ϕ′ → 0. These two facts, along with the condition Jr ≡ 0, imply
that if F[ϕ′, g, g′] is a regular function around ϕ′ = 0, then it must be ϕ′ ≡ 0
and therefore the hair vanishes.

Soon after the appearance of this theorem, however, it was realized [131]
that such a simple and compelling argument admits a subtle exception. Con-
sider for instance the theory:

S =
∫

d4x
√
−g

(
M2

Pl
2

R − 1
2
(∂ϕ)2 + αMPlϕR2

GB

)
. (2.2)

The Gauss-Bonnet invariant, R2
GB ≡ RµνρσRµνρσ − 4RµνRµν + R2, is a total

derivative and thus its coupling with the scalar preserves the shift symmetry
ϕ → ϕ + c. This term gives a ϕ-independent contribution to the scalar equa-
tion of motion (and therefore to the current Jr), invalidating the assumption
in (2.1). It acts as a source in the Jr = 0 equation, that does no longer allow
for the trivial solution with a vanishing ϕ′. While the presence of a linear
scalar Gauss-Bonnet (sGB) coupling is indeed a sufficient condition to guar-
antee that black holes have hair, the actual solution found in [131] seems
puzzling. In this case not only Jr contains a ϕ-independent term, which is
enough to circumvent the conclusion of the theorem, but also the norm of
the current diverges at the horizon, as pointed out in [88].

A natural concern at this point is whether such a divergence, despite
the regularity of the stress-energy tensor and of the resulting geometry at
the horizon, is enough to conclude that solutions sourced by the Gauss-
Bonnet coupling are not physical and therefore that the no-hair result in
shift-symmetric theories is robust. A more optimistic perspective could in-
stead be that the sGB example is just the first manifestation of a whole class
of theories with hairy black holes, sourced by Lagrangian operators that
give rise to ϕ-independent contributions to Jµ, among which there can be
solutions with finite J2.

A reason to consider the second possibility is the following. While the sGB
coupling manifestly contains terms with higher derivatives on the metric, it
gives rise to second-order equations of motion. This means that it has to
belong to the large family of shift-symmetric scalar-tensor Lagrangian with
this property, the so-called Horndeski theories [132] or generalized galileons
[133]. Such an equivalence was pointed out in [91] and it will be discussed in
App. A.2. From this point of view, the peculiarity of the sGB operator grows
dim and in fact Ref. [88] finds several other operators of the Horndeski-type
that give contributions to Jr that depend only on the metric in spherically
symmetric and static backgrounds. The authors then conclude that there
exist examples of black holes with hair and a finite norm of the current at the
horizon. Despite this result, in a subsequent paper [134] it is claimed that all
the hairy black hole solutions of this kind cannot be smoothly connected to
Minkowski space-time, leaving those generated by the Gauss-Bonnet linear
coupling as the only possibility.

Given the somehow unsettled status of the original question in the liter-
ature, in this chapter we will clarify if hairy black holes in shift-symmetric
theories are One, No One or One Hundred Thousand, quoting Pirandello.
The first step will be to show, in Section 2.1.1 that the Gauss-Bonnet cur-
rent is not covariant under diffeomorphism and that, as a result, J2 is not a
scalar quantity. Its divergence at the horizon is therefore non-physical. The
existence of an equivalent description of the sGB coupling in terms of a
Horndeski operator, however, implies that there is a different form of the
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current which is instead covariant and still divergent. In spite of that, as we
will discuss in Section 2.1.2, in this case the vector Jµ and its norm contain
powers of (∂ϕ)2 at the denominator. This non-locality for X → 0 does not
affect in any way the dynamics, but deprives the divergence of J2 of any
physical meaning. The conclusion is that the presence of Gauss-Bonnet actu-
ally represents a well-defined exception to the no-hair theorem. Notice that
only black holes feature “long" hair in these theories, i.e. solutions ϕ ∝ 1/r,
while compact objects without horizon like neutron stars do not [135].

After having discussed the sGB models, in Section 2.2 we move on and
examine the whole class of Horndeski shift-symmetric Lagrangians to iden-
tify if a similar behavior is present in other cases as well. While, as already
noticed in [88], for static and spherically symmetric solutions there are sev-
eral exceptional operators that contribute to Jµ with a regular and scalar-
independent term, as soon as the background solution is slightly deformed,
every operator of this type manifests its non-local nature and becomes di-
vergent in the limit of Minkowski spacetime. To further assess the robust-
ness of the no-hair result, in Section 2.3 we then extend the analysis to
Lagrangians that still propagate 3 degrees of freedom (the graviton plus a
scalar) but nonetheless have equations of motion with higher-order deriva-
tives, the so called degenerate higher-order scalar-tensor (DHOST) theories.
These include Horndeski and Beyond Horndeski as particular cases.

In Section 2.3.3 we briefly study the case of the most general shift-
symmetric EFT. In this class a prototypical example, which shares many
similarities with sGB, is given by ϕRR̃. Finally, conclusions are drawn in
Section 2.4.

2.1 the scalar gauss-bonnet operator

2.1.1 The Gauss-Bonnet current

We want to understand whether the divergence of J2 at the horizon is a
pathology of the sGB hairy solutions or not. Why should the divergence of
a scalar quantity O be worrisome, even when the stress-energy tensor and
the geometry are regular at the horizon? One reason is that a scalar quantity
can be added to the Lagrangian of the system with an arbitrary coefficient
in front L ⊃ λO. In doing so the black hole solution will change and if
O diverges at the horizon, this will happen no matter how small λ is. The
solution cannot be trusted since it is extremely “unstable" if one modifies
the theory. The situation is already pathological in classical physics, but it is
even more so when we consider Quantum Mechanics, since loop corrections
will induce λ ̸= 0 even if we start with λ = 0. Another related way to see
the pathology is that in general a particle will be coupled to the scalar O.
This means that one gets an effect on the dynamics of the particle (and on
its stress-energy tensor) that diverges at the horizon. This suggests that the
solution is unstable when matter is included in the picture.

What we said holds for a general operator O, but J2 turns out to be
quite special. Indeed, the full current contains a part Jµ

GB associated with
the Gauss-Bonnet term in the action, ϕR2

GB. This current is not covariant
under diffeomorphisms and therefore any scalar built with it is not invari-
ant under diffs. Therefore one cannot add to the Lagrangian λJ2 (or write a
coupling with a particle) and the issue above does not arise. Simply stated,
J2 is not a scalar quantity: its value, and thus its divergence, depends on the
coordinates we choose. The divergence of J2 is immaterial, like the diver-
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gence of a component of the metric or of a Christoffel symbol. The current
Jµ
GB satisfies ∇µ Jµ

GB = R2
GB, but the form of the current is ambiguous and

there is no privileged expression, even when a coordinate system is chosen
[90].

This statement is analogous to what happens in a (non-abelian) gauge
theory for the term TrFµν F̃µν. This object is notoriously a total derivative
TrFµν F̃µν = ∂µGµ, with Gµ = ϵµνλσTrAν(Fλσ − 2

3 Aλ Aσ). Similarly to our
case, the current Gµ is not gauge-invariant and G2 is not a gauge-invariant
scalar that can be added to the Lagrangian.

Let us make some examples of the forms the current Jµ
GB can take for the

Schwarzschild metric. In the presence of Killing vectors, there is a simple
way to write Jµ

GB in the coordinates in which an isometry simply acts as a
shift of one coordinate [90]. Suppose this coordinate direction has label W,
then

Jµ
GB = 2PWµν

ρΓρ
νW , (2.3)

where Pµνρσ = ∂R2
GB/∂Rµνρσ and Γ is the Christoffel symbol. This expres-

sion holds only in coordinates where the translation in W is an isometry.
For the case of Schwarzschild, one can use this expression in the standard
coordinates (t, r, θ, φ) either using W = t or W = φ. In the first case one gets
a current that points only in the radial direction (we temporarily suppress
the subscript GB)

Jµ

(t) =

(
0 , −4r2

s
r5 , 0 , 0

)
, J(t)

2 =
16r4

s
r9(r − rs)

. (2.4)

Where rs is the Schwarzschild radius. This is exactly the current discussed
in the Introduction and indeed J(t)

2 diverges at the horizon, r = rs. On the
other hand, with the choice W = φ one gets

Jµ

(φ)
=

(
0 ,

4rs(r − rs)

r5 , −8rs cot(θ)
r5 , 0

)
,

J(φ)
2 =

16r2
s
(
−rs + 4r cot2(θ) + r

)
r9 .

(2.5)

The divergence of both these currents gives the Gauss-Bonnet invariant:
∇µ Jµ

(t) = ∇µ Jµ

(φ)
= R2

GB = 12r2
s /r6. However J(φ)

2 is finite at the horizon,

while it diverges on the azimuthal axis. This example makes clear that J2
GB

is not a diff invariant quantity.
A general expression of the Gauss-Bonnet current, which does not assume

isometries of the metric, can be given in terms of the spin connection. In the
Appendix A.1 we compute this current in the Schwarzschild spacetime and
show that it is not covariant by writing it in different coordinate systems,
in particular in Kruskal-Szekeres coordinates where the metric is regular at
the horizon.

2.1.2 Horndeski form of sGB

Since the sGB operator is such that the equations of motion are of second
order and that there is symmetry under constant shift of the scalar field,
it must be possible to express it in terms of the so-called shift-symmetric
Horndeski Lagrangian. Indeed, the latter describes the most general shift-
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symmetric scalar-tensor theory with second-order equations, and is given
by the sum of the following terms:

LH
2 = G2(X) ,

LH
3 = G3(X)[Π] ,

LH
4 = G4(X)R − 2G4,X(X)

(
[Π]2 − [Π2]

)
,

LH
5 = G5(X)GµνΠµν +

1
3

G5,X(X)
(
[Π]3 − 3[Π][Π2] + 2[Π3]

)
, (2.6)

where X ≡ gµν∂µϕ∂νϕ, Πµν ≡ ∇µ∇νϕ, Gµν is the Einstein tensor and square
brackets indicate the trace of an expression, e.g. [Π] = □ϕ.

It has been pointed out in Ref. [91] that the choice G5 = log(X) gives
indeed the same equation of motion as the linear sGB operator (without
any field redefinition). In Appendix A.2 we give some details about the
proof of this equivalence. The benefit of this alternative way of writing the
sGB operator is that now the Noether current Jµ

H5 associated with the shift-
symmetry is covariant. For this reason, contrarily to the previous case, the
norm of this current (JH5)

2 is a true scalar and its divergence looks now
problematic. For G5 ∼ log |X| one has

(JH5)
2 =

4
X4

{
− X
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(
[Π]3 − 3[Π][Π2] + 2[Π3]

)2
(2.7)

+∂ϕ·
[

Π6 − 2[Π]Π5 + [Π]2Π4 −Π3

3

(
[Π]3 − 3[Π][Π2] + 2[Π3]

)
+

Π2

12

(
[Π]4 − 6[Π]2[Π2] + 8[Π][Π3]− 3[Π2]2

)
+

Π
6

(
[Π2]− [Π]2

) (
[Π]3 − 3[Π][Π2] + 2[Π3]

)]
·∂ϕ

}
+O(Rµνρσ) .

Here we only wrote explicitly the terms that survive in flat space: the com-
plete expression contains terms up to quadratic order in the curvature, indi-
cated by O(Rµνρσ). It is easy to see that (JH5)

2 is a non-local operator, with
powers of X at denominator. As such it cannot be added to the action if one
is interested in solutions for which X → 0 somewhere. Therefore, its diver-
gence is immaterial, in the same way one is not worried about 1/X going
to infinity for a solution where the scalar is a constant. The above quantity
is generally ill-defined as X → 0. As discussed in Ref. [88], (JH5)

2 diverges
on the horizon of a hairy black hole. However this does not invalidate the
solution, since the operator is non-local.

Since we now understand that the operator (JH5)
2 is non-local and can-

not be added to the Lagrangian, one may worry about the theory we started
with, featuring G5 = log(X). The appearance of powers of X in denomina-
tors suggests that the theory is pathological in the limit X → 0. However,
this cannot be the case, since the theory is equivalent to the original sGB.
Indeed, the non-locality of G5 = log(X) is only apparent as we are going to
explicitly show in Section 2.2 and Appendix A.2.

2.1.3 Boundedness of local scalar quantities

Having established that the divergence of a nonlocal quantity does not in-
validate the sGB solution, one may ask whether there can be instead a local
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scalar quantity that diverges. One can then fully trust the solution only if
no local scalar operators blow up (outside the physical singularities). Here
we will verify that this is indeed the case for the sGB solution. We will see
that requiring the boundedness of scalar quantities forces a condition on
the scalar field ϕ, i.e. that all its radial partial derivatives ∂n

r ϕ have to be
bounded everywhere, and in particular at the black hole horizon.

While this result is evident far away from the black hole, it becomes
less obvious at the horizon, where some coordinate systems display a non-
physical singularity. In order to overcome this complication, one can choose
coordinates in which all the geometrical quantities are smooth at the hori-
zon. This can be achieved for instance by means of Kruskal-Szekeres-like
coordinates or through locally inertial coordinates, where the metric is set
to Minkowski in a specific point (e.g. gµν(p) = ηµν in a point p at the hori-
zon). Choosing these last coordinates, the Christoffel symbols will vanish
at the chosen point but will have non zero derivatives: these will describe
(up to a Lorentz boost) the finite tidal forces experienced by a free-falling
observer that is crossing the horizon.

Being interested in spherically symmetric and static solutions, it is enough
to compute scalar quantities in a single point of the horizon. Moreover, since
the geometry of a black hole is non-singular at the horizon, one can simply
consider quantities that depend on the scalar field, for instance having the
form (∇nϕ)2. For the same reason, in these quantities the terms displaying
the most severe divergence when derivatives of ϕ are not well behaved will
be those involving only partial derivatives1.

Writing the metric in Schwarzschild-like coordinates as

ds2 = − f (r)dt2 +
dr2

f (r)
+ ρ2(r)(dθ2 + sin2θ dφ2) , (2.8)

with f = 0 for r = rs, we can define a locally inertial frame in a point p
using coordinates (t̂, r̂, θ̂, φ̂) having origin in p and such that in p:

dt̂ =
√

f dt , dr̂ =
1√

f
dr , dθ̂ = ρ dθ , dφ̂ = ρ sinθ dφ . (2.9)

The Jacobian of this transformation will be diagonal in p. For this reason we
understand that in the leading term of (∇nϕ)2 in p only r̂ partial derivatives
will appear, each corresponding to a weighted r partial derivative: ∂r̂ =√

f ∂r . In conclusion in the chosen point we have

(∇nϕ)2 ∼ (∂n
r̂ ϕ)2 + · · · ∼ f n(∂n

r ϕ)2 + f n−k−p∂
n−p
r ϕ∂n−k

r ϕ + . . . , (2.10)

where the second term on rhs (with k + p < n − 1) indicates schematically
a series of contributions having the same magnitude of the first one and the
dots indicate smaller terms where derivatives hit the Christoffel symbols.

Writing ϕ ∼ f γ when r ∼ rs, it becomes clear that if γ is not a positive
integer (or zero) there will be large enough values of n such that the terms
in Eq. (2.10) will diverge at the horizon2, making the whole scalar (∇nϕ)2

diverge as f 2γ−n. For this reason we see that all the scalar quantities built
using the metric and the scalar field will be bounded when computed on

1 Even though divergent boost factors might make the derivatives of the Christoffel symbols
diverge, these would still be subleading with respect to partial derivatives of the scalar field,
which would get the same boost-enhancement.

2 For some special non-integer values of γ there will be a single integer nγ for which the leading
contributions in (2.10) add up to zero, but this does not change our conclusion, since infinitely
many other scalars will diverge.
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a sGB hairy background if the hair has ∂rϕ and its higher radial deriva-
tives bounded at the horizon. This condition is satisfied by the perturbative
solution of [92].

2.2 additional hair in horndeski?

In the Horndeski form, the sGB theory violates the assumptions of the no-
hair theorem of [86] since G5 in non-analytic for X → 0. Indeed the current
does not start linearly in ϕ′ and Eq. (2.1) does not hold. A natural question is
therefore whether one can find additional hairy solutions (under the same
symmetry assumptions stated in the Introduction) when the other Horn-
deski functions are non-analytic for X → 0. Examples of such theories have
already been considered in [88], where some particular cases were studied in
which the radial component of the current contains a ϕ′-independent term
(i.e. a term in F[ϕ′, g] proportional to 1/ϕ′), in a static and spherically sym-
metric setting. In this section (see also [134]) we study this possibility and
we conclude that all these additional examples are pathological. Here we
stick to theories with second-order equations of motion, while more general
cases will be discussed in the next section.

Writing the spherically symmetric, static metric as

ds2 = −h(r)dt2 +
dr2

f (r)
+ r2dΩ2 , (2.11)

the radial component of the shift-symmetry Noether current for generic
Horndeski Lagrangian (2.6) takes the form [88]:

Jr
H = 2 f ϕ′G2X + f

rh′ + 4h
rh

XG3X − 4 f ϕ′ f h − h + r f h′

r2h
G4X (2.12)

−8 f 2ϕ′ h + rh′

r2h
XG4XX − f h′

1 − 3 f
r2h

XG5X + 2
h′ f 2

r2h
X2G5XX .

Therefore, we see that it is possible to have contributions independent of ϕ′

when the functions Gi behave at small X as

G2(X) ∼
√
|X| , G3(X) ∼ log |X| , G4(X) ∼

√
|X| , G5(X) ∼ log |X| ,

(2.13)

where the last choice gives the sGB operator. Keep in mind that the function
G4 will always include a leading constant term that drops out of the current
in Eq. (2.12) and corresponds to the Einstein-Hilbert part of the Lagrangian.
The non-analytic behavior for X → 0 is worrisome when one wants to study
the Lorentz-invariant vacuum X = 0 or approaching it as it happens going
far away from a localized black-hole solution. In the following we are going
to show that these theories are indeed pathological, with the only exception
of sGB.

2.2.1 Troubles with a Lorentz-invariant solution

We want to study Lorentz-invariant solutions of the theories with the non-
analytic behaviors of Eq. (2.13). We are going to show that, with the ex-
ception of sGB, these solutions are pathological since the equations of mo-
tion are not continuous in this limit, i.e. the result depends on how the
flat, Lorentz invariant solution is approached. Let us take the metric to be
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Minkowski from the beginning g = η (this defines a particular direction in
which we approach the solutions we are interested in).

The equations of motion for generic Horndeski functions Gi read:

∇µ Jµ
H2

∣∣∣
g=η

= 2G2,XX Πµν ∂µϕ ∂νϕ + G2,X [Π] , (2.14)

∇µ Jµ
H3

∣∣∣
g=η

= 4G3,XX

[
Πµν [Π]− (Π2)µν

]
∂µϕ ∂νϕ + 2G3,X

(
[Π]2 − [Π2]

)
,

∇µ Jµ
H4

∣∣∣
g=η

= 8G4,XXX

[
(Π3)µν − (Π2)µν [Π] +

1
2

Πµν
(
[Π]2 − [Π2]

)]
∂µϕ ∂νϕ

+2G4,XX

(
[Π]3 − 3[Π2][Π] + 2[Π3]

)
,

∇µ Jµ
H5

∣∣∣
g=η

= 4G5,XXX

[
(Π4)µν − (Π3)µν [Π] +

1
2
(Π2)µν

(
[Π]2 − [Π2]

)
−1

6
Πµν

(
[Π]3 − 3[Π][Π2] + 2[Π3]

)]
∂µϕ ∂νϕ

−1
3

G5,XX

(
[Π]4 − 6[Π2][Π]2 + 3[Π2]2 + 8[Π3][Π]− 6[Π4]

)
.

When the functions Gi, i = 2, 3, 4, 5 behave as in Eq. (2.13), the above equa-
tions take the form

∇µ Jµ
Hi

∣∣∣
g=η

∼ 1
X(i+1)/2

(
Aµν

i ∂µϕ ∂νϕ + [Ai] ciX
)

, (2.15)

where Aµν
i are tensors built out of the (i − 1)-th power of Πµν, and ci are

numerical coefficients that can be easily determined by inspection:

ci = − 1
i − 1

. (2.16)

Notice that all of the above equations of motion (in flat-space) are finite
for time-independent and spherically symmetric backgrounds, as it can be
confirmed by taking the divergence of (2.12) when the Gi’s are given by
(2.13) and then taking the Minkowski limit f , h → 1. This is why no apparent
problem arises when looking for hairy black-hole solutions.

However, if a Lorentz invariant solution were to exist in d dimensions,
then one would have Aµν

i = ηµν[Ai]/d (this can be seen as an additional
assumption about the direction in which the limit is approached), and there-
fore the equation would simplify to

∇µ Jµ
Hi

∣∣∣
g=η

∝
(

1
d
+ ci

)
[Ai]

X(i−1)/2
= Pi(d)

(
1
d
+ ci

)(
[Π]

X1/2

)i−1

. (2.17)

In the last expression we used Πµν = ηµν[Π]/d, with the prefactor given by
Pi(d) = ∏

(i−2)
p=0 (d − p). Since [Π]/X1/2 ∼ ∂2ϕ/∂ϕ, one has the same num-

ber of fields at numerator and denominator, so that the Lorentz-invariant
limit is ambiguous. Consider for instance ϕ = A xµxµ + bµxµ + c, for which
Πµν = 2A ηµν. The trivial Lorentz-invariant and translationally invariant
configuration ϕ = const is reached when A → 0 and bµ → 0. Expressions
like [Π]/X1/2 depend on the order of these limits.

However, for each operator there is a critical dimension for which
Eq. (2.17) identically vanishes, namely

di = (i − 1) . (2.18)
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This means that except for a single value of i, all of the other cases3 are
incompatible with a Lorentz invariant solution. This analysis is enough to
conclude that in d = 4 all of the cases in (2.13) are not compatible with a
Lorentz-invariant solution with the exception of sGB (in Appendix A.2 we
are going to also study the d = 2 case with G3 ∼ log |X|, which corresponds
to a coupling ϕ(2)R).

2.2.2 Troubles with perturbations

A similar situation arises when considering arbitrary perturbations around
an X = 0 background. For simplicity we will consider a Lorentz-invariant
one. Indeed, consider a scalar quantity built with the scalar fields’s first
and second derivatives, O(∂ϕ, Π). Expanding in linear perturbations, ϕ =
ϕ0 + δϕ, it takes the form

δO = Bµ ∂µδϕ + Cµν ∂µ∂νδϕ , (2.19)

where Bµ and Cµν depend on background quantities only, and for a Lorentz
invariant background will satisfy

Bµ = 0 ; Cµν ∝ ηµν. (2.20)

Therefore, it is enough to only track the perturbations with two derivatives
acting on δϕ . For example, linear perturbations of the equations of motion
(2.14) are

δ

(
∇µ Jµ

Hi

∣∣∣
g=η

)
= Zi □δϕ , (2.21)

with

Zi ∝
Pi+1(d)√

X

(
[Π]

X1/2

)i−2

. (2.22)

Again, we observe a problem in the limit ϕ → const for the cases in (2.13)
which is now even worse than for the background equations (2.17), since
here there is an extra power of the field’s first derivatives in the denominator.
Also, similarly to what happened for the background equations discussed
above, in d = 4 dimensions we see that the choice G5(X) ∼ log |X|, i.e. sGB,
is safe because the prefactor P6(4) vanishes (in a similar way in d = 2 we
have an analogous result for the cubic Horndeski P4(2) = 0). Of course
G5(X) ∼ log |X| would continue to avoid problems, even going to higher
order in perturbations and on more general backgrounds. Indeed, as we
discussed, this case does not feature any true non-locality being equivalent
to the sGB theory (see Appendix A.2).

It is important to point out that, besides the cases (2.13), many other
choices of the Gi can produce hairy solutions, as long as Jr contains terms
less than linear in ϕ′, so that Eq. (2.1) does not hold. One such example is
G3(X) ∼ X1/4, which produces a term proportional to

√
ϕ′. Even if in this

case ϕ′ = 0 solves Jr = 0, from the explicit expression of Jr, Eq. (2.12) one
finds also a non-zero solution:

ϕ′ ∝
f 1/2(rh′ + 4h)2

r2h2 ∼ 1
r2 as r → ∞ . (2.23)

3 Here we mean those that are not automatically trivial. As it is well known [136], for a given
dimension d, the Galileon-like structures present in Horndeski theories with i > d − 2 are
indeed trivial. In our setup this can be seen in Eq. (2.17) from the fact that P(d+2)(d) = 0.
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However, the same analysis carried out above for the cases (2.13) shows that
also this case is pathological. The analogue of Eq. (2.22) now reads

Z̃3 =
4
d
(d − 1)[Π]

(
2
d

XG3XX + G3X

)
∼ [Π]

X3/4 (2.24)

and again the Lorentz-invariant limit is not well-defined. These pathologies
will arise for any non-analytic function at a certain order in perturbations.
For instance even an apparently innocuous term Xn+1/2 will get corrections
of the form ∼ Xn−k+1/2(δX)k when we consider deformations X 7→ X + δX
of the background solution. These terms will diverge as soon as k > n,
making impossible to compute corrections whenever X = 0, both on the
Lorentz invariant vacuum and on hairy solutions.

In conclusion, by dropping the assumption of Eq. (2.1) one gets healthy
hairy solutions only in the case of sGB. The physical validity of the hairy
black-hole solutions in theories of the form of Eq. (2.13) was studied in
[134], reaching a similar result. However, the arguments of [134] are not
completely conclusive in our view. The authors point out that if one sets
ϕ = const, with a spherically symmetric and static metric and takes the
limit of Minkowski spacetime, Jr goes to zero only in the sGB case. This can
be easily checked in the explicit expression of Jr of Eq. (2.12). However, in
the case G4(X) ∼

√
|X| one gets Jr ∝ r−2 and this does not contribute to

the equation of motion ∇µ Jµ = 0. (Notice that a static solution is effectively
3-dimensional, so that, following the argument of Eq. (2.18), it is not sur-
prising that the G4 ∼

√
|X| case is healthy for a static solution.) Actually,

as we discussed at length in the previous sections, Jr = 0 is not a neces-
sary requirement when J2 is a non-local operator, as it is the case for all
the choices in Eq. (2.13), including sGB. As our analysis shows, one needs
to go beyond static solutions to pinpoint the pathology. This also allows to
exclude cases like G3(X) ∼ X1/4 discussed above, which were not covered
by the arguments of [134] since the current vanishes once ϕ′ = 0 is taken.

2.3 theories with higher-order equations of motion

So far we focused on shift-symmetric theories with second-order equations
of motion (Horndeski). However, the requirement that the field equations
are of second order, which ensures there are no ghost degrees of freedom,
can be relaxed. Indeed, even scalar-tensor theories leading to higher-order
equations of motion can, in some cases, propagate only gravity plus a single
extra scalar degree of freedom. For instance this happens when the follow-
ing (shift-symmetric) Beyond Horndeski Lagrangian [137] is added to the
Horndeski one (2.6):

LBH
4 = −F4(X)ϵµνρ

σϵµ′ν′ρ′σ∂µϕ ∂µ′ϕ Πνν′Πρρ′ ,

LBH
5 = −F5(X)ϵµνρσϵµ′ν′ρ′σ′

∂µϕ ∂µ′ϕ Πνν′Πρρ′Πσσ′ , (2.25)

provided this degeneracy condition is satisfied [138]:

XG5X F4 = 3F5 [G4 − 2XG4X ] . (2.26)

There is an even larger set of such theories known as DHOST [139, 140],
which includes both Horndeski and Beyond Horndeski as special cases. In
the following we are going to extend the study of black-hole hair to this
more general setup, always with the same symmetry assumptions made in
the Introduction. Notice that the application of the no-hair theorem is now
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not obvious, since now one expects the radial component of the current to
also depend on ϕ′′(r), violating Eq. (2.1).

2.3.1 No-hair theorem for DHOST

Let us start with the class of DHOST theories that can be obtained via in-
vertible conformal and disformal transformations that depend on the scalar
field:

ḡµν = Ω(X) gµν + Γ(X) ∂µϕ ∂νϕ . (2.27)

The dependence of Ω and Γ on X only (and not on ϕ) ensures that the shift-
symmetry is preserved. (Notice that the scalar field is not changed in the
transformation.) The kinetic term transforms as

X̄ =
X

Ω + XΓ
. (2.28)

This relation with the Horndeski theories is a way to understand why these
DHOST theories must propagate only gravity plus a single extra scalar de-
gree of freedom. In particular, from Quartic and Quintic Horndeski one
generates [141, 142]

L̄H
4 [Ḡ4] = LH

4 [G4] + LBH
4 [F4] + ∑

i
αiL

(2)
i , (2.29)

L̄H
5 [Ḡ5] = LH

5 [G5] + LBH
5 [F5] + ∑

j
bjL

(3)
j , (2.30)

where the αi’s and bj’s are functions which parametrize the part of the
DHOST Lagrangian which is neither Horndeski nor Beyond Horndeski4,
and L(2)

i and L(3)
i are terms quadratic and cubic in second derivatives of the

scalar field respectively.
Let us consider first a theory with only Horndeski and Beyond Horndeski:

it is generated by a purely disformal transformation, i.e. Ω(X) = 1 and
Γ(X) ̸= 0. Since the equations of motion are of higher order, one would
expect Jr to contain more derivatives with respect to the form of Eq. (2.1).
However, this does not happen, as a consequence of the high degree of
symmetry, and ϕ′′ does not appear in Jr [88]:

Jr
BH = 4 f 2ϕ′ h + rh′

r2h
X(2F4 + XF4X) + 3

f 2h′

rh
X2(5F5 + 2XF5X) . (2.31)

Therefore the no-hair theorem applies without any changes. We will discuss
below new exceptions in the same vein of Eq. (2.13).

More generally, turning on the conformal part of the transformation,
i.e. Ω,X ̸= 0, allows to span this full DHOST class. In this case the current
will contain higher derivatives of the scalar field: these arise from deriva-
tives of the metric, once one uses the transformation of Eq. (2.27). Therefore
extra derivatives come from the derivatives of Ω(X) and Γ(X)∂µϕ∂νϕ. As-
suming that the functions Ω and Γ are regular for X → 0 (Γ must start as
a constant and Ω as a non-zero constant) extra derivatives of ϕ will always

4 These functions are not all independent, but satisfy relations in order to ensure the degeneracy
conditions analogous to (2.26).
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appear alongside extra powers of ϕ. Therefore the current, instead of being
of the form of Eq. (2.1) is of the form5

Jr = ϕ′F[ϕ′, ϕ′′, g′] . (2.32)

Now we are in the position of extending the theorem to this case. Since in
any EFT derivatives must be bounded, in the limit ϕ′ → 0 we also have
ϕ′′ → 0. In this limit the function F must go to a constant as in the original
case, since the new terms in the current are at least quadratic in ϕ. Therefore
the logic of [86] still applies: since Jr = 0 (with the caveat of Gauss-Bonnet
that we discussed at length) and ϕ′ = 0 asymptotically, it must remain
so everywhere because for small values of the field the current is simply
proportional to ϕ′ so that this cannot move away from zero. In conclusion,
the no-hair theorem is extended to DHOST theories which are connected to
a healthy Horndeski theory (as defined in the previous Section) by means
of a transformation with Ω(X) and Γ(X) regular around X = 0.

2.3.2 The fate of sGB

Another way to see that the theorem still holds is to look at how black-
hole solutions are transformed. Since the scalar field is not changed by the
transformation, hair can neither be generated nor removed (grown nor cut)
by these transformations. Moreover, the asymptotics of the solutions are
preserved and their symmetries as well. Indeed, far away from the black
hole the transformation (2.27) becomes trivial (∂µϕ → 0),

ḡµν = Ω(0) gµν (r → ∞), (2.33)

where of course Ω(0) > 0. This is a constant overall rescaling of the metric:
spacetime is still asymptotically flat. Therefore the only DHOST theories
with hair are the ones obtained via (2.27) starting from a sGB Horndeski
theory, since this is the only Horndeski theory with hair. (Here we are not
considering the possibility that a black-hole solution is mapped into a solu-
tion with a naked singularity, as discussed in [143].)

The new terms generated by such transformation from both Quartic and
Quintic Horndeski, Eqs. (2.29) and (2.30), are given by

G4,X = Ḡ4,X̄

√
Ω(Ω + XΓ)1/2 , (2.34)

F4 = −Ḡ4
(ΓΩX + ΩΓX)√
Ω(Ω + XΓ)1/2

+ 2Ḡ4,X̄

√
Ω(XΓX − ΩX)

(Ω + XΓ)3/2 , (2.35)

α5 = −Ḡ4
2ΩX(ΓΩX + 2ΩΓX)

Ω3/2(Ω + XΓ)1/2 + 4Ḡ4,X̄
ΩX(2XΓX − ΩX)√

Ω(Ω + XΓ)3/2
, (2.36)

for the Quartic part, while for the Quintic part

G5,X = Ḡ5,X̄

√
Ω [Ω − X(ΩX + XΓX)]

(Ω + XΓ)5/2 , (2.37)

F5 = −2Ḡ5,X̄

√
Ω(ΩX + XΓX)

3(Ω + XΓ)5/2 , (2.38)

b4 = Ḡ5,X̄

√
Ω ΩX

3(Ω + XΓ)5/2 . (2.39)

5 There are no terms with three or more derivatives of ϕ in the current, because they would give
terms with four or more derivatives in the equations of motions. However the transformation
(2.27) adds at most one derivative: starting with second-order equations, one ends up with at
most three derivatives.
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Due to the degeneracy conditions (see Refs. [141, 142]), the remaining αi and
bj are determined by the ones shown, and therefore contain no new infor-
mation. Starting with a Horndeski theory with hair, i.e. with Ḡ5 = log(X̄)
(sGB) one wants to know whether it is possible to end up in a DHOST the-
ory without the sGB term (and with all functions regular for X → 0). From
Eq. (2.37) it would seem that there is a possible choice of Ω and Γ in the
transformation such that G5 is regular in X = 0, namely

[Ω − X(Ω,X + XΓ,X)] → 0 , (2.40)

at least linearly in X. However, as discussed in Ref. [141], when the above
combination vanishes the transformation admits a null eigenvector, i.e. it is
not invertible and thus pathological.

Ref. [88] studied Beyond-Horndeski theories which could be exceptions
to the no-hair theorem, along the lines of (2.13). These exceptions involve
special choices of the Beyond Horndeski functions,

F4(X) ∼ |X|−3/2 , F5(X) ∼ |X|−2 . (2.41)

The transformation laws (2.35) and (2.38) show however that these are not
reachable with regular transformations, neither starting from regular Horn-
deski functions, nor allowing for sGB. Indeed, in the latter case one would
need to allow for Γ ∼ X−1 in order to generate F5(X) = |X|−2 from
Ḡ5 = log(X̄). It is straightforward to check that, although such transfor-
mation is safe in a static and spherically symmetric background, it is ill
defined for a general configuration.

We conclude then that it is not possible to remove the sGB operator with
a regular and invertible transformation of the form (2.27). Therefore, the
DHOST theories that we studied can be separated in two (invariant) sub-
classes, those with the sGB operator and therefore with hairy black holes
and those without. In other words, for a given DHOST theory connected
to Horndeski, in order to determine whether it can support healthy hairy
black hole solutions or not, one only needs to check if Eqs. (2.34) to (2.39)
can be satisfied with Ḡ5(X̄) ∼ log(X̄) for small X̄.

2.3.3 Other DHOST theories and beyond

Besides the theories discussed in the previous sections, other DHOST classes
can be defined imposing different degeneracy conditions on the higher-
derivative operators added to the Lagrangian [141, 142]. This procedure out-
lines various DHOST classes featuring operators either quadratic or cubic
in second derivatives of the scalar field. As discussed in [141, 142], further
requirements might be imposed in order to select the theories which can be
interpreted as a modification of General Relativity through the presence of
an additional scalar degree of freedom.

In particular only some DHOST theories admit a ghost-free decoupling
limit of the metric in flat spacetime. In addition to this, if one wishes to
include operators from a cubic DHOST class, the degeneracy conditions re-
quired by these must be compatible with those of the quadratic DHOST
theories which are necessary in order to include an Einstein-Hilbert term in
the Lagrangian. As shown in [142], these two requirements narrow down
the interesting classes to only two possibilities6. One of these is precisely

6 Classes 2N-I + 3M-I and 2N-I + 3N-I, as defined in Ref. [142].
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the class studied in the previous sections, generated by conformal plus dis-
formal invertible transformations of Horndeski theories7. The other class
involves more complicated constraints and cannot be characterized as eas-
ily. In Appendix A.3 we show that although this class accommodates both
quadratic and cubic DHOST, it contains only theories that do not allow for
an Einstein-Hilbert term and are therefore unsuitable to describe a modifi-
cation of General Relativity.

One can consider an even more general situation. Imposing either second
order or degenerate equations of motion is motivated if at least one higher
derivative (HD) operator becomes large on the solutions one is interested in.
On the other hand, if HD operators can always be treated perturbatively, as
it typically happens in more conventional EFTs, then such a requirement is
no longer necessary and arbitrary HD operators can be considered. (Notice
that this possibility is not that different from the case of sGB discussed so
far: even if the sGB gives second-order equations of motion, these equations
may be pathological, featuring ghost or gradient instabilities, when the sGB
is as important as the scalar kinetic term [96].)

Interestingly the theorem of [86] can be extended to this very generic
setting, as long as one considers energy scales below that at which the ghost
degrees of freedom appear, i.e. in the regime of validity of the EFT. In a
spherically symmetric and static spacetime the current will take the form:

Jr = ϕ′F1 + ϕ′′F2 + ... + ϕ(n)Fn , (2.42)

where the functions Fi are assumed to be regular as ϕ′ and its derivatives
approach zero. Sufficiently far away, and within the regime of validity of the
EFT, the leading term will be the first one in Eq. (2.42), so that following Ref.
[86], Jr = 0 implies ϕ = const.

One can also find exceptions to this extension of the theorem, similarly
to the case of sGB, where the current contains ϕ-independent contributions.
Among the various possible operators of this kind, the simplest example is
given by ϕRR̃, i.e. a linear coupling between the scalar field and the Chern-
Simons topological density (see for example [144])∫

d4x
√
−g RR̃ =

∫
d4x

√
−g∇µKµ (2.43)

Kµ = 2
ϵµαβγ

√−g
Γτ

ασ

(1
2

∂βΓσ
γτ +

1
3

Γτ
βσΓσ

γτ

)
(2.44)

where RR̃ = Rµνρ
σR̃σ

ρµν and R̃σ
ρµν := 1

2 ϵµναβRαβσ
ρ. The current Kµ vanishes

in any static spacetime and does not transform covariantly. Similarly to the
sGB case, this current will forcibly source scalar hair around any (non-static)
black holes. One might also consider operators with higher derivatives, for
instance ϕ□(RµνρσRµνρσ). As remarked, for the theory to be consistent the
generated hair must be small. Nonetheless, the presence of this kind of op-
erators might be tested through future detections of gravitational waves.

2.4 summary and discussion

In this chapter we have shown that asymptotically flat black holes in shift-
symmetric scalar-tensor theories with no ghost degrees of freedom can have
nontrivial scalar hair only in the presence of the operator ϕR2

GB (sGB). Fur-
ther assumptions include time-independence and spherical symmetry. We

7 Non-invertible transformations will land either outside this class, or in a theory involving non-
regular functions.
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have laid out this fact by building from the no-hair theorem of Ref. [86],
which is directly applicable only to Horndeski theories. We have shown
that this theorem allows a single pathology-free exception, by first address-
ing some concerns about the sGB solution and the infinite norm of its as-
sociated current at the black hole horizon. The fact that this object is either
non diffeomorphism invariant or non-local devoids this divergence of phys-
ical meaning. Instead, any local scalar quantities were shown to be finite. In
contrast, all of the other exceptions to the no-hair theorem within the realm
of shift-symmetric Horndeski theories turn out to feature pathologies, such
as the lack of a Lorentz invariant solution in flat space.

It is worth mentioning that although we have focused on static black holes
and static hair, the no-hair theorem of [86] has been recently extended to
black holes with possibly large spin [145], confirming the expectation that
the results of our study outline intrinsic features of black holes in scalar
tensor theories rather than accidents due to the static nature of the solutions.

Stepping away from theories with second-order equations of motion, we
extended the applicability of the no-hair theorem to a larger class of shift-
symmetric scalar-tensor theories, which nevertheless propagate no extra de-
grees of freedom (the so called DHOST). Among these, we focused on those
which can recover General Relativity when X = 0, therefore selecting the
class which also contains Horndeski and it is in fact generated from it by X-
dependent invertible conformal plus disformal transformations of the met-
ric. Leveraging this fact, we were able to show that no new operator that
produces hair apart from sGB can arise in this larger class of theories, since
hair cannot be generated nor removed by such transformations. Therefore,
sGB remains the only consistent interaction sourcing shift-symmetric scalar
hair.

It is in the context of shift-symmetric theories in which it was ultimately
possible to give a sharp answer to the question of black hole hair. This is
a compelling scenario since an approximately massless scalar field can be
important throughout a large range of scales, from the cosmological to the
astrophysical. One such interesting situation is when the effect of black hole
hair on the production of gravitational waves in black hole mergers could
help in unveiling the dynamics of the dark energy field. This scenario was
put forward in [85], where in spite of there being only a single possible
source of hair, i.e. sGB, the phenomenology is sensitive to the other oper-
ators present in the Lagrangian, allowing for a rich array of observational
signatures.

We now turn to exploring the features of theories displaying the sGB
interaction. In the next chapter, in particular, we will question how such
theories fit in with the relativistic causal structure as well as the interplay
between sGB and the various operators that generically will appear in a
shift-symmetric scalar-tensor EFT.



3
C A U S A L I T Y C O N S T R A I N T S O N B L A C K H O L E S B E Y O N D
G R

As discussed in the previous chapters, the possibility to study gravity in
the strong field regime for the first time has motivated a surge of interest
in field theories that allow for black hole solutions different from the ones
predicted by GR.

In the absence of a compelling guiding principle, the intrinsic complexity
of the merger process has encouraged the study of simple models where
deviations from GR could be order one. This is the case of scalar-tensor the-
ories featuring the lowest-dimensional non-minimal couplings of a scalar
field to gravity, capable of sourcing detectable scalar hair around black holes:
a massless (shift-symmetric) scalar coupled to the Gauss-Bonnet (GB) invari-
ant [92, 131] or to the Chern-Simons (CS) term, a.k.a. Pontryagin invariant,
[146],

S =
∫

d4x
√
−g

(
MPl

2

2
R − 1

2
(∇µϕ)2 + MPlαϕR2

GB + MPlα̃ϕRµνρσR̃µνρσ

)
,

(3.1)
where R2

GB ≡ RµνρσRµνρσ − 4RµνRµν + R2 and R̃µνρσ = 1
2 ϵµναβR ρσ

αβ . The co-
efficients α and α̃ are the length-scales (squared) parametrizing the strength
of the non-minimal scalar couplings. In Chapter 2 we have seen how in shift-
symmetric scalar theories a no-hair theorem [86] basically selects these two
interactions as the only ones leading to black hole hair.

While very interesting from the phenomenological point of view, it is
crucial to understand how much one can learn about the fundamental prop-
erties of gravity via the study of these models in the context of gravitational
wave observations. To answer this important question, the very first step is
to assess the consistency of such extensions of GR with what we already
know: that GR provides a good description of gravitational interactions
down to µm scales [147] and, at the most basic level, that the principles
of unitarity, locality, and causality hold at such scales.

To this purpose we will first diagnose whether these theories are compat-
ible with the picture of causal dynamics, in which excitations propagate in-
side the light cone. Due to the presence of superluminal excitations, we will
come to the conclusion that the cutoff of the EFT in Eq. (3.1) is bounded from
above as Λ ≲ 1/|α̂|1/2, where α̂ = α+ iα̃. Since the effects beyond GR, associ-
ated with the scalar hair of black holes, are observable when |α̂|/r2

s = O(1),
where rs is the Schwarzschild radius, we find that for phenomenological
applications, i.e. for black holes of astrophysical size, Λ ≲ 1/ km. Therefore,
the observability of black holes with scalar hair comes at the high price of a
very limited regime of validity of these models. In fact, we will argue that
the observation of O(|α̂|/ km2) non-standard effects due to the scalar hair of
astrophysical black holes is likely at odds with standard gravity at distances

31
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shorter than |α̂|1/2, or, from a more dramatic perspective, it would point to
the violation of fundamental principles below that scale.

Our causality bound is a generalization of the well-known fact that ef-
fective field theories exhibiting non-minimal 3-graviton or 2-photon plus 1-
graviton interactions, if extrapolated beyond their regime of validity, display
time advances when in a gravitational background, in conflict with causality
[99, 148]. In Sec. 3.1 we show that the scalar-graviton mixing induced by the
non-minimal couplings in Eq. (3.1) leads as well to a macroscopic violation
of causality unless Λ ≲ 1/|α̂|1/2, in which case the time advance is never
observable within the EFT regime of validity. As we discuss in Sec. 3.1.2,
this result does not depend on the presence of other operators in the EFT.
Based on this bound as well as those found in [99], along with the theo-
retical constraints on gravitational EFTs recently derived using dispersion
relations [121, 127], we will extract generic lessons on the power counting
of gravitational EFT operators, of relevance for gravitational wave science.

While our bound renders the EFT in Eq. (3.1) at the verge of its regime
of validity for the physical systems of interest, there is a small range of
scales where it could remain interesting. What are the effects one can expect
from such a low cutoff? In Sec. 3.2.1 we investigate this question by means
of dispersion relations, which connect observables at low energies, i.e. EFT
coefficients, with the high-energy dynamics that lies behind them, on the
basis of the unitarity, locality and causality of the scattering amplitudes. Due
to the weakness of the non-minimal gravitational interactions compared to
GR, as enforced by causality, we find that our one-loop positivity conditions
do not subsist. Drawing from an upcoming work [130], in Sec. 3.2.2 we
outline a strategy that allows to derive sharp but non-positive bounds from
dispersion relations in the presence of loops, contrarily to what might be
feared. Despite lacking one-loop positivity bounds, given that setting |α̂| ∼
1/Λ2 fixes the power counting of the EFT, we are able to identify in Sec. 3.2.3
the leading higher-dimensional operators that should generically (yet not
generally) become large when the BGR effects are maximized within the
EFT regime.

In Sec. 3.3 we explore the phenomenological consequences of the addi-
tional EFT operators. The main generic lesson we extract is that it would
be of great significance to extend the black hole solutions and numerical
studies of their merger, obtained so far in the literature for the scalar-GB
and dynamical-CS gravity theories (α̃ = 0 and α = 0 respectively), to in-
clude these operators. This conclusion holds insofar there exist a UV com-
pletion in which gravity remains well described by GR at scales lower than
|α̂|1/2 ∼ km, an important caveat that we chose to be agnostic about and
leave for future investigation. We present our outlook and conclusions in
Sec. 3.5.

In Sec. 3.4 we discuss how our arguments could be extended to place
theoretical constraints on the idea of spontaneous scalarization around black
holes [101, 102].

3.1 time advance bounds

In this section we compute the time delay that the two graviton polarizations
and the massless scalar experience when scattering against a very heavy
(classical) gravitational source in the eikonal regime, following [99, 149] to
include the effects of the non-minimal couplings in Eq. (3.1). These inter-
actions lead to a non-diagonal transition amplitude between graviton and
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scalar, such that one of the propagation eigenmodes travels faster than what
is allowed by the causal structure of the asymptotic spacetime, thus violat-
ing asymptotic causality [150]. This is analogous to the case of gravitons and
photons discussed in [99, 149], where non-minimal gravitational 3-point in-
teractions, encoded by the operators RµνρσRρσ

αβRαβµν and FµνFρσRµνρσ, give
rise to a mixing between the two graviton or the two photon helicities, re-
spectively, and which results in a net macroscopic time advance for one
of the propagating eigenmodes.1 Since this happens for scattering at suffi-
ciently small impact parameters, avoiding causality violation sets an upper
bound on the cutoff of the EFT, Λ, where dynamics that is not captured by
the EFT must become relevant. For recent works discussing the notion of
causality in the gravitational context, we point the reader to e.g. [152–157].

Let us then consider the scattering of graviton and scalar with an spec-
tator of mass m, within the so-called eikonal limit, s ≫ t, where s is the
center of mass energy of the collision and t = −|⃗q|2 ≡ q2, where q⃗ is the
exchanged momentum. We take the spectator to be very heavy and nearly
at rest, acting as a gravitational source against which the massless probe par-
ticle, of energy ω, scatters. In such a kinematic configuration, m ≫ ω ≫ q,
the leading contribution to the gravitational amplitude for rsω > 1, with
rs = m/(4πMPl

2) the Schwarzschild radius of the target, is obtained after
summing over ladder diagrams from single graviton exchange, see Fig. 3.1.
The S-matrix takes an exponential form, S = eiδ(ω,b), where

δ(ω, b⃗) =
1

4mω

∫ dD−2q
(2π)D−2 ei⃗q·⃗bM(ω, q⃗) , (3.2)

is the eikonal phase shift and b⃗ the impact parameter [158, 159]. As we
show below, the phase shift is in general a matrix in helicity space, from
which, after diagonalization, one can extract the classical time delay for the
propagation eigenmodes simply as ∆t = ∂ωδ.2

Let us briefly go over the time delay for a probe particle minimally cou-
pled to gravity, that is the Shapiro time delay. The tree-level amplitude is
helicity-preserving and universal,

MGR
tree ≃ 1

MPl
2
(2mω)2

q2 . (3.3)

We can compute the associated phase shift by performing the integral
Eq. (3.2) in D − 2 dimensions, where D = 4 − 2ϵ is used as a regulariza-
tion,

δGR =
mω

4πMPl
2 Γ
(

D − 4
2

)
1

b(D−4)/2
= 2ωrs

(
− 1

2ϵ
− γE

2
− log b

)
+ O(ϵ) ,

(3.4)

where b ≡ |⃗b|. Subtracting the time delay measured at a reference impact
parameter b0 ≫ b, we obtain the result,

∆tGR = 2rs log(b0/b) . (3.5)

This is the Shapiro time delay for a signal traveling at an impact parameter
b from a source with Schwarzschild radius rs, as measured by an observer
at an impact parameter b0 ≫ b.

1 Similar ideas have been considered for quadratic gravity in [151].
2 One could consider as well, as done in [99], the sub-planckian scattering against a coherent

state of a large number N ≫ 4πMPl
2/s of relativistic particles, a.k.a. shock waves.



34 causality constraints on black holes beyond gr

Figure 3.1: Leading tree-level diagrams for the eikonal scattering of graviton and scalar
against a heavy target. Wiggly lines represent gravitons, dashed lines the mass-
less scalar, and double lines the massive source. The square vertex corresponds to
the ϕRR helicity-changing interaction.

Within GR, the leading corrections to the phase shift are of order rs/b,
associated to amplitude terms in momentum space of order q/ω, arising
from the eikonal expansion as well as non-linear gravitational interactions
[160]. Note that when these corrections become large, that is when rs ∼ b,
the deflection angle of the probe, θ = −ω−1∂bδ, is no longer small. Let us
point out as well that as long as rsω > 1, the Shapiro time delay is larger
than the quantum-mechanical uncertainty associated with the probe wave,
i.e. ∆tGR > 1/ω.

3.1.1 Non-minimal scalar-tensor trilinear interactions

The (pseudo)scalar-graviton 3-point interactions associated with the ϕR2
GB

and ϕRR̃ operators in Eq. (3.1) give rise to an eikonal phase shift that is
not diagonal with respect to the helicity of the probe particle. This, along
with the energy dependence of the interaction, results in time advances at
energies where the EFT is still weakly coupled.

In order to compute the phase shift, we consider 4-point scattering am-
plitudes associated with tree-level graviton exchange between a scalar or
graviton and a heavy spectator, which we take to be a scalar, S, without loss
of generality. The corresponding Feynman diagrams are shown in Fig. 3.1.

Using spinor-helicity variables and taking all the particles (with complex
momenta) as incoming, the relevant 3-point amplitudes read as follows:

MGB/CS
1ϕ2h++3h++

=
2α̂

MPl
[23]4 , MGB/CS

1ϕ2h−−3h−− =
2α̂∗

MPl
⟨23⟩4 , (3.6)

where recall that α̂ = α + iα̃ and that α̂ = 0 and α = 0 correspond to the
scalar Gauss-Bonnet and dynamical Chern-Simons gravity theories, respec-
tively. In the regime m ≫ ω ≫ q, the relevant 4-point scattering amplitudes
are given by

MGB/CS
1S2S3h++4ϕ

= MGB/CS
1S2S3ϕ4h++

≃ − 2α̂

MPl
2
(q1 + iq2)

2

q2 (2mω)2 , (3.7)

MGB/CS
1S2S3h−−4ϕ

= MGB/CS
1S2S3ϕ4h−− ≃ − 2α̂∗

MPl
2
(q1 − iq2)

2

q2 (2mω)2 ,

where q1, q2 are the components of the exchanged momentum q⃗. Defining
b± = (b1 ± ib2)/2, we have b⃗ · q⃗ = b+(q1 − iq2) + b−(q1 + iq2), and as before
the eikonal phase shift matrix is obtained by taking the impact-parameter
transform of the amplitudes,

δGB/CS
1S2S3h++4ϕ

= δGB/CS
1S2S3ϕ4h++

= −2ωrs
α̂

b2
−

, (3.8)

δGB/CS
1S2S3h−−4ϕ

= δGB/CS
1S2S3ϕ4h−− = −2ωrs

α̂∗

b2
+

.
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These helicity-changing contributions add up to the helicity-preserving ones
from minimal coupling, to yield the phase shift matrix

δGR+GB/CS ≃ 2ωrs

 D 0 A

0 D A∗

A∗ A D

 , (3.9)

with rows (h++, h−− , ϕ) and

D = − 1
2ϵ

− γE
2

− log b , A = − α̂

b2
−

. (3.10)

After diagonalizing, we find the eigenvalues

δ0 = 2ωrs

(
− 1

2ϵ
− γE

2
− log b

)
,

δ± = 2ωrs

(
− 1

2ϵ
− γE

2
− log b ±

√
2
|α̂|
b2

)
,

(3.11)

where the first corresponds to a pure graviton state, while the other two
to a scalar-graviton mixed state. The time delay that the latter propagating
eigenmodes acquire are

∆t± = 2rs

(
log

b0

b
±
√

2
|α̂|
b2

)
. (3.12)

At small enough impact parameters, ∆t− becomes negative, that is a time
advance, signaling a potential violation of causality. Phrased in another way,
for a given impact parameter there is a time advance if the GB/CS coeffi-
cient is large enough, |α̂| ≳ b2 log(b0/b). To avoid acausality at low energies,
the EFT computation must therefore break down at distances such that this
condition cannot be satisfied.3 This implies the GB/CS coupling is paramet-
rically bounded by the cutoff of the EFT as

|α̂| ≲ log(b0Λ)

Λ2 . (3.13)

Several comments are in order. For the violation of causality to potentially
be resolvable and thus become problematic, the time advance should be
larger than the quantum uncertainty of the wave-packet, |∆t−| > 1/ω. For
impact parameters where the BGR contribution is assumed to dominate, this
condition reads4

|∆t−| ∼ rs
|α̂|
b2 >

1
ω

, (3.14)

which for impact parameters down to the minimum cutoff length implied
by Eq. (3.13), i.e. b ∼ |α̂|1/2 (neglecting the log), just requires rsω > 1. Equiv-
alently, Eq. (3.14) defines an impact parameter below which the would-be
time advance is resolvable, br = (rsω|α̂|)1/2. This is larger than the mini-
mum cutoff length within the EFT regime of validity, i.e. br > |α̂|1/2, as long
as rsω > 1. Therefore, even if potentially resolvable, as long as Eq. (3.13) is

3 That is, at a distance 1/Λ > b∗, where the largest impact parameter at which a time advance is
found, b∗, is given by |α̂| ∼ b2

∗ log(b0/b∗). Note that the dynamics needed to restore causality
on time-scales of order b∗ should only involve momentum transfers q∗ ∼ 1/b∗, meaning that
new physics must appear at scales 1/b∗ or smaller, a priori regardless of ω and rs.

4 This condition can also be interpreted as the one for which the beyond-GR contribution to the
time delay is resolvable on its own.
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satisfied there is never an actual time advance. Alternatively, one could also
argue that the time advance is actually not resolvable at b ∼ |α̂|1/2 because
the UV completion precludes rsω > 1, which in practice means a cutoff such
that ω ≲ Λ ≲ 1/rs. In this case, the condition |∆t−| < 1/ω for ω ∼ Λ and
b ∼ rs ∼ 1/Λ implies Λ ≲ |α̂|1/2, just like in Eq. (3.13) up to O(1) factors,
which in any case we are oblivious about.

The bound Eq. (3.13) depends on the logarithm of an unspecified scale
b0 ≫ b, because of the infrared (IR) divergent nature of gravity in four
dimensions. While the identification of IR-finite scattering observables in
gravity remains an open and interesting problem (see e.g. [161] for a recent
attempt in the context of causality constraints), we do not regard this diver-
gence as a serious drawback that invalidates our bounds. In fact, note that
even if we consider an IR scale of the order of the size of the observable
universe, we merely find log(Λ/H0) ∼ 50.

Finally, let us point out that Λ ≲ |α̂|−1/2 implies that the EFT description
must break down at energies much lower than the strong coupling scale
associated with the GB/CS interactions. Indeed, the scale where the trilin-
ear scalar-tensor coupling becomes large, indicated by e.g. the 4-graviton
amplitude mediated by the scalar becoming strong, M ∼ (α̂/MPl)

2E6 ∼ 1,
is

Λα =

(
MPl
|α̂|

)1/3
, (3.15)

much larger than the actual cutoff of the EFT, unless |α̂| ∼ 1/MPl
2.

3.1.2 Robustness of superluminality

In order to understand whether the presence of superluminal excitations
is a feature common to all models including a sizable sGB/CS interaction,
we have to consider the possible effects due to other operators in the EFT as
well as the backreaction of the background. A key observation to answer this
question is that the only diagrams that exponentiate are those involving at
least one graviton exchange. To understand this, it is enough to notice that
p3 · p4 ∼ q2. Moreover the contributions to the phaseshift that alter the time
advance are those at least linear in ω. This implies that the only diagrams
that can exponentiate to alter the time advance in the eikonal limit are those
in which the indices of two powers of p3 and p4 are contracted with the
indices of the graviton propagator, so that they can contribute as (mω)2 to
the amplitude.

This for instance means that both scalar-scalar-graviton vertices as well
as the backreaction due to the scalar hair on the probe are negligible, being
suppressed by (q/ω)2.

Similarly, diagrams involving one graviton exchange and more irrelevant
graviton-graviton-scalar interactions are suppressed by higher powers of q2,
since the additional derivatives cannot be contracted with further powers
of p1/2. Diagrams with more than one graviton exchange will instead con-
tribute at higher order in the Post-Minkowskian (PM) expansion, being sup-
pressed by higher powers of rs/b.

With these considerations, we conclude that the superluminal propaga-
tion is a common feature of any EFT including the most relevant shift-
symmetric scalar-graviton-graviton interactions.

Even more, we can briefly consider the case of a spinning black hole with
spin parameter a (a length). In this case, the leading corrections to the scat-
tering amplitude will be suppressed by factors of a/b [162]. For a black hole



3.1 time advance bounds 37

it will always hold a < rs, meaning that the superluminality persists for
spinning black holes. Interestingly, in the case of naked singularities, the
spin parameter might be large enough to compete with or even dwarf the
sGB/CS contribution, so that the same conclusion might not hold.

3.1.3 Causality bounds on power counting

In this section we reinterpret the causality constraints in terms of bounds
on the power counting of gravitational EFTs. With this aim, let us consider
the generic form of a scalar theory coupled to gravity, in which the heavy
degrees of freedom, of mass Λ or higher (i.e. Λ is the EFT cutoff), have been
integrated out

L = 1
2 M̂2

Pl R +
Λ4

g2 L(0)
(∇µ

Λ
,

ζRµνρσ

Λ2 ,
gϕ

Λ

)
+ . . . . (3.16)

In the spirit of naive dimensional analysis (NDA) each covariant derivative
∇µ is weighted by 1/Λ, and each (scalar) field ϕ by g/Λ. The coupling g
parametrizes the strength with which the heavy states couple to the light
degrees of freedom, with g ∼ 4π the usual non-perturbative coupling limit.
Note that instead of considering the Riemann tensor, Rµνρσ ∼ ∂µ∂νhρσ, sim-
ply as a two-derivative object thus weighted by 1/Λ2, we introduce a di-
mensionless parameter ζ to allow for the possibility that gravitational inter-
actions beyond GR’s minimal coupling are enhanced w.r.t. standard NDA.5

We will elaborate on such a generalized power counting below. Each ϕ in-
teraction comes with a decay constant f , identified with (or defined as)

f =
Λ
g

. (3.17)

At this point we can already distinguish the two interesting scenarios,
for which it is enough to consider the standard power counting ζ = 1 and
to realize that the EH action receives a contribution from both terms in
Eq. (3.16). When M̂2

Pl ≫ f 2, the EH action is dominated by the first term
and the effective Planck scale is MPl ∼ M̂Pl . Gravity is external to the ultra-
violet (UV) dynamics giving rise to L(0), a.k.a. “elementary”. Instead, when
M̂2

Pl ≪ f 2, we have MPl ∼ f and the heavy dynamics constitutes a bona fide
UV completion of gravity. Phrasing it in terms of the coupling g, the mini-
mum coupling g ∼ Λ/MPl corresponds to the “composite” limit of gravity.
This is the case of string theory (or more generally, potential tree-level UV
completions with infinitely many higher-spins particles, see e.g. [99, 163]),
where Λ ∼ Ms the string scale, as well as of loop-level completions based on
a large number of species, N ∼ (4πMPl/Λ)2, where g ∼ 4π/

√
N [164, 165].

Note that in this limit one finds the largest coefficients for gravitational EFT
operators with none or a single matter field, since they scale as 1/g2 or 1/g
respectively. The fact that g ≳ Λ/MPl is reminiscent of the weak gravity
conjecture [166].

In terms of scattering amplitudes, the two scenarios are distinguished by
the maximal size of e.g. 2-to-2 graviton processes within the EFT regime of
validity, i.e. E ≲ Λ. From minimal coupling we have MGR ∼ (E/MPl)

2 ≲
(Λ/MPl)

2. Instead, an effective operator like R 3
µνρσ leads to an amplitude

5 As usual we work with a dimensionless graviton field, whose interactions are eventually
weighted by 1/MPl once its kinetic term is canonically normalized, following the normalization
of the Einstein-Hilbert (EH) term.
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MBGR
(ζ=1) ∼ E6/(g2Λ2MPl

4) ≲ f 2Λ2/MPl
4, smaller than GR except in the

limit MPl ∼ f , in which case the two amplitudes are of the same size at the
cutoff. The same analysis can be reproduced if instead of amplitudes one
considers other (classical) gravitational observables and distances, rather
than energies, within EFT control, i.e. r ≳ 1/Λ.

For the generalized power counting ζ > 1, the discussion is very much
analogous, except for the important difference that now the BGR effects can
become larger than the GR prediction for energies well described by the
EFT. The composite case corresponds to M̂2

Pl ≪ ζ f 2, for which we have
MPl ∼

√
ζ f . Therefore, ζ ≪ (MPl/ f )2 corresponds to the case where grav-

ity is external to the UV dynamics. Elementary or composite, we find that
non-standard gravitational interactions, in the form of R3

µνρσ, give rise to
enhanced 4-graviton amplitudes

MBGR
1h2h3h4h

∼ ζ3 E6 f 2

Λ4MPl
4 ≲ ζ3 Λ2 f 2

MPl
4 ≲

Λ2MPl
2

f 4 =

(
gMPl

f

)2
, (3.18)

where the first inequality follows from E ≲ Λ and the second from ζ ≲
(MPl/ f )2. Note that for ζ ≳ (MPl/ f )2/3 the amplitude is larger than in GR,
and it becomes non-perturbatively strong, i.e. M ∼ (4π)2, for EFT cutoffs
well below the maximal gravity cutoff given by 4πMPl. As we discuss in the
following, it is precisely this possibility that causality constraints forbid.6

Let us start by recalling that each specific UV theory within the class of
theories described in the IR by Eq. (3.16) comes with O(1) factors not cap-
tured by the power counting. Even more importantly, the presence of sym-
metries can enforce some EFT operators to have vanishing coefficients, for
instance if ϕ is Nambu-Goldstone boson with a shift symmetry ϕ → ϕ + c
(as the scalar field that concerns us in this work), any potential term for ϕ
vanishes. However, beyond the well-known selection rules from symmetries,
there are further requirements that an EFT must satisfy if it is to be consis-
tent with the fundamental principles of unitarity, locality, and causality (and
if it is to arise from UV dynamics that abides by such principles). Indeed, it
was found in [99] that causality, in the form of absence of a (resolvable) time
advance, leads to a constraint on the size of corrections to the cubic graviton
coupling, arising from an operator α3MPl

2R3
µνρσ, given by α3 ≲ 1/Λ4. In

terms of the power counting Eq. (3.16), α3 ∼ ζ3/(gMPlΛ)2, such a bound
implies ζ ≲ (MPl/ f )2/3, precisely such that the BGR effects never get to
dominate over GR, see below Eq. (3.18). This conclusion seems to be generic.
The similar bound we have derived in Sec. 3.1.1 on the GB/CS non-minimal
coupling of gravitons to a scalar, |α̂| ≲ 1/Λ2, when interpreted in terms
of our power counting, |α̂| ∼ ζ2/(gMPlΛ), implies ζ ≲ (MPl/ f )1/2. Once
again, this forbids the 4-graviton amplitude mediated by the scalar from
getting larger than in GR if restricted to energies within the EFT, E ≲ Λ,

MGB/CS
1h++2h++3h−−4h−− ∼ |α̂|2 E6

MPl
2 ≲

Λ2

MPl
2 . (3.19)

6 It is perhaps instructive to compare with EFTs for spin-1 (abelian or non-abelian) gauge fields,

L = 1
4ê2 F2

µν +
Λ4

g2 L(0)
(

Dµ

Λ
,

ζFµν

Λ2 ,
gϕ

Λ

)
,

with the elementary and composite limits given respectively by ê ≪ g/ζ (and effective gauge
coupling e ∼ ê) and ê ≫ g/ζ (e ∼ g/ζ). As discussed in [167], in the strongly coupled
gauge field scenario ζ ∼ g/e ≳ 1 one finds 4-point amplitudes (from e.g. F4

µν operators)
M ∼ g2(E/Λ)4, which can be larger than the amplitude from minimal coupling, M ∼ e2,
for energies within the EFT.
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It is illuminating to realize that in the case of a standard power counting
ζ = 1, these causality constraints robustly imply that g ≳ Λ/MPl (or equiv-
alently f ≲ MPl), as we expected from the simple NDA considerations on
the elementary vs composite nature of gravity. In turn, if one is interested in
genuine UV completions of gravity, i.e. g ∼ Λ/MPl, these bounds imply that
ζ ≲ 1 and therefore that the EFTs in which non-minimal interactions are en-
hanced beyond standard NDA have no gravitational completions consistent
with fundamental principles.

3.1.4 Bounds from dispersion relations

This conclusion is reinforced by recent progress on the derivation of theoret-
ical constraints on gravitational EFTs that go beyond causality violation in
classical observables and therefore beyond corrections to cubic gravitational
interactions [116, 118, 121, 127, 129, 161, 168–174]. Such bounds are instead
obtained via dispersion relations [175], which connect the coefficients of the
EFT operators to the dynamics of their UV completions. These UV/IR rela-
tions, which we will review in some detail in Sec. 3.2.1, are very powerful
because of their generality, relying only on the basic assumptions of unitar-
ity, locality and causality (encoded as the analyticity, crossing symmetry and
boundedness of the scattering amplitudes).7 Of particular relevance for the
physics of black holes are the results of [121], which derived lower bound on
α4MPl

2R4
µνρσ given by α4 ≳ α2

3Λ2 (recall α3MPl
2R3

µνρσ), and of [127], which
derived the upper bound α4 ≲ 1/Λ6. Both constraints restrict the BGR con-
tribution to gravitational observables to be smaller than the prediction of
GR. In fact, we should stress that if similar bounds were to be derived on
non-standard higher-point amplitudes (with n ⩾ 5 gravitons) from Rn

µνρσ

operators, we would be led to the conclusion that the power counting in
Eq. (3.16) with ζ > 1 is inconsistent altogether, i.e. regardless of f and not
only for f ∼ MPl. While this seems like a plausible expectation, a robust
derivation of theoretical constraints on higher-point amplitudes remains an
open problem at the time of writing this work (see e.g. [176] for recent
progress in this direction). If indeed ζ > 1 is forbidden by fundamental
principles, we would come to the sensible conclusion that in a gravitational
EFT the largest effects for a fixed cutoff are found when f ∼ MPl, therefore
when gravitational interactions should dramatically change above Λ. We
will provide further insight into this fact in Sec. 3.5.

Before concluding this section, let us make some additional comments
on the implications of the causality bounds on the phenomenology of black
holes beyond GR. The constraint α4 ≲ 1/Λ6 [127] places modifications of
GR due to quartic terms in the curvature on the same footing as those due to
cubic terms. This means that there is no strong reason to discard the effects
of R3

µνρσ operators, leading in the derivative expansion, while keeping those
of R4

µνρσ [177–179].
The constraint we have obtained in Sec. 3.1.1 on BGR scalar-tensor cubic

couplings have also been recently derived in [127] via dispersion relations.
In this regard, it is important to point out that even though our bound is
robust up to O(1) factors, contrary to the more precise (yet still IR divergent)
one from dispersion relations, we believe our derivation is very valuable
because it comes from a simple physical setup in which causality violation

7 The link between dispersion relations and causality, expressed as the absence of superluminal
propagation, was pointed out in [108], and its connection with time delay has been recently
discussed in [116, 127].
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is a classical, macroscopic effect. This makes possible to avoid relying on a
priori stronger assumptions on the analyticity and polynomial boundedness
of scattering amplitudes associated with causality. Moreover extracting the
classical phase-shift simplifies the analysis of light (massless) loops in the
EFT, which can be problematic in the context of dispersion relations, forcing
in some cases to neglect these loops all-together, see e.g. [118, 121]. We will
review these issues and present a strategy to include light loops in Sec. 3.2.2.

NDA expectations are also confirmed by dispersion relations involving
operators with extra derivatives acting on the curvature, for instance of the
form

α5MPl
2R2

µνρσ(∇η Rµνρσ)
2, α6MPl

2(∇η Rµνρσ)
4, (3.20)

which contribute to 4-graviton amplitudes as M ∼ αJ E2J [121, 127, 174].
In particular, there are an infinite number of linear constraints on the EFT
coefficients that take the form of two-sided bounds such as

−α4 ⩽ α5Λ2 ⩽ α4 and 0 ⩽ α6Λ4 ⩽ α4 , (3.21)

and similar bounds for higher J, respectively odd or even.
Their interpretation in terms of a power counting is clear, subleading oper-

ators in the derivative expansion ∇/Λ cannot be enhanced over the leading
ones.

In our discussion we have focused on cubic and quartic operators built
out of the Riemann tensor, with no mention of terms quadratic in the cur-
vature. This is because R 2

µνρσ operators do not contribute to graviton scat-
tering amplitudes, given that the GB term R2

GB is a topological invariant
(in D = 4) and because field redefinitions can be performed to eliminate
any EFT operator built out of R and Rµν in favor of matter terms (T and
Tµν), therefore giving rise to amplitudes involving ϕ fields. For this reason,
one might find it more convenient (although not necessary) to use a ba-
sis of EFT operators directly link to scattering amplitudes, such as the one
systematically constructed in [180]. In this respect, note that the relevant
object giving rise to processes with gravitons on-shell is the Weyl tensor,
Cµνρσ = Rµνρσ − (gµ[ρRσ]ν − gν[ρRσ]µ) +

1
3 gµ[ρgσ]νR. This means that the rel-

evant parts of the GB/CS operators in Eq. (3.1) are MPlα ϕCµνρσCµνρσ and
MPlα̃ ϕCµνρσC̃µνρσ. These are also the terms behind the scalar hair of black
holes, since black holes are Ricci-flat gravitational solutions (R, Rµν = 0) at
zeroth order in α, α̃.

Finally, causality bounds on pure scalar operators are also relevant for the
physics of hairy black holes, in particular

1
4 c2(∇µϕ)4 , (3.22)

i.e. the leading operator in the derivative expansion. Several recent works
on dispersion relations that incorporate gravity have argued that c2 ≳
−1/(Λ2MPl

2) (and likewise for the equivalent operator F4
µν in a theory of

photons) [118, 161, 168, 170, 171, 181], bound that becomes a standard pos-
itivity constraint, c2 > 0 [108], when gravity decouples, MPl → ∞. In par-
ticular, [118] has shown via dispersion relations at finite impact parameter
that this is indeed the case up to a log(b0Λ), as in Eq. (3.13), when light
loop corrections in the EFT are neglected. Furthermore, the upper bound
c2 ≲ (4π)2/Λ4 has been derived using similar techniques [117, 182]. These
constraints on c2 can be easily understood in terms of the power counting
in Eq. (3.16). Since c2 ∼ g2/Λ4, the upper and lower bounds correspond,
respectively, to the maximum coupling in the spirit of NDA, g ≲ 4π, and
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to the minimum coupling in a gravitational theory, g ≳ Λ/MPl (recall that
power counting estimates are insensitive to the sign of the operators’ coeffi-
cient).

3.2 signs of uv completion

In the previous section we have argued that gravitational EFTs where black
holes have scalar hair, Eq. (3.1), must have a cutoff Λ ≲ |α̂|−1/2. In terms
of the power counting Eq. (3.16) with ζ = 1, the maximum cutoff of these
theories corresponds to the minimum NDA coupling g ∼ Λ/MPl, while
EFTs with a larger coupling, or equivalently f < MPl, must have a lower
cutoff for the same value of |α̂|.

In this section we try to infer from an EFT point of view what additional
low-energy effects are associated with a generic UV completion at the scale
Λ, in particular one that is unitary, local and casual. We focus on the leading
corrections in the derivative and field expansion [180], restricted to CP even
operators

∆S =
∫

d4x
√
−g
[

MPl
2
(

α3I + α4C2 + α′4C̃2
)
+

c2

4
(∇µϕ)4 +

d1

2
C(∇µϕ)2

]
,

(3.23)
where C = RµνρσRµνρσ, C̃ = RµνρσR̃µνρσ and I = R ρσ

µν RµναβRαβρσ. Note
that the last operator is equivalent, by the leading-order scalar equation of
motion, to the cubic Galileon term (∇ϕ)2□ϕ. We first investigate the con-
straints on the coefficients above that arise from dispersion relations at one
loop, which take the form of lower bounds that depend on |α̂|.8 Precisely be-
cause of the upper bound |α̂| ≲ 1/Λ2, we find that such dispersion relations
are in fact dominated by standard gravitational contributions, rendering the
constraints on the operators in Eq. (3.23) inapplicable and phenomenologi-
cally irrelevant. We therefore leave aside general bounds and turn to generic
expectations based on power counting. We show how typical UV comple-
tions of the scalar-GB or dynamical-CS theories likely give rise to higher-
curvature terms of the same parametric size, i.e. αΛ2 ∼ α3Λ4 ∼ α4Λ6, if
these arise at the same loop order.

3.2.1 Beyond positivity constraints

There exists an extensive literature on dispersion relations, in particular on
non-gravitational theories, with many new results and applications found
in recent years, see e.g. [108, 110–116, 119]. Dispersion relations are typically
constructed by evaluating a 2-to-2 scattering amplitude M(s, t) over a closed
circular contour in the complex s-plane,9

Σn(s, t) =
1

2πi

∮
Γs

ds′
M(s′, t)(
s′ + t

2
)n+1 . (3.24)

8 There are no constraints of this form from dispersion relations at tree level. This is in contrast
with the lower bound α4 ≳ α2

3Λ2 [121].
9 In a slight abuse of notation, we denote the amplitude as a function of the s = −(p1 + p2)

2 and
t = −(p1 + p3)

2 Mandelstam variables as M, like in Sec. 3.1 where instead was a function of ω
and q⃗. Besides, we work with all momenta incoming and recall u = −(p1 + p4)

2 = −s− t+ 4m2,
where m is now the mass of the scattered states, that we will eventually take to zero.
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Let us start with the scattering of the GB/CS scalar ϕ at low energies, s ≪
Λ2, neglecting for the time being GR’s minimal gravitational coupling. The
4-scalar EFT interaction in Eq. (3.23) leads to an amplitude,

M∆S
1ϕ2ϕ3ϕ4ϕ

(s, t) =
c2

2
(s2 + t2 + u2) , (3.25)

which grows like s2 for fixed t. Therefore, considering a small contour Γ0
around s′ = −t/2, the integral of the twice-subtracted amplitude, i.e. n = 2
in Eq. (3.24), yields Σ2(0, t) = c2. At this point, unitarity and analyticity in
the upper half of the complex plane allow one to deform the contour away
from the origin (for 0 ⩽ t ⩽ 4m2) in a controlled way. As discussed in the
introduction to this part of the work, the analogy with quantum mechanics
strongly suggests that causality is responsible for M(s, t) being analytic ev-
erywhere except in the real axis. On the real axis, as implied by unitarity,
one finds singularities in the form of simple poles and branch cuts. The for-
mer correspond to particles exchanged at tree level going on shell, which in
the case at hand belong only to the UV completion, either in the s-channel
at s ⩾ Λ2 or in the u-channel s ⩽ −Λ2 − t. The branch cuts are associated
with logarithms arising from loops and correspond to multi-particle pro-
duction. Besides the loops of heavy states at and above the cutoff, there is
an s-channel branch cut starting at s = 4m2 from (one) loop diagrams of
the IR degrees of freedom, and its s ↔ u crossing symmetric counterpart.
Because of real analyticity, M∗(s, t) = M(s∗, t), these discontinuities are
proportional to ImM(s, t), which is positive for elastic scattering around
t = 0. In particular, for the zeroth-order term in an expansion around the
forward limit, the optical theorem fixes ImM(s, 0) = s

√
1 − 4m2/s σT(s),

where σT is the total cross section for 1 2 → everything. In addition, uni-
tarity and analyticity in theories with a mass gap imply that amplitudes
are polynomially bounded as M(s, t)/s2 → 0 for |s| → ∞ as a result of
the Froissart-Jin-Martin bound [105, 106]. Even though here we are inter-
ested in theories with a massless graviton, it has been argued from different
perspectives that a growth smaller than s2 holds as well with dynamical
gravity, see e.g. [99, 116, 118, 183, 184]. Note then that when this is the case,
the integral Eq. (3.24) over a contour Γ∞ at |s| → ∞ vanishes for n ⩾ 2,
i.e. Σn⩾2(∞, t) = 0. A dispersion relation is then finally derived by using
Cauchy’s theorem to deform the original contour Γ0 to Γ∞, leaving Σn as an
integral over the aforementioned singularities. In the forward limit t = 0 of
4-scalar scattering, one then finds for n = 2:

c2 = ∑X
2
π

∫ ∞

0

ds
s2 σ1ϕ2ϕ→X(s) > 0 . (w/o GR minimal coupling) (3.26)

This positivity constraint can be improved by noticing that, while the cross
sections for production of the heavy states associated with the UV comple-
tion are by construction not computable within the EFT, those for produc-
tion of the low-energy states are, as long as we restrict them to energies
s ⩽ Λ2 [109, 112, 185–187]. Since we are neglecting the minimal coupling
of gravitons, the process with the largest cross section in the scalar EFT
Eq. (3.1) is the production of a pair of gravitons via the GB/CS coupling.
The corresponding amplitude is

MGB/CS
1ϕ2ϕ3h++4h−− =

(
2|α̂|
MPl

)2

⟨4|1|3]4
(

1
t
+

1
u

)
. (3.27)
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Explicitly including this contribution in the twice-subtracted dispersion re-
lation Eq. (3.26), we arrive at

c2 >
2
π

∫ Λ2

0

ds
s2 σGB/CS

ϕϕ→h−−h++ =
1

60π2

( |α̂|Λ2

MPl

)4

. (w/o GR minimal coupling)

(3.28)
If one could ignore GR’s contributions to the dispersion relation, as we have
done this far, such a beyond-positivity bound would imply that the GB/CS
scalar-tensor theories in Eq. (3.1) are inconsistent with unitarity and causal-
ity unless they are supplemented with the (∇ϕ)4 operator. In particular,
note that the larger the regime of validity of the EFT, i.e. the larger the
cutoff Λ, the larger its coefficient c2 would have to be.10 However, neglect-
ing GR’s interactions would require in practice the existence of a consistent
decoupling limit in which MPl → ∞ yet the lower bound on c2 remains non-
zero. Expressing Eq. (3.28) in terms of the strong coupling scale Eq. (3.15),
c2 ≳ 1

16π2 (Λ/Λα)8Λ−4
α , this would require keeping Λα as well as Λ fixed.

However, precisely because of the causality bound we derived in Sec. 3.1,
Λ ≲ 1/|α̂|1/2 for log(b0Λ) ∼ 1 (or equivalently Λ ≲ (Λ3

α/MPl)
1/2), such a

limit is not possible: if MPl → ∞, then either Λα → ∞ or Λ → 0, render-
ing the EFT invalid. In fact, even if one saturates the upper bound on |α̂|,
the beyond-positivity contribution to c2 in Eq. (3.28) is only as large as a
quantum correction in GR at one loop, i.e. c2 ≳ 1

16π2 MPl
−4.

We can explicitly check that one cannot ignore GR’s minimal coupling if
the upper bound Λ ≲ 1/|α̂|1/2 holds by retaking the steps above keeping
t ̸= 0 and with the low-energy contour now enclosing the graviton pole, at
s = 0 and s = −t (u = 0), of the 4-scalar amplitude in GR,

MGR
1ϕ2ϕ3ϕ4ϕ

= − 1
2MPl

2

(
t2 + u2

s
+

s2 + u2

t
+

t2 + s2

u

)
. (3.29)

Note that the forward limit is ill-defined because of the graviton t-channel
exchange. The n = 2 dispersion relation then reads

− 1
MPl

2t
+ c2 + β

(t)
2 log

t
t0

+ O(t) =
2
π

∫ ∞

0
ds

ImM(s′, t)(
s + t

2
)3 . (3.30)

We have included the one-loop UV divergence of the s2 term of the 4-
scalar amplitude arising from t-channel cuts, with β-function given by
β
(t)
2 = +(13/160π2)MPl

−4. This is of the same loop order as the r.h.s. of
Eq. (3.28). Indeed, as discussed in [119], the beyond-positivity contributions
to the dispersion relation are equivalent to including the running of the coef-
ficients of the EFT in the forward limit, associated with the UV divergences
from s- and u-channel cuts. These cuts and the corresponding gravitational
β-functions can be easily computed following the on-shell amplitude tech-
niques presented in [188]. The O(t) term in Eq. (3.30) encodes the subleading
terms in the forward limit, arising from e.g. higher-order EFT operators in
the derivative expansion. For instance, the first such correction comes from
the Galileon-like term (∇ϕ)2(∇∇ϕ)2, which gives rise to an stu term in
the amplitude. Most importantly, as advanced at the end of Sec. 3.1.3, the

10 In Sec. 3.3 we discuss the effects of the leading additional operators in Eq. (3.23) on black holes
with scalar hair. From that analysis one can arrive at the conclusion that for astrophysical black
holes where rs ∼ |α̂|1/2 ∼ km, the effects of (∇ϕ)4 with c2 fixed by Eq. (3.28) would become
O(1), thus as important as the GB/CS term, for Λ ≳ µm−1, precisely of the same order as the
smallest scales where gravity has been experimentally tested [147] and at least up to which one
would want any BGR theory to hold.
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1/t term in Eq. (3.30) precludes setting a positive lower bound on c2 as the
one in Eq. (3.28), unless the beyond-positivity contributions are larger than
−(MPl

2t)−1 ≳ (MPlΛ)−2 [118]. As we discussed above, this is not the case
because of the causality bound |α̂| ≲ 1/Λ2.

While it might naively seem from the discussion above that the main
obstruction for the derivation of meaningful beyond-positivity bounds in
gravitational EFTs is the t-channel graviton pole, the real reason for their
ineffectiveness is the fact that BGR amplitudes larger than in GR are not
consistent with causality. To show this, let us consider a dispersion relation
for the 4-graviton amplitude with two positive and two negative helicities.
The amplitude in GR plus the leading BGR correction in the energy expan-
sion from Eq. (3.23) is given by

MGR+∆S
1h++2h−−3h−−4h++

(s, t) =
⟨23⟩4[14]4

MPl
2 f (s, t) ,

f (s, t) =
1

stu
+ 8(α4 + α′4) .

(3.31)

Similarly to the scalar case, one can construct dispersion relations from the
contour integral (see e.g. [116, 121, 127, 129] for more details)

1
2πi

∮
Γs

ds′
f (s′, t)(

s′ + t
2
)n+1 . (3.32)

In particular, for n = 0 one arrives at

8(α4 + α′4)
MPl

2 +
γ4

Λ2t
log

−t
µ2 + O(t) >

2
π

∫ Λ2

0

ds
s4 σGB/CS

h++h−−→ϕϕ, h−−h++

∼ 1
16π2

( |α̂|Λ
MPl

)4

.

(3.33)

On the r.h.s. we have explicitly included the beyond-positivity contribution
from a scalar as well as a graviton loop via the GB/CS coupling, computed
in a dispersive way from the corresponding cross sections. The correspond-
ing amplitudes are given by Eq. (3.27) and by

MGB/CS
1h++2h−−3h++4h−− = −

(
2|α̂|
MPl

)2 ⟨24⟩4[13]4

t
, (3.34)

which proceeds via scalar exchange. While there is no contribution from
tree-level graviton exchange in Eq. (3.33), further forward limit singularities
are generated at one loop in GR, with γ4 ∼ +(1/16π2)MPl

−4 [121]. There-
fore, since the time-delay constraint |α̂| ≲ 1/Λ2 sets an upper bound on
the r.h.s. ≲ 1

16π2 (ΛMPl)
−4, the beyond-positivity contribution is no larger

than the one of GR, rendering the former immaterial to bound the quartic
curvature operators.

In summary, because causality demands that gravitational amplitudes
within the EFT domain are dominated by GR, loop corrections from BGR
interactions never lead to robust lower bounds on the coefficients of the EFT.

3.2.2 Improved dispersion relations at loop level

Besides leading to the conclusion highlighted above, that GR loops dom-
inate over the BGR ones as a result of causality, Eq. (3.33) highlights the
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problematic role played by light loops in dispersion relations. Indeed, in or-
der to neglect the O(t) terms, one would like to restrict to a regime in which
t ≪ Λ2. This however would enhance dramatically the GR’s loop contribu-
tion on the l.h.s. of Eq. (3.33), making it difficult to find a sharp bound from
below on the allowed negativity for α4 + α′4. Here we briefly outline a new
method to deal with this issue, which is the subject of an upcoming work
[130].

An approach valid at tree level to derive sharp constraints from dispersion
relations without taking the t → 0 limit, was proposed in [118] in the con-
text of amplitudes affected by the graviton t−channel pole. This approach
consists in combining different dispersion relations to obtain an improved
dispersion relation, in which almost all the O(t) terms have been subtracted,
leaving a known polynomial in t with a finite number of terms. This allows
to have control over the O(t) terms and extract meaningful bounds on the
EFT coefficients even when t ∼ Λ2.11 Considering for instance Σ2(s, t), the
idea of [118] is to subtract higher Σns and their derivatives evaluated at
t = 0 to obtain an integral, Σ̃2(s, t) whose low energy residue ã2 has only
a finite number of terms of O(t). Calling an(t) the IR residue of Σn(s, t), i.e.
the n−th arc, one has:

ã2(t) = a2(t)−
∞

∑
n=3

(
ntn−2an(0)− tn−1∂tan(0)

)
≡ 1

−MPl
2t

+ c2 − c3t .
(3.35)

Using each of the dispersion relations Σn it is possible to express the IR
residues as a resummed UV integral, which has a certain allowed negativity.
In this setup then, neglecting loop contributions, one can then derive sharp
bounds on the EFT coefficients.

As exemplified by Eq. (3.33) however, GR loops lead to non-analytic con-
tributions in the an at t = 0, e.g. in the form of log(t)/t. Such loop contribu-
tions make actually impossible to define Eq. (3.35), since the infinite terms
subtracted are divergent.

To circumvent this problem, as we present in [130], one can modify the
approach used to define ã2 in such a way to never use dispersion relations
evaluated at t = 0 and still retain only a polynomial of finite order in t in
the arc. This modification makes much harder to find the right combina-
tion of higher an and derivatives to be subtracted, forcing one to use up to
the nth derivative of each an, with coefficients to be determined algorithmi-
cally. Overcoming these technical complications, we find the well-defined
improved arcs, aimp

n (s, t). For instance, for n = 2 we obtain:

aimp
2 (s, t) = a2(s, t)−

∞

∑
n=3

n

∑
m=0

cn,mtn−2+m ∂m
t an(s, t)

≡ 1
−MPl

2t
+ c2 − c3t + logs ,

(3.36)

where logs indicate terms depending logarithmically on t and at least
quadratically in the EFT coefficients. Quite non-trivially, it is possible to de-
termine the generating function of the coefficients cnm, i.e. a function p(x, d)
such that p(x, d) = ∑∞

n=3 ∑n
m=0 cn,mdmxn. Here we content ourselves in men-

tioning that this function, similarly to the generating functions for higher im-
proved arcs, has a branch cut in x, which implies that the expression for the

11 To derive the actual constraints however this approach requires smearing the amplitude in
impact parameter space, so that no constraint comes from a sharp value of t [118].
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improved arc cannot be calculated straightforwardly if t is too close to Λ2.
This approach allows to compute the UV integrals through the dispersion re-
lations Σn, finding new sharp and well defined bounds on the IR coefficients
at finite t, having control on both loop contributions and O(t) terms simulta-
neously. These bounds differ only parametrically from the bounds found in
[118] using e.g. ã2 and neglecting light loops, as both of the approaches are
parametrically close to non-improved bounds evaluated at small but finite
t. Beyond the conceptual improvement, the difference between the two kind
of bounds is relevant for characterizing the features of the boundary of the
regions allowed by the constraints.

As can be understood from Eq. (3.33), these results do not change the
fact that causality makes BGR loops subleading with respect to the GR ones,
invalidating the loop positivity bounds.

3.2.3 Power counting expectations

The results of Sec. 3.2.1 can be understood in terms of NDA, when the power
counting rules in Eq. (3.16) are extended to include the possibility that EFT
operators can be generated at one-loop order,

L = 1
2 M̂2

Pl R +
Λ4

g2

[
L(0)

(∇µ

Λ
,

Rµνρσ

Λ2 ,
gϕ

Λ

)
+

g2

(4π)2 L(1)
(∇µ

Λ
,

Rµνρσ

Λ2 ,
gϕ

Λ

)
+ · · ·

]
.

(3.37)

This is because beyond-positivity contributions correspond to loop correc-
tions within the EFT [116, 119, 188]. The one-loop NDA estimate for the
(∇ϕ)4 operator is (c2)

(1) ∼ 1
16π2 g4Λ−4, which for g ∼ Λ/MPl matches the

maximal value of the r.h.s. of Eq. (3.28), i.e. for |α̂| ∼ 1/Λ2. Likewise, we can
estimate the beyond-positivity contributions to quartic curvatures operators
from L(1) in Eq. (3.37), (α4)

(1)/MPl
2 ∼ 1

16π2 (ΛMPl)
−4, which coincides with

the r.h.s. of Eq. (3.33) for the maximum value of the GB/CS coupling.
This discussion brings us to the important realization that, from the

EFT standpoint, for UV completions where both the scalar-GB/CS term in
Eq. (3.1) and the operators in Eq. (3.23) are generated at the same (tree-
level) order, one should expect much larger coefficients for the latter than
what discussed above. To see this, let us simply fix the power counting
from the GB/CS term, assuming the maximal regime of validity of the EFT,
|α̂| ∼ 1/Λ2 (a requirement, rather than a choice, if one interested in phe-
nomenological applications, see Sec. 3.3). From L(0) in Eq. (3.37), this sets
g ∼ 1/|α̂|ΛMPl ∼ Λ/MPl, corresponding to a bona-fide UV completion of
gravity, as discussed in Sec. 3.1.3. Then, generic EFTs will feature

α(α̃) ∼ 1
Λ2 , α3 ∼ 1

Λ4 , α4, α′4 ∼ 1
Λ6 , c2 ∼ 1

Λ2MPl
2 , d1 ∼ 1

Λ4 , (3.38)

for the coefficients of the operators in Eq. (3.23).
In the next section we investigate the phenomenological consequences of

these estimates for the physics of black holes with scalar hair.

3.3 phenomenological implications

In this section we discuss the main implications on the phenomenology
of black holes of the upper bound on the GB/CS coupling |α̂| ≲ 1/Λ2,
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along with the implications associated with the additional EFT corrections
that are expected from saturating such a bound, Eq. (3.38). Our focus is
on astrophysical black holes, in particular those detectable by LIGO-Virgo,
which have sizes of a few solar masses, corresponding to Schwarzschild
radii rs ≳ 10 km.

We will discuss separately the scalar-GB and dynamical-CS gravity theo-
ries, reviewing in each case their imprints on the physics of black holes as
well as the current experimental bounds on the couplings α and α̃, respec-
tively.

3.3.1 Black holes in scalar-GB gravity

From a perturbative point of view, one can argue that the metric of a hairy
black hole still displays a horizon, characterized by a linear zero of the met-
ric, much like in the Schwarzschild and Kerr cases. The effects due to the
BGR dynamics rapidly vanish far away from the horizon (r = rs), following
the fall-off of the GB invariant, which sources both the scalar hair and the
deviations from GR in the metric.

More in detail, in the static and spherically symmetric case, we have the
metric

ds2 = −h(r)dt2 + f (r)−1dr2 + r2(dθ2 + sin2 θdφ2) , (3.39)

with
h(r), f (r) ∼

(
1 − rs

r

)
for r ∼ rs . (3.40)

At leading order in the dimensionless expansion parameter α/r2, the GB
invariant is the one of the Schwarzschild solution,

R2
GB ≡ RµνρσRµνρσ − 4RµνRµν + R2 ∼ r2

s
r6 . (3.41)

The scalar equation of motion reads

□ϕ = MPlαR2
GB ∼ MPl

2

Λ3
α

r2
s

r6 , (3.42)

where in the last step we have traded the GB coupling α for the strong
coupling scale Λα, given in Eq. (3.15) (α̃ = 0). The scalar field profile is then
completely determined by requiring that invariant quantities built out of it
do not diverge for r ≥ rs [189]. At asymptotically large distances, r → ∞,
the solution behaves as ϕ(r) ∼ 1/r. In addition, let us note that the largest
value of the scalar radial derivative is estimated as,

ϕ′ ≲
MPl

2

(Λαrs)3 . (3.43)

A first bound on the GB coupling comes from the requirement of the exis-
tence of real solutions for the scalar profile. In the simple EFT Eq. (3.1), this
condition requires that α2 < r4

s /192 [92]. The constraint is however depen-
dent on additional EFT corrections from Eq. (3.23) [85].

In order to estimate the impact of the scalar-GB operator on the back-
ground geometry, we can compute its ratio to GR, that is to MPl

2R where
R =

√
RµνρσRµνρσ is the typical curvature. Evaluating both terms on the

background given by the Schwarzschild metric, R ∼ rs/r3, and the scalar
solution from Eq. (3.42), one finds [85]

ε0(r) =
MPlαϕR2

GB

MPl
2R ∼

( α

r2

)2
. (3.44)
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Turning to perturbations, let us start by noting that the theory Eq. (3.1) has
no scalar self-interactions. Therefore, there is simply no possible screening
effect associated to classical non-linearities. On the other hand, there is no
direct coupling between the scalar field and matter, therefore no screening
mechanism is required to have agreement with fifth-force constraints (if the
theory is valid at the scales of those experiments).

Instead, the scalar-GB term gives rise to a kinetic mixing between scalar
and graviton (the same leading to the causality bound of Sec. 3.1.1), schemat-
ically of the form

MPlαϕR2
GB ⊃ εmix(r) ∂ϕ∂h , (3.45)

where we are taking the fluctuations to be canonically normalized. This
effect will be important when the mixing

εmix(r) ∼
αrs

r3 , (3.46)

becomes of order one. Note that the two estimators of the BGR effects are
related to each other, namely

ε0 ∼
(

r
rs

εmix

)2
. (3.47)

In this scenario, a sizable deviation of the quasi-normal mode (QNM) spec-
trum from the GR prediction is expected, strongly affecting the waveform
during the ringdown phase of a merger.

Finally, let us turn to the phenomenology of a binary system of hairy
black holes, each sourcing its own scalar profile as discussed before. The
dynamical nature of the system implies that, just as it happens with grav-
itational waves, there will also be scalar wave emission. However, the lat-
ter is now dipolar instead of quadrupolar, therefore being much less sup-
pressed than the former. This opens a new channel of power loss during
the merger, which accelerates the rate of change in the orbital period. The
effect accumulates during the inspiral phase, potentially producing an ob-
servable dephasing between the measured waveform and the one predicted
by GR. To date, the absence of any observed effect of this type constitutes
the most stringent experimental bound on the size of the scalar-GB coupling,
α ≲ (1.2 km)2 [98]. In terms of the strong coupling scale, this translates into
Λα ≳ 1012 km−1. Let us add that such a bound strictly applies only to scalar-
GB gravity with all other EFT corrections, in particular those in Eq. (3.23),
neglected or irrelevantly small.

Considering a typical LIGO/Virgo black hole, with rs ∼ 10 km, the above
bound implies that the kinetic mixing is constrained to be εmix ≲ 10−2.
Furthermore, according to Eq. (3.47) the effect on the background geometry
is significantly suppressed, ε0 ≲ 10−4. This conclusion justifies neglecting
deviations from Schwarzschild background as we assumed initially.

3.3.2 EFT implications on scalar-GB black holes

The fact that the BGR effects on hairy black holes are relatively small, below
the 10 % level, could have been anticipated from the requirement that the
scalar-GB theory should be able to properly describe the black holes of in-
terest. Indeed, as derived in Sec. 3.1.1, causality sets an upper bound on the
GB coupling and therefore on the size of the observable corrections relative
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to GR, which we denote generically with ϵ(r) – one instance being εmix in
Eq. (3.46). The BGR effects are largest near the horizon,

ϵ(rs) ∼
α

r2
s
≲ (Λrs)

−2 , (3.48)

where the inequality follows from causality, Eq. (3.13) (with log(b0Λ) ∼ 1
and α̃ = 0). Usefulness of the EFT requires a hierarchy between the cutoff
and the relevant scales of the system. A sensible demand on the EFT is
therefore that the black hole falls within the EFT regime of validity at least
down to its Schwarzschild radius.12 Therefore, BGR corrections can never
become large, i.e. ϵ(rs) ≪ 1. Furthermore, taking the current experimental
upper bound on α as benchmark, the causality bound implies a very low
maximal cutoff,

Λ ≲ (1 km)−1 , (3.49)

certainly much smaller than the strong coupling scale Λα ≳ (10−12 km)−1.
Let us discuss now the additional BGR effects that could be expected

from the UV completion in the form of higher-dimensional operators with
coefficients fixed to Eq. (3.38), where let us recall that such NDA estimates
correspond to the the maximal cutoff Λ ∼ α−1/2 ∼ (1 km)−1.

The operators in Eq. (3.23) give rise to modifications of the geometry.
We can estimate such modifications as in Eq. (3.44) for the scalar-GB term,
which we recall scales as ε0(r) ∼ (α/r2)2 ∼ (Λr)−4. Similarly, we find

α3I
R ∼ r2

s
r2 (Λr)−4 ,

α4C2

R ∼ r3
s

r3 (Λr)−6 ,

c2(∇ϕ)4

MPl
2R ∼ r5

r5
s
(Λr)−10 ,

d1C(∇ϕ)2

MPl
2R ∼ r

rs
(Λr)−8 .

(3.50)

While deviations introduced by the scalar-GB term are the largest, operators
cubic in the Riemann tensor can become as important near the horizon. The
deviations introduced by the rest of operators are subleading, being higher
order in (Λrs)−1, as expected from the derivative expansion and Eq. (3.43).
In addition, the operators built out of the scalar give rise to modifications of
the scalar field profile, which we can estimate as

c2(∇ϕ)4

(∇ϕ)2 ∼ r2

r2
s
(Λr)−6 ,

d1C(∇ϕ)2

(∇ϕ)2 ∼ r2
s

r2 (Λr)−4 . (3.51)

Given the upper bound Eq. (3.49), we conclude that the operators in
Eq. (3.23) should induce corrections on the metric and scalar of up to 0.01 %
near the horizon of black holes with rs ∼ 10 km.

There are many other interesting signatures associated with the operators
that we expect to be present in the scalar-GB EFT. The phenomenology of
cubic and quartic curvature operators have been discussed in [190–194] and
[177–179, 194], respectively. Besides modifications of the Schwarzschild (and
Kerr) geometries, these include deviations from GR at the leading order in
QNMs, quadrupole moments, non-vanishing Love numbers, and corrections
to the gravitational-wave signals at relatively high post-Newtonian (PN) or-
der. Since such corrections start at order (Λr)−4 ≲ 10−4, they will not be
easy to probe with the sensitivity of current experiments.

12 As a matter of fact, one would like a gravitational EFT to be valid at least up to the scales where
gravity has been experimentally tested, that is a cutoff Λ ≳ µm−1 [147]. One is forced to give
up on such a requirement if the scalar-GB theory is to be phenomenologically interesting for
astrophysical black holes (see however the discussion in Sec. 3.5).
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Operators involving the scalar field have received less attention in the
literature. The impact of the cubic Galileon operator, which we have rewrit-
ten in Eq. (3.23) as d1R2

µνρσ(∇ηϕ)2, has been discussed in [85]. Along with
the operator c2(∇µϕ)4, these EFT terms introduce modifications e.g. in the
scalar and gravitational wave spectrum, as well as in the QNMs, predicted
by the pure scalar-GB theory Eq. (3.1), although a priori subleading due to
the suppression by higher powers of (Λr)−2 ≪ 1. In particular, note that
potential screening effects are not likely to be significant.

Let us recall once again that these conclusions appear to be a robust con-
sequence of causality. Nevertheless, quantitative predictions for the gravita-
tional observables, which typically require performing costly numerical sim-
ulations, are still interesting, if only to experimentally test the fundamental
principles behind these expectations.

3.3.3 Black holes in dynamical-CS gravity

The dynamical-CS term in Eq. (3.1) (with α = 0) it is usually studied in
the context of a pseudoscalar field coupled to gravity, leading to a phe-
nomenology of black holes similar to that discussed in the previous section,
although with a few important differences. First, the Pontryagin invariant,
RµνρσR̃µνρσ, vanishes in the Schwarzschild geometry, while it is non-zero for
the Kerr geometry. Therefore, one needs to consider rotating black holes in
order to have a non vanishing scalar hair. To simplify the analysis, we follow
[146] and treat the spin parameter of the black hole, a/rs, perturbatively. We
also work in an expansion in α̃/r2

s since, similar to discussion for scalar-GB
black holes in Sec. 3.3.2, this is a consequence of causality, α̃ ≲ 1/Λ2, along
with the requirement that the black holes of interest fall within the regime
of validity of the EFT, i.e. (Λrs)−2 ≪ 1.

At leading order, the equation of motion for the pseudo-scalar ϕ is given
by

□ϕ = MPlα̃RµνρσR̃µνρσ ∼ MPl
2

Λ3
α̃

r2
s

r6
a
r

cos θ , (3.52)

where in the last step we have traded the CS coupling α̃ for the strong
coupling scale Λα̃, given in Eq. (3.15) (α = 0 and changed subscript to avoid
confusion). Subleading terms in the spin parameter scale as (a/rs)3. From
the solution to this equation (see e.g. [146]), we can compute the scalar radial
derivative, which roughly satisfies

ϕ′ ≲
MPl

2

(Λα̃rs)3
a
rs

. (3.53)

Similarly to scalar-GB case, there is an approximate relation between correc-
tions to the Kerr geometry, ε0, and the kinetic mixing between pseudo-scalar
and graviton, εmix, given by

ε0(r) ∼
(

a
rs

εmix(r)
)2

. (3.54)

A second difference w.r.t. the scalar-GB case is the nature of the most strin-
gent experimental bounds on the CS coupling. Since the scalar background
sourced around an isolated (spinning) black hole is dipolar, the emission
of scalar waves from a black hole binary system starts from a quadrupole
moment. Therefore, energy loss via scalar emission is further suppressed in
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the PN expansion compared to the scalar-GB case, such that no constraint
can be derived on α̃ given current sensitivities [195].

The strongest bound to date on the pseudo-scalar-CS coupling comes
from independent measurements of the tidal deformability and of the mo-
ment of inertia in neutron stars [196]. The comparison between these mea-
surements and the values predicted in dynamical-CS gravity yields the
bound α̃ ≲ (8 km)2. Note this is weaker than the most stringent bound
on the scalar-GB coupling, α ≲ (1.2 km)2 by one order of magnitude. Nev-
ertheless, if the pseudo-scalar-CS EFT is to be able to describe black holes
with sizes down to rs ∼ 10 km (recall that the smallest black holes display
the largest BGR effects, which in any case cannot become O(1)) with at least
10 % accuracy, it seems wise to consider a different benchmark for the cou-
pling α̃. Maximal testability compatible with causality then suggests to take
α̃ ∼ 1/Λ2 ∼ (3 km)2.

In this case, the kinetic mixing between pseudo-scalar and graviton can
induce stronger deviations in the QNM spectrum w.r.t. to GR [197–199], of
order εmix ≲ (α̃/r2

s ) ∼ 10−1 for black holes with rs ∼ 10 km.
The discussion of the implications of the additional operators in Eq. (3.23),

present in generic UV completions of pseudo-scalar-CS theory, largely par-
allels that of Sec. 3.3.2 and we do not repeat it here. Nevertheless, we wish
to point out that to date much less work has been devoted to the study of
these EFT effects for rotating black holes, see e.g. [192, 193].

Before closing the section, let us point out one last difference between the
scalar-GB and dynamical-CS theories. While the scalar-GB operator leads
to equations of motion of at most second order in (time) derivatives, the
dynamical-CS operator gives rise to higher-derivative terms. These in prin-
ciple could spoil the quantum stability of the theory. Considering perturba-
tions of rotating black holes with pseudo-scalar-CS hair, for instance during
the inspiral phase of a merger,13 higher derivatives will become important
at a mass scale M−1

g ∼ α̃ϕ̇0/MPl, being ϕ̇0 ∼ ωϕ0 ≲ ϕ0/rs the time deriva-
tive of the axionic field evaluated on the background. We can estimate this
scale, at least in some appropriate regime, using the solution of Eq. (3.52),
finding

Mg ∼ 1
a

(
r2

s
α̃

)2

. (3.55)

Since causality requires Λ ≲ α̃−1/2, we find that the ghost’s mass is above
the EFT cutoff.

3.4 gauss-bonnet scalarization

For scalar-tensor theories with no scalar shift-symmetry, one can consider
non-linear couplings between ϕ and the GB invariant. Let us focus on the
leading Z2-symmetric (ϕ → −ϕ) term in a field and derivative expansion,

SGBization =
∫

d4x
√
−g

(
MPl

2

2
R − 1

2
(∇µϕ)2 + λϕ2R2

GB

)
, (3.56)

where λ has dimensions of a length square. The sign of λ determines
whether ϕ = 0 is a stable solution or not around a gravitational source
like a (static or spinning) black hole [103]. Spontaneous scalarization, i.e. a

13 This system allows us to consider non-vanishing time derivatives of the scalar background,
which can lead to ghosts instabilities.
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non-trivial scalar profile, generically develops for |λ|/r2
s ≳ 1, with λ > 0

provided the GB invariant is positive.14

From simple little group (helicity) selection rules, one can derive the 4-
point interaction of two scalars and two gravitons associated with the non-
minimal coupling to GB,

MGBization
1ϕ2ϕ3h++4h++

=
4λ

MPl
2 [34]4 , MGBization

1ϕ2ϕ3h−−4h−− =
4λ

MPl
2 ⟨34⟩4 . (3.57)

Note that this is associated with an inelastic ϕh++ → ϕh−− scattering am-
plitude, that vanishes in the forward limit t → 0,

MGBization
1ϕ2h++→3ϕ4h−− =

4λ

MPl
2 t2e4iθ , (3.58)

where θ is just a phase (for physical momenta [ij]∗ = ⟨ij⟩ =
√sijeiθ , with

s13 = t).
While a dispersion relation for λ from the 2-scalar-2-graviton amplitude

can be derived along the lines of Sec. 3.2.1, the inelasticity of the amplitude
preclude the derivation of a positivity bound λ > 0. One can actually come
up with a simple (yet partial) tree-level UV completion that shows that the
sign of λ is not fixed. This involves an additional massive scalar field Φ,

SUV
GBization =

∫
d4x
√
−g
(

1
2 MPl

2R − 1
2 (∇µϕ)2 − 1

2 (∇µΦ)2 − 1
2 m2

ΦΦ2

+ MPlαΦΦR2
GB + gΦΦϕ2

)
.

(3.59)

One can see that upon integrating out the massive scalar, one obtains

λ =
MPlαΦgΦ

m2
Φ

, (3.60)

with no definite sign, since e.g. αΦ can consistently be positive or negative.
In addition, from this example one can infer that the size of λ is likely
to be theoretically bounded. Indeed, since Eq. (3.59) is itself an effective
action, from the generic EFT perspective presented in Sec. 3.1.3, the trilinear
coupling is of order gΦ ∼ gΛ while αϕ ∼ 1/(gMPlΛ), where Λ is the cutoff
and g a coupling. The mass of the heavy scalar can be at most of the order
of the cutoff, i.e. mΦ ∼ Λ, and should itself be identified with the cutoff
of Eq. (3.56). We are then led to the conjecture that the quadratic scalar-GB
coupling should not be much larger than λ ∼ 1/Λ2 given the causality
bound on αΦ. Following similar arguments, one can start with the effective
interaction λϕ2R2

GB and give the scalar a vacuum expectation value, which
within the EFT can be at most ⟨ϕ⟩ ∼ Λ/g ≲ MPl. This gives rise to the scalar-
GB term in Eq. (3.1) with MPlα ∼ λ⟨ϕ⟩, which for λ ≲ 1/Λ2 is consistent
with the causality bound we derived in Sec. 3.1.1. Note that, at the end
of the day, these arguments are just refined versions of the statement that,
from the gravitational power counting discussed in Sec. 3.1.3, we expect λ ∼
ζ2/Λ2 ≲ 1/Λ2 for ζ ≲ 1. However, in this case one cannot reinterpret such
expectation as a consequence of the requirement that the BGR amplitude,
Eq. (3.57), should not become larger than GR’s within the EFT, since the
latter vanishes at tree level (and at one loop) [188].

14 This is the case e.g. on a static black hole background or away from the horizon on a rotating
black hole background.
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These expectations were recently confirmed in the context of dispersion
relations valid at tree level [128], using a similar approach to that of [127].
Including loops, one can construct a dispersion relation for the 4-scalar
amplitude along the lines of Sec. 3.2.1. In this case, the beyond positivity
bound corresponding to Eq. (3.56) is associated with a cross section for
ϕϕ → h±±h±± which, similar to Eq. (3.28), leads to c2 ≳ 1

16π2 λ2(Λ/MPl)
4. If

indeed λ ≲ 1/Λ2 regardless of the UV completion as long as this is unitary
and causal, then the lower bound on c2 is in fact inapplicable due to the
graviton pole.

Finally, from the phenomenological point of view, scalarization of black
holes turns out to be a dubious phenomenon, given that λ/r2

s ≲ (Λrs)−2 ≲ 1
if the EFT is to describe the black holes down to their horizon. However, let
us recall that, differently from the cases discussed in the main text, for the
theory of GB-scalarization we have not found solid evidence that causality
forces the BGR effects to be subleading.

3.5 summary

In this chapter, we used causality arguments to derive phenomenologically
interesting bounds on theories that, at low energies, comprise the graviton
and a shift-symmetric scalar field. The presence of a coupling between the
scalar and the Gauss-Bonnet or the Chern-Simons operators leads to black
hole hair. If the couplings α and α̃, in the notation of Eq. (3.1), are large
enough, |α̂| ∼ r2

s , hair can be measured in astrophysical black holes. The
first consequence that we derived imposing the absence of classical superlu-
minality is that the cutoff of the EFT cannot be parametrically larger than
|α̂|−1/2, i.e. 1/ km for solar mass BHs. This has implications for the structure
of all the higher-dimensional operators in the theory. One could attempt to
draw robust lower bounds on their coefficients using positivity constraints
obtained via dispersion relations. However, the weakness of non-minimal
gravitational interactions compared to GR, enforced by causality, implies
that lower bounds from one-loop dispersion relations are phenomenologi-
cally irrelevant. In regard to this conclusion, we outlined how dispersion
relations can be improved to accommodate gravitational effects both at tree
level and at loop level.

On the other hand, for such a low cutoff Λ ∼ 1/ km, we used general
power counting arguments to show that if both the scalar-GB/CS term and
other operators are generated at the same (tree-level) order, the latter will
also give sizable contributions in black hole dynamics.

The result that the UV cutoff of a phenomenologically interesting and
causal EFT describing gravity must be lower than km−1 should not be con-
sidered only as a source of potentially large corrections to the effective de-
scription of astrophysical black holes. Instead, we should demand that this
result is reconciled with our experimental knowledge of gravity. As a matter
of fact, to date gravity has been probed in table-top experiments down to
the scales of tens of microns in length, showing good agreement with New-
tonian theory [147]. In light of this, one should at least prefer, if not demand,
that GR is extended using a theory valid down to the µm, in such a way to
describe the same observations as GR does.

In the scenarios studied above, being the cutoff at a much lower scale
than µm−1, one needs to trust that the UV completion that gives rise either
to the scalar-GB or to the dynamical-CS EFTs, does indeed reproduce the
Newtonian potential at microscopic lengths. Similarly to what was argued
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in [177, 179] for quartic curvature terms, this might be the case of a “soft”
UV completion that resolves the irrelevant operators in the EFT in such a
way that interactions stop growing with the energy.

In addition to this requirement, we need the UV completion to contribute
to the time delay in such a way that causality is preserved, in particular
given the negative contributions (i.e. the time advance) from the low-energy
operators.

This requirement is a substantial obstacle for both the scalar-GB and
dynamical-CS EFTs.15 Indeed, since the sizes of both the scalar-GB and of
the axion-CS operators are chosen in such a way to follow the tree-level
NDA, it appears difficult for loop-level effects in the UV physics to restore
causality, unless the number of species scales as (4π/g)2 ∼ (4πMPl/Λ)2

[164, 165]. On the other hand, as it was argued in [99, 163], in order for
causality to be restored by tree-level exchanges in the UV, one must in-
troduce an infinite tower of higher-spin particles having a mass of order
M ∼ km−1 ∼ 10−10 eV. In both these cases, the description of gravity below
the km would be very different from what we know.

In light of this, from a conservative point of view it seems that both scalar-
GB and pseudo-scalar-CS interactions cannot lead to testable modifications
of GR. A less conservative attitude might be trying to understand whether a
UV completion of these models exists that restores causality without clash-
ing with our knowledge of gravity at small distances. In any case, the detec-
tion of black hole hair would be revolutionary, telling us there is something
fundamentally unexpected and so far unknown about gravitational dynam-
ics.

15 As a matter of fact, consistency with unitarity and causality is an obstacle as well for any BGR
deformation of phenomenological relevance above the µm, in particular if it involves higher-
order terms in the curvature [127].
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E N V I R O N M E N TA L E F F E C T S : B I N A R I E S P E RT U R B E D B Y
A D I S TA N T T H I R D B O D Y

As discussed in the Introduction, the study of binary mergers makes both
desirable and necessary to parametrize efficiently the various possible
environmental and finite size effects that can considerably change the
binary inspiral over the course of many orbital periods.

Even in the ideal case of an isolated black hole binary, the study of
the inspiral dynamics has greatly benefited from various ideas developed
in the context of particle physics. The multitude of different methods that
have been proposed in the last decades can be organized based on which
parameters are treated perturbatively.
One possibility is to treat the gravitational interaction perturbatively in the
so-called Post-Minkowskian expansion, in which Gm

r ∼ rs
r ≪ 1 (r being the

separation between the bodies). In this limit it is possible to employ various
techniques of scattering amplitudes and quantum field theory to extract
fully relativistic, classical information about unbounded binary systems.
Notable examples are the binding potential [200–204], the eikonal phase
shift [205–207], effects on the trajectory of the bodies [208] as well as the
expectation value of various observables [209]. Once a quantity has been
determined for an unbound system, one can try to obtain its bound system
counterpart by analytic continuation [210, 211]. In the same PM expansion,
the Bethe-Salpeter equation can be used to study bound systems directly
[212].
A different possibility is to restrict to bound systems from the get-go, and
use knowledge of the virial theorem in conjunction with the non-relativistic
approximation to treat perturbatively the typical squared velocity of the
bodies v2 ∼ Gm

r ≪ 1, in what is called the Post-Newtonian expansion.
This approximation is employed in the Non-Relativistic General Relativity
(NRGR) approach [70, 213].
A third possible expansion parameter is given by the ratio of the masses of
the two bodies. This is called the self-force (SF) expansion [214–216], and
allows to obtain results that are non perturbative in the Newton’s constant
G. These different strategies to gain analytical control over the dynamics of
the inspiral can be combined in different ways [217–220].

These analytical approaches have been used to study effects due to
gravitational wave emission, i.e. the non conservative contribution to the
binary dynamics, see e.g. [221], as well as effects due to the spin and finite
size of the bodies, see e.g. [222–225]. The understanding of these effects in
binary dynamics remains currently a very active area of research, see e.g.
[226] for a summary of recent progresses.

As the precision of gravitational wave detection as well as our analytical
understanding of binaries progress, there is both interest and opportunity
to describe environmental effects by adapting existing analytical techniques.
In particular, one can exploit a distinctive feature of bound binary dynamics,
which is the natural separation of scales between high frequency modes
on time-scales of the orbital period and the nearly adiabatic evolution of
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the orbit due to departures from the Newtonian dynamics. This separation
of scales is already present for an isolated binary in GR, where relativistic
corrections both at the conservative and non-conservative level have a
sizable effects, namely the periastron precession and the shrinking of the
orbit, over time-scales much longer than the orbital period. The same holds
for effects due to the finite size and spinning of the bodies, see e.g. [213].
This feature of binary dynamics makes particularly convenient to employ
EFT techniques to describe a perturbed binary, as these make possible
to obtain a simplified description of the system over long timescales. In
particular, describing relativistic effects through the PN expansion allows
to analyze the interplay and relative importance of the various relativistic
effects and possible perturbations over certain time-scales.

Motivated by these opportunities and by the perspectives on future
observations, here we take on the task analyzing the case of a specific kind
of perturbation: the presence of a distant third body that orbits the binary.
Owing to the hierarchy in the typical distances between the bodies, these
systems are referred to as hierarchical triples. Besides being a convenient
choice of perturbation that can serve as a proxy for more generic scenarios,
effects related to hierarchical triples are very common in nature [227]. Ex-
amples include satellites and asteroids in the Solar system [228, 229], triple
stars [230–233], exoplanets [234–237] as well as triple systems including
black holes and neutron stars [238–243]. In addition to these examples,
future detections of relativistic triples are expected with LISA [244, 245].
As we expect, the large distance between the third body and the other
two results in a nearly Keplerian dynamics with two independent orbits
that evolve adiabatically. One representing the perturbed binary and the
other representing e.g. the orbit of the third body. We will dub these the
inner and outer orbit. This setup makes possible to describe the effects
due to the third body in a multipole expansion controlled by the ratio
ε = a

a3
≪ 1 of the semi-major axes of the inner and outer orbit16. With this

perturbative approach, three body effects have been studied to understand
e.g. the merger rate of compact objects [231, 240, 246–250] , the transits of
exoplanets [251–253] or the evolution of triple star systems [254–257]. The
perturbative description, valid as long as the third body remains far from
the other two, makes possible to outline interesting mechanisms that occur
on timescales much longer than the periods of the two orbits.
One example is given at the level of Newtonian interaction by the so-called
Kozai-Lidov (KL) mechanism [258], consisting in large oscillations of the
eccentricity and inclination of the inner orbit on timescales

TKL ∼ T3

T
T3 ∼ 1

ε3/2 T3 , (3.61)

T (T3) being the period of the inner (outer) orbit. Due to this effect, for in-
stance, hierarchical systems of black holes can feature dramatically reduced
merger timescales [248]. Since these systems are quite common in dense
stellar environments [259, 260], the Kozai-Lidov mechanism is especially
relevant to gravitational wave astronomy. Over longer time-scales, Newto-
nian three-body interactions can induce other effects, such as orbital flips
[261–263].

Moving past Newtonian interactions, the relation between two-body
GR effects and KL oscillations has been studied by numerous authors,

16 As a convention, we will indicate with the subscript 3 quantities that describe the outer orbit,
while we will use no subscripts for quantities describing the inner orbit.
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e.g. [246, 264–266]. Generically, the inner binary precession tends to sup-
press the eccentricity oscillations if the PN precession time-scale (T/v2) is
much shorter than the KL one [263]. In other parts of the phase space, how-
ever, PN corrections combined with the three-body effects can result in ex-
citing the inner orbit eccentricity [249]. Beyond these results much less is
understood about the corrections brought by the genuine three-body rela-
tivistic effects. These terms are essential to understand the interplay between
relativistic and three-body effects and obtain the correct time-evolution of
the system in some parts of the parameter space [267]. Due to the fact that
such effects appear suppressed by both ε and powers of v, they are usu-
ally called cross terms [268]. In the following we will address the question
of describing relativistic three-body effects from the point of view of EFT.
Leveraging on the separation of scales displayed by hierarchical triples, we
will use EFT and NRGR to derive a simplified, effective description for the
long time-scale dynamics including the first relativistic-quadrupole correc-
tions. Our approach will make a clear connection between the multipole
expansion of the three body effects and the effective long-timescale descrip-
tion of both the inner and outer orbits as composite particles. Importantly,
this connection makes possible to use symmetry arguments to find the most
convenient variables in which to encode the dynamics. In practice, this de-
scription is derived by computing averages of the multipole moments of the
orbits over their periods, capturing backreaction as well as deviations from
perfect adiabaticity of the orbital evolution. In Chapter 4 we will review the
approach of NRGR and carry out in the simplest terms our construction,
deriving an effective Lagrangian that describes the system over long time-
scales including O(v2ε3/2) contributions. In Chapter 5, we will refine our
construction to derive relativistic quadrupole effects and obtain an effective
Lagrangian including O(v2ϵ5/2) contributions. Many of the technical details
of this construction will be presented in the appendices B.



4
A N E F T D E S C R I P T I O N O F H I E R A R C H I C A L T H R E E
B O D Y S Y S T E M S

The hierarchical three body problem has been for centuries a central topic
in celestial mechanics, see e.g. [269] for a comprehensive discussion of the
Newtonian case. A conventional treatment for tackling it proceeds by ex-
panding the Hamiltonian in the ratio of semimajor axes, ε, to then average
it on both orbital timescales to obtain a set of long-timescale evolution equa-
tions of orbital quantities, a procedure known as double averaging. The set
of equations thus obtained is commonly referred to as the Lagrange plan-
etary equations. For instance, the quadrupole term of this averaged expan-
sion gives rise to the KL oscillations discussed above.

Another valid approach is to further assume a hierarchy of masses
m3 ≫ m1, m2 so that the system can be studied with black hole perturba-
tion theory [270–278].

Most previous studies on the fully relativistic hierarchical three-body
problem use a combination of the post-Newtonian formalism [15] and
the quadrupole expansion at the level of either the equations of mo-
tion [267, 279–283] or the Hamiltonian [249, 284]. However, their studies
do not take into account the so-called cross terms computed in [281–283].
The computations needed to identify these contributions can be quite cum-
bersome, making difficult to develop a physical intuition of the role of the
various terms.

To tackle this issue and develop a satisfactory method to understand cross-
terms, instead, we begin exploring three-body systems following a new ap-
proach, based on a number of powerful EFT techniques that have been de-
veloped for the relativistic two-body problem in recent years.

In particular, we employ the techniques of NRGR [70, 213] building
on the strategy proposed to describe the spin of the constituents of a bi-
nary [71, 223, 285], and on the resulting spin-induced PN contributions that
have been computed [71, 222, 286–289]. In the EFT language, the gravita-
tional multipole expansion is implemented at the level of the action [290],
using symmetries to restrict the form of the allowed terms [291]. The mul-
tipole expansion derived in this way can then be employed to compute the
gravitational dissipative dynamics in the GR two-body problem [221].

In the following, we will apply similar ideas to the hierarchical three-body
problem. As mentioned, the dynamics of (mildly) relativistic hierarchical
triples is characterized by two small dimensionless ratios of scales, v and
ε. For this reason, power counting rules can be derived following the EFT
approach of NRGR to estimate easily the sizes of different contributions,
thus predicting to what order in perturbation they have to be computed,
for a given experimental accuracy. Moreover, the NRGR setup makes sym-
metries manifest at the level of the Lagrangian, providing guidance on the
form that the various contributions will take once the appropriate variables
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are selected. As we will see, this considerably simplifies the form of the
cross-terms compared to the existing literature and it allows to gather some
physical intuition about the effects of relativistic multipole corrections to the
dynamics.

The very nature of the EFT framework requires to first identify the hi-
erarchy of well-separated length scales involved in a system and remove
(integrate out) each of them, one at a time, starting form the shortest.

Thus, we will first focus on the inner binary and integrate out the gravi-
tational field in the presence of an external perturbation, which will be ulti-
mately generated by the third body. The resulting theory will match onto a
composite particle, endowed with spin and multipole moments, coupled to
gravity. Such a treatment will be valid away from resonances 1, and as long
as the ratio of semimajor axes ϵ remains small at all times. This procedure
means replacing a three-body problem with a simpler two-body one, where
one of the two point-particles is the inner binary.

Here we describe briefly the distinct steps of our approach and outline
the structure of the chapter.

1. We will start from a system of three worldlines minimally coupled to
gravity, where we have already integrated out the modes whose wave-
lengths are comparable with the size of the bodies. From this start-
ing point, we will integrate out the off-shell modes that contribute
to the gravitational potential of the inner binary, having momenta
kµ ∼ (v/a, 1/a). Thus we will obtain an action describing the gravita-
tional interaction of the two inner bodies in the presence of an external
gravitational field. This will be done in Section 4.1.

2. Then we will first expand the Lagrangian in multipoles and, after that,
since we are interested in long-time scale evolution, we integrate out
the point-particle orbital modes with frequencies ω > v/a. In practice
this will be done by averaging over the period of the inner orbit. Doing
so, we will obtain the action of a composite particle, whose spin is sim-
ply the orbital angular momentum of the inner binary, coupled to an
external gravitational field. This step will be carried out in Section 4.2.
Although the final result may seem straightforward from an EFT per-
spective (gauge invariance fixes all the terms in the action to dipolar
order without any free parameter, so that the matching might seem
superfluous), the computation will allow us to find the exact relation
between the center-of-mass choice and the so-called "spin supplemen-
tary condition" (SSC), which is a particular gauge choice for the spin
tensor.

3. Similarly to the first step, we will then consider the two worldlines, one
for the third body and the other for the composite spinning particle
representing the inner binary. We introduce the "effective two-body"
EFT and show explicitly its power-counting rules in both expansion
parameters v and ε. Integrating out the off-shell modes with momenta
kµ ∼ (V/a3, 1/a3), we will obtain an action describing the gravita-
tional interaction between the inner binary and the third body.

4. Finally, we will integrate out the remaining point-particle orbital
modes with frequencies ω > V/a3, doing an average over the period

1 If the perturbation was in resonance with the modes of the inner orbital motion, then it would
be much more difficult to integrate out these modes and to describe the inner binary as an
effective point particle. The same obstacle is encountered in the double averaging procedure,
see for instance Appendix A2 of Ref. [262].



62 an eft description of hierarchical three body systems

of the outer orbit. In this way we will get to a Lagrangian represent-
ing the dynamics of the 3-body system as an interaction between the
composite particle representing the inner binary and the outer body.
These last two steps will be carried out in Section 4.3.

Besides these points, in Section 4.1 we will also comment on the rela-
tivistic definition of the center of mass and introduce the osculating orbital
elements that describe the perturbed motion of the binary. We elaborate on
the relation between the spin kinetic term and the Lagrange planetary equa-
tions in Appendix B.1, while in Appendix B.2 we provide details about the
specific spin supplementary condition used in this article.

In the present chapter, we will carry out our computations up to dipole
and 1PN order. Already at this stage, we will highlight a number of concep-
tual clarifications arising from the EFT treatment. However, several interest-
ing new terms also arise at quadrupolar order, related to the corrections to
the adiabatic approximation [281, 283]. The analysis of these terms will re-
quire subtler choices of variables as well as a refined procedure to integrate
out the orbital modes, i.e. keeping their backreaction into account. We defer
this analysis to Chapter 5.

Given the numerous different symbols appearing in this part of the work,
we provide here a dictionary of our notation:

• y1, v1, y2, v2: positions and velocities of the two constituents of the
inner orbit, of masses m1 and m2;

• y3, v3: position and velocity of the third body, of mass m3;

• YCM, VCM: position and velocity of the center-of-mass of the inner bi-
nary, defined in Section 4.1.2

• r = y1 − y2, r = |r|, n = r/r v = v1 − v2, R = YCM − y3, R = |R|,
N = R/R, V = VCM − v3;

• m = m1 + m2 is the mass of the inner binary, M = m1 + m2 + m3 is
the total mass of the system, µ = m1m2/m is the reduced mass of the
inner and ν = µ/m its symmetric mass ratio. Similarly, µ3 = m3m/M
and ν3 = µ3/M are the reduced mass and symmetric mass ratio of the
outer;

• a [a3]: semimajor axis of the inner [outer] orbit;

• e [e3]: eccentricity of the inner [outer] orbit;

• α̂, β̂, γ̂ [α̂3, β̂3, γ̂3]: orthonormal basis of vectors characterizing the in-
ner [outer] orbit, aligned respectively along the semimajor axis (point-
ing towards the pericenter), the semiminor axis, and the angular mo-
mentum;

• Ω, ω, ι: angles characterizing the orientation of the inner orbit (the "or-
bital elements"), defined by α̂ = Rz(Ω)Rx(ι)Rz(ω)ûx where the Rxi ’s
are rotation matrices along the given axis xi;

• u [η]: mean [eccentric] anomaly of the inner orbit;

• L, G, H: conjugate momenta to u, ω and Ω respectively, defined in
Eq.(B.10);

• J = µ
√

GNma(1 − e2)γ̂ [J3 = µ3

√
GN Ma3(1 − e2

3)γ̂3]: angular momen-
tum vector of the inner [outer] orbit;
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Figure 4.1: Illustration of the "effective two-body" description and of osculating ele-
ments. The inner binary is replaced with a point-particle whose spin and
multipole moments are related to the osculating elements of the inner
orbit.

• E = m − GNmµ/(2a): Total (mass and Newtonian) energy of the inner
binary;

4.1 a binary system in an external field

In this Section, we will obtain the effective Lagrangian at the first post-
Newtonian order for the inner two-body system using the background field
method, which amounts to integrate out the metric fluctuations in the pres-
ence of an arbitrary external field. Up to dipole order, we will then ex-
plicitly match this Lagrangian to the one of a spinning point-particle cou-
pled to gravity. This spin coupling induces the dominant non-trivial post-
Newtonian evolution of the inner binary parameters in the hierarchical
three-body problem.

Before integrating out the gravitational field, let us introduce a convenient
notation. We will write the Lagrangian of the binary as

L =
1
2

µv2 +
GNµm

r
+ L1 ≡ L0 + L1 , (4.1)

where µ = m1m2/(m1 + m2) is the reduced mass, r = y1 − y2, v = v1 − v2
and L1 ≡ µR is called the perturbing function. For instance, considering
only the Newtonian-order perturbation due to the additional Newtonian
potential Φ from the third body, the perturbing function reads

L1 =
1
2

mV2
CM − m1Φ(t, y1)− m2Φ(t, y2) , (4.2)

where VCM is the (Newtonian) center-of-mass velocity. The aim of this Sec-
tion is to compute the 1PN terms in the perturbing function.

4.1.1 The Lagrangian up to 1PN order

In order to make the computations as simple as possible, we will use the
Kaluza-Klein decomposition space+time of the metric presented in [292,
293], since in the NR regime the time dimension can be considered as com-
pact in comparison to the spatial dimensions. The full metric is decomposed
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into a scalar ϕ, a spatial vector Ai and a spatial metric γij in the following
way:

ds2 = −e2ϕ
(

dt − Aidxi
)2

+ e−2ϕγijdxidxj . (4.3)

We take the field action to be the standard Einstein-Hilbert term with a
harmonic gauge-fixing term [70],

S =
MPl

2

2

∫
d4x

√
−g R − MPl

2

4

∫
d4x

√
−g gµνΓµΓν , (4.4)

where Γµ is the harmonic gauge condition,

Γµ = Γµ
νρgνρ . (4.5)

In the non-relativistic limit and in the conservative sector of the dynamics,
temporal derivatives are treated as an interaction term. Up to 1PN order we
will only need the part of the action defining the ϕ and Ai propagators, so
that the action simplifies to

S =
MPl

2

2

∫
d4x

[
2(∂µϕ)2 − 1

2
(∂i Aj)

2
]

. (4.6)

Consequently, the propagators of the (Fourier-space) fields are given in the
non-relativistic regime by

⟨Tϕ(k, t1)ϕ(q, t2)⟩ = − i
2k2MPl

2 δ3(k + q)δ(t1 − t2) , (4.7)

〈
TAi(k, t1)Aj(q, t2)

〉
=

2i
k2MPl

2 δijδ
3(k + q)δ(t1 − t2) , (4.8)

and there is an additional scalar temporal vertex whose expression is
−MPl

2 ∫ d4x ϕ̇2.
To the Einstein-Hilbert term we add two point-particles A = 1, 2 whose

action is

Spp,A = −mA

∫
dt
√
−gµνvµ

Avν
A

= −mA

∫
dt eϕ

√
(1 − A · vA)2 − e−4ϕv2

A ,
(4.9)

where vµ
A = (1, vA) is the coordinate velocity of the point-particle. We have

set γij = δij since the fluctuations of γij contribute only starting from 2PN
order [292]. We expand the point-particle action for weak-field values. At
1PN order, the only vertices contributing are:

Spp,A = −mA

∫
dt

(
1 − v2

A
2

− v4
A
8

− A · vA

+ ϕ

(
1 +

3
2

v2
A

)
+

ϕ2

2

)
.

(4.10)

We now use the background field method by splitting the fields according
to ϕ = ϕ̄ + ϕ̃, Ai = Āi + Ãi. The tilde quantities correspond to an external
arbitrary field (later on, we will relate this field to the one generated by
the third point-particle), while we integrate out the barred quantities corre-
sponding to gravitons exchanges between the two bodies. The part of the
Lagrangian which does not depend on ϕ̃ and Ãi is the so-called EIH La-
grangian [294]. Since it has already been computed in this framework by
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Figure 4.2: Feynman diagram contributing to the emission of one scalar, at order v2.

several references [70, 292, 293], we will simply give its expression without
explicitly computing the relevant Feynman diagrams:

LEIH =
1
2

m1v2
1 +

1
2

m2v2
2 +

GNm1m2

r
+

1
8

m1v4
1 +

1
8

m2v4
2

+
GNm1m2

2r

[
3v2

1 + 3v2
2 − 7v1 · v2 − v1 · n v2 · n − GNm

r

]
,

(4.11)

where r = y1 − y2, r = |r| and n = r/r.
Next, including background fields, we can compute the perturbing func-

tion L1 defined in Eq. (4.1), integrating out ϕ̄ and Āi. At 1PN order the
result is given by:

L1 ≡ L−L0 = LEIH −L0 − m1ϕ̃(y1)

(
1 +

3
2

v2
1

)
− m1

2
ϕ̃(y1)

2 + m1Ã(y1) · v1 +
GNm1m2

r
ϕ̃(y1)

+ (1 ↔ 2) ,

(4.12)

where L0 was introduced in Eq. (4.1), and the last term comes from the
Feynman diagram with one external ϕ̃ and one internal ϕ̄, represented in
Figure 4.2.

4.1.2 Center-of-mass coordinates

Given the full 1PN two-body Lagrangian in Eq. (4.12), there remains to ex-
pand the two point-particle positions relatively to their common center-of-
mass (CM). It is a well-known fact that there is no universal CM definition
in General Relativity [295]. For example, the ambiguities in the choice of
the CM are related to the so-called "spin supplementary condition" for spin-
ning point-particles, which is a gauge choice for the spin degree of free-
dom [223, 296]. We provide a discussion about the spin of our system and
its relation to the center of mass in Appendix B.2. In our case, we will adopt
the standard post-Newtonian definition of the CM, i.e at 1PN order:

EYCM = E1y1 + E2y2 ,

EA = mA +
1
2

mAv2
A − GNm1m2

2r
,

E = E1 + E2 .

(4.13)
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Conversely, one can express the coordinates yA using the relative separation
r and the CM position XCM:

y1 = YCM + (X2 + δ)r , y2 = YCM + (−X1 + δ)r , (4.14)

where we have defined

XA =
mA
m

, m = m1 + m2 , µ =
m1m2

m
, ν =

µ

m
(4.15)

and to 1PN order we have:

δ = −νVCM · v + ν(X1 − X2)

(
v2

2
− GNm

2r

)
. (4.16)

In the absence of any external field, the CM follows a straight line in the
post-Newtonian coordinates. However, in the hierarchical three-body prob-
lem the binary CM will not follow such a trajectory even at the Newtonian
level.

We now expand the Lagrangian (4.12) in multipoles, e.g.

ϕ̃(y1) = ϕ̃ + (y1 − YCM)i∂iϕ̃

+
1
2
(y1 − YCM)i(y1 − YCM)j∂i∂jϕ̃ + . . . ,

(4.17)

where the field is now evaluated at the CM position YCM. The monopole
corresponds to the term involving no derivatives of the fields, the dipole to
the term involving first derivatives of the fields and so on.

4.1.3 Osculating orbital elements

Before expanding the Lagrangian (4.12) into multipoles and perform a
matching with an effective point-particle action, we must eliminate an un-
wanted degree of freedom from the full theory. Indeed, we want to describe
the evolution of the binary over a secular timescale, i.e. a time much longer
than the period of the binary itself. In order to do so we average all quan-
tities over the quick periodic motion of the binary, which can be approx-
imated with an ellipse. Indeed, if the motion was purely Newtonian, the
trajectory would be described by five constants of motion (six, if we count
the initial time), which are nicely packaged in a set of geometrical elements,
the so called osculating orbital elements. These are respectively the semima-
jor axis of the ellipse, the unit vector along the angular momentum and the
Runge-Lenz vector:

a = −GNm
2

(
v2

2
− GNm

r

)−1

,

γ̂ =
r × v√

GNma(1 − e2)
,

e =
1

GNm
v × (r × v)− r

r
.

(4.18)

There are two angles in the unit vector γ̂; furthermore e is orthogonal to γ̂
(it points towards the perihelion) and its norm is equal to the eccentricity e.
Conversely, the position and velocity vectors can be written as

r = a
(
(cos η − e) α̂ +

√
1 − e2 sin η β̂

)
,

v =

√
GNm

a
1

1 − e cos η

(
− sin η α̂ +

√
1 − e2 cos η β̂

)
,

(4.19)
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where α̂ = e/e, β̂ = γ̂ × α̂ and η is the eccentric anomaly, defined by

u =

√
GNm

a3 t + ϕ = η − e sin η , (4.20)

where ϕ is an arbitrary initial phase, and u is called the mean anomaly.
Now, if the motion is slightly perturbed by post-Newtonian or quadrupo-

lar corrections these constant elements will generically vary slowly with
time (compared to the orbital frequency). Thus, in this generic case, we de-
fine the osculating elements as the (time-dependent) values of a, e, ϕ, α̂ and
γ̂ such that the instantaneous position and velocity of the binary is given by
the formulae (4.19). This physically corresponds to drawing at each point
the ellipse defined by the instantaneous position and velocity of the binary.
We have mapped the six components of r, v into six elements a, e, ϕ, α̂ and
γ̂.

The equations of motion for the binary system can then be translated
in a set of first-order equations on the osculating elements, called the La-
grange planetary equations (LPE). For completeness, we recall them in Ap-
pendix B.1. For our present purposes, though, it will be sufficient to state the
result of Eq.(B.12), i.e. that the orbit-averaged LPE are completely equivalent
to a spin kinetic term in the Lagrangian in flat spacetime:

1
2

µv2 +
GNµm

r
→ J · Ω , (4.21)

where J is the total angular momentum of the binary and Ω is an angular
velocity defined by

J = µ
√

GNma(1 − e2)γ , Ω = α̂ × ˙̂α . (4.22)

Finally, we will average all quantities in the Lagrangian over one period of
the binary, using the formula

⟨A⟩ = 1
2π

∫ 2π

0
dη(1 − e cos η)A(η) . (4.23)

valid to lowest order for any quantity A (we recall that η is the eccentric
anomaly defined in Eq. (4.20)). Thus, we will have removed from the La-
grangian the high-energy degree of freedom contained in the mean anomaly.
As a consequence of the LPE (B.4), the semimajor axis a will be conserved.
This can be understood as deriving from the fact that the conserved conju-
gate momentum associated to the mean anomaly depends only on a. As a
side remark, notice that Eq. (4.23) is valid only if we assume that the binary
exactly follows an ellipse. As explained in App. B.1, there will be higher-
order corrections to this formula, which however are not needed for our
present purposes.

4.2 multipole expansion

4.2.1 The internal Lagrangian

To begin with, let us deal with the very first term in the Lagrangian (4.12),
namely the EIH Lagrangian. This term does not contain any coupling to the
gravitational field. As explained before, it still contains the short-distance
degree of freedom from the Kepler trajectory of the binary system. In order
to remove it and keep only the long-distance degrees of freedom which can
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be excited by the external field (in other words, the osculating elements), we
should average the Lagrangian over the inner binary timescale, splitting the
variables between the center-of-mass and the relative variables.

A priori, one should be careful about the fact that in the Newtonian kinetic
energy one should use the relativistic center-of-mass definition in Eq.(B.71).
However, the meaning of the supplementary 1PN term will be better un-
derstood in terms of spin coupling, so we defer its calculation to a later
Subsection. Thus, in this Subsection we stick to the Newtonian definition
of the center-of-mass. Carrying out the heavy but straightforward computa-
tions, we find by using Eq (4.23):

⟨LEIH −L0⟩ =
1
2

mV2
CM +

1
8

mV4
CM + 3µ

G2
Nm2

a2
√

1 − e2
− GNµm

4a
V2

CM , (4.24)

where we have dropped an unimportant constant term in the average (de-
pending on the semimajor axis a only, which is constant in the adiabatic
approximation). Each term in Eq. (4.24) lends itself to a very simple inter-
pretation. The two first terms are just the usual relativistic expansion of

the center-of-mass velocity −m
√

1 − V2
CM. The third term is the average of

the EIH Lagrangian of a binary system in isolation: used in the LPE equa-
tion (B.8), it gives rise to the celebrated perihelion precession formula. We
call such a term the "internal" Lagrangian Linternal:

Linternal = 3µ
G2

Nm2

a2
√

1 − e2
. (4.25)

Finally, the meaning of the last term in Eq.(4.24) will become clearer in the
next Subsection.

4.2.2 Monopole

Starting from Eq.(4.12) we can collect all the terms coupling the binary sys-
tem to the monopole of the external gravitational field:

Lmonopole=−mϕ̃

(
1 +

3
2

V2
CM +

3
2

νv2 − 2GNµ

r

)
− m

2
ϕ̃2 + mÃ · VCM , (4.26)

where ϕ̃ and Ã are evaluated at the CM position YCM. Note that in the term
multiplying ϕ̃ in the above equation, we have used the Newtonian version
of the CM (i.e., we have set δ = 0 in (B.72)) since the terms involving δ are
of higher post-Newtonian order. Averaging over the binary orbital timescale,
we find〈

Lmonopole

〉
=−mϕ̃

(
1 +

3
2

V2
CM − GNµ

2a

)
− m

2
ϕ̃2 + mÃ · VCM , (4.27)

Let us now gather this monopole coupling together with the average of
the EIH Lagrangian (4.24) computed in the last Subsection. To 1PN order,
we find〈
Lmonopole+EIH

〉
= Linternal − m

√
−g̃µνVµ

CMVν
CM +

GNµm
2a

(
ϕ̃ − V2

CM
2

)
.

(4.28)

To 1PN order, the last term can be exactly accounted for by replacing the
mass m of the binary system (which is now treated as an effective point-
particle) with its total energy in the worldline Lagrangian:〈

Lmonopole+EIH

〉
= Linternal − E

√
−g̃µνVµ

CMVν
CM , (4.29)
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where E is defined as
E = m − GNmµ

2a
. (4.30)

Thus, the binary moves in the external field with a total mass equal to
its binding energy, as could have been anticipated from an EFT perspec-
tive [285]. However, our computation highlights the fact that one should
also include the internal Lagrangian in the effective action so that the bi-
nary PN precession effects are taken into account.

4.2.3 Dipole

Expanding the Lagrangian (4.12) to dipole order (i.e, to first derivatives
in the external fields) by taking into account the relativistic CM defini-
tion (B.71), we find at 1PN:

Ldipole = µri∂iϕ̃

[
− 2VCM · v

+ (X1 − X2)

(
v2 − GNm

2r

) ]
+ µrivj∂i Ãj ,

(4.31)

where XA = mA/m. As before, one should average this Lagrangian over the
inner binary timescale. We find that the term proportional to the difference
of masses averages out, leaving us with an averaged Lagrangian〈

Ldipole

〉
=

µ

2

√
GNma(1 − e2)ϵijkγ̂k

(
2Vi

CM∂jϕ̃ + ∂i Ãj
)

. (4.32)

From this expression one easily recognizes the coupling of a spinning point-
particle to gravity given in e.g. [223, 285]. In our case, the spin tensor Jµν

depends on the total orbital angular momentum of the binary system J =
µ
√

GNma(1 − e2)γ̂ through the relations

Jij = ϵijk Jk , J0i = 0 . (4.33)

The second condition is called a spin supplementary condition, removing
the unwanted degrees of freedom from the full spin tensor Jµν. As men-
tioned before, this gauge condition is related to the choice of a center-of-
mass of the binary system; our particular CM choice in Eq. (B.71) has se-
lected the spin supplementary condition J0i = 0, which has already been
discussed e.g. in [223, 297]. We further elaborate on this in Appendix B.2.
Furthermore, note that in Eq. (4.33) the spin tensor has been projected to
a locally flat frame through Jab = ea

µeb
ν Jµν, where we have introduced the

worldline tetrads defined over all spacetime by g̃µνeµ
a eν

b = ηab. As a side re-
mark, note that on top of the spin supplementary condition, the components
of the spin vector are not all independent degrees of freedom following the
remark below Eq. (B.13). This reflects the fact that the spin of the inner bi-
nary contains two degrees of freedom once the orbital timescale has been
integrated out, instead of the three degrees of freedom contained in the
Euler angles of a generic spin.

To 1PN order, the spin coupling (4.32) can be written in a compact form
using the Ricci rotation coefficients:〈

Ldipole

〉
=

1
2

Jabωab
µ Vµ

CM , ωab
µ = eaνDµeb

ν . (4.34)
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This formula gives back our previous equation (4.32) when expanded for
weak-field values [285, 287]. We may be tempted to add to this spin cou-
pling the kinetic term for the spin in Eq. (4.21) to obtain the minimal grav-
itational spin coupling which has been discussed at length in the NRGR
formalism [71, 223]:

Lspin =
1
2

JµνΩµν . (4.35)

In this equation the total angular velocity Ωµν includes both the Ricci ro-
tation coefficients from Eq. (4.34) and the locally flat angular velocity from
Eq. (4.21). It is defined through

Ωµν = eµ
a eν

b

(
Ωab

flat + Vα
CMωab

α

)
, (4.36)

Here Ωab
flat is related to the tensor Ωij = ϵijkΩk by a relation that we discuss

in Appendix B.2, and the rotation vector Ω = α̂ × ˙̂α has been defined in
Eq (5.2). However, there is a small piece that is still missing to obtain the
full Eq. (4.35), related to the choice of the center-of-mass. As we show in
Appendix B.2, in the spin gauge we are using (J0i = 0), there should be
a supplementary spin kinetic term related to Thomas precession, which is
1PN order higher than the kinetic term (4.21):

1
2

JµνΩµν ⊃ J · Ω +
1
2

Jij Ai
CMV j

CM , (4.37)

where ACM is the acceleration of the center-of-mass. Such a term is related
to the PN corrections to the center-of-mass position (and speed) which we
ignored in Section 4.2.1. Indeed, using the full CM definition (B.71) in the
Newtonian part of the EIH Lagrangian (4.11) gives a supplementary 1PN
order term,

LThomas = mVCM · d
dt

(δr) , (4.38)

where δ has been defined in Eq. (B.73). At first sight, we may be tempted
to discard such a term when averaging out the internal binary timescale.
However, one should not forget to take also the time derivative acting on
VCM in δ, giving rise to

⟨LThomas⟩ = −µ
〈

rivj
〉

Vi
CM Aj

CM =
1
2

Jij Ai
CMV j

CM , (4.39)

which is exactly the additional spin kinetic term shown in Eq. (4.37).

4.2.4 Quadrupole

From the EFT point of view, at 1PN quadrupolar order the couplings to
gravity are contained in two non-minimal worldline operators [291]:

O1 =
1
2

∫
dτEijQ

ij
E , O2 = −4

3

∫
dτBijQ

ij
B , (4.40)

where Qij
E and Qij

B are the electric-type and magnetic-type quadrupole mo-
ments of the source, coupled to the corresponding parts of the Weyl tensor
Cµναβ:

Eµν = CµναβVα
CMVβ

CM ,

Bµν =
1
2

ϵµαβσCαβ
νρVσ

CMVρ
CM .

(4.41)
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Furthermore,in Eq. (4.40) the tensors have been projected to the locally flat
frame defined below Eq. (4.33).

We could proceed as before and carry out the integration procedure to
obtain the quadrupole moment of the effective point-particle. However, at
this order the procedure is somewhat more involved than one could naively
expect. The first complication comes from the corrections to the time av-
erages introduced in Eq. (4.23). Indeed, post-Newtonian corrections to the
period of the system will matter when taking the average of the Newtonian
quadrupole moment, combining to produce a quadrupolar 1PN term. In the
same way, the Newtonian quadrupolar corrections to the motion of the inner
binary should be taken into account in the average of the EIH Lagrangian.

The second complication comes from the corrections to the adiabatic ap-
proximation mentioned in the introduction. Indeed, in our analysis we are
assuming that all the variables of the inner binary vary on long timescales
(except of course the mean anomaly). This neglects short-timescale oscilla-
tions, which can ultimately have an effect on long-wavelength modes [298,
299]. It turns out that at lowest order this effect produces cross-terms of 1PN
quadrupolar order [281, 283] (no such corrections appear at lower multipole
orders). While noting in passing that these kind of corrections have a very
transparent meaning in the EFT language (they are high-energy corrections
to an effective low-energy action), we will defer their complete calculation
to Chapter 5.

4.3 integrating out the outer binary timescale

Now that we have replaced the binary system with an effective point-
particle, we can integrate out the external fields ϕ̃, Ã in the presence of
a third point-particle of mass m3. For simplicity, in the following we will
assume this mass to be of the same order of the mass of the inner binary:
m3 ∼ m. We will first derive the Feynman rules of the effective point-particle;
then, in a second step, we will integrate out the outer binary timescale and
comment on the different terms obtained in the expansion of the Lagrangian.
For the 1PN precision we aim to, it will be sufficient to set the total Newto-
nian center-of-mass of the three-body system to the origin of coordinates (it
will accelerate only at 2PN order [300]). Thus, we will have the expressions

YCM = X3R , y3 = −XCMR , (4.42)

where we recall that YCM is the position of the center-of-mass of the inner
binary, and we have defined R = YCM − y3, R = |R|, N = R/R, M = m1 +
m2 + m3, X3 = m3/M and XCM = m/M. The averages over the outer binary
timescale are then taken in the same way than in the preceding Section.

4.3.1 Power-counting rules

Let us recap what we have learned so far and set up power-counting rules
for the vertex coupling the binary system (now treated as an effective point-
particle) to gravity. Up to dipole order, the Lagrangian of the binary system
can be written as

L = Linternal − E
√
−g̃µνVµ

CMVν
CM +

1
2

JµνΩµν . (4.43)

Note that this Lagrangian has not yet been averaged over the period of the
outer orbit T3, and can therefore describe the secular dynamics on timescales
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shorter than T3. With such a simple Lagrangian, one can assign the standard
power-counting rules of NRGR which have been described in e.g [70, 213,
301], considering the motion of the effective point-particle and the third
mass (the outer orbit) for which one has V2

CM ∼ v2
3 ∼ GM/a3 where a3 is the

semimajor axis of the outer orbit. Thus, spatial derivatives are treated as ∂i ∼
a−1

3 . Time intervals scale as t ∼ a3/VCM and the metric perturbations scale as
ϕ̃ ∼ Ãi ∼ V1/2

CM (MPla3)
−1. As usual in NRGR, the lowest-order Lagrangian

scales as the orbital angular momentum of the outer orbit J3 ∼ MVCMa3
which is treated non-perturbatively, higher-order corrections coming with
higher powers of VCM.

However, one difference with respect to the standard NRGR power-
counting rules is evidently the presence of two expansions, the first one
in v and the second one in ε ≡ a/a3. A priori, we could also have an ex-
pansion in the post-Newtonian parameter of the outer orbit VCM. However,
not all these parameters are independent. We choose to write all the post-
Newtonian corrections as an expansion in the velocity of the inner binary v,
converting the center-of-mass velocity by means of the relation VCM ∼ vε1/2,
which holds when m ∼ m3. In Table 4.1 we give the power-counting rules
of the monopole and dipole vertex which we computed in Sections 4.2.2
and 4.2.3. The effect of post-Newtonian corrections on the dynamics of the
system is highly non-trivial, as it can lead to suppression as well as enhance-
ment of the Kozai-Lidov oscillations depending on the part of parameter
space explored [249]; we expect that our power-counting scheme will help
in discriminating between the different behaviors observed.

Notice that the scaling of the spin is somewhat different than the one
usually presented in NRGR [71, 287]. Indeed, when taking compact objects
as point-particles the spin is given as an order-of-magnitude by

J ∼ mrsvrot < mrs , (4.44)

where vrot is the rotation velocity of the object and rs ∼ GNm its size. As
a consequence, the ratio of the spin coupling presented in Eq. (4.32) to the
Newtonian gravitational coupling is of v3 (1.5PN) order. However, in our
case the spin order-of-magnitude is given by J ∼ µ

√
GNma so that the ratio

of (4.32) to the Newtonian coupling is

JVCM∂ϕ

mϕ
∼ v2ε3/2 . (4.45)

Thus, the inner binary angular momentum coupling is formally of 1PN or-
der, although it is suppressed by the small ratio ε3/2. This power-counting
is different from the one of the Lense-Thirring precession caused by the in-
trinsic spin of the objects, which has been studied in [267, 279] and enters at
1.5 PN.

4.3.2 Monopole

Let us begin by integrating out the vertex contained in the monopole op-
erators of the effective binary system, i.e in the square root appearing in
Eq. (4.43). The final effective action, including orders of J3v2ε, is given by:

L≤v2ε = Linternal + L̃CM,3
EIH , (4.46)

where LCM,3
EIH is the EIH Lagrangian of the system composed by the CM (of

mass E , defined in Eq. (4.29)) and the third particle.
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Operator Rule
1
2

mV2
CM J3

−mϕ̃ J1/2
3

mÃ · VCM J1/2
3 vε1/2

1
8

mV4
CM J3v2ε

−3
2

mϕ̃V2
CM J1/2

3 v2ε

−1
2

mϕ̃2 v2ε

GNµm
2a

ϕ̃ J1/2
3 v2

−GNµm
4a

V2
CM J3v2

JijVi
CM∂jϕ̃ J1/2

3 v2ε3/2

1
2

Jij∂
i Ãj J1/2

3 vε

1
2

Jij Ai
CMV j

CM J3v2ε3/2

Table 4.1: Power-counting rules for the vertices obtained by expanding the effec-
tive point-particle action (4.43) up to 1PN order, with J3 = (GN M3a3)

1/2,
v2 = Gm/a and ε = a/a3. For convenience, the integral over time is not
displayed, although it should be included to obtain a dimensionless rule.
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(a) (b)

Figure 4.3: Feynman diagrams contributing to the lowest-order spin-orbit coupling,
at order J3v2ε3/2. The dot represent the insertion of a spin coupling from
Eq. (4.32). The dotted line represents propagation of a scalar ϕ, while the
dashed line stands for the propagation of a vector A.

The Lagrangian in Eq. (4.46) involves a non-trivial coupling between the
variables of the inner and outer binaries, given by

Lv2 = −GNµm
2a

(
V2

CM
2

+
GNm3

R

)
. (4.47)

This contribution is of order v2 with respect to the standard Newtonian term
L0 ∼ GN M/a3. We average this term over one orbit of the outer binary,
which gives

Lv2 = −G2
N M2µν3

2aa3

(
1 +

X3

2

)
, (4.48)

where M = m3 + m, X3 = m3/M and ν3 = mm3/M. This new monopole
coupling has no effect on the dynamics. Indeed it depends only on the semi-
major axes a and a3. Consequently, in the Lagrange planetary equations this
term will only enter in the equation for the mean anomaly (B.7), which is
surely irrelevant in the adiabatic approximation. Therefore, at the level of
the monopole, the resulting motion is the one of two ellipses precessing
because of standard two-body GR effects.

In fact, one can be quite generic about the monopole terms. Indeed, the
only planetary elements upon which the monopole terms could depend
are the semimajor axes a, a3 and the eccentricities e, e3 (they do not involve
angles). In the LPE the derivatives with respect to these elements enter only
in the equations for the mean anomaly (B.7) and the perihelion angle (B.8).
Thus, the only effect that monopole terms can have is to make the ellipses
precess.

4.3.3 Dipole

In order to integrate out modes contributing to the potential at dipole order,
we have to compute the diagrams related to spin-orbit coupling. These are
shown in Figure 4.3. Using the Lagrangian averaged over the inner orbit
Eq. (4.32), we find:

Lspin−orbit =
1
2

Jij
GNm3

R3 Ri
(

4vj
3 − 2V j

CM

)
. (4.49)

At this order of approximation however, we should also take into account
the Thomas precession term of Eq. (4.39). This gives a contribution of the
same size of the terms in Eq.(4.49). We can replace the center-of-mass ac-
celeration in Eq. (4.39) using the equation of motion, since the difference
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between the two terms would contribute at a higher PN order (this is usu-
ally called the "double zero trick" [302, 303]). Thus, at order J3v2ε3/2 the full
Lagrangian is given by

Lv2ε3/2 =
1
2

Jij
GNm3

R3 Ri
(

4vj
3 − 3V j

CM

)
= −1

2
Jij

GNm3(4m + 3m3)

MR3 RiV j ,
(4.50)

which recovers the result already known in the NRGR approach [287]. Car-
rying out the average over the outer binary timescale in a way very similar
to the previous Section, we find

⟨Lv2ε3/2⟩ = −4m + 3m3

2m
GN

a3
3(1 − e2

3)
3/2

J · J3 , (4.51)

where J3 is the angular momentum vector of the outer orbit, J3 =
µ3(GN Ma3(1 − e2

3))
1/2γ̂3 (here γ̂3 is the unit vector along the outer orbit

angular momentum, and µ3 = mm3/M). Thus, this term is indeed a cou-
pling between the angular momentum vectors of the two orbits.

From this expression one can obtain a precession equation for the inner
orbit angular momentum. Indeed, varying the kinetic term for the spin with
respect to the canonical variables α̂ and W = J × α̂, one obtains the equa-
tions of motion

dW
dt

= −ΩprecW × J3 , (4.52)

dα̂

dt
= Ωprec J3 × α̂ , (4.53)

where the precession frequency is equal to

Ωprec =
4m + 3m3

2m
GN

a3
3(1 − e2

3)
3/2

. (4.54)

From these two equations, and using the Jacobi identity for the cross prod-
uct, one obtains the precession equation

dJ
dt

= Ωprec J3 × J , (4.55)

which is in complete accordance with earlier results on the hierarchical
three-body problem [267, 283]. Notice that conservation of the total angu-
lar momentum requires that J3 satisfies an analogous equation,

dJ3

dt
= Ωprec J × J3 . (4.56)

In particular, it was shown that this angular momentum precession may
play an important role for stellar-mass binary mergers near a supermassive
BH [267]. Quadrupolar terms would lead to further precession effects, of
order J3v2ε2 in the Lagrangian. We leave the computation and the astro-
physical implications of such terms to further work.

4.4 summary

The NRGR approach to the two-body problem was designed to deal with
extended compact objects. In this article, we have extended NRGR to the
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setting of a hierarchical three-body problem. In the approximation that the
inner orbit is much smaller in amplitude than the outer one, the inner bi-
nary system can be replaced by an effective point-particle endowed with
multipole moments, which we explicitly computed up to dipole order. This
is very natural from the EFT perspective and provides a new specific exam-
ple of how an extended (and not so compact) system can be accounted for
by means of a point-particle operator.

Our procedure consists in integrating out the short timescales associated
with the period of the two hierarchical orbits. One notable result of this
approach is to make explicit the link between the Lagrange planetary equa-
tions, describing the long-time evolution of the inner binary Keplerian pa-
rameters, and the kinetic term for a spin in the EFT language. We have also
clarified the relation between the post-Newtonian definition of the center-of-
mass and the spin supplementary condition for the angular momentum of
the inner binary. The computation of quadrupolar PN terms including the
corrections to the adiabatic approximation will be the subject of Chapter 5.

Our study moves towards a more systematic characterization of the dy-
namics of a binary system perturbed by a distant third body.



5
Q U A D R U P O L E R E L AT I V I S T I C C O R R E C T I O N S F R O M A
D I S TA N T T H I R D B O D Y

In Chapter 4 we followed insights from NRGR and introduced a new EFT
approach to the relativistic, hierarchical three-body problem to derive sys-
tematically a description of its dynamics on long time-scales. Thanks to the
double perturbative expansion in v and ε made possible by this setup, the
dynamics of a hierarchical three-body system can be matched to a simpler
two-body interaction, in which the inner binary is described as a single
point-particle endowed with multipole moments. This was achieved by per-
forming an averaging procedure at the level of the Lagrangian. Most notice-
ably, the EFT approach exploits symmetries that are manifest in the effective
Lagrangian, restricting the form of the allowed interaction terms. Moreover,
working with a single functional rather than with several equations of mo-
tion makes it simpler to setup a systematic study of the three body system.

In Chapter 4 we presented the EFT setup and derived the effective La-
grangian describing the system on long time-scales up to 1PN dipole order,
i.e. up to order v2ε3/2 beyond the leading Newtonian interaction. Instead,
here we extend this computation up to 1PN quadrupolar order, i.e. v2ε5/2

beyond leading order. At this order, computations are substantially more
complex with respect to what we have seen in the previous chapter. A first
source of complexity is due to the averaging procedure. At lower orders
the averaging can be performed in the so-called adiabatic approximation,
i.e. neglecting variations of slowly evolving variables during the average
over the period of both orbits. Instead, when accounting for terms of mixed
quadrupolar and 1PN order, deviations from adiabaticity must be taken into
account. In addition to this, backreaction from quickly oscillating terms that
are suppressed in amplitude will also affect the averaging, contrarily to what
happened at lower orders. We address these complications by following the
method of near-identity transformations [72], which allows to consistently
implement the averaging procedure to any order of accuracy. While several
authors already studied quadrupolar couplings at 1PN order [249, 267, 279–
284], we are aware of only three which took into account these deviations
from the adiabatic approximation [268, 281–283]. However, we believe that
we give in this work the first complete expressions of quadrupolar 1PN
terms. Indeed, only the particular case of a circular outer orbit is considered
in [268, 281, 282] neglecting some PN interactions that we describe in this
work. On the other hand, the derivation in [283] reports a puzzling result
that we will mention in Section 5.3.

Another source of complexity lies in finding the suitable dynamical vari-
ables to efficiently package relativistic corrections in our results. While the
idea at the core of our approach of identifying the inner binary to a spinning
point-particle with multipole moments is very intuitive, providing a defi-
nite relation between the variables describing the inner binary and the pa-

77
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rameters of the effective point-particle is subtle in practice. For example, in
Chapter 4 we showed how the choice of a Spin Supplementary Condition (a
gauge condition on the spin tensor of the effective point-particle [223, 296])
is related to the center-of-mass choice of the inner binary. In the present
computations, two new similar subtleties arise. The first one concerns the
definition of osculating elements describing both inner and outer orbits. In
our previous work, we followed the usual convention and used the osculat-
ing orbital elements defined as the parameters of the ellipse instantaneously
tangent to the trajectory (described with positions and velocities). However,
at 1PN quadrupolar order we find that it becomes more convenient to use os-
culating contact elements, which are defined through momenta rather than
velocities [304]. Since PN corrections induce a non-trivial relation between
momentum and velocity, these two sets of osculating elements will differ in
general. One remarkable conclusion of the present analysis is that, while the
slowly evolving part of the contact semimajor axes are conserved through-
out the evolution of the system (as is common in long-timescale evolution
of triple systems [227]), their orbital counterpart features small variations
over long time-scales, which offers a new point of view on earlier findings
of [268, 281–283].

The second subtle point in the matching between inner binary and point-
particle is that the quantities describing the inner binary system are inher-
ently defined in the rest frame of its center of mass, which is accelerating
because of the presence of the third body. This entails non-trivial relations
between the absolute positions of the inner binary components, defined in
the rest frame of the three-body center-of-mass, and the relative quantities
defined in the binary rest frame, as we show in Section 5.2.2. As far as we
know, this point went so far unnoticed in the relativistic three-body litera-
ture. While this step just amounts to a redefinition of the osculating elements
of the inner binary, it proves to be crucial in order to perform correctly the
matching procedure described in Section 5.2.4.

Let us now describe in more detail the organization of this chapter. In
Section 5.2, we will explain how to refine the procedure of integrating out
the fast dynamics in order to fully capture relativistic quadrupole effects.
In order to keep the discussion as simple as possible, we have deferred
the computation of beyond-adiabatic corrections to Appendix B.5 and use
only the final result of this appendix in the main text. In Section 5.3 instead
we integrate out the gravitational field due to the third body. Finally,
in Section 5.4 we provide a numerical solution implementing the new
relativistic interaction derived in the present work and we show how it in-
fluences the long time-scale dynamics in the case of a particular three-body
system. The rest of the Appendices are devoted to: a presentation of the
averaging procedure that we employ (Appendix B.3); a discussion of the
conservation of the semimajor axis (Appendix B.4); the derivation of the
expressions connecting the absolute coordinates of the two inner bodies in
the three body rest frame to their relative coordinates in the inner binary
rest frame (Appendix B.7); an independent computation of the so-called
quadrupole-squared terms of [298] (Appendix B.8).

As mentioned, in contrast with Chapter 4, we will work out the re-
sults in terms of the contact elements, the variables in which the PN
Hamiltonian has the simplest expression. With respect to the usual Newto-
nian orbital elements, contact elements include PN corrections. We review
their precise definition in Section 5.1 and examine their difference from
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orbital elements in Appendix B.9. For ease of notation, we will denote them
by the same symbols we used in Chapter 4 for the orbital elements. Orbital
elements will instead be denoted with tilded symbols from now on.

With these improvements with respect to the approach followed in
Chapter 4, we will be able to obtain a total Lagrangian:

L =J · Ω + J3 · Ω3 + 3µ
G2

Nm2

a2
√

1 − e2
+ 3µ3

G2
N M2

a2
3

√
1 − e2

3

− 4m + 3m3

2m
Ωprec J · J3 +

〈
L≤v2ε5/2

quad

〉
.

(5.1)

In this equation, J (J3) and Ω (Ω3) are the angular momentum and rotation
vectors of the inner (resp. outer) orbits, defined by

J = µ
√

GNma(1 − e2)γ , Ω = α × α̇ , (5.2)

with analogous formulas for the outer orbit. Let us comment on each com-
ponent of Eq (5.1). The first two terms are the spin kinetic terms of the two
orbits. Once a variational principle is applied, they will give rise to first-
order evolution equations for the planetary elements of the two orbits, the
Lagrange Planetary Equations (LPE), see Appendix B.1. Note that, as men-
tioned before, the spin J3 of the outer orbit is defined by using the 1PN
energy E of the binary system as its effective mass, so that the spin kinetic
term of the outer orbit secretly hides post-Newtonian terms (the other term
where J3 appears in (5.1) is already of 1PN order, so that in this term the
difference between using m or E is of 2PN order). The two next terms corre-
spond to the well-known 1PN potentials inducing perihelion precession of
the two orbits at 1PN order [305]. We refer to them as internal Lagrangians
since they would be present even without any interaction between the two
orbits. The third term is the coupling between the angular momenta of the
two orbits at dipole order v2ε3/2 that we computed in the previous chap-
ter. It involves a precession frequency given by Eq. (4.54). Finally, the term

L≤v2ε5/2

quad encodes the contributions from quadrupole-suppressed 0PN and
1PN interactions to the long time-scale dynamics, which we will compute
in the next sections and which is the main result of the present chapter.

5.1 contact elements

As mentioned above, we find convenient to express all of the results of this
chapter in terms of contact elements, which differ from the usual Newtonian
orbital elements by PN corrections. Such differences will only become rele-
vant if one considers high enough terms in the perturbative analysis of the
problem, which happens to be the case for this chapter. The key difference
is that contact elements are defined in terms of the canonical momenta of
the system, rather than in terms of the velocities (see e.g. [304]). This allows
to keep track of some PN corrections in a compact way, since the conju-
gate momenta will receive corrections as soon as the interaction Lagrangian
depends on the velocities.

Let us now define the contact elements. In the rest frame of the inner bi-
nary center of mass, we can write the Lagrangian of the inner binary system
as

L =
1
2

µv2 +
GNmµ

r
+ µR , (5.3)
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where R encodes any term in the Lagrangian beyond Newton’s expression
for the inner binary system. The conjugate momentum to the coordinate r
will be:

p = µv + µ∂R/∂v . (5.4)

Then, rather than using Eq. (4.18), we will define the contact elements as
follows:

a = −GNm
2

(
p2

2µ2 − GNm
r

)−1

,

eα =
1

GNmµ2 p × (r × p)− r
r

,

γ =
r × p√

GNmµ2a(1 − e2)
,

(5.5)

where the unit vector γ contains two angles and it is orthogonal to α. With
these definitions, in analogy with the Kepler problem, we have:

r = a
(
(cos η − e) α +

√
1 − e2 sin η β

)
,

p =

√
GNm

a
µ

1 − e cos η

(
− sin η α +

√
1 − e2 cos η β

)
.

(5.6)

where β = γ × α and η is the (contact) eccentric anomaly, defined at a time
t by

u ≡ nt + ϕ =

√
GNm

a3 t + ϕ = η − e sin η , (5.7)

with ϕ the initial phase, and u the contact equivalent of the mean anomaly.
In the following, it will be useful to have an explicit relation between the
contact elements (a, e, u, ω, Ω, ι) and the orbital elements (ã, ẽ, ũ, ω̃, Ω̃, ι̃). We
derive such a relation in Appendix B.9, see Eqs. (B.110)-(B.113). An impor-
tant outcome of Appendix B.9 which we will use in the main text is that the
difference between orbital and contact elements is small in the sense that at
any time, they differ by a 1PN quantity (i.e. this difference cannot grow on
long timescales).

5.2 the point-particle eft to quadrupolar order

We now derive an effective Lagrangian describing the inner binary coupled
to an external gravitational field on time-scales much longer than its orbital
period. We start by describing the procedure to integrate out the fast (orbital)
modes, the so-called averaging, which we present in detail in Appendix B.3.
We then discuss in which reference frame to define the contact elements of
the inner binary, highlighting the rest frame of the inner binary’s center of
mass as the most suitable choice. Having done that, we present the results
of the averaging procedure, which is carried out in some detail in Appendix
B.5. We close the section by matching the result to a world-line action for
the inner binary.

5.2.1 Integrating out fast modes

In field theoretic terms, we wish to derive the effective action for the slow
modes (the long time-scale dynamics) by integrating out the fast modes (the
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orbital dynamics). In the classical limit, this corresponds to substituting the
solutions to the equations of motion for the fast modes in terms of the slow
modes in the Lagrangian. On top of that, we can average this effective La-
grangian, so as to remove any quickly oscillating terms, which only carry
information about the already solved short time-scale dynamics. In our spe-
cific case, fast and slow modes are packed together in our variables, the os-
culating (orbital or contact) elements. Therefore, we need a way to split the
dynamics over short and long time-scales. Intuitively, a method to achieve
this is considering the average and the average-free part (with respect to
the orbital time-scale) of the original equations of motion. The splitting al-
lows to solve for the fast modes in terms of the slow ones, by solving the
average-free equations. This method is broadly referred to as averaging, see
for instance [72, 306].

Despite its intuitiveness, averaging presents a few subtleties which must
be clarified in order to set up a systematic and consistent procedure. For
instance, if the period of the fast oscillations of our system changes slowly,
we have to understand how to account for variations of the period in our
averages. Even more, we need to account for the small changes of the slow
variables over the period of a quick oscillation. Up to which order can we
compute averages while keeping fixed the slow variables?

While it is easy to estimate the size of these possible corrections, the task
of choosing a set-up that makes transparent how to deal with these issues
is much less straightforward. For instance, one can consider whether to av-
erage with respect to time or with respect to a dynamical variable (e.g. a
time-dependent angle). We can promptly see that these two choices will
lead to different quantities. For instance, suppose the dynamics has period-
icity with respect to an angle u. If we call T[ℓ] the period as a function of
the slow variables ℓ, the average of a quantity A(ℓ, u) can be defined in two
different ways:

⟨A⟩u =
∫ u0+2π

u0

du
2π

A(ℓ, u) , (5.8)

⟨A⟩t =
1

T[ℓ(t)]

∫ t+T[ℓ(t)]

t
dt′A(ℓ, u(t′)) =

1
T[ℓ(t)]

∫ u(t)+2π

u(t)
du

dt
du

A(ℓ, u) . (5.9)

Even when in the first integral u0 = u(t), these two quantities will be differ-
ent as long as dt/du depends on u.

Intuition suggests that the difference between the choices that one can
take at the level of the setup might be akin to the difference between the
various choices of renormalization scheme. While it seems reasonable that
different averaging methods and choices can be followed consistently to
describe the same dynamics, some of the choices that we have to make
might depend dramatically on the nature of the system itself. An extreme
example is the case of the so-called crude averaging, see e.g. [306], which
shows that in some cases there can be problems in the convergence of the
averaged solutions unless one chooses to perform the average after having
rewritten the equations of motion in a certain canonical form.

In light of these possible complications, following closely [72] we set up
our averaging procedure by means of the so called near-identity transfor-
mations for an angle-periodic system written in its canonical form. This
method consists in performing a change of variables such that the system of
equations becomes independent on the angle. We review this construction
in Appendix B.3.
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The choice of this method has a few relevant consequences. First, it im-
plies that the averages (both at the level of the equations and at the level
of the Lagrangian), must be taken with respect to the slowly evolving part
of the mean anomaly. For practical reasons, these averages will then be ex-
pressed as integrals over the eccentric anomaly (or rather, the correspond-
ing contact element). This makes clear that the possibly changing value of
the time-period of the orbit does not lead to any corrections to the aver-
ages. Moreover, as we show in Appendix B.3, the construction of near iden-
tity transformations is such that the averages are performed, to any order,
keeping the slow variables fixed in the integrand. This might seem counter-
intuitive, but stems from the fact that the averages appear as a by-product
of a certain transformation of our variables, rather than as a direct coarse
graining of the dynamics.

Having defined the averaging procedure, our practical task is to apply it
to the relativistic, hierarchical three-body problem, up to quadrupolar order.
In doing so, we only have difficulties due to the somewhat large number of
variables (the contact elements) and to the presence of two small parameters
that characterize the perturbation theory: the ratio of semimajor axes and the
typical velocity of the bodies. On top of this, as we have already remarked,
we will have to perform two averaging procedures.

5.2.2 Center-of-mass and relative coordinates in boosted frame

In order to carry out the multipole expansion, we express the two inner
bodies’ coordinates y1, y2 as functions of the position of the inner binary
center of mass and of the relative distance between the two inner bodies,
YCM and r. Then, introducing the contact elements, we can describe the inner
binary as a spinning particle endowed with multipole moments, coupled to
gravity.

When this is done to 1PN order, in general one needs to account for the
difference between the rest frame of the three-body center of mass and the
rest frame of the center of mass of the inner binary, as illustrated in Fig-
ure B.1. In fact, one might express the Lagrangian in terms of contact ele-
ments that are defined in either of the two reference frames, by means of
Eq. (5.6). These two frames are connected by a boost plus a translation, a
transformation that is non-trivial starting at 1PN order. This entails a differ-
ence between the two sets of contact elements that one can define. Crucially,
while it is natural to express the effective action in the rest frame of the three-
body center of mass, we find that the matching procedure is considerably
simplified when we express the Lagrangian in terms of the intrinsic contact
elements of the inner binary, that is, those defined in the rest frame of the
center of mass of the inner binary. This is due to the fact that an appropri-
ate reference frame is needed to disentangle the gravitational field from the
multipole moments of an object, as discussed in [223]. For this reason, we
will express the terms that appear in the effective Lagrangian, a functional
evaluated in the global three-body rest frame R, in terms of the coordinates
of the inner binary rest frame R′, so as to obtain a functional depending on
the intrinsic contact elements of the inner binary. As studied in Chapter 4,
terms in the effective Lagrangian of order up to ε3/2 are not affected by this
difference in reference frame. However, when computing quadrupole order
contributions, we will see that it becomes important to account for such a
difference.
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While deferring the explicit computations in Appendix B.7, let us just
show here the final relation between the absolute coordinates (y1, y2) and
the relative ones, YCM, VCM (center-of-mass position and velocity of the inner
binary to 1PN order) and r′, p′ (relative distance and momentum in the inner
binary rest frame to 1PN order):

y1 = YCM + (X2 + δ)r′ + X2
(
VCM · r′

)[(
X1 − X2

) p′

µ
− VCM

2

]
,

y2 = YCM + (−X1 + δ)r′ − X1
(
VCM · r′

)[(
X1 − X2

) p′

µ
− VCM

2

]
,

(5.10)

where δ is a 1PN quantity defined by

δ = − 1
m

VCM · p′ + ν(X1 − X2)

(
p′2

2µ
− GNm

2r′

)
. (5.11)

In particular, note that this result implies the following relation between
r = y1 − y2 and r′:

r = r′ −
(
VCM · r′

)[VCM

2
+
(
X2 − X1

) p′

µ

]
. (5.12)

The final step is just to express r′ , p′ in terms of the contact elements as
in Eq. (5.6). To avoid clutter, in the rest of the article we will suppress the
primed label on r′, p′.

5.2.3 Averaging the Lagrangian

In this Section, we start the computation of the quadrupolar Lagrangian
by carrying out the averaging of the fast orbital modes of the inner bi-
nary. Specifically, we expand the Lagrangian (4.12) in multipoles around
the center-of-mass of the inner binary, using the formulas given in Eq. (5.10).
When carrying out computations up to order v2ε5/2, it is crucial to include
corrections to the leading order averaging procedure besides the quadrupo-
lar order of the multipole expansion. These are due to deviation from perfect
adiabaticity, i.e. small changes of slowly evolving quantities over the course
of the orbital period, and to backreaction of the quickly oscillating terms
on the long time-scale dynamics. In order to simplify the presentation, we
leave the detailed analysis of these corrections to App. B.5. Here we only
remark that such corrections come in the form of the so-called cross terms:
in this case either PN corrections to 0PN quadrupole terms or quadrupolar
corrections to 1PN terms of the Lagrangian.

To give a separate treatment of these different contributions, we split the
final averaged Lagrangian for the inner binary coupled to an external gravi-

tational field, L≤v2ε5/2

quad,12 , in two terms: the quadrupole term coming from the
multipole expansion, computed to 1PN order, and the cross-terms induced
by corrections to the leading order averaging procedure, computed in App.
B.5:

L≤v2ε5/2

quad,12 = ⟨L(0)
quad⟩+

〈
LS
〉

. (5.13)

From this Lagrangian, integrating out the potential gravitons exchanged
with the third body and averaging over the outer orbit, in the next sections

we will obtain the long-timescale Lagrangian L≤v2ε5/2

quad .
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Starting with the quadrupole term of the multipole expansion, to order
v2ε5/2 included, we obtain the expression

L(0)
quad = −1

2
µrirj∂i∂jϕ̃

[
1 − GNm

r
(1 − 2ν) +

(
X1 − X2

)
VCM · r

(
rivj + rjvi)

+
3
2
(
2(X2 − X1)VCM · v + (1 − 3ν)v2)]

+
1
2

µrirj∂i∂j Ãk
[
Vk

CM + (X2 − X1)vk] ,

(5.14)

where all the relevant quantities used in this equation have been defined in
Section 5.2.2 and r , p are the relative position and momentum vectors in the
instantaneous rest frame of the inner binary center of mass.1 We have made
several simplifications in order to get to Eq. (5.14). First, we have dropped
terms nonlinear in ϕ̃ as well as V2

CM corrections as they would be of order
v2ε3 according to the power-counting rules of our theory, once the external
gravitational field is integrated out. These terms would be relevant when
considering the octupolar order in the center-of-mass expansion, which is
beyond the scope of our present analysis. Second, although at this point the
coupling ∂i∂j ÃkVk

CM is of ε5/2v order, it cannot contribute to the final ε5/2v2

Lagrangian when Ãk is been integrated out. This is because the lowest-order
coupling of Ãk to m3 involves also v3, so that it brings another ε1/2 factor
once we integrate out Ãk, due to the scaling v3 ∼ ε1/2v. Therefore we can ig-
nore the term ∂i∂j ÃkVk

CM in the present analysis. Finally, note that the use of
intrinsic relative position vectors, defined in the inner binary instantaneous
rest frame as explained in Section 5.2.2, manifests itself in the last factor that
multiplies ∂i∂iϕ̃.

Following the method of near-identity transformations, presented in Ap-
pendix B.3, we can implement the averaging procedure and eliminate the
short time-scale dynamics from the Lagrangian. We leave to Appendix B.5
the corrections due to breaking of adiabaticity and backreaction of short
modes, ⟨LS⟩ in Eq. (5.13), while here we average Eq. 5.14 over one orbit of
the inner binary, using the definition of contact elements given in Eq. (5.5).
We obtain:

⟨L(0)
quad⟩ = −µa2

4

[
(1 + 4e2)αiαj + (1 − e2)βiβj

+
GNm

2a
(
(1 − 5ν + 4e2(2ν − 1))αiαj + (1 − 5ν)(1 − e2)βiβj)]∂i∂jϕ̃

− 1
2
(X2 − X1)ae ϵlik Jlαj(∂i∂j Ãk − 4Vk

CM∂i∂jϕ̃
)

,

(5.15)

where we recall that J is the angular momentum of the binary defined in
Eq. (5.2).

At this point we can compute the whole contribution L≤v2ε5/2

quad,12 by adding
the result from our analysis in Appendix B.5, i.e. Eq. (B.67), to the contribu-
tion of Eq. (5.15):

L≤v2ε5/2

quad,12 = −1
2

Qij
E∂i∂jϕ̃ − 1

2
(X2 − X1)ae ϵlik Jlαj(∂i∂j Ãk − 4Vk

CM∂i∂jϕ̃
)

.

(5.16)

1 In this expression, we can substitute v = p/µ.
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Here the traceless "electric-type" quadrupole moment is given to 1PN order
by

Qij
E =

µa2

2

(
fα(e)αiαj + fβ(e)βiβj − fα(e) + fβ(e)

3
δij
)

, (5.17)

and the two functions of the eccentricity read

fα(e) = 1 + 4e2 − GNm
2a
(
1 − e2 +

√
1 − e2

)[17 + 13
√

1 − e2 + 5ν
(
1 +

√
1 − e2

)
+ e2(56 + 15

√
1 − e2 − ν(13 + 8

√
1 − e2)

)
+ 4e4(3 + 2ν

)]
, (5.18)

fβ(e) = 1 − e2 − GNm
2a
(
1 − e2 +

√
1 − e2

)[13 + 17
√

1 − e2 + 5ν
(
1 +

√
1 − e2

)
+ e2(31 + 18

√
1 − e2 − 5ν(2 +

√
1 − e2)

)
+ e4(5ν − 9

)]
. (5.19)

The first term of the Lagrangian (5.16) contains both Newtonian ε2 and PN
v2ε2 scalings, while its second term proportional to the difference of masses
contains only the PN v2ε5/2 scaling. Note that, in order to remove the trace
from the quadrupole moment, we have made use of the equation of mo-
tion ∂i∂

iϕ̃ = 0.2 Note also that the osculating elements used in these equa-
tions are the intrinsic contact elements, defined in the rest frame of center of
mass of the inner binary, and not Newtonian orbital elements. The explicit
difference between these two sets of osculating elements is detailed in Ap-
pendix B.9, see Eq. (B.116). As explained there, this difference is small in
the sense that at any time, the contact elements differ from the osculating
elements by a 1PN quantity. Despite the small difference, Eq. (B.116) im-
plies that while the contact element a is constant by virtue of our averaging
procedure, see Appendix B.4, the respective orbital element features post-
Newtonian variations. This confirms the findings of [268, 281], who showed
for the first time that cross-terms induce variations in the (orbital) semi-
major axis a. However, our Lagrangian formalism allows us to assert that
these variations always stay small over time and cannot accumulate over a
long timescale to induce large variations in a, while this was left as an open
question in previous works [268, 281].

5.2.4 Matching

We will now express the quadrupolar coupling (5.16) in a gauge-invariant
way. As discussed in Sec. 4.2.4, the quadrupolar part of the effective action
can be written in terms of two interactions, the electric-type and magnetic-
type quadrupole terms:

Squad = −1
2

∫
dτEijQ

ij
E +

2
3

∫
dτBijQ

ij
B , (5.20)

with the definitions of Sec. 4.2.4.
Being only interested in terms of order v2ε5/2, we can expand Eµν and

Bµν to linear order in the gravitational fields ϕ̃ and Ãi. Furthermore, at this
order we can also ignore the interactions involving ˙̃Ai as well as both VCM

2 Even though we will eventually be interested in off-shell potential gravitons exchanged be-
tween the inner binary and the third body, using this on-shell condition does not alter the
effective action, similarly to what is discussed in [307], since it amounts to neglecting a contact
term.
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and Ãi together. Finally, we will also make use of the equations of motion
for the external fields which read ∂i∂

iϕ̃ = ∂i∂
i Ãj = 0,3 and of the gauge

condition on Ãi which is ∂i Ãi = −4 ˙̃ϕ [292, 293]. Thus, the tensors are given
by

Eij = ∂i∂jϕ̃ , (5.21)

Bij =
1
2

ϵmn(i∂j)
[
∂m Ãn + 4Vm

CM∂nϕ̃
]

. (5.22)

The resulting magnetic-type quadrupole reproduces the coupling to Ã
and ϕ̃ proportional to the difference of masses X1 − X2 that we found previ-
ously in Eq. (5.16) 4:

Qij
B =

3
2
(X1 − X2)aeJ(iαj) , (5.23)

This is consistent with the standard definition of the magnetic-type
quadrupole

Qij
B = ϵmn(i ∑

A
mAxj)

Axm
Avn

A , (5.24)

see e.g. [213], once averaged over one orbit of the inner binary system, thus
giving a strong check of the validity of our decomposition. Note that the
use of the relative variables defined in the rest-frame of the inner binary,
as explained in Section 5.2.2, is crucial to obtain the correct magnetic-type
interaction. Had we used relative variables naively defined in the three-
body rest frame (as it is the case in other studies [268, 281–283]), we would
not have achieved this separation between a quadrupole moment intrinsic
to the inner binary coupled to the external gravitational field. Instead, we
would have obtained a quadrupole moment which depends on the center-of-
mass velocity of the inner binary. This undesirable feature has been avoided
thanks to our choice of variables.

To recap our results, we obtain the following action for the binary system
treated as a point-particle up to quadrupole order:

S =
∫

dτ̃

[
− E1PN +

1
2

JµνΩµν − 1
2

EijQ
ij
E +

2
3

BijQ
ij
B

]
, (5.25)

where Qij
B and Qij

E have been defined in Eqs. (5.23) and (5.17), dτ̃ =

dt
√
−g̃µνVµ

CMVν
CM and the first two terms represent the Lagrangian of the

inner binary to dipole order, with E1PN its energy to 1PN order, Jµν its spin
tensor and Ωµν its angular velocity rotation vector. We can now move on to
integrate out the external fields ϕ̃, Ãi in the presence of a third point-particle
m3.

5.3 double-averaged lagrangian up to order v2 ε5/2

In the previous sections we have derived the Lagrangian L≤v2ε5/2

quad,12 describing
the dynamics of the inner binary coupled to an external gravitational field

3 As mentioned in Footnote 2, even if we will eventually be interested in off-shell gravitons we
still can use the equations of motion, which amounts to neglecting a contact term.

4 In order to get the coupling in Eq. (5.16) from the two equations (5.22) and (5.23), one has to
make use of the gauge condition on Ãi and ϕ̃ and the fact that

dϕ̃

dt
= ˙̃ϕ + Vi

CM∂i ϕ̃

so that this total derivative can be ignored from the vertex.
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(a) (b) (c)

Figure 5.1: Feynman diagrams corresponding to integrating out the outer fields ϕ̃,
Ã and contributing to the quadrupolar Lagrangian (5.27) up to order
v2ε5/2. The double line represents the inner binary system, while the
single line stands for the third particle m3. The black [white] dot represent
the insertion of an "electric-type" ["magnetic-type"] quadrupolar coupling
from Eq. (5.25). The dotted line represents the exchange of a scalar ϕ̃,
while the dashed line stands for the exchange of a vector Ã.

Operator Rule

−1
2

Qij
E∂i∂

jϕ̃ J1/2
3 v2ε2

1
3

Qij
Bϵmn(i∂j)∂

m Ãn J1/2
3 vε2

4
3

Qij
Bϵmn(i∂j)V

m
CM∂nϕ̃ J1/2

3 v2ε5/2

Table 5.1: Power-counting rules for the quadrupolar vertices contained in the effec-
tive point-particle action (5.25) up to 1PN order, with J3 = (GN M3a3)

1/2,
v2 = GNm/a and ε = a/a3. The rules are obtained using the scaling pre-
sented in Section 4.3. For convenience, the integral over time is not dis-
played, although it should be included to obtain a dimensionless rule. Fur-
thermore, in the main text we will ignore the J3 factors when discussing
the scaling of an operator, since in the end the Lagrangian will always
be proportional to J3 (terms not proportional to the angular momentum
represent true quantum loops whose contribution to the dynamics is com-
pletely negligible in the NRGR formalism [70])
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over time-scales longer than the inner orbital period, up to order v2ε5/2.
We now take into account the presence of the third body. This implies that
we need to integrate out potential gravitons exchanged between the inner
binary and the third body, and in turn adds a new time-scale to the problem:
the orbital period of the outer orbit. Being interested in the evolution on
much longer time-scales, we will repeat the averaging procedure carried
out for the inner binary, starting from quantities that are already averaged
with respect to the period of the inner binary.

The action of the third point-particle is given by:

L3 = −m3

√
−g̃µνvµ

3 vν
3 , (5.26)

and we integrate out the gravitational field g̃µν. Since the corresponding
Lagrangian up to dipole order v2ε3/2 has already been described in the
previous chapter, we will concentrate on the quadrupolar contributions5.
From Eq. (5.25), we see that three new vertex appear at quadrupolar order,
whose power-counting rules are summarized in Table 5.1. Integrating out
the external fields ϕ̃, Ã as shown in the Feynman diagrams of Figure 5.1, we
find

L≤v2ε5/2

quad =
GNm3

2R3

(
3Ni N j − δij)[QE,ij + 4(X2 − X1)aeϵlki JlVkαj

]
, (5.27)

where we have moved to the center-of-mass frame of the triple system by
setting VCM = X3V , v3 = −XCMV , and we recall that Qij

E has been defined
in Eq. (5.17). This Lagrangian contains terms with three different scalings:
Newtonian quadrupolar (ε2) in the Newtonian part of Qij

E, 1PN quadrupolar

(v2ε2) in the 1PN part of Qij
E, and magnetic-type quadrupolar (v2ε5/2) in the

second term proportional to the difference of masses.
We can now implement the second step of averaging and eliminate the

dynamics on time-scales shorter than the period of the outer orbit by means
of new near-identity transformations. We thus obtain the doubly averaged
Lagrangian:

〈
L≤v2ε5/2

quad

〉
=

3GNm3

4a3
3(1 − e2

3)
3/2

Qij
E
(
αi

3α
j
3 + βi

3β
j
3
)

(5.28)

+
3(X2 − X1)

XCM
Ωprec

a
a3

ee3

1 − e2
3

(
(J × α) · (J3 × α3)− 2(J · J3)(α · α3)

)
,

where Ωprec is the precession frequency already defined in Eq. (4.54). This
completes our derivation of the double-averaged Lagrangian up to order
v2ε5/2. Note that in doing this last average, we did not need to compute cor-
rections due to deviation from adiabaticity and backreaction of short modes,
since these effects, similarly to what discussed in Appendix B.5, would con-
tribute only to quadrupole times v2

3 order which means starting from oc-
tupole order, since v3 ∼ e1/2 v.

Starting from this result, the LPE for the long time-scale evolution of both
the inner and outer orbits are obtained by taking the relevant derivatives
of the Lagrangian as shown in Eqs. (B.4)-(B.9). Note that the angular de-
pendence of the quadrupolar v2ε2 terms is quite similar to the Newtonian
quadrupole at ε2, so that we expect that these v2ε2 terms will not induce a

5 Being interested in the dynamics of contact elements, we do not keep track of the possible
coupling of the three body system itself to an external gravitational field.
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qualitatively different behavior in the long-term evolution of the system. On
the other hand, the angular structure of the v2ε5/2 terms is more involved
and somewhat similar to the Newtonian octupole, which means that simi-
larly to the octupole such terms can give rise to new behaviors at long times
(see e.g. [227, 262] concerning the influence of octupole terms in the Kozai-
Lidov problem). We will describe these new behaviors in the next Section,
where we will numerically solve the LPE for the long time-scale dynamics
obtained from the quadrupolar Lagrangian up to order v2ε5/2.

Before moving on, let us compare our result to the ones already present
in the literature. As we stated in the introduction, we are aware of only
four works which tackled the task of computing 1PN quadrupolar terms
including the effects due to deviations from the adiabatic approximation
and to backreaction of quickly oscillating modes. In three of them, a circular
outer orbit is assumed [268, 281, 282]. As shown by Eq. (5.28), this causes
to neglect the presence of magnetic-type quadrupolar terms of order v2ε5/2,
which can lead to new interesting behaviors in the long-term evolution of
the system as we show in Section 5.4. The explicit comparison between the
LPE obtained in these works and our result is complicated by the fact that
we do not use the exact same averaging procedure, see the comments at
the end of Appendix B.9. On the other hand, the work in [283] reports a
puzzling result. Indeed, it describes the effect of a so-called libration cross-
term in the equations of motion which, once translated to the Lagrangian
point of view, would scale as v2ε1/2 within our power-counting rules. Such
a term is absent from our derivation and we believe that it should not be
present 6.

5.4 numerical solution to the lpe

In this Section, we will numerically integrate the equations of motion stem-
ming from the averaged Lagrangian (5.1) for both inner and outer orbits
given some initial conditions. A systematic exploration of the (huge) param-
eter space, as has been done in e.g. [249] with lower-order perturbations in
the Lagrangian, is beyond the scope of our work. Instead, we content our-
selves with showing that the quadrupolar terms derived in this chapter can
have some non-trivial consequences on the long-term evolution of relativis-
tic three-body hierarchical systems.

Varying the total averaged Lagrangian (5.1) over planetary elements as
described in Appendix B.1, we obtain the so-called Lagrange Planetary

6 Note that before averaging over the inner orbit, the Lagrangian indeed contains terms scaling
as v2ε1/2 which are also dependent on the center-of-mass definition. However, one can check
that even with the Newtonian definition of the center-of-mass used in [283], the average of
these v2ε1/2 terms over the inner orbit still vanishes.
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Equations (LPE) which dictate the evolution of orbital elements over long
timescales. For the inner orbit, they are given by

ȧ = 0 , (5.29)

ė = −
√

1 − e2

GNmae2
∂R
∂ω

, (5.30)

ι̇ = − 1√
GNma(1 − e2) sin ι

∂R
∂Ω

+
cos ι√

GNma(1 − e2) sin ι

∂R
∂ω

, (5.31)

ω̇ =

√
1 − e2

GNmae2
∂R
∂e

− cos ι√
GNma(1 − e2) sin ι

∂R
∂ι

, (5.32)

Ω̇ =
1√

GNma(1 − e2) sin ι

∂R
∂ι

, (5.33)

where R = L1/µ is the so-called perturbing function, with L1 containing all
terms beyond the first two kinetic parts in the total Lagrangian (5.1). The
LPE for the outer orbit are obtained by replacing all inner quantities with
outer ones. However, one has to be careful to replace the mass m with the
sum m3 + E , with E = m − GNm/2a, as was emphasized below Eq. (5.1).

Until now, we have not specified any orientation for our reference frame
centered on the total center-of-mass of the three-body system. A straight-
forward application of Noether’s theorem to the averaged Lagrangian (5.1)
gives that the total momentum, J + J3, is conserved. We can thus follow the
conventional elimination of the nodes procedure, see e.g. [227], to choose the
orientation of axis with the z axis parallel to J + J3, in which the following
relations between planetary elements hold true:

Ω3 = Ω + π , ∥J∥ sin ι = ∥J3∥ sin ι3 . (5.34)

This allows us to eliminate two variables from the eight dynamical variables
that we are solving for, by e.g. expressing all quantities only in terms of Ω
and ιtot = ι + ι3. As a relevant remark, let us highlight two subtleties con-
cerning the elimination of nodes. First, as discussed in [262], one can not
directly use the relations (5.34) at the level of the Lagrangian or the Hamil-
tonian, because this would mean using a consequence of the equations of
motion (conservation of angular momentum) in the Lagrangian itself, which
can lead to wrong results. Indeed, many studies (including the original one
of Kozai [308]) concluded that the z-components of both angular momen-
tum are conserved independently, which is incorrect as shown in [262]. Sec-
ond, note that the conserved angular momentum is defined with the con-
tact elements, which differ from the osculating elements at 1PN order as we
highlight in Appendix B.9. In other words, the angular momentum defined
with osculating elements does feature variations at 1PN order, while the
one defined with contact elements is a constant. Thus, one cannot eliminate
the nodes by following the conventional procedure if one uses the osculat-
ing elements instead of the contact ones.7 As an independent check of this
procedure, our numerical simulation confirms that the projection of the an-
gular momentum on the z-axis, ∥J∥ cos ι + ∥J3∥ cos ι3, is conserved through
the evolution.

We now discuss our numerical solution for a particular set of parameters.
We choose the inner binary to be composed of two black holes with total

7 The fact that Ω̇ ̸= Ω̇3 for osculating elements was already noticed in Ref. [283]. In comparison,
our discussion adds that the elimination of nodes can be carried out consistently at the level of
contact elements.
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Figure 5.2: Impact of the quadrupole-1PN terms on the evolution of a three-body system. We
solve the LPE (5.29) with the following parameters for a three-body sys-
tem: m = 50M⊙, ν = 0.15, a = 5AU, m3 = 50M⊙, a3 = 350AU. The initial
conditions are e = 0.001, e3 = 0.7, ιtot = 87°, ω = 240°, ω3 = 0°, Ω = 0°.
In the left plots we show the evolution of the total inclination ιtot = ι + ι3
and the eccentricity e without taking into account PN perturbations (i.e.,
setting v2 = 0 in our power-counting rules), but including Newtonian
quadrupolar and octupolar terms as described in e.g. [227]. The system
features orbital flips and eccentricities as high as 1 − e ∼ 10−4, which
are typical of the octupolar Kozai-Lidov mechanism [227, 231, 240, 262].
In the right panels, we show the evolution of the same quantities taking
into account higher terms in the PN expansion on top of the Newtonian
quadrupolar and octupolar terms. Namely, we include PN terms up to
v2ε3/2 order (in blue) and up to v2ε5/2 order (in orange). The lowest-
order PN perturbations (which are well-known and have been studied in
the context of three-body dynamics e.g. in [249, 263, 267, 279, 280, 309])
generically quench the orbital flips and eccentricities. However, the new
v2ε5/2 terms computed in this article re-trigger the orbital flips.
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mass m = 20M⊙ and mass ratio ν = 0.15, while the third body has a mass
m3 = 50M⊙. The inner semimajor axis is a = 5AU, and the outer one is a3 =
350AU. Such values are typical for black holes in dense nuclear clusters [231,
239, 310, 311]. The initial conditions of the system are described in Figure 5.2,
where we plot the total inclination ιtot = ι + ι3 and the eccentricity e as
functions of time. Without PN perturbations, the system undergoes flips
of inclination and extreme eccentricities due to the octupole effects beyond
the Kozai-Lidov mechanism. The presence of lower-order PN terms (up to
v2ε3/2 i.e. dipole order) quenches the maximal eccentricity as well as the
orbital flips. This behavior is well-known in the literature [249, 263, 309].
However, we find that adding the new 1PN quadrupolar terms that we
computed in this article can re-trigger the flips in inclination. This is shown
in Figure 5.2. Whether or not this ultimately influences the mechanisms
leading to binary mergers in nuclear clusters is left as an interesting question
for future work.

As a final comment, note that we have not studied the linear stability of
the system, which would require diagonalizing the Hessian matrix of the
inner and outer contact elements. Even without knowing the eigenvalues of
the Hessian matrix, we can appreciate how no unstable direction was hit in
our simulation, since amplitude and phases of the oscillations do not grow
exponentially. Moreover, we take the persistence of quasi-periodic oscilla-
tions as a proxy for the absence of any resonant behavior (see discussion
in Appendix B.4). Therefore, the accuracy of the simulation reported is only
limited by the growth of higher order terms that we have neglected. These
will possibly become of order one after a time which is parametrically larger
than the interval explored in the simulation.

5.5 summary

In this chapter we have considered the effects of a distant third body orbit-
ing a tightly bound binary system, forming a hierarchical triple. We have
derived an effective action that includes relativistic effects up to 1PN order
as well as multipole effects up to quadrupole order.

Our EFT approach allows to make use of symmetries to constrain the form
of the interactions and makes clear contact with the underlying field theo-
retic description of gravity. In particular, starting from an action of three
worldlines minimally coupled to gravity, we integrated out the off-shell
gravitons that give rise to the binding potential and matched the theory
to a system of interacting composite particles. We did this by first integrat-
ing potential gravitons binding the inner binary and matching the action of
the inner binary to that of a composite particle coupled to an external grav-
itational field. Then, integrating out potential gravitons with wavelengths
comparable to the size of the outer orbit, we obtained an action describing
two interacting particles, the inner binary and the third body. This method
allows to build towards a systematic understanding of the long time-scale
dynamics away from resonances.

In practice, deriving the effective action presents a few challenges. For
instance, it is important to understand which are the most suitable variables
to describe the long time-scale dynamics and the relativistic corrections. In
this study we have found that the contact elements defined in the center of
mass frame of the inner binary allow to encode in a compact way various
PN corrections. Moreover their slowly evolving parts are the quantities that
carry only the relevant information to describe the system on long time-
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scales. Using near-identity transformations, we were able to unambiguously
integrate out the effect of fast orbital modes on the dynamics, outlining a
procedure that can be used at any order in perturbation theory. With this
approach, we managed to gain insight on the interplay between multipole
expansion and relativistic effects. Our main result is that quadrupole-PN
cross terms can retrigger orbital flips in spite of PN effects that appear at
lower order in the multipole expansion.
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6
C O N C L U S I O N S

In this thesis we have employed EFTs to tackle relevant questions for
black hole physics and gravitational wave detection, illustrating both the
predictive and descriptive power of the EFT framework.
In the first part of the thesis we considered models of physics beyond GR
which have a low energy degree of freedom coupled non minimally to
gravity, in the specific a shift symmetric (pseudo)scalar field.
Our considerations led us to understand that non-minimal coupling
to invariants quadratic in the Riemann tensor is in tension with the
expectations regarding the causal structure of a relativistic EFT. A UV
completion can in principle remove this tension by canceling superluminal
propagation. This solution still makes difficult to envision these interaction
taking place with a strength such to affect astrophysical black holes.
Indeed invoking the UV completion would imply the existence of a tower
of spinning particles as light as km−1 ∼ 10−10eV, impacting severely the
Newtonian potential measured at scales of few µm in table top experiments.

In this regard, it might be interesting to understand whether such a
UV completion can exists that would not radically alter the Newtonian
potential at shorter length-scales.
On a more fundamental level, as far as the first part of this work goes, we
can outline a few points that deserve further study. One is the question of
whether large non-minimal coupling to gravity leads in general to tensions
with causality. This for instance seems to be the case for the operator ϕ2-GB,
but it would be useful to gather other examples also for different fields
coupled to gravity. Another is the relation between superluminality bounds
and results from dispersion relations, which is still not fully understood. In
this perspective, studying constraints on higher point operators from both
points of view seems an important and ambitious goal. In the same direc-
tion, it would also be useful to implement an optimization procedure for
superluminality bounds, e.g. building on the attempts of [126]. Finally, we
have omitted any discussion of the possible implications of superluminality.
Exploring this topic further seems to be a fundamental direction of research
which might lead to new insights about the interplay between quantum
fields and Cauchy horizons. Moreover, from a more mathematical point
of view, it would be interesting to understand if in the presence of gravity
the finite-frequency phase velocity can be shown to be larger than the front
velocity [312].

In the second part of this thesis, we have focused on studying envi-
ronmental perturbations of a binary, in the specific case in which it is
perturbed by a distant third body. We have developed an EFT to describe
the long time-scale dynamics of such systems, by mapping the binary to
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a composite particle endowed with multipole moments. We derived the
effective Lagrangian for this system including the first order relativistic
corrections as well as three-body effects up to the quadrupole order. The
EFT approach made transparent how different terms combine together due
to symmetries in the IR description. With our analysis, we were able to
investigate regimes in which the relativistic-quadrupole cross terms can
lead to orbital flips. However, this analysis should only be considered a
starting point.

In fact, we can outline a few points that would deserve further study.
First of all, despite carrying out non-trivial computations that probed to
some depth the perturbative structure of the theory, we are still unable to
provide a complete understanding of the NDA power counting scheme
for the long time-scale effects. In particular, although we can determine
by symmetry which operators will describe the long time-scale dynamics
of the hierarchical triple, we have not yet outlined a way to predict the
relations between their coefficients. Determining these relations by means
of NDA would allow to explore very efficiently the interplay between
different interactions. A similar analysis might also make simpler to detect
the resonant behaviors that can be triggered by the various interactions.
These usually become manifest e.g. through small denominators (the so-
called small divisors [72]) in the Fourier transform of quantities computed
perturbatively. Also in this case, NDA should make possible to sidestep
part of the computations and predict by power counting the rate at which a
resonance is hit, depending on the coefficients of the operators in the EFT.
Since the coefficients of the long time-scale operators are specified by
the orbital parameters and masses of the three-body system, answering
these questions would allow to efficiently study the features of the system
throughout its phase-space. Besides studying the operator mixing and
the meta-stability of the hierarchical configuration, it might be possible
to further leverage insights from particle physics and compute e.g. the
spectrum of eccentricity-inclination oscillations or the rate of orbital flips
across the three-body phase-space.

From the phenomenological point of view, it would be interesting to
quantify how these effects alter existing priors on the population of binaries
that will be observed through gravitational wave experiments. Even more,
our work could be used to better understand which three-body configu-
rations can lead to detectable modifications of gravitational waveforms
due to the long time-scale dynamics, and to provide a waveform template
incorporating three-body effects. For instance, it has recently been proposed
that Kozai-Lidov oscillations may be observable in waveforms [313, 314];
taking into account the relativistic three-body effects which we computed
in this work may be crucial for the parameter estimation of these kind of
systems.
Moving beyond the case of a distant third body orbiting an ideal binary, it
would be relevant to extend the perturbed-NRGR approach we presented
to describe more generic environmental effects. For instance, one could
consider the NRGR description of a binary and add a generic stress energy
tensor describing e.g. a cloud or halo surrounding the binary as well as
distant sources. Continuing in this direction, the ultimate goal would be
to piece together the puzzle of different possible effects (clouds, distant
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sources, deformability of the bodies, etc.) and produce a clear picture of the
features that could be displayed in GR binary mergers.

Remarkably, studying how finite size and environmental effects impact
binary mergers might one day allow to shed light, or better gravity, on as-
trophysical phenomena in extreme conditions.
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A
R E S U LT S F O R B L A C K H O L E H A I R

a.1 the many gauss-bonnet currents

As we have discussed in Section 2, the Gauss-Bonnet invariant is the di-
vergence of a current which is not itself a tensorial object. For this reason
taking its square does not give a quantity which is invariant under diffeo-
morphisms. In the main text we discussed the special expression that this
current takes in the presence of a Killing vector aligned with a coordinate. In
a generic case the current can be written is terms of the spin connection. Its
expression does not give a covariant vector, in the same way the Christoffel
symbols are not rank-3 tensors.

Using Greek and Latin letters for curved and flat indexes respectively, the
vierbeins ea

µ(x) will be defined through the following relation: gµν = ea
µηabeb

ν

. The spin connection will be ωa
b = ωa

µbdxµ = ea
ν∇µeν

bdxµ and the curva-

ture form will be Rab = dωab + ωa
c ∧ ωcb = ea

µeb
νRµν

ρσdxρ ∧ dxσ, where as
usual flat indexes are lifted and lowered with the flat metric ηab. Using these
definitions we can express the Gauss-Bonnet invariant as a total derivative:∫

d4x
√
−gR2

GB =
∫

RabRcdϵabcd =
∫

d
(

ϵabcdωab
(

Rcd − 1
3

ωc
eωed

))
= −

∫
d4x
√
−g∇µ

(
ϵµνρσϵατ

βλωα
νβ

(1
2

Rτ
λρσ −

1
3

ωτ
ργω

γ
σλ

))
,

(A.1)

where ωα
νβ = ωa

νbeα
a eb

β and ϵµνρσ = ea
µeb

νec
ρed

σϵabcd, with ϵabcd the Levi-Civita
symbol1.

Evaluating the expression (A.1) in the Schwarzschild coordinates (with
the natural induced vierbein) gives:

Jµ

(Schw)
=

(
0,

2rs(r − 2rs)

r5 ,−4rs cot(θ)
r5 , 0

)
, ∇µ Jµ

(Schw)
=

12r2
s

r6 . (A.2)

This current has a non-zero θ component and its square diverges both at the
horizon and at the poles:

J2
(Schw) =

4r2
s

r9

(
4r cot2(θ)− (r − 2rs)2

rs − r

)
. (A.3)

This current is actually a linear combination of the currents defined in Sec-
tion 2.1.1: Jµ

(Schw)
= 1

2 Jµ

(t) +
1
2 Jµ

(φ)
(and this of course implies it has the right

divergence).

1 Notice that in the analogous expression given in [92] the term − 1
3 ωτ

ργω
γ
σλ was accidentally

omitted.
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The expression (A.1) holds in any coordinate system without the need of a
Killing vector. In the case of Schwarzschild space-time, in Kruskal-Szekeres
coordinates (T, R, θ, φ), see for instance [77], we have:

Jµ

(KS) =

(
T
(
2r2

s + rsr + r2)
r2

s r4 ,
R
(
2r2

s + rsr + r2)
r2

s r4 ,−4rs cot(θ)
r5 , 0

)
,

∇µ Jµ

(KS) =
12r2

s
r6 ,

(A.4)

where r must be understood as a function of the new coordinates T and
R. The relation JR

(KS)/JT
(KS) = R/T implies that this current has no time

component once we transform it to Schwarzschild coordinates. The radial
component reads:

Jr
(KS→Schw) =

∂r
∂T

JT
(KS) +

∂r
∂R

JR
(KS)

= 2
(r − rs)

rsr5

(
2r2

s + rsr + r2
)
= Jr

(Schw) +
2

rsr2 .
(A.5)

Therefore, transforming back to Schwarzschild coordinates we obtain the
current (A.2) plus a divergenceless term. The square of the Kruskal-Szekeres
current is divergent only at the poles:

J2
(KS) =

4
r2

s r9

[
4r4

s r cot2(θ) + (r − rs)
(

2r2
s + rsr + r2

)2
]

. (A.6)

This does not coincide with Eq. (A.3), as expected since J2 is not a scalar.
Notice that it is possible to take an arbitrary linear combination of the

various currents obtained above, and build another one with the proper
divergence. For example we can combine the currents of Eqs. (2.5) and (A.5):

Jµ

( f inite) = −Jµ

(φ)
+ 2Jµ

(KS→Schw)
=

(
0,−4r2

s
r5

(
1 − r3

r3
s

)
, 0, 0

)
. (A.7)

This current gives the correct divergence and has a finite norm everywhere
for r > 0:

J2
( f inite) =

16
r7 (r − rs)

(
r
rs

+
rs

r
+ 1
)2

. (A.8)

a.2 equivalence between sgb and quintic horndeski with

G5 = log(X )

In this appendix we want to check explicitly the equivalence between the
sGB operator and a shift-symmetric Quintic Horndeski with G5 = log(X)
[91].

As a warm up, we can first look at the analogous case of shift-symmetric
Cubic Horndeski with G3 = log(X) in d = 2 dimensions and the operator
ϕ (2)R, where (2)R is the two-dimensional Ricci scalar (see also Ref. [315]).
The scalar current for a generic G3(X) has the following form

Jµ
H3 = G3X ([Π]gµν − Πµν) ∂νϕ . (A.9)

The equation of motion then reads

∇µ Jµ
H3 = G3X

(
[Π]2 − [Π2]

)
+ 2G3XX ∂αϕ∂βϕ

(
[Π]Παβ − ΠαµΠ β

µ

)
+G3X gαβ ∂µϕ∇[µ∇α]∂βϕ . (A.10)
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Notice that the terms with three covariant derivatives acting on ϕ arrange
in an antisymmetric way, leaving behind only a term proportional to the
Riemann tensor, but no third derivatives of the field, as expected from a
Horndeski Lagrangian. The above equation of motion in its current form
obscures the fact that there is a choice of the function G3(X) that renders
the equation ϕ-independent (in d = 2). In order to make this manifest, it
is useful to consider the Cayley-Hamilton theorem, which states that any
square matrix satisfies its own characteristic equation. In this case, consider
the matrix of second derivatives of the field in a given basis, Πµ

ν, a d × d
matrix, the following local identity holds in d = 2:

(Π2)
µ
ν − [Π]Πµ

ν −
1
2

δ
µ
ν

(
[Π2]− [Π]2

)
= 0 (d = 2) . (A.11)

Then it is straightforward to rewrite the equation of motion (A.10) as follows

∇µ Jµ
H3

∣∣∣
d=2

=(G3X + X G3XX)
(
[Π]2 − [Π2]

)
− G3X

(2)Rµν∂µϕ ∂νϕ . (A.12)

Finally, using that in d = 2 the Ricci tensor is just (2)Rµν = (2)R gµν/2 and
the choice G3 = log(X) we obtain

∇µ Jµ
H3

∣∣∣
d=2

= −1
2
(2)R , (A.13)

which is the expected result.
Now let us turn to our case of interest. In what follows we are going to

be more schematic, however the story is conceptually similar, but the calcu-
lations considerably more cumbersome due to the sheer amount of terms
involved. A generic shift-symmetric Quintic Horndeski in d = 4 dimensions
will have a scalar current with two types of terms:

JH5 ∼ G5XR(∇∇ϕ)∂ϕ + G5XX(∇∇ϕ)3∂ϕ , (A.14)

where R stands generically for the curvature. There various terms of each
kind have several different contractions among the tensors, which neverthe-
less enjoy a particular structure due to the theory being Horndeski. The
equation of motion, in turn, will schematically have the following seven
types of terms,

∇JH5 ∼ G5X

[
∇R(∇∇ϕ)∂ϕ +R([∇,∇]∂ϕ)∂ϕ +R(∇∇ϕ)2

]

+G5XX

[
R(∇∇ϕ)2(∂ϕ)2 + (∇∇ϕ)4 + (∇∇ϕ)2([∇,∇]∂ϕ)∂ϕ

]
+G5XXX (∇∇ϕ)4(∂ϕ)2 , (A.15)

where the terms were arranged according to the number of X-derivatives
acting on G5. Once again notice that, since the theory is Horndeski, the equa-
tions of motion must be of second order. Indeed, the terms with ∇R can-
cel identically by the differential Bianchi identities, while those with third
derivatives acting on the scalar always appear antisymmetrically. Some of
these terms are in fact the ones giving rise to terms quadratic in the curva-
ture. We also emphasize that, much like in the cubic case, the terms contain
various possible contractions. For example, in the last term of (A.15) the two
factors of ∂ϕ are not contracted to each other, and thus are not forming the
combination X.
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We rearrange once again the types of terms in the equation of motion,
now in increasing powers of the curvature, obtaining, schematically,

∇JH5 ∼
[

G5XX(∇∇ϕ)4 + G5XXX(∇∇ϕ)4(∂ϕ)2

]

+R
[

G5X(∇∇ϕ)2 + G5XX(∇∇ϕ)2(∂ϕ)2

]
+G5XR2(∂ϕ)2 . (A.16)

At this point, if one specializes to d = 4 one can simplify the way indices
are contracted so that, similarly to the Cubic example above, all the terms
that have a ∂αϕ∂βϕ become proportional to X. For the first line we make use
of the Cayley-Hamilton theorem in d = 4. For the second line instead, it is
useful to first decompose the Riemann tensor

Rµνρσ = Cµνρσ + Eµνρσ + Sµνρσ , (A.17)

where Cµνρσ is the Weyl tensor, and

Eµνρσ =
1

d − 2
[
gµρSνσ − gµσSνρ + gνσSµρ − gνρSµσ

]
, (A.18)

Sµνρσ =
R

d(d − 1)
[
gµρgνσ − gµσgνρ

]
, (A.19)

and Sµν = Rµν − R
d gµν is the traceless part of the Ricci tensor. The pieces

involving the Ricci tensor quickly combine to be proportional to a metric.
For the pieces involving the Weyl tensor, a bit more work is necessary to
show this, but it ultimately follows by exploiting the fact it is a fully traceless
tensor. Once the X is factorized, the resulting expression combines with the
terms with one less X-derivative.

Finally, let us be more explicit with the part quadratic in the curvature
(third line of (A.16)),

(∇µ Jµ
H5)

(2) = −G5X ∂αϕ ∂βϕ

[
RµνRµανβ − 1

2
RRαβ

+ Rα
µRµβ − 1

2
R α

µνρ Rµνρβ

]
.

(A.20)

Using the decomposition (A.17), the above expression can be brought to the
form

(∇µ Jµ
H5)

(2) = −G5X ∂αϕ ∂βϕ

[(
1
4

SµνSµν − R2

48

)
gαβ − 1

2
C α

µνρ Cµνρβ

]
,(A.21)

where again the nontrivial part is the one involving the Weyl tensor. In this
case, it is necessary to further decompose it into its electric and magnetic
parts, defined as

Eµν = CµανβUαUβ , Bµν = C̃µανβUαUβ , (A.22)

where Uµ is any timelike unit vector defining a local frame, and C̃µανβ is
the dual of the Weyl tensor, C̃σ

ρµν := 1
2 ϵµναβCαβσ

ρ. Here, Eµν and Bµν are
symmetric, traceless and transverse to Uµ. An explicit expression for Cµανβ
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in terms of them can be found in Ref. [316]. With these tools, it can be shown
that

C α
µνρ Cµνρβ = 2(d − 4)EαµE β

µ + 2(EµνEµν − BµνBµν)gαβ . (A.23)

Therefore, in d = 4, this contribution is indeed proportional to the metric.
Notice that, although Eµν and Bµν are frame dependent, the combination on
the second term above is in fact invariant. With this, we can finally write

(∇µ Jµ
H5)

(2) =
1
8

XG5X

[
−2SµνSµν +

R2

6
+ 8(EµνEµν − BµνBµν)

]
, (A.24)

the quantity in brackets being no other than the Gauss-Bonnet invariant
R2

GB.
Putting everything together, the equation of motion can be written in the

following form

∇µ Jµ
H5

∣∣∣
d=4

= (A.25)

XG5X
8 R2

GB − 2 (G5X + XG5XX)

[
1
3
(
[Π]2 − [Π2]

)
R

−
(
[Π]Πµν − Π2

µν

)
Rµν + ΠµρΠνσCµνρσ

]
− 2

3 (2G5XX + XG5XXX)
(
[Π]4 − 6[Π2][Π]2 + 3[Π2]2 + 8[Π3][Π]− 6[Π4]

)
.

We emphasize again that we crucially rely on being in d = 4 dimensions in
order to express the equation in this form. The unique choice G5 = log |X|
makes the whole ϕ-dependence go away, leaving only

∇µ Jµ
H5 =

1
8
R2

GB . (A.26)

a.3 requirements on dhost theories

As remarked in Section 2.3, the requirements of a ghost-free decoupling
limit around flat spacetime and of the presence of the Einstein-Hilbert term
define two different classes: one is generated by Horndeski Lagrangians by
a conformal plus disformal transformation, while the other would appear
more difficult to explore. Here we will show that despite admitting the pres-
ence of both quadratic and cubic DHOST operators, this second class never
admits a standard Einstein-Hilbert term, making it impossible to recover
General Relativity in the limit in which X → 0.

The proof makes use of the result of [141], i.e. that every quadratic DHOST
theory admitting a healthy decoupling limit is connected to the quartic
Horndeski Lagrangians via an invertible conformal plus disformal trans-
formation of the form (2.27). Thus one can start by examining the condition
of compatibility of the cubic part with the quadratic one, when this last is
chosen to be the quartic Horndeski2:

0 = −4
G2

4X
G4

+ 4
G4X
X

− G4

X2 = −G4

(
2

G4X
G4

− 1
X

)2
. (A.27)

2 The generic compatibility conditions can be found in Section 4 of [142], conditions (1) and (3)
in the second table. These conditions become degenerate when the quadratic DHOST part is
simply a quartic Horndeski theory.
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This means that either G4 ≡ 0 or G4 ∝
√

X. Both these solutions correspond
to theories which contain no Einstein-Hilbert term.

If we do not restrict to quartic Horndeski, the quadratic-cubic compat-
ibility conditions become more involved. However, knowing that all the
quadratic DHOST theories that we are scanning can be obtained by a con-
formal plus disformal transformation of a quartic Horndeski theory, we can
simply inspect how the transformation (2.27) will change a function G4 that
solves Eq. (A.27):

Ḡ4
√

Ω(Ω + XΓ)1/2 = G4 ∝
√

X . (A.28)

This means that as long as we require Ω(0) = 1 and Γ(X) to be smooth in
X = 0, the function Ḡ4 will not contain a constant term, therefore making
impossible to retrieve General Relativity when X = 0.



B
R E S U LT S F O R B I N A R I E S A N D N R G R

b.1 lagrange planetary equations and leading order aver-
aging

This Appendix introduces a set of equations initially introduced by La-
grange. To begin with, note that the time-dependence of the osculating ele-
ments defined by Eq. (4.19) cannot be arbitrary. We must impose a gauge-
fixing condition such that the velocity is indeed given by Eq. (4.19). We
denote such a condition by

C =
dr
dt

= v , (B.1)

where the expression for the vector v was given in Eq. (4.19). Thus, there is
a relation between time derivatives of the osculating elements. This gauge-
fixing condition removes three degrees of freedom (equivalently, six vari-
ables in phase space) from the six degrees of freedom contained in the six
osculating elements (equivalently, twelve variables in phase space).

Now, we could write a Lagrangian for the osculating elements by imple-
menting this constraint with a Lagrange multiplier λ, so that

L =
1
2

µv2 +
Gµm

r
+ λ ·

(
C − v

)
+ L1 , (B.2)

where L1 has been defined in Eq (4.1). From there one could deduce the
Lagrange planetary equations (LPE) which relate time derivatives of the
osculating elements to the perturbing function L1 ≡ µR. However, it is
much easier to derive them in a Hamiltonian formalism, see e.g. [317] to
which we refer the reader interested in the details of the derivation.

The LPE are traditionally expressed using the following angles: ι is the in-
clination, ω the argument of periapsis, and Ω the longitude of the ascending
node. In term of these, the unit vectors α̂ and γ̂ are expressed as

α̂ = Rz(Ω)Rx(ι)Rz(ω)ûx ,

γ̂ = Rz(Ω)Rx(ι)Rz(ω)ûz ,
(B.3)
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where ûx, ûy, ûz are the Cartesian basis vectors. Using these angles, the LPE
are given by [317]

ȧ =

√
4a

GNm
∂R
∂u

, (B.4)

ė = −
√

1 − e2

GNmae2
∂R
∂ω

+
1 − e2

√
GNmae

∂R
∂u

, (B.5)

ι̇ = − 1√
GNma(1 − e2) sin ι

∂R
∂Ω

+
cos ι√

GNma(1 − e2) sin ι

∂R
∂ω

, (B.6)

u̇ =

√
GNm

a3 −
√

4a
GNm

∂R
∂a

− 1 − e2
√

GNmae
∂R
∂e

, (B.7)

ω̇ =

√
1 − e2

GNmae2
∂R
∂e

− cos ι√
GNma(1 − e2) sin ι

∂R
∂ι

, (B.8)

Ω̇ =
1√

GNma(1 − e2) sin ι

∂R
∂ι

. (B.9)

It can be checked that the LPE can be derived from the following fist-order
Lagrangian:

L = µ

[
GNm

2a
+ Lu̇ + Gω̇ + HΩ̇

]
+ L1 , (B.10)

The conjugate momenta are given by

L =
√

GNma , G = L
√

1 − e2 , H = G cos ι . (B.11)

This Lagrangian is exact, however, it is not manifestly invariant under a
rotation of the basis vectors; such a manifest invariance can be recovered by
noticing that the angular part can be rewritten as

µ
[
Gω̇ + HΩ̇

]
= µG β̂ · ˙̂α = J · Ω , (B.12)

where J is the total angular momentum of the binary and Ω is an angular
velocity defined by

J = µ
√

GNma(1 − e2)γ̂ , Ω = α̂ × ˙̂α . (B.13)

Thus, the angular kinetic term can be identified with a spin coupling in
flat space (note that our sign convention for the metric is different from the
one used in e.g Refs [223, 285], which explains the sign difference of the
kinetic term). However, note that not all the components of the spin vector
are independent, since the Lagrangian shown in (B.12) displays only two
degrees of freedom (corresponding to four equations in phase space once a
variational principle is applied). Indeed, notice that if one wants to vary the
Lagrangian with respect to α̂ and β̂ in order to keep a manifest rotational
invariance, one should also impose that these vectors should be unitary and
orthogonal in order to preserve the right number of degrees of freedom.

In terms of these canonical variables we can derive the Lagrange Planetary
Equations (B.4) by expressing the time-derivatives of all osculating orbital1

elements in terms of derivatives of the Hamiltonian [304]. They can be ob-
tained as the equations of motion stemming from the Lagrangian (B.52).

1 A similar analysis leads to the same conclusions in the case of the contact elements, i.e. the
variables used in Chapter 5.
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The derivatives of R with respect to canonical momenta can be trans-
formed in derivatives with respect to planetary elements by inverting the
relations (B.53):

a =
L2

Gm
, e =

√
1 − G2

L2 , cos ι =
H
G

, (B.14)

Thus, one has

∂R
∂L

= 2
√

a
GNm

∂R
∂a

+
1 − e2

e
√

GNma
∂R
∂e

, (B.15)

∂R
∂G

= −
√

1 − e2

e
√

GNma
∂R
∂e

+
cos ι√

GNma(1 − e2) sin ι

∂R
∂ι

, (B.16)

∂R
∂H

= − 1√
GNma(1 − e2) sin ι

∂R
∂ι

. (B.17)

In these equations, the derivatives with respect to the osculating elements
are taken holding all other elements fixed. However, we should be careful
because the eccentric anomaly η depends on both the eccentricity and the
semimajor axis through the equation η − e sin η =

√
GNm/a3t + σ. Conse-

quently,

∂η

∂e

∣∣∣∣
σ,a fixed

=
sin η

1 − e cos η
,

∂η

∂a

∣∣∣∣
σ,e fixed

= − 3nt
2a(1 − e cos η)

. (B.18)

Thus we obtain:

∂R
∂e

=
∂R
∂e

∣∣∣∣
ȷ fixed

+
sin η

1 − e cos η

∂R
∂η

,

∂R
∂a

=
∂R
∂a

∣∣∣∣
ȷ fixed

− 3nt
2a(1 − e cos η)

∂R
∂η

,
(B.19)

leading to Eq. (B.4) given above.
Finally, to obtain a long time-scale description of the system, one needs to

average out, the quasi-periodic orbital motion of the binary system. This cor-
responds to eliminating the short time-scale degree of freedom contained in
the mean anomaly u. As a consequence, since the perturbing function does
not depend on u any more, one expects the semimajor axis a to be constant
through time from Eq. (B.4). We will clarify to what extent this is the case in
App. B.4. This fact implies that the two-body Lagrangian shown in Eq.(B.10)
is indeed equivalent to a spin kinetic term, since the term GNm/2a + Lu̇
becomes an irrelevant constant.

After this elimination, the binary system is described by four dynamical
quantities (the eccentricity e and the three Euler angles defined above) which
vary over a timescale much greater than the period of the binary. At leading
order, we can use the following formula to define the average of a given
quantity A:

⟨A⟩ = 1
T

∫ T

0
dt A(t) =

1
T

∫ 2π

0

dt
dη

dη A(η) ,

T =
∫ 2π

0

dt
dη

dη .
(B.20)

Using Eq. (4.20), one has

dt
dη

=
1 − e cos η

u̇ + ė sin η
. (B.21)
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At lowest order in the perturbing function L1, one has u̇ + ė sin η =√
GNm/a3 and T = 2π

√
a3/(GNm), so that the mean value becomes

⟨A⟩ = 1
2π

∫ 2π

0
dη(1 − e cos η)A(η) . (B.22)

Going beyond this naive averaging technique to capture further corrections
due to either backreaction of fast modes or deviations from adiabaticity,
we will need a more careful analysis of the dynamical variables in play,
which we carry out in App. B.3. As we will see in detail in Chapter 5, these
corrections contribute at the quadrupolar 1PN level.

b.2 spin kinetic term and gauge fixing of rotational vari-
ables

In this appendix we provide some details of the computation of the spin
kinetic term (4.35) as a function of the intrinsic angular momentum of the
inner binary. The computations are analogous to those carried out in [223],
with the difference that we specialize to the no mass dipole gauge in which
the time components of the spin tensor are set to zero. This choice will make
simple to connect the spin tensor to the orbital angular momentum.

First of all, it is useful to introduce a worldline tetrad eµ
A(σ) defined

only on the worldline yµ(σ) (σ being the affine parameter of the curve)
which represents a choice of axes in the rest-frame of the body and satisfies:
gµν(y(σ))e

µ
A(σ)e

ν
B(σ) = ηAB. This tetrad can be used to define the angular

velocity of the body: Ωµν = eν
A(DeµA/Dσ), whose conjugate is the spin

tensor Jµν = 2∂L/∂Ωµν. Both these tensors contain gauge degrees of free-
dom, since only the spatial orientation of the worldline tetrad has a physical
meaning. In fact we can choose arbitrarily its time-like direction, encoded
in eµ

[0]. This gauge choice corresponds to a redundant boost transformation
of the worldline tetrad (in order to avoid ambiguities between the different
set of indices, we are using square brackets to distinguish the flat indices of
the worldline tetrad from the others).

The gauge fixing of eµ

[0] must be supplemented with a gauge fixing of
the conjugate variables in Jµν, the so-called Spin Supplementary Condition
(SSC). Starting from a covariant gauge choice in which eµ

[0] = pµ/
√
−p2

and the spin tensor satisfies the covariant SSC Jµν pν = 0 , the action of
a boost will change the worldline tetrad and the angular velocity tensor.
The changes produced by this transformation in the Lagrangian can be in-
terpreted by means of a redefinition of the spin tensor and a consequent
change of the SSC. We will therefore use this boost degree of freedom to first
pick the no mass dipole SSC for the spin tensor and then to fix the canonical
gauge for the angular velocity vector. In this way we will get an expression
dependent only on the intrinsic angular momentum of the binary.

As computed in [223], the transformation of the spin kinetic term of the
Lagrangian under a boost of the worldline tetrad (starting from the covari-
ant gauge and SSC) is the following:

1
2

JµνΩµν =
1
2

ĴµνΩ̂µν +
pλ

−p2 Ĵµλ
Dpµ

Dσ
, (B.23)

where we have used hatted symbols to label boosted variables
and in particular we have defined the boosted spin tensor to be
Jµν = Ĵµν − δzµ pν + δzν pµ , with δzµ = Ĵµρ pρ/(−p2). We can interpret
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this change of the spin tensor as due to a shift of the center of the body rota-
tion, that is the point where the worldline intersects the body. In the case of
the no mass dipole gauge, in which the spin tensor is purely spatial, this shift
corresponds to setting the center of the worldline on the relativistic center of
mass, as shown in the main text. The second term in Eq.(B.23) will instead
contribute to the Thomas precession, which we can understand as due
to a gravitational torque associated to the finite size of rotating objects in GR.

Before specifying the boost needed to get to the desired SSC, it is
useful to disentangle the gravitational field from the spinning degrees
of freedom. We can do so by introducing the gravitational tetrad field
gµν(x)ẽµ

a (x)ẽν
b(x) = ηab, which is defined on the whole space-time. This

tetrad can be related to the worldline tetrad by means of a Lorentz transfor-
mation: ẽµ

a (y(σ)) = ΛA
a (σ)e

µ
A(σ), being ΛA

a (σ) a Lorentz matrix dependent
on the affine parameter of the worldline. As for the worldline tetrad flat
indices, when needed we will use round brackets to distinguish the flat
indices of the tetrad field from the others.

In this notation, once the gauge of the tetrad field is fixed, we can fix
the time-like vector of the worldline tetrad by choosing the boosted zero
components of the Lorentz matrices: Λ̂[0]

a . Moreover, introducing the tetrad
field will make possible to write all the objects in the right hand side of
Eq.(B.23) in terms of their counterparts with flat indices. Such quantities
correspond to those computed in terms of the intrinsic angular momentum
of the binary, as they are independent on the external gravitational field. In
particular we have:

1
2

ĴµνΩ̂µν =
1
2

ĴabΩ̂ab
f lat +

1
2

Ĵabωab
µ uµ , (B.24)

where ωab
µ = ẽa

ν∇µ ẽbν is the spin connection of the tetrad field, uµ = dyµ/dσ

is the worldline speed and we have defined Ω̂ab
f lat = Λ̂b

AdΛ̂aA/dσ.

At this point we can fix the gauge boost of the worldline tetrad. In order
to set the time components of the spin tensor to zero, Ĵa(0) = 0 , we need to
choose a boost such that

√
p2Λ̂[0]a = 2p0δ0a − pa (this can be understood by

inspecting the generic expression for Ĵµν , as discussed in [223]). Doing so,
we obtain the following:

1
2

JµνΩµν =
1
2

Ĵ(i)(j)Ω̂
(i)(j)
f lat +

1
2

Ĵ(i)(j)ω
(i)(j)
µ uµ (B.25)

+
p(j)

−p2 Ĵ(i)(j) ẽ
(i)
µ

Dpµ

Dσ
,

This gauge choice makes possible to unpack Ω̂(i)(j)
f lat and express

Λ̂a
[0]dΛ̂b[0]/dσ in terms of the momentum of the worldline, leaving to com-

pute only on the spatial part of the Lorentz matrices. However, these spatial
leftovers won’t be SO(3) matrices, since they need to satisfy the condition
Λ̂a

AηABΛ̂b
B = ηab and will carry a dependence on the worldline momentum,

due to the gauge condition on Λ̂a
[0] .

In order to obtain an angular velocity tensor defined in terms of rotation
matrices and to remove its dependence on the worldline momentum, we
can take a further boost of the worldline tetrad. This time however, we will
not use a redefinition of the spin tensor to absorb the new terms appearing



in the Lagrangian after the transformation. Rather, we will retain the spin
tensor satisfying the no mass dipole SSC and we will keep track of the new
terms explicitly.

In order to make Λ̂a
A an SO(3) matrix, we need to choose a gauge in which

Λ̂a
[0] = δa

0. Therefore we implement a boost of the worldline tetrad that sends

the time-like unit vector (2p0δa
0 − pa)/

√
−p2 to δa

0 . This transformation will
change only the first term in Eq.(B.25) as follows:

1
2

Ĵ(i)(j)Ω̂
(i)(j)
f lat =

1
2

Ĵ(i)(j)Ω
(i)(j)
SO(3) +

1
2

Ĵ(i)(j)u
(i) du(j)

dσ
, (B.26)

where now Ω(i)(j)
SO(3) is build out of rotation matrices and we have used pa =

mua/
√
−u2, with −u2 = 1 at leading order in the PN expansion.

Having fixed the gauge for both angular velocity and spin tensor, we can
carry out the explicit computation of the last two terms in Eq.(B.25). In order
to do so, we pick the tetrad field in such a way to have ẽ(i)0 = 0. Then, at
1PN order we obtain:

1
2

Ĵabωab
µ uµ =

1
2

Ĵ(i)(j)(4u(i)∂(j)ϕ̃ + ∂(i) Ã(j)) , (B.27)

p(j)

−p2 Ĵ(i)(j) ẽ
(i)
µ

Dpµ

Dσ
= Ĵ(i)(j)u

(j)

(
du(i)

dσ
+ ∂(i)ϕ̃

)
.

Plugging these results into Eq.(B.23), and identifying the worldline with the
trajectory of the center of mass, u(i) = V(i)

CM we finally get:

1
2

JµνΩµν =
1
2

Ĵ(i)(j)Ω
(i)(j)
SO(3) +

1
2

Ĵ(i)(j)A(i)
CMV(j)

CM (B.28)

+
1
2

Ĵ(i)(j)(2V(i)
CM∂(j)ϕ̃ + ∂(i) Ã(j)) .

Then, with a mild abuse of notation, we can drop the index brackets and
the hats so as to match the expressions used (for simplicity) in the main text:
Ĵ(i)(j) 7→ Jij , Ω(i)(j)

SO(3) 7→ Ωij. We stress however that these are different from
the (µ, ν) = (i, j) components of Jµν and Ωµν, which depend on the external
gravitational field.

Using this notation and the definitions Jij = ϵijk Jk , Ωij = ϵijkΩk, we can
rewrite Eq.(B.28) as:

1
2

JµνΩµν = J · Ω +
1
2

Jij Ai
CMV j

CM

+
1
2

Jij(2Vi
CM∂jϕ̃ + ∂i Ãj) , (B.29)

which is the equation used in the main text.

R E F I N E D AV E R A G I N G A N D C R O S S T E R M S

b.3 averaging through near-identity transformations

We here present the averaging procedure that we adopt in our computations
of Chapter 5, the so-called averaging by near-identity transformations [72].

112
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We do so in the context of a toy model that closely resembles the three-
body problem, an angle-periodic system in its canonical form. While in the
three body problem there are two angle variables (the mean anomalies of
inner and outer orbits) and several slowly evolving variables, we consider a
system with one angle variable, u, and one slowly evolving variable x:

d
dt

x = e g1(x, u) + e2 g2(x, u) + . . . ,

d
dt

u = H(x) + e h1(x, u) + e2 h2(x, u) + . . . ,
(B.30)

where e ≪ 1, the dots indicate terms with i > 2, and the functions gi , hi
are periodic in u with period 2π. Physically, we can think of e as a ratio of
time-scales, since the slow variable x has excursions of order 1 over times
that are 1/ e longer than those over which u changes its value by an order 1
factor. We implement the splitting between fast and slow dynamics using a
change of variables:

u(t) = uL(t) + e uS(xL, uL) ,

x(t) = xL(t) + e xS(xL, uL) ,
(B.31)

where uS, xS encode the short time-scale dynamics and are chosen to be
periodic in uL with period 2π. Eq. (B.31) is called a near-identity transfor-
mation, since for e → 0 it reduces to an identity. Physically, this ansatz
encodes the fact that fast oscillations will have suppressed amplitude. The
strategy that we adopt is to fix the functions uS , xS in such a way to cancel
quickly oscillating terms in the equations (B.30) order by order in e, up to
a desired accuracy. Then we truncate the equations, neglecting the higher
order corrections that still contain oscillating terms. This will leave a sys-
tem of equations for uL , xL that only depends on the long time-scale, up to
corrections that are of arbitrarily high order (which are neglected after the
truncation). Plugging the transformation in Eq. (B.30) we have, to second
order:

ẋL + e(ẋL∂xL + u̇L∂uL)xS = e g1(xL, uL) + e2(xS∂xL + uS∂uL)g1(xL, uL)

+ e2 g2(xL, uL) +O(e3) ,

u̇L + e(ẋL∂xL + u̇L∂uL)uS =H(xL) + e H′(xL)xS +
e2

2
H′′(xL)x2

S (B.32)

+ e h1(xL, uL) + e2(xS∂xL + uS∂uL)h1(xL, uL)

+ e2 h2(xL, uL) +O(e3) ,

Now, order by order, we can determine xS , uS in such a way that the deriva-
tives ẋL , u̇L only depend on xL, up to terms of order e3:

ẋL = e G1(xL) + e2 G2(xL) +O(e3) ,

u̇L =H(xL) + e H1(xL) + e2 H2(xL) +O(e3) .
(B.33)

In order to obtain this, we write xS = x(0)S + e x(1)S + . . . and uS = u(0)
S +

e u(1)
S + . . . . Then, comparing Eq. (B.33) with Eq. (B.32) we find that at first

order it must be:

∂uL x(0)S =
1

H(xL)

(
g1(xL, uL)− G1(xL)

)
,

∂uL u(0)
S =

1
H(xL)

(
h1(xL, uL) + H′(xL)x(0)S (xL, uL)− H1(xL)

)
.

(B.34)
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Integrating the first equation at fixed xL, we find:

x(0)S (xL, uL) =
∫ uL

0

ds
H(xL)

(
g1(xL, s)− G1(xL)

)
+ C0(xL) . (B.35)

From this, since by assumption x(0)S is periodic in uL with period 2π, we see
that it must be: ∫ 2π

0

ds
H(xL)

(
g1(xL, s)− G1(xL)

)
= 0 , (B.36)

which in turn implies that G1 must be chosen to be the average of g1:

G1 = ⟨g1⟩uL =
∫ 2π

0

ds
2π

g1(xL, s) . (B.37)

We can further set C0(xL) in such a way that x(0)S has zero average. Schemat-
ically we will write:

x(0)S (xL, uL) =
1

H(xL)
AfuL

( ∫ uL
dsAfs(g1(xL, s))

)
, (B.38)

where the symbol Afx indicates taking the average-free part of the argument
with respect to the variable x.

Note that in this approach, the average is defined without ambiguities
through an integral over uL with xL fixed, as a by-product of requiring xS
to be periodic. This procedure can be thought of as an average over the
short time-scale characterizing the evolution of uL, while keeping fixed the
variable xL. Therefore, we are not truly performing an average over time,
but a procedure that is very similar and which ensures all the same an
arbitrarily precise approximation.

Turning to the equation for u(0)
S , we find in the same way that H1(xL) =

⟨h1⟩uL , since the quantity H′x(0)S is average-free (thanks to our choice of C0).
This means that if h1 is average-free, then u̇L will receive corrections starting
at order e2. We will also choose the constant of integration for u(0)

S in such
a way to make it average-free. Thus it will be:

u(0)
S (xL, uL) =

1
H(xL)

AfuL

( ∫ uL
ds
[
Afs(h1(xL, s)) + H′(xL)x(0)S (xL, s)

] )
.

(B.39)

This first order truncation of the approximation, when applied to the Newto-
nian hierarchical three-body problem, gives the Kozai-Lidov long time-scale
dynamics. Turning to second order, we have:

∂uL x(1)S =
1

H(xL)

(
g2 + (x(0)S ∂xL + u(0)

S ∂uL)g1 − H1∂uL x(0)S − G2(xL)
)

,

∂uL u(1)
S =

1
H(xL)

(
h2 + H′x(1)S +

H′′

2
(x(0)S )

2
+ (x(0)S ∂xL + u(0)

S ∂uL)h1

− H1∂uL u(0)
S − H2(xL)

)
, (B.40)

where g1,2 , h1,2 are evaluated in (xL, uL). Again, requiring the near-identity
transformation to be periodic, we find that G2 and H2 will be averages of
the other terms in the right hand side. Consequently, x(1)S and u(1)

S will be
integrals of average-free expressions, and we will be able to fix the constants
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of integration so as to make x(1)S , u(1)
S average-free as well. In particular, we

find:

G2 =
∫ 2π

0

ds
2π

(
g2(xL, s) + (x(0)S ∂xL + u(0)

S ∂uL)g1(xL, s)
)

, (B.41)

H2 =
∫ 2π

0

ds
2π

(
h2(xL, s) + (x(0)S ∂xL + u(0)

S ∂uL)h1(xL, s) +
H′′

2
(
x(0)S

)2
)

,

where we have dropped the terms H1∂uL x(0)S , H1∂uL u(0)
S and H′x(1)S , which

are average free. These functions can then be plugged in the equations for
xL and uL, and the slow dynamics can be determined up to terms of order
e3. Similarly, one can derive the averaging procedure to any order in ϵ sim-
ply by fixing higher orders of the near-identity transformation, through the
functions xS and uS.

The toy model just discussed describes well the procedure we would
adopt if we expressed our quantities in terms of the mean anomaly. How-
ever, we can only give a closed form expression of the perturbing function in
terms of the eccentric anomaly. If we wished to use the variable u as a proxy
for the eccentric anomaly, then we would have to allow a dependence on u
of the function H driving the leading order evolution of u. It would be then
much less straightforward to understand how to define the near identity
transformation, since we would have to decide whether we want to retain
a uL dependence in the functions Hi driving the evolution of uL. Moreover,
the equations for uS would require a more cumbersome integration.

For this reason, we find useful to exploit the averaging procedure derived
above, in terms of the mean anomaly, and to simply change integration
variables in a consistent way to the eccentric anomaly. If we call u the mean
anomaly and η the eccentric anomaly, then we know that Kepler’s equation
holds at all times:

u = η − e sin η , (B.42)

where e is the eccentricity, which we can regard as a component of what in
general will be the x vector. This relation ensures that any function periodic
in u is also be periodic in η. Given Kepler’s equation, we can perform the
near identity transformation and find a relation between uL and the eccen-
tric anomaly. Suppose the eccentricity is transformed as:

e = eL(xL) + e eS(xL, uL) , (B.43)

then we see that it must hold:

uL + e uS(xL, uL) = η − (eL(xL) + e eS(xL, uL)) sin η . (B.44)

Although the relation between η and uL is very involved, we can avoid
complications by performing a near-identity transformation on η as well:

η = ηL + e ηS(xL, uL) . (B.45)

Then, it is possible to fix ηS so as to retain, to all orders, the relation:

uL = ηL − eL sin ηL . (B.46)

This choice makes possible to express the integrands evaluated in uL as
simple functions of ηL. Moreover, it makes clear that at all orders the change
of variables will be given by:

duL = dηL(1 − eL cos ηL) . (B.47)
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Note that crucially, as a result of integrating at fixed xL, the Jacobian does
not have the denominator factor u̇ + ė sin η that would appear in dt/dη.
This is to say that the averaging procedure that we have presented provides
a coarse graining of the system in the time coordinate while removing the
need of actually performing an integral over time.

Before concluding, let us mention other methods to eliminate fast
variables besides the method of near-identity transformations. One alter-
native is the so-called multiple scale analysis, for instance discussed in
[318, 319]. The idea behind this method is to introduce fictitious variables
corresponding to long time-scales, and to determine the dependence on
these long time-scales by imposing the cancellation of terms that display a
secular growth, i.e. terms growing linearly with time which would break
the perturbative expansion early on. As far as we know, the method of
near identity transformations is to be preferred over the multiple scale
analysis if one is interest in estimating the range of validity in time of the
approximate solution [72]. Besides the multiple scale analysis, we quote the
method of Von Zeipel transformations, [249, 269], which works at the level
of the Hamiltonian implementing canonical transformations that eliminate
the dependence on short time-scale modes, very similarly to what we have
done above. Finally, we quote the method of dynamical renormalization
group [320], which operates in a way similar to the multiple scale analysis,
removing secularly growing terms by means of counterterms.

b.4 conservation of contact semi-major axis

We now turn to the question of whether the semi-major axes of the two
orbits remain constant over long time-scales. Despite the simplicity of this
question, to our understanding the answer is quite involved. There is an
intuitive reasoning to argue that the semi-major axes are constant over long
time-scales. That is, after the averaging procedure is carried out, the La-
grangian becomes independent on the mean anomaly of the corresponding
orbit, therefore making the corresponding conjugate momentum constant.
The latter, as shown in Eq. (B.53), depends only on the semimajor axis. How-
ever, when considering PN corrections this argument can only hold for the
contact element a, rather than for the orbital element ã, see discussion in
Appendix B.9. Moreover, as we discuss in Appendix B.3, the dynamical vari-
ables left after the averaging procedure are the long time-scale modes of the
original, full contact elements. Therefore the statement will not hold for the
full contact element, but only for its slowly evolving part.

The way to make this intuition rigorous is to implement a canonical
transformation of the Hamiltonian, eliminating order by order the depen-
dence on the mean anomalies. This is achieved through the Von Zeipel
transformations, as discussed in [249]. The result is that indeed, as long as
perturbation theory goes, the semimajor axes remain constant over long
time-scales.

The systematic control over each order in perturbation theory given
by the near identity transformations allows for an independent check of
this statement. Explicitly, using the formulas derived for the toy model
(B.30), we can check that, for instance, to second order we expect the semi-
major axis to be constant on long timescales. To argue this, we can think of
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the functions appearing as sources on the right hand side of Eq. (B.30) as
partial derivatives of the Hamiltonian of the system H = H0 +H1 + . . . :

g1 = −∂H1

∂u
, g2 = −∂H2

∂u
, (B.48)

H =
∂H0

∂x
, h1 =

∂H1

∂x
,

where we assume H to be periodic in u, meaning that the functions gi will
be average free. This allow us to inspect order by order whether the time
derivative of the conjugate momentum to the mean anomaly vanishes or
not, by computing the long time-scale source terms Gi, in Eq. (B.33). For
instance, it is evident that G1 = 0, due to g1 being average free. For G2, given
in Eq.(B.41), determining the answer is less straightforward. Schematically,
we have:

G2 =
∫ 2π

0

ds
2π

{
1
H

Af
(
H1
)
∂x∂uH1 − ∂x

(
1
H

Af
( ∫ u

Af(H1)

))
∂2

uH1

}
(B.49)

=
∫ 2π

0

ds
2π

{
∂x

(
1
H

Af(H1)∂uH1

)
− ∂u

[
∂x

(
1
H

Af
( ∫ u

Af(H1)

))
∂uH1

]}
.

Here we have used that H = H(x) and that the integrals over u are per-
formed at fixed x, as dictated by the method of near identity transforma-
tions. In this expression, the total u derivative gives a vanishing contribu-
tion thanks to periodicity of the functions, while in the first term we can
recognize a total derivative plus an average free term:

1
H

Af(H1)∂uH1 =
1

2H
∂u(H2

1)−
1
H
⟨H1⟩∂uH1 . (B.50)

These terms give a vanishing contribution to the average, therefore we find

G2 = 0 . (B.51)

Moving to higher orders, we will have to handle increasingly complex
expressions. In the end, also from the point of view of near identity trans-
formations, the simplest route might be showing that the long time-scale
part of x and u are still conjugate variables described by an Hamiltonian.

Despite these results, the perturbative expansion can fail due to reso-
nances between modes of the two orbits. In practice, if the orbits have
commensurable periods, then some terms of the expansion can be en-
hanced by inverse powers of the expansion parameters, usually called
small divisors [72]. As already remarked, in the analysis of this work
we have discarded such cases by performing the averages over the two
orbits independently. Generally however, small divisors will appear at high
enough orders in perturbation theory. Their presence will determine a loss
of validity of the predictions that we have obtained and a corresponding
non trivial evolution of the semimajor axes on time-scales that are paramet-
rically larger than those characterizing the effects described by lower orders
in perturbation theory. Instead if the system is studied close to a resonance,
then the standard perturbation theory will stop working already from low
orders and resonant behavior will appear early on in the evolution of the
system. As an example, the effects of a resonance on the evolution of a
hierarchical triple were studied in [321].
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b.5 backreaction and deviations form adiabaticity

As outlined in Appendix B.3, the averaging procedure can be conveniently
defined as an average over the values of the slowly evolving part of the mean
anomaly, then expressed in terms of the eccentric anomaly as in Eq. (B.46).
Here we apply this procedure to the three body problem.

b.5.1 Long-timescale and short-timescale Lagrangians

In order to describe corrections to the adiabatic approximation, we should
return to the Lagrangian (4.12). It will be useful to split it between a Newto-
nian term and a perturbation:

L =
1
2

v2 +
GNm

r
+R =

(GNm)2

2L2 + Lu̇ + Gω̇ + HΩ̇ +R , (B.52)

where the perturbing function R contains the kinetic term of the center of
mass as well as any other term beyond the Newtonian two-body interaction
of the inner binary. For simplicity we have divided the Lagrangian by µ, a
notation that we will use throughout the appendices. The second equality
expresses the Newtonian part as a first-order Lagrangian depending on the
(osculating) contact elements of the orbit, which are defined in Section 5.1.
It can be checked that this Lagrangian indeed gives the Lagrange Planetary
Equations presented in Section B.1 and which are usually presented in the
Hamiltonian formalism, see also [304, 322].

As mentioned in App. B.1, the conjugate momenta are given by

L =
√

GNma , G = L
√

1 − e2 , H = G cos ι . (B.53)

Given Eq. (B.52), we can perform near-identity transformations for all the
contact elements as outlined in Appendix B.3. Once we determine the fast os-
cillating terms in each of the near-identity transformations to a desired order
in both e, the ratio of the semimajor axes, and v, the velocity of the bodies,
we can simply plug back in the Lagrangian these values, obtaining a classi-
cal effective Lagrangian. Once we expand the resulting equations of motion
in e and v, we will recover the slow dynamics, as in Eq. (B.33). To simplify
even more the Lagrangian, we can take its average over the mean anomaly
(keeping fixed slow variables, as prescribed by the near-identity transforma-
tion). Doing so will not alter the equations of motion for the slowly evolv-
ing variables, since the average commutes with variations of the Lagrangian
with respect to these variables. It will simply remove the average-free part
of the effective Lagrangian, which does not carry dynamical information.
As remarked in the previous Appendix, following this procedure at leading
order will lead to the long time-scale Kozai-Lidov dynamics.

More explicitly, considering first the evolution of L and u alone, we em-
ploy the following two near-identity transformations:

u =uL + uS(LL, uL) ,

L =LL + LS(LL, uL) ,
(B.54)

where the subscripts L , S stand for the long and short time-scale variable
respectively, and the S variables are suppressed by powers of both ε and v.
Using the LPE for u and L, see Appendix B.1, we determine the equations
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for the short time-scale variables as discussed in Appendix B.3, finding at
lowest order:

∂uL LS =
L3

L
(GNm)2 Afu

(∂R
∂u

)
, (B.55)

∂uL uS =− L3
L

(GNm)2

[
Afu

(∂R
∂L

)
+

3(GNm)2LS

L4
L

]
,

where, following the near-identity transformation procedure, at leading or-

der we use Ẋ ≃ (GN m)2

L3
L

∂uX, for a generic quantity X. These equations can

be solved to give:

LS =
L3

L
(GNm)2 AfuL

( ∫ uL

0
du Afu

(∂R
∂u

))
,

uS =− AfuL

( ∫ uL

0
du
[ L3

L
(GNm)2 Afu

(∂R
∂L

)
+

3LS
LL

])
.

(B.56)

This is analogous to what obtained in Eq. (B.38), (B.39), identifying h1 7→
−∂R/∂L , g1 7→ ∂R/∂u and χ0H′/H 7→ −3LS/LL. A difference with re-
spect to the toy model presented in Appendix B.3 is the fact that now
there are two small parameters, i.e. ratio of time-scales, which we have
not factorized explicitly. For convenience, in the following we will indicate
F = AfuL(R) and, using that partial derivatives commute with the average
over uL, we will write AfuL(

∂R
∂X ) = ∂F

∂X .
Similar results will follow for the other contact elements and conjugate

momenta. At leading order, the equations of motion for the short-timescale
variables, obtained through the near-identity transformation, will read

∂uL GS =
L3

L
(GNm)2

∂F
∂ω

, ∂uL ωS = − L3
L

(GNm)2
∂F
∂G

,

∂uL HS =
L3

L
(GNm)2

∂F
∂Ω

, ∂uL ΩS = − L3
L

(GNm)2
∂F
∂H

.

(B.57)

In order to convert derivatives with respect to canonical momenta in deriva-
tives with respect to osculating contact elements, we use the formulas given
in Appendix B.1. As prescribed by the near-identity transformation ap-
proach, the quantities entering the right-hand side of Eqs. (B.57) are ex-
pressed only in terms of the long timescale variables eL, aL..., as derived
in Eq. (B.34). For simplicity, we will drop the L subscript from now on, so
that it will be understood that all osculating contact elements appearing in
the perturbing function do not include quickly oscillating parts. From the
knowledge of these leading order oscillating parts of our variables, we can
now compute the leading effect of back-reaction of the fast oscillations on
the long time-scale dynamics, using the following procedure. At the level
of the Lagrangian, we can substitute the near-identity transformations and
write the expression in (B.52) as

L = LL + LS , (B.58)

the first term corresponding to the Lagrangian evaluated on the long time-
scale variables only, while the second, LS, corresponding to the remaining
part, then to be averaged. For instance we have:

Lu̇ = (LL + LS)(u̇L + u̇S) . (B.59)
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When we take the average of this quantity, the mixed terms LLu̇S and LSu̇L,
being exactly average free, will not contribute. Therefore, we only need to
keep track of the two contributions LLu̇L in LL and LSu̇S in LS. This means
that, up to unimportant average-free terms, the long-timescale and short-
timescale parts of the Lagrangian read

LL = LLu̇L + GLω̇L + HLΩ̇L +
(GNm)2

2L2
L

+ ⟨R⟩ , (B.60)

LS =
(GNm)2

2

( 1
(LL + LS)2 − 1

L2
L

)
+ LSu̇S + GSω̇S + HSΩ̇S + ∑

X

∂F
∂X

XS ,

(B.61)

where X represent contact elements and conjugate momenta, and we have
used the splitting R = F + ⟨R⟩ together with the fact that ∂⟨R⟩/∂X XS is
an average-free quantity. In this equation, it is understood as before that R
and F are evaluated on the long-timescale variables only. We will approxi-
mate the first term as 3/2((GNm)2/L4

L)L2
S , since LS is average-free and all

the short timescale variables are suppressed either by e2 or by v2.
Plugging back the equations of motion as well as the solutions obtained

as in (B.56), we find

LS =− L3
L

(GNm)2

[
∂F
∂u

AfuL

( ∫ uL
du

∂F
∂L

)
+

∂F
∂ω

AfuL

( ∫ uL

0
du

∂F
∂G

)
(B.62)

+
∂F
∂Ω

AfuL

( ∫ uL

0
du

∂F
∂H

)]
+

3L2
L

(GNm)2

[
F 2

2
−F 2 − ∂F

∂u
AfuL

( ∫ uL
duF

)]
,

where in the second line, the first term comes from the expansion of
1/(LL + LS)

2, the second from substituting LSu̇S and the third from sub-
stituting the solution found for uS in Eq. (B.56). In order to simplify further
this expression, it is useful to consider its average over uL. Considering the
average allows us to perform integration by parts without having to deal
with boundary terms, thanks to the fact that these are obtained subtract-
ing the values of periodic functions at the endpoints uL = 0 , 2π. Moreover,
we can simplify Eq. (B.62) using that ⟨Af(M)Af(N)⟩ = ⟨Af(M)N⟩ for any
arbitrary functions M, N. Thus we find:

⟨LS⟩ =
1

2π

∫ 2π

0
duL

[
L3

L
(GNm)2

(
∂F
∂L

F +
∂F
∂G

∫ uL

0
du

∂F
∂ω

+
∂F
∂H

∫ uL

0
du

∂F
∂Ω

)

+
3L2

L
2(GNm)2 F

2
]

. (B.63)

In the next Subsection, we will compute the quadrupolar post-Newtonian
cross-terms given by this procedure. Using the same procedure, we can also
obtain the so-called "quadrupole-squared" terms studied in [298], which are
a purely Newtonian contribution of post-adiabatic corrections. As a proof-
of-concept, we use our procedure to compute such terms in Appendix B.8
and show that they give back the exact same equations as the ones displayed
in [298].

b.5.2 1PN quadrupolar cross-terms

We now need the expression of the perturbing function R, which contains
both post-Newtonian and quadrupolar terms. They are obtained by expand-
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ing the Lagrangian (4.12) in the center-of-mass frame. In doing so, one ob-
tains a quadrupolar part Rquad, of order ε2 within our power-counting rules,
and a post-Newtonian part R1PN. The latter is itself composed of two terms
R1PN = Rv2 +Rv2ε1/2 scaling differently: the first one is of order v2 and
corresponds to the usual EIH Lagrangian in the center-of-mass frame, and
the second one is linear in VCM and thus of order v2ε1/2. Higher-order terms
in the ε expansion can be safely neglected for the precision we aim to.

Now, a helpful simplification comes directly from using the relative co-
ordinates of the inner binary center of mass as explained in Section 5.2.2.
Indeed, once we express the Lagrangian in terms of these coordinates, the
contributions of order v2ε1/2 precisely cancel each other, so that they do
not contribute to cross-terms. This cancellation is made possible by the fact
that the change of reference frame mixes different orders of the expansion.
Had we defined the contact elements through the three-body center-of-mass
relative coordinates in Eq. (B.72), this term would have been non-zero and
would have lead to cumbersome formulas which would have prevented us
from performing the matching of the inner binary to a point-particle as we
did in Section 5.2.4. We now give the expression of the different perturbing
functions in terms of r and v as

Rv2 =
1
8

v4(1 − 3ν) +
GNm

2r

(
(3 + ν)v2 + ν(v · n)2 − GNm

r

)
,

Rquad = −1
2

rirj∂i∂jϕ̃ ,
(B.64)

where we recall that ϕ̃ is an arbitrary external field, XA = mA/m and ν =
X1X2. Substitution of near identity transformation in these expressions will
produce 1PN quadrupolar terms, i.e of order v2ε2. Using the expression of
the osculating elements, we find

Rv2 =
G2

Nm2

2a2(1 − e cos η)2

[
1 − 3ν

4
(1 + e cos η)2 + (3 + ν)(1 + e cos η)

+ νe2 sin2 η

1 − e cos η
− 1
]

, (B.65)

Rquad = − a2

2
(
(cos η − e) αi +

√
1 − e2 sin η βi)×(

(cos η − e) αj +
√

1 − e2 sin η βj)∂i∂jϕ̃ .
(B.66)

We can now compute the cross-terms following Eq. (B.63). The Lagrangian
displayed in Eq. (B.63) contains cross-terms of order v2ε2. It also contains
2PN (v4) and quadrupole-squared (ε4) terms, which we will ignore since we
limit ourselves to 1PN quadrupolar order. Cross-terms of order v2ε2 will not
receive contributions from the term containing both H and Ω derivatives,
since Rv2 does not depend on neither of these two variables. Computations
are performed using the Mathematica software, giving the full expression of
cross-terms in terms of osculating elements:

⟨LS⟩ =
GNma

8(1 − e2 +
√

1 − e2)

{
[2(9 + 7

√
1 − e2) + e2(51 + 11

√
1 − e2) + 16e4]αiαj

+ [2(7 + 9
√

1 − e2) + e2(29 + 17
√

1 − e2)− 8e4]βiβj
}

∂i∂jϕ̃ . (B.67)
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This term will be part of the effective Lagrangian for the long time-scale
dynamics:

Le f f = ⟨LL⟩+ ⟨LS⟩ = LLu̇L + GLω̇L + HLΩ̇L + ⟨R⟩+ ⟨LS⟩ . (B.68)

This effective Lagrangian contains the term L≤v2ε5/2

quad,12 computed in Section
5.2, but it also includes the terms at lower order in the multipole expansion.

Note that other cross-terms, besides those contained in ⟨LS⟩ and those
coming from terms of order quadrupole-1PN in R, might come in principle
if the change of variables from the mean anomaly to the eccentric anomaly,
discussed in Appendix B.3, was to differ with respect to the change of vari-
ables derived from the Kepler equation (B.42). As discussed, we change
variable from the long time-scale part of the mean anomaly, to the long time-
scale part of the eccentric anomaly, defined so as to be related to the former
by the Kepler equation. This removes any potential cross term contribution
due to the change of variables in the integration.

Finally, note also that to this order cross terms in the effective Lagrangian
(B.68) will not get contributions due to subleading oscillating parts of the
near-identity transformations (e.g. short time-scale functions with ampli-
tude of order quadrupole-1PN, similar to x(1)S in the notation of Appendix
B.3), since these will be average free and will have to multiply terms of LL,
leading to average-free contributions, if any.

b.6 lagrange planetary equations beyond leading averaging

As seen in the previous section, in order to derive the averaged Lagrangian
to order v2ε5/2 we need to compute the averages following the method pre-
sented in Appendix B.3, the near-identity transformations. The LPE for the
outer orbit are obtained in the very same way as described in App. B.1,
replacing all inner quantities with outer ones with the only caveat of substi-
tuting the mass m with the sum m3 + E , with E = m − GNm/2a.

To follow through the computations outlined in App. B.5.1, two technical
remarks are in order. First, in order to express derivatives of the quadrupo-
lar Lagrangian in Eq. (B.66) with respect to angles, we use the following
derivatives of the basis vectors:

∂αi

∂ω
= βi ,

∂βi

∂ω
= −αi ,

∂αi

∂Ω
= − cos ω sin ι γi + cos ι βi ,

∂βi

∂Ω
= − cos ι αi + sin ι sin ω γi ,

∂αi

∂ι
= sin ω γi ,

∂βi

∂ι
= cos ω γi .

(B.69)

Second, we will use (spatial) gauge-invariance in order to simplify the
computations as much as possible. Indeed, we know that the Lagrangian is a
rotation-invariant quantity. Thus, when carrying out the average of the first-
order Lagrangian obtained by integrating out the high-energy modes, we
use a particular gauge choice for the angles: ι = π/2, ω = 0. The resulting
averaged Lagrangian will be gauge-invariant provided we express it only
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in terms of the basis vectors α, β, γ. In this gauge, the derivatives written
above simplify greatly:

∂αi

∂ω
= βi ,

∂βi

∂ω
= −αi ,

∂αi

∂Ω
= −γi ,

∂βi

∂Ω
= 0 ,

∂αi

∂ι
= 0 ,

∂βi

∂ι
= γi ,

∂R
∂L

= 2
√

a
Gm

∂R
∂a

+
1 − e2

e
√

Gma
∂R
∂e

,
∂R
∂G

= −
√

1 − e2

e
√

Gma
∂R
∂e

,

∂R
∂H

= − 1√
Gma(1 − e2)

∂R
∂ι

.

(B.70)

To give further support to the validity of this simplification we refer the
reader to Appendix B.8, where we explicitly derive that the spurious de-
pendence on angles contained in the derivatives (B.69) exactly cancel when
averaging the high-energy modes in order to obtain the quadrupole-squared
terms.

b.7 from the three-body center-of-mass frame to the inner

binary rest frame

In this Appendix we derive the explicit relation between the absolute coor-
dinates (y1, y2) of the inner binary and the relative distance r′ defined in the
inner binary rest frame, which is the natural quantity in terms of which one
can express osculating elements, as discussed in Section 5.2.2. Let us begin
by recalling the post-Newtonian definition of the center-of-mass of the rela-
tivistic two-body system composed by the inner binary, given to 1PN order
by:

EYCM = E1y1 + E2y2 ,

E = E1 + E2 , EA = mA +
1
2

mAv2
A − GNm1m2

2r
,

(B.71)

for A = 1, 2. In the three-body rest frame R, the relation r = y1 − y2 leads to

y1 = YCM + (X2 + δ)r , y2 = YCM + (−X1 + δ)r , (B.72)

where we have defined

XA =
mA
m

, m = m1 + m2 , µ =
m1m2

m
, ν =

µ

m
,

δ = −νVCM · v + ν(X1 − X2)

(
v2

2
− GNm

2r

)
.

(B.73)

However, the relative distance r in the three-body rest frame R cannot be
expressed in terms of the intrinsic contact elements using Eq. (5.6). Rather,
it will be the relative distance in the inner binary rest frame R′, r′ = y′

1 − y′
2,

and the respective momentum to be related to these convenient variables by
Eq. (5.6). For this reason, we want to express the relative coordinates in the
rest frame R in terms of those defined in R′. Concretely, around a time t0,
the two coordinate systems are related by the following transformation:(

t′ − t0

y′

)
= B

(
t − t0

y − YCM(t0)

)
, (B.74)
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Figure B.1: Illustration of the change of referential (B.74): the rest frame of the inner
binary R′ is obtained from the total center-of-mass frame R by translating
it by XCM and boosting it by VCM.

where B represents a Lorentz boost of velocity VCM(t0). To 1PN order, the
coordinates of the two inner bodies y′

A (with A = 1, 2) in the frame R′ are
related to those of the three-body rest frame R by:

y′
A(t

′) =yA(t′)− YCM − VCM(t′ − t0)

+ VCM ·
(
yA(t′)− YCM

)(
vA(t′)−

VCM

2

)
,

(B.75)

where in the last equation it is understood that YCM and VCM are evaluated
at t0. Inserting this relation in the center-of-mass definition (B.71) to 1PN
order, we obtain

E1y′
1 + E2y′

2 =
(
VCM · r′

)
p′ , (B.76)

where we have substituted µv′ ≃ p′. From this, we find that the relation
between absolute coordinates y′

A and relative coordinates r′ , v′ in rest frame
of the inner binary is:

y′
1 =

(
X2 + δ

)
r′ +

(
VCM · r′

)
p′/m ,

y′
2 =

(
− X1 + δ

)
r′ +

(
VCM · r′

)
p′/m ,

(B.77)

where δ is the 1PN quantity already defined in Eq. (B.73) (the use of primed
or unprimed quantities in δ does not matter since the difference would be
of 2PN order), and it is understood that y′

1, y′
2, r′ and v′ are evaluated at the

same time t′.
This result allows to express the three-body frame coordinates yA in terms

of the relative coordinates in the rest frame of the inner binary, r′ , p′ 2,
which can be in turn expressed in terms of intrinsic contact elements using
Eq. (5.6)3. We obtain:

y1 =YCM + VCM(t − t0) + (X2 + δ)r′

+ X2
(
VCM · r′

)[(
X1 − X2

) p′

µ
− VCM

2

]
,

y2 =YCM + VCM(t − t0) + (−X1 + δ)r′

− X1
(
VCM · r′

)[(
X1 − X2

) p′

µ
− VCM

2

]
,

(B.78)

where r′ and p′ are evaluated at the time t, while YCM and VCM are evalu-
ated at t0.

2 Note that p′ is defined through the relative velocity v′, the t′ derivative of r′.
3 Although Eq. (5.6) could be used to define osculating elements whatever the frame, now we

will apply it to the relative distance and momentum in the binary rest frame, which we are
calling r′ and p′.
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In particular, this result implies the following relation between r = y1 − y2
and r′:

r = r′ −
(
VCM · r′

)[VCM

2
+
(
X2 − X1

) p′

µ

]
. (B.79)

The final step is just to evaluate the above expressions (B.78) and their time-
derivatives at t = t0 and to express r′ , p′ in terms of the contact elements as
in Eq. (5.6). To avoid clutter, in the main text and the rest of the Appendices
we will suppress the primed label on r′, p′.

b.8 quadrupole-squared terms

In this Appendix we use the methodology developed in Appendix B.5 to
compute the so-called quadrupole-squared terms presented in [298]. These
purely Newtonian contributions to the evolution of a hierarchical system
come from deviations to the adiabatic approximation as well as backreac-
tion of quickly oscillating modes when averaging quadrupolar terms. The
magnitude of these contributions can be greater than octupole order terms
so that they could induce interesting deviations to the Kozai-Lidov mecha-
nism.

As stated in Appendix B.5, corrections to the leading order averaging
could come at the level of either the inner binary or the outer binary orbital
motion, because of short-timescale fluctuations of the form X = XL + XS
where X is any osculating element or canonical momentum of the inner or
outer binary. More precisely, there are four kind of short-timescale fluctua-
tions of osculating elements to consider: (i) fluctuations of the inner plan-
etary elements on an inner binary timescale; (ii) fluctuations of the outer
planetary elements on an inner binary timescale; (iii) fluctuations of the in-
ner planetary elements on an outer binary timescale; (iv) fluctuations of the
outer planetary elements on an outer binary timescale. In all these cases,
a generalization of the methodology developed in Appendix B.5.1 shows
that the cross-terms in LS (B.63) scale as (see in particular Eq. (B.61) and
Eq. (B.57)):

(i)
F 2

L
L3

G2
Nm2

∼ F 2 a
GNm

, (B.80)

(ii)
F 2

L3

L3

G2
Nm2

∼ F 2 a
GNm

ε1/2 , (B.81)

(iii)
F 2

L
L3

3
G2

Nm2
∼ F 2 a

GNm
ε−3/2 , (B.82)

(iv)
F 2

L3

L3
3

G2
Nm2

∼ F 2 a
GNm

ε−1 . (B.83)

This makes it clear that, in general, case (iii) gives the largest contribu-
tion of the cross-terms (see also the interesting discussion in Appendix B
of Ref. [298]). This scaling is perfectly valid for the quadrupole-squared
terms which we want to compute in this Appendix; instead, in the previ-
ous case of quadrupole-1PN cross-terms, there is an additional suppression
on the outer binary timescale which explains that the dominant contribu-
tion to cross-terms comes from case (i) as computed in Appendix B.5. This
additional suppression comes from the fact that the PN terms in the func-
tion F come with an additional ε2 multiplicative factor for cases (iii) and
(iv) — i.e. when averaging over the outer binary timescale. To see this,



126 results for binaries and nrgr

remark that the 1PN perturbing function can be schematically written as:
R1PN = Rv2 +Rv2ε1/2 +Rv2ε +Rv2ε3/2 +Rv2ε2 . This splitting, as already
emphasized in Appendix B.5.2, comes from introducing the center-of-mass
coordinates (5.10) in the EIH Lagrangian (4.11). With our center-of-mass
choice, both Rv2ε1/2 , Rv2ε and Rv2ε3/2 vanish after averaging on the inner
binary timescale. Thus, the only term featuring a non-trivial dependence
on the outer binary timescale is Rv2ε2 , since Rv2 is just the standard EIH
Lagrangian for the inner binary and does not depend on the outer binary
period. This proves the additional ε2 suppression of outer binary averages,
justifying the use of case (i) in Appendix B.5.

Let us now derive the quadrupole-squared terms using the scaling (iii).
Since we are only interested in deviations from adiabaticity in the outer aver-
age, we only perform leading order averaging for the inner binary timescale.
Having removed the dependence of the Lagrangian on the mean anomaly
of the inner orbit, the semimajor axis of the inner orbit will remain constant.
This means that this variable will not have short oscillations on time-scales
of the order of the period of the outer binary. The other variables instead
will have modes that evolve during the period of the outer orbit and modes
that evolve on much longer time-scales. Therefore we will generally write
X = XL̃ + XS̃, indicating a near identity transformation having the period
of the outer binary as reference time-scale. As indicated by the scaling (iii),
we only consider such a decomposition for X being an inner osculating el-
ement, because fluctuations of outer osculating elements are suppressed by
an additional ε1/2 factor.

At this point we can already check that the quadrupole-square cross terms
Lagrangian LS̃ scales as

LS̃
LL̃

∼ n3

n
∼
√

Ma3

ma3
3

. (B.84)

Thus, despite the quadrupole-squared terms are formally a ε3/2 perturba-
tion to the quadrupole (i.e between octupole and hexadecapole), they could
be enhanced to a greater magnitude than the octupole if the ratio M/m is
large.

To proceed with the computation, we will indicate the quadrupolar part
of the perturbing function in Eq. (5.27) to Newtonian order as:

RQ3 =
3GNm3

2µ
Qij Ni Nj

R3 ,

Qij =
µa2

2

(
(1 + 4e2)αiαj + (1 − e2)βiβj − 2 + 3e2

3
δij
)

,
(B.85)

and its average free part, taken with respect to the long time-scale part of
the outer mean anomaly u3 L̃, as:

FQ3 = RQ3 −
1

2π

∫ 2π

0
du3 L̃RQ3 , (B.86)

where we recall that R is the distance vector of the outer orbit, R = |R| and
N = R/R. With this notation, using the equations of motion and expanding
the perturbing function, we obtain:

LS̃ = LS̃u̇S̃ + GS̃ω̇S̃ + HS̃Ω̇S̃ + ∑
X

∂FQ3

∂X
XS̃ (B.87)

= Af
( ∫ u3 L̃

ds
∂FQ3

∂G

)∂FQ3

∂ω
+ Af

( ∫ u3 L̃
ds

∂FQ3

∂H

)∂FQ3

∂Ω
.
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Then, performing the averages with respect to the long time-scale part of
the outer mean anomaly, we find:

⟨LS⟩ = −9G2
Nm2

3
4µ2

(
∂Qij

∂ω

∂Qkl

∂G
+

∂Qij

∂Ω
∂Qkl

∂H

)
Aij;kl ≡ Bij;klAij;kl , (B.88)

where the tensor Aij;kl is a sort of variance given by

Aij;kl =

〈[Ni Nj

R3 −
〈Ni Nj

R3

〉]
×
∫

dt
[

Nk Nl
R3 −

〈
Nk Nl

R3

〉]〉
. (B.89)

Note that the choice of a constant in the integration does not matter since
it multiplies a zero-mean term. Aij;kl is symmetric in the (i, j) as well as in
the (k, l) indices, and it is antisymmetric by exchange of the pairs (i, j) and
(k, l) (by an integration by parts). There now just remains to compute the
derivatives in Eq. (B.88). We will use the derivatives given in Appendix B.1,
Eqs. (B.15) and (B.69). These derivatives generically depend on the angles
Ω, ω and ι. However, such angles cannot remain in the final result for ⟨LS⟩,
since the contraction in the spatial indices needs to transform correctly un-
der a rotation. This is analogous to the ’background field method’ in EFTs:
if we integrate out some fluctuating field in some given gauge, then the
computational steps can be gauge-dependent but the final result should be
gauge-invariant since it is expressed as a (gauge-invariant) long-wavelength
Lagrangian. The cancellation of the angular dependence will be a very non-
trivial check of our computation. In the more complicated computation of
the PN quadrupolar cross-terms, instead, we have chosen to reverse the ar-
gument and choose a particular gauge (i.e, a particular value for Ω, ω and
ι) to simplify the calculations, as explained at the end of Appendix B.1.

We now go on for the final computation. In the Bij;kl tensor, the depen-
dence on the angle ι nicely factors out:

1
sin ι

∂Qkl

∂ι

(
cos ι

∂Qij

∂ω
− ∂Qij

∂Ω

)
=

µ2a4

4

[(
1 + 4e2) cos ω

(
αiγj + sym

)
−
(
1 − e2) sin ω

(
βiγj + sym

)]
×
[(

1 + 4e2) sin ω
(
αkγl + sym

)
+
(
1 − e2) cos ω

(
βkγl + sym

)]
.

(B.90)

However, there seems to remain an additional dependence on ω which we
do not expect. This spurious dependence can be removed completely by
using the fact that Aij;kl is antisymmetric under the exchange of the pairs
(i, j) and (k, l). Taking the anti-symmetrization of the above expression, we
are led to

µ2a4(1 − e2)(1 + 4e2)

8
×(

(αiγj + sym)(γkβl + sym)− (γiβj + sym)(αkγl + sym)
)

,
(B.91)
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so that all angular dependence drops out. Putting all together, we find the
final expression for Bij;kl :

Bij;kl =
9G2

Nm2
3a4

32
√

GNma(1 − e2)
× (B.92)[

−20e2(1 − e2)(αiβj + sym)(4αkαl − βkβl − δkl) + (1 − e2)(1 + 4e2)×(
(αiγj + sym)(βkγl + sym)− (βiγj + sym)(αkγl + sym)

)]
,

while the other tensor Aij;kl is given by

Aij;kl =
g1(e3)√
GN Ma9

3

[
αk

3αl
3
(
αi

3β
j
3 + sym

)
− αi

3α
j
3
(
αk

3βl
3 + sym

)]
(B.93)

+
g2(e3)√
GN Ma9

3

[
βi

3β
j
3
(
αk

3βl
3 + sym

)
− βk

3βl
3
(
αi

3β
j
3 + sym

)]
,

where the two dimensionless functions of the outer eccentricity e3 are given
by

g1(e3) =
1

48e2
3(1 − e2

3)
7/2

[
4
(
1 −

√
1 − e2

3
)
+ e2

3
(
− 8 + 9

√
1 − e2

3
)

(B.94)

+ e4
3
(
4 + 5

√
1 − e2

3
)]

,

g2(e3) =
1

48e2
3(1 − e2

3)
5/2

[
4
(
− 1 +

√
1 − e2

3
)
+ e2

3
(
4 +

√
1 − e2

3
)]

. (B.95)

Plugging the expressions of the basis vectors in terms of osculating an-
gles, we have checked that our formula (B.88) exactly recovers the LPE with
quadrupole-squared terms derived in [298].

b.9 from contact elements to orbital elements

In this Appendix we explore the difference between contact elements and
orbital elements, the two kinds of osculating elements that allow to describe
the three-body system efficiently. As already remarked, the difference be-
tween these two sets of elements is of 1PN order, with the contact terms
being particularly useful to repackage various PN corrections in the effec-
tive action. This analysis allows us to compare our results with some of the
results of [268, 281] concerning the evolution of conserved quantities.

We will now write down explicitly the relation between these two sets of
elements to 1PN order, following [323]. As discussed in Section 5.1, the key
difference between the two sets of variables is the fact that the momentum
is not simply proportional to the velocity in the PN expansion. Therefore it
is useful to inspect the relation between p and v at 1PN:

p = v +
∂R1PN

∂v
= v +

(
1 − 3ν

2
v2 +

GNm(3 + ν)

r

)
v +

GNmν

r
(n · v)n ,

(B.96)
where we recall that in all Appendices we use the convention of dividing the
Lagrangian by the reduced mass µ, so that p and v have same dimension. In
the 1PN term we could use indifferently v or p since the difference would
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be of 2PN order. The easiest orbital elements to relate to contact elements
are the angles Ω̃ and ι̃. Indeed, since the momentum p is still in the plane
of the motion, the definition of Ω̃ and ι̃ do not get affected by the difference
between momentum and velocity. Thus,

Ω̃ = Ω , (B.97)

ι̃ = ι . (B.98)

Let us start the non-trivial computations with the semimajor axis. We have
the following definitions:

−GNm
2ã

=
v2

2
− GNm

r
, (B.99)

−GNm
2a

=
p2

2
− GNm

r
. (B.100)

Combining Eqs.(B.96), (B.99) and (B.100) we get to ã = a + ∆a with

∆a = − 2GNm
(1 − ẽ cos η̃)2

[
1
2
(1 − 3ν)(1 + ẽ cos η̃)2

+ (3 + ν)(1 + ẽ cos η̃) +
νẽ2 sin2 η̃

1 − ẽ cos η̃

]
.

(B.101)

In the above expression, using the contact or the osculating elements in the
RHS makes no difference since we neglect terms of order 2PN (∆a is a 1PN
quantity). Let us now focus on the eccentricity. We have:

|r × v| =
√

GNmã(1 − ẽ2) , (B.102)

|r × p| =
√

GNma(1 − e2) . (B.103)

(B.104)

Splitting ẽ = e + ∆e we get to

∆e =
GNm(1 − ẽ2)

ã(1 − ẽ cos η̃)3 ×[
cos η̃(1 − ẽ cos η̃)(−7 + ν − ẽ(1 − 3ν) cos η̃)− ẽν sin2 η̃

]
.

(B.105)

There finally remains to find the argument of perihelion ω and mean
anomaly u. Let us denote by f the true anomaly, representing the angle
of the object along its trajectory on the ellipse, measured from perihelion.
Then one has f + ω = f̃ + ω̃ since this corresponds to the true physical an-
gle of the object, and should not depend on whether we use tilde quantities
or not. Thus, ∆ω = −∆ f . To find ∆ f , one can use the definition of the radius
vector:

r =
a(1 − e2)

1 + e cos f
=

ã(1 − ẽ2)

1 + ẽ cos f̃
. (B.106)

This gives f̃ = f + ∆ f with

∆ f =
GNm

√
1 − ẽ2 sin η̃

2ãẽ(1 − ẽ cos η̃)3 ×[
14 − ẽ2 − 2ν + 5ẽ2ν − 6ẽ(2 + ν) cos η̃ − ẽ2(1 − 3ν) cos 2η̃

]
.

(B.107)
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Finally, to find ∆u (defined by ũ = u + ∆u) one can use again the definition
of r = a(1 − e cos η) together with η − e sin η = u to find

∆u = − GNm
8ãẽ(1 − ẽ cos η̃)3

[
2
(
− 6ẽ4 + ẽ2(1 − 15ν)− 4(7 − ν)

)
sin η̃

+ 2ẽ
(
6(2 + ν) + 2ẽ2(7 + 2ν)− ẽ4(1 − 3ν)

)
sin 2η̃

+ 2ẽ2(1 − 3ν − ẽ2(6 + 4ν)
)

sin 3η̃ − ẽ5(1 − 3ν) sin 4η̃

]
. (B.108)

To sum up our results, here are all the modifications to the osculating ele-
ments:

∆a =− 2GNm
(1 − ẽ cos η̃)2 × (B.109)[

1
2
(1 − 3ν)(1 + ẽ cos η̃)2 + (3 + ν)(1 + ẽ cos η̃) +

νẽ2 sin2 η̃

1 − ẽ cos η̃

]
,

∆e =
GNm(1 − ẽ2)

ã(1 − ẽ cos η̃)3 × (B.110)[
cos η̃(1 − ẽ cos η̃)(−7 + ν − ẽ(1 − 3ν) cos η̃)− ẽν sin2 η̃

]
,

∆ω =− GNm
√

1 − ẽ2 sin η̃

2ãẽ(1 − ẽ cos η̃)3 × (B.111)[
14 − ẽ2 − 2ν + 5ẽ2ν − 6ẽ(2 + ν) cos η̃ − ẽ2(1 − 3ν) cos 2η̃

]
,

∆u =− GNm
8ãẽ(1 − ẽ cos η̃)3

[
2
(
− 6ẽ4 + ẽ2(1 − 15ν)− 4(7 − ν)

)
sin η̃

+ 2ẽ
(
6(2 + ν) + 2ẽ2(7 + 2ν)− ẽ4(1 − 3ν)

)
sin 2η̃

+ 2ẽ2(1 − 3ν − ẽ2(6 + 4ν)
)

sin 3η̃ − ẽ5(1 − 3ν) sin 4η̃

]
, (B.112)

∆Ω =∆ι = 0 , (B.113)

∆α =β∆ω , ∆β = −α∆ω . (B.114)

These formulas relate the instantaneous values of these two sets of el-
ements. However, it is more interesting to analyze the difference in the
orbit-averaged elements, denoted with an L subscript. Using our previ-
ous splitting between long-timescale and short-timescale variables (see Ap-
pendix B.5), one can write e.g for the eccentricity ẽ = e + ∆e = eL + eS + ∆e
with ⟨eS⟩ = 0. Thus, we can identify:

ẽL = eL + ⟨∆e⟩ , ẽS = eS + ∆e − ⟨∆e⟩ , (B.115)

and similarly for the other osculating elements. This gives the final relation
for the orbit-averaged contact and orbital elements:

ãL = aL + GNm
[

9 − 16√
1 − ẽ2

L

− ν

(
5 − 6√

1 − ẽ2
L

)]
,

ẽL = eL −
GNmẽL

ãL
(8 − 3ν)

√
1 − ẽ2

L

1 +
√

1 − ẽ2
L

,

ω̃L = ωL , Ω̃L = ΩL , ι̃L = ιL , ũL = uL .

(B.116)
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We can now describe the main physical effects stemming from this post-
Newtonian shift of the osculating elements:

• The first and most important point to notice is that the shifts written in
Eq. (B.116) will stay small at any moment in time. In other words, they
cannot accumulate a small effect over long timescales to get an im-
portant effect4, like it happens for quadrupolar and post-Newtonian
perturbations in the LPE; rather, the two sets of osculating elements
will differ by a quantity which is of post-Newtonian order at any time.
Thus, replacing contact elements by orbital ones will not make a quali-
tative difference concerning the long-timescale evolution of the binary
system.

• Plugging the shifts ẽL = eL − ⟨∆e⟩ and ãL = aL − ⟨∆a⟩ implied by
Eq. (B.116) in the kinetic term of the Lagrangian (B.52) shifts the canon-
ical momenta G and H as

∆G
G̃

=
∆H
H̃

=
e⟨∆e⟩
1 − ẽ2 − ⟨∆a⟩

2ã
=

GNm
2ã

(7 − ν) . (B.117)

In other words, this replaces the effective Newtonian spin of the binary
system J = µ

√
GNmã(1 − ẽ2)γ with its 1PN counterpart given by

J1PN = µ
√

GNma(1 − e2)γ̃ = µ
√

GNmã(1 − ẽ2)γ

(
1 +

GNm
2ã

(7 − ν)

)
.

(B.118)
On the other hand, the above expression corresponds to the 1PN ex-
pression of the conserved angular momentum that one can find in
e.g. [300], averaged over one orbit of the binary system. This is a non-
trivial check of the validity of our computation.

• The most interesting effect coming from these shifts of a and e is that
the semimajor axis ã is not conserved in time. Indeed, it is the contact
element a which is conserved in time, but it is related to the osculating
ã with a formula involving the eccentricity, eq. (B.116). Since the eccen-
tricity is itself allowed to vary, one should have a variation of ã over
time at 1PN order. This effect has already been discussed in [268, 281]
where it was derived using the 1PN equations of motion. However, our
treatment makes clear the fact that such an effect cannot accumulate
over a long timescale and give appreciable variation in the semimajor
axis a as discussed before.

On the other hand, a detailed comparison shows that our formula for
the variation of ã and the one given in [268, 281] seem to be in dis-
agreement. The source of this apparent incompatibility can be traced
back to the fact that our averaging procedure is somewhat different
than the one discussed in [268, 281]. Indeed, the following averages
differ at 1PN quadrupolar order:

d⟨a⟩
dt

̸=
〈

da
dt

〉
. (B.119)

The l.h.s. of this equation corresponds to the quantity that we compute
in this article. On the other hand, the variation computed in [268, 281]
corresponds to the RHS of this equation, which by definition is equal

4 This is, as long as the elements are computed within the time interval in which our effective
field theory is valid.
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to (a(T)− a(0))/T. Thus, the results of [268, 281] concern the evolu-
tion of the initial value of osculating elements after one inner period,
while we are interested in the evolution of the mean value of osculat-
ing elements. This difference also shows itself in the conservation of
energy and angular momentum: while the work in [268, 281] proves
exact conservation of initial PN energy and angular momentum, we
are able to prove conservation of an averaged PN energy and angular
momentum.
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